Sample records for increased volume load

  1. Does Stroke Volume Increase During an Incremental Exercise? A Systematic Review

    PubMed Central

    Vieira, Stella S.; Lemes, Brunno; de T. C. de Carvalho, Paulo; N. de Lima, Rafael; S. Bocalini, Danilo; A. S. Junior, José; Arsa, Gisela; A. Casarin, Cezar; L. Andrade, Erinaldo; J. Serra, Andrey

    2016-01-01

    Introduction: Cardiac output increases during incremental-load exercise to meet metabolic skeletal muscle demand. This response requires a fast adjustment in heart rate and stroke volume. The heart rate is well known to increase linearly with exercise load; however, data for stroke volume during incremental-load exercise are unclear. Our objectives were to (a) review studies that have investigated stroke volume on incremental load exercise and (b) summarize the findings for stroke volume, primarily at maximal-exercise load. Methods: A comprehensive review of the Cochrane Library’s, Embase, Medline, SportDiscus, PubMed, and Web of Sci-ence databases was carried out for the years 1985 to the present. The search was performed between February and June 2014 to find studies evaluating changes in stroke volume during incremental-load exercise. Controlled and uncontrolled trials were evaluated for a quality score. Results: The stroke volume data in maximal-exercise load are inconsistent. There is evidence to hypothesis that stroke volume increases during maximal-exercise load, but other lines of evidence indicate that stroke volume reaches a plateau under these circumstances, or even decreases. Conclusion: The stroke volume are unclear, include contradictory evidence. Additional studies with standardized reporting for subjects (e.g., age, gender, physical fitness, and body position), exercise test protocols, and left ventricular function are required to clarify the characteristics of stroke volume during incremental maximal-exercise load. PMID:27347221

  2. Vascular capacitance and cardiac output in pacing-induced canine models of acute and chronic heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-11-01

    The relationship between stressed and total blood volume, total vascular capacitance, central blood volume, cardiac output (CO), and pulmonary capillary wedge pressure (Ppcw) was investigated in pacing-induced acute and chronic heart failure. Acute heart failure was induced in anesthetized splenectomized dogs by a volume load (20 mL/kg over 10 min) during rapid right ventricular pacing at 250 beats/min (RRVP) for 60 min. Chronic heart failure was induced by continuous RRVP for 2-6 weeks (average 24 +/- 2 days). Total vascular compliance and capacitance were calculated from the mean circulatory filling pressure (Pmcf) during transient circulatory arrest after acetylcholine at three different circulating volumes. Stressed blood volume was calculated as a product of compliance and Pmcf, with the total blood volume measured by a dye dilution. Central blood volume (CBV) and CO were measured by thermodilution. Central (heart and lung) vascular capacitance was estimated from the plot of Ppcw against CBV. Acute volume loading without RRVP increased capacitance and CO, whereas after volume loading with RRVP, capacitance and CO were unaltered from baseline. Chronic RRVP reduced capacitance and CO. All interventions, volume +/- RRVP or chronic RRVP, increased stressed and central blood volumes and Ppcw. Acute or chronic RRVP reduced central vascular capacitance. Cardiac output was increased when stressed and unstressed blood volumes increased proportionately as during volume loading alone. When CO was reduced and Ppcw increased, as during chronic RRVP or acute RRVP plus a volume load, stressed blood volume was increased and unstressed blood volume was decreased. Thus, interventions that reduced CO and increased Ppcw also increased stressed and reduced unstressed blood volume and total vascular capacitance.

  3. Association between intravenous chloride load during resuscitation and in-hospital mortality among patients with SIRS.

    PubMed

    Shaw, Andrew D; Raghunathan, Karthik; Peyerl, Fred W; Munson, Sibyl H; Paluszkiewicz, Scott M; Schermer, Carol R

    2014-12-01

    Recent data suggest that both elevated serum chloride levels and volume overload may be harmful during fluid resuscitation. The purpose of this study was to examine the relationship between the intravenous chloride load and in-hospital mortality among patients with systemic inflammatory response syndrome (SIRS), with and without adjustment for the crystalloid volume administered. We conducted a retrospective analysis of 109,836 patients ≥ 18 years old that met criteria for SIRS and received fluid resuscitation with crystalloids. We examined the association between changes in serum chloride concentration, the administered chloride load and fluid volume, and the 'volume-adjusted chloride load' and in-hospital mortality. In general, increases in the serum chloride concentration were associated with increased mortality. Mortality was lowest (3.7%) among patients with minimal increases in serum chloride concentration (0-10 mmol/L) and when the total administered chloride load was low (3.5% among patients receiving 100-200 mmol; P < 0.05 versus patients receiving ≥ 500 mmol). After controlling for crystalloid fluid volume, mortality was lowest (2.6%) when the volume-adjusted chloride load was 105-115 mmol/L. With adjustment for severity of illness, the odds of mortality increased (1.094, 95% CI 1.062, 1.127) with increasing volume-adjusted chloride load (≥ 105 mmol/L). Among patients with SIRS, a fluid resuscitation strategy employing lower chloride loads was associated with lower in-hospital mortality. This association was independent of the total fluid volume administered and remained significant after adjustment for severity of illness, supporting the hypothesis that crystalloids with lower chloride content may be preferable for managing patients with SIRS.

  4. Chloride Content of Fluids Used for Large-Volume Resuscitation Is Associated With Reduced Survival.

    PubMed

    Sen, Ayan; Keener, Christopher M; Sileanu, Florentina E; Foldes, Emily; Clermont, Gilles; Murugan, Raghavan; Kellum, John A

    2017-02-01

    We sought to investigate if the chloride content of fluids used in resuscitation was associated with short- and long-term outcomes. We identified patients who received large-volume fluid resuscitation, defined as greater than 60 mL/kg over a 24-hour period. Chloride load was determined for each patient based on the chloride ion concentration of the fluids they received during large-volume fluid resuscitation multiplied by the volume of fluids. We compared the development of hyperchloremic acidosis, acute kidney injury, and survival among those with higher and lower chloride loads. University Medical Center. Patients admitted to ICUs from 2000 to 2008. None. Among 4,710 patients receiving large-volume fluid resuscitation, hyperchloremic acidosis was documented in 523 (11%). Crude rates of hyperchloremic acidosis, acute kidney injury, and hospital mortality all increased significantly as chloride load increased (p < 0.001). However, chloride load was no longer associated with hyperchloremic acidosis or acute kidney injury after controlling for total fluids, age, and baseline severity. Conversely, each 100 mEq increase in chloride load was associated with a 5.5% increase in the hazard of death even after controlling for total fluid volume, age, and severity (p = 0.0015) over 1 year. Chloride load is associated with significant adverse effects on survival out to 1 year even after controlling for total fluid load, age, and baseline severity of illness. However, the relationship between chloride load and development of hyperchloremic acidosis or acute kidney injury is less clear, and further research is needed to elucidate the mechanisms underlying the adverse effects of chloride load on survival.

  5. [Morphological analysis of bone dynamics and metabolic bone disease. Effect of loading on bone tissue].

    PubMed

    Sakai, Akinori

    2011-04-01

    We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.

  6. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D

    X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defectmore » sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.« less

  7. Assessing water quality of the Chesapeake Bay by the impact of sea level rise and warming

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L.; Wang, H.; Bhatt, G.; Yactayo, G.; Hinson, K.; Tian, R.

    2017-08-01

    The influence of sea level rise and warming on circulation and water quality of the Chesapeake Bay under projected climate conditions in 2050 were estimated by computer simulation. Four estuarine circulation scenarios in the estuary were run using the same watershed load in 1991-2000 period. They are, 1) the Base Scenario, which represents the current climate condition, 2) a Sea Level Rise Scenario, 3) a Warming Scenario, and 4) a combined Sea Level Rise and Warming Scenario. With a 1.6-1.9°C increase in monthly air temperatures in the Warming Scenario, water temperature in the Bay is estimated to increase by 0.8-1°C. Summer average anoxic volume is estimated to increase 1.4 percent compared to the Base Scenario, because of an increase in algal blooms in the spring and summer, promotion of oxygen consumptive processes, and an increase of stratification. However, a 0.5-meter Sea Level Rise Scenario results in a 12 percent reduction of anoxic volume. This is mainly due to increased estuarine circulation that promotes oxygen-rich sea water intrusion in lower layers. The combined Sea Level Rise and Warming Scenario results in a 10.8 percent reduction of anoxic volume. Global warming increases precipitation and consequently increases nutrient loads from the watershed by approximately 5-7 percent. A scenario that used a 10 percent increase in watershed loads and current estuarine circulation patterns yielded a 19 percent increase in summer anoxic volume, while a scenario that used a 10 percent increase in watershed loads and modified estuarine circulation patterns by the aforementioned sea level rise and warming yielded a 6 percent increase in summer anoxic volume. Impacts on phytoplankton, sediments, and water clarity were also analysed.

  8. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  9. Sonographic assessment of changes in diaphragmatic kinetics induced by inspiratory resistive loading.

    PubMed

    Soilemezi, Eleni; Tsagourias, Matthew; Talias, Michael A; Soteriades, Elpidoforos S; Makrakis, Vasilios; Zakynthinos, Epaminondas; Matamis, Dimitrios

    2013-04-01

    Diaphragmatic breathing patterns under resistive loading remain poorly documented. To our knowledge, this is the first study assessing diaphragmatic motion under conditions of inspiratory resistive loading with the use of sonography. We assessed diaphragmatic motion during inspiratory resistive loading in 40 healthy volunteers using M-mode sonography. In phase I of the study, sonography was performed during normal quiet breathing without respiratory loading. In phase II, sonography was performed after application of a nose clip and connection of the subjects to a pneumotachograph through a mouth piece. In phase III, the participants were assessed while subjected to inspiratory resistive loading of 50 cm H(2)O/L/s. Compared with baseline, the application of a mouth piece and nose clip induced a significant increase in diaphragmatic excursion (from 1.7 to 2.3 cm, P < 0.001) and a decrease in respiratory rate (from 13.4 to 12.2, P < 0.01). Inspiratory resistive loading induced a further decrease in respiratory rate (from 12.2 to 8.0, P < 0.01) and a decrease in diaphragmatic velocity contraction (from 1.2 to 0.8 cm/s, P < 0.01), and also an increase in tidal volume (from 795 to 904 mL, P < 0.01); diaphragmatic excursion, however, did not change significantly. Inspiratory resistive loading induced significant changes in diaphragmatic contraction pattern, which mainly consisted of decreased velocity of diaphragmatic displacement with no change in diaphragmatic excursion. Tidal volume, increased significantly; the increase in tidal volume, along with the unchanged diaphragmatic excursion, provides sonographic evidence of increased recruitment of extradiaphragmatic muscles under inspiratory resistive loading. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  10. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana.

    PubMed

    Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A

    2016-05-15

    The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2 km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.

    2018-04-01

    Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.

  12. A numerical study of the phase behaviors of drug particle/star triblock copolymer mixtures in dilute solutions for drug carrier application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn

    The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less

  13. Short-Term Effects of Different Loading Schemes in Fitness-Related Resistance Training.

    PubMed

    Eifler, Christoph

    2016-07-01

    Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880-1889, 2016-The purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes. The investigation was designed as a longitudinal field-test study. Two hundred healthy mature subjects with at least 12 months' experience in resistance training were randomized in 4 samples of 50 subjects each. Gender distribution was homogenous in all samples. Training effects were quantified by 10 repetition maximum (10RM) and 1 repetition maximum (1RM) testing (pre-post-test design). Over a period of 6 weeks, a standardized resistance training protocol with 3 training sessions per week was realized. Testing and training included 8 resistance training exercises in a standardized order. The following loading schemes were randomly matched to each sample: constant load (CL) with constant volume of repetitions, increasing load (IL) with decreasing volume of repetitions, decreasing load (DL) with increasing volume of repetitions, daily changing load (DCL), and volume of repetitions. For all loading schemes, significant strength gains (p < 0.001) could be noted for all resistance training exercises and both dependent variables (10RM, 1RM). In all cases, DCL obtained significantly higher strength gains (p < 0.001) than CL, IL, and DL. There were no significant differences in strength gains between CL, IL, and DL. The present data indicate that resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL. Considering that DCL is widely unknown in fitness-related resistance training, the present data indicate, there is potential for improving resistance training in commercial fitness clubs.

  14. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    PubMed

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as signals to activate some but not all of the elevated metabolic pathways and ionoregulatory mechanisms needed during processing of a meal.

  15. Competition between reaction-induced expansion and creep compaction during gypsum formation: Experimental and numerical investigation

    NASA Astrophysics Data System (ADS)

    Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.

    2017-12-01

    Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads < 0.15 MPa, volume increase due to the reaction dominates and samples exhibit monotonic expansion. At loads > 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with models of the creep rate in gypsum, to estimate the temperature dependence of the axial load where total strain transitions from compaction to expansion. Our results have implications for the depth dependence of reaction induced volume changes in the Earth.

  16. Abdomino-phrenic dyssynergia in patients with abdominal bloating and distension.

    PubMed

    Villoria, Albert; Azpiroz, Fernando; Burri, Emanuel; Cisternas, Daniel; Soldevilla, Alfredo; Malagelada, Juan-R

    2011-05-01

    The abdomen normally accommodates intra-abdominal volume increments. Patients complaining of abdominal distension exhibit abnormal accommodation of colonic gas loads (defective contraction and excessive protrusion of the anterior wall). However, abdominal imaging demonstrated diaphragmatic descent during spontaneous episodes of bloating in patients with functional gut disorders. We aimed to establish the role of the diaphragm in abdominal distension. In 20 patients complaining of abdominal bloating and 15 healthy subjects, we increased the volume of the abdominal cavity with a colonic gas load, while measuring abdominal girth and electromyographic activity of the anterior abdominal muscles and of the diaphragm. In healthy subjects, the colonic gas load increased girth, relaxed the diaphragm, and increased anterior wall tone. With the same gas load, patients developed significantly more abdominal distension; this was associated with paradoxical contraction of the diaphragm and relaxation of the internal oblique muscle. In this experimental provocation model, abnormal accommodation of the diaphragm is involved in abdominal distension.

  17. Nano-Indentation of Aluminium Reinforced Metallic Glass Composites: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Yadav, D.; Gupta, P.; Yedla, N.

    2018-03-01

    Molecular dynamics (MD) simulations are performed for nanoindentation on metal (Al)-metallic glass (Cu50Zr50) reinforced composites to investigate the mechanical properties and the effects of volume percentage on behavior of the load-displacement curves. The interaction among Al-Cu-Zr is modelled using a EAM (Embedded Atom Method) potential. Simulation box size of 100 Å (x) × 100 Å (y) × 100 Å (z) is modelled for investigating the properties of the sintered models by altering the volume percentage on the scale of 5%-20%. Nanoindentation is done along y-direction with a spherical diamond indenter at temperature of 300 K with constant indentation speed of 100 m/s. NVT ensemble is used with a timestep of 0.002 ps. Investigations on the effect of volume percentage show that as volume percentage of Metallic Glass (MG) increases, the corresponding Load required to penetrate inside the sample also increases. As a result of this Hardness also increase as volume percentage varies from 5% to 20%.

  18. Low cortical iron and high entorhinal cortex volume promote cognitive functioning in the oldest-old.

    PubMed

    van Bergen, Jiri M G; Li, Xu; Quevenco, Frances C; Gietl, Anton F; Treyer, Valerie; Leh, Sandra E; Meyer, Rafael; Buck, Alfred; Kaufmann, Philipp A; Nitsch, Roger M; van Zijl, Peter C M; Hock, Christoph; Unschuld, Paul G

    2018-04-01

    The aging brain is characterized by an increased presence of neurodegenerative and vascular pathologies. However, there is substantial variation regarding the relationship between an individual's pathological burden and resulting cognitive impairment. To identify correlates of preserved cognitive functioning at highest age, the relationship between β-amyloid plaque load, presence of small vessel cerebrovascular disease (SVCD), iron-burden, and brain atrophy was investigated. Eighty cognitively unimpaired participants (44 oldest-old, aged 85-96 years; 36 younger-old, aged 55-80 years) were scanned by integrated positron emission tomography-magnetic resonance imaging for assessing beta regional amyloid plaque load (18F-flutemetamol), white matter hyperintensities as an indicator of SVCD (fluid-attenuated inversion recovery-magnetic resonance imaging), and iron load (quantitative susceptibility mapping). For the oldest-old group, lower cortical volume, increased β-amyloid plaque load, prevalence of SVCD, and lower cognitive performance in the normal range were found. However, compared to normal-old, cortical iron burden was lower in the oldest-old. Moreover, only in the oldest-old, entorhinal cortex volume positively correlated with β-amyloid plaque load. Our data thus indicate that the co-occurrence of aging-associated neuropathologies with reduced quantitative susceptibility mapping measures of cortical iron load constitutes a lower vulnerability to cognitive loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effect of meal volume and calorie load on postprandial gastric function and emptying: studies under physiological conditions by combined fiber-optic pressure measurement and MRI.

    PubMed

    Kwiatek, Monika A; Menne, Dieter; Steingoetter, Andreas; Goetze, Oliver; Forras-Kaufman, Zsofia; Kaufman, Elad; Fruehauf, Heiko; Boesiger, Peter; Fried, Michael; Schwizer, Werner; Fox, Mark R

    2009-11-01

    This study assessed the effects of meal volume (MV) and calorie load (CL) on gastric function. MRI and a minimally invasive fiber-optic recording system (FORS) provided simultaneous measurement of gastric volume and pressure changes during gastric filling and emptying of a liquid nutrient meal in physiological conditions. The gastric response to 12 iso-osmolar MV-CL combinations of a multinutrient drink (MV: 200, 400, 600, 800 ml; CL: 200, 300, 400 kcal) was tested in 16 healthy subjects according to a factorial design. Total gastric volume (TGV) and gastric content volume (GCV = MV + secretion) were measured by MRI during nasogastric meal infusion and gastric emptying over 60 min. Intragastric pressure was assessed at 1 Hz by FORS. The dynamic change in postprandial gastric volumes was described by a validated three-component linear exponential model. The stomach expanded with MV, but the ratio of GCV:MV at t(0) diminished with increasing MV (P < 0.01). Postprandial changes in TGV followed those of GCV. Intragastric pressure increased with MV, and this effect was augmented further by CL (P = 0.02); however, the absolute pressure rise was <4 mmHg. A further postprandial increase of gastric volumes was observed early on before any subsequent volume decrease. This "early" increase in GCV was greater for smaller than larger MV (P < 0.01), indicating faster initial gastric emptying of larger MV. In contrast, volume change during filling and in the early postprandial period were unaffected by CL. In the later postprandial period, gastric emptying rate continued to be more rapid with high MVs (P < 0.001); however, at any given volume, gastric emptying was slowed by higher CL (P < 0.001). GCV half-emptying time decreased with CL at 18 +/- 6 min for each additional 100-kcal load (P < 0.001). These findings indicate that gastric wall stress (passive strain and active tone) provides the driving force for gastric emptying, but distal resistance to gastric outflow regulates further passage of nutrients. The distinct early phase of gastric emptying with relatively rapid, uncontrolled passage of nutrients into the small bowel, modulated by meal volume but not nutrient composition, ensures that the delivery of nutrients in the later postprandial period is related to the overall calorie load of the meal.

  20. Structural characteristics of methylsilsesquioxane based porous low-k thin films fabricated with increasing cross-linked particle porogen loading

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Jeong; Soles, Christopher L.; Liu, Da-Wei; Bauer, Barry J.; Lin, Eric K.; Wu, Wen-Li; Gallagher, Michael

    2006-09-01

    Methylsilsesquioxane (MSQ) based porous low-k dielectric films are characterized by x-ray porosimetry (XRP) to determine their pore size distribution, average density, wall density, and porosity. By varying the porogen content from 1% to 30% by mass, the porosity changes from 12% to 34% by volume, indicating that the base MSQ matrix material contains approximately 10% by volume inherent microporosity. The wall density of this matrix material is measured to be 1.33-1.35g/cm3, independent of porosity. The average pore radii determined from the XRP adsorption isotherms increase from 6to27Å with increased porogen loadings. Small angle neutron scattering measurements confirm these XRP average pore radii for the films with porogen loading higher than 10% by mass.

  1. Dynamic Characteristics of Green Sandstone Subjected to Repetitive Impact Loading: Phenomena and Mechanisms

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Zhu, W. C.; Niu, L. L.; Yu, M.; Chen, C. F.

    2018-06-01

    A split Hopkinson pressure bar apparatus driven by a pendulum hammer was used to perform uniaxial compression tests to examine the degradation process of green sandstone subjected to repetitive impact loading. The acoustic characteristics, dissipated energy, deformation characteristics, and microstructure evolution were investigated. The representative stress-strain curve can be broken into five stages that were characterized by changes in the axial strain response during impact loading. Both the ultrasonic wave velocity and cumulative dissipated energy exhibited obvious three-stage behavior with respect to the impact number. As the impact number increased, more than one peak was observed in the frequency spectra, and the relative weight of the peak frequency increased in the low-frequency range. According to the evolution of the ultrasonic wave velocity, the degradation process was divided into three stages. By comparing the intact stage I and early stage II microcrack development patterns, the initiation of new cracks and elongation of existing cracks were identified as the main degradation mechanisms. Furthermore, a slight increase in the number of cracks was observed, and microcrack lengths steadily increased. Moreover, due to the low level of microcrack damage, the deformation mechanism was mainly characterized by volume compression during impact loading. In late stage II, the main degradation mechanism was the elongation of existing cracks. Additionally, as microcracks accumulated in the rock samples, cracks were arranged parallel to the loading direction, which led to volume dilation. In stage III, microcracks continued to elongate nearly parallel to the loading direction and then linked to each other, which led to intense degradation in the rock samples. In this stage, rock sample deformation was mainly characterized by volume dilation during impact loading. Finally, rock samples were split into blocks with fractures oriented subparallel to the loading direction. These results can improve the understanding of the stability evaluations of rock structures subjected to repetitive impact loading.

  2. Effects of the aging temperature and stress relaxation conditions on γ‧ precipitation in Inconel X-750

    NASA Astrophysics Data System (ADS)

    Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun

    2015-02-01

    Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.

  3. The contribution of volume, technique, and load to single-repetition and total-repetition kinematics and kinetics in response to three loading schemes.

    PubMed

    Crewther, Blair T; Cronin, John; Keogh, Justin W L

    2008-11-01

    This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.

  4. Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    PubMed Central

    Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.

    2010-01-01

    Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498

  5. Two-dimensional echo-cardiographic estimation of left atrial volume and volume load in patients with congenital heart disease.

    PubMed

    Kawaguchi, A; Linde, L M; Imachi, T; Mizuno, H; Akutsu, H

    1983-12-01

    To estimate the left atrial volume (LAV) and pulmonary blood flow in patients with congenital heart disease (CHD), we employed two-dimensional echocardiography (TDE). The LAV was measured in dimensions other than those obtained in conventional M-mode echocardiography (M-mode echo). Mathematical and geometrical models for LAV calculation using the standard long-axis, short-axis and apical four-chamber planes were devised and found to be reliable in a preliminary study using porcine heart preparations, although length (10%), area (20%) and volume (38%) were significantly and consistently underestimated with echocardiography. Those models were then applied and correlated with angiocardiograms (ACG) in 25 consecutive patients with suspected CHD. In terms of the estimation of the absolute LAV, accuracy seemed commensurate with the number of the dimensions measured. The correlation between data obtained by TDE and ACG varied with changing hemodynamics such as cardiac cycle, absolute LAV and presence or absence of volume load. The left atrium was found to become spherical and progressively underestimated with TDE at ventricular endsystole, in larger LAV and with increased volume load. Since this tendency became less pronounced in measuring additional dimensions, reliable estimation of the absolute LAV and volume load was possible when 2 or 3 dimensions were measured. Among those calculation models depending on 2 or 3 dimensional measurements, there was only a small difference in terms of accuracy and predictability, although algorithm used varied from one model to another. This suggests that accurate cross-sectional area measurement is critically important for volume estimation rather than any particular algorithm involved. Cross-sectional area measurement by TDE integrated into a three dimensional equivalent allowed a reliable estimate of the LAV or volume load in a variety of hemodynamic situations where M-mode echo was not reliable.

  6. Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest

    PubMed Central

    Hastings, Jeffrey L.; Krainski, Felix; Snell, Peter G.; Pacini, Eric L.; Jain, Manish; Bhella, Paul S.; Shibata, Shigeki; Fu, Qi; Palmer, M. Dean

    2012-01-01

    This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of −6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (−10 ± 22%, P = 0.169) but not with exercise (−14 ± 43%, P = 0.047) or sedentary bed rest (−24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance. PMID:22345434

  7. Bone density and anisotropy affect periprosthetic cement and bone stresses after anatomical glenoid replacement: A micro finite element analysis.

    PubMed

    Chevalier, Yan; Santos, Inês; Müller, Peter E; Pietschmann, Matthias F

    2016-06-14

    Glenoid loosening is still a main complication for shoulder arthroplasty. We hypothesize that cement and bone stresses potentially leading to fixation failure are related not only to glenohumeral conformity, fixation design or eccentric loading, but also to bone volume fraction, cortical thickness and degree of anisotropy in the glenoid. In this study, periprosthetic bone and cement stresses were computed with micro finite element models of the replaced glenoid depicting realistic bone microstructure. These models were used to quantify potential effects of bone microstructural parameters under loading conditions simulating different levels of glenohumeral conformity and eccentric loading simulating glenohumeral instability. Results show that peak cement stresses were achieved near the cement-bone interface in all loading schemes. Higher stresses within trabecular bone tissue and cement mantle were obtained within specimens of lower bone volume fraction and in regions of low anisotropy, increasing with decreasing glenohumeral conformity and reaching their maxima below the keeled design when the load is shifted superiorly. Our analyses confirm the combined influences of eccentric load shifts with reduced bone volume fraction and anisotropy on increasing periprosthetic stresses. They finally suggest that improving fixation of glenoid replacements must reduce internal cement and bone tissue stresses, in particular in glenoids of low bone density and heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 40 CFR 125.67 - Increase in effluent volume or amount of pollutants discharged.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION... projections of effluent volume and mass loadings for any pollutants to which the modification applies in 5...

  9. A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.

    PubMed

    Weng, Huei Chu; Chen, Lu-Yu

    2016-05-01

    This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.

  10. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.

    PubMed

    Gopalakrishnan, Raghavan; Genc, Kerim O; Rice, Andrea J; Lee, Stuart M C; Evans, Harlan J; Maender, Christian C; Ilaslan, Hakan; Cavanagh, Peter R

    2010-02-01

    Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.

  11. A multi-scale cardiovascular system model can account for the load-dependence of the end-systolic pressure-volume relationship

    PubMed Central

    2013-01-01

    Background The end-systolic pressure-volume relationship is often considered as a load-independent property of the heart and, for this reason, is widely used as an index of ventricular contractility. However, many criticisms have been expressed against this index and the underlying time-varying elastance theory: first, it does not consider the phenomena underlying contraction and second, the end-systolic pressure volume relationship has been experimentally shown to be load-dependent. Methods In place of the time-varying elastance theory, a microscopic model of sarcomere contraction is used to infer the pressure generated by the contraction of the left ventricle, considered as a spherical assembling of sarcomere units. The left ventricle model is inserted into a closed-loop model of the cardiovascular system. Finally, parameters of the modified cardiovascular system model are identified to reproduce the hemodynamics of a normal dog. Results Experiments that have proven the limitations of the time-varying elastance theory are reproduced with our model: (1) preload reductions, (2) afterload increases, (3) the same experiments with increased ventricular contractility, (4) isovolumic contractions and (5) flow-clamps. All experiments simulated with the model generate different end-systolic pressure-volume relationships, showing that this relationship is actually load-dependent. Furthermore, we show that the results of our simulations are in good agreement with experiments. Conclusions We implemented a multi-scale model of the cardiovascular system, in which ventricular contraction is described by a detailed sarcomere model. Using this model, we successfully reproduced a number of experiments that have shown the failing points of the time-varying elastance theory. In particular, the developed multi-scale model of the cardiovascular system can capture the load-dependence of the end-systolic pressure-volume relationship. PMID:23363818

  12. Parametric evaluation of ball milling of SiC in water

    NASA Technical Reports Server (NTRS)

    Kiser, J. D.; Herbell, T. P.; Freedman, M. R.

    1985-01-01

    A statistically designed experiment was conducted to determine optimum conditions for ball milling alpha-SiC in water. The influence of pH adjustment, volume percent solids loading, and mill rotational speed on grinding effectiveness was examined. An equation defining the effect of those milling variables on specific surface area was obtained. The volume percent solids loading of the slurry had the greatest influence on the grinding effectiveness in terms of increase in specific surface area. As grinding effectiveness improved, mill and media wear also increased. Contamination was minimized by use of sintered alpha-SiC milling hardware.

  13. Influence of gender, parity, and caloric load on gastrorectal response in healthy subjects: a barostat study.

    PubMed

    Sloots, Cornelius E J; Felt-Bersma, Richelle J F; Meuwissen, Stephan G M; Kuipers, Ernst J

    2003-03-01

    The gastrocolonic response consists of a prompt increase in colonic tone after a meal. With a barostat and a high compliant air-filled bag, it is possible to measure rectal tone by recording changes in volume at a constant intrabag pressure. The aim of this study was to evaluate the gastrorectal response in males and females as well as the effect of different caloric loads on the gastrorectal response. In 33 volunteers a barostat procedure during basal conditions and after a 600-kcal meal was performed. In 26 volunteers the procedure was repeated with a 1000-kcal meal. A meal response was defined as a decrease in volume of more than 10%. Phasic volume events (PVE) were defined as a 10% decrease in volume of 15-60 sec duration. After a 600-kcal meal, the decrease in volume after 1 hr was 28 +/- 7% (mean +/- SEM, P < 0.001). A meal response was found in 64% of the subjects. Parous females had a diminished meal response compared with nulliparous females (2 +/- 5% and 48 +/- 11%, P < 0.001). After the 600-kcal meal, PVEs increased from 3 to 10/hr (P = 0.001). In the 26 subjects, volume decrease was 40 +/- 9% after the 1000-kcal meal and 20 +/- 7% after the 600-kcal meal (P = 0.28). In the high-calorie meal, 18 subjects (69%) had a response versus 14 (54%) in the low-calorie meal (NS). Enhancing the caloric load of the meal did not increase the amounts of PVEs. In conclusion, a gastrorectal response occurs in 64% of the healthy subjects after a 600-kcal meal. The gastrorectal response can be measured to a similar extent in men and nulliparous women; however, the response is significantly impaired in parous women. This is possibly due to neurogenic damage during childbirth. Increasing the caloric load did not increase the gastrorectal response. Therefore, to study gastrorectal meal response with the barostat, a meal of 600-kcal is sufficient and a correction for parity should be made when results are compared.

  14. Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1990-09-01

    Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.

  15. Crack Growth Analysis for Arbitrary Spectrum Loading. Volume 1. Results and Discussion

    DTIC Science & Technology

    1974-10-01

    amplitude growth without previous load history effects) the crack growth increments were increased. Many of the specimens were fitted with the Amsler...absolute magnitude of the maximum load.) Further, if S is defined as a function of the previous load history , then c h9 Equation (19) will predict...crack growth interaction effects. It remains then, to define S as a function of stress ratio and previous load history , and anyc other pertinent

  16. Non-enzymatic glycation alters microdamage formation in human cancellous bone⋆

    PubMed Central

    Tang, S.Y.; Vashishth, D.

    2015-01-01

    Introduction The accumulation of advanced glycation end-products (AGEs) in bone has been suggested to adversely affect the fracture resistance of bone with aging, diabetes, and pharmacological treatments. The formation of AGEs increases crosslinking in the organic matrix of bone but it is unknown how elevated levels of AGEs affect the mechanisms of fracture resistance such as microdamage formation. Methods Human tibial cancellous bone cores were subjected to non-enzymatic glycation (NEG) by in vitro ribosylation and were mechanically loaded to pre- (0.6%) and post- (1.1%) yield apparent level strains. Loaded specimens were stained with lead–uranyl acetate and subjected to microCT-based 3D quantification and characterization of microdamage as either diffuse damage and linear microcracks. Damaged volume per bone volume (DV/BV) and damaged surface per damaged volume (DS/DV) ratios were used to quantify the volume and morphology of the detected microdamage, respectively. Results In vitro ribosylation increased the microdamage morphology parameter (DS/DV) under both pre-(p<0.05; +51%) and post-yield loading (p<0.001; +38%), indicating that the alteration of bone matrix by NEG caused the formation of crack-like microdamage morphologies. Under post-yield loading, the NEG-mediated increase in DS/DV was coupled with the reductions in microdamage formation (DV/BV; p<0.001) and toughness (p<0.001). Discussion Using a novel microCT technique to characterize and quantify microdamage, this study shows that the accumulation of AGEs in the bone matrix significantly alters the quantity and morphology of microdamage production and results in reduced fracture resistance. PMID:19747573

  17. Water-quality characteristics in runoff for three discovery farms in North Dakota, 2008-12

    USGS Publications Warehouse

    Nustad, Rochelle A.; Rowland, Kathleen M.; Wiederholt, Ronald

    2015-01-01

    Consistent patterns in water quality emerged at each individual farm, but similarities among farms also were observed. Suspended sediment, total phosphorus, and ammonia concentrations generally decreased downstream from feeding areas, and were primarily affected by surface runoff processes such as dilution, settling out of sediment, or vegetative uptake. Because surface runoff affects these constituents, increased annual surface runoff volume tended to result in increased loads and yields. No significant change in nitrate plus nitrite concentration were observed downstream from feeding areas because additional processes such as high solubility, nitrification, denitrification, and surface-groundwater interaction affect nitrate plus nitrite. For nitrate plus nitrite, increases in annual runoff volume did not consistently relate to increases in annual loads and yields. It seems that temporal distribution of precipitation and surface-groundwater interaction affected nitrate plus nitrite loads and yields. For surface drainage sites, the primary form of nitrogen was organic nitrogen whereas for subsurface drainage sites, the primary form of nitrogen was nitrate plus nitrite nitrogen.

  18. Effect of initial conditions on combustion generated loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tieszen, S.R.

    1991-01-01

    This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, themore » AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesian geometry. 35 refs., 16 figs.« less

  19. Production of Concentrated Pickering Emulsions with Narrow Size Distributions Using Stirred Cell Membrane Emulsification.

    PubMed

    Manga, Mohamed S; York, David W

    2017-09-12

    Stirred cell membrane emulsification (SCME) has been employed to prepare concentrated Pickering oil in water emulsions solely stabilized by fumed silica nanoparticles. The optimal conditions under which highly stable and low-polydispersity concentrated emulsions using the SCME approach are highlighted. Optimization of the oil flux rates and the paddle stirrer speeds are critical to achieving control over the droplet size and size distribution. Investigating the influence of oil volume fraction highlights the criticality of the initial particle loading in the continuous phase on the final droplet size and polydispersity. At a particle loading of 4 wt %, both the droplet size and polydispersity increase with increasing of the oil volume fraction above 50%. As more interfacial area is produced, the number of particles available in the continuous phase diminishes, and coincidently a reduction in the kinetics of particle adsorption to the interface resulting in larger polydisperse droplets occurs. Increasing the particle loading to 10 wt % leads to significant improvements in both size and polydispersity with oil volume fractions as high as 70% produced with coefficient of variation values as low as ∼30% compared to ∼75% using conventional homogenization techniques.

  20. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.

    PubMed

    Guo, Jia-Xiu; Shu, Song; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Chu, Ying-Hao

    2017-02-01

    A series of Fe supported on activated carbon treated by nitric acid are prepared by incipient wetness impregnation with ultrasonic assistance and characterized by N 2 adsorption-desorption, X-ray diffraction, Fourier transform infrared spectrum and X-ray photoelectron spectroscopy. It has shown that Fe loadings significantly influence the desulfurization activity. Fe/NAC5 exhibits an excellent removal ability of SO 2 , corresponding to breakthrough sulfur capacity of 323 mg/g. With the increasing Fe loadings, the generated Fe 3 O 4 and Fe 2 SiO 4 increase, but Fe 2 (SO 4 ) 3 is observed after desulfurization. Fe/NAC1 has a Brunauer-Emmett-Teller (BET) surface area of 925 m 2 /g with micropore surface area of 843 m 2 /g and total pore volume of 0.562 cm 3 /g including a micropore volume of 0.300 cm 3 /g. With the increasing Fe loadings, BET surface area and micropore volume decrease, and those of Fe/NAC10 decrease to 706 m 2 /g and 0.249 cm 3 /g. The Fe loadings influence the pore-size distribution, and SO 2 adsorption mainly reacts in micropores at about 0.70 nm. C=O and C-O are observed for all samples before SO 2 removal. After desulfurization, the C-O stretching is still detected, but the C=O stretching vibration of carbonyl groups disappears. The stretching of S-O or S=O in sulfate is observed at 592 cm -1 for the used sample, proving that the existence of [Formula: see text].

  1. Assessment of the Derivative-Moment Transformation method for unsteady-load estimation

    NASA Astrophysics Data System (ADS)

    Mohebbian, Ali; Rival, David

    2011-11-01

    It is often difficult, if not impossible, to measure the aerodynamic or hydrodynamic forces on a moving body. For this reason, a classical control-volume technique is typically applied to extract the unsteady forces instead. However, measuring the acceleration term within the volume of interest using PIV can be limited by optical access, reflections as well as shadows. Therefore in this study an alternative approach, termed the Derivative-Moment Transformation (DMT) method, is introduced and tested on a synthetic data set produced using numerical simulations. The test case involves the unsteady loading of a flat plate in a two-dimensional, laminar periodic gust. The results suggest that the DMT method can accurately predict the acceleration term so long as appropriate spatial and temporal resolutions are maintained. The major deficiency was found to be the determination of pressure in the wake. The effect of control-volume size was investigated suggesting that smaller domains work best by minimizing the associated error with the pressure field. When increasing the control-volume size, the number of calculations necessary for the pressure-gradient integration increases, in turn substantially increasing the error propagation.

  2. Wear of two pit and fissure sealants in contact with primary teeth

    PubMed Central

    Galo, Rodrigo; Contente, Marta Maria Martins Giamatei; Borsatto, Maria Cristina

    2014-01-01

    Objectives: Wear simulations may provide an indication of the clinical performance of pit-and-fissure sealants when associated with primary teeth as counterbody, restricting the involved variables. The aim of this study was to evaluate wear of dental materials used as pit-and-fissure sealants in contact with primary teeth. Materials and Methods: A resinous sealant (Fluroshield®) and a resin-modified glass ionomer cement (Vitremer®) were selected in a post-plate design, using as counterbody primary tooth pins (4 × 4 × 2 mm) at 3 and 10 N vertical load, 1 Hz frequency, 900 wear cycles in artificial saliva (n = 15). Attrition coefficient values were obtained and the material and primary tooth volumes were analyzed. Data were analyzed statistically by ANOVA and Duncan's test (P < 0.05). Results: Fluroshield® presented the highest attrition coefficient values for the 3 N but these values decreased significantly for the 10 N load. The means for volume loss (3 mm) of the different samples after the wear test were not statistically different for the materials. The volume loss values for the primary teeth were statistically different and there was an increase in volume loss with the increase of the load applied in the wear tests. Conclusions: Differences were also observed with regard to the surface deformation characteristics. The wear rates of primary tooth enamel vary according to the type of material and the load applied during mastication. PMID:24966777

  3. Load research manual. Volume 3. Load research for advanced technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  4. Time Course of Peri-Implant Bone Regeneration around Loaded and Unloaded Implants in a Rat Model

    PubMed Central

    Jariwala, Shailly H.; Wee, Hwabok; Roush, Evan P.; Whitcomb, Tiffany L.; Murter, Christopher; Kozlansky, Gery; Lakhtakia, Akhlesh; Kunselman, Allen R.; Donahue, Henry J.; Armstrong, April D.; Lewis, Gregory S.

    2018-01-01

    The time-course of cancellous bone regeneration surrounding mechanically loaded implants affects implant fixation, and is relevant to determining optimal rehabilitation protocols following orthopaedic surgeries. We investigated the influence of controlled mechanical loading of titanium-coated polyether-ether ketone (PEEK) implants on osseointegration using time-lapsed, non-invasive, in vivo micro-computed tomography (micro-CT) scans. Implants were inserted into proximal tibial metaphyses of both limbs of eight female Sprague-Dawley rats. External cyclic loading (60 μm or 100 μm displacement, 1 Hz, 60 seconds) was applied every other day for 14 days to one implant in each rat, while implants in contralateral limbs served as the unloaded controls. Hind limbs were imaged with high-resolution micro-CT (12.5 μm voxel size) at 2, 5, 9, and 12 days post-surgery. Trabecular changes over time were detected by 3D image registration allowing for measurements of bone-formation rate (BFR) and bone-resorption rate (BRR). At day 9, mean %BV/TV for loaded and unloaded limbs were 35.5 ± 10.0 % and 37.2 ± 10.0 %, respectively, and demonstrated significant increases in bone volume compared to day 2. BRR increased significantly after day 9. No significant differences between bone volumes, BFR, and BRR were detected due to implant loading. Although not reaching significance (p = 0.16), an average 119 % increase in pull-out strength was measured in the loaded implants. PMID:27381807

  5. Wear behavior of pressable lithium disilicate glass ceramic.

    PubMed

    Peng, Zhongxiao; Izzat Abdul Rahman, Muhammad; Zhang, Yu; Yin, Ling

    2016-07-01

    This article reports effects of surface preparation and contact loads on abrasive wear properties of highly aesthetic and high-strength pressable lithium disilicate glass-ceramics (LDGC). Abrasive wear testing was performed using a pin-on-disk device in which LDGC disks prepared with different surface finishes were against alumina pins at different contact loads. Coefficients of friction and wear volumes were measured as functions of initial surface finishes and contact loads. Wear-induced surface morphology changes in both LDGC disks and alumina pins were characterized using three-dimensional laser scanning microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results show that initial surface finishes of LDGC specimens and contact loads significantly affected the friction coefficients, wear volumes and wear-induced surface roughness changes of the material. Both wear volumes and friction coefficients of LDGC increased as the load increased while surface roughness effects were complicated. For rough LDGC surfaces, three-body wear was dominant while for fine LDGC surfaces, two-body abrasive wear played a key role. Delamination, plastic deformation, and brittle fracture were observed on worn LDGC surfaces. The adhesion of LDGC matrix materials to alumina pins was also discovered. This research has advanced our understanding of the abrasive wear behavior of LDGC and will provide guidelines for better utilization and preparation of the material for long-term success in dental restorations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 968-978, 2016. © 2015 Wiley Periodicals, Inc.

  6. The effect of Tricresyl-Phosphate (TCP) as an additive on wear of Iron (Fe)

    NASA Technical Reports Server (NTRS)

    Ghose, Hiren M.; Ferrante, John; Honecy, Frank C.

    1987-01-01

    The effect of tricresyl phosphate (TCP) as an antiwear additive in lubricant trimethyol propane triheptanoate (TMPTH) was investigated. The objective was to examine step loading wear by use of surface analysis, wetting, and chemical bonding changes in the lubricant. The investigation consisted of steploading wear studies by a pin or disk tribometer, the effects on wear related to wetting by contact angle and surface tension measurements of various liquid systems, the chemical bonding changes between lubricant and TCP chromatographic analysis, and by determining the reaction between the TCP and metal surfaces through wear scar analysis by Auger emission spectroscopy (AES). The steploading curve for the base fluid alone shows rapid increase of wear rate with load. The steploading curve for the base fluid in presence of 4.25 percent by volume TCP under dry air purge has shown a great reduction of wear rate with all loads studied. It has also been found that the addition of 4.25 percent by volume TCP plus 0.33 percent by volume water to the base lubricant under N2 purge also greatly reduces the wear rate with all loads studied. AES surface analysis reveals a phosphate type wear resistant film, which greatly increases load-bearing capacity, formed on the iron disk. Preliminary chromatographic studies suggest that this film forms either because of ester oxidation or TCP degradation. Wetting studies show direct correlation between the spreading coefficient and the wear rate.

  7. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solli, Linn, E-mail: linn.solli@bioforsk.no; Bergersen, Ove; Sørheim, Roald

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 andmore » R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.« less

  8. Development of wear resistant NFSS-HA novel biocomposites and study of their tribological properties for orthopaedic applications.

    PubMed

    Younesi, M; Bahrololoom, M E; Fooladfar, H

    2010-02-01

    Implants made of nickel free austenitic stainless steel can reduce the toxic effect of released nickel ion and compounds from the conventional stainless steels. On the other hand, hydroxyapatite is a ceramic which has been used in orthopaedic applications due to its good osteoconductivity, biocompatibility and bioactivity. However, there is no evidence in the literature up to now on producing composites based on nickel free stainless steel and hydroxyapatite and study of their tribology. The aim of this work was to produce novel biocomposites made up of nickel free stainless steel with hydroxyapatite (prepared by heat treating bone ash) and studying their tribology under various loads in air and in Ringer's physiological solution. Different amounts of hydroxyapatite powder (10, 20, 30 and 40% Vol.) were added to this nickel free stainless steel powder to get the biocomposites. Variation of their density, hardness, wear resistance and friction with the ceramic (hydroxyapatite) content and wear load were investigated in air and in Ringer's solution. The density of the composites was decreased by increasing the volume percentage of the hydroxyapatite, while wear resistance of the composites was increased. The wear mechanism of these composites was changed by increasing the wear load and consequently the volume loss was enhanced dramatically. Furthermore, by increasing the sliding distance, the rate of volume loss was decreased slightly. The friction coefficient of the composites was also decreased by increasing the weight percentage of hydroxyapatite. Effect of the physiological Ringer's solution on wear resistance and friction coefficient of the composites was nearly negligible. The wear mechanisms of the samples were identified by studying the SEM images of the worn surfaces of the tested samples in different wear loads and HA contents. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Assessment of Composite Delamination Self-Healing Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    2009-01-01

    Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.

  10. Modelling the behaviour of steel fibre reinforced precast beam-to-column connection

    NASA Astrophysics Data System (ADS)

    Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.

    2017-11-01

    The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.

  11. Nectar loads as fuel for collecting nectar and pollen in honeybees: adjustment by sugar concentration.

    PubMed

    Harano, Ken-Ichi; Nakamura, Jun

    2016-06-01

    When honeybee foragers leave the nest, they receive nectar from nest mates for use as fuel for flight or as binding material to build pollen loads. We examined whether the concentration of nectar carried from the nest changes with the need for sugar. We found that pollen foragers had more-concentrated nectar (61.8 %) than nectar foragers (43.8 %). Further analysis revealed that the sugar concentration of the crop load increased significantly with waggle duration, an indicator of food-source distance, in both groups of foragers. Crop volume also increased with waggle duration. The results support our argument that foragers use concentrated nectar when the need for sugar is high and suggest that they precisely adjust the amount of sugar in the crop by altering both volume and nectar concentrations. We also investigated the impact of the area where foragers receive nectar on the crop load concentration at departure. Although nectar and pollen foragers tend to load nectar at different areas in the nest, area did not have a significant effect on crop load concentration. Departing foragers showed an average of 2.2 momentary (<1 s) begging trophallactic contacts before leaving the nest. They might be rejecting nectar with inappropriate concentrations during these contacts.

  12. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm.

    PubMed

    Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig

    2012-09-01

    Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.

  13. Estimating Summer Nutrient Concentrations in Northeastern Lakes from SPARROW Load Predictions and Modeled Lake Depth and Volume

    EPA Science Inventory

    Global nutrient cycles have been altered by use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutr...

  14. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces.

    PubMed

    Nyan, Myat; Hao, Jia; Miyahara, Takayuki; Noritake, Kanako; Rodriguez, Reena; Kasugai, Shohei

    2014-10-01

    With increasing application of dental implants in poor-quality bones, the need for implant surfaces ensuring accelerated osseointegration and enhanced peri-implant bone regeneration is increased. A study was performed to evaluate the osseointegration and bone formation on novel simvastatin-loaded porous titanium oxide surface. Titanium screws were treated by micro-arc oxidation to form porous oxide surface and 25 or 50 μg of simvastatin was loaded. The nontreated control, micro-arc oxidized, and simvastatin-loaded titanium screws were surgically implanted into the proximal tibia of 16-week-old male Wistar rats (n = 36). Peri-implant bone volume, bone-implant contact, and mineral apposition rates were measured at 2 and 4 weeks. Data were analyzed by one-way analysis of variance followed by Tukey's post hoc test. New bone was formed directly on the implant surface in the bone marrow cavity in simvastatin-loaded groups since 2 weeks. Bone-implant contact values were significantly higher in simvastatin-loaded groups than control and micro-arc oxidized groups at both time points (p < .05). Peri-implant bone volume and mineral apposition rate of simvastatin-loaded groups were significantly higher than control and micro-arc oxidized groups at 2 weeks (p < .05). These data suggested that simvastatin-loaded porous titanium oxide surface provides faster osseointegration and peri-implant bone formation and it would be potentially applicable in poor-quality bones. © 2013 Wiley Periodicals, Inc.

  15. The effectiveness of session rating of perceived exertion to monitor resistance training load in acute burns patients.

    PubMed

    Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W

    2017-02-01

    Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  16. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production.

    PubMed

    Solli, Linn; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-01

    This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37°C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% - 6% - 13% - 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS(-1), obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  18. NCAT test track design, construction, and performance

    DOT National Transportation Integrated Search

    2002-11-01

    Empirical laboratory tests have been used for years to test hot mix asphalt (HMA) to determine the potential for various mixtures to perform well. As the amount of traffic has increased (higher volumes, higher loads, and increased tire pressures) the...

  19. Design, construction and testing of the Neal Bridge in Pittsfield, Maine.

    DOT National Transportation Integrated Search

    2009-10-01

    Highway bridges in the US are quickly becoming deficient due to increasing traffic volumes, rapid : deterioration, extended service life, and increasing load requirements. Repair or replacement of deficient : structures is expensive, time and labor i...

  20. Measuring refractive index and volume of liquid under high pressure with optical coherence tomography and light microscopy.

    PubMed

    Wang, Donglin; Yang, Kun; Zhou, Yin

    2016-03-20

    Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.

  1. Alteration of functional loads after tongue volume reduction.

    PubMed

    Ye, W; Duan, Y Z; Liu, Z J

    2013-11-01

    An earlier study revealed that the patterns of biomechanical loads on bones around the tongue altered significantly right after tongue volume reduction surgery. The current study was to examine whether these alterations persist or vanish over time post-surgery. Five sibling pairs of 12-week-old Yucatan minipigs were used. For each pair, one had surgery reducing tongue volume by about 15% (reduction) while the other had same incisions without tissue removal (sham). All animals were raised for 4 weeks after surgery. Three rosette strain gauges were placed on the bone surfaces of pre-maxilla (PM), mandibular incisor (MI), and mandibular molar (MM); two single-element gauges were placed across the pre-maxilla-maxillar suture (PMS) and mandibular symphysis (MSP), and two pressure transducers were placed on the bone surfaces of hard palate (PAL) and mandibular body (MAN). These bone strains and pressures were recorded during natural mastication. Overall amount of all loads increased significantly as compared to those in previous study in all animals. Instead of decreased loads in reduction animals as seen in that study, shear strains at PM, MI, and MM, tensile strains at PMS, and pressure at MAN were significantly higher in reduction than sham animals. Compared to the sham, strain dominance shifted at PM, MI, and MM and orientation of tensile strain altered at MI in reduction animals. A healed volume-reduced tongue may change loading regime significantly by elevating loading and altering strain-dominant pattern and orientation on its surrounding structures, and these changes are more remarkable in mandibular than maxillary sites. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Load research manual. Volume 1. Load research procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussedmore » in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.« less

  3. Condition of cardiovascular systems of astronauts during flight of Soyuz orbital station

    NASA Technical Reports Server (NTRS)

    Degtyarev, V. A.; Popov, I. I.; Batenchuk-Tusko, T. V.; Kolmykova, N. D.; Lapshina, N. A.; Kirillova, Z. A.; Doroshev, V. G.; Kukushkin, Y. A.

    1975-01-01

    Extensive studies of blood circulation functions during manned space flight demonstrated a pronounced tendency toward an increase in minute volume of the blood and a decrease in pulse wave propagation rate. Individual blood circulation indices had large amplitude fluctuations. Physical work loads caused slow recovery of heart rate, arterial pressure and minute blood volume.

  4. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery.

    PubMed

    Li, Duo; Han, Fei; Wang, Shuai; Cheng, Fei; Sun, Qiang; Li, Wen-Cui

    2013-03-01

    Porous carbon materials with large pore volume are crucial in loading insulated sulfur with the purpose of achieving high performance for lithium-sulfur batteries. In our study, peapodlike mesoporous carbon with interconnected pore channels and large pore volume (4.69 cm(3) g(-1)) was synthesized and used as the matrix to fabricate carbon/sulfur (C/S) composite which served as attractive cathodes for lithium-sulfur batteries. Systematic investigation of the C/S composite reveals that the carbon matrix can hold a high but suitable sulfur loading of 84 wt %, which is beneficial for improving the bulk density in practical application. Such controllable sulfur-filling also effectively allows the volume expansion of active sulfur during Li(+) insertion. Moreover, the thin carbon walls (3-4 nm) of carbon matrix not only are able to shorten the pathway of Li(+) transfer and conduct electron to overcome the poor kinetics of sulfur cathode, but also are flexible to warrant structure stability. Importantly, the peapodlike carbon shell is beneficial to increase the electrical contact for improving electronic conductivity of active sulfur. Meanwhile, polymer modification with polypyrrole coating layer further restrains polysulfides dissolution and improves the cycle stability of carbon/sulfur composites.

  5. The proprioceptive reflex control of the intercostal muscles during their voluntary activation

    PubMed Central

    Davis, J. Newsom; Sears, T. A.

    1970-01-01

    1. A quantitative study has been made of the reflex effects of sudden changes in mechanical load on contracting human intercostal muscles during willed breathing movements involving the chest wall. Averaging techniques were applied to recordings of electromyogram (EMG) and lung volume, and to other parameters of breathing. 2. Load changes were effected for brief periods (10-150 msec) at any predetermined lung volume by sudden connexion of the airway to a pressure source variable between ± 80 cm H2O so that respiratory movement could be either assisted or opposed. In some experiments airway resistance was suddenly reduced by porting from a high to a low resistance external airway. 3. Contracting inspiratory and expiratory intercostal muscles showed a `silent period' with unloading which is attributed to the sudden withdrawal from intercostal motoneurones of monosynaptic excitation of muscle spindle origin. 4. For both inspiratory and expiratory intercostal muscles the typical immediate effect of an increase in load was an inhibitory response (IR) with a latency of about 22 msec followed by an excitatory response (ER) with a latency of 50-60 msec. 5. It was established using brief duration stimuli (< 40 msec) that the IR depended on mechanical events associated with the onset of stimulation, whereas stimuli greater than 40 msec in duration were required to evoke the ER. 6. For constant expiratory flow rate and a constant load, the ER of expiratory intercostal muscles increased as lung volume decreased within the limits set by maximal activation of the motoneurone pool as residual volume was approached. 7. The ER to a constant load increased directly with the expiratory flow rate at which the load applied, also within limits set by maximal activation of the motoneurone pool. 8. For a given load, the ER during phonation was greater than that occurring at a similar expiratory flow rate without phonation when the resistance of the phonating larynx was mimicked by an external airway resistance. 9. It is argued that the IR is due to autogenetic inhibition arising from tendon organs and that the ER is due to autogenetic excitation arising from intercostal muscle spindles. 10. The initial dominance of inhibition in this dual proprioceptive reflex control was not predicted by the servo theory. It is proposed that the reflex pathways subserving autogenetic inhibition are under a centrifugal control which determines in relation to previous experience (learning) the conditions under which autogenetic facilitation is allowed. PMID:5499805

  6. Advanced Computation Dynamics Simulation of Protective Structures Research

    DTIC Science & Technology

    2013-02-01

    additional load with increased cracking and deflection. Eventually, the walls failed in flexure due to self-weight and did not indicate any signs of shear...overall volume of the FEM block to be 432.2 in3, instead of 415.1 in3; the overall volume increased of area is 1.041%. This additional material is...sections in addition to the summary. Section 2 consists of an introduction, objectives, scope and methodology, and organization of the report. Section 2

  7. Effects of Imbalanced Muscle Loading on Hip Joint Development and Maturation

    PubMed Central

    Ford, Caleb A.; Nowlan, Niamh C.; Thomopoulos, Stavros; Killian, Megan L.

    2017-01-01

    The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. PMID:27391299

  8. Load research manual. Volume 2. Fundamentals of implementing load research procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. In Volumes 1 and 2, procedures are suggested for determining data requirements for load research, establishing the size and customer composition of a load survey sample, selecting and using equipment to record customer electricity usage, processing data tapes from the recording equipment, and analyzing the data. Statistical techniques used in customer sampling are discussedmore » in detail. The costs of load research also are estimated, and ongoing load research programs at three utilities are described. The manual includes guides to load research literature and glossaries of load research and statistical terms.« less

  9. [Optimization on trehalose loading technique as protective conditioning for lyophilization of human platelets].

    PubMed

    Liu, Jing-Han; Zhou, Jun; Ouyang, Xi-Lin; Li, Xi-Jin; Lu, Fa-Qiang

    2005-08-01

    This study was aimed to further optimize trehalose loading technique including loading temperature, loading time, loading solution and loading concentration of trehalose, based on the established parameters. Loading efficiency in plasma was compared with that in buffer at 37 degrees C; the curves of intracellular trehalose concentration versus loading time at 37 degrees C and 16 degrees C were measured; curves of mean platelet volume (MPV) versus loading time and loading concentration were investigated and compared. According to results obtained, the loaing time, loading temperature, loading solution and trehalose concentration were ascertained for high loading efficiency of trehalose into human platelet. The results showed that the loading efficiency in plasma was markedly higher than that in buffer at 37 degrees C, the loading efficiency in plasma at 37 degrees C was significantly higher than that at 16 degrees C and reached 19.51% after loading for 4 hours, but 6.16% at 16 degrees C. MPV at 16 degrees C was increased by 43.2% than that at 37 degrees C, but had no distinct changes with loading time and loading concentration. In loading at 37 degrees C, MPV increased with loading time and loading concentration positively. Loading time and loading concentration displayed synergetic effect on MPV. MPV increased with loading time and concentration while trehalose loading concentration was above 50 mmol/L. It is concluded that the optimization parameters of trehalose loading technique are 37 degrees C (temperature), 4 hours (leading time), plasma (loading solution), 50 mmol/L (feasible trehalose concentration). The trehalose concentration can be adjusted to meet the requirement of lyophilization.

  10. Evaluation of Ti-48Al-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    An investigation was conducted to examine the fretting behavior of lambda-TiAl (Ti-48Al-2Cr-2Nb) in contact with a nickel-base superalloy (Inconel 718) in air at temperatures from 23 to 550 C. Fretting wear experiments were conducted with 9.4-mm-diameter hemispherical Inconel (IN) 718 pins in contact with Ti-48Al-2Cr-2Nb flats (and the reverse) at loads from 1 to 40 N and fretting frequencies from 50 to 160 Hz with slip amplitudes from 50 to 200 microns for 1 to 20 million fretting cycles. The results were similar for both combinations of pin and flat. Reference fretting wear experiments were also conducted with 9.4-mm-diameter hemispherical Ti-6Al-4V pins in contact with IN718 flats. The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and IN718 in contact were generally stronger than the cohesive bonds in the cohesively weaker Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb subsequently transferred to the IN718 surface at any fretting condition. The wear scars produced on Ti-48Al-2Cr-2Nb contained metallic and oxide wear debris, scratches, plastically deformed asperities, cracks, and fracture pits. Oxide layers readily formed on the Ti-48Al-2Cr-2Nb surface at 550 C, but cracks easily occurred in the oxide layers. Factors including fretting frequency, temperature, slip amplitude, and load influenced the fretting behavior of Ti-48Al-2Cr-2Nb in contact with IN718. The wear volume loss of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures up to 200 C led to a drop in wear volume loss at 200 C. However, the fretting wear increased as the temperature was increased from 200 to 550 C. The highest temperatures of 450 and 550 C resulted in oxide film disruption with generation of cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. The wear volume loss generally increased as the slip amplitude increased. The wear volume loss also generally increased as the load increased. Increasing slip amplitude and increasing load both tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  11. The acute effects of manipulating volume and load of back squats on countermovement vertical jump performance.

    PubMed

    Moir, Gavin L; Mergy, David; Witmer, Ca; Davis, Shala E

    2011-06-01

    The acute effects of manipulating the volume and load of back squats on subsequent countermovement vertical jump performance were investigated in the present study. Eleven National Collegiate Athletic Association division II female volleyball players performed 10 countermovement vertical jumps (CMJs) on a force platform 2 minutes after the last squat repetition of a high-load (HL) or high-volume (HV) squat protocol. Two minutes of rest was provided between each CMJ. The HL protocol culminated in the subjects having to perform 3 repetitions with a load equivalent to 90% 1 repetition maximum (1RM) back squat, whereas 12 repetitions with a load equivalent to 37% 1RM were performed in the HV protocol. During an initial familiarization session, knee angles were recorded during a series of CMJs, and these angles were used to control the depth of descent during all subsequent back squats. Jump height (JH) and vertical stiffness (VStiff) were calculated during each of the 10 CMJ, and the change in these variables after the 2 squat protocols was assessed using an analysis of variance model with repeated measures on 2 factors (Protocol [2-levels]; Time [2-levels]). There was no significant difference in JH after the HL and HV protocols (p > 0.05). A significant Protocol × Time interaction for VStiff resulted from the increase after the HL protocol being greater than that after the HV protocol (p = 0.03). The knee angles before the HL and HV protocols were significantly greater than those measured during the initial familiarization session (p = 0.001). Although neither squat protocol provided any benefit in improving JH, the heavy squat protocol produced greater increases in VStiff during the CMJ. Because of the increased VStiff caused by the HL protocol, volleyball coaches may consider using such protocols with their players to improve performance in jumps performed from a run such as the spike and on-court agility.

  12. Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, Harry Keo

    2008-07-11

    The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accountedmore » for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed and executed for the purpose of validating closely-coupled 3D MSS. While the spall strength is nearly independent of specimen thickness, the fragment morphology varies widely. Detailed MSS demonstrate that the interactions between the tensile release waves are altered by specimen thickness and that these interactions are primarily responsible for fragment formation. MSS also provided insights on the regional amplification of damage, which enables the development of predictive void evolution models.« less

  13. Multiple Pathways to Bacterial Load Reduction by Stormwater Best Management Practices: Trade-Offs in Performance, Volume, and Treated Area.

    PubMed

    Wolfand, Jordyn M; Bell, Colin D; Boehm, Alexandria B; Hogue, Terri S; Luthy, Richard G

    2018-06-05

    Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log 10 to above 3-log 10 ; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log 10 , while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log 10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log 10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.

  14. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea.

    PubMed

    Vahtera, Emil; Conley, Daniel J; Gustafsson, Bo G; Kuosa, Harri; Pitkänen, Heikki; Savchuk, Oleg P; Tamminen, Timo; Viitasalo, Markku; Voss, Maren; Wasmund, Norbert; Wulff, Fredrik

    2007-04-01

    Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.

  15. Cardiopulmonary responses to acute hypoxia, head-down tilt and fluid loading in anesthetized dogs

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Scotto, P.; Riedel, C.; Avasthi, P.; Koshukosky, V.; Chick, T. W.

    1991-01-01

    Cardiopulmonary responses to acute hypoxia (HY), fluid loading by saline infusion (FL), and head-down tilt (HD) of mechanically ventilated anesthetized dogs were investigated by measuring thermodynamics and pulmonary gas exchange. It was found that HD decreased the total respiratory compliance both during HY and normoxia (NO) and that the reduction in compliance by FL was twice as large as by HD. Superimposing HD on HY doubled the increase in vascular resistance due to HY alone. In the systemic circulation, HD lowered the resistance to below NO levels. There was a significant positive correlation between the changes in blood volume and in pulmonary artery pressure for experimental transitions, suggesting that a shift in blood volume from systemic to pulmonary circulations and changes in the total blood volume may contribute substantially to these apparent changes in resistance.

  16. Erythrocyte volume in acidified venous blood from exercising limbs.

    NASA Technical Reports Server (NTRS)

    Van Beaumont, W.; Rochelle, R. H.

    1973-01-01

    Five male volunteers performed arm exercises in the sitting position by cranking the pedals of a bicycle ergometer at 50 revolutions per min. The initial mechanical work load of 0 kgm/min was increased every minute by 75 kgm/min until exhaustion occurred. The data obtained show a significant acidification of the venous blood from the working arms and a substantial increase in venous pCO2 during this type of muscular activity. However, the erythrocyte volume remained unaltered during the exercise.

  17. Chewed out: an experimental link between food material properties and repetitive loading of the masticatory apparatus in mammals

    PubMed Central

    Scott, Jeremiah E.; McAbee, Kevin R.; Veit, Anna J.; Fling, Annika L.

    2015-01-01

    Using a model organism (rabbits) that resembles a number of mammalian herbivores in key aspects of its chewing behaviors, we examined how variation in dietary mechanical properties affects food breakdown during mastication. Such data have implications for understanding phenotypic variation in the mammalian feeding apparatus, particularly with respect to linking jaw form to diet-induced repetitive loading. Results indicate that chewing frequency (chews/s) is independent of food properties, whereas chewing investment (chews/g) and chewing duration(s), which are proportional to repetitive loading of the jaws, are positively related to food stiffness and toughness. In comparisons of displacement-limited and stress-limited fragmentation indices, which respectively characterize the intraoral breakdown of tough and stiff foods, increases in chewing investment and duration are linked solely to stiffness. This suggests that stiffer foods engender higher peak loads and increased cyclical loading. Our findings challenge conventional wisdom by demonstrating that toughness does not, by itself, underlie increases in cyclical loading and loading duration. Instead, tough foods may be associated with such jaw-loading patterns because they must be processed in greater volumes owing to their lower nutritive quality and for longer periods of time to increase oral exposure to salivary chemicals. PMID:26557436

  18. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  19. Metabolic cost of generating muscular force in human walking: insights from load-carrying and speed experiments.

    PubMed

    Griffin, Timothy M; Roberts, Thomas J; Kram, Rodger

    2003-07-01

    We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5-1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s ( approximately 50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient (k)] was similar across all conditions [k = 0.11 +/- 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.

  20. Prioritizing subwatersheds for stormwater pollution to Wachusett Reservoir.

    PubMed

    Cho, Kyung Hwa; Park, Mi-Hyun

    2013-02-01

    The Wachusett Reservoir is a primary drinking water resource for the greater Boston, Massachusetts, area. With a drainage area of 280 km2, the watershed has been gradually urbanized with increased residential, commercial, industrial, and transportation land uses. Increased impervious surface area as a result of urbanization results in increased runoff volume and pollutant loads to the reservoir. This study estimated annual stormwater pollutant mass loads in the watershed to prioritize sub-basins and to identify areas susceptible to stormwater pollution. Catchment Prioritization Index (CPI) was calculated using annual stormwater pollutant mass loads, which were further used to identify clustered hotspots through application of the Getis-Ord Gi* statistic. Validation with observed data showed higher levels of fecal coliform bacteria loading from identified hotspots. This approach will be useful to prioritize sub-basins for future (1) development of stormwater monitoring strategies and (2) best management practices (BMPs) in the watershed.

  1. Floral preferences and climate influence in nectar and pollen foraging by Melipona rufiventris Lepeletier (Hymenoptera: Meliponini) in Ubatuba, São Paulo state, Brazil.

    PubMed

    Fidalgo, Adriana de O; Kleinert, Astrid de M P

    2010-01-01

    We describe the environment effects on the amount and quality of resources collected by Melipona rufiventris Lepeletier in the Atlantic Forest at Ubatuba city, São Paulo state, Brazil (44º48'W, 23º22'S). Bees carrying pollen and/or nectar were captured at nest entrances during 5 min every hour, from sunrise to sunset, once a month. Pollen loads were counted and saved for acetolysis. Nectar was collected, the volume was determined and the total dissolved solids were determined by refractometer. Air temperature, relative humidity and light intensity were also registered. The number of pollen loads reached its maximum value between 70% and 90% of relative humidity and 18ºC and 23ºC; for nectar loads this range was broader, 50-90% and 20-30ºC. The number of pollen loads increased as relative humidity rose (rs = 0.401; P < 0.01) and high temperatures had a strong negative influence on the number of pollen loads collected (rs = -0.228; P < 0.01). The number of nectar loads positively correlated with temperature (rs = 0.244; P < 0.01) and light intensity (rs = 0.414; P < 0.01). The percentage of total dissolved solids (TDS) on nectar loads positively correlated with temperature and light intensity (rs = 0.361; P < 0.01 and rs = 0.245; P < 0.01), negatively correlated with relative humidity (rs = -0.629; P < 0.01), and it increased along the day. Most nectar loads had TDS between 11% and 30%, with an average of 24.7%. The volume measures did not show any pattern. Important pollen sources were Sapindaceae, Anacardiaceae, Rubiaceae, Arecaceae, Solanaceae and Myrtaceae; nectar sources were Sapindaceae, Fabaceae, Rubiaceae, Arecaceae and Solanaceae.

  2. Human Physiology in an Aquatic Environment.

    PubMed

    Pendergast, David R; Moon, Richard E; Krasney, John J; Held, Heather E; Zamparo, Paola

    2015-09-20

    Water covers over 70% of the earth, has varying depths and temperatures and contains much of the earth's resources. Head-out water immersion (HOWI) or submersion at various depths (diving) in water of thermoneutral (TN) temperature elicits profound cardiorespiratory, endocrine, and renal responses. The translocation of blood into the thorax and elevation of plasma volume by autotransfusion of fluid from cells to the vascular compartment lead to increased cardiac stroke volume and output and there is a hyperperfusion of some tissues. Pulmonary artery and capillary hydrostatic pressures increase causing a decline in vital capacity with the potential for pulmonary edema. Atrial stretch and increased arterial pressure cause reflex autonomic responses which result in endocrine changes that return plasma volume and arterial pressure to preimmersion levels. Plasma volume is regulated via a reflex diuresis and natriuresis. Hydrostatic pressure also leads to elastic loading of the chest, increasing work of breathing, energy cost, and thus blood flow to respiratory muscles. Decreases in water temperature in HOWI do not affect the cardiac output compared to TN; however, they influence heart rate and the distribution of muscle and fat blood flow. The reduced muscle blood flow results in a reduced maximal oxygen consumption. The properties of water determine the mechanical load and the physiological responses during exercise in water (e.g. swimming and water based activities). Increased hydrostatic pressure caused by submersion does not affect stroke volume; however, progressive bradycardia decreases cardiac output. During submersion, compressed gas must be breathed which introduces the potential for oxygen toxicity, narcosis due to nitrogen, and tissue and vascular gas bubbles during decompression and after may cause pain in joints and the nervous system. Copyright © 2015 John Wiley & Sons, Inc.

  3. Modal analysis of annual runoff volume and sediment load in the Yangtze river-lake system for the period 1956-2013.

    PubMed

    Chen, Huai; Zhu, Lijun; Wang, Jianzhong; Fan, Hongxia; Wang, Zhihuan

    2017-07-01

    This study focuses on detecting trends in annual runoff volume and sediment load in the Yangtze river-lake system. Times series of annual runoff volume and sediment load at 19 hydrological gauging stations for the period 1956-2013 were collected. Based on the Mann-Kendall test at the 1% significance level, annual sediment loads in the Yangtze River, the Dongting Lake and the Poyang Lake were detected with significantly descending trends. The power spectrum estimation indicated predominant oscillations with periods of 8 and 20 years are embedded in the runoff volume series, probably related to the El Niño Southern Oscillation (2-7 years) and Pacific Decadal Oscillation (20-30 years). Based on dominant components (capturing more than roughly 90% total energy) extracted by the proper orthogonal decomposition method, total change ratios of runoff volume and sediment load during the last 58 years were evaluated. For sediment load, the mean CRT value in the Yangtze River is about -65%, and those in the Dongting Lake and the Poyang Lake are -92.2% and -87.9% respectively. Particularly, the CRT value of the sediment load in the channel inflow of the Dongting Lake is even -99.7%. The Three Gorges Dam has intercepted a large amount of sediment load and decreased the sediment load downstream.

  4. Influence of Grain Size Distribution on the Mechanical Behavior of Light Alloys in Wide Range of Strain Rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2015-06-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) Al 1560 aluminum and Ma2-1 magnesium alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength. The increasing of fine precipitations concentration not only causes the hardening but increasing of ductility of UFG alloys with bimodal grain size distribution. This research carried out in 2014-2015 was supported by grant from ``The Tomsk State University Academic D.I. Mendeleev Fund Program''.

  5. Low reflectance high power RF load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  6. Low reflectance radio frequency load

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M

    2014-04-01

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  7. The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1992-01-01

    Abstract - During waning flood flows in gravel-bed streams, fine-grained bedload sediment (sand and fine gravel) is commonly winnowed from zones of high shear stress, such as riffles, and deposited in pools, where it mantles an underlying coarse layer. As sediment load increases, more fine sediment becomes availabe to fill pools. The volume of fine sediment in pools...

  8. Effects of imbalanced muscle loading on hip joint development and maturation.

    PubMed

    Ford, Caleb A; Nowlan, Niamh C; Thomopoulos, Stavros; Killian, Megan L

    2017-05-01

    The mechanical loading environment influences the development and maturation of joints. In this study, the influence of imbalanced muscular loading on joint development was studied using localized chemical denervation of hip stabilizing muscle groups in neonatal mice. It was hypothesized that imbalanced muscle loading, targeting either gluteal muscles or quadriceps muscles, would lead to bilateral hip joint asymmetry, as measured by acetabular coverage, femoral head volume and bone morphometry, and femoral-acetabular shape. The contralateral hip joints as well as age-matched, uninjected mice were used as controls. Altered bone development was analyzed using micro-computed tomography, histology, and image registration techniques at postnatal days (P) 28, 56, and 120. This study found that unilateral muscle unloading led to reduced acetabular coverage of the femoral head, lower total volume, lower bone volume ratio, and lower mineral density, at all three time points. Histologically, the femoral head was smaller in unloaded hips, with thinner triradiate cartilage at P28 and thinner cortical bone at P120 compared to contralateral hips. Morphological shape changes were evident in unloaded hips at P56. Unloaded hips had lower trabecular thickness and increased trabecular spacing of the femoral head compared to contralateral hips. The present study suggests that decreased muscle loading of the hip leads to altered bone and joint shape and growth during postnatal maturation. Statement of Clinical Significance: Adaptations from altered muscle loading during postnatal growth investigated in this study have implications on developmental hip disorders that result from asymmetric loading, such as patients with limb-length inequality or dysplasia. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1128-1136, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. The effect of a water load on cutaneous water loss in man

    PubMed Central

    Allen, Judith A.; Roddie, I. C.

    1973-01-01

    1. Ingestion of 1 l. water at 37° C had no effect on the rate of water loss from forearm and hand skin although ingestion of a similar volume at 16° C significantly decreased the rate. 2. Ingestion of 1 l. water at 37° C had no physiologically significant effect on the expiratory minute volume. 3. Ingestion of 500 ml. water at 37° C caused small increases in total body weight loss in environmental temperatures of 29 and 40° C. 4. It is concluded that neither cutaneous nor respiratory water loss play an important part in the excretion of a water load in man. PMID:4766216

  10. A 63 K phase change unit integrating with pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Chunhui, Kong; Liubiao, Chen; Sixue, Liu; Yuan, Zhou; Junjie, Wang

    2017-02-01

    This article presents the design and computer model results of an integrated cooler system which consists of a single stage pulse tube cryocooler integrated with a small amount of a phase change material. A cryogenic thermal switch was used to thermally connect the phase change unit to the cold end of the cryocooler. During heat load operation, the cryogenic thermal switch is turned off to avoid vibrations. The phase change unit absorbs heat loads by melting a substance in a constant pressure-temperature-volume process. Once the substance has been melted, the cryogenic thermal turned on, the cryocooler can then refreeze the material. Advantages of this type of cooler are no vibrations during sensor operations; the ability to absorb increased heat loads; potentially longer system lifetime; and a lower mass, volume and cost. A numerical model was constructed from derived thermodynamic relationships for the cooling/heating and freezing/melting processes.

  11. Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing.

    PubMed

    Moo, Eng Kuan; Abusara, Ziad; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter

    2013-08-09

    Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Use of continuous and grab sample data for calculating total maximum daily load (TMDL) in agricultural watersheds.

    PubMed

    Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T

    2014-03-01

    Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Monitoring of Cardiac Remodeling in a Mouse Model of Pressure-Overload Left Ventricular Hypertrophy with [18F]FDG MicroPET.

    PubMed

    Todica, Andrei; Beetz, Nick L; Günther, Lisa; Zacherl, Mathias J; Grabmaier, Ulrich; Huber, Bruno; Bartenstein, Peter; Brunner, Stefan; Lehner, Sebastian

    2018-04-01

    This study aims to analyze the left ventricular function parameters, scar load, and hypertrophy in a mouse model of pressure-overload left ventricular (LV) hypertrophy over the course of 8 weeks using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) micro-positron emission tomography (microPET) imaging. LV hypertrophy was induced in C57BL/6 mice by transverse aortic constriction (TAC). Myocardial hypertrophy developed after 2-4 weeks. ECG-gated microPET scans with [ 18 F]FDG were performed 4 and 8 weeks after surgery. The extent of fibrosis was measured by histopathologic analysis. LV function parameters and scar load were calculated using QGS®/QPS®. LV metabolic volume (LVMV) and percentage injected dose per gram were estimated by threshold-based analysis. The fibrotic tissue volume increased significantly from 4 to 8 weeks after TAC (​1.67 vs. 3.91  mm 3 ; P = 0.044). There was a significant increase of the EDV (4 weeks: 54 ± 15 μl, 8 weeks: 79 ± 32 μl, P < 0.01) and LVMV (4 weeks: 222 ± 24 μl, 8 weeks: 276 ± 52 μl, P < 0.01) as well as a significant decrease of the LVEF (4 weeks: 56 ± 17 %, 8 weeks: 44 ± 20 %, P < 0.01). The increase of LVMV had a high predictive value regarding the amount of ex vivo measured fibrotic tissue (R = 0.905, P < 0.001). The myocardial metabolic defects increased within 4 weeks (P = 0.055) but only moderately correlated with the fibrosis volume (R = 0.502, P = 0.021). The increase in end-diastolic volume showed a positive correlation with the fibrosis at 8 weeks (R = 0.763, P = 0.017). [ 18 F]FDG-PET is applicable for serial in vivo monitoring of the TAC mouse model. Myocardial hypertrophy, the dilation of the left ventricle, and the decrease in LVEF could be reliably quantified over time, as well as the developing localized scar. The increase in volume over time is predictive of a high fibrosis load.

  14. Athlete's Heart: Is the Morganroth Hypothesis Obsolete?

    PubMed

    Haykowsky, Mark J; Samuel, T Jake; Nelson, Michael D; La Gerche, Andre

    2018-05-01

    In 1975, Morganroth and colleagues reported that the increased left ventricular (LV) mass in highly trained endurance athletes versus nonathletes was primarily due to increased end-diastolic volume while the increased LV mass in resistance trained athletes was solely due to an increased LV wall thickness. Based on the divergent remodelling patterns observed, Morganroth and colleagues hypothesised that the increased "volume" load during endurance exercise may be similar to that which occurs in patients with mitral or aortic regurgitation while the "pressure" load associated with performing a Valsalva manoeuvre (VM) during resistance exercise may mimic the stress imposed on the heart by systemic hypertension or aortic stenosis. Despite widespread acceptance of the four-decade old Morganroth hypothesis in sports cardiology, some investigators have questioned whether such a divergent "athlete's heart" phenotype exists. Given this uncertainty, the purpose of this brief review is to re-evaluate the Morganroth hypothesis regarding: i) the acute effects of resistance exercise performed with a brief VM on LV wall stress, and the patterns of LV remodelling in resistance-trained athletes; ii) the acute effects of endurance exercise on biventricular wall stress, and the time course and pattern of LV and right ventricular (RV) remodelling with endurance training; and iii) the value of comparing "loading" conditions between athletes and patients with cardiac pathology. Copyright © 2018. Published by Elsevier B.V.

  15. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  16. Increased Soluble Phosphorus Loads to Lake Erie: Unintended Consequences of Conservation Practices?

    PubMed

    Jarvie, Helen P; Johnson, Laura T; Sharpley, Andrew N; Smith, Douglas R; Baker, David B; Bruulsema, Tom W; Confesor, Remegio

    2017-01-01

    Cumulative daily load time series show that the early 2000s marked a step-change increase in riverine soluble reactive phosphorus (SRP) loads entering the Western Lake Erie Basin from three major tributaries: the Maumee, Sandusky, and Raisin Rivers. These elevated SRP loads have been sustained over the last 12 yr. Empirical regression models were used to estimate the contributions from (i) increased runoff from changing weather and precipitation patterns and (ii) increased SRP delivery (the combined effects of increased source availability and/or increased transport efficiency of labile phosphorus [P] fractions). Approximately 65% of the SRP load increase after 2002 was attributable to increased SRP delivery, with higher runoff volumes accounting for the remaining 35%. Increased SRP delivery occurred concomitantly with declining watershed P budgets. However, within these watersheds, there have been long-term, largescale changes in land management: reduced tillage to minimize erosion and particulate P loss, and increased tile drainage to improve field operations and profitability. These practices can inadvertently increase labile P fractions at the soil surface and transmission of soluble P via subsurface drainage. Our findings suggest that changes in agricultural practices, including some conservation practices designed to reduce erosion and particulate P transport, may have had unintended, cumulative, and converging impacts contributing to the increased SRP loads, reaching a critical threshold around 2002. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir A.; Skripnyak, Natalia V.; Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.

    2017-01-01

    Inelastic deformation and damage at the mesoscale level of ultrafine grained (UFG) light alloys with distribution of grain size were investigated in wide loading conditions by experimental and computer simulation methods. The computational multiscale models of representative volume element (RVE) with the unimodal and bimodal grain size distributions were developed using the data of structure researches aluminum and magnesium UFG alloys. The critical fracture stress of UFG alloys on mesoscale level depends on relative volumes of coarse grains. Microcracks nucleation at quasi-static and dynamic loading is associated with strain localization in UFG partial volumes with bimodal grain size distribution. Microcracks arise in the vicinity of coarse and ultrafine grains boundaries. It is revealed that the occurrence of bimodal grain size distributions causes the increasing of UFG alloys ductility, but decreasing of the tensile strength.

  18. Urinary free cortisol and cortisone excretion in healthy individuals: influence of water loading.

    PubMed

    Fenske, Martin

    2006-11-01

    The influence of water loading on urinary excretion of free cortisol and cortisone was investigated in healthy men. The results were as follows: water loading tests (intake of 0.25-1.5 L) in a single individual showed that a water load of 1.5 L reliably increased the excretion of urine, free cortisol and cortisone (p < 0.01). Regression analyses gave significant correlations of urine volume with free cortisol and free cortisone, and of free cortisol and free cortisone. Corresponding results were obtained when water loading tests were performed in males who ingested 1.5 L of water (n = 8): the excretion of urine, free cortisol and free cortisone were significantly augmented; correlated was urine volume with free cortisol and free cortisone, and free cortisol with free cortisone. In a third set of tests, volunteers collected one 5 h urine (10:00-15:00 h) after the intake of 3 x 0.1 or 0.5 L at 11:00, 12:00 and 14:00 h. Excretion of urine, free cortisol and free cortisone in males of the low water loading group (3 x 0.1 L) was 0.59 mL/min, and 8.2 or 15.0 microg/5 h; corresponding values in individuals ingesting 3 x 0.5 L of water were 1.5 mL/min (p < 0.01), 12.3 microg/5 h (p > 0.05) and 26.3 microg/5 h (p < 0.02). In summary, urinary free cortisol and cortisone excretion in healthy men depends on urine volume, especially during water diuresis. Thus, interpretation of free cortisol and especially of free cortisone excretion is only possible if subjects strictly control their fluid intake and if urine volume is considered an important pre-analytical parameter-otherwise, interpretation of urinary free cortisol results is difficult and of urinary free cortisone data remains tenuous at best.

  19. Brain tissue volumes in the general elderly population. The Rotterdam Scan Study.

    PubMed

    Ikram, M Arfan; Vrooman, Henri A; Vernooij, Meike W; van der Lijn, Fedde; Hofman, Albert; van der Lugt, Aad; Niessen, Wiro J; Breteler, Monique M B

    2008-06-01

    We investigated how volumes of cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) varied with age, sex, small vessel disease and cardiovascular risk factors in the Rotterdam Scan Study. Participants (n=490; 60-90 years) were non-demented and 51.0% had hypertension, 4.9% had diabetes mellitus, 17.8% were current smoker and 54.0% were former smoker. We segmented brain MR-images into GM, normal WM, white matter lesion (WML) and CSF. Brain infarcts were rated visually. Volumes were expressed as percentage of intra-cranial volume. With increasing age, volumes of total brain, normal WM and total WM decreased; that of GM remained unchanged; and that of WML increased, in both men and women. Excluding persons with infarcts did not alter these results. Persons with larger load of small vessel disease had smaller brain volume, especially normal WM volume. Diastolic blood pressure, diabetes mellitus and current smoking were also related to smaller brain volume. In the elderly, higher age, small vessel disease and cardiovascular risk factors are associated with smaller brain volume, especially WM volume.

  20. Estimating load weights with Huber's Cubic Volume formula: a field trial.

    Treesearch

    Dale R. Waddell

    1989-01-01

    Log weights were estimated from the product of Huber's cubic volume formula and green density. Tags showing estimated log weights were attached to logs in the field, and the weights were tallied into a single load weight as logs were assembled for aerial yarding. Accuracy of the estimated load weights was evaluated by comparing the predicted with the actual load...

  1. Estimating total maximum daily loads with the Stochastic Empirical Loading and Dilution Model

    USGS Publications Warehouse

    Granato, Gregory; Jones, Susan Cheung

    2017-01-01

    The Massachusetts Department of Transportation (DOT) and the Rhode Island DOT are assessing and addressing roadway contributions to total maximum daily loads (TMDLs). Example analyses for total nitrogen, total phosphorus, suspended sediment, and total zinc in highway runoff were done by the U.S. Geological Survey in cooperation with FHWA to simulate long-term annual loads for TMDL analyses with the stochastic empirical loading and dilution model known as SELDM. Concentration statistics from 19 highway runoff monitoring sites in Massachusetts were used with precipitation statistics from 11 long-term monitoring sites to simulate long-term pavement yields (loads per unit area). Highway sites were stratified by traffic volume or surrounding land use to calculate concentration statistics for rural roads, low-volume highways, high-volume highways, and ultraurban highways. The median of the event mean concentration statistics in each traffic volume category was used to simulate annual yields from pavement for a 29- or 30-year period. Long-term average yields for total nitrogen, phosphorus, and zinc from rural roads are lower than yields from the other categories, but yields of sediment are higher than for the low-volume highways. The average yields of the selected water quality constituents from high-volume highways are 1.35 to 2.52 times the associated yields from low-volume highways. The average yields of the selected constituents from ultraurban highways are 1.52 to 3.46 times the associated yields from high-volume highways. Example simulations indicate that both concentration reduction and flow reduction by structural best management practices are crucial for reducing runoff yields.

  2. Cardiomyocyte Ca2+ handling and structure is regulated by degree and duration of mechanical load variation.

    PubMed

    Ibrahim, Michael; Kukadia, Punam; Siedlecka, Urszula; Cartledge, James E; Navaratnarajah, Manoraj; Tokar, Sergiy; Van Doorn, Carin; Tsang, Victor T; Gorelik, Julia; Yacoub, Magdi H; Terracciano, Cesare M

    2012-12-01

    Cardiac transverse (t)-tubules are altered during disease and may be regulated by stretch-sensitive molecules. The relationship between variations in the degree and duration of load and t-tubule structure remains unknown, as well as its implications for local Ca(2+)-induced Ca(2+) release (CICR). Rat hearts were studied after 4 or 8 weeks of moderate mechanical unloading [using heterotopic abdominal heart-lung transplantation (HAHLT)] and 6 or 10 weeks of pressure overloading using thoracic aortic constriction. CICR, cell and t-tubule structure were assessed using confocal-microscopy, patch-clamping and scanning ion conductance microscopy. Moderate unloading was compared with severe unloading [using heart-only transplantation (HAHT)]. Mechanical unloading reduced cardiomyocyte volume in a time-dependent manner. Ca(2+) release synchronicity was reduced at 8 weeks moderate unloading only. Ca(2+) sparks increased in frequency and duration at 8 weeks of moderate unloading, which also induced t-tubule disorganization. Overloading increased cardiomyocyte volume and disrupted t-tubule morphology at 10 weeks but not 6 weeks. Moderate mechanical unloading for 4 weeks had milder effects compared with severe mechanical unloading (37% reduction in cell volume at 4 weeks compared to 56% reduction after severe mechanical unloading) and did not cause depression and delay of the Ca(2+) transient, increased Ca(2+) spark frequency or impaired t-tubule and cell surface structure. These data suggest that variations in chronic mechanical load influence local CICR and t-tubule structure in a time- and degree-dependent manner, and that physiological states of increased and reduced cell size, without pathological changes are possible. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  3. Static cardiomyoplasty with synthetic elastic net suppresses ventricular dilatation and dysfunction after myocardial infarction in the rat: a chronic study.

    PubMed

    Kato, Nobusuke; Kawaguchi, Akira T; Kishida, Akio; Yamaoka, Tetsuji

    2013-07-01

    Although static cardiomyoplasty prevents the left ventricle (LV) from dilatation, it may interfere with diastolic relaxation, or cause restriction. We developed a synthetic net with dual elasticity and tested its effect late after myocardial infarction in the rat. LV pressure-volume relationships (PVR) were successively analyzed before, after intravenous volume load, and 10 minutes after occlusion of the left anterior descending artery. Rats were then randomized into groups receiving synthetic net wrapping around the heart (NET+, n = 8) and only partially behind LV (NET-, n = 9), and they underwent the same PVR studies 6 weeks later. End-diastolic and end-systolic PVR were defined, and LV size and function were compared under standardized loading conditions. Although there was no difference in Day 0, increase in LV end-diastolic and end-systolic volumes were significantly attenuated in NET+ rats 6 weeks later when there was a significant correlation between LV volumes by PVR estimation and actual measurements, with significant differences in both measures between the groups: NET+ < NET-. The presence or absence of net did not show restrictive hemodynamics under acute volume load. Static cardiomyoplasty using a synthetic elastic net significantly attenuated LV dilatation and dysfunction without restriction late after myocardial infarction in the rat. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Effect of load alterations on the effective regurgitant orifice area in chronic aortic regurgitation.

    PubMed

    Kim, Y J; Jones, M; Shiota, T; Tsujino, H; Qin, J X; Bauer, F; Sitges, M; Kwan, J; Cardon, L A; Zetts, A D; Thomas, J D

    2002-10-01

    To evaluate the load dependence of effective regurgitant orifice area (ROA) in an animal model of chronic aortic regurgitation. Eight sheep were studied 10-20 weeks after the surgical creation of aortic regurgitation. After baseline studies, 500 ml of blood, angiotensin II, and nitroprusside were infused sequentially. Electromagnetic flow meters were used as reference standards to determine aortic regurgitation volume. The time-velocity integral was acquired using the continuous wave Doppler method. Baseline aortic regurgitant volume varied from 8 ml (regurgitant fraction 28%) to 29 ml (59%), with a mean (SD) value of 17 (8) ml; mean ROA was 0.15 (0.05) cm2. During angiotensin II infusion, aortic regurgitation volume (20 (8) ml) and mean diastolic aortoventricular pressure gradient (62 (18) mm Hg) increased by 26 (16)% and 48 (64)%, respectively (p < 0.01 for both). ROA did not change (0.16 (0.06) cm(2), p = 0.15). During nitroprusside infusion, aortic regurgitant volume (13 (7) ml, p = 0.05) and diastolic pressure gradient (25 (13) mm Hg, p < 0.05) decreased. ROA did not change (0.15 (0.05) cm2). When analysing 32 stages together, aortic regurgitant volume (r = 0.78, p < 0.01) and regurgitant fraction (r = 0.55, p < 0.01) correlated well with ROA. However, diastolic pressure gradient (r = 0.28) was not significantly correlated with ROA. In an animal model of chronic aortic regurgitation, ROA did not change with load alterations.

  5. Numerical Modelling and Analysis of Hydrostatic Thrust Air Bearings for High Loading Capacities and Low Air Consumption

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    The paper presents a numerical simulation study on hydrostatic thrust air bearings to assess the load capacity, compressed air consumptions, and the dynamic response. Finite Difference Method (FDM) and Finite Volume Method (FVM) are combined to solve the non-linear Reynolds equation to find the pressure distribution of the air bearing gas film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, supplied pressure, depth of the groove and external load, are investigated based on the proposed FDM model. The simulation results show that the thrust air bearings with a groove have a higher load capacity and air consumption than without a groove, and the load capacity and air consumption both increase with the depth of the groove. Bearings without the groove are better damped than those with the grooves, and the stability of thrust bearing decreases when the groove depth increases. The stability of the thrust bearings is also affected by their loading.

  6. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  7. Prophylaxis against the systemic hypotension induced by propofol during rapid-sequence intubation.

    PubMed

    el-Beheiry, H; Kim, J; Milne, B; Seegobin, R

    1995-10-01

    The objective of this study was to determine the effectiveness of two prophylactic approaches against the anticipated hypotension induced by propofol during rapid-sequence intubation. Thirty-six male or female nonpremedicated ASA class I-II patients aged 21-60 yr undergoing elective outpatient surgery were included in the study. Patients were randomly allocated to receive pre-induction ephedrine sulphate (70 micrograms x kg(-1)iv), pre-induction volume loading (12 ml x kg(-1) Ringer's lactate) or no treatment. Rapid-sequence intubation with cricoid pressure was then performed with propofol (2.5 mg. x kg(-1)) and succinylcholine (1.5 mg x kg(-1). The lungs were subsequently ventilated with 0.25-0.5% isoflurane in a 2:1 N2O/O2 mixture. Vecuronium was given once neuromuscular function had recovered from the succinylcholine. Heart rate and systemic arterial blood pressure were measured non-invasively before induction, after propofol administration and every minute for ten minutes after intubation. Pre-induction volume loading prevented the hypotension observed before surgical stimulation in control and ephedrine groups. Moreover, pre-induction volume loading was not associated with increases in heart rate after intubation as was ephedrine administration. The intubating conditions were excellent to satisfactory in most patients and the overall incidence of adverse events during intubation was mainly due to pain during injection of propofol. The present study showed that preoperative volume loading is more efficacious than pre-induction administration of ephedrine sulphate in maintaining haemodynamic stability during rapid-sequence induction with propofol and succinylcholine. In addition, propofol in combination with succinylcholine provides excellent conditions for rapid-sequence intubation.

  8. Effect of aeration rate and waste load on evolution of volatile fatty acids and waste stabilization during thermophilic aerobic digestion of a model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) is a relatively new, dynamic and versatile low technology for the economic processing of high strength waste slurries. Waste so treated may be safely disposed of or reused. In this work a model high strength agricultural waste, potato peel, was subjected to TAD to study the effects of oxygen supply at 0.1, 0.25, 0.5 and 1.0 vvm (volume air per volume slurry per minute) under batch conditions at 55 degrees C for 156 h on the process. Process pH was controlled at 7.0 or left unregulated. Effects of waste load, as soluble chemical oxygen demand (COD), on TAD were studied at 4.0, 8.0, 12.0 and 16.0 gl(-1) (soluble COD) at pH 7.0, 0.5 vvm and 55 degrees C. Efficiency of treatment, as degradation of total solids, total suspended solids and soluble solid, as well as soluble COD significantly increased with aeration rate, while acetate production increased as the aeration rate decreased or waste load increased, signifying deterioration in treatment. Negligible acetate, and no other acids were produced at 1.0 vvm. Production of propionate and other acids increased after acetate concentration had started to decrease and, during unregulated reactions coincided with the drop in the pH of the slurry. Acetate production was more closely associated with periods of oxygen limitation than were other acids. Reduction in oxygen availability led to deterioration in treatment efficiency as did increase in waste load. These variables may be manipulated to control treated waste quality.

  9. A scenario and forecast model for Gulf of Mexico hypoxic area and volume

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne; Obenour, Daniel R.

    2013-01-01

    For almost three decades, the relative size of the hypoxic region on the Louisiana-Texas continental shelf has drawn scientific and policy attention. During that time, both simple and complex models have been used to explore hypoxia dynamics and to provide management guidance relating the size of the hypoxic zone to key drivers. Throughout much of that development, analyses had to accommodate an apparent change in hypoxic sensitivity to loads and often cull observations due to anomalous meteorological conditions. Here, we describe an adaptation of our earlier, simple biophysical model, calibrated to revised hypoxic area estimates and new hypoxic volume estimates through Bayesian estimation. This application eliminates the need to cull observations and provides revised hypoxic extent estimates with uncertainties, corresponding to different nutrient loading reduction scenarios. We compare guidance from this model application, suggesting an approximately 62% nutrient loading reduction is required to reduce Gulf hypoxia to the Action Plan goal of 5,000 km2, to that of previous applications. In addition, we describe for the first time, the corresponding response of hypoxic volume. We also analyze model results to test for increasing system sensitivity to hypoxia formation, but find no strong evidence of such change.

  10. Molecular dynamics insights into the structural and diffusive properties of ZIF-8/PDMS mixed matrix membranes in the n-butanol/water pervaporation process

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Fang, Manquan; Wu, Zhen; Yu, Lixin; Li, Jiding

    2017-04-01

    Molecular dynamics (MD) simulation was used to study the structural and diffusive properties of zeolitic imidazolate framework-8 (ZIF-8)/polydimethylsiloxane (PDMS), a novel alcohol-permselective mixed matrix membrane (MMM). Simulation models of one pure PDMS membrane and three ZIF-8/PDMS MMMs with increasing loadings were successfully constructed. Non-bond energy turned out to be a strong attractive interaction between the PDMS matrix and ZIF-8 cells. The morphology and mobility of PDMS chains were characterized by mean square displacement (MSD). The fraction of free volume (FFV) of the pure membrane and MMMs was calculated and showed declining trends with increasing ZIF-8 loadings. The diffusion coefficients of n-butanol and water molecules were calculated by the Einstein relation. {D}n-\\text{butanol} first increased then decreased, while {D}{{water}} decreased with the increasing loadings. The mechanism of selective diffusion behaviour was investigated and it was found that the inner channels of ZIF-8 provided selective pathways for n-butanol. Diffusion coefficients were correlated with FFV and the results showed that the logarithm of {D}{{water}} demonstrated a good linear relation with the inverse FFV and was in agreement with the free volume theory, while {D}n-\\text{butanol} showed a significant deviation in the case of MMM-1 due to the selective diffusion channels provided by ZIF-8.

  11. Respiratory load perception in overweight and asthmatic children.

    PubMed

    MacBean, Victoria; Wheatley, Lorna; Lunt, Alan C; Rafferty, Gerrard F

    2017-05-01

    Overweight asthmatic children report greater symptoms than normal weight asthmatics, despite comparable airflow obstruction. This has been widely assumed to be due to heightened perception of respiratory effort. Three groups of children (healthy weight controls, healthy weight asthmatics, overweight asthmatics) rated perceived respiratory effort throughout an inspiratory resistive loading protocol. Parasternal intercostal electromyogram was used as an objective marker of respiratory load; this was expressed relative to tidal volume and reported as a ratio of the baseline value (neuroventilatory activity ratio (NVEAR)). Significant increases in perception scores (p<0.0001), and decreases in NVEAR (p<0.0001) were observed from lowest to highest resistive load. Higher BMI increased overall perception scores, with no influence of asthma or BMI-for-age percentile on the resistance-perception relationships. These data, indicating elevated overall respiratory effort in overweight asthmatic children but comparable responses to dynamic changes in load, suggest that the greater disease burden in overweight asthmatic children may be due to altered respiratory mechanics associated with increased body mass. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ABSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Tompkins, E.R.; Parker, G.W.

    1959-03-10

    An improved method is presented for the chromatographic separation of fission products wherein a substantial reduction in liquid volume is obtained. The process consists in contacting a solution containing fission products with a body of ion-exchange adsorbent to effect adsorption of fission product cations. The loaded exchange resin is then contacted with a small volume of a carboxylic acid eluant, thereby recovering the fission products. The fission product carrying eluate is acidified without increasing its volume to the volume of the original solution, and the acidified eluate is then used as a feed solution for a smaller body of ion-exchange resin effecting readsorption of the fission product cations.

  13. Hypergravity suppresses bone resorption in ovariectomized rats

    NASA Astrophysics Data System (ADS)

    Ikawa, Tesshu; Kawaguchi, Amu; Okabe, Takahiro; Ninomiya, Tadashi; Nakamichi, Yuko; Nakamura, Midori; Uehara, Shunsuke; Nakamura, Hiroaki; Udagawa, Nobuyuki; Takahashi, Naoyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki

    2011-04-01

    The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats. Further, the cell morphology, activity, proliferation, and differentiation of osteoclasts and osteoblasts exposed to hypergravity were evaluated in vitro. Hypergravity inhibited actin ring formation in mature osteoclasts, which suggested that the osteoclast activity was suppressed. However, hypergravity had no effect on osteoblasts. These results suggest that hypergravity can stimulate an increase in bone volume by suppressing bone resorption in ovariectomized rats.

  14. Quantifying loading, toxic concentrations, and systemic persistence of chloride in a contemporary mixed-land-use watershed using an experimental watershed approach.

    PubMed

    Hubbart, J A; Kellner, E; Hooper, L W; Zeiger, S

    2017-03-01

    A nested-scale experimental watershed study was implemented to quantify loading and persistence of chloride in an urbanizing, mixed-land-use watershed. A Midwest USA (Missouri) watershed was partitioned into five sub-basins with contrasting dominant land use. Streamwater was tested for chloride concentration four days per week from October 2009 through May 2014 at each site. Monitoring sites included co-located gauging and climate stations recording variables at 30-minute intervals. Results indicate significant (p<0.01) differences in chloride concentrations and loading between sites. Loading consistently increased from the forested headwaters (average=507kgday -1 ) to primarily urban watershed terminus (average=7501kgday -1 ). Chloride concentrations were highest (average=83.9mgL -1 ) with the greatest frequency of acutely toxic conditions (i.e. 860mgL -1 ) mid-watershed. This finding is in-part attributable to the ratio of chloride application to streamflow volume (i.e. increasing flow volume with stream distance resulted in chloride dilution, offsetting increased percent urban land use with stream distance). Results highlight the important, yet often confounding, interactions between pollutant loading and flow dynamics. Chloride peaks occurred during late winter/early spring melting periods, implicating road salt application as the primary contributor to the chloride regime. Floodplain groundwater analysis indicated seasonal sink/source relationships between the stream and floodplain, which could contribute to chronic toxicity and persistent low Cl - concentrations in streamwater year-round. Results hold important implications for resource managers wishing to mitigate water quality and aquatic habitat degradation, and suggest important water quality limitations to stream restoration success in complex urban aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mechanical Properties and Shear Strengthening Capacity of High Volume Fly Ash-Cementitious Composite

    NASA Astrophysics Data System (ADS)

    Joseph, Aswin K.; Anand, K. B.

    2018-02-01

    This paper discusses development of Poly Vinyl Alcohol (PVA) fibre reinforced cementitious composites taking into account environmental sustainability. Composites with fly ash to cement ratios from 0 to 3 are investigated in this study. The mechanical properties of HVFA-cement composite are discussed in this paper at PVA fiber volume fraction maintained at 1% of total volume of composite. The optimum replacement of cement with fly ash was found to be 75%, i.e. fly ash to cement ratio (FA/C) of 3. The increase in fiber content from 1% to 2% showed better mechanical performance. A strain capacity of 2.38% was obtained for FA/C ratio of 3 with 2% volume fraction of fiber. With the objective of evaluating the performance of cementitious composites as a strengthening material in reinforced concrete beams, the beams deficient in shear capacity were strengthened with optimal mix having 2% volume fraction of fiber as the strengthening material and tested under four-point load. The reinforced concrete beams designed as shear deficient were loaded to failure and retrofitted with the composite in order to assess the efficiency as a repair material under shear.

  16. Whey protein aerogel as blended with cellulose crystalline particles or loaded with fish oil.

    PubMed

    Ahmadi, Maede; Madadlou, Ashkan; Saboury, Ali Akbar

    2016-04-01

    Whey protein hydrogels blended with nanocrystalline and microcrystalline cellulose particles (NCC and MCC, respectively) were prepared, followed by freeze-drying, to produce aerogels. NCC blending increased the Young's modulus, and elastic character, of the protein aerogel. Aerogels were microporous and mesoporous materials, as characterized by the pores sizing 1.2 nm and 12.2 nm, respectively. Blending with NCC decreased the count of both microporous and mesoporous-classified pores at the sub-100 nm pore size range investigated. In contrast, MCC blending augmented the specific surface area and pores volume of the aerogel. It also increased moisture sorption affinity of aerogel. The feasibility of conveying hydrophobic nutraceuticals by aerogels was evaluated through loading fish oil into the non-blended aerogel. Oil loading altered its microstructure, corresponding to a peak displacement in Fourier-transform infra-red spectra, which was ascribed to increased hydrophobic interactions. Surface coating of aerogel with zein decreased the oxidation susceptibility of the loaded oil during subsequent storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Is there resetting of central venous pressure in microgravity?

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Ludwig, D. A.; Elliott, J. J.; Wade, C. E.

    2001-01-01

    In the early phase of the Space Shuttle program, NASA flight surgeons implemented a fluid-loading countermeasure in which astronauts were instructed to ingest eight 1-g salt tablets with 960 ml of water approximately 2 hours prior to reentry from space. This fluid loading regimen was intended to enhance orthostatic tolerance by replacing circulating plasma volume reduced during the space mission. Unfortunately, fluid loading failed to replace plasma volume in groundbased experiments and has proven minimally effective as a countermeasure against post-spaceflight orthostatic intolerance. In addition to the reduction of plasma volume, central venous pressure (CVP) is reduced during exposure to actual and groundbased analogs of microgravity. In the present study, we hypothesized that the reduction in CVP due to exposure to microgravity represents a resetting of the CVP operating point to a lower threshold. A lower CVP 'setpoint' might explain the failure of fluid loading to restore plasma volume. In order to test this hypothesis, we conducted an investigation in which we administered an acute volume load (stimulus) and measured responses in CVP, plasma volume and renal functions. If our hypothesis is true, we would expect the elevation in CVP induced by saline infusion to return to its pre-infusion levels in both HDT and upright control conditions despite lower vascular volume during HDT. In contrast to previous experiments, our approach is novel in that it provides information on alterations in CVP and vascular volume during HDT that are necessary for interpretation of the proposed CVP operating point resetting hypothesis.

  18. The use of 3d scanner for testing changes in shape of human limbs under the influence of external mechanical load

    NASA Astrophysics Data System (ADS)

    Kasperska, Kamila; Wieczorowski, Michał; Krolczyk, Jolanta B.

    2017-10-01

    Three-dimensional scanning is used in many fields: medicine, architecture, industry, reverse engineering. The aim of the article was to analyze the changes in the shape of the limbs under the influence of a mechanical external load using the method of three-dimensional scanner uses white light technology. The paper presents a system of human movement, passive part - skeleton and active part - the muscles, and principles of their interaction, which results in a change of the position of the body. Furthermore, by using the 3D scan, the differences in appearance of the arm and leg depending on the size of the external load in different positions have been presented. The paper shows that with increasing load, which muscles must prevent, increases the volume of certain parts of the legs, while another parts of them will be reduced. Results of the research using three-dimensional scanner allow determining what impact on changing the legs shape has an external mechanical load.

  19. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates

    PubMed Central

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-01-01

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228

  20. Keeping the Edge. Air Force Materiel Command Cold War Context (1945-1991). Volume 2: Installations and Facilities

    DTIC Science & Technology

    2003-08-01

    connector increased the strength of the joints by spreading the load more equally over the cross section of the wood, and in fact made the "all-wood...strength of the timber joints by spreading the load more equally over the cross section of the wood. The Timber Engineering Company established a...Laboratory Computerized Axial Tomography Columbia Broadcasting System Comprehensive Display System Corps of Engineers Ballistic Missile Construction

  1. A NASTRAN Vibration Model of the AH-1G Helicopter Airframe. Volume 1

    DTIC Science & Technology

    1974-06-01

    Bulkhead .012 ZZ 1863343 Bulkhead .012 AAA 1863345 Bulkhead .012 j EBB 1863546 Bulkhead .012 j ccc 1863746 Bulkhead .012 \\ ODD 1863748...123 12) 123 RULE AAA AAA AAA AAA BBB EBB AAA AAA AAA AAA BBB BBB OMIT D.O.F. 456 456 123 123 123 123 123 123 123 123 RULE...load in the member Increases. The program determines the section properties, unsytnmetrical bending stresses, element loads and shear flows for a

  2. Effect of fluid loading on left ventricular volume and stroke volume variability in patients with end-stage renal disease: a pilot study

    PubMed Central

    Kanda, Hirotsugu; Hirasaki, Yuji; Iida, Takafumi; Kanao-Kanda, Megumi; Toyama, Yuki; Kunisawa, Takayuki; Iwasaki, Hiroshi

    2015-01-01

    Purpose The aim of this study was to investigate fluid loading-induced changes in left ventricular end-diastolic volume (LVEDV) and stroke volume variability (SVV) in patients with end-stage renal disease (ESRD) using real-time three-dimensional transesophageal echocardiography and the Vigileo-FloTrac system. Patients and methods After obtaining ethics committee approval and informed consent, 28 patients undergoing peripheral vascular procedures were studied. Fourteen patients with ESRD on hemodialysis (HD) were assigned to the HD group and 14 patients without ESRD were assigned to the control group. Institutional standardized general anesthesia was provided in both groups. SVV was measured using the Vigileo-FloTrac system. Simultaneously, a full-volume three-dimensional transesophageal echocardiography dataset was acquired to measure LVEDV, left ventricular end-systolic volume, and left ventricular ejection fraction. Measurements were obtained before and after loading 500 mL hydroxyethyl starch over 30 minutes in both groups. Results In the control group, intravenous colloid infusion was associated with a significant decrease in SVV (13.8%±2.6% to 6.5%±2.6%, P<0.001) and a significant increase in LVEDV (83.6±23.4 mL to 96.1±28.8 mL, P<0.001). While SVV significantly decreased after infusion in the HD group (16.2%±6.0% to 6.2%±2.8%, P<0.001), there was no significant change in LVEDV. Conclusion Our preliminary data suggest that fluid responsiveness can be assessed not by LVEDV but also by SVV due to underlying cardiovascular pathophysiology in patients with ESRD. PMID:26527879

  3. The Study of the Relationship between Probabilistic Design and Axiomatic Design Methodology. Volume 3

    NASA Technical Reports Server (NTRS)

    Onwubiko, Chin-Yere; Onyebueke, Landon

    1996-01-01

    Structural failure is rarely a "sudden death" type of event, such sudden failures may occur only under abnormal loadings like bomb or gas explosions and very strong earthquakes. In most cases, structures fail due to damage accumulated under normal loadings such as wind loads, dead and live loads. The consequence of cumulative damage will affect the reliability of surviving components and finally causes collapse of the system. The cumulative damage effects on system reliability under time-invariant loadings are of practical interest in structural design and therefore will be investigated in this study. The scope of this study is, however, restricted to the consideration of damage accumulation as the increase in the number of failed components due to the violation of their strength limits.

  4. Effect of crowd size on patient volume at a large, multipurpose, indoor stadium.

    PubMed

    De Lorenzo, R A; Gray, B C; Bennett, P C; Lamparella, V J

    1989-01-01

    A prediction of patient volume expected at "mass gatherings" is desirable in order to provide optimal on-site emergency medical care. While several methods of predicting patient loads have been suggested, a reliable technique has not been established. This study examines the frequency of medical emergencies at the Syracuse University Carrier Dome, a 50,500-seat indoor stadium. Patient volume and level of care at collegiate basketball and football games as well as rock concerts, over a 7-year period were examined and tabulated. This information was analyzed using simple regression and nonparametric statistical methods to determine level of correlation between crowd size and patient volume. These analyses demonstrated no statistically significant increase in patient volume for increasing crowd size for basketball and football events. There was a small but statistically significant increase in patient volume for increasing crowd size for concerts. A comparison of similar crowd size for each of the three events showed that patient frequency is greatest for concerts and smallest for basketball. The study suggests that crowd size alone has only a minor influence on patient volume at any given event. Structuring medical services based solely on expected crowd size and not considering other influences such as event type and duration may give poor results.

  5. The Effect of Water Loading on Acute Weight Loss Following Fluid Restriction in Combat Sports Athletes.

    PubMed

    Reale, Reid; Slater, Gary; Cox, Gregory R; Dunican, Ian C; Burke, Louise M

    2018-05-03

    Novel methods of acute weight loss practiced by combat sport athletes include "water loading," the consumption of large fluid volumes for several days prior to restriction. We examined claims that this technique increases total body water losses, while also assessing the risk of hyponatremia. Male athletes were separated into control (n = 10) and water loading (n = 11) groups and fed a standardized energy-matched diet for 6 days. Days 1-3 fluid intake was 40 and 100 ml/kg for control and water loading groups, respectively, with both groups consuming 15 ml/kg on Day 4 and following the same rehydration protocol on Days 5 and 6. We tracked body mass (BM), urine sodium, urine specific gravity and volume, training-related sweat losses and blood concentrations of renal hormones, and urea and electrolytes throughout. Physical performance was assessed preintervention and postintervention. Following fluid restriction, there were substantial differences between groups in the ratio of fluid input/output (39%, p < .01, effect size = 1.2) and BM loss (0.6% BM, p = .02, effect size = 0.82). Changes in urine specific gravity, urea and electrolytes, and renal hormones occurred over time (p < .05), with an interaction of time and intervention on blood sodium, potassium, chloride, urea, creatinine, urine specific gravity, and vasopressin (p < .05). Measurements of urea and electrolyte remained within reference ranges, and no differences in physical performance were detected over time or between groups. Water loading appears to be a safe and effective method of acute BM loss under the conditions of this study. Vasopressin-regulated changes in aquaporin channels may potentially partially explain the mechanism of increased body water loss with water loading.

  6. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that there is an outage of at least 2 percent of the volume of the tank at the temperature..., the maximum volume to which a tank may be loaded is: V L=0.98d r V/d L where: V L=maximum volume to which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo...

  7. The Interaction of Surface Hydration and Vocal Loading on Voice Measures.

    PubMed

    Fujiki, Robert Brinton; Chapleau, Abigail; Sundarrajan, Anusha; McKenna, Victoria; Sivasankar, M Preeti

    2017-03-01

    Vocal loading tasks provide insight regarding the mechanisms underlying healthy laryngeal function. Determining the manner in which the larynx can most efficiently be loaded is a complex task. The goal of this study was to determine if vocal loading could be achieved in 30 minutes by altering phonatory mode. Owing to the fact that surface hydration facilitates efficient vocal fold oscillation, the effects of environmental humidity on vocal loading were also examined. This study also investigated whether the detrimental effects of vocal loading could be attenuated by increasing environmental humidity. Sixteen vocally healthy adults (8 men, 8 women) completed a 30-minute vocal loading task in low and moderate humidity. The order of humidities was counterbalanced across subjects. The vocal loading task consisted of reading with elevated pitch and pressed vocal quality and low pitch and pressed and/or raspy vocal quality in the presence of 65 dB ambient, multi-talker babble noise. Significant effects were observed for (1) cepstral peak prominence on soft sustained phonation at 10th and 80th pitches, (2) perceived phonatory effort, and (3) perceived tiredness ratings. No loading effects were observed for cepstral peak prominence on the rainbow passage, although fundamental frequency on the rainbow passage increased post loading. No main effect was observed for humidity. Following a 30-minute vocal loading task involving altering laryngeal vibratory mode in combination with increased volume. Also, moderate environmental humidity did not significantly attenuate the negative effects of loading. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

    2014-03-01

    Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

  9. Correlating Cognitive Decline with White Matter Lesion and Brain Atrophy MRI Measurements in Alzheimer’s Disease

    PubMed Central

    Bilello, Michel; Doshi, Jimit; Nabavizadeh, S. Ali; Toledo, Jon B.; Erus, Guray; Xie, Sharon X.; Trojanowski, John Q.; Han, Xiaoyan; Davatzikos, Christos

    2015-01-01

    Background Vascular risk factors are increasingly recognized as risks factors for Alzheimer’s disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. Objective To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Methods Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. Results CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Conclusion Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly. PMID:26402108

  10. Correlating Cognitive Decline with White Matter Lesion and Brain Atrophy Magnetic Resonance Imaging Measurements in Alzheimer's Disease.

    PubMed

    Bilello, Michel; Doshi, Jimit; Nabavizadeh, S Ali; Toledo, Jon B; Erus, Guray; Xie, Sharon X; Trojanowski, John Q; Han, Xiaoyan; Davatzikos, Christos

    2015-01-01

    Vascular risk factors are increasingly recognized as risks factors for Alzheimer's disease (AD) and early conversion from mild cognitive impairment (MCI) to dementia. While neuroimaging research in AD has focused on brain atrophy, metabolic function, or amyloid deposition, little attention has been paid to the effect of cerebrovascular disease to cognitive decline. To investigate the correlation of brain atrophy and white matter lesions with cognitive decline in AD, MCI, and control subjects. Patients with AD and MCI, and healthy subjects were included in this study. Subjects had a baseline MRI scan, and baseline and follow-up neuropsychological battery (CERAD). Regional volumes were measured, and white matter lesion segmentation was performed. Correlations between rate of CERAD score decline and white matter lesion load and brain structure volume were evaluated. In addition, voxel-based correlations between baseline CERAD scores and atrophy and white matter lesion measures were computed. CERAD rate of decline was most significantly associated with lesion loads located in the fornices. Several temporal lobe ROI volumes were significantly associated with CERAD decline. Voxel-based analysis demonstrated strong correlation between baseline CERAD scores and atrophy measures in the anterior temporal lobes. Correlation of baseline CERAD scores with white matter lesion volumes achieved significance in multilobar subcortical white matter. Both baseline and declines in CERAD scores correlate with white matter lesion load and gray matter atrophy. Results of this study highlight the dominant effect of volume loss, and underscore the importance of small vessel disease as a contributor to cognitive decline in the elderly.

  11. Expiratory muscle loading increases intercostal muscle blood flow during leg exercise in healthy humans

    PubMed Central

    Athanasopoulos, Dimitris; Louvaris, Zafeiris; Cherouveim, Evgenia; Andrianopoulos, Vasilis; Roussos, Charis; Zakynthinos, Spyros

    2010-01-01

    We investigated whether expiratory muscle loading induced by the application of expiratory flow limitation (EFL) during exercise in healthy subjects causes a reduction in quadriceps muscle blood flow in favor of the blood flow to the intercostal muscles. We hypothesized that, during exercise with EFL quadriceps muscle blood flow would be reduced, whereas intercostal muscle blood flow would be increased compared with exercise without EFL. We initially performed an incremental exercise test on eight healthy male subjects with a Starling resistor in the expiratory line limiting expiratory flow to ∼ 1 l/s to determine peak EFL exercise workload. On a different day, two constant-load exercise trials were performed in a balanced ordering sequence, during which subjects exercised with or without EFL at peak EFL exercise workload for 6 min. Intercostal (probe over the 7th intercostal space) and vastus lateralis muscle blood flow index (BFI) was calculated by near-infrared spectroscopy using indocyanine green, whereas cardiac output (CO) was measured by an impedance cardiography technique. At exercise termination, CO and stroke volume were not significantly different during exercise, with or without EFL (CO: 16.5 vs. 15.2 l/min, stroke volume: 104 vs. 107 ml/beat). Quadriceps muscle BFI during exercise with EFL (5.4 nM/s) was significantly (P = 0.043) lower compared with exercise without EFL (7.6 nM/s), whereas intercostal muscle BFI during exercise with EFL (3.5 nM/s) was significantly (P = 0.021) greater compared with that recorded during control exercise (0.4 nM/s). In conclusion, increased respiratory muscle loading during exercise in healthy humans causes an increase in blood flow to the intercostal muscles and a concomitant decrease in quadriceps muscle blood flow. PMID:20507965

  12. Effect of Training Status on Oxygen Consumption in Women After Resistance Exercise.

    PubMed

    Benton, Melissa J; Waggener, Green T; Swan, Pamela D

    2016-03-01

    This study compared acute postexercise oxygen consumption in 11 trained women (age, 46.5 ± 1.6 years; body mass index [BMI], 28.4 ± 1.7 kg·m(-2) and 11 untrained women (age, 46.5 ± 1.5 years; BMI, 27.5 ± 1.5 kg·m(-2)) after resistance exercise (RE). Resistance exercise consisted of 3 sets of 8 exercises (8-12 repetitions at 50-80% 1 repetition maximum). Oxygen consumption (VO2 ml·min(-1)) was measured before and after (0, 20, 40, 60, 90, and 120 minutes) RE. Immediately after cessation of RE (time 0), oxygen consumption increased in both trained and untrained women and remained significantly above baseline through 60 minutes after exercise (p < 0.01). Total oxygen consumption during recovery was 31.3 L in trained women and 27.4 L in untrained women (p = 0.07). In trained women, total oxygen consumption was strongly related to absolute (kg) lean mass (r = 0.88; p < 0.001), relative (kilogram per square meter) lean mass (r = 0.91; p < 0.001), and duration of exercise (r = 0.68; p ≤ 0.05), but in untrained women, only training volume-load was related to total oxygen consumption (r = 0.67; p ≤ 0.05). In trained women, 86% of the variance in oxygen consumption was explained by lean mass and exercise duration, whereas volume-load explained 45% in untrained women. Our findings suggest that, in women, resistance training increases metabolic activity of lean tissue. Postexercise energy costs of RE are determined by the duration of stimulation provided by RE rather than absolute work (volume-load) performed. This phenomenon may be related to type II muscle fibers and increased protein synthesis.

  13. Use of the Frank-Starling mechanism during exercise is linked to exercise-induced changes in arterial load

    PubMed Central

    Chantler, Paul D.; Melenovsky, Vojtech; Schulman, Steven P.; Gerstenblith, Gary; Becker, Lewis C.; Ferrucci, Luigi; Fleg, Jerome L.; Najjar, Samer S.

    2012-01-01

    Effective arterial elastance(EA) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in EA during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined EA and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive EA[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). EA varied with exercise intensity: the ΔEA between rest and peak exercise along with its determinants, differed among individuals and ranged from −44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔEAI. Individuals with the largest increase in ΔEA(group 3;ΔEA≥0.98 mmHg.m2/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔEA<0.22 mmHg.m2/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise. PMID:22003052

  14. Optimizing Preseason Training Loads in Australian Football.

    PubMed

    Carey, David L; Crow, Justin; Ong, Kok-Leong; Blanch, Peter; Morris, Meg E; Dascombe, Ben J; Crossley, Kay M

    2018-02-01

    To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of "safe" training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.

  15. Mechanical loading increases detection of estrogen receptor-alpha in osteocytes and osteoblasts despite chronic energy restriction.

    PubMed

    Swift, Sibyl N; Swift, Joshua M; Bloomfield, Susan A

    2014-12-01

    Estrogen receptor-α (ER-α) is an important mediator of the bone response to mechanical loading. We sought to determine whether restricting dietary energy intake by 40% limits the bone formation rate (BFR) response to mechanical loading (LOAD) by downregulating ER-α-expressing osteocytes, or osteoblasts, or both. Female rats (n = 48, 7 mo old) were randomized to ADLIB-SHAM and ADLIB-LOAD groups fed AIN-93M purified diet ad libitum or to ER40-SHAM and ER40-LOAD groups fed modified AIN-93M with 40% less energy (100% of all other nutrients). After 12 wk, LOAD rats were subjected to a muscle contraction protocol three times every third day. ER40 produced lower proximal tibia bone volume (-22%), trabecular thickness (-14%), and higher trabecular separation (+127%) in SHAM but not LOAD rats. ER40 rats exhibited reductions in mineral apposition rate, but not percent mineralizing surface or BFR. LOAD induced similar relative increases in these kinetic measures of osteoblast activity/recruitment in both diet groups., but absolute values for ER40 LOAD rats were lower vs. ADLIB-LOAD. There were fourfold and eightfold increases in proportion of estrogen receptor-α protein-positive osteoblast and osteocytes, respectively, in LOAD vs. SHAM rats, with no effect of ER40. These data suggest that a brief period of mechanical loading significantly affects estrogen receptor-α in cancellous bone osteoblasts and osteocytes. Chronic energy restriction does result in lower absolute values in indices of osteoblast activity after mechanical loading, but not by a smaller increment relative to unloaded bones; this change is not explained by an associated downregulation of ER-α in osteoblasts or osteocytes.

  16. Effect of provider volume on the accuracy of hospital report cards: a Monte Carlo study.

    PubMed

    Austin, Peter C; Reeves, Mathew J

    2014-03-01

    Hospital report cards, in which outcomes after the provision of medical or surgical care are compared across healthcare providers, are being published with increasing frequency. However, the accuracy of such comparisons is controversial, especially when case volumes are small. The objective was to determine the relationship between hospital case volume and the accuracy of hospital report cards. Monte Carlo simulations were used to examine the influence of hospital case volume on the accuracy of hospital report cards in a setting in which true hospital performance was known with certainty, and perfect risk-adjustment was feasible. The parameters used to generate the simulated data sets were obtained from empirical analyses of data on patients hospitalized with acute myocardial infarction in Ontario, Canada, in which the overall 30-day mortality rate was 11.1%. We found that provider volume had a strong effect on the accuracy of hospital report cards. However, provider volume had to be >300 before ≥70% of hospitals were correctly classified. Furthermore, hospital volume had to be >1000 before ≥80% of hospitals were correctly classified. Producers and users of hospital report cards need to be aware that, even when perfect risk adjustment is possible, the accuracy of hospital report cards is, at best, modest for small to medium-sized case loads (i.e., 100-300). Hospital report cards displayed high degrees of accuracy only when provider volumes exceeded the typical annual hospital case load for many cardiovascular conditions and procedures.

  17. Tailored metal matrix composites for high-temperature performance

    NASA Technical Reports Server (NTRS)

    Morel, M. R.; Saravanos, D. A.; Chamis, C. C.

    1992-01-01

    A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.

  18. Determining the optimal load for jump squats: a review of methods and calculations.

    PubMed

    Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U

    2004-08-01

    There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.

  19. Plasma /Na+/, /Ca++/, and volume shifts and thermoregulation during exercise in man

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Convertino, V. A.; Stremel, R. W.; Bernauer, E. M.; Adams, W. C.; Vignau, S. R.; Brock, P. J.

    1977-01-01

    Graded-exercise experiments are conducted on six trained male runners (19-23 yr) subjected to ergometer exercise in a program consisting of 30-min resting control period, 60 min of rest or exercise at work loads that resulted in a maximal oxygen uptake equivalent to 6% (resting), 23%, 43%, and 62% of maximal oxygen uptake, followed by 30 min of recovery. The parameters measured and discussed are rectal temperature (T-re), skin temperatures at different spots, maximal oxygen uptake, plasma volume (PV), and various plasma electrolyte and protein concentrations. The objectives are to determine whether the increased T-re during progressively greater work loads are related to plasma sodium ion and calcium ion concentrations, as well as to evaluate the influence of PV shifts on the electrolyte and osmotic concentrations. The results suggest that the shift (loss) in PV accounts for the increases in the plasma constituent concentrations that result in significant correlations with T-re.

  20. Measurement of early age shrinkage of Virginia concrete mixtures.

    DOT National Transportation Integrated Search

    2008-01-01

    Concrete volume changes throughout its service life. The total in-service volume change is the resultant of applied loads and shrinkage. When loaded, concrete undergoes an instantaneous elastic deformation and a slow inelastic deformation called cree...

  1. Individual Differences in the Temporal Profile of Cardiovascular Responses to Head Down Tilt and Orthostatic Stress with and Without Fluid Loading

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia; Toscano, William; Kanis, Dionisios; Gebreyesus, Fiyore

    2013-01-01

    Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. Hypo-volemia is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore loss fluid volume by giving crew salt tablets and water prior to re-entry. Eight men and eight women will be tested during two, 6-hour exposures to 6o HDT: 1) fluid loading, 2) no fluid loading. Before and immediately after each HDT, subjects will perform a stand test to assess their orthostatic tolerance. Physiological measures (e.g., ECG, blood pressure, peripheral blood volume) will be continuously monitored while echocardiography measures are recorded at 30-minute intervals during HDT and stand tests. Preliminary results (N=4) clearly show individual differences in responses to this countermeasure and the time course of physiological changes induced by HDT.

  2. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster deceleration subsystem drop test vehicle. Volume 4: Pylon load data

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The pylon loading at the drop test vehicle and wing interface attack points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the forward hook guide and the fore and aft stiffness of each drag pin to be equal. The net effect of this assumption is that the forward hook guide reacts approximately 96% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.

  3. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius.

    PubMed

    Enok, Sanne; Leite, Gabriella S P C; Leite, Cléo A C; Gesser, Hans; Hedrick, Michael S; Wang, Tobias

    2016-10-01

    To accommodate the pronounced metabolic response to digestion, pythons increase heart rate and elevate stroke volume, where the latter has been ascribed to a massive and fast cardiac hypertrophy. However, numerous recent studies show that heart mass rarely increases, even upon ingestion of large meals, and we therefore explored the possibility that a rise in mean circulatory filling pressure (MCFP) serves to elevate venous pressure and cardiac filling during digestion. To this end, we measured blood flows and pressures in anaesthetized Python regius The anaesthetized snakes exhibited the archetypal tachycardia as well as a rise in both venous pressure and MCFP that fully account for the approximate doubling of stroke volume. There was no rise in blood volume and the elevated MCFP must therefore stem from increased vascular tone, possibly by means of increased sympathetic tone on the veins. Furthermore, although both venous pressure and MCFP increased during volume loading, there was no evidence that postprandial hearts were endowed with an additional capacity to elevate stroke volume. In vitro measurements of force development of paced ventricular strips also failed to reveal signs of increased contractility, but the postprandial hearts had higher activities of cytochrome oxidase and pyruvate kinase, which probably serves to sustain the rise in cardiac work during digestion. © 2016. Published by The Company of Biologists Ltd.

  4. Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data

    NASA Astrophysics Data System (ADS)

    Grott, M.; Wieczorek, M. A.

    2012-09-01

    The Tyrrhena Patera highland volcano, Mars, is associated with a relatively well localized gravity anomaly and we have carried out a localized admittance analysis in the region to constrain the density of the volcanic load, the load thickness, and the elastic thickness at the time of load emplacement. The employed admittance model considers loading of an initially spherical surface, and surface as well as subsurface loading is taken into account. Our results indicate that the gravity and topography data available at Tyrrhena Patera is consistent with the absence of subsurface loading, but the presence of a small subsurface load cannot be ruled out. We obtain minimum load densities of 2960 kg m-3, minimum load thicknesses of 5 km, and minimum load volumes of 0.6 × 106 km3. Photogeological evidence suggests that pyroclastic deposits make up at most 30% of this volume, such that the bulk of Tyrrhena Patera is likely composed of competent basalt. Best fitting model parameters are a load density of 3343 kg m-3, a load thickness of 10.8 km, and a load volume of 1.7 × 106 km3. These relatively large load densities indicate that lava compositions are comparable to those at other martian volcanoes, and densities are comparable to those of the martian meteorites. The elastic thickness in the region is constrained to be smaller than 27.5 km at the time of loading, indicating surface heat flows in excess of 24 mW m-2.

  5. Regional responsiveness of the tibia to intermittent administration of parathyroid hormone as affected by skeletal unloading

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Tanner, S.; Curren, T.; Morey-Holton, E.

    1997-01-01

    To determine whether the acute inhibition of bone formation and deficit in bone mineral induced by skeletal unloading can be prevented, we studied the effects of intermittent parathyroid hormone (PTH) administration (8 micrograms/100 g/day) on growing rats submitted to 8 days of skeletal unloading. Loss of weight bearing decreased periosteal bone formation by 34 and 51% at the tibiofibular junction and tibial midshaft, respectively, and reduced the normal gain in tibial mass by 35%. Treatment with PTH of normally loaded and unloaded animals increased mRNA for osteocalcin (+58 and +148%, respectively), cancellous bone volume in the proximal tibia (+41 and +42%, respectively), and bone formation at the tibiofibular junction (+27 and +27%, respectively). Formation was also stimulated at the midshaft in unloaded (+47%, p < 0.05), but not loaded animals (-3%, NS). Although cancellous bone volume was preserved in PTH-treated, unloaded animals, PTH did not restore periosteal bone formation to normal nor prevent the deficit in overall tibial mass induced by unloading. We conclude that the effects of PTH on bone formation are region specific and load dependent. PTH can prevent the decrease in cancellous bone volume and reduce the decrement in cortical bone formation induced by loss of weight bearing.

  6. Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.

    PubMed

    Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L

    2009-05-01

    A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.

  7. Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.

    2010-01-01

    A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615

  8. Particle loading time and humidity effects on the efficiency of an N95 filtering facepiece respirator model under constant and inhalation cyclic flows.

    PubMed

    Mahdavi, Alireza; Haghighat, Fariborz; Bahloul, Ali; Brochot, Clothilde; Ostiguy, Claude

    2015-06-01

    It is necessary to investigate the efficiencies of filtering facepiece respirators (FFRs) exposed to ultrafine particles (UFPs) for long periods of time, since the particle loading time may potentially affect the efficiency of FFRs. This article aims to investigate the filtration efficiency for a model of electrostatic N95 FFRs with constant and 'inhalation-only' cyclic flows, in terms of particle loading time effect, using different humidity conditions. Filters were exposed to generated polydisperse NaCl particles. Experiments were performed mimicking an 'inhalation-only' scenario with a cyclic flow of 85 l min(-1) as the minute volume [or 170 l min(-1) as mean inhalation flow (MIF)] and for two constant flows of 85 and 170 l min(-1), under three relative humidity (RH) levels of 10, 50, and 80%. Each test was performed for loading time periods of 6h and the particle penetration (10-205.4nm in electrical mobility diameter) was measured once every 2h. For a 10% RH, the penetration of smaller size particles (<80nm), including the most penetrating particle size (MPPS), decreased over time for both constant and cyclic flows. For 50 and 80% RH levels, the changes in penetration were typically observed in an opposite direction with less magnitude. The penetrations at MPPS increased with respect to loading time under constant flow conditions (85 and 170 l min(-1)): it did not substantially increase under cyclic flows. The comparison of the cyclic flow (85 l min(-1) as minute volume) and constant flow equal to the cyclic flow minute volume indicated that, for all conditions the penetration was significantly less for the constant flow than that of cyclic flow. The comparison between the cyclic (170 l min(-1) as MIF) and constant flow equal to cyclic flow MIF indicated that, for the initial stage of loading, the penetrations were almost equal, but they were different for the final stages of the loading time. For a 10% RH, the penetration of a wide range of sizes was observed to be higher with the cyclic flow (170 as MIF) than with the equivalent constant flow (170 l min(-1)). For 50 and 80% RH levels, the penetrations were usually greater with a constant flow (170 l min(-1)) than with a cyclic flow (170 l min(-1) as MIF). It is concluded that, for the tested electrostatic N95 filters, the change in penetration as a function of the loading time does not necessarily take place with the same rate under constant (MIF) and cyclic flow. Moreover, for all tested flow rates, the penetration is not only affected by the loading time but also by the RH level. Lower RH levels (10%) have decreasing penetration rates in terms of loading time, while higher RH levels (50 and 80%) have increasing penetration rates. Also, the loading of the filter is normally accompanied with a shift of MPPS towards larger sizes. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon.

    PubMed

    Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding

    2015-01-01

    Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Groundwater – The disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients

    USGS Publications Warehouse

    Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.

    2015-01-01

    Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management.

  11. Main rotor free wake geometry effects on blade air loads and response for helicopters in steady maneuvers. Volume 2: Program listings

    NASA Technical Reports Server (NTRS)

    Sadler, S. G.

    1972-01-01

    A mathematical model and computer program was implemented to study the main rotor free wake geometry effects on helicopter rotor blade air loads and response in steady maneuvers. Volume 1 (NASA CR-2110) contains the theoretical formulation and analysis of results. Volume 2 contains the computer program listing.

  12. Justification of process of loading coal onto face conveyors by auger heads of shearer-loader machines

    NASA Astrophysics Data System (ADS)

    Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.

    2018-03-01

    This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.

  13. Subretinal hyper-reflective material seen on optical coherence tomography as a biomarker for disease monitoring in age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Lee, H. B.; Ong, B. B.; Katta, M.; Yvon, C.; Lu, L.; Zakri, R.; Patel, N.

    2018-03-01

    Subretinal hyper-reflective material (SHRM) seen on optical coherence tomography (OCT) is thought to be a collection of fibrous tissues and vascular networks that are identified in age-related macular degeneration (ARMD). We have carried out a retrospective analysis of 91 OCT scans of neovascular ARMD subtypes including classic and occult choroidal neovascularization (CNV) and retinal angiomatous proliferation (RAP). All three subtypes received ranibizumab, an anti-vascular endothelial growth factor (Anti-VEGF) intravitreal injections on an as-needed basis following the loading doses. Volumes of SHRM were calculated using caliper measurements of maximal height and length of SHRM seen on OCT. The ellipsoid formula derived from tumour models was used to calculate the volume. It was found that occult CNV and RAP have larger SHRM volumes than those of classic CNV. SHRM volumes reduced overall following loading doses of Anti-VEGF injections at 4 months in all three subtypes. However, a rebound increase in volume was noticed in both occult CNV and RAP cohort at 12 months despite the initial, steeper reductions in the subtypes. These findings were consistent with the data seen in volume measurement using Topcon's automated segmentation algorithm in a smaller cohort of patients. We propose that SHRM should be used as a potential biomarker to quantify both disease progression and prognosis of neovascular ARMD alongside other conventional methods.

  14. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries.

    PubMed

    Xi, Kai; Cao, Shuai; Peng, Xiaoyu; Ducati, Caterina; Kumar, R Vasant; Cheetham, Anthony K

    2013-03-18

    This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

  15. Beyond a bigger brain: Multivariable structural brain imaging and intelligence

    PubMed Central

    Ritchie, Stuart J.; Booth, Tom; Valdés Hernández, Maria del C.; Corley, Janie; Maniega, Susana Muñoz; Gow, Alan J.; Royle, Natalie A.; Pattie, Alison; Karama, Sherif; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    People with larger brains tend to score higher on tests of general intelligence (g). It is unclear, however, how much variance in intelligence other brain measurements would account for if included together with brain volume in a multivariable model. We examined a large sample of individuals in their seventies (n = 672) who were administered a comprehensive cognitive test battery. Using structural equation modelling, we related six common magnetic resonance imaging-derived brain variables that represent normal and abnormal features—brain volume, cortical thickness, white matter structure, white matter hyperintensity load, iron deposits, and microbleeds—to g and to fluid intelligence. As expected, brain volume accounted for the largest portion of variance (~ 12%, depending on modelling choices). Adding the additional variables, especially cortical thickness (+~ 5%) and white matter hyperintensity load (+~ 2%), increased the predictive value of the model. Depending on modelling choices, all neuroimaging variables together accounted for 18–21% of the variance in intelligence. These results reveal which structural brain imaging measures relate to g over and above the largest contributor, total brain volume. They raise questions regarding which other neuroimaging measures might account for even more of the variance in intelligence. PMID:26240470

  16. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water.

    PubMed

    Ren, Jing; Li, Nan; Li, Lei; An, Jing-Kun; Zhao, Lin; Ren, Nan-Qi

    2015-02-01

    Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  18. Maximum sustained fin-kick thrust in underwater swimming.

    PubMed

    Yamaguchi, H; Shidara, F; Naraki, N; Mohri, M

    1995-09-01

    We examined the upper limit of a diver's fin-kick thrust force using a stationary-swimming ergometer. Heart rate, respiratory minute volume, oxygen uptake, and performance rate were measured in four male subjects who swam constantly for 8 min to maintain a horizontal position against an applied force at a depth of 0.7 m. The water temperature was controlled at 26 degrees +/- 1 degree C. The performance rate, which was the parameter of how well the subjects compensated for the applied load, showed an upper limit around 64 N of sustainable thrust force. This meant that the diver could generate the swimming thrust force within 64 N continuously for 8 min in a steady state. Heart rate, respiratory minute volume, and O2 uptake showed almost proportional increases to the applied load within 64 N and tended to plateau about 69 N.

  19. Predicting the Influence of Nano-Scale Material Structure on the In-Plane Buckling of Orthotropic Plates

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Nemeth, Michael P.; Frankland, Sarah-Jane V.

    2004-01-01

    A multi-scale analysis of the structural stability of a carbon nanotube-polymer composite material is developed. The influence of intrinsic molecular structure, such as nanotube length, volume fraction, orientation and chemical functionalization, is investigated by assessing the relative change in critical, in-plane buckling loads. The analysis method relies on elastic properties predicted using the hierarchical, constitutive equations developed from the equivalent-continuum modeling technique applied to the buckling analysis of an orthotropic plate. The results indicate that for the specific composite materials considered in this study, a composite with randomly orientated carbon nanotubes consistently provides the highest values of critical buckling load and that for low volume fraction composites, the non-functionalized nanotube material provides an increase in critical buckling stability with respect to the functionalized system.

  20. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster decelerator subsystem drop test vehicle. Volume 2: Airplane flutter and load analysis results

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The airplane flutter and maneuver-gust load analysis results obtained during B-52B drop test vehicle configuration (with fins) evaluation are presented. These data are presented as supplementary data to that given in Volume 1 of this document. A brief mathematical description of airspeed notation and gust load factor criteria are provided as a help to the user. References are defined which provide mathematical description of the airplane flutter and load analysis techniques. Air-speed-load factor diagrams are provided for the airplane weight configurations reanalyzed for finned drop test vehicle configuration.

  1. Load and dynamic assessment of B-52B-008 carrier aircraft for finned configuration 1 space shuttle solid rocket booster decelerator subsystem drop test vehicle. Volume 3: Pylon load data method 1

    NASA Technical Reports Server (NTRS)

    Quade, D. A.

    1978-01-01

    The pylon loading at the drop test vehicle and wing interface attach points is presented. The loads shown are determined using a stiffness method, which assumes the side stiffness of the foreward hook guide to be one-fourth of the fore and aft stiffness of each drag pin. The net effect of this assumption is that the forward hook guide reacts approximately 85% of the drop test vehicle yawing moment. For a comparison of these loads to previous X-15 analysis design loadings, see Volume 1 of this document.

  2. Activation energy of the low-load NaCl transition from nanoindentation loading curves.

    PubMed

    Kaupp, Gerd

    2014-01-01

    Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.

  3. Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements

    NASA Astrophysics Data System (ADS)

    Guo, Shou-Zhu; Li, Yang; Jiang, Ji-Sen; Xie, Hua-Qing

    2010-07-01

    Homogeneous and stable magnetic nanofluids containing γ-Fe2O3 nanoparticles were prepared using a two-step method, and their thermal transport properties were investigated. Thermal conductivities of the nanofluids were measured to be higher than that of base fluid, and the enhanced values increase with the volume fraction of the nanoparticles. Viscosity measurements showed that the nanofluids demonstrated Newtonian behavior and the viscosity of the nanofluids depended strongly on the tested temperatures and the nanoparticles loadings. Convective heat transfer coefficients tested in a laminar flow showed that the coefficients increased with the augment of Reynolds number and the volume fraction.

  4. Laboratory simulation of the effects of overburden stress on the specific storage of shallow artesian aquifers

    USGS Publications Warehouse

    Sepúlveda, Nicasio; Zack, A.L.; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.

    1990-01-01

    A laboratory experiment to measure the specific storage of an aquifer material was conducted. A known dead load, simulating an overburden load, was applied to a sample of completely saturated aquifer material contained inside a cylinder. After the dead load was applied, water was withdrawn from the sample, causing the hydrostatic pressure to decrease and the effective stress to increase. The resulting compression of the sample and the amount of water withdrawn were measured after equilibrium was reached. The procedure was repeated by increasing the dead load and the hydrostatic pressure followed by withdrawing water to determine new values of effective stress and compaction. The simulated dead loads are typical of those experienced by shallow artesian aquifers. The void ratio and the effective stress of the aquifer sample, as simulated by different dead loads, determine the pore volume compressibility which, in turn, determines the values of specific storage. An analytical algorithm was used to independently determine the stress dependent profile of specific storage. These values are found to be in close agreement with laboratory results. Implications for shallow artesian aquifers, with relatively small overburden stress, are also addressed.

  5. The effect of different fibre volume fraction on mechanical properties of banana/pineapple leaf (PaLF)/glass hybrid composite

    NASA Astrophysics Data System (ADS)

    Hanafee, Z. M.; Khalina, A.; Norkhairunnisa, M.; Syams, Z. Edi; Liew, K. E.

    2017-09-01

    This paper investigates the effect of fibre volume fraction on mechanical properties of banana-pineapple leaf (PaLF)-glass reinforced epoxy resin under tensile loading. Uniaxial tensile tests were carried out on specimens with different fibre contents (30%, 40%, 50% in weight). The composite specimens consists of 13 different combinations. The effect of hybridisation between synthetic and natural fibre onto tensile properties was determined and the optimum fibre volume fraction was obtained at 50% for both banana and PaLF composites. Additional 1 layer of woven glass fibre increased the tensile strength of banana-PaLF composite up to 85%.

  6. Losartan Potassium: A Review of Its Suitability for Use in Military Aircrew

    DTIC Science & Technology

    2001-06-01

    blood volume and/or sodium load to the kidney, and and diabetic nephropathy. Besides blocking the increased sympathetic nervous system activity...potassium levels, although no patient needed to left ventricular hypertrophy (LVH) similar to that discontinue the drug due to hyperkalemia . seen with ACE

  7. Dietary protein, calcium metabolism and bone health in humans

    USDA-ARS?s Scientific Manuscript database

    Protein is the major structural constituent of bone (50% by volume). But it is also a major source of metabolic acid, especially protein from animal sources because it contains sulfur amino acids that generate sulfuric acid. Increased potential renal acid load has been closely associated with increa...

  8. Effects of Fiber Content on Mechanical Properties of CVD SiC Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Unidirectional CVD SiC(f)(SCS-6) fiber-reinforced strontium aluminosilicate (SAS) glass-ceramic matrix composites containing various volume fractions, approximately 16 to 40 volume %, of fibers were fabricated by hot pressing at 1400 C for 2 h under 27.6 MPa. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase formed, with complete absence of the undesired hexacelsian phase, in the matrix. Room temperature mechanical properties were measured in 3-point flexure. The matrix microcracking stress and the ultimate strength increased with increase in fiber volume fraction, reached maximum values for V(sub f) approximately equal to 0.35, and degraded at higher fiber loadings. This degradation in mechanical properties is related to the change in failure mode, from tensile at lower V(sub f) to interlaminar shear at higher fiber contents. The extent of fiber loading did not have noticeable effect on either fiber-matrix debonding stress, or frictional sliding stress at the interface. The applicability of micromechanical models in predicting the mechanical properties of the composites was also examined. The currently available theoretical models do not appear to be useful in predicting the values of the first matrix cracking stress, and the ultimate strength of the SCS-6/SAS composites.

  9. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.

    PubMed

    Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T

    2009-07-01

    To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).

  10. Voxel size dependency, reproducibility and sensitivity of an in vivo bone loading estimation algorithm

    PubMed Central

    Christen, Patrik; Schulte, Friederike A.; Zwahlen, Alexander; van Rietbergen, Bert; Boutroy, Stephanie; Melton, L. Joseph; Amin, Shreyasee; Khosla, Sundeep; Goldhahn, Jörg; Müller, Ralph

    2016-01-01

    A bone loading estimation algorithm was previously developed that provides in vivo loading conditions required for in vivo bone remodelling simulations. The algorithm derives a bone's loading history from its microstructure as assessed by high-resolution (HR) computed tomography (CT). This reverse engineering approach showed accurate and realistic results based on micro-CT and HR-peripheral quantitative CT images. However, its voxel size dependency, reproducibility and sensitivity still need to be investigated, which is the purpose of this study. Voxel size dependency was tested on cadaveric distal radii with micro-CT images scanned at 25 µm and downscaled to 50, 61, 75, 82, 100, 125 and 150 µm. Reproducibility was calculated with repeated in vitro as well as in vivo HR-pQCT measurements at 82 µm. Sensitivity was defined using HR-pQCT images from women with fracture versus non-fracture, and low versus high bone volume fraction, expecting similar and different loading histories, respectively. Our results indicate that the algorithm is voxel size independent within an average (maximum) error of 8.2% (32.9%) at 61 µm, but that the dependency increases considerably at voxel sizes bigger than 82 µm. In vitro and in vivo reproducibility are up to 4.5% and 10.2%, respectively, which is comparable to other in vitro studies and slightly higher than in other in vivo studies. Subjects with different bone volume fraction were clearly distinguished but not subjects with and without fracture. This is in agreement with bone adapting to customary loading but not to fall loads. We conclude that the in vivo bone loading estimation algorithm provides reproducible, sensitive and fairly voxel size independent results at up to 82 µm, but that smaller voxel sizes would be advantageous. PMID:26790999

  11. Healing efficiency of shape memory polyurethane fiber reinforced syntactic foam under applied load

    NASA Astrophysics Data System (ADS)

    Ogunmekan, Babatunde

    Shape memory composite materials have received a great deal of interest in recent structural developments, both in sandwich and in lightweight structures. Experimental procedures involving the free body healing of these materials have been carried out; however, it is important to investigate the healing behaviors of these SMP materials while under load. In this study, syntactic foams reinforced with strain-hardened short-shape memory polyurethane fibers (SMPUFs) were prepared to evaluate their ability to heal wide-opened cracks using the two-step biomimetic close-then-heal (CTH) self-healing scheme while under varying loads. The syntactic foam samples manufactured consisted of an epoxy matrix with dispersed thermoplastic particles, glass microballoons and short SMPUFs. The SMPUF strands were cold-drawn (stretched-then-released) for up to four cycles and then cut to 10 mm short fibers before casting the polymer matrix. Three types of syntactic foam specimens, consisting of 5%, 10%, and 15% thermoplastic particle volume fraction compositions, respectively, were manufactured, and notched beam samples were then prepared. Fracture-healing by uniaxial tension was conducted for five cycles on each sample. Material characterization techniques, such as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), were utilized to highlight the crack healing characteristics and thermal properties. In addition, a high-resolution charge-coupled device (CCD) camera with a resolution of 3.7 x 3.7 μm/pixel was used to capture the crack tip opening displacement (CTOD). It is seen that the healing ability of the composite varies with changes in both the load carried and the volume fraction of thermoplastic particles. As the thermoplastic volume fraction increased from 5% to 10% to 15%, the tensile strength values recorded decreased, but there was also an increase in the healing efficiency. Moreover, SEM images revealed partial healing in samples with lower thermoplastic particle contents.

  12. Procedure for chromatography involving sample solvent with higher elution strength than the mobile phase.

    PubMed

    Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish

    2008-01-11

    In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.

  13. Isolating Added Mass Load Components of CPAS Main Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2017-01-01

    The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.

  14. Enabling aqueous processing for crack-free thick electrodes

    DOE PAGES

    Du, Zhijia; Rollag, K. M.; Li, J.; ...

    2017-04-14

    Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less

  15. The processes in spring-loaded injection valves of solid injection oil engines

    NASA Technical Reports Server (NTRS)

    Lutz, O

    1934-01-01

    On the premise of a rectangular velocity wave arriving at the valve, the equation of motion of a spring-loaded valve stem is developed and analyzed. It is found that the stem oscillates, the oscillation frequency being consistently above the natural frequency of the nozzle stem alone, and whose amplitudes would increase in the absence of damping. The results are evaluated and verified on an example. The pressure in the valve and the spray volume are analyzed and several pertinent questions are discussed on the basis of the results.

  16. Infrared Ship Classification Using A New Moment Pattern Recognition Concept

    NASA Astrophysics Data System (ADS)

    Casasent, David; Pauly, John; Fetterly, Donald

    1982-03-01

    An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.

  17. The effects of load history and design variables on performance limit states of circular bridge columns - volume 1.

    DOT National Transportation Integrated Search

    2015-01-01

    This report is the first of three volumes and presents interpretation of all experimental and numerical data and recommendations. In : total, 30 large scale reinforced concrete columns tests were conducted under a variety of loading conditions. Using...

  18. Structures to Resist the Effects of Accidental Explosions. Volume 2. Blast, Fragment, and Shock Loads

    DTIC Science & Technology

    1986-12-01

    IS. SUPPLEMENTARY NOTfS This report is Volume II of six volumes which will eventually be published as a tri-service design manual and was sponsored by...CLASSIFICAT ION OF THIS PAGE(When Date Entered) TABLE OF CONTENTS PAGE INTRODUCTION 2-I Purpose 1 2-2 Objective 1 2 3 Background 1 2-4 Scope of Manual ...2 2-5 Format of Manual 3 VOLUME CONTENTS 2-6 General EXPLOSION EFFECTS 2-7 Effects of Explosive Output 4 BLAST LOADS 2-8 Blast Phenomena 5 2-8.1

  19. A servo controlled gradient loading triaxial model test system for deep-buried cavern.

    PubMed

    Chen, Xu-guang; Zhang, Qiang-yong; Li, Shu-cai

    2015-10-01

    A servo controlled gradient loading model test system is developed to simulate the gradient geostress in deep-buried cavern. This system consists of the gradient loading apparatus, the digital servo control device, and the measurement system. Among them, the gradient loading apparatus is the main component which is used for exerting load onto the model. This loading apparatus is placed inside the counterforce wall/beam and is divided to several different loading zones, with each loading zone independently controlled. This design enables the gradient loading. Hence, the "real" geostress field surrounding the deep-buried cavern can be simulated. The loading or unloading process can be controlled by the human-computer interaction machines, i.e., the digital servo control system. It realizes the automation and visualization of model loading/unloading. In addition, this digital servo could control and regulate hydraulic loading instantaneously, which stabilizes the geostress onto the model over a long term. During the loading procedure, the collision between two adjacent loading platens is also eliminated by developing a guide frame. This collision phenomenon is induced by the volume shrinkage of the model when compressed in true 3D state. In addition, several accurate measurements, including the optical and grating-based method, are adopted to monitor the small deformation of the model. Hence, the distortion of the model could be accurately measured. In order to validate the performance of this innovative model test system, a 3D geomechanical test was conducted on a simulated deep-buried underground reservoir. The result shows that the radial convergence increases rapidly with the release of the stress in the reservoir. Moreover, the deformation increases with the increase of the gas production rate. This observation is consistence with field observation in petroleum engineering. The system is therefore capable of testing deep-buried engineering structures.

  20. A Proposed Study Examining Individual Differences in Temporal Profiles of Cardiovascular Responses to Head Down Tilt During Fluid Loading

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia; Toscano, William; Winther, Sean; Martinez, Jacqueline; Dominguez, Margaret

    2012-01-01

    Susceptibility of healthy astronauts to orthostatic hypotension and presyncope is exacerbated upon return from spaceflight. The effect of altered gravity during space flight and planetary transition on human cardiovascular function is of critical importance to maintenance of astronaut health and safety. Hypovolemia, reduced plasma volume, is suspected to play an important role in cardiovascular deconditioning following exposure to spaceflight, which may lead to increased peripheral resistance, attenuated arterial baroreflex, and changes in cardiac function. A promising countermeasure for post-flight orthostatic intolerance is fluid loading used to restore lost plasma volume by giving crew salt tablets and water prior to re-entry. The main purpose of the proposed study is to define the temporal profile of cardiac responses to simulated 0-G conditions before and following a fluid loading countermeasure. 8 men and 8 women will be tested during 4 hour exposures at 6o head down tilt (HDT). Each subject will be given two exposures to HDT on separate days, one with and one without fluid loading (one liter of 0.9% saline solution). Stand tests (orthostatic stress) will be done before and after each HDT. Cardiac measures will be obtained with both impedance cardiography and echo ultrasound

  1. Effects of combustibles on internal quasi-static loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.

    1984-08-01

    The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less

  2. Improving the energy efficiency of telecommunication networks

    NASA Astrophysics Data System (ADS)

    Lange, Christoph; Gladisch, Andreas

    2011-05-01

    The energy consumption of telecommunication networks has gained increasing interest throughout the recent past: Besides its environmental implications it has been identified to be a major contributor to operational expenditures of network operators. Targeting at sustainable telecommunication networks, thus, it is important to find appropriate strategies for improving their energy efficiency before the background of rapidly increasing traffic volumes. Besides the obvious benefits of increasing energy efficiency of network elements by leveraging technology progress, load-adaptive network operation is a very promising option, i.e. using network resources only to an extent and for the time they are actually needed. In contrast, current network operation takes almost no advantage of the strongly time-variant behaviour of the network traffic load. Mechanisms for energy-aware load-adaptive network operation can be subdivided in techniques based on local autonomous or per-link decisions and in techniques relying on coordinated decisions incorporating information from several links. For the transformation from current network structures and operation paradigms towards energy-efficient and sustainable networks it will be essential to use energy-optimized network elements as well as including the overall energy consumption in network design and planning phases together with the energy-aware load-adaptive operation. In load-adaptive operation it will be important to establish the optimum balance between local and overarching power management concepts in telecommunication networks.

  3. 3D FSE Cube and VIPR-aTR 3.0 Tesla magnetic resonance imaging predicts canine cranial cruciate ligament structural properties.

    PubMed

    Racette, Molly; Al saleh, Habib; Waller, Kenneth R; Bleedorn, Jason A; McCabe, Ronald P; Vanderby, Ray; Markel, Mark D; Brounts, Sabrina H; Block, Walter F; Muir, Peter

    2016-03-01

    Estimation of cranial cruciate ligament (CrCL) structural properties in client-owned dogs with incipient cruciate rupture would be advantageous. The objective of this study was to determine whether magnetic resonance imaging (MRI) measurement of normal CrCL volume in an ex-vivo canine model predicts structural properties. Stifles from eight dogs underwent 3.0 Tesla 3D MRI. CrCL volume and normalized median grayscale values were determined using 3D Fast Spin Echo (FSE) Cube and Vastly under-sampled Isotropic PRojection (VIPR)-alternative repetition time (aTR) sequences. Stifles were then mechanically tested. After joint laxity testing, CrCL structural properties were determined, including displacement at yield, yield load, load to failure, and stiffness. Yield load and load to failure (R(2)=0.56, P <0.01) were correlated with CrCL volume determined by VIPR-aTR. Yield load was also correlated with CrCL volume determined by 3D FSE Cube (R(2)=0.32, P <0.05). Structural properties were not related to median grayscale values. Joint laxity and CrCL stiffness were not related to MRI parameters, but displacement at yield load was related to CrCL volume for both sequences during testing (R(2)>0.57, P <0.005). In conclusion, 3D MRI offers a predictive method for estimating canine CrCL structural properties. 3D MRI may be useful for monitoring CrCL properties in clinical trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Assessment of the derivative-moment transformation method for unsteady-load estimation

    NASA Astrophysics Data System (ADS)

    Mohebbian, Ali; Rival, David E.

    2012-08-01

    It is often difficult, if not impossible, to measure the aerodynamic or hydrodynamic forces on a moving body. For this reason, a classical control-volume technique is typically applied to extract the unsteady forces. However, measuring the acceleration term within the volume of interest using particle image velocimetry (PIV) can be limited by optical access, reflections, as well as shadows. Therefore, in this study, an alternative approach, termed the derivative-moment transformation (DMT) method, is introduced and tested on a synthetic data set produced using numerical simulations. The test case involves the unsteady loading of a flat plate in a two-dimensional, laminar periodic gust. The results suggest that the DMT method can accurately predict the acceleration term so long as appropriate spatial and temporal resolutions are maintained. The major deficiency, which is more dominant for the direction of drag, was found to be the determination of pressure and unsteady terms in the wake. The effect of control-volume size was investigated, suggesting that larger domains work best by minimizing the associated error in the determination of the pressure field. When decreasing the control-volume size, wake vortices, which produce high gradients across the control surfaces, are found to substantially increase the level of error. On the other hand, it was shown that for large control volumes, and with realistic spatial resolution, the accuracy of the DMT method would also suffer. Therefore, a delicate compromise is required when selecting control-volume size in future experiments.

  5. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Bonneville, J.; Varvenne, C.

    To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiments. At the yield stress, σ y, the activation volume varies from ~60 b3 at 77 K to ~360 b 3 at 293 K and scales inversely with yield stress. With increasing plastic strain, the activation volume decreases and the trends follow the Cottrell-Stokes law, according to which the inverse activation volume should increase linearly with σ - σ y (Haasenmore » plot). This is consistent with the notion that hardening due to an increase in the density of forest dislocations is naturally associated with a decrease in the activation volume because the spacing between dislocations decreases. The values and trends in activation volume agree with theoretical predictions that treat the HEA as a high-concentration solid-solution-strengthened alloy. Lastly, these results demonstrate that this HEA deforms by the mechanisms typical of solute strengthening in FCC alloys, and thus indicate that the high compositional/structural complexity does not introduce any new intrinsic deformation mechanisms.« less

  6. Influence of carbon nanoparticle modification on the mechanical and electrical properties of epoxy in small volumes.

    PubMed

    Leopold, Christian; Augustin, Till; Schwebler, Thomas; Lehmann, Jonas; Liebig, Wilfried V; Fiedler, Bodo

    2017-11-15

    The influence of nanoparticle morphology and filler content on the mechanical and electrical properties of carbon nanoparticle modified epoxy is investigated regarding small volumes. Three types of particles, representing spherical, tubular and layered morphologies are used. A clear size effect of increasing true failure strength with decreasing volume is found for neat and carbon black modified epoxy. Carbon nanotube (CNT) modified epoxy exhibits high potential for strength increase, but dispersion and purity are critical. In few layer graphene modified epoxy, particles are larger than statistically distributed defects and initiate cracks, counteracting any size effect. Different toughness increasing mechanisms on the nano- and micro-scale depending on particle morphology are discussed based on scanning electron microscopy images. Electrical percolation thresholds in the small volume fibres are significantly higher compared to bulk volume, with CNT being found to be the most suitable morphology to form electrical conductive paths. Good correlation between electrical resistance change and stress strain behaviour under tensile loads is observed. The results show the possibility to detect internal damage in small volumes by measuring electrical resistance and therefore indicate to the high potential for using CNT modified polymers in fibre reinforced plastics as a multifunctional, self-monitoring material with improved mechanical properties. Copyright © 2017. Published by Elsevier Inc.

  7. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Bonneville, J.; Varvenne, C.; ...

    2017-10-06

    To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiments. At the yield stress, σ y, the activation volume varies from ~60 b3 at 77 K to ~360 b 3 at 293 K and scales inversely with yield stress. With increasing plastic strain, the activation volume decreases and the trends follow the Cottrell-Stokes law, according to which the inverse activation volume should increase linearly with σ - σ y (Haasenmore » plot). This is consistent with the notion that hardening due to an increase in the density of forest dislocations is naturally associated with a decrease in the activation volume because the spacing between dislocations decreases. The values and trends in activation volume agree with theoretical predictions that treat the HEA as a high-concentration solid-solution-strengthened alloy. Lastly, these results demonstrate that this HEA deforms by the mechanisms typical of solute strengthening in FCC alloys, and thus indicate that the high compositional/structural complexity does not introduce any new intrinsic deformation mechanisms.« less

  8. Reduced baroreflex sensitivity with volume loading in conscious dogs

    NASA Technical Reports Server (NTRS)

    Vatner, S. F.; Boettcher, D. H.; Heyndrickx, G. R.; Mcritchie, R. J.

    1975-01-01

    Results of studies of the Bainbridge reflex in intact conscious dogs are presented. They indicate that arterial baroreflex sensitivity is reduced progressively as atrial pressure is raised by volume loading; this observation explains how heart rate can rise markedly in the presence of an elevated arterial blood pressure.

  9. Integration and consolidation of border freight transportation data for planning applications and characterization of NAFTA truck loads for aiding in transportation infrastructure management : second year.

    DOT National Transportation Integrated Search

    2008-07-01

    Average Daily Truck Traffic (ADTT) increased dramatically in Texas in the 1990s partly because of the : implementation of the North American Free Trade Agreement (NAFTA). Accurate information on truck : volumes and truck characteristics is critical t...

  10. Secure and Robust Overlay Content Distribution

    ERIC Educational Resources Information Center

    Kang, Hun Jeong

    2010-01-01

    With the success of applications spurring the tremendous increase in the volume of data transfer, efficient and reliable content distribution has become a key issue. Peer-to-peer (P2P) technology has gained popularity as a promising approach to large-scale content distribution due to its benefits including self-organizing, load-balancing, and…

  11. Scratch Testing of Hot-Pressed Monolithic Chromium Diboride (CrB2) and CrB2 + MoSi2 Composite

    NASA Astrophysics Data System (ADS)

    Bhatt, B.; Murthy, T. S. R. Ch.; Singh, K.; Sashanka, A.; Vishwanadh, B.; Sonber, J. K.; Sairam, K.; Nageswara Rao, G. V. S.; Srinivasa Rao, T.; Kain, Vivekanand

    2017-10-01

    The tribological performance of hot-pressed monolithic CrB2 and a newly developed CrB2 + 20 vol.% MoSi2 composite was investigated by using scratch test. The test was carried out under progressive loading ranging from 0.9 to 30 N over a scratch distance of 3 mm. In situ values of coefficient of friction (COF), depth of penetration and acoustic emission were recorded. The wear volume and fracture toughness were also calculated. COF of both materials is increased with increasing the scratch length and progressive load. COF of the composite was observed to be slightly higher compared to the monolithic CrB2. The wear volume of the composite is 60% higher compared to monolithic CrB2. Fracture toughness values of 2.48 and 2.81 MPa m1/2 were calculated for monolithic CrB2 and CrB2 + 20 vol.% MoSi2 composite, respectively. Microstructural characterization indicates that the abrasive wear is the dominant wear mechanism in both the materials.

  12. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    PubMed Central

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  13. Static respiratory muscle work during immersion with positive and negative respiratory loading.

    PubMed

    Taylor, N A; Morrison, J B

    1999-10-01

    Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.

  14. Bone Loss from High Repetitive High Force Loading is Prevented by Ibuprofen Treatment

    PubMed Central

    Jain, Nisha X.; Barr-Gillespie, Ann E.; Clark, Brian D.; Kietrys, David M.; Wade, Christine K.; Litvin, Judith; Popoff, Steven N.; Barbe, Mary F.

    2014-01-01

    We examined roles of loading and inflammation on forearm bones in a rat model of upper extremity overuse. Trabecular structure in distal radius and ulna was examined in three groups of young adult rats: 1) 5% food-restricted that underwent an initial training period of 10 min/day for 5 weeks to learn the repetitive task (TRHF); 2) rats that underwent the same training before performing a high repetition high force task, 2 hours/day for 12 weeks (HRHF); and 3) food-restricted only (FRC). Subsets were treated with oral ibuprofen (IBU). TRHF rats had increased trabecular bone volume and numbers, osteoblasts, and serum osteocalcin, indicative of bone adaptation. HRHF rats had constant muscle pulling forces, showed limited signs of bone adaptation, but many signs of bone resorption, including decreased trabecular bone volume and bone mineral density, increased osteoclasts and bone inflammatory cytokines, and reduced median nerve conduction velocity (15%). HRHF+IBU rats showed no trabecular resorptive changes, no increased osteoclasts or bone inflammatory cytokines, no nerve inflammation, preserved nerve conduction, and increased muscle voluntary pulling forces. Ibuprofen treatment preserved trabecular bone quality by reducing osteoclasts and bone inflammatory cytokines, and improving muscle pulling forces on bones as a result of reduced nerve inflammation. PMID:24583543

  15. Effects of various calcined ash and sludge waste loadings on the durability of a soda-lime-silica glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, D.P.; Lewis, E.L.; Armstrong, K.M.

    1982-01-01

    A commercially available joule-heated glass furnace system is currently being evaluated at Mound as a means of reducing the volume of low-level radioactive waste similar to that found in light water reactor facilities. The furnace utilizes molten soda-lime-silica to initiate and support combustion of the waste feed and to serve as an immobilization matrix. First, corrosion studies were performed to determine the result that various waste loadings of glass would have on the refractory lining the furnace. Second, the chemical durability of soda-lime-silica under various waste loadings was assessed to determine its resistance to leaching under conditions similar to thosemore » encountered at waste disposal sites. Results proved that, although corrosion was quite significant for pure soda-lime-silica and a 10% waste loading, by the time a waste loading of 40% was achieved, the effects of corrosion were virtually nil. The temperature dependence of the corrosion caused by a 0% waste loading of soda-lime-silica on the refractory was also investigated. With an increase in temperature to 2650/sup 0/F, corrosion more than tripled. As a result, incineration and idle temperature is being maintained at, or below, 2400/sup 0/F. In conclusion, from the fact that the higher waste loading of soda-lime glass produced both increased chemical durability and increased refractory life, waste loadings in excess of 40%, and as high as 80%, may be achieved without adverse effect to the glass furnace system or its effectiveness for immobilizing radioactive waste.« less

  16. Conscientiousness is Negatively Associated with Grey Matter Volume in Young APOE ɛ4-Carriers.

    PubMed

    Kunz, Lukas; Reuter, Martin; Axmacher, Nikolai; Montag, Christian

    2017-01-01

    The etiology of late onset Alzheimer's disease (LOAD) depends on multiple factors, among which the APOE ɛ4 allele is the most adverse genetic determinant and conscientiousness represents an influential personality trait. A potential association of both factors with brain structure in young adulthood may constitute a constellation that sets the course toward or against the subtle disease progression of LOAD that starts decades before clinical manifestation. Hence, in the present study, we examined the modulating effects of APOE ɛ4 on the relation between personality dimensions, including conscientiousness, and total grey matter volume (GMV) in young healthy adults using an a priori genotyping design. 105 participants completed an inventory assessing the Five Factor Model of Personality (NEO-FFI) and a structural MRI scan. Total GMV was estimated using both Freesurfer as well as VBM8. Across all participants, total GMV was positively associated with extraversion and negatively related to age. In APOE ɛ4-carriers- but not in APOE ɛ4-non-carriers- conscientiousness was negatively associated with total GMV. In line with the hypothesis of antagonistic pleiotropy of the APOE ɛ4 allele, this result suggests that young APOE ɛ4-carriers with increased total GMV may particularly benefit from cognitive advantages and thus have a lower need to engage in conscientious behavior. In this subset of young APOE ɛ4-carriers, the reduction in conscientiousness could then bring along adverse health behavior in the long run, potentiating the risk for LOAD. Hence, young APOE ɛ4-carriers with increased total GMV may be at a particularly high risk for LOAD.

  17. Porous PZT ceramics for receiving transducers.

    PubMed

    Kara, Hudai; Ramesh, Rajamani; Stevens, Ron; Bowen, Chris R

    2003-03-01

    PZT-air (porous PZT) and PZT-polymer (polymer impregnated porous PZT) piezocomposites with varying porosity/polymer volume fractions have been manufactured. The composites were characterized in terms of hydrostatic charge (dh) and voltage (gh) coefficients, permittivity, hydrostatic figure of merit (dh.gh), and absolute sensitivity (M). With decreasing PZT ceramic volume, gh increased, and dh.gh had a broad maximum around 80 to 90% porosity/polymer content. The absolute sensitivity was also increased. In each case, PZT-air piezocomposites performed better than PZT-polymer piezocomposites. Hydrophones constructed from piezocomposites showed slightly lower measured receiving sensitivities than calculated values for piezocomposite materials, which was due to the loading effect of the cable and the low permittivity associated with the piezocomposites.

  18. Cone Penetration Testing, a new approach to quantify coastal-deltaic land subsidence by peat consolidation

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Erkens, Gilles; Zwanenburg, Cor

    2016-04-01

    It is undisputed that land subsidence threatens coastal-deltaic lowlands all over the world. Any loss of elevation (on top of sea level rise) increases flood risk in these lowlands, and differential subsidence may cause damage to infrastructure and constructions. Many of these settings embed substantial amounts of peat, which is, due to its mechanically weak organic composition, one of the main drivers of subsidence. Peat is very susceptible to volume reduction by loading and drainage induced consolidation, which dissipates pore water, resulting in a tighter packing of the organic components. Often, the current state of consolidation of peat embedded within coastal-deltaic subsidence hotspots (e.g. Venice lagoon, Mississippi delta, San Joaquin delta, Kalimantan peatlands), is somewhere between its initial (natural) and maximum compressed stage. Quantifying the current state regarding peat volume loss, is of utmost importance to predict potential (near) future subsidence when draining or loading an area. The processes of subsidence often afflict large areas (>103 km2), thus demanding large datasets to assess the current state of the subsurface. In contrast to data describing the vertical motions of the actual surface (geodesy, satellite imagery), subsurface information applicable for subsidence analysis are often lacking in subsiding deltas. This calls for new initiatives to bridge that gap. Here we introduce Cone Penetration Testing (CPT) to quantify the amount of volume loss peat layers embedded within the Holland coastal plain (the Netherlands) experienced. CPT measures soil mechanical strength, and hundreds of thousands of CPTs are conducted each year on all continents. We analyzed 28 coupled CPT-borehole observations, and found strong empirical relations between volume loss and increased peat mechanical strength. The peat lost between ~20 - 95% of its initial thickness by dissipation of excess pore water. An increase in 0.1 - 0.4 MPa of peat strength is accountable for 20 - 75 % of the volume loss, and 0.4 - 0.7 MPa for 75 - 95 % volume loss. This indicates that large amounts of volume by water dissipation has to be lost, before peat experiences a serious increase in strength, which subsequently continuous to increase with only small amount of volume loss. To demonstrate the robustness of our approach to the international field of land subsidence, we applied the obtained empirical relations to previously published CPT logs deriving from the peat-rich San Joaquin-Sacramento delta and the Kalimantan peatlands, and found volume losses that correspond with previously published results. Furthermore, we used the obtained results to predict maximum surface lowering for these areas by consolidation. In conclusion, these promising results and its worldwide popularity yielding large datasets, open the door for CPT as a generic method to contribute to quantifying the imminent threat of coastal-deltaic land subsidence.

  19. Study of inducer load and stress, volume 2

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A program of analysis, design, fabrication and testing has been conducted to develop computer programs for predicting rocket engine turbopump inducer hydrodynamic loading, stress magnitude and distribution, and vibration characteristics. Methods of predicting blade loading, stress, and vibration characteristics were selected from a literature search and used as a basis for the computer programs. An inducer, representative of typical rocket engine inducers, was designed, fabricated, and tested with special instrumentation selected to provide measurements of blade surface pressures and stresses. Data from the tests were compared with predicted values and the computer programs were revised as required to improve correlation. For Volume 1 see N71-20403. For Volume 2 see N71-20404.

  20. Resistance exercise load does not determine training-mediated hypertrophic gains in young men

    PubMed Central

    Mitchell, Cameron J.; Churchward-Venne, Tyler A.; West, Daniel W. D.; Burd, Nicholas A.; Breen, Leigh; Baker, Steven K.

    2012-01-01

    We have reported that the acute postexercise increases in muscle protein synthesis rates, with differing nutritional support, are predictive of longer-term training-induced muscle hypertrophy. Here, we aimed to test whether the same was true with acute exercise-mediated changes in muscle protein synthesis. Eighteen men (21 ± 1 yr, 22.6 ± 2.1 kg/m2; means ± SE) had their legs randomly assigned to two of three training conditions that differed in contraction intensity [% of maximal strength (1 repetition maximum)] or contraction volume (1 or 3 sets of repetitions): 30%-3, 80%-1, and 80%-3. Subjects trained each leg with their assigned regime for a period of 10 wk, 3 times/wk. We made pre- and posttraining measures of strength, muscle volume by magnetic resonance (MR) scans, as well as pre- and posttraining biopsies of the vastus lateralis, and a single postexercise (1 h) biopsy following the first bout of exercise, to measure signaling proteins. Training-induced increases in MR-measured muscle volume were significant (P < 0.01), with no difference between groups: 30%-3 = 6.8 ± 1.8%, 80%-1 = 3.2 ± 0.8%, and 80%-3= 7.2 ± 1.9%, P = 0.18. Isotonic maximal strength gains were not different between 80%-1 and 80%-3, but were greater than 30%-3 (P = 0.04), whereas training-induced isometric strength gains were significant but not different between conditions (P = 0.92). Biopsies taken 1 h following the initial resistance exercise bout showed increased phosphorylation (P < 0.05) of p70S6K only in the 80%-1 and 80%-3 conditions. There was no correlation between phosphorylation of any signaling protein and hypertrophy. In accordance with our previous acute measurements of muscle protein synthetic rates a lower load lifted to failure resulted in similar hypertrophy as a heavy load lifted to failure. PMID:22518835

  1. Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 1: Generic ground operations data

    NASA Technical Reports Server (NTRS)

    Byrd, Raymond J.

    1990-01-01

    This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.

  2. Position statement. Part two: Maintaining immune health.

    PubMed

    Walsh, Neil P; Gleeson, Michael; Pyne, David B; Nieman, David C; Dhabhar, Firdaus S; Shephard, Roy J; Oliver, Samuel J; Bermon, Stéphane; Kajeniene, Alma

    2011-01-01

    The physical training undertaken by athletes is one of a set of lifestyle or behavioural factors that can influence immune function, health and ultimately exercise performance. Others factors including potential exposure to pathogens, health status, lifestyle behaviours, sleep and recovery, nutrition and psychosocial issues, need to be considered alongside the physical demands of an athlete's training programme. The general consensus on managing training to maintain immune health is to start with a programme of low to moderate volume and intensity; employ a gradual and periodised increase in training volumes and loads; add variety to limit training monotony and stress; avoid excessively heavy training loads that could lead to exhaustion, illness or injury; include non-specific cross-training to offset staleness; ensure sufficient rest and recovery; and instigate a testing programme for identifying signs of performance deterioration and manifestations of physical stress. Inter-individual variability in immunocompetence, recovery, exercise capacity, non-training stress factors, and stress tolerance likely explains the different vulnerability of athletes to illness. Most athletes should be able to train with high loads provided their programme includes strategies devised to control the overall strain and stress. Athletes, coaches and medical personnel should be alert to periods of increased risk of illness (e.g. intensive training weeks, the taper period prior to competition, and during competition) and pay particular attention to recovery and nutritional strategies.

  3. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  4. Settling velocity and preferential concentration of heavy particles under two-way coupling effects in homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Monchaux, R.; Dejoan, A.

    2017-10-01

    The settling velocity of inertial particles falling in homogeneous turbulence is investigated by making use of direct numerical simulation (DNS) at moderate Reynolds number that include momentum exchange between both phases (two-way coupling approach). Effects of particle volume fraction, particle inertia, and gravity are presented for flow and particle parameters similar to the experiments of Aliseda et al. [J. Fluid Mech. 468, 77 (2002), 10.1017/S0022112002001593]. A good agreement is obtained between the DNS and the experiments for the settling velocity statistics, when overall averaged, but as well when conditioned on the local particle concentration. Both DNS and experiments show that the settling velocity further increases with increasing volume fraction and local concentration. At the considered particle loading the effects of two-way coupling is negligible on the mean statistics of turbulence. Nevertheless, the DNS results show that fluid quantities are locally altered by the particles. In particular, the conditional average on the local particle concentration of the slip velocity shows that the main contribution to the settling enhancement results from the increase of the fluid velocity surrounding the particles along the gravitational direction induced by the collective particle back-reaction force. Particles and the surrounding fluid are observed to fall together, which in turn results in an amplification of the sampling of particles in the downward fluid motion. Effects of two-way coupling on preferential concentration are also reported. Increase of both volume fraction and gravity is shown to lower preferential concentration of small inertia particles while a reverse tendency is observed for large inertia particles. This behavior is found to be related to an attenuation of the centrifuge effects and to an increase of particle accumulation along gravity direction, as particle loading and gravity become large.

  5. Role of atrial natriuretic peptide in systemic responses to acute isotonic volume expansion

    NASA Technical Reports Server (NTRS)

    Watenpaugh, Donald E.; Yancy, Clyde W.; Buckey, Jay C.; Lane, Lynda D.; Hargens, Alan R.; Blomqvist, C. G.

    1992-01-01

    A hypothesis is proposed that a temporal relationship exists between increases in cardiac filling pressure and plasma artrial natriuretic peptide (ANP) concentration and also between ANP elevation and vasodilation, fluid movement from plasma to interstitium, and increased urine volume (UV). To test the hypothesis, 30 ml/kg isotonic saline were infused in supine male subjects over 24 min and responses were monitored for 3 h postinfusion. Results show that at end infusion, mean arterial pressure (RAP), heart rate and plasma volume exhibited peak increases of 146, 23, and 27 percent, respectively. Mean plasma ANP and UV peaked (45 and 390 percent, respectively) at 30 min postinfusion. Most cardiovascular variables had returned toward control levels by 1 h postinfusion, and net reabsorption of extravascular fluid ensued. It is concluded that since ANP was not significantly increased until 30 min postinfusion, factors other than ANP initiate responses to intravascular fluid loading. These factors include increased vascular pressures, baroreceptor-mediated vasolidation, and hemodilution of plasma proteins. ANP is suggested to mediate, in part, the renal response to saline infusion.

  6. The effect of high anionomer loading with silver nanowire catalysts on the oxygen reduction reaction in alkaline environment

    NASA Astrophysics Data System (ADS)

    Lemke, Adam J.; O'Toole, Alexander W.; Phillips, Richard S.; Eisenbraun, Eric T.

    2014-06-01

    The effect of ionomer content on the oxygen kinetics in fuel cells and metal-oxide batteries was investigated by varying ionomer loading with constant loadings of a silver nanowire catalyst. Silver nanowire inks were produced in which commercially available anionomer solution constituted 10, 25, 40, 50, and 75% of the total ink volume. Constant loadings of Ag nanowire catalyst were then deposited onto glassy carbon electrodes by varying the amount of ink deposited. These were then used in rotating disc electrode (RDE) experiments using a 0.1 M KOH electrolyte solution. From these experiments, using ORR polarization curves and Koutecky-Levich analysis, it was found that not only did the anionomer loading affect the total activity (given a constant Ag nanowire loading) but, that the anionomer content also had an impact upon the apparent kinetic limited current as well as whether the ORR proceeded through the 2e- or 4e- pathway. Although the total activity declined with very high anionomer loadings, the ORR appeared to proceed more through the 4e- pathway with increased anionomer content.

  7. The effects of load history and design variables on performance limit states of circular bridge columns - volume 3 : analysis methods.

    DOT National Transportation Integrated Search

    2015-01-01

    This report is the third of three volumes and presents the numerical portion of the research project on the impacts of loading history on : the behavior of reinforced concrete bridge columns. Two independent finite element methods were utilized to ac...

  8. Modeling Nitrogen Processing in Northeast US River Networks

    NASA Astrophysics Data System (ADS)

    Whittinghill, K. A.; Stewart, R.; Mineau, M.; Wollheim, W. M.; Lammers, R. B.

    2013-12-01

    Due to increased nitrogen (N) pollution from anthropogenic sources, the need for aquatic ecosystem services such as N removal has also increased. River networks provide a buffering mechanism that retains or removes anthropogenic N inputs. However, the effectiveness of N removal in rivers may decline with increased loading and, consequently, excess N is eventually delivered to estuaries. We used a spatially distributed river network N removal model developed within the Framework for Aquatic Modeling in the Earth System (FrAMES) to examine the geography of N removal capacity of Northeast river systems under various land use and climate conditions. FrAMES accounts for accumulation and routing of runoff, water temperatures, and serial biogeochemical processing using reactivity derived from the Lotic Intersite Nitrogen Experiment (LINX2). Nonpoint N loading is driven by empirical relationships with land cover developed from previous research in Northeast watersheds. Point source N loading from wastewater treatment plants is estimated as a function of the population served and the volume of water discharged. We tested model results using historical USGS discharge data and N data from historical grab samples and recently initiated continuous measurements from in-situ aquatic sensors. Model results for major Northeast watersheds illustrate hot spots of ecosystem service activity (i.e. N removal) using high-resolution maps and basin profiles. As expected, N loading increases with increasing suburban or agricultural land use area. Network scale N removal is highest during summer and autumn when discharge is low and river temperatures are high. N removal as the % of N loading increases with catchment size and decreases with increasing N loading, suburban land use, or agricultural land use. Catchments experiencing the highest network scale N removal generally have N inputs (both point and non-point sources) located in lower order streams. Model results can be used to better predict nutrient loading to the coastal ocean across a broad range of current and future climate variability.

  9. Clinically significant change in stroke volume in pulmonary hypertension.

    PubMed

    van Wolferen, Serge A; van de Veerdonk, Marielle C; Mauritz, Gert-Jan; Jacobs, Wouter; Marcus, J Tim; Marques, Koen M J; Bronzwaer, Jean G F; Heymans, Martijn W; Boonstra, Anco; Postmus, Pieter E; Westerhof, Nico; Vonk Noordegraaf, Anton

    2011-05-01

    Stroke volume is probably the best hemodynamic parameter because it reflects therapeutic changes and contains prognostic information in pulmonary hypertension (PH). Stroke volume directly reflects right ventricular function in response to its load, without the correction of compensatory increased heart rate as is the case for cardiac output. For this reason, stroke volume, which can be measured noninvasively, is an important hemodynamic parameter to monitor during treatment. However, the extent of change in stroke volume that constitutes a clinically significant change is unknown. The aim of this study was to determine the minimal important difference (MID) in stroke volume in PH. One hundred eleven patients were evaluated at baseline and after 1 year of follow-up with a 6-min walk test (6MWT) and cardiac MRI. Using the anchor-based method with 6MWT as the anchor, and the distribution-based method, the MID of stroke volume change could be determined. After 1 year of treatment, there was, on average, a significant increase in stroke volume and 6MWT. The change in stroke volume was related to the change in 6MWT. Using the anchor-based method, an MID of 10 mL in stroke volume was calculated. The distribution-based method resulted in an MID of 8 to 12 mL. Both methods showed that a 10-mL change in stroke volume during follow-up should be considered as clinically relevant. This value can be used to interpret changes in stroke volume during clinical follow-up in PH.

  10. A comparison of methods to quantify the in-season training load of professional soccer players.

    PubMed

    Scott, Brendan R; Lockie, Robert G; Knight, Timothy J; Clark, Andrew C; Janse de Jonge, Xanne A K

    2013-03-01

    To compare various measures of training load (TL) derived from physiological (heart rate [HR]), perceptual (rating of perceived exertion [RPE]), and physical (global positioning system [GPS] and accelerometer) data during in-season field-based training for professional soccer. Fifteen professional male soccer players (age 24.9 ± 5.4 y, body mass 77.6 ± 7.5 kg, height 181.1 ± 6.9 cm) were assessed in-season across 97 individual training sessions. Measures of external TL (total distance [TD], the volume of low-speed activity [LSA; <14.4 km/h], high-speed running [HSR; >14.4 km/h], very high-speed running [VHSR; >19.8 km/h], and player load), HR and session-RPE (sRPE) scores were recorded. Internal TL scores (HR-based and sRPE-based) were calculated, and their relationships with measures of external TL were quantified using Pearson product-moment correlations. Physical measures of TD, LSA volume, and player load provided large, significant (r = .71-.84; P < .01) correlations with the HR-based and sRPE-based methods. Volume of HSR and VHSR provided moderate to large, significant (r = .40-.67; P < .01) correlations with measures of internal TL. While the volume of HSR and VHSR provided significant relationships with internal TL, physical-performance measures of TD, LSA volume, and player load appear to be more acceptable indicators of external TL, due to the greater magnitude of their correlations with measures of internal TL.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presentedmore » a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.« less

  12. [Influence of green roof application on water quantity and quality in urban region].

    PubMed

    Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi

    2014-07-01

    Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.

  13. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures.

    PubMed

    Ossareh, A; Rosentritt, M; Kishen, A

    2018-01-01

    The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test ( P < 0.05). Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group ( P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group ( P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups ( R 2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF.

  14. A generalized threshold model for computing bed load grain size distribution

    NASA Astrophysics Data System (ADS)

    Recking, Alain

    2016-12-01

    For morphodynamic studies, it is important to compute not only the transported volumes of bed load, but also the size of the transported material. A few bed load equations compute fractional transport (i.e., both the volume and grain size distribution), but many equations compute only the bulk transport (a volume) with no consideration of the transported grain sizes. To fill this gap, a method is proposed to compute the bed load grain size distribution separately to the bed load flux. The method is called the Generalized Threshold Model (GTM), because it extends the flow competence method for threshold of motion of the largest transported grain size to the full bed surface grain size distribution. This was achieved by replacing dimensional diameters with their size indices in the standard hiding function, which offers a useful framework for computation, carried out for each indices considered in the range [1, 100]. New functions are also proposed to account for partial transport. The method is very simple to implement and is sufficiently flexible to be tested in many environments. In addition to being a good complement to standard bulk bed load equations, it could also serve as a framework to assist in analyzing the physics of bed load transport in future research.

  15. Paradoxical low-flow aortic stenosis is defined by increased ventricular hydraulic load and reduced longitudinal strain.

    PubMed

    Holmes, Anthony A; Taub, Cynthia C; Garcia, Mario J; Shan, Jian; Slovut, David P

    2017-02-01

    Patients with paradoxical low-flow severe aortic stenosis (PLF-AS) reportedly have higher left ventricular hydraulic load and more systolic strain dysfunction than patients with normal-flow aortic stenosis. This study investigates the relationship of systolic loading and strain to PLF-AS to further define its pathophysiology. One hundred and twenty patients (age 79 ± 12 years, 37% men) with an indexed aortic valve area (AVAi) of 0.6 cm/m or less and an ejection fraction of 50% or higher were divided into two groups based on indexed stroke volume (SVi): PLF-AS, SVi ≤ 35 ml/m, N = 46; normal-flow aortic stenosis, SVi > 35 ml/m, N = 74). Valvular and arterial load were assessed using multiple measurements, and strain was assessed using speckle-tracking echocardiography. Patients with PLF-AS were found to have more valvular load (lower AVAi, P = 0.028; lower energy loss coefficient, P = 0.001), more arterial load [decreased arterial compliance and increased systemic vascular resistance (SVR), both P < 0.001] and more total hydraulic load [increased valvuloarterial impedance (Zva), P < 0.001]. Transvalvular gradients and arterial pressures were similar. Longitudinal strain was lower in PLF-AS (P < 0.001), but circumferential and rotation strains were similar. On adjusted regression, AVAi, SVR and longitudinal strain were associated with PLF-AS [odds ratio (OR) = 1.34, P = 0.043; OR = 1.31, P = 0.004; OR = 1.34, P = 0.011, respectively]. When SVR and AVAi were replaced with Zva, longitudinal strain and Zva (OR = 1.38, P = 0.015; OR = 1.33, P < 0.001 for both, respectively) were associated with PLF-AS. Increased hydraulic load, from more severe valvular stenosis and increased vascular resistance, and longitudinal strain impairment are associated with PLF-AS and their interplay is likely fundamental to its pathophysiology.

  16. Constant load and constant volume response of municipal solid waste in simple shear.

    PubMed

    Zekkos, Dimitrios; Fei, Xunchang

    2017-05-01

    Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Weigh-in-motion (WIM) data for site-specific LRFR bridge load rating.

    DOT National Transportation Integrated Search

    2011-08-12

    The live load factors in the Load and Resistant Factor Rating (LRFR) Manual are based on load data from Ontario : thought to be representative of traffic volumes nationwide. However, in accordance with the methodology for : developing site-specific l...

  18. Internet traffic load balancing using dynamic hashing with flow volume

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.

    2002-07-01

    Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.

  19. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Inadequate Loading Stimulus on ISS Results in Bone and Muscle Loss

    NASA Technical Reports Server (NTRS)

    Rice, A. J.; Genc, K. O.; Maender, C. C.; Gopalakrishnan, R.; Kuklis, M. M.; Cavanagh, P. R.

    2011-01-01

    INTRODUCTION Exercise has been the primary countermeasure to combat musculoskeletal changes during International Space Station (ISS) missions. However, these countermeasures have not been successful in preventing loss of bone mineral density (BMD) or muscle volume in crew members. METHODS We examined lower extremity loading during typical days on-orbit and on Earth for four ISS crew members. In-shoe forces were monitored using force-measuring insoles placed inside the shoes. BMD (by DXA), muscle volumes (by MRI), and strength were measured before and after long-duration spaceflight (181 +/- 15 days). RESULTS The peak forces measured during ISS activity were significantly less than those measured in 1g for the same activities. Typical single-leg loads on-orbit during walking and running were 0.89 +/- 0.17 body weights (BW) and 1.28 +/- 0.18 BW compared to 1.18 +/- 0.11 BW and 2.36 +/- .22 BW in 1g, respectively [2]. Crew members were only loaded for an average of 43.17 +/- 14.96 min a day while performing exercise on-orbit even though 146.8 min were assigned for exercise each day. Areal BMD decreased in the femoral neck and total hip by 0.71 +/- 0.34% and 0.81 +/- 0.21% per month, respectively. Changes in muscle volume were observed in the lower extremity (-10 to -16% calf; -4 to -7% thigh) but there were no changes in the upper extremity (+0.4 to -0.8%). Decrements in isometric and isokinetic strength at the knee (range: -10.4 to -24.1%), ankle (range: -4 to -22.3%), and elbow (range: -7.5 to - 16.7%) were also observed. Knee extension endurance tests showed an overall decline in total work (-14%) but an increased resistance to fatigue post-flight. DISCUSSION AND CONCLUSIONS Our findings support the conclusion that the measured exercise durations and/or loading stimuli were insufficient to protect bone and muscle health.

  1. 40 CFR 420.17 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... loadings, not to exceed 11 percent of the above limitations, are allowed for by-product coke plants which... systems generate an increased effluent volume. (b) By-product cokemaking—merchant. Subpart A Pollutant or... allowed for by-product coke plants which have wet desulfurization systems but only to the extent such...

  2. Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Butcher

    Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. Onemore » common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency, particularly at low load. Different methods to measure this heat loss were explored. For one of the tanks evaluated the efficiency loss at the 15% load point was found to be as high as 7.9%. Where storage is used good insulation on the tank, insulation on the piping, and attention to fittings are recommended.« less

  3. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.

    PubMed

    Lindinger, Michael I; Leung, Matthew; Trajcevski, Karin E; Hawke, Thomas J

    2011-06-01

    Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during periods of induced hyperosmotic stress using single, mouse extensor digitorum longus (EDL) muscle fibres and intact muscle (soleus and EDL). Fibres and intact muscles were loaded with the fluorophore, calcein, and the change in muscle fluorescence and width (single fibres only) used as a metric of volume change. We hypothesized that skeletal muscle exposed to increased extracellular osmolarity would elicit initial cellular shrinkage followed by a regulatory volume increase (RVI) with the RVI dependent on the sodium–potassium–chloride cotransporter (NKCC). We found that single fibres exposed to a 35% increase in extracellular osmolarity demonstrated a rapid, initial 27–32% decrease in cell volume followed by a RVI which took 10-20 min and returned cell volume to 90–110% of pre-stimulus values. Within intact muscle, exposure to increased extracellular osmolarity of varying degrees also induced a rapid, initial shrinkage followed by a gradual RVI, with a greater rate of initial cell shrinkage and a longer time for RVI to occur with increasing extracellular tonicities. Furthermore, RVI was significantly faster in slow-twitch soleus than fast-twitch EDL. Pre-treatment of muscle with bumetanide (NKCC inhibitor) or ouabain (Na+,K+-ATPase inhibitor), increased the initial volume loss and impaired the RVI response to increased extracellular osmolarity indicating that the NKCC is a primary contributor to volume regulation in skeletal muscle. It is concluded that mouse skeletal muscle initially loses volume then exhibits a RVI when exposed to increases in extracellular osmolarity. The rate of RVI is dependent on the degree of change in extracellular osmolarity, is muscle specific, and is dependent on the functioning of the NKCC and Na+, K+-ATPase.

  4. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  5. SMA texture and reorientation: simulations and neutron diffraction studies

    NASA Astrophysics Data System (ADS)

    Gao, Xiujie; Brown, Donald W.; Brinson, L. Catherine

    2005-05-01

    With increased usage of shape memory alloys (SMA) for applications in various fields, it is important to understand how the material behavior is affected by factors such as texture, stress state and loading history, especially for complex multiaxial loading states. Using the in-situ neutron diffraction loading facility (SMARTS diffractometer) and ex situ inverse pole figure measurement facility (HIPPO diffractometer) at the Los Alamos Neutron Science Center (LANCE), the macroscopic mechanical behavior and texture evolution of Nickel-Titanium (Nitinol) SMAs under sequential compression in alternating directions were studied. The simplified multivariant model developed at Northwestern University was then used to simulate the macroscopic behavior and the microstructural change of Nitinol under this sequential loading. Pole figures were obtained via post-processing of the multivariant results for volume fraction evolution and compared quantitatively well to the experimental results. The experimental results can also be used to test or verify other SMA constitutive models.

  6. Melt volume flow rate and melt flow rate of kenaf fibre reinforced Floreon/magnesium hydroxide biocomposites.

    PubMed

    Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R

    2016-01-01

    A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.

  7. Model of the hydrodynamic loads applied on a rotating halfbridge belonging to a circular settling tank

    NASA Astrophysics Data System (ADS)

    Dascalescu, A. E.; Lazaroiu, G.; Scupi, A. A.; Oanta, E.

    2016-08-01

    The rotating half-bridge of a settling tank is employed to sweep the sludge from the wastewater and to vacuum and sent it to the central collector. It has a complex geometry but the main beam may be considered a slender bar loaded by the following category of forces: concentrated forces produced by the weight of the scrapping system of blades, suction pipes, local sludge collecting chamber, plus the sludge in the horizontal sludge transporting pipes; forces produced by the access bridge; buoyant forces produced by the floating barrels according to Archimedes’ principle; distributed forces produced by the weight of the main bridge; hydrodynamic forces. In order to evaluate the hydrodynamic loads we have conceived a numerical model based on the finite volume method, using the ANSYS-Fluent software. To model the flow we used the equations of Reynolds Averaged Navier-Stokes (RANS) for liquids together with Volume of Fluid model (VOF) for multiphase flows. For turbulent model k-epsilon we used the equation for turbulent kinetic energy k and dissipation epsilon. These results will be used to increase the accuracy of the loads’ sub-model in the theoretical models, e. the finite element model and the analytical model.

  8. Deformation behavior of additively manufactured GP1 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, B.; Brown, D. W.; Carpenter, J. S.

    In-situ neutron diffraction measurements were performed in this paper during heat-treating and uniaxial loading of additively manufactured (AM) GP1 material. Although the measured chemical composition of the GP1 powder falls within the composition specifications of 17-4 PH steel, a fully martensitic alloy in the wrought condition, the crystal structure of the as-built GP1 material is fully austenitic. Chemical analysis of the as-built material shows high oxygen and nitrogen content, which then significantly decreased after heat-treating in a vacuum furnace at 650 °C for one hour. Significant austenite-to-martensite phase transformation is observed during compressive and tensile loading of the as-built andmore » heat-treated material with accompanied strengthening as martensite volume fraction increases. During loading, the initial average phase stress state in the martensite is hydrostatic compression independent of the loading direction. Finally, preferred orientation transformation in austenite and applied load accommodation by variant selection in martensite are observed via measurements of the texture development.« less

  9. Deformation behavior of additively manufactured GP1 stainless steel

    DOE PAGES

    Clausen, B.; Brown, D. W.; Carpenter, J. S.; ...

    2017-04-22

    In-situ neutron diffraction measurements were performed in this paper during heat-treating and uniaxial loading of additively manufactured (AM) GP1 material. Although the measured chemical composition of the GP1 powder falls within the composition specifications of 17-4 PH steel, a fully martensitic alloy in the wrought condition, the crystal structure of the as-built GP1 material is fully austenitic. Chemical analysis of the as-built material shows high oxygen and nitrogen content, which then significantly decreased after heat-treating in a vacuum furnace at 650 °C for one hour. Significant austenite-to-martensite phase transformation is observed during compressive and tensile loading of the as-built andmore » heat-treated material with accompanied strengthening as martensite volume fraction increases. During loading, the initial average phase stress state in the martensite is hydrostatic compression independent of the loading direction. Finally, preferred orientation transformation in austenite and applied load accommodation by variant selection in martensite are observed via measurements of the texture development.« less

  10. Sedimentation within the batture lands of the middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, J. W.; Ryherd, J. K.

    2017-12-01

    The suspended sediment load of the Mississippi River has continued to decline after the construction of several hundred large dams within the basin during the mid-20th century. Previous investigators have attributed the post-dam decline in suspended sediment loads to improvements in soil conservation practices and dredging. However, the role batture lands (areas between the river channel and levee) play as potential sinks for suspend sediments has largely been overlooked. In this study, we explored the rates and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio Rivers). We assessed sedimentation rates using three approaches: 1) comparison of historical to modern elevation data in order to estimate long-term (>100-years) sedimentation rates; 2) estimation of medium- to short-term (<50-years) sedimentation rates using dendrogeomorphological methods; and 3) geomorphic change detection software (GCDS) to estimate short-term sedimentation rates (12 years). We also used GCDS to estimate the volume of sedimentation within the batture lands between 1998 and 2011. Comparison of long- to short-term sedimentation rates suggests up to a 400% increase in batture land sedimentation rates (from 6.2 to 25.4 mm y-1) despite a substantial decrease in the suspended sediment load (>70%). The increase in MMR batture land sedimentation rates are attributed to three mechanisms: 1) the above average frequency and duration of low-magnitude floods (≤5-year flood) during the short-term assessment periods, which allowed for more suspended sediment to be transported into and deposited within, the batture lands; 2) the construction of levees which substantially reduced ( 75%) floodplain areas available for storage of overbank deposits; and 3) river engineering which has reduced bank erosion allowing sediment to be stored for longer periods of time in the batture lands. The estimated batture land sediment volumes were 5.0% of the suspended load at St. Louis. This substantial storage of sediment ( 9.0 Mt y-1) along the MMR suggests batture lands are an important sink for suspended sediments. Deposition within these areas is contributing to the decrease in the suspended sediment load along this and likely other segments of the Mississippi River.

  11. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  12. Pleural effusion decreases left ventricular pre-load and causes haemodynamic compromise: an experimental porcine study.

    PubMed

    Wemmelund, K B; Lie, R H; Juhl-Olsen, P; Frederiksen, C A; Hermansen, J F; Sloth, E

    2012-08-01

    Although pleural effusion is a common complication in critically ill patients, detailed knowledge is missing about the haemodynamic impact and the underlining mechanisms. The aim of this study was to evaluate the haemodynamic effect of incremental pleural effusion by means of invasive haemodynamic parameters and transthoracic echocardiography. This experimental interventional study was conducted using 22 female piglets (17.5-21.5 kg) randomized for right-side (n = 9) and left-side (n = 9) pleural effusion, or sham operation (n = 4). Pleural effusion was induced by infusing incremental volumes of saline into the pleural cavity. Invasive haemodynamic measurements and echocardiographical images were obtained at baseline, a volume of 45 ml/kg, a volume of 75 ml/kg and 45 min after drainage. No difference (all P > 0.147) was found between right- and left-side pleural effusion, and the groups were thus pooled. At 45 ml/kg cardiac output, mean arterial pressure, stroke volume and mixed venous saturation decreased (all P < 0.003); central venous pressure and pulmonary arterial pressure increased (both P > 0.003) at this point. The changes accelerated at 75 ml/kg. At 45 ml/kg left ventricular pre-load in terms of end-diastolic area decreased significantly (P < 0.001). The effect on haemodynamics and cardiac dimensions changed dramatically at 75 ml/kg. Cardiac output, mean arterial pressure, central venous pressure and left ventricular end-diastolic area returned to normal during a recovery period of 45 min (all P > 0.061). Incremental volumes of unilateral pleural effusion induced a significant haemodynamic impact fully reversible after drainage. Pleural effusion causes a significant decrease of left ventricular pre-load in a diverse picture of haemodynamic compromise. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  13. Load research manual. Volume 3: Load research for advanced technologies

    NASA Astrophysics Data System (ADS)

    1980-11-01

    Technical guidelines for electric utility load research are presented. Special attention is given to issues raised by the load reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. Special load research procedures are presented for solar, wind, and cogeneration technologies.

  14. Improvement to Airport Throughput Using Intelligent Arrival Scheduling and an Expanded Planning Horizon

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2012-01-01

    The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.

  15. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.

    PubMed

    Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas

    2011-12-01

    As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Meso and micro-scale response of post carbon removal nitrifying MBBR biofilm across carrier type and loading.

    PubMed

    Young, Bradley; Banihashemi, Bahman; Forrest, Daina; Kennedy, Kevin; Stintzi, Alain; Delatolla, Robert

    2016-03-15

    This study investigates the effects of three specific moving bed biofilm reactor (MBBR) carrier types and two surface area loading rates on biofilm thickness, morphology and bacterial community structure of post carbon removal nitrifying MBBR systems along with the effects of carrier type and loading on ammonia removal rates and effluent solids settleability. The meso and micro analyses show that the AOB kinetics vary based on loading condition, but irrespective of carrier type. The meso-scale response to increases in loading was shown to be an increase in biofilm thickness with higher surface area carriers being more inclined to develop and maintain thicker biofilms. The pore spaces of these higher surface area to volume carriers also demonstrated the potential to become clogged at higher loading conditions. Although the biofilm thickness increased during higher loading conditions, the relative percentages of both the embedded viable and non-viable cells at high and conventional loading conditions remained stable; indicating that the reduced ammonia removal kinetics observed during carrier clogging events is likely due to the observed reduction in the surface area of the attached biofilm. Microbial community analyses demonstrated that the dominant ammonia oxidizing bacteria for all carriers is Nitrosomonas while the dominant nitrite oxidizing bacteria is Nitrospira. The research showed that filamentous species were abundant under high loading conditions, which likely resulted in the observed reduction in effluent solids settleability at high loading conditions as opposed to conventional loading conditions. Although the settleability of the effluent solids was correlated to increases in abundances of filamentous organisms in the biofilm, analyzed using next generation sequencing, the ammonia removal rate was not shown to be directly correlated to specific meso or micro-scale characteristics. Instead post carbon removal MBBR ammonia removal kinetics were shown to be related to the viable AOB cell coverage of the carriers; which was calculated by normalizing the surface area removal rate by the biofilm thickness, the bacterial percent abundance of ammonia oxidizing bacteria and the percentage of viable cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prophylactic augmentation of the proximal femur: an investigation of two techniques.

    PubMed

    Raas, Christoph; Hofmann-Fliri, Ladina; Hörmann, Romed; Schmoelz, Werner

    2016-03-01

    Osteoporotic hip fractures are an increasing problem in an ageing population. They result in high morbidity, mortality and high socioeconomic costs. For patients with poor bone quality, prophylactic augmentation of the proximal femur might be an option for fracture prevention. In two groups of paired human femora the potential of limited polymethyl-methacrylate (PMMA) augmentation (11-15 ml) in a V-shape pattern and the insertion of a proximal femur nail antirotation (PFNA) blade were investigated. The testing was carried out pair wise simulating the single leg stand. The untreated femur in each pair served as control. An axial load was applied until failure. Load displacement parameters and temperature increase during the augmentation process were recorded. In the PMMA group no significant difference was found between the augmented and non-augmented specimen concerning load to failure (p = 0.35) and energy to failure (p = 0.9). A median temperature increase of 9.5 °C was observed in the augmented specimen. A significant correlation was found between the amount of applied PMMA and the temperature increase (Cor. Coef. = 0.82, p = 0.042). In the PFNA group, a significant decrease of load to failure and a non-significant decrease of energy to failure were observed (p = 0.037 and p = 0.075). Limited V-shaped PMMA augmentation and PFNA blade insertion did not show any improvement in failure load or energy to failure. Volumes of up to 15 ml PMMA did not cause a critical surface temperature increase.

  18. Contributions of combined sewer overflows and treated effluents to the bacterial load released into a coastal area.

    PubMed

    Al Aukidy, M; Verlicchi, P

    2017-12-31

    The impact of combined sewer overflow (CSO) on the receiving water body is an issue of increasing concern, as it may lead to restrictions in the use and destination of the receiving body, such as bathing or recreational area closures, fish and shellfish consumption restrictions, and contamination of drinking water resources. Recent investigations have mainly referred to the occurrence and loads of suspended solids, organic compounds and, in some cases, micropollutants. Attempts have been made to find correlations between the discharged load and the size and characteristics of the catchment area, climate conditions, rainfall duration and intensity. This study refers to a touristic coastal area in the north-east of Italy, which is characterized by a combined sewer network including 5 CSO outfalls which, in the case of heavy rain events, directly discharge the exceeding water flow rate into channels which, after a short distance, reach the Adriatic Sea. The study analyzed: i) rainfall events during the summer period in 2014 which led to overflow in the different outfalls, ii) the inter- and intra-event variability with regard to E. coli, Enterococci and conductivity, and iii) the hydraulic and pollutant (E. coli and Enterococci) loads discharged by the local wastewater treatment plant and by all the CSO outfalls. Finally, it estimated the contribution of each source to the released hydraulic and pollutant loads into the receiving water body. Moreover, it was also found that the modest water volume discharged by all CSO outfalls (only 8% of the total volume discharged by the area) contains >90% of the microbial load. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Damage and failure behavior of metal matrix composites under biaxial loads

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  20. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.

  1. The effect of dDAVP with saline loading on fluid balance during LBNP and standing after 24-hr head-down bedrest

    NASA Technical Reports Server (NTRS)

    Simanonok, K. E.; Fortney, S. M.; Ford, S. R.; Charles, J. B.; Ward, D. F.

    1994-01-01

    Shuttle astronauts currently drink approximately a quart of water with eight salt tablets before reentry to restore lost body fluid and thereby reduce the likelihood of cardiovascular instability and syncope during reentry and after landing. However, the saline loading countermeasure is not entirely effective in restoring orthostatic tolerance to preflight levels. We tested the hypothesis that the effectiveness of this countermeasure could be improved with the use of a vasopressin analog, 1-deamino-8-D-arginine vasopressin (dDAVP). The rationale for this approach is that reducing urine formation with exogenous vasopressin should increase the magnitude and duration of the vascular volume expansion produced by the saline load, and in so doing improve orthostatic tolerance during reentry and postflight.

  2. [Effect of the sharply strengthened motor activity on heart pumping ability of rats and mechanisms of its regulation].

    PubMed

    Nikitin, A S; Abzalov, R A; Abzalov, N I; Vafina, E Z

    2013-08-01

    The indicators of heart pumping ability of rats at a muscular loading of the maximum power and also in the conditions of transition from sharply strengthened motor activity regime on a strengthened motor activity regime at adrenergic influence stimulation and blockade were investigated. At rats of 100-daily age at the strengthened motor activity heart rate is less, and blood stroke volume is more, than in the rats, subject to muscular loading of the maximum power. The adrenergic influence on the heart's pumping ability of sharply strengthened motor activity rats is much more, than of unlimited motor activity rats. At the α1-adrenoreceptors blockade at 100-daily rats the decreasing in intensity of muscular loading causes increased in adrenergic influence on heart pumping ability.

  3. Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis

    NASA Technical Reports Server (NTRS)

    Mchugh, F.; Clark, R.; Soloman, M.

    1977-01-01

    The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.

  4. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  5. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  6. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  7. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  8. Cognitive correlates of white matter lesion load and brain atrophy

    PubMed Central

    Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov

    2015-01-01

    Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514

  9. Numerical Investigation of the Macroscopic Mechanical Behavior of NiTi-Hybrid Composites Subjected to Static Load-Unload-Reload Path

    NASA Astrophysics Data System (ADS)

    Taheri-Behrooz, Fathollah; Kiani, Ali

    2017-04-01

    Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.

  10. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure.

    PubMed

    Chae, K J; Jang, Am; Yim, S K; Kim, In S

    2008-01-01

    In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.

  11. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  12. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels.

    PubMed

    Park, Jaeyeong; Jo, Min Cheol; Jeong, Hyeok Jae; Sohn, Seok Su; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak

    2017-11-16

    Phenomena occurring in duplex lightweight steels under dynamic loading are hardly investigated, although its understanding is essentially needed in applications of automotive steels. In this study, quasi-static and dynamic tensile properties of duplex lightweight steels were investigated by focusing on how TRIP and TWIP mechanisms were varied under the quasi-static and dynamic loading conditions. As the annealing temperature increased, the grain size and volume fraction of austenite increased, thereby gradually decreasing austenite stability. The strain-hardening rate curves displayed a multiple-stage strain-hardening behavior, which was closely related with deformation mechanisms. Under the dynamic loading, the temperature rise due to adiabatic heating raised the austenite stability, which resulted in the reduction in the TRIP amount. Though the 950 °C-annealed specimen having the lowest austenite stability showed the very low ductility and strength under the quasi-static loading, it exhibited the tensile elongation up to 54% as well as high strain-hardening rate and tensile strength (1038 MPa) due to appropriate austenite stability under dynamic loading. Since dynamic properties of the present duplex lightweight steels show the excellent strength-ductility combination as well as continuously high strain hardening, they can be sufficiently applied to automotive steel sheets demanded for stronger vehicle bodies and safety enhancement.

  13. 25-Hydroxycholecalciferol response to single oral cholecalciferol loading in the normal weight, overweight, and obese.

    PubMed

    Camozzi, V; Frigo, A C; Zaninotto, M; Sanguin, F; Plebani, M; Boscaro, M; Schiavon, L; Luisetto, G

    2016-08-01

    After a single cholecalciferol load, peak serum 25-hydroxycholecalciferol (25OHD) is lower in individuals with a higher body mass index (BMI), probably due to it being distributed in a greater volume. Its subsequent disappearance from the serum is slower the higher the individual's BMI, probably due to the combination of a larger body volume and a slower release into the circulation of vitamin D stored in adipose tissue. The aim of the study is to examine 25-hydroxycholecalciferol (25OHD) response to a single oral load of cholecalciferol in the normal weight, overweight, and obese. We considered 55 healthy women aged from 25 to 67 years (mean ± SD, 50.8 ± 9.5) with a BMI ranging from 18.7 to 42 kg/m(2) (mean ± SD, 27.1 ± 6.0). The sample was divided into three groups by BMI: 20 were normal weight (BMI ≤ 25 kg/m(2)), 21 overweight (25.1 ≤ BMI ≤ 29.9 kg/ m(2)), and 14 obese (BMI ≥ 30 kg/m(2)). Each subject was given 300,000 IU of cholecalciferol orally during lunch. A fasting blood test was obtained before cholecalciferol loading and then 7, 30, and 90 days afterwards to measure serum 25OHD, 1,25 dihydroxyvitamin D [1,25 (OH)2D], parathyroid hormone (PTH), calcium (Ca), and phosphorus (P). Participants' absolute fat mass was measured using dual energy X-ray absorptiometry (DEXA). The fat mass of the normal weight subjects was significantly lower than that of the overweight, which in turn was lower than that of the obese participants. Serum 25OHD levels increased significantly in all groups, peaking 1 week after the cholecalciferol load. Peak serum 25OHD levels were lower the higher the individuals' BMI. After peaking, the 25OHD levels gradually decreased, following a significantly different trend in the three groups. The slope was similar for the overweight and obese, declining significantly more slowly than in the normal weight group. In the sample as a whole, there was a weakly significant negative correlation between fat mass and baseline 25OHD level, while this correlation became strongly significant at all time points after cholecalciferol loading. The lower peak 25OHD levels seen in the obese and overweight is probably due to the cholecalciferol load being distributed in a larger body volume. The longer persistence of 25OHD in their serum could be due to both their larger body volume and a slower release into the circulation of the vitamin D stored in their adipose tissue.

  14. Mullins effect in a filled elastomer under uniaxial tension

    DOE PAGES

    Maiti, A.; Small, W.; Gee, R. H.; ...

    2014-01-16

    Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading)more » two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.« less

  15. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality

    PubMed Central

    Hoppeler, Hans

    2016-01-01

    Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894

  16. The effect of filler loading and morphology on the mechanical properties of contemporary composites.

    PubMed

    Kim, Kyo-Han; Ong, Joo L; Okuno, Osamu

    2002-06-01

    Little information exists regarding the filler morphology and loading of composites with respect to their effects on selected mechanical properties and fracture toughness. The objectives of this study were to: (1) classify commercial composites according to filler morphology, (2) evaluate the influence of filler morphology on filler loading, and (3) evaluate the effect of filler morphology and loading on the hardness, flexural strength, flexural modulus, and fracture toughness of contemporary composites. Field emission scanning electron microscopy/energy dispersive spectroscopy was used to classify 3 specimens from each of 14 commercial composites into 4 groups according to filler morphology. The specimens (each 5 x 2.5 x 15 mm) were derived from the fractured remnants after the fracture toughness test. Filler weight content was determined by the standard ash method, and the volume content was calculated using the weight percentage and density of the filler and matrix components. Microhardness was measured with a Vickers hardness tester, and flexural strength and modulus were measured with a universal testing machine. A 3-point bending test (ASTM E-399) was used to determine the fracture toughness of each composite. Data were compared with analysis of variance followed by Duncan's multiple range test, both at the P<.05 level of significance. The composites were classified into 4 categories according to filler morphology: prepolymerized, irregular-shaped, both prepolymerized and irregular-shaped, and round particles. Filler loading was influenced by filler morphology. Composites containing prepolymerized filler particles had the lowest filler content (25% to 51% of filler volume), whereas composites containing round particles had the highest filler content (59% to 60% of filler volume). The mechanical properties of the composites were related to their filler content. Composites with the highest filler by volume exhibited the highest flexural strength (120 to 129 MPa), flexural modulus (12 to 15 GPa), and hardness (101 to 117 VHN). Fracture toughness was also affected by filler volume, but maximum toughness was found at a threshold level of approximately 55% filler volume. Within the limitations of this study, the commercial composites tested could be classified by their filler morphology. This property influenced filler loading. Both filler morphology and filler loading influenced flexural strength, flexural modulus, hardness, and fracture toughness.

  17. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    PubMed

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  18. Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.

    2014-01-01

    Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.

  19. Increasing the thermal conductivity of silicone based fluids using carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Vales-Pinzon, C.; Vega-Flick, A.; Pech-May, N. W.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.

    2016-11-01

    Heat transfer in silicone fluids loaded with high thermal conductivity carbon nanofibers was studied using photoacoustics and thermal wave resonator cavity. It is shown that heat transport depends strongly on volume fraction of carbon nanofibers; in particular, a low loading percentage is enough to obtain significant changes in thermal conductivity. Theoretical models were used to determine how heat transfer is affected by structural formations in the composite, such as packing fraction and aspect ratio (form factor) of carbon nanofiber agglomerates in the high viscosity fluid matrix. Our results may find practical applications in systems, in which the carbon nanofibers can facilitate heat dissipation in the electronic devices.

  20. What information can frictional properties of polymer brushes tell us?

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenyu; Moxey, Mark; Morse, Andrew; Armes, Steven; Lewis, Andrew; Geoghegan, Mark; Leggett, Graham

    2013-03-01

    We have used friction force microscopy (FFM) to quantitatively examine surface grown zwitterionic polymer brushes: poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC), and to establish the correlation between its frictional behaviour to other intrinsic properties. In a good solvent, it was found that the coefficient of friction (μ) decreased with increasing film thickness. We conclude that the amount of bound solvent increases as the brush length increases, causing the osmotic pressure to increase and yielding a reduced tendency for the brush layer to deform under applied load. When measured in a series of alcohol/water mixtures, a significant increase in μ was observed for ethanol/water mixtures at a volume fraction of 90%. This is attributed to brush collapse due to co-nonsolvency, leading to loss of hydration of the brush chains and hence substantially reduced lubrication. We show that single asperity contact mechanics is strongly dependent on solvent quality. Friction-load relationship was found linear in methanol (good solvent), but sub-linear in water and ethanol (moderate solvent).

  1. Clinical Aspects of the Control of Plasma Volume at Microgravity and During Return to One Gravity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1995-01-01

    Plasma volume is reduced by 10%-20% within 24 to 48 h of exposure to simulated or actual microgravity. The clinical importance of microgravity-induced hypovolemia is manifested by its relationship with orthostatic intolerance and reduced VO2max after return to one gravity (1G). Since there is no evidence to suggest plasma volume reduction during microgravity is associated with thirst or renal dysfunctions, a diuresis induced by an immediate blood volume shift to the central circulation appears responsible for microgravity-induced hypovolemia. Since most astronauts choose to restrict their fluid intake before a space mission, absence of increased urine output during actual spaceflight may be explained by low central venous pressure (CVP) which accompanies dehydration. Compelling evidence suggests that prolonged reduction in CVP during exposure to microgravity reflects a 'resetting' to a lower operating point which acts to limit plasma volume expansion during attempts to increase fluid intake. In groudbase and spaceflight experiments, successful restoration and maintenance of plasma volume prior to returning to an upright posture may depend upon development of treatments that can return CVP to its baseline 10 operating point. Fluid-loading and LBNP have not proved completely effective in restoring plasma volume, suggesting that they may not provide the stimulus to elevate the CVP operating point. On the other, exercise, which can chronically increase CVP, has been effective in expanding plasma volume when combined with adequate dietary intake of fluid and electrolytes. The success of designing experiments to understand the physiological mechanisms of and development of effective countermeasures for the control of plasma volume in microgravity and during return to one gravity will depend upon testing that can be conducted under standardized controlled baseline condi

  2. Effects of hypertonic saline (7.5%) on extracellular fluid volumes compared with normal saline (0.9%) and 6% hydroxyethyl starch after aortocoronary bypass graft surgery.

    PubMed

    Järvelä, K; Koskinen, M; Kaukinen, S; Kööbi, T

    2001-04-01

    To compare the effects of hypertonic (7.5%) saline (HS), normal (0.9%) saline (NS), and 6% hydroxyethyl starch (HES) on extracellular fluid volumes in the early postoperative period after cardiopulmonary bypass. A prospective, randomized, double-blind study. University teaching hospital. Forty-eight patients scheduled for elective coronary artery bypass graft surgery. Patients were randomly allocated to receive 4 mL/kg of HS, NS, or HES during 30 minutes when volume loading was needed during the postoperative rewarming period in the intensive care unit. Plasma volume was measured using a dilution of iodine-125-labeled human serum albumin. Extracellular water and cardiac output were measured by whole-body impedance cardiography. Plasma volume had increased by 19 +/- 7% in the HS group and by 10 +/- 3% in the NS group (p = 0.001) at the end of the study fluid infusion. After 1-hour follow-up time, the plasma volume increase was greatest (23 +/- 8%) in the group receiving HES (p < 0.001). The increase of extracellular water was greater than the infused volume in the HS and HES groups at the end of the infusion. One-hour diuresis after the study infusion was greater in the HS group (536 +/- 280 mL) than in the NS (267 +/- 154 mL, p = 0.006) and HES groups (311 +/- 238 mL, p = 0.025). The effect of HS on plasma volume was short-lasting, but it stimulated excretion of excess body fluid accumulated during cardiopulmonary bypass and cardiac surgery. HS may be used in situations in which excess free water administration is to be avoided but the intravascular volume needs correction. Copyright 2001 by W.B. Saunders Company

  3. [Heart rate and energy expenditure during extravehicular activity in different time of day].

    PubMed

    Stepanova, S I; Katuntsev, V P; Osipov, Iu Iu; Galichiĭ, V A

    2013-01-01

    The article discusses the comparative heart rate (HR) characteristics associated with day and night extravehicular activities (EVA). HR was commonly higher in the night but not in the daytime. Presumably, the reason is psychological and physiological challenges of the night work on the background of natural performance decrement. These circumstances could lead to elevation of psychic tension and, consequently, increase of heartbeats to a greater extent as compared with daytime EVA. According to the correlation analysis data, the pattern of HR relation to physical loads evaluated by energy expenditure in the daytime was other than at night, i.e. it was positive unlike the nighttime correlation. We cannot exclude it that in the daytime increase in cardiac output (CO) in response to physical work was largely due to increase in HR, whereas it was stroke volume that dominated during night work; at least, it could support CO fully in the periods of low loading.

  4. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon.

    PubMed

    Liu, Liyan; Zhang, Yu; Tan, Wei

    2014-05-01

    Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70°C) after 9 min of ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2017-10-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  6. Implications of Dynamic Loading and Changing Climate on Mercury Bioaccumulation in a Planktivorous Fish (Orthodon microlepidotus)

    NASA Astrophysics Data System (ADS)

    Carroll, R. W. H.; Flickinger, A.; Warwick, J. J.; Schumer, R.

    2015-12-01

    A bioenergetic and mercury (Hg) mass balance (BioHg) model is developed for the Sacramento blackfish (Orthodon microlepidotus), a filter feeding cyprinid found in northern California and Nevada. Attention focuses on the Lahontan Reservoir in northern Nevada, which receives a strong temporally varying load of dissolved methylmercury (DMeHg) from the Carson River. Hg loads are the result of contaminated bank erosion during high flows and diffusion from bottom sediments during low flows. Coupling of dynamic reservoir loading with periods of maximum plankton growth and maximum fish consumption rates are required to explain the largest body burdens observed in the planktivore. In contrast, the large body burdens cannot be achieved using average water column concentrations. The United States Bureau of Reclamation has produced future streamflow estimates for 2000-2099 using 112 CMIP3 climate projections and the Variable Infiltration Capacity (VIC) model. These are used to drive a fully dynamic Hg transport model to assess changes in contaminant loading to the reservoir and implications on planktivorous bioaccumulation. Model results suggest the future loads of DMeHg entering the Lahontan Reservoir will decrease most significantly in the spring and summer due to channel width increases and depth decreases in the Carson River which reduce bank erosion over the century. The modeled concentrations of DMeHg in the reservoir are expected to increase during the summer due to a decrease in reservoir volume affecting the concentrations more than the decrease in loads, and the model results show that bioaccumulation levels may increase in the upstream sections of the reservoir while maintaining contamination levels above the federal action limit for human consumption in the lower reservoir.

  7. Evaluation of Geosynthetic-Reinforced Flexible Pavements using Static Plate Load Tests

    DOT National Transportation Integrated Search

    2010-01-01

    This study focuses on the response of full-scale geogrid-reinforced flexible pavements to static surface loading. Specifically, static plate load (SPL) tests were performed on a low-volume, asphalt pavement frontage road in Eastern Arkansas, USA (the...

  8. Use, misuse and abuse of diuretics.

    PubMed

    Bartoli, Ettore; Rossi, Luca; Sola, Daniele; Castello, Luigi; Sainaghi, Pier Paolo; Smirne, Carlo

    2017-04-01

    Resolution of edema requires a correct interpretation of body fluids-related renal function, to excrete the excess volume while restoring systemic hemodynamics and avoiding renal failure. In heart failure, the intensive diuresis should be matched by continuous fluids refeeding from interstitium to plasma, avoiding central volume depletion. The slowly reabsorbed ascites cannot refeed this contracted volume in cirrhosis: the ensuing activation of intrathoracic receptors, attended by increased adrenergic and Renin release, causes more avid sodium retention, producing a positive fluid and Na balance in the face of continuous treatment. High-dose-furosemide creates a defect in tubular Na causing diuresis adequate to excrete the daily water and electrolyte load in Chronic Renal Failure. Diuretic treatment requires care, caution and bedside "tricks" aimed at minimizing volume contraction by correctly assessing the homeostatic system of body fluids and related renal hemodynamics. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  9. Ceftizoxime use in trauma celiotomy: pharmacokinetics and patient outcomes.

    PubMed

    Rosemurgy, A S; Dillon, K R; Kurto, H A; Albrink, M H

    1995-11-01

    Seriously injured patients undergo vigorous resuscitation upon arrival at the emergency department and through the immediate perioperative period. Although resuscitation leads to volume loading and fluid shifts, drug dosing and dosing intervals are often not altered to account for changes in total body volume or circulatory volume. To address this, a prospective study of pharmacokinetics of ceftizoxime in 53 injured adults who underwent emergency celiotomy was conducted. Further, the relationship between serum ceftizoxime concentrations and infectious outcomes was evaluated. Per protocol, injured adults undergoing emergency celiotomy received prophylactic ceftizoxime treatment according to standard dosing regimens. Of the patients, 6 (11.5%) experienced postoperative infections and had lower peak serum ceftizoxime levels in the recovery room than patients not experiencing infection. For severely injured adults with extensive blood loss or undergoing lengthy operations requiring rigorous volume resuscitation, doses of ceftizoxime, and indeed all antibiotics, may need to be increased beyond conventional standards to minimize infectious complications.

  10. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur.

    PubMed

    Lochmüller, E M; Miller, P; Bürklein, D; Wehr, U; Rambeck, W; Eckstein, F

    2000-01-01

    The objective of this study was to directly compare in situ femoral dual-energy X-ray absorptiometry (DXA) and in vitro chemical analysis (ash weight and calcium) with mechanical failure loads of the proximal femur, and to determine the influence of bone size (volume) and density on mechanical failure and DXA-derived areal bone mineral density (BMD, in g/cm2). We performed femoral DXA in 52 fixed cadavers (age 82.1 +/- 9.7 years; 30 male, 22 female) with intact skin and soft tissues. The femora were then excised, mechanically loaded to failure in a stance phase configuration, their volume measured with a water displacement method (proximal neck to lesser trochanter), and the ash weight and calcium content of this region determined by chemical analysis. The correlation coefficient between the bone mineral content (measured in situ with DXA) and the ash weight was r = 0.87 (standard error of the estimate = 16%), the ash weight allowing for a better prediction of femoral failure loads (r = 0.78; p < 0.01) than DXA (r = 0.67; p < 0.01). The femoral volume (r = 0.61; p < 0.01), but not the volumetric bone density (r = 0.26), was significantly associated with the failure load. The femoral bone volume had a significant impact (r = 0.35; p < 0.01) on the areal BMD (DXA), and only 63% of the variability of bone volume could be predicted (based on the basis of body height, weight and femoral projectional bone area. The results suggest that accuracy errors of femoral DXA limit the prediction of mechanical failure loads, and that the influence of bone size on areal BMD cannot be fully corrected by accounting for body height, weight and projected femoral area.

  11. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    NASA Astrophysics Data System (ADS)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was utilized to simulate the shock loading and twin evolution for these loading conditions. The second part of this research ties into the modeling efforts. Within the model for predicting twin volume fraction is a twin growth equation and a constant describing the stress at which the twin nucleation will occur. By using a constant value for the twin nucleation stress modeling efforts fail to accurately predict the growth and final twin volume fraction. A second shock loading experimental study combined with high strain rate compression tests using a split Hopkinson pressure bar were completed to determine a twin nucleation stress equation as a function of dislocation density. Steel specimens were subjected to cold rolling to 3% strain and subsequently impacted using the gas gun at different pressures. The increase in dislocation density due to pre-straining substantially increased the twin nucleation stress indicating that twin nucleation stress in dependent upon prior strain history. This has been explained in terms of the velocity and generation rates of both perfect and partial dislocations. An explicit form of the critical twin nucleation stress was developed and parameters were determined through plate impact tests and low temperature (77K) SHPB compression tests. The final component in studying deformation twin mechanisms in BCC steel extends the research to the post-impact mechanical properties and how the twin volume fraction affects the dynamic flow stress. Compression tests between 293K and 923K at an average strain rate of 4700 s-1 were completed on the as-received and 3% pre-strained steels in both the initial condition and after being impacted at pressures of 6GPa and 11GPa. Results of the experimental testing were used in a thermal activation model in order to distinguish separate components in the microstructure contributing to the enhanced flow stress caused by the shock loading. It has been shown that the dislocations generated from shock loading are equivalent to those produced under lower rate straining and the addition of deformation twins in the microstructure contribute to the athermal stress by adding to the long range barriers.

  12. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.

    PubMed

    Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W

    2017-02-17

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  13. Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.

    2017-02-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.

  14. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty

    PubMed Central

    Eaton, M. J.; Nutton, R. W.; Wade, F. A.; Evans, S. L.; Pankaj, P.

    2017-01-01

    Objectives Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Results Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. Conclusion AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection. Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22–30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1 PMID:28077394

  15. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model.

    PubMed

    Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Evans, S L; Pankaj, P

    2017-01-01

    Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R 2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R 2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection.Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22-30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1. © 2017 Scott et al.

  16. Effects of cannabis and familial loading on subcortical brain volumes in first-episode schizophrenia.

    PubMed

    Malchow, Berend; Hasan, Alkomiet; Schneider-Axmann, Thomas; Jatzko, Alexander; Gruber, Oliver; Schmitt, Andrea; Falkai, Peter; Wobrock, Thomas

    2013-11-01

    Schizophrenia is a severe neuropsychiatric disorder with familial loading as heritable risk factor and cannabis abuse as the most relevant environmental risk factor up to date. Cannabis abuse has been related to an earlier onset of the disease and persisting cannabis consumption is associated with reduced symptom improvement. However, the underlying morphological and biochemical brain alterations due to these risk factors as well as the effects of gene-environmental interaction are still unclear. In this magnetic resonance imaging (MRI) study in 47 first-episode schizophrenia patients and 30 healthy control subjects, we investigated effects of previous cannabis abuse and increased familial risk on subcortical brain regions such as hippocampus, amygdala, caudate nucleus, putamen, thalamus and subsegments of the corpus callosum (CC). In a subsequent single-volume (1)H-magnetic resonance spectroscopy study, we investigated spectra in the left hippocampus and putamen to detect metabolic alterations. Compared to healthy controls, schizophrenia patients displayed decreased volumes of the left hippocampus, bilateral amygdala and caudate nucleus as well as an increased area of the midsagittal CC1 segment of the corpus callosum. Patients fulfilling the criteria for cannabis abuse at admission showed an increased area of the CC2 segment compared to those who did not fulfill the criteria. Patients with a family history of schizophrenia combined with previous cannabis abuse showed lower volumes of the bilateral caudate nucleus compared to all other patients, implicating an interaction between the genetic background and cannabis abuse as environmental factor. Patients with cannabis abuse also had higher ratios of N-acetyl aspartate/choline in the left putamen, suggesting a possible neuroprotective effect in this area. However, antipsychotic medication prior to MRI acquisition and gender effects may have influenced our results. Future longitudinal studies in first-episode patients with quantification of cannabis abuse and assessment of schizophrenia risk genes are warranted.

  17. Temporal and spatial patterns of sedimentation within the batture lands of the middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, Jonathan W. F.; Ryherd, Julia; Ruffner, Charles M.; Therrell, Matthew D.

    2018-05-01

    Sediment deposition and storage are important functions of batture lands (the land between the channel's low-water elevation and the flood mitigation levee). However, sedimentation processes within these areas are not fully understood. In this paper, we explore the spatiotemporal patterns, rates, and volume of sedimentation within the batture lands along the middle Mississippi River (MMR; between the confluence of the Missouri and Ohio rivers) using three approaches: (1) comparison of historical to modern elevation data in order to estimate long-term (>100 yr) sedimentation rates; (2) estimation of medium- to short-term (<50 yr) sedimentation rates using dendrogeomorphological methods; and (3) geomorphic change detection (GCD) software to estimate short-term sedimentation rates ( 12 yr), spatial patterns of deposition, and volumes of geomorphic change within the batture lands. Comparison of long- to short-term sedimentation rates suggests up to a 300% increase in batture land sedimentation rates (from 6.2 to 25.4 mm yr-1) despite a substantial decrease in the MMR's suspended-sediment load (>70%) attributed largely to sediment trapping by dams during the second half of the twentieth century. The increase in MMR batture land sedimentation rates are attributed to at least two potential mechanisms: (1) the above average frequency and duration of low-magnitude floods (>2-yr and ≤5-yr flood) during the short-term assessment periods which allowed for more suspended sediment to be deposited within the batture lands; and (2) the construction of levees that substantially reduced the floodplain area ( 75%) available for storage of overbank deposits increasing the vertical accumulation and consequently the detectability of a given volume of sediment. The GCD estimated batture land sediment volumes were 9.0% of the suspended load at St. Louis. This substantial storage of sediment ( 8.5 Mt yr-1) along the MMR suggests batture lands are an important sink for suspended sediments.

  18. Research of cost aspects of cement pavements construction

    NASA Astrophysics Data System (ADS)

    Bezuglyi, Artem; Illiash, Sergii; Tymoshchuk, Oleksandr

    2017-09-01

    The tendency to increasing traffic volume on public roads and to increased axle loads of vehicles makes the road scientists to develop scientifically justified methods for preserving the existing and developing the new transport network of Ukraine. One of the options for solving such issues is the construction of roads with rigid (cement concrete) pavement. However, any solution must be justified considering technical and economic components. This paper presents the results of the research of cost aspects of cement pavements construction.

  19. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  20. Acute decrease of left ventricular mechanical dyssynchrony and improvement of contractile state and energy efficiency after left ventricular restoration.

    PubMed

    Schreuder, Jan J; Castiglioni, Alessandro; Maisano, Francesco; Steendijk, Paul; Donelli, Andrea; Baan, Jan; Alfieri, Ottavio

    2005-01-01

    Surgical left ventricular restoration by means of endoventricular patch aneurysmectomy in patients with postinfarction aneurysm should result in acute improved left ventricular performance by decreasing mechanical dyssynchrony and increasing energy efficiency. Nine patients with left ventricular postinfarction aneurysm were studied intraoperatively before and after ventricular restoration with a conductance volume catheter to analyze pressure-volume relationships, energy efficiency, and mechanical dyssynchrony. The end-systolic elastance was used as a load-independent index of contractile state. Left ventricular energy efficiency was calculated from stroke work and total pressure-volume area. Segmental volume changes perpendicular to the long axis were used to calculate mechanical dyssynchrony. Statistical analysis was performed with the paired t test and least-squares linear regression. Endoventricular patch aneurysmectomy reduced end-diastolic volume by 37% (P < .001), with unchanged stroke volume. Systolic function improved, as derived from increased +dP/dt(max), by 42% (P < .03), peak ejection rate by 28% (P < .02), and ejection fraction by 16% (P < .0002). Early diastolic function improved, as shown by reduction of -dP/dt(max) by 34% (P < .006) and shortened tau by 30% (P < .001). Left ventricular end-systolic elastance increased from 1.2 +/- 0.6 to 2.2 +/- 1 mm Hg/mL (P < .001). Left ventricular energy efficiency increased by 36% (P < .002). Left ventricular mechanical dyssynchrony decreased during systole by 33% (P < .001) and during diastole by 20% (P < .005). Left ventricular restoration induced acute improvements in contractile state, energy efficiency, and relaxation, together with a decrease in left ventricular mechanical dyssynchrony.

  1. Quantitative assessment of orthodontic mini-implant displacement: the effect of initial force application.

    PubMed

    Holst, Alexandra Ioana; Karl, Matthias; Karolczak, Marek; Goellner, Matthias; Holst, Stefan

    2010-01-01

    Primary stability and micromovement of orthodontic mini-implants depends on a number of factors and influences clinical success or failure. The purpose of this study was to assess the behavior of orthodontic mini-implants upon initial load application. Orthodontic mini-implants (n = 39) were inserted in the alveolar process of maxillary human cadaver specimens (n = 10). Increasing horizontal forces (up to 2.5 N) were applied, and triggered images were taken in 0.5-N load intervals. Additionally, peri-implant parameters based on micro-CT volume data were recorded. Data were subjected to a two-sided nonparametric Wilcoxon signed rank test, and between-group comparisons were assessed with a Mann-Whitney test (alpha = .05). Initial load application led to displacement beyond elastic recovery of the surrounding bone after force release (P < .001). Cortical thickness and insertion depth, despite numeric differences, did not reveal any statistical differences, while displacement of mini-implants was significantly affected by contact to neighboring teeth (P < .001). Insertion technique and initial load application on orthodontic mini-implants may be regarded as two crucial factors for success, while repeated application of orthodontic force does not seem to increase screw mobility.

  2. Effect of restoration volume on stresses in a mandibular molar: a finite element study.

    PubMed

    Wayne, Jennifer S; Chande, Ruchi; Porter, H Christian; Janus, Charles

    2014-10-01

    There can be significant disagreement among dentists when planning treatment for a tooth with a failing medium-to-large--sized restoration. The clinician must determine whether the restoration should be replaced or treated with a crown, which covers and protects the remaining weakened tooth structure during function. The purpose of this study was to evaluate the stresses generated in different sized amalgam restorations via a computational modeling approach and reveal whether a predictable pattern emerges. A computer tomography scan was performed of an extracted mandibular first molar, and the resulting images were imported into a medical imaging software package for tissue segmentation. The software was used to separate the enamel, dentin, and pulp cavity through density thresholding and surface rendering. These tissue structures then were imported into 3-dimensional computer-aided design software in which material properties appropriate to the tissues in the model were assigned. A static finite element analysis was conducted to investigate the stresses that result from normal occlusal forces. Five models were analyzed, 1 with no restoration and 4 with increasingly larger restoration volume proportions: a normal-sized tooth, a small-sized restoration, 2 medium-sized restorations, and 1 large restoration as determined from bitewing radiographs and occlusal surface digital photographs. The resulting von Mises stresses for dentin-enamel of the loaded portion of the tooth grew progressively greater as the size of the restoration increased. The average stress in the normal, unrestored tooth was 4.13 MPa, whereas the smallest restoration size increased this stress to 5.52 MPa. The largest restoration had a dentin-enamel stress of 6.47 MPa. A linear correlation existed between restoration size and dentin-enamel stress, with an R(2) of 0.97. A larger restoration volume proportion resulted in higher dentin-enamel stresses under static loading. A comparison of the von Mises stresses to the yield strengths of the materials revealed a relationship between a tooth's restoration volume proportion and the potential for failure, although factors other than restoration volume proportion may also impact the stresses generated in moderate-sized restorations. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.

    PubMed

    Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing

    2018-06-01

    With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  4. Physicochemical characterization and in vivo evaluation of triamcinolone acetonide-loaded hydroxyapatite nanocomposites for treatment of rheumatoid arthritis.

    PubMed

    Jafari, Samira; Maleki-Dizaji, Nasrin; Barar, Jaleh; Barzegar-Jalali, Mohammad; Rameshrad, Maryam; Adibkia, Khosro

    2016-04-01

    The current study was aimed to investigate the anti-inflammatory effect of triamcinolone acetonide-loaded hydroxyapatite (TA-loaded HAp) nanocomposites in the arthritic rat model. The HAp nanocomposites were synthesized through a chemical precipitation method and the drug was subsequently incorporated into the nanocomposites using an impregnation method. The physicochemical properties as well as cytotoxicity of the prepared nanoformulation were examined as well. To evaluate the therapeutic efficacy of the prepared nanoformulation, the various parameters such as paw volume, haematological parameters and histological studies were assessed in the arthritic rats. The nanocomposites with the particle size of 70.45 nm, pore size of 2.71 nm and drug loading of 41.94% were obtained in this study. The specific surface area (aBET) as well as the volume of nitrogen adsorbed on one gram of HAp to complete the monolayer adsorption (Vm) were decreased after the drug loading process. The prepared nanoformulation revealed the slower drug release profile compared to the pure drug. Furthermore, the obtained data from MTT assay showed that the TA-loaded nanocomposites had a lower cytotoxic effect on NIH-3T3 and CAOV-4 cell lines as compared to the pure drug. Furthermore, TA-loaded HAp nanocomposites demonstrated favorable effects on the paw volume as well as the haematological and histopathological abnormalities in the adjuvant-induced arthritic rats. Therefore, TA-loaded HAp nanocomposites are potentially suggested for treatment of rheumatoid arthritis after further required evaluations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.

    PubMed

    Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S

    2017-11-01

    We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.

  6. Weight and volume variation in truckloads of logs hauled in the central Appalachians

    Treesearch

    Floyd G. Timson

    1974-01-01

    Variation in volume and weight was found among loaded log trucks even when such factors as truck type, logging job, and driver influence were eliminated. A load range of 10,000 pounds or 1,000 board feet was commonplace for the same truck, driver, and cutting site. Differences in log size, shape, weight, and species caused a major share of this variation. Yet,...

  7. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  8. Effects of recent logging on the main channel of North Fork Caspar Creek

    Treesearch

    Thomas E. Lisle; Michael Napolitano

    1998-01-01

    The response of the mainstem channel of North Fork Caspar Creek to recent logging is examined by time trends in bed load yield, scour and fill at resurveyed cross sections, and the volume and fine-sediment content of pools. Companion papers report that recent logging has increased streamflow during the summer and moderate winter rainfall events, and blowdowns from...

  9. Ocean Engineering Studies Compiled 1991. Volume 9. External Pressure Housing - Conrete

    DTIC Science & Technology

    1991-01-01

    by inserts of different rigidities would thus be obtained. Table 1. Description of Concrete Sphere Models and Test...relationship between the insert’s rigidity and the strain increase in its vicinity. Planned investigation by NCEL employing photoelastic analysis of models of ... structural , in which only the load -carrying ability of the structure was checked. In the operational tests, the small-scale model habitat

  10. Evaluation of pollutant loads from stormwater BMPs to receiving water using load frequency curves with uncertainty analysis.

    PubMed

    Park, Daeryong; Roesner, Larry A

    2012-12-15

    This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.

    PubMed

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-07-01

    To determine if the lens volume changes during accommodation. The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. The mean (± SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were -0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule.

  12. Load research manual. Volume 2: Fundamentals of implementing load research procedures

    NASA Astrophysics Data System (ADS)

    1980-11-01

    This manual will assist electric utilities and state regulatory authorities in investigating customer electricity demand as part of cost-of-service studies, rate design, marketing research, system design, load forecasting, rate reform analysis, and load management research. Load research procedures are described in detail. Research programs at three utilities are compared: Carolina Power and Light Company, Long Island Lighting Company, and Southern California Edison Company. A load research bibliography and glossaries of load research and statistical terms are also included.

  13. BDNF is Associated With Age-Related Decline in Hippocampal Volume

    PubMed Central

    Erickson, Kirk I.; Prakash, Ruchika Shaurya; Voss, Michelle W.; Chaddock, Laura; Heo, Susie; McLaren, Molly; Pence, Brandt D.; Martin, Stephen A.; Vieira, Victoria J.; Woods, Jeffrey A.; Kramer, Arthur F.

    2010-01-01

    Hippocampal volume shrinks in late adulthood, but the neuromolecular factors that trigger hippocampal decay in aging humans remains a matter of speculation. In rodents, brain derived neurotrophic factor (BDNF) promotes the growth and proliferation of cells in the hippocampus and is important in long-term potentiation and memory formation. In humans, circulating levels of BDNF decline with advancing age and a genetic polymorphism for BDNF has been related to gray matter volume loss in old age. In this study, we tested whether age-related reductions in serum levels of BDNF would be related to shrinkage of the hippocampus and memory deficits in older adults. Hippocampal volume was acquired by automated segmentation of magnetic resonance images in 142 older adults without dementia. The caudate nucleus was also segmented and examined in relation to levels of serum BDNF. Spatial memory was tested using a paradigm in which memory load was parametrically increased. We found that increasing age was associated with smaller hippocampal volumes, reduced levels of serum BDNF, and poorer memory performance. Lower levels of BDNF were associated with smaller hippocampi and poorer memory, even when controlling for the variation related to age. In an exploratory mediation analysis, hippocampal volume mediated the age-related decline in spatial memory and BDNF mediated the age-related decline in hippocampal volume. Caudate nucleus volume was unrelated to BDNF levels or spatial memory performance. Our results identify serum BDNF as a significant factor related to hippocampal shrinkage and memory decline in late adulthood. PMID:20392958

  14. On-line preconcentration and speciation of arsenic by flow injection hydride generation atomic absorption spectrophotometry.

    PubMed

    Narcise, Cristine Ingrid S; Coo, Lilibeth Dlc; Del Mundo, Florian R

    2005-12-15

    A flow injection-column preconcentration-hydride generation atomic absorption spectrophotometric (FI-column-HGAAS) method was developed for determining mug/l levels of As(III) and As(V) in water samples, with simultaneous preconcentration and speciation. The speciation scheme involved determining As(V) at neutral pH and As(III+V) at pH 12, with As(III) obtained by difference. The enrichment factor (EF) increased with increase in sample loading volume from 2.5 to 10ml, and for preconcentration using the chloride-form anion exchange column, EFs ranged from 5 to 48 for As(V) and 4 to 24 for As(III+V), with corresponding detection limits of 0.03-0.3 and 0.07-0.3mug/l. Linear concentration range (LCR) also varied with sample loading volume, and for a 5-ml sample was 0.3-5 and 0.2-8mug/l for As(V) and As(III+V), respectively. Sample throughput, which decreased with increase in sample volume, was 8-17 samples/h. For the hydroxide-form column, the EFS for 2.5-10ml samples were 3-23 for As(V) and 2-15 for As(III+V), with corresponding detection limits of 0.07-0.4 and 0.1-0.5mug/l. The LCR for a 5-ml sample was 0.3-10mug/l for As(V) and 0.2-20mug/l for As(III+V). Sample throughput was 10-20 samples/h. The developed method has been effectively applied to tap water and mineral water samples, with recoveries ranging from 90 to 102% for 5-ml samples passed through the two columns.

  15. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.

    PubMed

    Yogalakshmi, K N; Joseph, Kurian

    2010-09-01

    Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle infestation, although this may reflect the relatively recent nature (< 10 years) of the infestation.

  17. Effect of venous (gut) CO2 loading on intrapulmonary gas fractions and ventilation in the tegu lizard.

    PubMed

    Ballam, G O; Donaldson, L A

    1988-01-01

    Studies were conducted to determine regional pulmonary gas concentrations in the tegu lizard lung. Additionally, changes in pulmonary gas concentrations and ventilatory patterns caused by elevating venous levels of CO2 by gut infusion were measured. It was found that significant stratification of lung gases was present in the tegu and that dynamic fluctuations of CO2 concentration varied throughout the length of the lung. Mean FCO2 was greater and FO2 less in the posterior regions of the lung. In the posterior regions gas concentrations remained nearly constant, whereas in the anterior regions large swings were observed with each breath. In the most anterior sections of the lung near the bronchi, CO2 and O2 concentrations approached atmospheric levels during inspiration and posterior lung levels during expiration. During gut loading of CO2, the rate of rise of CO2 during the breathing pause increased. The mean level of CO2 also increased. Breathing rate and tidal volume increased to produce a doubling of VE. These results indicate that the method of introduction of CO2 into the tegu respiratory system determines the ventilatory response. If the CO2 is introduced into the venous blood a dramatic increase in ventilation is observed. If the CO2 is introduced into the inspired air a significant decrease in ventilation is produced. The changes in pulmonary CO2 environment caused by inspiratory CO2 loading are different from those caused by venous CO2 loading. We hypothesize that the differences in pulmonary CO2 environment caused by either inspiratory CO2 loading or fluctuations in venous CO2 concentration act differently on the IPC. The differing response of the IPC to the two methods of CO2 loading is the cause of the opposite ventilatory response seen during either venous or inspiratory loading.

  18. Striking volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function.

    PubMed

    Funakoshi, Kouta; Hosokawa, Kazuya; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2014-01-01

    Patients with heart failure and preserved ejection fraction (HFpEF) are supersensitive to volume overload, and a striking increase in left atrial pressure (LAP) often occurs transiently and is rapidly resolved by intravascular volume reduction. The arterial baroreflex is a powerful regulator of intravascular stressed blood volume. We examined whether arterial baroreflex failure (FAIL) mimicked by constant carotid sinus pressure (CSP) causes a striking increase in LAP and systemic arterial pressure (AP) by volume loading in rats with normal left ventricular (LV) function. In anesthetized Sprague-Dawley rats, we isolated bilateral carotid sinuses and controlled CSP by a servo-controlled piston pump. We mimicked the normal arterial baroreflex by matching CSP to instantaneous AP and FAIL by maintaining CSP at a constant value regardless of AP. We infused dextran stepwise (infused volume [Vi]) until LAP reached 15 mm Hg and obtained the LAP-Vi relationship. We estimated the critical Vi as the Vi at which LAP reached 20 mm Hg. In FAIL, critical Vi decreased markedly from 19.4 ± 1.6 mL/kg to 15.6 ± 1.6 mL/kg (P < .01), whereas AP at the critical Vi increased (194 ± 6 mm Hg vs 163 ± 6 mm Hg; P < .01). We demonstrated that an artificial arterial baroreflex system we recently developed could fully restore the physiologic volume intolerance in the absence of native arterial baroreflex. Arterial baroreflex failure induces striking volume intolerance in the absence of LV dysfunction and may play an important role in the pathogenesis of acute heart failure, especially in states of HFpEF. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Wearable woven supercapacitor fabrics with high energy density and load-bearing capability.

    PubMed

    Shen, Caiwei; Xie, Yingxi; Zhu, Bingquan; Sanghadasa, Mohan; Tang, Yong; Lin, Liwei

    2017-10-30

    Flexible power sources with load bearing capability are attractive for modern wearable electronics. Here, free-standing supercapacitor fabrics that can store high electrical energy and sustain large mechanical loads are directly woven to be compatible with flexible systems. The prototype with reduced package weight/volume provides an impressive energy density of 2.58 mWh g -1 or 3.6 mWh cm -3 , high tensile strength of over 1000 MPa, and bearable pressure of over 100 MPa. The nanoporous thread electrodes are prepared by the activation of commercial carbon fibers to have three-orders of magnitude increase in the specific surface area and 86% retention of the original strength. The novel device configuration woven by solid electrolyte-coated threads shows excellent flexibility and stability during repeated mechanical bending tests. A supercapacitor watchstrap is used to power a liquid crystal display as an example of load-bearing power sources with various form-factor designs for wearable electronics.

  20. When to increase or reduce sodium loading in the management of fluid volume status during acute decompensated heart failure.

    PubMed

    Hirotani, Shinichi; Masuyama, Tohru

    2014-12-01

    Sodium restriction has been believed to be indispensible to manage fluid overload during acute decompensated heart failure (ADHF). However, recently, it was reported that a change in aggression of sodium and water restriction did not affect the outcome of ADHF. In contrast, current data suggest that small amount of hypertonic saline solution with high-dose furosemide produces an improvement in haemodynamic and clinical parameters without any severe adverse effects. In this perspective, first, we are going to describe the effects of sodium loading on neurohormonal activation, body's sodium balance, and renal function in chronic heart failure and the efficacy of loop diuretics in ADHF. Then, we are going to explain the possible mechanisms by which sodium loading enhances the efficacy of loop diuretics and about the clinical conditions during which sodium loading should be avoided. © 2014 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  1. [Objectification of the training effect of sports therapy for wheelchair users].

    PubMed

    Koch, I; Schlegel, M; Pirrwitz, A; Jaschke, B; Schlegel, K

    1983-12-01

    The effects of an additional six-weeks training program were investigated ergometrically and in practice in 10 paraplegics. In order to develop stamina, strength and coordinative abilities, the load components were varied by increasing training frequency, expanding load range and increasing stimuli density. It was possible to show a significant increase in the general physical capacity. The performance parameters of paraplegics were compared with those of wheelchair-bound sports competitors and able-bodied persons. It was possible to improve the capacity of skeletal muscles and bring it closer to that of competitive athletes and able-bodied persons. Trained paraplegics as well as competitive athletes both display to the same extent a conspicuously poorer cardiovascular capacity in relation to able-bodied persons. The reason for this is believed to lie in the extensive muscular and vascular deficiency due to the particular disablement and the poorer venous return resulting from the latter. It points to a reduced overall blood volume and a relatively small heart volume. These investigations are being continued. The findings of sports medicine necessarily require that continuous training take place with relatively high intensity for the purpose of producing a circulatory effect. On the other hand, a basic stamina training must ensure that the indicated capacity reserves of skeletal muscles are developed. The multifaceted possibilities for training within the framework of sport for the disabled are presented.

  2. Respiratory Changes in Response to Cognitive Load: A Systematic Review.

    PubMed

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M; Van den Bergh, Omer

    2016-01-01

    When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load.

  3. Respiratory Changes in Response to Cognitive Load: A Systematic Review

    PubMed Central

    Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Mittelstädt, Justin M.

    2016-01-01

    When people focus attention or carry out a demanding task, their breathing changes. But which parameters of respiration vary exactly and can respiration reliably be used as an index of cognitive load? These questions are addressed in the present systematic review of empirical studies investigating respiratory behavior in response to cognitive load. Most reviewed studies were restricted to time and volume parameters while less established, yet meaningful parameters such as respiratory variability have rarely been investigated. The available results show that respiratory behavior generally reflects cognitive processing and that distinct parameters differ in sensitivity: While mentally demanding episodes are clearly marked by faster breathing and higher minute ventilation, respiratory amplitude appears to remain rather stable. The present findings further indicate that total variability in respiratory rate is not systematically affected by cognitive load whereas the correlated fraction decreases. In addition, we found that cognitive load may lead to overbreathing as indicated by decreased end-tidal CO2 but is also accompanied by elevated oxygen consumption and CO2 release. However, additional research is needed to validate the findings on respiratory variability and gas exchange measures. We conclude by outlining recommendations for future research to increase the current understanding of respiration under cognitive load. PMID:27403347

  4. Ground Vehicle System Integration (GVSI) and Design Optimization Model.

    DTIC Science & Technology

    1996-07-30

    number of stowed kills Same basic load lasts longer range Gun/ammo parameters impact system weight, under - armor volume requirements Round volume...internal volume is reduced, the model assumes that the crew’s ability to operate while under armor will be impaired. If the size of a vehicle crew is...changing swept volume will alter under armor volume requirements for the total system; if system volume is fixed, changing swept volume will

  5. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  6. Cellular pressure and volume regulation and implications for cell mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2013-03-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.

  7. Seperating Long-term Hydrological Loading and Tectonic Deformation Observed with Multi-temporal SAR Interferometry and GPS in Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    LI, G.; Lin, H.

    2014-12-01

    From 2000 till present, most endorheic lakes in Tibetan plateau experienced quick increasing. Several largest lakes, gathered several meters depth water during one decade. Such massive mass increasing will lead to elastic and visco-elastic deformation of the ground. Qinghai-Tibetan Plateau is one the most active tectonic places in the world; monitoring its ground deformation is essential, when loading effect is a nuisance item. Due to the sparse distribution of GPS sites and most are roving sites, it is hard to distinguish tectonic component from mass loading effect. In this research we took Selin Co Lake located at Nujiang-Bangoin suture zone and evaluated long time ground deformation at hundred kilometers scale by multi-temporal SAR interferometry and simulate the ground deformation by loading history evaluated by multi mission satellite altimetry and optical images observation. At Nujiang-Bangoin suture zone, where GPS presented the maximum ground subsidence in Qinghai-Tibetan Plateau of 3.6mm/a which was found at the shore of Selin Co Lake from 1999 to 2011, when it experienced water level increasing of 0.7m/a. A model of elastic plate lying over Newtonian viscous half-space matches well with the results of multi-temporal SAR interferometry and GPS observations. We concluded that near Selin Co Lake area, ground deformation is composed by both tectonic and hydrological loading part. As SAR image coverage is much smaller than tectonic scale, we contribute the deformation detected by InSAR to loading effect. After evaluating and removing the hydrological loading effect, we founds that Nujiang-Bangoin suture zone did not experience quick subsidence, but only limited to 0.5mm/a. Selin Co Lake's quick volume increasing caused 3mm/a subsidence rate to the nearest GPS site. The Second nearest site showed the 1.4mm/a subsidence totally, which were composed by 1.05mm/a hydrological loading effect and the rest was tectonic. We also found that Young's Modulus is the most essential parameter for loading effect simulation, and our simulation gave the similar Young's Modulus as the previous seismic tomographic INDEPTH III program did. Therefore with accurate seismic tomographic results and loading history detected by remote sensing could accurately simulate ground deformation caused by hydrological loading.

  8. Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter.

    PubMed

    Qiu, Yuping; Xiao, Xiaoyu; Cheng, Haiyan; Zhou, Zunlong; Sheng, G Daniel

    2009-07-01

    Loading two organic acids of known molecular structures onto a black carbon was conducted to study the influence of pH and dissolved organic matter on the adsorption of pesticides. Tannic acid at the loading rates of 100 and 300 micromol/g reduced the surface area of black carbon by 18 and 63%, respectively. This was due principally to the blockage of micropores, as verified by measured pore volumes and pore-size distributions. With a comparatively much smaller molecular structure, gallic acid did not apparently influence these properties. The intrinsic acidities of the two acids increased the surface acidity from 1.88 mmol/g of black carbon to 1.93-2.02 mmol/g after DOM loading, resulting in a reduction in isoelectric point pH from 1.93 to 1.66-1.82. The adsorption of propanil, 2,4-D and prometon by black carbon free and loaded of DOM was dependent on pH because major adsorptive forces were the interactions between neutral pesticide molecules and uncharged carbon surfaces. The adsorption was diminished considerably by the deprotonation of 2,4-D and protonation of prometon, as well as the surface charge change of black carbon. Tannic acid of 100 and 300 micromol/g on black carbon reduced the pesticide adsorption at the equilibrium concentration of 10 mg/L by an average of 46 and 81%, respectively, consistent with the reductions of 42 and 81% in micropore volume. At the equilibrium concentration of 30 mg/L, the mesopore surface became the additional adsorptive domain for propanil. Loading tannic acid made the mesopore surface less accessible, due presumably to the enhanced obstruction by tannic acid.

  9. Impacts of logging on storm peak flows, flow volumes and suspended sediment loads in Caspar Creek, California

    Treesearch

    Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer

    2001-01-01

    Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...

  10. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Stratton, Troy C. (Inventor); Richardson, David E. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  11. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures

    PubMed Central

    Ossareh, A.; Rosentritt, M.; Kishen, A.

    2018-01-01

    Introduction: The aim of this study was to understand the mechanism by which iatrogenic root dentin removal influences radicular stress distribution and subsequently affects the resistance to vertical root fractures (VRF) in endodontically treated teeth. Materials and Methods: The experiments were conducted in two phases. Phase 1: freshly extracted premolar teeth maintained in phosphate-buffered saline were instrumented to simulate three different degrees of dentin removal, designated as low, medium, and extreme groups. Micro-Ct analyzes were performed to quantitatively determine: (a) the amount of dentin removed, (b) the remaining dentin volume, and (c) the moment of inertia of root dentin. The specimens were then subjected to thermomechanical cycling and continuous loading to determine (a) the mechanical load to fracture and (b) dentin microcracking (fractography) using scanning electron microscopy. Phase 2: Finite element analysis was used to evaluate the influence of dentin removal on the stress distribution pattern in root dentin. The data obtained were analyzed using one-way ANOVA and Tukey's post hoc test (P < 0.05). Results: Phase 1: A significantly greater volume of dentin was removed from teeth in extreme group when compared to low group (P < 0.01). The mechanical analysis showed that the load to fracture was significantly lower in teeth from extreme group (P < 0.05). A linear relationship was observed between the moment of inertia and load to fracture in all experimental groups (R2 = 0.52). Fractography showed that most microcracks were initiated from the root canal walls in extreme group. Phase 2: The numerical analysis showed that the radicular stress distribution increased apically and buccolingually with greater degree of root canal dentin removal. Conclusions: The combined experimental/numerical analyses highlighted the influence of remaining root dentin volume on the radicular bending resistance, stress distribution pattern, and subsequent propensity to VRF. PMID:29899632

  12. Quantitative and qualitative measure of intralaboratory two-dimensional protein gel reproducibility and the effects of sample preparation, sample load, and image analysis.

    PubMed

    Choe, Leila H; Lee, Kelvin H

    2003-10-01

    We investigate one approach to assess the quantitative variability in two-dimensional gel electrophoresis (2-DE) separations based on gel-to-gel variability, sample preparation variability, sample load differences, and the effect of automation on image analysis. We observe that 95% of spots present in three out of four replicate gels exhibit less than a 0.52 coefficient of variation (CV) in fluorescent stain intensity (% volume) for a single sample run on multiple gels. When four parallel sample preparations are performed, this value increases to 0.57. We do not observe any significant change in quantitative value for an increase or decrease in sample load of 30% when using appropriate image analysis variables. Increasing use of automation, while necessary in modern 2-DE experiments, does change the observed level of quantitative and qualitative variability among replicate gels. The number of spots that change qualitatively for a single sample run in parallel varies from a CV = 0.03 for fully manual analysis to CV = 0.20 for a fully automated analysis. We present a systematic method by which a single laboratory can measure gel-to-gel variability using only three gel runs.

  13. Kinetic Study on the Removal of Iron from Gold Mine Tailings by Citric Acid

    NASA Astrophysics Data System (ADS)

    Mashifana, T.; Mavimbela, N.; Sithole, N.

    2018-03-01

    The Gold mining generates large volumes of tailings, with consequent disposal and environmental problems. Iron tends to react with sulphur to form pyrite and pyrrhotite which then react with rain water forming acid rain. The study focuses on the removal of iron (Fe) from Gold Mine tailings; Fe was leached using citric acid as a leaching reagent. Three parameters which have an effect on the removal of Fe from the gold mine tailings, namely; temperature (25 °C and 50 °C), reagent concentration (0.25 M, 0.5 M, 0.75 M and 1 M) and solid loading ratio (20 %, 30 % and 40 %) were investigated. It was found that the recovery of Fe from gold mine tailings increased with increasing temperature and reagent concentration, but decreased with increasing solid loading ratio. The optimum conditions for the recovery of Fe from gold mine tailings was found to be at a temperature of 50 ºC, reagent concentration of 1 M and solid loading of 20 %. Three linear kinetic models were investigated and Prout-Tompkins kinetic model was the best fit yielding linear graphs with the highest R2 values.

  14. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    PubMed

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  15. Load Bearing Equipment for Bone and Muscle

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  16. Stereo photo series for quantifying natural fuels. Volume XII: Post-hurricane fuels in forests of the Southeast United States.

    Treesearch

    Robert E. Vihnanek; Cameron S. Balog; Clinton S. Wright; Roger D. Ottmar; Jeffrey W. Kelly

    2009-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in post-hurricane forests in the southeastern United States. Each group of photos includes inventory information summarizing vegetation composition, structure and loading, woody material loading and density by size class, forest floor loading, and various site...

  17. Proceedings of the European Conference (4th), Held in Wageningen, The Netherlands on March 21-23, 1989. Volume 2

    DTIC Science & Technology

    1989-03-01

    comparison between the two. Tyre self-excited vibration can be caused by lack of uniforuity and/or out-of-balance. The authors suggest that driving ... safety is best described by the ’Dynamic Load Factor’ which relates the ainimum rolling dynamic load to the static tyre load. Dynamic Load Factors are

  18. The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV

    NASA Astrophysics Data System (ADS)

    Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying

    2018-06-01

    For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.

  19. Study of Abrasive Wear Volume Map for PTFE and PTFE Composites

    NASA Astrophysics Data System (ADS)

    Unal, H.; Sen, U.; Mimaroglu, A.

    2007-11-01

    The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.

  20. Strategy Guideline. Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less

  1. Extreme prices in electricity balancing markets from an approach of statistical physics

    NASA Astrophysics Data System (ADS)

    Mureddu, Mario; Meyer-Ortmanns, Hildegard

    2018-01-01

    An increase in energy production from renewable energy sources is viewed as a crucial achievement in most industrialized countries. The higher variability of power production via renewables leads to a rise in ancillary service costs over the power system, in particular costs within the electricity balancing markets, mainly due to an increased number of extreme price spikes. This study analyzes the impact of an increased share of renewable energy sources on the behavior of price and volumes of the Italian balancing market. Starting from configurations of load and power production, which guarantee a stable performance, we implement fluctuations in the load and in renewables; in particular we artificially increase the contribution of renewables as compared to conventional power sources to cover the total load. We then determine the amount of requested energy in the balancing market and its fluctuations, which are induced by production and consumption. Within an approach of agent-based modeling we estimate the resulting energy prices and costs. While their average values turn out to be only slightly affected by an increased contribution from renewables, the probability for extreme price events is shown to increase along with undesired peaks in the costs. Our methodology provides a tool for estimating outliers in prices obtained in the energy balancing market, once data of consumption, production and their typical fluctuations are provided.

  2. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  3. Acoustic Measures of Voice and Physiologic Measures of Autonomic Arousal during Speech as a Function of Cognitive Load.

    PubMed

    MacPherson, Megan K; Abur, Defne; Stepp, Cara E

    2017-07-01

    This study aimed to determine the relationship among cognitive load condition and measures of autonomic arousal and voice production in healthy adults. A prospective study design was conducted. Sixteen healthy young adults (eight men, eight women) produced a sentence containing an embedded Stroop task in each of two cognitive load conditions: congruent and incongruent. In both conditions, participants said the font color of the color words instead of the word text. In the incongruent condition, font color differed from the word text, creating an increase in cognitive load relative to the congruent condition in which font color and word text matched. Three physiologic measures of autonomic arousal (pulse volume amplitude, pulse period, and skin conductance response amplitude) and four acoustic measures of voice (sound pressure level, fundamental frequency, cepstral peak prominence, and low-to-high spectral energy ratio) were analyzed for eight sentence productions in each cognitive load condition per participant. A logistic regression model was constructed to predict the cognitive load condition (congruent or incongruent) using subject as a categorical predictor and the three autonomic measures and four acoustic measures as continuous predictors. It revealed that skin conductance response amplitude, cepstral peak prominence, and low-to-high spectral energy ratio were significantly associated with cognitive load condition. During speech produced under increased cognitive load, healthy young adults show changes in physiologic markers of heightened autonomic arousal and acoustic measures of voice quality. Future work is necessary to examine these measures in older adults and individuals with voice disorders. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. [Optimization of trehalose loading in red blood cells before freeze-drying].

    PubMed

    Zhuang, Yuan; Liu, Jing-Han; Ouyang, Xi-Lin; Chen, Lin-Feng; Che, Ji

    2007-04-01

    The key points for better protection of trehalose in freeze-drying red blood cells (RBCs) are to resolve non-osmosis of trehalose to red blood cells and to make cytoplasmic trehalose to reach effective concentration. This study was aimed to investigate the regularity of loading RBCs with trehalose, screen out optimal loading condition and evaluate the effect of trehalose on physico-chemical parameters of RBCs during the period of loading. The cytoplasmic trehalose concentration in red blood cells, free hemoglobin and ATP level were determined at different incubation temperatures (4, 22 and 37 degrees C), different trehaolse concentrations (0, 200, 400, 600, 800 and 1000 mmol/L) and different incubation times (2, 4, 6, 8 and 10 hours), the cytoplasmic trehalose, free hemoglobin (FHb), hemoglobin (Hb) and mean corpuscular volume (MCV) in fresh RBCs and RBCs stored for 72 hours at 4 degrees C were compared, when loading condition was ensured. The results showed that with increase of incubation temperature, time and extracellular trehalose concentration, the loading of trehalose in RBCs also increased. Under the optimal loading condition, cytoplasmic trehalose concentration and free hemoglobin level of fresh RBCs and RBCs stored for 72 hours at 4 degrees C were 65.505 +/- 6.314 mmol/L, 66.2 +/- 5.002 mmol/L and 6.567 +/- 2.568 g/L, 16.168 +/- 3.922 g/L respectively. It is concluded that the most optimal condition of loading trehalose is that fresh RBCs incubate in 800 mmol/L trehalose solution for 8 hours at 37 degrees C. This condition can result in a efficient cytoplasmic trehalose concentration. The study provides an important basis for long-term preservation of RBCs.

  5. Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing.

    PubMed

    Niehoff, A; Müller, M; Brüggemann, L; Savage, T; Zaucke, F; Eckstein, F; Müller-Lung, U; Brüggemann, G-P

    2011-08-01

    To investigate (1) the effect of running and drop landing interventions on knee cartilage deformation and serum cartilage oligomeric matrix protein (COMP) concentration and (2) if the changes in cartilage volume correlate with the changes in serum COMP level. Knee joint cartilage volume and thickness were determined using magnetic resonance imaging (MRI) as well as COMP concentration from serum samples before and after in vivo loading of 14 healthy adults (seven male and seven female). Participants performed different loading interventions of 30 min duration on three different days: (1) 100 vertical drop landings from a 73 cm high platform, (2) running at a velocity of 2.2m/s (3.96 km), and (3) resting on a chair. Blood samples were taken immediately before, immediately after and 0.5h, 1h, 2h and 3h post intervention. Pre- and post-loading coronal and axial gradient echo MR images with fat suppression were used to determine the patellar, tibial and femoral cartilage deformation. Serum COMP levels increased immediately after the running (+30.7%, pre: 7.3U/l, 95% confidence interval (CI): 5.6, 8.9, post: 9.1U/l, 95% CI: 7.2, 11.0, P=0.001) and after drop landing intervention (+32.3%, pre: 6.8U/l, 95% CI: 5.3, 8.4; post: 8.9U/l, 95% CI: 6.8, 10.9, P=0.001). Cartilage deformation was more pronounced after running compared to drop landing intervention, with being significant (volume: P=0.002 and thickness: P=0.001) only in the lateral tibia. We found a significant correlation (r(2)=0.599, P=0.001) between changes in serum COMP (%) and in cartilage volume (%) after the drop landing intervention, but not after running. In vivo exercise interventions differentially regulate serum COMP concentrations and knee cartilage deformations. The relation between changes in COMP and in cartilage volume seems to depend on both mechanical and biochemical factors. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    PubMed Central

    2015-01-01

    A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952

  7. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less

  8. A Preliminary Exercise Study of Japanese Version of High-intensity Interval Aerobic Training (J-HIAT)

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoaki; Seino, Satoshi; Ohkawara, Kazunori; Tanaka, Kiyoji; Yamada, Shin; Ohshima, Hiroshi; Mukai, Chiaki

    In a microgravity environment, the volume load on the left ventricle is reduced and the cardiac function deteriorates.Consequently, maximal oxygen consumption (VO2max) decreases during spaceflight. Reduced cardiac function can lead to serious health problems such as cardiac atrophy, diastolic dysfunction, and orthostatic hypotension. An exercise using a bicycle ergometer during spaceflight may help to increase the volume load on the left ventricle. On the other hand, many astronauts also experience weight loss during spaceflight because energy imbalances can occur. Some researchers indicate that excessive exercise may promote the energy deficit and have a negative impact on long-term spaceflight. Therefore, we have been devising an original bicyle erogometer protocol better suited to astronauts experiencing long-term spaceflight.One of our candidate protocols is the 3 × 3 protocol named J-HIAT, i.e., three times 3-min intervals with a 2-min active recovery period between intervals. In response to our preliminary experiments, we concluded that J-HIAT would be a potential protocol to control the increase of energy consumption and to have a significant impact on VO2max and the cardiac function. To further verify this method, we are working on full-scale experiments. In future, we will show the results of these experiments.

  9. Wave reflections in the pulmonary arteries analysed with the reservoir–wave model

    PubMed Central

    Bouwmeester, J Christopher; Belenkie, Israel; Shrive, Nigel G; Tyberg, John V

    2014-01-01

    Conventional haemodynamic analysis of pressure and flow in the pulmonary circulation yields incident and reflected waves throughout the cardiac cycle, even during diastole. The reservoir–wave model provides an alternative haemodynamic analysis consistent with minimal wave activity during diastole. Pressure and flow in the main pulmonary artery were measured in anaesthetized dogs and the effects of hypoxia and nitric oxide, volume loading and positive end-expiratory pressure were observed. The reservoir–wave model was used to determine the reservoir contribution to pressure and flow and once subtracted, resulted in ‘excess’ quantities, which were treated as wave-related. Wave intensity analysis quantified the contributions of waves originating upstream (forward-going waves) and downstream (backward-going waves). In the pulmonary artery, negative reflections of incident waves created by the right ventricle were observed. Overall, the distance from the pulmonary artery valve to this reflection site was calculated to be 5.7 ± 0.2 cm. During 100% O2 ventilation, the strength of these reflections increased 10% with volume loading and decreased 4% with 10 cmH2O positive end-expiratory pressure. In the pulmonary arterial circulation, negative reflections arise from the junction of lobar arteries from the left and right pulmonary arteries. This mechanism serves to reduce peak systolic pressure, while increasing blood flow. PMID:24756638

  10. Mass loading of the upper airway extraluminal tissue space in rabbits: effects on tissue pressure and pharyngeal airway lumen geometry.

    PubMed

    Kairaitis, Kristina; Howitt, Lauren; Wheatley, John R; Amis, Terence C

    2009-03-01

    Lateral pharyngeal fat pad compression of the upper airway (UA) wall is thought to influence UA size in patients with obstructive sleep apnea. We examined interactions between acute mass/volume loading of the UA extra-luminal tissue space and UA patency. We studied 12 supine, anesthetized, spontaneously breathing, head position-controlled (50 degrees ), New Zealand White rabbits. Submucosal extraluminal tissue pressures (ETP) in the anterolateral (ETPlat) and anterior (ETPant) pharyngeal wall were monitored with surgically inserted pressure transducer-tipped catheters (Millar). Tracheal pressure (Ptr) and airflow (V) were measured via a pneumotachograph and pressure transducer inserted in series into the intact trachea, with hypopharyngeal cross-sectional area (CSA) measured via computed tomography, while graded saline inflation (0-1.5ml) of a compliant tissue expander balloon in the anterolateral subcutaneous tissue was performed. Inspiratory UA resistance (Rua) at 20 ml/s was calculated from a power function fitted to Ptr vs. V data. Graded expansion of the anterolateral balloon increased ETPlat from 2.3 +/- 0.5 cmH(2)O (n = 11, mean +/- SEM) to 5.0 +/- 1.1 cmH(2)O at 1.5-ml inflation (P < 0.05; ANOVA). However, ETPant was unchanged from 0.5 +/- 0.5 cmH(2)O (n = 9; P = 0.17). Concurrently, Rua increased to 119 +/- 4.2% of baseline value (n = 12; P < 0.001) associated with a significant reduction in CSA between 10 and 70% of airway length to a minimum of 82.2 +/- 4.4% of baseline CSA at 40% of airway length (P < 0.05). We conclude that anterolateral loading of the upper airway extraluminal tissue space decreases upper airway patency via an increase in ETPlat, but not ETPant. Lateral pharyngeal fat pad size may influence UA patency via increased tissue volume and pressure causing UA wall compression.

  11. Nanoindentation study on the characteristic of shear transformation zone in a Pd-based bulk metallic glass during serrated flow

    NASA Astrophysics Data System (ADS)

    Liao, G. K.; Long, Z. L.; Zhao, M. S. Z.; Peng, L.; Chai, W.; Ping, Z. H.

    2018-04-01

    This paper presents the research on the evolution of shear transformation zone (STZ) in a Pd-based bulk metallic glass (BMG) during serrated flow under nanoindentation. A novel method of estimating the STZ volume through statistical analysis of the serrated flow behavior was proposed for the first time. Based on the proposed method, the STZ volume of the studied BMG at various peak loads have been systematically investigated. The results indicate that the measured STZ volumes are in good agreement with that documented in literature, and the STZ size exhibits an increasing trend during indentation. Moreover, the correlation between the serrated flow dynamics and the STZ activation has also been evaluated. It is found that the STZ activation can promote the formation of self-organized critical (SOC) state during serrated flow.

  12. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    NASA Astrophysics Data System (ADS)

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  13. 1995 Pacific Northwest Loads and Resources Study, Technical Appendix: Volume 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration.

    1995-12-01

    The Pacific Northwest Loads and Resources Study (WhiteBook), is published annually by BPA, and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to the 1981 regional power sales contracts. Specifically, BPA uses the, information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. Aside frommore » these purposes, the White Book is used for input to BPA`s resource planning process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC).« less

  14. Optical and Thermo-optical Properties of Polyimide-Single-Walled Carbon Nanotube Films: Experimental Results and Empirical Equations

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Connell, John W.; Watson, Kent A.; Danehy, Paul M.

    2005-01-01

    The incorporation of single-walled carbon nanotubes (SWNTs) into the bulk of space environmentally durable polymers at loading levels greater than or equal to 0.05 wt % has afforded thin films with surface and volume resistivities sufficient for electrostatic charge mitigation. However, the optical transparency at 500 nm decreased and the thermo-optical properties (solar absorptivity and thermal emissivity) increased with increaed SWNT loading. These properties were also dependent on film thickness. The absorbance characteristics of the films as a function of SWNT loading and film thickness were measured and determined to follow the classical Beer-Lambert law. Based on these results, an empirical relationship was derived and molar absorptivities determined for both the SWNTs and polymer matrix to provide a predictive approximation of these properties. The molar absorptivity determined for SWNTs dispersed in the polymer was comparable to reported solution determined values for HiPco SWNTs.

  15. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  16. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    USGS Publications Warehouse

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce

  17. Compression failure of fibrous laminated composites in the presence of stress gradients : experiment and analysis

    NASA Astrophysics Data System (ADS)

    Waas, Anthony M.

    A series of experiments were performed to determine the mechanism of failure in compressively loaded laminated plates in the presence of stress gradients generated by a circular cutout. Real time holographic interferometry and in-situ photomicrography of the hole surface, were used to observe the progression of failure.The test specimens are multi-layered composite flat plates, which are loaded in compression. The plates are made of two material systems, T300/BP907 and IM7/8551-7. Two different lay-ups of T300/BP907 and four different lay-ups of IM7/8551-7 are investigated.The load on the specimen is slowly increased and a series of interferograms are produced during the load cycle. These interferograms are video-recorded. The results obtained from the interferograms and photo-micrographs are substantiated by sectioning studies and ultrasonic C-scanning of some specimens which are unloaded prior to catastrophic failure, but beyond failure initiation. This is made possible by the servo-controlled loading mechanism that regulates the load application and offers the flexibility of unloading a specimen at any given instance in the loadtime history.An underlying objective of the present investigation is the identification of the physics of the failure initiation process. This required testing specimens with different stacking sequences, for a fixed hole diameter, so that consistent trends in the failure process could be identified.It is revealed that the failure is initiated as a localized instability in the 0? plies at the hole surface, approximately at right angles to the loading direction. This instability emanating at the hole edge and propagating into the interior of the specimen within the 0? plies is found to be fiber microbuckling. The microbuckling is found to occur at a local strain level of [...]8600 [mu]strain at the hole edge for the IM material system. This initial failure renders a narrow zone of fibers within the 0? plies to loose structural integrity. Subsequent to the 0?-ply failure, extensive delamination cracking is observed with increasing load. The through thickness location of these delaminations is found to depend on the position of the 0? plies.The delaminated portions spread to the undamaged areas of the laminate by a combination of delamination buckling and growth, the buckling further enhancing the growth. When the delaminated area reaches a critical size, about 75-100% of the hole radius in extent, an accelerated growth rate of the delaminated portions is observed. The culmination of this last event is the complete loss of flexural stiffness of each of the delaminated portions leading to catastrophic failure of the plate. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.A simple mechanical model is presented for the microbuckling problem. This model addresses the buckling instability of a semi-infinte layered half-plane alternatingly stacked with fibers and matrix, loaded parallel to the surface of the half-plane. The fibers are modelled using Bernoulli-Navier beam theory, and the matrix is assumed to be a linearly elastic foundation. The predicted buckling strains are found to overestimate the experimental result. However, the dependence of the buckling strain on parameters such as the fiber volume fraction, ratio of Youngs moduli of the constituents and Poisson's ratio of the matrix are obtained from the analysis. It is seen that a high fiber volume fraction, increased matrix stiffness, and perfect bonding between fiber and matrix are desirable properties for increasing the compressive strength.

  18. Stereo photo series for quantifying natural fuels Volume X: sagebrush with grass and ponderosa pine-juniper types in central Montana.

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright

    2007-01-01

    Two series of single and stereo photographs display a range of natural conditions and fuel loadings in sagebrush with grass and ponderosa pinejuniper types in central Montana. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading;...

  19. Lactate response to different volume patterns of power clean.

    PubMed

    Date, Anand S; Simonson, Shawn R; Ransdell, Lynda B; Gao, Yong

    2013-03-01

    The ability to metabolize or tolerate lactate and produce power simultaneously can be an important determinant of performance. Current training practices for improving lactate use include high-intensity aerobic activities or a combination of aerobic and resistance training. Excessive aerobic training may have undesired physiological adaptations (e.g., muscle loss, change in fiber types). The role of explosive power training in lactate production and use needs further clarification. We hypothesized that high-volume explosive power movements such as Olympic lifts can increase lactate production and overload lactate clearance. Hence, the purpose of this study was to assess lactate accumulation after the completion of 3 different volume patterns of power cleans. Ten male recreational athletes (age 24.22 ± 1.39 years) volunteered. Volume patterns consisted of 3 sets × 3 repetition maximum (3RM) (low volume [LV]), 3 sets × 6 reps at 80-85% of 3RM (midvolume [MV]), and 3 sets × 9 reps at 70-75% of 3RM (high volume [HV]). Rest period was identical at 2 minutes. Blood samples were collected immediately before and after each volume pattern. The HV resulted in the greatest lactate accumulation (7.43 ± 2.94 mmol·L) vs. (5.27 ± 2.48 and 4.03 ± 1.78 mmol·L in MV and LV, respectively). Mean relative increase in lactate was the highest in HV (356.34%). The findings indicate that lactate production in power cleans is largely associated with volume, determined by number of repetitions, load, and rest interval. High-volume explosive training may impose greater metabolic demands than low-volume explosive training and may improve ability to produce power in the presence of lactate. The role of explosive power training in overloading the lactate clearance mechanism should be examined further, especially for athletes of intermittent sport.

  20. FBI fingerprint identification automation study: AIDS 3 evaluation report. Volume 6: Environmental analysis

    NASA Technical Reports Server (NTRS)

    Mulhall, B. D. L.

    1980-01-01

    The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.

  1. Empirical relations between large wood transport and catchment characteristics

    NASA Astrophysics Data System (ADS)

    Steeb, Nicolas; Rickenmann, Dieter; Rickli, Christian; Badoux, Alexandre

    2017-04-01

    The transport of vast amounts of large wood (LW) in water courses can considerably aggravate hazardous situations during flood events, and often strongly affects resulting flood damage. Large wood recruitment and transport are controlled by various factors which are difficult to assess and the prediction of transported LW volumes is difficult. Such information are, however, important for engineers and river managers to adequately dimension retention structures or to identify critical stream cross-sections. In this context, empirical formulas have been developed to estimate the volume of transported LW during a flood event (Rickenmann, 1997; Steeb et al., 2017). The data base of existing empirical wood load equations is, however, limited. The objective of the present study is to test and refine existing empirical equations, and to derive new relationships to reveal trends in wood loading. Data have been collected for flood events with LW occurrence in Swiss catchments of various sizes. This extended data set allows us to derive statistically more significant results. LW volumes were found to be related to catchment and transport characteristics, such as catchment size, forested area, forested stream length, water discharge, sediment load, or Melton ratio. Both the potential wood load and the fraction that is effectively mobilized during a flood event (effective wood load) are estimated. The difference of potential and effective wood load allows us to derive typical reduction coefficients that can be used to refine spatially explicit GIS models for potential LW recruitment.

  2. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher

    PubMed Central

    Marussich, Lauren; Manns, Fabrice; Nankivil, Derek; Maceo Heilman, Bianca; Yao, Yue; Arrieta-Quintero, Esdras; Ho, Arthur; Augusteyn, Robert; Parel, Jean-Marie

    2015-01-01

    Purpose To determine if the lens volume changes during accommodation. Methods The study used data acquired on 36 cynomolgus monkey lenses that were stretched in a stepwise fashion to simulate disaccommodation. At each step, stretching force and dioptric power were measured and a cross-sectional image of the lens was acquired using an optical coherence tomography system. Images were corrected for refractive distortions and lens volume was calculated assuming rotational symmetry. The average change in lens volume was calculated and the relation between volume change and power change, and between volume change and stretching force, were quantified. Linear regressions of volume-power and volume-force plots were calculated. Results The mean (±SD) volume in the unstretched (accommodated) state was 97 ± 8 mm3. On average, there was a small but statistically significant (P = 0.002) increase in measured lens volume with stretching. The mean change in lens volume was +0.8 ± 1.3 mm3. The mean volume-power and volume-load slopes were −0.018 ± 0.058 mm3/D and +0.16 ± 0.40 mm3/g. Conclusions Lens volume remains effectively constant during accommodation, with changes that are less than 1% on average. This result supports a hypothesis that the change in lens shape with accommodation is accompanied by a redistribution of tissue within the capsular bag without significant compression of the lens contents or fluid exchange through the capsule. PMID:26161985

  3. Exercise Equipment: Neutral Buoyancy

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  4. Obesity and Structural Brain Integrity in Older Women: The Women’s Health Initiative Magnetic Resonance Imaging Study

    PubMed Central

    Gaussoin, Sarah A.; Wassertheil-Smoller, Sylvia; Limacher, Marian; Casanova, Ramon; Yaffe, Kristine; Resnick, Susan M.; Espeland, Mark A.

    2016-01-01

    Background: Midlife obesity has been linked to age-related brain atrophy and risk of dementia, but the relationships are less clear for older individuals. These associations may be explained by changes in appetite or metabolism in the dementia prodrome; thus, prospective studies with adequate follow-up are needed. We examined the associations that obesity (body mass index, BMI) and change in BMI over an average of 6.6 (1.0–9.1) years have with global and regional brain and white matter lesion volumes in a sample of 1,366 women aged 65–80. Methods: Least square means for regional brain volumes and white matter lesion loads for women grouped by BMI and changes in BMI were generated from multivariable linear models with and without adjustment for demographic and health covariates. Results: Both global obesity and increase in BMI were associated with lower cerebrospinal fluid and higher specific brain volumes (ps < .05), after controlling for diabetes and other cerebrovascular disease risk factors. Obesity, but not change in BMI, predicted lower lesion loads for the total, parietal, and occipital white matter (ps < .05). Conclusions: Obesity in this cohort is associated with less brain atrophy and lower ischemic lesion loads. The findings are consistent with our previous report of worse cognitive performance in association with weight loss (probably not due to frailty) in this cohort and in line with the idea of the “obesity paradox” as differences in dementia risk vary across time, whereby midlife obesity seems to be a predictor of dementia, whereas weight loss seems to be a better predictor at older ages. PMID:26961581

  5. Optimisation potential for a SBR plant based upon integrated modelling for dry and wet weather conditions.

    PubMed

    Rönner-Holm, S G E; Kaufmann Alves, I; Steinmetz, H; Holm, N C

    2009-01-01

    Integrated dynamic simulation analysis of a full-scale municipal sequential batch reactor (SBR) wastewater treatment plant (WWTP) was performed using the KOSMO pollution load simulation model for the combined sewer system (CSS) and the ASM3 + EAWAG-BioP model for the WWTP. Various optimising strategies for dry and storm weather conditions were developed to raise the purification and hydraulic performance and to reduce operation costs based on simulation studies with the calibrated WWTP model. The implementation of some strategies on the plant led to lower effluent values and an average annual saving of 49,000 euro including sewage tax, which is 22% of the total running costs. Dynamic simulation analysis of CSS for an increased WWTP influent over a period of one year showed high potentials for reducing combined sewer overflow (CSO) volume by 18-27% and CSO loads for COD by 22%, NH(4)-N and P(total) by 33%. In addition, the SBR WWTP could easily handle much higher influents without exceeding the monitoring values. During the integrated simulation of representative storm events, the total emission load for COD dropped to 90%, the sewer system emitted 47% less, whereas the pollution load in the WWTP effluent increased to only 14% with 2% higher running costs.

  6. Modular container assembled from fiber reinforced thermoplastic sandwich panels

    DOEpatents

    Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman

    2007-12-25

    An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.

  7. Nutrient loading and macrophyte growth in Wilson Inlet, a bar-built southwestern Australian estuary

    NASA Astrophysics Data System (ADS)

    Lukatelich, R. J.; Schofield, N. J.; McComb, A. J.

    1987-02-01

    Wilson Inlet is a 'bar-built' estuary, open to the ocean only when a sandbar has been breached after river flow. estimates are presented of phosphorus and nitrogen loadings from rivers, losses to the ocean, and amounts present in estuarine components during a particular year. Following bar opening, a volume of water equivalent to 35% of estuarine volume at the time was lost, providing a major loss of dissolved nutrients from the estuary. While the bar was open (51 days) water was displaced through river flow, but there was little tidal exchange. There was net retention of phosphorus (about 60% of river input) and some loss of nitrogen (less than 15%). Much of the nutrient held in the estuary was in surface sediments, but concentrations have shown little change with time and are similar to other southwestern estuaries. In contrast there have been massive increases in the biomass of Ruppia megacarpa Mason in recent years; this constitutes more than 90% of plant biomass. The nutrient bank in this plant is large compared to the water column, and amounts recycled through plant material greatly exceeded riverine loading in the year of the study. Tissue N concentrations were relatively high and constant, tissue P relatively low and seasonally variable, suggesting P limitation of plant biomass. Estimates of nutrient loading from streams showed relatively higher nutrient inputs from catchments cleared for agriculture. These are in higher rainfall areas, have high drainage densities, large proportions of sandy soils and are subjected to phosphatic fertilizer application.

  8. Stress-induced brain activity, brain atrophy, and clinical disability in multiple sclerosis

    PubMed Central

    Weygandt, Martin; Meyer-Arndt, Lil; Behrens, Janina Ruth; Wakonig, Katharina; Bellmann-Strobl, Judith; Ritter, Kerstin; Scheel, Michael; Brandt, Alexander U.; Labadie, Christian; Hetzer, Stefan; Gold, Stefan M.; Paul, Friedemann; Haynes, John-Dylan

    2016-01-01

    Prospective clinical studies support a link between psychological stress and multiple sclerosis (MS) disease severity, and peripheral stress systems are frequently dysregulated in MS patients. However, the exact link between neurobiological stress systems and MS symptoms is unknown. To evaluate the link between neural stress responses and disease parameters, we used an arterial-spin–labeling functional MRI stress paradigm in 36 MS patients and 21 healthy controls. Specifically, we measured brain activity during a mental arithmetic paradigm with performance-adaptive task frequency and performance feedback and related this activity to disease parameters. Across all participants, stress increased heart rate, perceived stress, and neural activity in the visual, cerebellar and insular cortex areas compared with a resting condition. None of these responses was related to cognitive load (task frequency). Consistently, although performance and cognitive load were lower in patients than in controls, stress responses did not differ between groups. Insula activity elevated during stress compared with rest was negatively linked to impairment of pyramidal and cerebral functions in patients. Cerebellar activation was related negatively to gray matter (GM) atrophy (i.e., positively to GM volume) in patients. Interestingly, this link was also observed in overlapping areas in controls. Cognitive load did not contribute to these associations. The results show that our task induced psychological stress independent of cognitive load. Moreover, stress-induced brain activity reflects clinical disability in MS. Finally, the link between stress-induced activity and GM volume in patients and controls in overlapping areas suggests that this link cannot be caused by the disease alone. PMID:27821732

  9. Dynamic equilibration of airway smooth muscle contraction during physiological loading.

    PubMed

    Latourelle, Jeanne; Fabry, Ben; Fredberg, Jeffrey J

    2002-02-01

    Airway smooth muscle contraction is the central event in acute airway narrowing in asthma. Most studies of isolated muscle have focused on statically equilibrated contractile states that arise from isometric or isotonic contractions. It has recently been established, however, that muscle length is determined by a dynamically equilibrated state of the muscle in which small tidal stretches associated with the ongoing action of breathing act to perturb the binding of myosin to actin. To further investigate this phenomenon, we describe in this report an experimental method for subjecting isolated muscle to a dynamic microenvironment designed to closely approximate that experienced in vivo. Unlike previous methods that used either time-varying length control, force control, or time-invariant auxotonic loads, this method uses transpulmonary pressure as the controlled variable, with both muscle force and muscle length free to adjust as they would in vivo. The method was implemented by using a servo-controlled lever arm to load activated airway smooth muscle strips with transpulmonary pressure fluctuations of increasing amplitude, simulating the action of breathing. The results are not consistent with classical ideas of airway narrowing, which rest on the assumption of a statically equilibrated contractile state; they are consistent, however, with the theory of perturbed equilibria of myosin binding. This experimental method will allow for quantitative experimental evaluation of factors that were previously outside of experimental control, including sensitivity of muscle length to changes of tidal volume, changes of lung volume, shape of the load characteristic, loss of parenchymal support and inflammatory thickening of airway wall compartments.

  10. Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.

    2014-01-01

    Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.

  11. Response and adaptation of Beagle dogs to hypergravity

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1975-01-01

    Eight male Beagle dogs, five months old, were centrifuged continuously for three months at progressively increasing loads. Heart rate and deep body temperature were monitored continuously by implant biotelemetry. Initially, centrifuged dogs showed transient decreases in heart rate and body temperature along with changes in their diurnal rhythm patterns. Compared with normal gravity controls, exposed dogs showed a slower growth rate and a reduced amount of body fat. Blood protein, total lipids, cholesterol, calcium, packed cell volume, red blood cell count, and hemoglobin were also decreased significantly. Absolute weights of the leg bones of centrifuged dogs were significantly greater than controls. Photon absorptiometry revealed significant density increases in selective regions of the femur and humerus of centrifuged dogs. In spite of the various changes noted, results from this and other studies affirm the view that dogs can tolerate and adapt to sustained loads as high as 2.5 g without serious impairment of their body structure and function.

  12. Experimental Spin Testing of Integrally Damped Composite Plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John

    1998-01-01

    The experimental behavior of spinning laminated composite pretwisted plates (turbo-fan blade-like) with small (less than 10% by volume) integral viscoelastic damping patches was investigated at NASA-Lewis Research Center. Ten different plate sets were experimentally spin tested and the resulting data was analyzed. The first-four plate sets investigated tailoring patch locations and definitions to damp specific modes on spinning flat graphite/epoxy plates as a function of rotational speed. The remaining six plate sets investigated damping patch size and location on specific modes of pretwisted (30 degrees) graphite/epoxy plates. The results reveal that: (1) significant amount of damping can be added using a small amount of damping material, (2) the damped plates experienced no failures up to the tested 28,000 g's and 750,000 cycles, (3) centrifugal loads caused an increase in bending frequencies and corresponding reductions in bending damping levels that are proportional to the bending stiffness increase, and (4) the centrifugal loads caused a decrease in torsion natural frequency and increase in damping levels of pretwisted composite plates.

  13. Chesapeake Bay Hypoxic Volume Forecasts and Results

    USGS Publications Warehouse

    Evans, Mary Anne; Scavia, Donald

    2013-01-01

    Given the average Jan-May 2013 total nitrogen load of 162,028 kg/day, this summer's hypoxia volume forecast is 6.1 km3, slightly smaller than average size for the period of record and almost the same as 2012. The late July 2013 measured volume was 6.92 km3.

  14. Traffic load spectra development for the 2002 AASHTO design guide.

    DOT National Transportation Integrated Search

    2004-12-30

    Accurate knowledge of traffic volumes and loading is essential to structural pavement design and performance. : Underestimation of design traffic can result in premature pavement failures and excessive rehabilitation costs. : Overestimation can resul...

  15. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    USGS Publications Warehouse

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  16. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1996-01-01

    Plasma volume is reduced by 10-20% within 24-48 h of exposure to simulated or actual microgravity. The clinical importance of microgravity induced hypovolemia is manifested by its relationship with orthostatic intolerance and reduced maximal oxygen uptake (VO2max) after return to one gravity (1G). Since there is no evidence to suggest that plasma volume reduction during microgravity is associated with thirst or renal dysfunctions, a diuresis induced by an immediate blood volume shift to the central circulation appears responsible for microgravity-induced hypovolemia. Since most astronauts choose to restrict their fluid intake before a space mission, absence of increased urine output during actual space flight may be explained by low central venous pressure (CVP) which accompanies dehydration. Compelling evidence suggests that prolonged reduction in CVP during exposure to microgravity reflects a "resetting" to a lower operating point, which acts to limit plasma volume expansion during attempts to increase fluid intake. In ground based and space flight experiments, successful restoration and maintenance of plasma volume prior to returning to an upright posture may depend upon development of treatments that can return CVP to its baseline IG operating point. Fluid-loading and lower body negative pressure (LBNP) have not proved completely effective in restoring plasma volume, suggesting that they may not provide the stimulus to elevate the CVP operating point. On the other hand, exercise, which can chronically increase CVP, has been effective in expanding plasma volume when combined with adequate dietary intake of fluid and electrolytes. The success of designing experiments to understand the physiological mechanisms of and development of effective counter measures for the control of plasma volume in microgravity and during return to IG will depend upon testing that can be conducted under standardized controlled baseline conditions during both ground-based and space flight investigations.

  17. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution

    NASA Astrophysics Data System (ADS)

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-11-01

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage.

  18. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform.

    PubMed

    Heo, Yun Seok; Lee, Ho-Joon; Hassell, Bryan A; Irimia, Daniel; Toth, Thomas L; Elmoazzen, Heidi; Toner, Mehmet

    2011-10-21

    Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation.

  19. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones.

    PubMed

    Sugiyama, Toshihiro; Price, Joanna S; Lanyon, Lance E

    2010-02-01

    In order to validate whether bones' functional adaptation to mechanical loading is a local phenomenon, we randomly assigned 21 female C57BL/6 mice at 19 weeks of age to one of three equal numbered groups. All groups were treated with isoflurane anesthesia three times a week for 2 weeks (approximately 7 min/day). During each anaesthetic period, the right tibiae/fibulae in the DYNAMIC+STATIC group were subjected to a peak dynamic load of 11.5 N (40 cycles with 10-s intervals between cycles) superimposed upon a static "pre-load" of 2.0 N. This total load of 13.5 N engendered peak longitudinal strains of approximately 1400 microstrain on the medial surface of the tibia at a middle/proximal site. The right tibiae/fibulae in the STATIC group received the static "pre-load" alone while the NOLOAD group received no artificial loading. After 2 weeks, the animals were sacrificed and both tibiae, fibulae, femora, ulnae and radii analyzed by three-dimensional high-resolution (5 mum) micro-computed tomography (microCT). In the DYNAMIC+STATIC group, the proximal trabecular percent bone volume and cortical bone volume at the proximal and middle levels of the right tibiae as well as the cortical bone volume at the middle level of the right fibulae were markedly greater than the left. In contrast, the left bones in the DYNAMIC+STATIC group showed no differences compared to the left or right bones in the NOLOAD or STATIC group. These microCT data were confirmed by two-dimensional examination of fluorochrome labels in bone sections which showed the predominantly woven nature of the new bone formed in the loaded bones. We conclude that the adaptive response in both cortical and trabecular regions of bones subjected to short periods of dynamic loading, even when this response is sufficiently vigorous to stimulate woven bone formation, is confined to the loaded bones and does not involve changes in other bones that are adjacent, contra-lateral or remote to them. (c) 2009 Elsevier Inc. All rights reserved.

  20. Space shuttle solid rocket booster recovery system definition. Volume 3: SRB water impact loads computer program, user's manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This user's manual describes the FORTRAN IV computer program developed to compute the total vertical load, normal concentrated pressure loads, and the center of pressure of typical SRB water impact slapdown pressure distributions specified in the baseline configuration. The program prepares the concentrated pressure load information in punched card format suitable for input to the STAGS computer program. In addition, the program prepares for STAGS input the inertia reacting loads to the slapdown pressure distributions.

  1. Expert Systems on Multiprocessor Architectures. Volume 3. Technical Reports

    DTIC Science & Technology

    1991-06-01

    choice of load balancing vs. load sharing 1141. While load balancing strives to keep all sites equally loaded, load sharing merely tries to prevent ...unnecessary idleness. Loo. balancing is appropriate to object- oriented real- time systems because * real-time systems ne ,l to prevent long waits for...oetavir ConClass siy51cr Iz a n ubjeU rephitation ’-enare ir order wo prevent a partic=Lar abiec:;ram heing (ntrlu ~lel Ar iic]en:f etautaan ire chanw

  2. Recent developments on SMA actuators: predicting the actuation fatigue life for variable loading schemes

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Lagoudas, Dimitris C.

    2017-04-01

    Shape memory alloys (SMAs), due to their ability to repeatably recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method for predicting actuator lifetimes. In recent years, multiple research efforts have increased our understanding of the actuation fatigue process of SMAs. These advances can be utilized to predict the fatigue lives and failure loads in SMA actuators. Additionally, these prediction methods can be implemented in order to intelligently design actuators in accordance with their fatigue and failure limits. In the following paper, both simple and complex thermomechanical loading paths have been considered. Experimental data was utilized from two material systems: equiatomic Nickel-Titanium and Nickelrich Nickel-Titanium.

  3. Precompetition taper and nutritional strategies: special reference to training during Ramadan intermittent fast.

    PubMed

    Mujika, Iñigo; Chaouachi, Anis; Chamari, Karim

    2010-06-01

    A marked reduction in the training load in the lead-up to major competitions allows athletes to reduce the fatigue induced by intense training and improve competition performance. This tapered training phase is based on the reduction in training volume while maintaining pretaper training intensity and frequency. In parallel to training load reductions, nutritional strategies characterised by lowered energy intakes need to be implemented to match lowered energy expenditure. The Ramadan intermittent fast imposes constrained nutritional practices on Muslim athletes, inducing a shift to a greater reliance on fat oxidation to meet energy needs and a possible increase in protein breakdown. The training load is often reduced during Ramadan to match the absence of energy and fluid intake during daylight, which implies a risk of losing training induced adaptations. Should coaches and athletes decide to reduce the training load during Ramadan, the key role of training intensity in retaining training induced adaptations should be kept in mind. However, experienced elite Muslim athletes are able to maintain their usual training load during this month of intermittent fasting without decrements in measures of fitness and with only minor adverse effects.

  4. An in vitro assessment of the effect of load and pH on wear between opposing enamel and dentine surfaces.

    PubMed

    Ranjitkar, Sarbin; Kaidonis, John A; Townsend, Grant C; Vu, Anh M; Richards, Lindsay C

    2008-11-01

    Previous in vitro studies have described the wear characteristics of specimens in which enamel has been opposed to enamel and dentine opposed to dentine. The aim of this study was to assess the characteristics of wear between specimens in which enamel was opposed to dentine at loads simulating attrition and at pH values simulating different erosive environments. It was hypothesized that enamel would wear more slowly than dentine under all conditions. Opposing enamel and dentine specimens from 57 human third molar teeth were worn in electromechanical machines with various loads (32, 62 and 100 N) and lubricants (pH 1.2, 3.0 and 6.1). Tooth wear was quantified by measuring reduction in dentine volume over time using a 3D profilometer. Qualitative assessment was also carried out using scanning electron microscopy. Dentine wear increased with increasing load, and dentine wear was faster at pH 1.2 than at pH 3.0 or 6.1 for all loads tested. Interestingly, enamel wore more rapidly than dentine at pH 1.2 under all loads. At pH values of 3.0 and 6.1, enamel wear rates were not measurably different from zero and they were less than wear rates for opposing dentine specimens at all loads. Micrographic assessment showed extensive surface destruction of dentine wear facets due to erosion at pH 1.2. Dentine wear facets were smoother at pH 3.0 that at pH 6.1. When enamel wears against dentine in an acidic environment enamel will wear more rapidly at very low pH, while under less acid conditions dentine will wear faster than enamel.

  5. Cardiac remodeling in preterm infants with prolonged exposure to a patent ductus arteriosus.

    PubMed

    de Waal, Koert; Phad, Nilkant; Collins, Nick; Boyle, Andrew

    2017-05-01

    Sustained volume load due to a patent ductus arteriosus (PDA) leads to cardiac remodeling. Remodeling changes can become pathological and are associated with cardiovascular disease progression. Data on remodeling changes in preterm infants is not available. Clinical and echocardiography data were collected in preterm infants <30 weeks gestation on postnatal day 3 and then every 7-14 days until closure of the ductus arteriosus. Images were analyzed using conventional techniques and speckle tracking. Remodeling changes of infants with prolonged (>14 days) exposure to a PDA were compared to control infants without a PDA. Thirty out of 189 infants had prolonged exposure to a PDA. The left heart remodeled to a larger and more spherical shape and thus significantly increased in volume. Most changes occurred in the first 4 weeks, plateaued, and then returned to control values. Systolic function and estimates of filling pressure increased and effective arterial elastance reduced with a PDA, however contractility was unchanged. Wall thickness increased after 4 weeks of increased volume exposure. The preterm PDA induces early and significant remodeling of the left heart. A compensated cardiac physiology was seen with preserved systolic function, suggesting adaptive rather than pathological remodeling changes with prolonged exposure to a PDA. © 2017 Wiley Periodicals, Inc.

  6. Left ventricle changes early after breath-holding in deep water in elite apnea divers.

    PubMed

    Pingitore, Alessandro; Gemignani, Angelo; Menicucci, Danilo; Passera, Mirko; Frassi, Francesca; Marabotti, Claudio; Piarulli, Andrea; Benassi, Antonio; L'Abbate, Antonio; Bedini, Remo

    2010-01-01

    To study by ultrasounds cardiac morphology and function early after breath-hold diving in deep water in elite athletes. Fifteen healthy male divers (age 28 +/- 3 years) were studied using Doppler-echocardiography, immediately before (basal condition, BC) and two minutes after breath-hold diving (40 meters, acute post-apnea condition, APAC). Each subject performed a series of three consecutive breath-hold dives (20-30 and 40 m depth). End-diastolic left ventricular (LV) diameter (EDD) and end-diastolic LV volume (EDV) increased significantly (p < 0.01). Stroke volume (SV), cardiac index (CI), septal and posterior systolic wall-thickening (SWT) also significantly increased after diving (p < 0.01). No wall motion abnormalities were detected, and wall motion score index was unchanged between BC and APAC. Doppler mitral E wave increased significantly (p < 0.01), whereas the A wave was unchanged. Systemic vascular resistance (SVR) decreased significantly after diving (p < 0.05). In the factor analysis, filtering out the absolute values smaller than 0.7 in the loading matrix, it resulted that factor I consists of EDV, posterior SWT, SV and CI, factor II of diastolic blood pressure, waves A and E and factor III of heart rate and SVR. Systo-diastolic functions were improved in the early period after deep breath-hold diving due to favorable changes in loading conditions relative to pre-diving, namely the recruitment of left ventricular preload reserve and the reduction in afterload.

  7. Image processing system for the measurement of timber truck loads

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A. B.; Davies, Roger; Rodrigues, Fernando C.; Freitas, Jose C. A.

    1993-01-01

    The paper industry uses wood as its raw material. To know the quantity of wood in the pile of sawn tree trunks, every truck load entering the plant is measured to determine its volume. The objective of this procedure is to know the solid volume of wood stocked in the plant. Weighing the tree trunks has its own problems, due to their high capacity for absorbing water. Image processing techniques were used to evaluate the volume of a truck load of logs of wood. The system is based on a PC equipped with an image processing board using data flow processors. Three cameras allow image acquisition of the sides and rear of the truck. The lateral images contain information about the sectional area of the logs, and the rear image contains information about the length of the logs. The machine vision system and the implemented algorithms are described. The results being obtained with the industrial prototype that is now installed in a paper mill are also presented.

  8. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  9. Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.

    PubMed

    Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M

    2007-03-01

    Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.

  10. Traffic load spectra development for the 2002 AASHTO pavement design guide

    DOT National Transportation Integrated Search

    2004-12-30

    Accurate knowledge of traffic volumes and loading is essential to structural pavement design and performance. Underestimation of design traffic can result in premature pavement failures and excessive rehabilitation costs. Overestimation can result in...

  11. Mathematical modeling of a primary zinc/air battery

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  12. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  13. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  14. Comparison of volume, security, and biomechanical strength of square and Aberdeen termination knots tied with 4-0 polyglyconate and used for termination of intradermal closures in canine cadavers.

    PubMed

    Regier, Penny J; Smeak, Daniel D; Coleman, Kristin; McGilvray, Kirk C

    2015-08-01

    To compare volumes of square knots and Aberdeen knots in vitro and evaluate security of these knot types when used as buried terminal knots for continuous intradermal wound closures in canine cadavers. Experimental study. 24 surgically closed, full-thickness, 4-cm, epidermal wounds in 4 canine cadavers and 80 knots tied in vitro. Continuous intradermal closures were performed with 4-0 polyglyconate and completed with a buried knot technique. Surgeon (intern or experienced surgeon) and termination knot type (4-throw square knot or 2 + 1 Aberdeen knot; 12 each) were randomly assigned. Closed wounds were excised, and a servohydraulic machine applied tensile load perpendicular to the long axis of the suture line. A load-displacement curve was generated for each sample; maximum load, displacement, stiffness, and mode of construct failure were recorded. Volumes of 2 + 1 Aberdeen (n = 40) and 4-throw square knots (40) tied on a suture board were measured on the basis of a cylindrical model. Aberdeen knots had a mean smaller volume (0.00045 mm(3)) than did square knots (0.003838 mm(3)). Maximum load and displacement did not differ between construct types. Mean stiffness of Aberdeen knot constructs was greater than that of square knots. The 2 + 1 Aberdeen knot had a smaller volume than the 4-throw square knot and was as secure. Although both knots may be reliably used in a clinical setting as the termination knot at the end of a continuous intradermal line, the authors advocate use of the Aberdeen terminal knot on the basis of ease of burying the smaller knot.

  15. Bed load transport in gravel-bed rivers

    Treesearch

    Jeffrey J. Barry

    2007-01-01

    Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...

  16. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength.

    PubMed

    Paoli, Antonio; Gentil, Paulo; Moro, Tatiana; Marcolin, Giuseppe; Bianco, Antonino

    2017-01-01

    The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ) or multi-joint exercises (MJ) on VO 2 max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group ( n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years) exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc.) and MJ group ( n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years) with only MJ exercises (e.g., bench press, squat, etc.). The total work volume (repetitions × sets × load) was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO 2 max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA) was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO 2 max (5.1 and 12.5% for SJ and MJ), bench press 1 RM (8.1 and 10.9% for SJ and MJ), knee extension 1 RM (12.4 and 18.9% for SJ and MJ) and squat 1 RM (8.3 and 13.8% for SJ and MJ). In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.

  17. Distributed shared memory for roaming large volumes.

    PubMed

    Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno

    2006-01-01

    We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.

  18. Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu

    1995-01-01

    As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.

  19. The enuretic episode--a complete micturition from a bladder with normal capacity? A critical reappraisal of the definition.

    PubMed

    Rasmussen, P V; Kirk, J; Rittig, S; Djurhuus, J C

    1997-01-01

    Fifty-five normal children, aged between 7 and 12 years, were hospitalised for four consecutive nights. On three of these nights, the subjects received 25 ml/kg body weight of fluid prior to bedtime. Such fluid-loading provoked 28 enuresis-like episodes in 17 children, most of which occurred during the first few hours of sleep. The incidence of these enuretic events decreased with increasing age, more boys than girls were affected, there was a statistically significant correlation between total enuresis volume and nocturia volume, and the micturition was frequently incomplete, leaving large volumes of residual urine in the bladder. It was concluded that if nocturnal urine production exceeds bladder capacity, enuresis may be provoked, even in children who do not normally wet the bed. Furthermore, the definition of nocturnal enuresis as a complete emptying of the bladder during sleep may need revision.

  20. Shear-enhanced compaction in viscoplastic rocks

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2012-04-01

    The phenomenon of mutual influence of compaction and shear deformation was repeatedly reported in the literature over the past years. Dilatancy and shear-enhanced compaction of porous rocks were experimentally observed during both rate-independent and rate-dependent inelastic deformation. Plastic pore collapse was preceding the onset of dilatancy and shear-enhanced compaction. Effective bulk viscosity is commonly used to describe compaction driven fluid flow in porous rocks. Experimental data suggest that bulk viscosity of a fluid saturated rock might be a function of both the effective pressure and the shear stress. Dilatancy and shear-enhanced compaction can alter the transport properties of rocks through their influence on permeability and compaction length scale. Recent investigations show that shear stresses in deep mantle rocks can be responsible for spontaneous development of localized melt-rich bands and segregation of small amounts of melt from the solid rock matrix through shear channeling instability. Usually it is assumed that effective viscosity is a function of porosity only. Thus coupling between compaction and shear deformation is ignored. Spherical model which considers a hollow sphere subjected to homogeneous tractions on the outer boundary as a representative elementary volume succeeded in predicting the volumetric compaction behavior of porous rocks and metals to a hydrostatic pressure in a wide range of porosities. Following the success of this simple model we propose a cylindrical model of void compaction and decompaction due to the non-hydrostatic load. The infinite viscoplastic layer with a cylindrical hole is considered as a representative volume element. The remote boundary of the volume is subjected to a homogeneous non-hydrostatic load such that plane strain conditions are fulfilled through the volume. At some critical values of remote stresses plastic zone develops around the hole. The dependence of the effective bulk viscosity on the properties of individual components as well as on the stress state is examined. We show that bulk viscosity is a function of porosity, effective pressure and shear stress. Decreasing porosity tends to increase bulk viscosity whereas increasing shear stress and increasing effective pressure reduce it.

  1. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.

    PubMed

    Cun, Dongmei; Jensen, Ditte Krohn; Maltesen, Morten Jonas; Bunker, Matthew; Whiteside, Paul; Scurr, David; Foged, Camilla; Nielsen, Hanne Mørck

    2011-01-01

    Poly(DL-lactide-co-glycolide acid) (PLGA) is an attractive polymer for delivery of biopharmaceuticals owing to its biocompatibility, biodegradability and outstanding controlled release characteristics. The purpose of this study was to understand and define optimal parameters for preparation of small interfering RNA (siRNA)-loaded PLGA nanoparticles by the double emulsion solvent evaporation method and characterize their properties. The experiments were performed according to a 2(5-1) fractional factorial design based on five independent variables: The volume ratio between the inner water phase and the oil phase, the PLGA concentration, the sonication time, the siRNA load and the amount of acetylated bovine serum albumin (Ac-BSA) in the inner water phase added to stabilize the primary emulsion. The effects on the siRNA encapsulation efficiency and the particle size were investigated. The most important factors for obtaining an encapsulation efficiency as high as 70% were the PLGA concentration and the volume ratio whereas the size was mainly affected by the PLGA concentration. The viscosity of the oil phase was increased at high PLGA concentration, which explains the improved encapsulation by stabilization of the primary emulsion and reduction of siRNA leakage to the outer water phase. Addition of Ac-BSA increased the encapsulation efficiency at low PLGA concentrations. The PLGA matrix protected siRNA against nuclease degradation, provided a burst release of surface-localized siRNA followed by a triphasic sustained release for two months. These results enable careful understanding and definition of optimal process parameters for preparation of PLGA nanoparticles encapsulating high amounts of siRNA with immediate and long-term sustained release properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Disintegration impact on sludge digestion process.

    PubMed

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  3. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion.

    PubMed

    Aditya, N P; Aditya, Sheetal; Yang, Hanjoo; Kim, Hye Won; Park, Sung Ook; Ko, Sanghoon

    2015-04-15

    Curcumin and catechin are naturally occurring phytochemicals with extreme sensitivity to oxidation and low bioavailability. We fabricated a water-in-oil-in-water (W/O/W) double emulsion encapsulating hydrophilic catechin and hydrophobic curcumin simultaneously. The co-loaded emulsion was fabricated using a two-step emulsification method, and its physicochemical properties were characterised. Volume-weighted mean size (d43) of emulsion droplets was ≈3.88 μm for blank emulsions, whereas it decreased to ≈2.8-3.0 μm for curcumin and/or catechin-loaded emulsions, which was attributed to their capacity to act as emulsifiers. High entrapment efficiency was observed for curcumin and/or catechin-loaded emulsions (88-97%). Encapsulation of catechin and curcumin within an emulsion increased their stability significantly in simulated gastrointestinal fluid, which resulted in a four-fold augmentation in their bioaccessibility compared to that of freely suspended curcumin and catechin solutions. Co-loading of curcumin and catechin did not have adverse effects on either compound's stability or bioaccessibility. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Tensile and fatigue behavior of polymer composites reinforced with superelastic SMA strands

    NASA Astrophysics Data System (ADS)

    Daghash, Sherif M.; Ozbulut, Osman E.

    2018-06-01

    This study explores the use of superelastic shape memory alloy (SMA) strands, which consist of seven individual small-diameter wires, in an epoxy matrix and characterizes the tensile and fatigue responses of the developed SMA/epoxy composites. Using a vacuum assisted hand lay-up technique, twelve SMA fiber reinforced polymer (FRP) specimens were fabricated. The developed SMA-FRP composites had a fiber volume ratio of 50%. Tensile response of SMA-FRP specimens were characterized under both monotonic loading and increasing amplitude loading and unloading cycles. The degradation in superelastic properties of the developed SMA-FRP composites during fatigue loading at different strain amplitudes was investigated. The effect of loading rate on the fatigue response of SMA-FRP composites was also explored. In addition, fractured specimens were examined using the scanning electron microscopy (SEM) technique to study the failure mechanisms of the tested specimens. A good interfacial bonding between the SMA strands and epoxy matrix was observed. The developed SMA-FRP composites exhibited good superelastic behavior at different strain amplitudes up to at least 800 cycle after which significant degradation occurred.

  5. Performance analysis of radiation cooled dc transmission lines for high power space systems

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.

    1985-01-01

    As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.

  6. Dynamic Response of Reinforced Soil Systems. Volume 2. Appendices

    DTIC Science & Technology

    1993-03-01

    by a burster slab. These protection measures are costly, time consuming to construct, and sensitive to multiple strikes. Soil has been used to...load--deflection behavior of the reinforced soi I Dynamic puilout tests were then performed using the same parameters as the static tests. A standard...system was capable cf loading the sample in just a few micro-seconds to simulate a blast load. Dynamic load-deflection behavior was characterized and

  7. Polymeric nano-encapsulation of 5-fluorouracil enhances anti-cancer activity and ameliorates side effects in solid Ehrlich Carcinoma-bearing mice.

    PubMed

    Haggag, Yusuf A; Osman, Mohamed A; El-Gizawy, Sanaa A; Goda, Ahmed E; Shamloula, Maha M; Faheem, Ahmed M; McCarron, Paul A

    2018-05-29

    Biodegradable PLGA nanoparticles, loaded with 5-fluorouracil (5FU), were prepared using a double emulsion method and characterised in terms of mean diameter, zeta potential, entrapment efficiency and in vitro release. Poly (vinyl alcohol) was used to modify both internal and external aqueous phases and shown have a significant effect on nanoparticulate size, encapsulation efficiency and the initial burst release. Addition of poly (ethylene glycol) to the particle matrix, as part of the polymeric backbone, improved significantly the encapsulation efficiency. 5FU-loaded NPs were spherical in shape and negatively charged with a size range of 185-350 nm. Biological evaluation was performed in vivo using a solid Ehrlich carcinoma (SEC) murine model. An optimised 5FU-loaded formulation containing PEG as part of a block copolymer induced a pronounced reduction in tumour volume and tumour weight, together with an improved percentage tumour growth inhibition. Drug-loaded nanoparticles showed no significant toxicity or associated changes on liver and kidney function in tested animals, whereas increased alanine aminotransferase, aspartate aminotransferase and serum creatinine were observed in animals treated with free 5FU. Histopathological examination demonstrated enhanced cytotoxic action of 5FU-loaded nanoparticles when compared to the free drug. Based on these findings, it was concluded that nano-encapsulation of 5FU using PEGylated PLGA improved encapsulation and sustained in vitro release. This leads to increased anti-tumour efficacy against SEC, with a reduction in adverse effects. Published by Elsevier Masson SAS.

  8. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  9. The effects of load history and design variables on performance limit states of circular bridge columns - volume 2 : experimental observations.

    DOT National Transportation Integrated Search

    2015-01-01

    This report is the second of three volumes and presents detailed data and test summaries of the experimental portion of the work. In total : 30 large scale reinforced concrete bridge columns are reported in this volume. Recommendations for design and...

  10. Chesapeake Bay hypoxic volume forecasts and results

    USGS Publications Warehouse

    Scavia, Donald; Evans, Mary Anne

    2013-01-01

    The 2013 Forecast - Given the average Jan-May 2013 total nitrogen load of 162,028 kg/day, this summer’s hypoxia volume forecast is 6.1 km3, slightly smaller than average size for the period of record and almost the same as 2012. The late July 2013 measured volume was 6.92 km3.

  11. Determining volume sensitive waters in Beaufort County, SC tidal creeks

    Treesearch

    Andrew Tweel; Denise Sanger; Anne Blair; John Leffler

    2016-01-01

    Non-point source pollution from stormwater runoff associated with large-scale land use changes threatens the integrity of ecologically and economically valuable estuarine ecosystems. Beaufort County, SC implemented volume-based stormwater regulations on the rationale that if volume discharge is controlled, contaminant loading will also be controlled.

  12. Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs.

    PubMed

    Sánchez Pérez, José Antonio; Román Sánchez, Isabel María; Carra, Irene; Cabrera Reina, Alejandro; Casas López, José Luis; Malato, Sixto

    2013-01-15

    The aim of this paper is to carry out an economic assessment on a solar photo-Fenton/MBR combined process to treat industrial ecotoxic wastewater. This study focuses on the impact of the contamination present in wastewater, the photochemical oxidation, the use of an MBR as biological process and the plant size on operating and amortization costs. As example of ecotoxic pollutant, a mixture of five commercial pesticides commonly used in the Mediterranean area has been used, ranging from 500 mg/L to 50mg/L, expressed as dissolved organic carbon concentration. The economic evaluation shows that (i) the increase in pollution load does not always involve an increase in photo-Fenton costs because they also depend on organic matter mineralization; (ii) the use of an MBR process permits lower photochemical oxidation requirements than other biological treatments, resulting in approximately 20% photo-Fenton cost reduction for highly polluted wastewater; (iii) when pollution load decreases, the contribution of reactant consumption to the photo-Fenton process costs increase with regard to amortization costs; (iv) 30% total cost reduction can be gained treating higher daily volumes, obtaining competitive costs that vary from 1.1-1.9 €/m(3), depending on the pollution load. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Extent of utilization of the Frank-Starling mechanism in conscious dogs. [preload effects on myocardial regulation

    NASA Technical Reports Server (NTRS)

    Boettcher, D. H.; Vatner, S. F.; Heyndrickx, G. R.; Braunwald, E.

    1978-01-01

    The left ventricular end-diastolic pressure-dimension relationships in conscious dogs were studied; the ventricle was stressed to its limit in terms of myocardial preload in order to assess the extent of use of the Frank-Starling mechanism under these conditions. The preload was increased through volume loading with saline infusions, the provocation of global myocardial ischemia by constriction of the left main coronary artery, and infusion of methoxamine. While left ventricular end-diastolic pressure increased substantially in the reclining conscious animals, the left ventricular end-diastolic diameter did not increase, suggesting a minimum role for the Frank-Starling mechanism in this case.

  14. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD-removal rate in the ozone step allowed for economical usage and therefore acceptable operation costs in relation to the paper production.

  15. ESTIMATING URBAN WET WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...

  16. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite.

    PubMed

    Abdulmajeed, Aous A; Närhi, Timo O; Vallittu, Pekka K; Lassila, Lippo V

    2011-04-01

    This study was designed to evaluate the effect of an increase of fiber-density on some mechanical properties of higher volume fiber-reinforced composite (FRC). Five groups of FRC with increased fiber-density were fabricated and two additional groups were prepared by adding silanated barium-silicate glass fillers (0.7 μm) to the FRC. The unidirectional E-glass fiber rovings were impregnated with light-polymerizable bisGMA-TEGDMA (50-50%) resin. The fibers were pulled through a cylindrical mold with an opening diameter of 4.2mm, light cured for 40s and post-cured at elevated temperature. The cylindrical specimens (n=12) were conditioned at room temperature for 2 days before testing with the three-point bending test (Lloyd Instruments Ltd.) adapted to ISO 10477. Fiber-density was analyzed by combustion and gravimetric analyzes. ANOVA analysis revealed that by increasing the vol.% fraction of E-glass fibers from 51.7% to 61.7% there was a change of 27% (p<0.05) in the modulus of elasticity, 34% (p<0.05) in the toughness, and 15% (p<0.05) in the load bearing capacity, while there was only 8% (p<0.05) increase in the flexural strength although it was statistically insignificant. The addition of particulate fillers did not improve the mechanical properties. This study showed that the properties of FRC could be improved by increasing fibervolume fraction. Modulus of elasticity, toughness, and load bearing capacity seem to follow the law of ratio of quantity of fibers and volume of the polymer matrix more precisely than flexural strength when high fiber-density is used. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. The economics of plastic surgery practices: trends in income, procedure mix, and volume.

    PubMed

    Krieger, Lloyd M; Lee, Gordon K

    2004-07-01

    Anecdotally, plastic surgeons have complained of working harder for the same or less income in recent years. They also complain of falling fees for reconstructive surgery and increasing competition for cosmetic surgery. This study examined these notions using the best available data. To gain a better understanding of the current plastic surgery market, plastic surgeon incomes, fees, volume, and relative mix of cosmetic and reconstructive surgery were analyzed between the years 1992 and 2002. To gain a broader perspective, plastic surgeon income trends were then compared with those of other medical specialties and of nonmedical professions. The data show that in real dollars, plastic surgeon incomes have remained essentially steady in recent years, despite plastic surgeons increasing their surgery load by an average of 41 percent over the past 10 years. The overall income trend is similar to that of members of other medical specialties and other nonmedical professionals. The average practice percentage of cosmetic surgery was calculated and found to have increased from 27 percent in 1992 to 58 percent in 2002. This most likely can be explained by the findings that real dollar fees collected for cosmetic surgery have decreased very slightly, whereas those for reconstructive procedures have experienced sharp declines. This study demonstrates that plastic surgeons have adjusted their practice profiles in recent years. They have increased their case loads and shifted their practices toward cosmetic surgery, most likely with the goal of maintaining their incomes. The strategy appears to have been successful in the short term. However, with increasing competition and falling prices for cosmetic surgery, it may represent a temporary bulwark for plastic surgeon incomes unless other steps are taken.

  18. Management of landfill leachate: The legacy of European Union Directives.

    PubMed

    Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E

    2016-09-01

    Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition, the seasonal variation in leachate production poses a risk to effective co-treatment in municipal WWTPs, as periods of high leachate production coincide with periods of maximum hydraulic loading in WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Comparison of DVH parameters and loading patterns of standard loading, manual and inverse optimization for intracavitary brachytherapy on a subset of tandem/ovoid cases.

    PubMed

    Jamema, Swamidas V; Kirisits, Christian; Mahantshetty, Umesh; Trnkova, Petra; Deshpande, Deepak D; Shrivastava, Shyam K; Pötter, Richard

    2010-12-01

    Comparison of inverse planning with the standard clinical plan and with the manually optimized plan based on dose-volume parameters and loading patterns. Twenty-eight patients who underwent MRI based HDR brachytherapy for cervix cancer were selected for this study. Three plans were calculated for each patient: (1) standard loading, (2) manual optimized, and (3) inverse optimized. Dosimetric outcomes from these plans were compared based on dose-volume parameters. The ratio of Total Reference Air Kerma of ovoid to tandem (TRAK(O/T)) was used to compare the loading patterns. The volume of HR CTV ranged from 9-68 cc with a mean of 41(±16.2) cc. Mean V100 for standard, manual optimized and inverse plans was found to be not significant (p=0.35, 0.38, 0.4). Dose to bladder (7.8±1.6 Gy) and sigmoid (5.6±1.4 Gy) was high for standard plans; Manual optimization reduced the dose to bladder (7.1±1.7 Gy p=0.006) and sigmoid (4.5±1.0 Gy p=0.005) without compromising the HR CTV coverage. The inverse plan resulted in a significant reduction to bladder dose (6.5±1.4 Gy, p=0.002). TRAK was found to be 0.49(±0.02), 0.44(±0.04) and 0.40(±0.04) cGy m(-2) for the standard loading, manual optimized and inverse plans, respectively. It was observed that TRAK(O/T) was 0.82(±0.05), 1.7(±1.04) and 1.41(±0.93) for standard loading, manual optimized and inverse plans, respectively, while this ratio was 1 for the traditional loading pattern. Inverse planning offers good sparing of critical structures without compromising the target coverage. The average loading pattern of the whole patient cohort deviates from the standard Fletcher loading pattern. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Brain inflammation accompanies amyloid in the majority of mild cognitive impairment cases due to Alzheimer's disease.

    PubMed

    Parbo, Peter; Ismail, Rola; Hansen, Kim V; Amidi, Ali; Mårup, Frederik H; Gottrup, Hanne; Brændgaard, Hans; Eriksson, Bengt O; Eskildsen, Simon F; Lund, Torben E; Tietze, Anna; Edison, Paul; Pavese, Nicola; Stokholm, Morten G; Borghammer, Per; Hinz, Rainer; Aanerud, Joel; Brooks, David J

    2017-07-01

    See Kreisl (doi:10.1093/awx151) for a scientific commentary on this article.Subjects with mild cognitive impairment associated with cortical amyloid-β have a greatly increased risk of progressing to Alzheimer's disease. We hypothesized that neuroinflammation occurs early in Alzheimer's disease and would be present in most amyloid-positive mild cognitive impairment cases. 11C-Pittsburgh compound B and 11C-(R)-PK11195 positron emission tomography was used to determine the amyloid load and detect the extent of neuroinflammation (microglial activation) in 42 mild cognitive impairment cases. Twelve age-matched healthy control subjects had 11C-Pittsburgh compound B and 10 healthy control subjects had 11C-(R)-PK11195 positron emission tomography for comparison. Amyloid-positivity was defined as 11C-Pittsburgh compound B target-to-cerebellar ratio above 1.5 within a composite cortical volume of interest. Supervised cluster analysis was used to generate parametric maps of 11C-(R)-PK11195 binding potential. Levels of 11C-(R)-PK11195 binding potential were measured in a selection of cortical volumes of interest and at a voxel level. Twenty-six (62%) of 42 mild cognitive impairment cases showed a raised cortical amyloid load compared to healthy controls. Twenty-two (85%) of the 26 amyloid-positive mild cognitive impairment cases showed clusters of increased cortical microglial activation accompanying the amyloid. There was a positive correlation between levels of amyloid load and 11C-(R)-PK11195 binding potentials at a voxel level within subregions of frontal, parietal and temporal cortices. 11C-(R)-PK11195 positron emission tomography reveals increased inflammation in a majority of amyloid positive mild cognitive impairment cases, its cortical distribution overlapping that of amyloid deposition. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Do Clinical and Radiological Assessments Contribute to the Understanding of Biomaterials? Results From a Prospective Randomized Sinus Augmentation Split-Mouth Trial.

    PubMed

    Lorenz, Jonas; Korzinskas, Tadas; Chia, Poju; Maawi, Sarah Al; Eichler, Katrin; Sader, Robert A; Ghanaati, Shahram

    2018-02-01

    The present prospective randomized split-mouth trial reports on the 3-year clinical and radiological follow-up investigation of implants placed 7 months after sinus augmentation with 2 different bone substitute materials. The aim of the study was to complete the histologic observation of cellular reactions by analyses of the implants and the volumetric changes of the augmented bone substitute materials. A sinus augmentation split-mouth trial was performed in 14 patients with the synthetic bone substitute material Nanobone (NB) and the xenogeneic Bio-Oss (BO). Changes in volume and density of the augmented biomaterials were investigated by analysis of computed tomography scans, taken immediately after augmentation and after 7 months. Clinical implant parameters were assessed after 3 years of loading. Both bone substitute materials underwent nonsignificant volume reduction and significant increase in bone density over an integration period of 7 months. No significant differences concerning volume and bone density were observed between the groups. Three years after loading, 51 of 53 implants were in situ with no peri-implant infections, and only a few soft-tissue variations were present. The present prospective randomized study showed that no differences could be observed clinically and radiologically. Accordingly, it seems that both biomaterials, independent of their physicochemical composition, enable clinical success and long-time stability for dental implants. Interestingly, the histological results showed distinct differences in cellular reactions: While the xenogeneic BO induced a mild tissue reaction with only few multinucleated giant cells and comparably low vascularization, the synthetic NB induced a multinucleated giant cell-triggered tissue reaction with an increase of vascularization. Thus, the present study showed that a combination analysis-histological, clinical, and radiological-is necessary for a detailed assessment of a biomaterial's quality for clinical application.

  2. Mechanical properties of epoxy composites with plasma-modified rice-husk-derived nanosilica

    NASA Astrophysics Data System (ADS)

    Hubilla, Fatima Athena D.; Panghulan, Glenson R.; Pechardo, Jason; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we explored the use of rice-husk-derived nanosilica (nSiO2) as fillers in epoxy resins. The nSiO2 was irradiated with a capacitively coupled 13.56 MHz radio frequency (RF) plasma using an admixture of argon (Ar) and hexamethyldisiloxane (HMDSO) or 1,7-octadiene (OD) monomers. The plasma-polymerized nSiO2 was loaded at various concentrations (1-5%) into the epoxy matrix. Surface hydrophobicity of the plasma-treated nSiO2-filled composites increased, which is attributed to the attachment of functional groups from the monomer gases on the silica surface. Microhardness increased by at least 10% upon the inclusion of plasma-modified nSiO2 compared with pristine nSiO2-epoxy composites. Likewise, hardness increased with increasing loading volume, with the HMDSO-treated silica composite recording the highest increase. Elastic moduli of the composites also showed an increase of at least 14% compared with untreated nSiO2-filled composites. This work demonstrated the use of rice husk, an agricultural waste, as a nSiO2 source for epoxy resin fillers.

  3. CREB3L1-mediated functional and structural adaptation of the secretory pathway in hormone-stimulated thyroid cells.

    PubMed

    García, Iris A; Torres Demichelis, Vanina; Viale, Diego L; Di Giusto, Pablo; Ezhova, Yulia; Polishchuk, Roman S; Sampieri, Luciana; Martinez, Hernán; Sztul, Elizabeth; Alvarez, Cecilia

    2017-12-15

    Many secretory cells increase the synthesis and secretion of cargo proteins in response to specific stimuli. How cells couple increased cargo load with a coordinate rise in secretory capacity to ensure efficient transport is not well understood. We used thyroid cells stimulated with thyrotropin (TSH) to demonstrate a coordinate increase in the production of thyroid-specific cargo proteins and ER-Golgi transport factors, and a parallel expansion of the Golgi complex. TSH also increased expression of the CREB3L1 transcription factor, which alone caused amplified transport factor levels and Golgi enlargement. Furthermore, CREB3L1 potentiated the TSH-induced increase in Golgi volume. A dominant-negative CREB3L1 construct hampered the ability of TSH to induce Golgi expansion, implying that this transcription factor contributes to Golgi expansion. Our findings support a model in which CREB3L1 acts as a downstream effector of TSH to regulate the expression of cargo proteins, and simultaneously increases the synthesis of transport factors and the expansion of the Golgi to synchronize the rise in cargo load with the amplified capacity of the secretory pathway. © 2017. Published by The Company of Biologists Ltd.

  4. Strategy for Alternative Occupant Volume Testing

    DOT National Transportation Integrated Search

    2009-10-20

    This paper describes plans for a series of quasi-static : compression tests of rail passenger equipment. These tests are : designed to evaluate the strength of the occupant volume under : static loading conditions. The research plan includes a detail...

  5. Spatially and temporally variable urinary N loads deposited by lactating cows on a grazing system dairy farm.

    PubMed

    Ahmed, Awais; Sohi, Rajneet; Roohi, Rakhshan; Jois, Markandeya; Raedts, Peter; Aarons, Sharon R

    2018-06-01

    Feed nitrogen (N) intakes in Australian grazing systems average 545 g cow -1 day -1 , indicating that urinary N is likely to be the dominant form excreted. Grazing animals spend disproportionate amounts of time in places on dairy farms where N accumulation is likely to occur. We attached to grazing cows sensors that measure urine volume and N concentration, as well as global positioning systems sensors used to monitor the times the cows spent in different places on a farm and the location of urination events. The cows were monitored for up to 72 h in each of two seasons. More urination events and greater urine volumes per event were recorded in spring 2014 (3.1 L) compared with winter 2015 (1.4 L), most likely influenced by environmental conditions and the greater spring rainfall observed. Mean (range) N concentration (0.71%; 0.02 to 1.52%) and N load (12.8 g cow -1 event -1 ; 0.3 to 64.5 g cow -1 event -1 ) did not differ over the two monitoring periods. However, mean (range) daily N load was greater in spring (277 g cow -1 day -1 ; 200 to 346 g cow -1 day -1 ) than in winter (90 g cow -1 day -1 ; 44 to 116 g cow -1 day -1 ) due to the influence of urine volume. Relatively greater time was spent in paddocks overnight (13.3 h) than in paddocks between morning and evening milking (6.4 h), compared with the mean numbers of urinations in these places (6.4 and 3.8 respectively). The mean N load deposited overnight in paddocks (89.6 g cow -1 ) was more than twice that deposited in paddocks during the day (43.8 g cow -1 ), due to the greater N load per event overnight, and was more closely linked to the relative difference in time spent in paddocks than in the number of urination events. These data suggest that routinely holding cows in the same paddocks overnight will lead to high urinary N depositions, increasing the potential for N losses from these places. Further research using this technology is required to acquire farm and environment specific urinary data to improve N management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.; Miller, R. D.

    1979-01-01

    The LOADS computer program L218 which calculates dynamic load coefficient matrices utilizing the force summation method is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: (1) translational and rotational accelerations, velocities, and displacements; (2) panel aerodynamic forces; (3) net panel forces; and (4) shears, bending moments, and torsions.

  7. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers.

    PubMed

    Hellard, Philippe; Scordia, Charlotte; Avalos, Marta; Mujika, Inigo; Pyne, David B

    2017-10-01

    Periodization of swim training in the final training phases prior to competition and its effect on performance have been poorly described. We modeled the relationships between the final 11 weeks of training and competition performance in 138 elite sprint, middle-distance, and long-distance swimmers over 20 competitive seasons. Total training load (TTL), strength training (ST), and low- to medium-intensity and high-intensity training variables were monitored. Training loads were scaled as a percentage of the maximal volume measured at each intensity level. Four training periods (meso-cycles) were defined: the taper (weeks 1 to 2 before competition), short-term (weeks 3 to 5), medium-term (weeks 6 to 8), and long-term (weeks 9 to 11). Mixed-effects models were used to analyze the association between training loads in each training meso-cycle and end-of-season major competition performance. For sprinters, a 10% increase between ∼20% and 70% of the TTL in medium- and long-term meso-cycles was associated with 0.07 s and 0.20 s faster performance in the 50 m and 100 m events, respectively (p < 0.01). For middle-distance swimmers, a higher TTL in short-, medium-, and long-term training yielded faster competition performance (e.g., a 10% increase in TTL was associated with improvements of 0.1-1.0 s in 200 m events and 0.3-1.6 s in 400 m freestyle, p < 0.01). For sprinters, a 60%-70% maximal ST load 6-8 weeks before competition induced the largest positive effects on performance (p < 0.01). An increase in TTL during the medium- and long-term preparation (6-11 weeks to competition) was associated with improved performance. Periodization plans should be adapted to the specialty of swimmers.

  8. Encyclopedia of Explosives and Related Items. Volume 8

    DTIC Science & Technology

    1978-01-01

    up", becoming hard and making Alcohol(b), % 20 ± 2 19 ± 2 a reliable joint . Shellac is used to coat cavities Shellac(c) % 18±2 - to be loaded with...P 380 Effect of Loading Pressure on Initiator Sensitivity ...................... P 382 Stab Primer Data...Injection Loading Operation Schematic .............................. P 64 Continuous Explosive Column for Use with Zuni Weapon ................... P 64

  9. Stereo photo series for quantifying natural fuels Volume IX: oak/juniper in southern Arizona and New Mexico.

    Treesearch

    Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Geoffrey B. Seymour

    2007-01-01

    A series of single and stereo photographs display a range of natural conditions and fuel loadings in evergreen and deciduous oak/juniper woodland and savannah ecosystems in southern Arizona and New Mexico. This group of photos includes inventory data summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest...

  10. Influence of nitrogen immersion on the mechanical properties of (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite

    NASA Astrophysics Data System (ADS)

    Rahal, H. T.; Awad, R.; Abdel-Gaber, A. M.

    2018-05-01

    (NiO)x(Bi1.6 Pb0.4)Sr2Ca2Cu3O10-δ composite, where 0.0 ≤ x ≤ 0.2 wt%., were prepared using solid state reaction method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). Vickers microhardness measurements (HV) were carried out at room temperature under different applied loads varying from 0.49 to 9.8 N, and dwell times (40 and 59 s). It was noted that dwell time and Vickers microhardness were inversely proportional. HV values increase as x increases up to 0.1 wt%, and then they decrease with further increases in x. All samples exhibit indentation size effect (ISE) with normal trend, as Vickers microhardness decreases by increasing the applied loads. Also, Vickers microhardness measurements of the prepared samples were done during both loading forces up to 9.8 N and unloading downwards to 0.49 N. It was noted that unloading values of Vickers microhardness are slightly greater than loading values. The elastic/plastic deformation model (EPD) was used to interpret the loading and unloading Vickers microhardness results. It is clearly noted that values of do, the added elastic component the measured plastic indentation semi-diagonal (d),in the unloading results are much higher than those for loading data. The effect of liquid nitrogen immersion for 16 h on Vickers microhardness values was examined. A significant improvement in the Vickers microhardness of (Bi, Pb)-2223 samples immersed in liquid nitrogen was observed. Such behavior is attributed to the fact that nitrogen immersion increases the volume contraction of the superconductor matrix, causing the shrink of the pores and voids present in the samples. Different models were used to analyze the obtained results such as Meyer's law, Hays-Kendall (HK) approach, elastic/plastic deformation (EPD) model, and modified proportional specimen resistance (MPSR) model. The experimental results of Vickers microhardness of both samples without and with liquid nitrogen immersion are well fitted according to the MPSR model.

  11. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    PubMed

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  12. Bearingless helicopter main rotor development. Volume 2: Combined load fatigue evaluation of weathered graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Rackiewicz, J. J.

    1977-01-01

    Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.

  13. A design study for a simple-to-fly, constant attitude light aircraft

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Humphreys, D. E.; Montoya, R. J.; Rickard, W. W.; Wilkinson, I. E.

    1973-01-01

    The activities during a four-year study by doctoral students to evolve in detail a design for a simple-to-fly, constant attitude light airplane are described. The study indicated that such aircraft could materially reduce the hazards to light airplane occupants which arise from the high pilot work load and poor visibility that occur during landing. Preliminary cost studies indicate that in volume production this system would increase the cost of the aircraft in roughly the same fashion that automatic transmission, power steering, power brakes, and cruise control increase the cost of a compact car.

  14. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  15. First flush of storm runoff pollution from an urban catchment in China.

    PubMed

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  16. Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer's disease.

    PubMed

    Aziz, Anne-Laure; Giusiano, Bernard; Joubert, Sven; Duprat, Lauréline; Didic, Mira; Gueriot, Claude; Koric, Lejla; Boucraut, José; Felician, Olivier; Ranjeva, Jean-Philippe; Guedj, Eric; Ceccaldi, Mathieu

    2017-06-01

    Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic volumes were similar in the 2 groups. Greater extent of atrophy in EOAD, despite similar extent of hypometabolism, could reflect different underlying pathophysiological processes, different glucose-based compensatory mechanisms or distinct level of premorbid atrophic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Investigation of maximum local specific absorption rate in 7 T magnetic resonance with respect to load size by use of electromagnetic simulations.

    PubMed

    Tiberi, Gianluigi; Fontana, Nunzia; Costagli, Mauro; Stara, Riccardo; Biagi, Laura; Symms, Mark Roger; Monorchio, Agostino; Retico, Alessandra; Cosottini, Mirco; Tosetti, Michela

    2015-07-01

    Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults. © 2015 Wiley Periodicals, Inc.

  18. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients.

    PubMed

    Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza

    2010-08-09

    The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies.

  19. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients

    PubMed Central

    Derakhshandeh, Katayoun; Soheili, Marzieh; Dadashzadeh, Simin; Saghiri, Reza

    2010-01-01

    The purpose in this study was to investigate poly(ethylene glycol)-modified poly (d,l-lactide-co-glycolide) nanoparticles (PLGA-PEG-NPs) loading 9-nitrocamptothecin (9-NC) as a potent anticancer drug. 9-NC is an analog of the natural plant alkaloid camptothecin that has shown high antitumor activity and is currently in the end stage of clinical trial. Unfortunately, at physiological pH, these potent agents undergo a rapid and reversible hydrolysis with the loss of antitumor activity. Previous researchers have shown that the encapsulation of this drug in PLGA nanoparticles could increase its stability and release profile. In this research we investigated PLGA-PEG nanoparticles and their effect on in vitro characteristics of this labile drug. 9-NC-PLGA-PEG nanoparticles with particle size within the range of 148.5 ± 30 nm were prepared by a nanoprecipitation method. The influence of four different independent variables (amount of polymer, percent of emulsifier, internal phase volume, and external phase volume) on nanoparticle drug-loading was studied. Differential scanning calorimetry and X-ray diffractometry were also evaluated for physical characterizing. The results of optimized formulation showed a narrow size distribution, suitable zeta potential (+1.84), and a drug loading of more than 45%. The in vitro drug release from PLGA-PEG NPs showed a sustained release pattern of up to 120 hours and comparing with PLGA-NPs had a significant decrease in initial burst effect. These experimental results indicate that PLGA-PEG-NPs (versus PLGA-NPs) have a better physicochemical characterization and can be developed as a drug carrier in order to treat different malignancies. PMID:20957168

  20. Slave finite elements for nonlinear analysis of engine structures, volume 1

    NASA Technical Reports Server (NTRS)

    Gellin, S.

    1991-01-01

    A 336 degrees of freedom slave finite element processing capability to analyze engine structures under severe thermomechanical loading is presented. Description of the theoretical development and demonstration of that element is presented in this volume.

  1. Effect of added mass on treadmill performance and pulmonary function.

    PubMed

    Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R

    2015-04-01

    Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.

  2. Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL).

    PubMed

    Pérez-Pérez, T; Pereda-Reyes, I; Pozzi, E; Oliva-Merencio, D; Zaiat, M

    2018-01-01

    This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.

  3. Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior

    NASA Astrophysics Data System (ADS)

    Rahmat, Meysam

    2018-05-01

    A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.

  4. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    NASA Astrophysics Data System (ADS)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  5. Black Tea Lowers Blood Pressure and Wave Reflections in Fasted and Postprandial Conditions in Hypertensive Patients: A Randomised Study

    PubMed Central

    Grassi, Davide; Draijer, Richard; Desideri, Giovambattista; Mulder, Theo; Ferri, Claudio

    2015-01-01

    Hypertension and arterial stiffening are independent predictors of cardiovascular mortality. Flavonoids may exert some vascular protection. We investigated the effects of black tea on blood pressure (BP) and wave reflections before and after fat load in hypertensives. According to a randomized, double-blind, controlled, cross-over design, 19 patients were assigned to consume black tea (129 mg flavonoids) or placebo twice a day for eight days (13 day wash-out period). Digital volume pulse and BP were measured before and 1, 2, 3 and 4 h after tea consumption. Measurements were performed in a fasted state and after a fat load. Compared to placebo, reflection index and stiffness index decreased after tea consumption (p < 0.0001). Fat challenge increased wave reflection, which was counteracted by tea consumption (p < 0.0001). Black tea decreased systolic and diastolic BP (−3.2 mmHg, p < 0.005 and −2.6 mmHg, p < 0.0001; respectively) and prevented BP increase after a fat load (p < 0.0001). Black tea consumption lowers wave reflections and BP in the fasting state, and during the challenging haemodynamic conditions after a fat load in hypertensives. Considering lipemia-induced impairment of arterial function may occur frequently during the day, our findings suggest regular consumption of black tea may be relevant for cardiovascular protection. PMID:25658240

  6. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    PubMed

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  7. Redwoods, restoration, and implications for carbon budgets

    USGS Publications Warehouse

    Madej, Mary Ann

    2010-01-01

    The coast redwoods (Sequoia sempervirens) of California have several unique characteristics that influence interactions between vegetation and geomorphic processes. Case studies, using a combination of in-channel wood surveys and an air photo inventory of landslides, illustrate current conditions in a redwood-dominated watershed undergoing restoration work, and the influence of wood loading and landslides on the carbon budget. Redwood trees have extremely large biomass (trunk wood volumes of 700 to 1000 m3) and are very decay-resistant; consequently, they have a large and persistent influence on in-channel wood loading. Large wood surveys indicate high wood loading in streams in uncut forests (0.3-0.5 m3/m2 of channel), but also show that high wood loading can persist in logged basin with unlogged riparian buffers because of the slow decay of fallen redwoods. Through a watershed restoration program, Redwood National Park increases in-channel wood loading in low-order streams, but the effectiveness of this technique has not yet been tested by a large flood. Another unique characteristic of redwood is its ability to resprout from basal burls after cutting, so that root strength may not decline as sharply following logging as in other types of forests. An air photo inventory of landslides following a large storm in 1997 indicated: 1) that in the Redwood Creek watershed the volume of material displaced by landslides in harvested areas was not related to the time elapsed since logging, suggesting that the loss of root strength was not a decisive factor in landslide initiation, 2) landslide production on decommissioned logging roads was half that of untreated roads, and 3) landslides removed an estimated 28 Mg of organic carbon/km2 from hillslopes. The carbon budget of a redwood-dominated catchment is dominated by the vegetative component, but is also influenced by the extent of mass movement, erosion control work, and in-channel storage of wood.

  8. Time-dependent fiber bundles with local load sharing.

    PubMed

    Newman, W I; Phoenix, S L

    2001-02-01

    Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a finite limiting mean. For rho>1 this Gaussian behavior also applies to ELS, whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic elements derived from critical cluster formation. For 0

  9. Effects of mechanical repetitive load on bone quality around implants in rat maxillae

    PubMed Central

    Uto, Yusuke; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi

    2017-01-01

    Greater understanding and acceptance of the new concept “bone quality”, which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones. PMID:29244883

  10. Effects of mechanical repetitive load on bone quality around implants in rat maxillae.

    PubMed

    Uto, Yusuke; Kuroshima, Shinichiro; Nakano, Takayoshi; Ishimoto, Takuya; Inaba, Nao; Uchida, Yusuke; Sawase, Takashi

    2017-01-01

    Greater understanding and acceptance of the new concept "bone quality", which was proposed by the National Institutes of Health and is based on bone cells and collagen fibers, are required. The novel protein Semaphorin3A (Sema3A) is associated with osteoprotection by regulating bone cells. The aims of this study were to investigate the effects of mechanical loads on Sema3A production and bone quality based on bone cells and collagen fibers around implants in rat maxillae. Grade IV-titanium threaded implants were placed at 4 weeks post-extraction in maxillary first molars. Implants received mechanical loads (10 N, 3 Hz for 1800 cycles, 2 days/week) for 5 weeks from 3 weeks post-implant placement to minimize the effects of wound healing processes by implant placement. Bone structures, bone mineral density (BMD), Sema3A production and bone quality based on bone cells and collagen fibers were analyzed using microcomputed tomography, histomorphometry, immunohistomorphometry, polarized light microscopy and birefringence measurement system inside of the first and second thread (designated as thread A and B, respectively), as mechanical stresses are concentrated and differently distributed on the first two threads from the implant neck. Mechanical load significantly increased BMD, but not bone volume around implants. Inside thread B, but not thread A, mechanical load significantly accelerated Sema3A production with increased number of osteoblasts and osteocytes, and enhanced production of both type I and III collagen. Moreover, mechanical load also significantly induced preferential alignment of collagen fibers in the lower flank of thread B. These data demonstrate that mechanical load has different effects on Sema3A production and bone quality based on bone cells and collagen fibers between the inside threads of A and B. Mechanical load-induced Sema3A production may be differentially regulated by the type of bone structure or distinct stress distribution, resulting in control of bone quality around implants in jaw bones.

  11. Load and resistance factor rating (LRFR) in New York State : volume II.

    DOT National Transportation Integrated Search

    2011-09-01

    This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology : for New York bridges. The methodology is applicable for the rating of existing : bridges, the posting of under-strength bridges, and checking Permit trucks. The : propo...

  12. Load and resistance factor rating (LRFR) in NYS : volume II final report.

    DOT National Transportation Integrated Search

    2011-09-01

    This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology for New York bridges. The methodology is applicable for the rating of existing bridges, the posting of under-strength bridges, and checking Permit trucks. The proposed LR...

  13. Load and resistance factor rating (LRFR) in NYS : volume I final report.

    DOT National Transportation Integrated Search

    2011-09-01

    This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology for New York bridges. The methodology is applicable for the rating of existing bridges, the posting of under-strength bridges, and checking Permit trucks. The proposed LR...

  14. Load and resistance factor rating (LRFR) in New York State : volume I.

    DOT National Transportation Integrated Search

    2011-09-01

    This report develops a Load and Resistance Factor Rating (NYS-LRFR) methodology : for New York bridges. The methodology is applicable for the rating of existing : bridges, the posting of under-strength bridges, and checking Permit trucks. The : propo...

  15. Effect of environmental factors on pavement deterioration : Final report, Volume II of II

    DOT National Transportation Integrated Search

    1988-11-01

    A computerized model for the determination of pavement deterioration responsibilities due to load and non-load related factors was developed. The model is based on predicted pavement performance and the relationship of pavement performance to a quant...

  16. Effect of environmental factors on pavement deterioration : Final report, Volume I of II.

    DOT National Transportation Integrated Search

    1988-11-01

    A computerized model for the determination of pavement deterioration responsibilities due to load and non-load related factors was developed. The model is based on predicted pavement performance and the relationship of pavement performance to a quant...

  17. Curvilinear steel elements in load-bearing structures of high-rise building spatial frames

    NASA Astrophysics Data System (ADS)

    Ibragimov, Alexander; Danilov, Alexander

    2018-03-01

    The application of curvilinear elements in load-bearing metal structures of high-rise buildings supposes ensuring of their bearing capacity and serviceability. There may exist a great variety of shapes and orientations of such structural elements. In particular, it may be various flat curves of an open or closed oval profile such as circular or parabolic arch or ellipse. The considered approach implies creating vast internal volumes without loss in the load-bearing capacity of the frame. The basic concept makes possible a wide variety of layout and design solutions. The presence of free internal spaces of large volume in "skyscraper" type buildings contributes to resolving a great number of problems, including those of communicative nature. The calculation results confirm the basic assumptions.

  18. Modeling and Analysis of the Static Characteristics and Dynamic Responses of Herringbone-grooved Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Yu, Yunluo; Pu, Guang; Jiang, Kyle

    2017-12-01

    This paper describes a theoretical investigation of static and dynamic characteristics of herringbone-grooved air thrust bearings. Firstly, Finite Difference Method (FDM) and Finite Volume Method (FVM) are used in combination to solve the non-linear Reynolds equation and to find the pressure distribution of the film and the total loading capacity of the bearing. The influence of design parameters on air film gap characteristics, including the air film thickness, depth of the groove and rotating speed, are analyzed based on the FDM model. The simulation results show that hydrostatic thrust bearings can achieve a better load capacity with less air consumption than herringbone grooved thrust bearings at low compressibility number; herringbone grooved thrust bearings can achieve a higher load capacity but with more air consumption than hydrostatic thrust bearing at high compressibility number; herringbone grooved thrust bearings would lose stability at high rotating speeds, and the stability increases with the depth of the grooves.

  19. [DETERMINATION OF THE OPTIMAL SAFE MODE OF PHYSICAL ACTIVITY FOR THE MILITARY SERVANTS UNDER CONDITIONS CLOSE TO FIGHTING].

    PubMed

    Chernozub, A; Radchenko, Y

    2015-01-01

    The paper presents the results of research, allowing to establish the need for and feasibility of an integrated method to determine the most effective but at the same time safe modes of load to the body troops. We found that despite the rather promising application of our proposed mode of load of high intensity (Ra = 0.71) to increase the level of physical military training as soon as possible in time of peace (with a minimum set of combat equipment), problematic issue is that in most cases there is a complete-mismatch achieved in the degree of physical development of the body of military requirements and the challenges posed in terms of direct hostilities. Using the integral method developed by us we determine the safest modes of exercise for the military servants to optimize the most appropriate parameters of volume and intensity of the load, and speed up the adaptive changes in their body to enhance maximum performance at this stage of preparation.

  20. Simulating adsorptive expansion of zeolites: application to biomass-derived solutions in contact with silicalite.

    PubMed

    Santander, Julian E; Tsapatsis, Michael; Auerbach, Scott M

    2013-04-16

    We have constructed and applied an algorithm to simulate the behavior of zeolite frameworks during liquid adsorption. We applied this approach to compute the adsorption isotherms of furfural-water and hydroxymethyl furfural (HMF)-water mixtures adsorbing in silicalite zeolite at 300 K for comparison with experimental data. We modeled these adsorption processes under two different statistical mechanical ensembles: the grand canonical (V-Nz-μg-T or GC) ensemble keeping volume fixed, and the P-Nz-μg-T (osmotic) ensemble allowing volume to fluctuate. To optimize accuracy and efficiency, we compared pure Monte Carlo (MC) sampling to hybrid MC-molecular dynamics (MD) simulations. For the external furfural-water and HMF-water phases, we assumed the ideal solution approximation and employed a combination of tabulated data and extended ensemble simulations for computing solvation free energies. We found that MC sampling in the V-Nz-μg-T ensemble (i.e., standard GCMC) does a poor job of reproducing both the Henry's law regime and the saturation loadings of these systems. Hybrid MC-MD sampling of the V-Nz-μg-T ensemble, which includes framework vibrations at fixed total volume, provides better results in the Henry's law region, but this approach still does not reproduce experimental saturation loadings. Pure MC sampling of the osmotic ensemble was found to approach experimental saturation loadings more closely, whereas hybrid MC-MD sampling of the osmotic ensemble quantitatively reproduces such loadings because the MC-MD approach naturally allows for locally anisotropic volume changes wherein some pores expand whereas others contract.

  1. Desmopressin resistant nocturnal polyuria secondary to increased nocturnal osmotic excretion.

    PubMed

    Dehoorne, Jo L; Raes, Ann M; van Laecke, Erik; Hoebeke, Piet; Vande Walle, Johan G

    2006-08-01

    We investigated the role of increased solute excretion in children with desmopressin resistant nocturnal enuresis and nocturnal polyuria. A total of 42 children with monosymptomatic nocturnal enuresis and significant nocturnal polyuria with high nocturnal urinary osmolality (more than 850 mmol/l) were not responding to desmopressin. A 24-hour urinary concentration profile was obtained with measurement of urine volume, osmolality, osmotic excretion and creatinine. The control group consisted of 100 children without enuresis. Based on osmotic excretion patients were classified into 3 groups. Group 1 had 24-hour increased osmotic excretion, most likely secondary to a high renal osmotic load. This was probably diet related since 11 of these 12 patients were obese. Group 2 had increased osmotic excretion in the evening and night, probably due to a high renal osmotic load caused by the diet characteristics of the evening meal. Group 3 had deficient osmotic excretion during the day, secondary to extremely low fluid intake to compensate for small bladder capacity. Nocturnal polyuria with high urinary osmolality in our patients with desmopressin resistant monosymptomatic nocturnal enuresis is related to abnormal increased osmotic excretion. This may be explained by their fluid and diet habits, eg daytime fluid restriction, and high protein and salt intake.

  2. MOD-1 Wind Turbine Generator Analysis and Design Report, Volume 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The MOD-1 detail design is appended. The supporting analyses presented include a parametric system trade study, a verification of the computer codes used for rotor loads analysis, a metal blade study, and a definition of the design loads at each principal wind turbine generator interface for critical loading conditions. Shipping and assembly requirements, composite blade development, and electrical stability are also discussed.

  3. Stereo photo series for quantifying natural fuels.Volume XIII: grasslands, shrublands, oak-bay woodlands, and eucalyptus forests in the East Bay of California.

    Treesearch

    Clinton S. Wright; Robert E. Vihnanek

    2014-01-01

    Four series of photographs display a range of natural conditions and fuel loadings for grassland, shrubland, oak-bay woodland, and eucalyptus forest ecosystems on the eastern slopes of the San Francisco Bay area of California. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na 2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions andmore » degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste loading from about 12% to 10% on a mass basis, but this will not significantly impact the waste loading on a volume basis. It is likely that heat output will limit the amount of waste salt that can be accommodated in a waste canister rather than the salt loading in an ACWF, and that the increase from 8 mass% to about 10 mass% salt loadings in ACWF materials will be sufficient to optimize these waste forms. Although the waste salt composition used in this study contained a moderate amount of NaCl, the test results suggest waste salts with little or no NaCl can be accommodated in ACWF materials by using the new binder glass, albeit at waste loadings lower than 8 mass%. The higher glass contents that will be required for ACWF materials made with salt wastes that do not contain NaCl are expected to result in much lower porosities in those waste forms.« less

  5. (1)H magnetic resonance spectroscopy of preinvasive and invasive cervical cancer: in vivo-ex vivo profiles and effect of tumor load.

    PubMed

    Mahon, Marrita M; Cox, I Jane; Dina, Roberto; Soutter, W Patrick; McIndoe, G Angus; Williams, Andreanna D; deSouza, Nandita M

    2004-03-01

    To compare in vivo (1)H magnetic resonance (MR) spectra of preinvasive and invasive cervical lesions with ex vivo magic angle spinning (MAS) spectra of intact biopsies from the same subjects and to establish the effects of tumor load in the tissue sampled on the findings. A total of 51 subjects (nine with normal cervix, 10 with cervical intraepithelial neoplasia [CIN], and 32 with cervical cancer) underwent endovaginal MR at 1.5 T. Single-voxel (3.4 cm(3)) (1)H MR spectra were acquired and voxel tumor load was calculated (tumor volume within voxel as a percentage of voxel volume). Resonances from triglycerides -CH(2) and -CH(3) and choline-containing compounds (Cho) were correlated with voxel tumor load. Biopsies analyzed by (1)H MAS-MR spectroscopy (MRS) had metabolite levels correlated with tumor load in the sample at histology. In vivo studies detected Cho in normal, CIN, and cancer patients with no significant differences in levels (P = 0.93); levels were independent of voxel tumor load. Triglyceride -CH(2) and -CH(3) signals in-phase with Cho were present in 77% and 29%, respectively, of cancer subjects (but not in normal women or those with CIN), but did not correlate with voxel tumor load. Ex vivo cancer biopsies showed levels of triglycerides -CH(2) and -CH(3) and of Cho that were significantly greater than in normal or CIN biopsies (P < 0.05); levels were independent of the tumor load in the sample. The presence of -CH(2) in vivo predicted the presence of cancer with a sensitivity and specificity of 77.4% and 93.8% respectively, positive (PPV) and negative (NPV) predictive values were 96% and 68.2%; for -CH(2) ex vivo, sensitivity was 100%; specificity, 69%; PPV, 82%; and NPV, 100%. Elevated lipid levels are detected by MRS in vivo and ex vivo in cervical cancer and are independent of tumor load in the volume of tissue sampled. Copyright 2004 Wiley-Liss, Inc.

  6. Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang

    2007-02-01

    High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.

  7. Surface-crack growth: Models, experiments, and structures; Proceedings of the Symposium, Sparks, NV, Apr. 25, 1988

    NASA Technical Reports Server (NTRS)

    Reuter, Walter G. (Editor); Underwood, John H. (Editor); Newman, James C., Jr. (Editor)

    1990-01-01

    The present volume on surface-crack growth modeling, experimental methods, and structures, discusses elastoplastic behavior, the fracture analysis of three-dimensional bodies with surface cracks, optical measurements of free-surface effects on natural surfaces and through cracks, an optical and finite-element investigation of a plastically deformed surface flaw under tension, fracture behavior prediction for rapidly loaded surface-cracked specimens, and surface cracks in thick laminated fiber composite plates. Also discussed are a novel study procedure for crack initiation and growth in thermal fatigue testing, the growth of surface cracks under fatigue and monotonically increasing load, the subcritical growth of a surface flaw, surface crack propagation in notched and unnotched rods, and theoretical and experimental analyses of surface cracks in weldments.

  8. A Structural Weight Estimation Program (SWEEP) for Aircraft. Volume 11 - Flexible Airloads Stand-Alone Program

    DTIC Science & Technology

    1974-06-01

    stiffness, lb-in. I Integer used to designate wing strip number 2 I Airplanw pitching moment of inertia, slug ft 2 I Airplane yawing moment of inertia...slug ft J Integer used to designated wing-loading distribution, i.e., J-l, loading due to angle of attack J=2> loading due to flap deflection J-3...moment at intersection of load reference line and body interface station (for vertical tail), in.-lb Integer used to designate type of wing airload

  9. The Effects of Warhead-Induced Damage on the Aeroelastic Characteristics of Lifting Surfaces. Volume I. Aeroelastic Effects.

    DTIC Science & Technology

    1980-07-01

    Arnold. Some further insight into the problem is obtained here, however, when it is demonstrated that highly optimized structural designs may...aircraft of this type are normally designed to withstand loads up to 1.5 times the maximum limit load (load factor 8.0 to 8.67), the structure should...on the wing, for example, give rise to concentrated drag and chordwise loadings as does the recoil from firing wing mounted gun systems . The drag on

  10. Investigation of prediction methods for the loads and stresses of Apollo type spacecraft parachutes. Volume 1: Loads

    NASA Technical Reports Server (NTRS)

    Mickey, F. E.; Mcewan, A. J.; Ewing, E. G.; Huyler, W. C., Jr.; Khajeh-Nouri, B.

    1970-01-01

    An analysis was conducted with the objective of upgrading and improving the loads, stress, and performance prediction methods for Apollo spacecraft parachutes. The subjects considered were: (1) methods for a new theoretical approach to the parachute opening process, (2) new experimental-analytical techniques to improve the measurement of pressures, stresses, and strains in inflight parachutes, and (3) a numerical method for analyzing the dynamical behavior of rapidly loaded pilot chute risers.

  11. Thaw weakening and load restriction practices on low volume roads

    DOT National Transportation Integrated Search

    2000-06-01

    Low volume roads subjected to seasonal freezing are highly susceptible to damage from traffic during midwinter and spring thaws. Such traffic-induced damage can be minimized by a variety of design methods; however, most are not economically feasible....

  12. Evaluation of Occupant Volume Strength in Conventional Passenger Railroad Equipment

    DOT National Transportation Integrated Search

    2008-09-24

    To ensure a level of occupant volume protection, passenger : railway equipment operating on mainline railroads in the : United States must be designed to resist an 800,000-lb : compressive load applied statically along the line of draft. An : alterna...

  13. Planar measurements of soot volume fraction and OH in a JP-8 pool fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G.

    2009-07-15

    The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near themore » base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)« less

  14. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution

    PubMed Central

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-01-01

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage. PMID:27812007

  15. Multiple Small Diameter Drillings Increase Femoral Neck Stability Compared with Single Large Diameter Femoral Head Core Decompression Technique for Avascular Necrosis of the Femoral Head.

    PubMed

    Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E

    2016-10-26

    Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.

  16. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis

    USGS Publications Warehouse

    Lahann, R.W.; Swarbrick, R.E.

    2011-01-01

    Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.

  17. Strategy Guideline: Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward themore » exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.« less

  18. Ergonomic task reduction prevents bone osteopenia in a rat model of upper extremity overuse

    PubMed Central

    BARBE, Mary F.; JAIN, Nisha X.; MASSICOTTE, Vicky S.; POPOFF, Steven N.; BARR-GILLESPIE, Ann E.

    2015-01-01

    We evaluated the effectiveness of ergonomic workload reduction of switching rats from a high repetition high force (HRHF) lever pulling task to a reduced force and reach rate task for preventing task-induced osteopenic changes in distal forelimb bones. Distal radius and ulna trabecular structure was examined in young adult rats performing one of three handle-pulling tasks for 12 wk: 1) HRHF, 2) low repetition low force (LRLF); or 3) HRHF for 4 wk and than LRLF thereafter (HRHF-to-LRLF). Results were compared to age-matched controls rats. Distal forelimb bones of 12-wk HRHF rats showed increased trabecular resorption and decreased volume, as control rats. HRHF-to-LRLF rats had similar trabecular bone quality as control rats; and decreased bone resorption (decreased trabecular bone volume and serum CTX1), increased bone formation (increased mineral apposition, bone formation rate, and serum osteocalcin), and decreased osteoclasts and inflammatory cytokines, than HRHF rats. Thus, an ergonomic intervention of HRHF-to-LRLF prevented loss of trabecular bone volume occurring with prolonged performance of a repetitive upper extremity task. These findings support the idea of reduced workload as an effective approach to management of work-related musculoskeletal disorders, and begin to define reach rate and load level boundaries for such interventions. PMID:25739896

  19. United States Air Force Summer Research Program -- 1991. High School Apprenticeship Program (HSAP) Reports, Volume 13: Wright Laboratory

    DTIC Science & Technology

    1991-12-01

    ei a. "h:2 ;.::,e :v a :ei.w co±’eague. CAct. Alien Andrews. SAF. who s*_ese_ . zne tere in mod i: at:ons ch he m i emen tec tha nabed "he :CT -L work...program by entering: SET COMMAND SYS $SYSTEM:SAVE85 i0. Load the LOAD85 program by entering: SET COMMAND SYS $SYSTEM:LOAD85 11. Connect the VT340 with the...SYSINT CUROFF 4. Load the LOAD85 program by entering: SET COMMAND SYS $SYSTEM:LOAD85 5. Display the image to be printed on the screen by entering: LOAD85

  20. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 9, September 2007

    DTIC Science & Technology

    2007-09-01

    underlying application framework, e.g., Java Enter- prise Edition or .NET. This increases the risk that consumer Web services not based on the same...weaknesses and vulnera- bilities that are targeted by attackers and malicious code. For example, Apache Axis 2 enables a Java devel- oper to simply...load his/her Java objects into the Axis SOAP engine. At runtime, it is the SOAP engine that determines which incoming SOAP request messages should be

  1. Challenges of Designing a 13-Hz High-Load Vibration Isolation System with Tight Volume Constraints: Lessons Learned and Path Forward

    NASA Technical Reports Server (NTRS)

    Dearing, Stella; Ruebsamen, Dale

    2016-01-01

    This paper describes the design of a passive isolation system using D-struts (Registered TradeMark) to isolate an optical payload from aircraft-borne jitter with challenging stroke per volume requirements. It discusses the use of viscoelastic-coated D-struts® that meet the customer performance and outgassing specification, NASA-1124. The result was a relatively soft isolation system, (where the first mode was 13 Hz), with each individual strut capable of withstanding loads on the order of magnitude of 623 N (140 lbf), weighing less than 910 g (2 lbm), fitting in a volume 5.1 cm (2 inches) in diameter and 12-cm (4.7-inches) long and capable of performing up to 1000 Hz without nonlinearities.

  2. Optimization of novel pentablock copolymer based composite formulation for sustained delivery of peptide/protein in the treatment of ocular diseases

    PubMed Central

    Patel, Sulabh P.; Vaishya, Ravi; Patel, Ashaben; Agrahari, Vibhuti; Pal, Dhananjay; Mitra, Ashim K.

    2016-01-01

    This manuscript is focused on the development of pentablock (PB) copolymer based sustained release formulation for the treatment of posterior segment ocular diseases. We have successfully synthesized biodegradable and biocompatible PB copolymers for the preparation of nanoparticles (NPs) and thermosensitive gel. Achieving high drug loading with hydrophilic biotherapeutics (peptides /proteins) is a challenging task. Moreover, small intravitreal injection volume (≤100 μL) requires high loading to develop a long term (6 months) sustained release formulation. We have successfully investigated various formulation parameters to achieve maximum peptide/protein (octreotide, insulin, lysozyme, IgG-Fab, IgG, and catalase) loading in PB NPs. Improvement in drug loading can facilitate delivery of larger doses of therapeutic proteins via limited injection volume. A composite formulation comprised of NPs in gel system exhibited sustained release (without burst effect) of peptides and proteins, may serve as a platform technology for the treatment of posterior segment ocular diseases. PMID:26964498

  3. An investigation of the self-heating phenomenon in viscoelastic materials subjected to cyclic loadings accounting for prestress

    NASA Astrophysics Data System (ADS)

    de Lima, A. M. G.; Rade, D. A.; Lacerda, H. B.; Araújo, C. A.

    2015-06-01

    It has been demonstrated by many authors that the internal damping mechanism of the viscoelastic materials offers many possibilities for practical engineering applications. However, in traditional procedures of analysis and design of viscoelastic dampers subjected to cyclic loadings, uniform, constant temperature is generally assumed and do not take into account the self-heating phenomenon. Moreover, for viscoelastic materials subjected to dynamic loadings superimposed on static preloads, such as engine mounts, these procedures can lead to poor designs or even severe failures since the energy dissipated within the volume of the material leads to temperature rises. In this paper, a hybrid numerical-experimental investigation of effects of the static preloads on the self-heating phenomenon in viscoelastic dampers subjected to harmonic loadings is reported. After presenting the theoretical foundations, the numerical and experimental results obtained in terms of the temperature evolutions at different points within the volume of the viscoelastic material for various static preloads are compared, and the main features of the methodology are discussed.

  4. Phytofilter - environmental friendly solution for purification of surface plate from urbanized territories

    NASA Astrophysics Data System (ADS)

    Ruchkinova, O.; Shchuckin, I.

    2017-06-01

    Its proved, that phytofilters are environmental friendly solution of problem of purification of surface plate from urbanized territories. Phytofilters answer the nowadays purposes to systems of purification of land drainage. The main problem of it is restrictions, connecter with its use in the conditions of cold temperature. Manufactured a technology and mechanism, which provide a whole-year purification of surface plate and its storage. Experimentally stated optimal makeup of filtering load: peat, zeolite and sand in per cent of volume, which provides defined hydraulic characteristics. Stated sorbate and ion-selective volume of complex filtering load of ordered composition in dynamic conditions. Estimated dependences of exit concentrations of oil products and heavy metals on temperature by filtering through complex filtering load of ordered composition. Defined effectiveness of purification at phytofiltering installation. Fixed an influence of embryophytes on process of phytogeneration and capacity of filtering load. Recommended swamp iris, mace reed and reed grass. Manufactured phytofilter calculation methodology. Calculated economic effect from use of phytofiltration technology in comparison with traditional block-modular installations.

  5. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 3: Customer load management systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.; Rountredd, R. C.

    1980-11-01

    Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.

  6. Water-quality assessment of stormwater runoff from a heavily used urban highway bridge in Miami, Florida

    USGS Publications Warehouse

    McKenzie, Donald J.; Irwin, G.A.

    1983-01-01

    Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)

  7. Effect of orientational ordering of magnetic nanoemulsions immobilized in agar gel on magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Ranoo, Surojit; Philip, John

    2018-04-01

    Magnetic nanoemulsions of droplet size ∼200 nm, loaded with single domain superparamagnetic nanoparticles (MNP), are potential candidates for multimodal hyperthermia due to availability of large loading volume and enhanced permeation and retention (EPR) in the cancerous tissues. In such nanoemulsions, radio frequency alternating magnetic field induced heating occur at two entirely different length scales, viz. Neel-Brown relaxation of the dispersed MNP and Brownian relaxation of emulsion droplets. Here we study the effects of orientation ordering or texturing of droplets, immobilized in a tissue mimicking agar matrix, on the field induced heating efficiency. A higher specific absorption rate (maximum ∼73 ± 2 W/gFe) is observed for droplets orientated parallel to the direction of the alternating magnetic field because of the enhancement of effective uniaxial anisotropy energy density and increased effective relaxation time. For identical and non-interacting MNP oriented parallel to the external DC magnetic field, a threefold increase in the effective uniaxial anisotropy energy density and ∼20-30% increased specific absorption rate are observed as compared to those oriented perpendicular to the magnetic field. Magnetic force microscopy images showed that the spherical morphology of the droplets remains intact even after orientational ordering and average topographic height of the droplets are found to be ∼220 (±17) nm, which is in good agreement with the most probable size obtained from dynamic light scattering. The residual volume magnetization of the emulsion droplets is found to be 1.1 × 10-6 emu/cc, indicating the superparamagnetic nature of the droplets in tissue equivalent environment. The observed increase in heating efficiency of the immobilized and oriented emulsion droplets shows promising applications in multimodal hyperthermia therapy because of the requirement of lower dose of MNP and shorter treatment time.

  8. Synergistic anticancer efficacy of Bendamustine Hydrochloride loaded bioactive Hydroxyapatite nanoparticles: In-vitro, ex-vivo and in-vivo evaluation.

    PubMed

    Thomas, Shindu C; Sharma, Harshita; Rawat, Purnima; Verma, Anita K; Leekha, Ankita; Kumar, Vijay; Tyagi, Aakriti; Gurjar, Bahadur S; Iqbal, Zeenat; Talegaonkar, Sushama

    2016-10-01

    The present work evaluates the synergistic anticancer efficacy of bioactive Hydroxyapatite (HA) nanoparticles (HA NPs) loaded with Bendamustine HCl. Hydroxyapatite is a material with an excellent biological compatibility, a well-known fact which was also supported by the results of the Hemolytic studies and a high IC50 value observed in the MTT assay. HA NPs were prepared by the chemical precipitation method and loaded with the drug via physical adsorption. In-vitro release study was performed, which confirmed the sustained release of the drug from the drug loaded HA NPs. MTT assay, Cell Uptake and FACS studies on JURKAT E6.1 cell line and in-vivo pharmacokinetic studies in Wistar rats revealed that the drug loaded HA NPs could be easily internalized by the cells and release drug in a sustained manner. The drug loaded HA NPs showed cytotoxicity similar to the drug solution at 1/10th of the drug content, which indicates a possible synergism between the activity of the anticancer drug and calcium ions derived from the carrier. An increase in intracellular Ca(2+) ions is reported to induce apoptosis in cells. Tumor regression study in Balb/c mice Ehrlich's ascites model presented a similar synergistic efficacy. The drug solution was able to decrease the tumor volume by half, while the drug loaded HA NPs reduced the tumor size by 6 times. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Influence of occlusal loading on peri-implant clinical parameters. A pilot study

    PubMed Central

    Pellicer-Chover, Hilario; Viña-Almunia, José; Romero-Millán, Javier; Peñarrocha-Oltra, David; Peñarrocha-Diago, María

    2014-01-01

    Objectives: To investigate the relation between occlusal loading and peri-implant clinical parameters (probing depth, bleeding on probing, gingival retraction, width of keratinized mucosa, and crevicular fluid volume) in patients with implant-supported complete fixed prostheses in both arches. Material and Methods: This clinical study took place at the University of Valencia (Spain) dental clinic. It included patients attending the clinic for regular check-ups during at least 12 months after rehabilitation of both arches with implant-supported complete fixed ceramo-metallic prostheses. One study implant and one control implant were established for each patient using the T-Scan®III computerized system (Tesco, South Boston, USA). The maxillary implant closest to the point of maximum occlusal loading was taken as the study implant and the farthest (with least loading) as the control. Occlusal forces were registered with the T-Scan® III and then occlusal adjustment was performed to distribute occlusal forces correctly. Peri-implant clinical parameters were analyzed in both implants before and two and twelve months after occlusal adjustment. Results: Before occlusal adjustment, study group implants presented a higher mean volume of crevicular fluid (51.3±7.4 UP) than the control group (25.8±5.5 UP), with statistically significant difference. Two months after occlusal adjustment, there were no significant differences between groups (24.6±3.8 UP and 26±4.5 UP respectively) (p=0.977). After twelve months, no significant differences were found between groups (24.4±11.1 UP and 22.5±8.9 UP respectively) (p=0.323). For the other clinical parameters, no significant differences were identified between study and control implants at any of the study times (p>0.05). Conclusions: Study group implants receiving higher occlusal loading presented significantly higher volumes of crevicular fluid than control implants. Crevicular fluid volumes were similar in both groups two and twelve months after occlusal adjustment. Key words:Occlusal loading, crevicular fluid, peri-implant clinical parameters, T-Scan®. PMID:24316708

  10. The role of phytoplankton composition, biomass and cell volume in accumulation and transfer of endocrine disrupting compounds in the Southern Baltic Sea (The Gulf of Gdansk).

    PubMed

    Staniszewska, Marta; Nehring, Iga; Zgrundo, Aleksandra

    2015-12-01

    Endocrine disrupting compounds (EDCs) like bisphenol A (BPA), 4-tert-octylphenol (OP) and 4-nonylphenol (NP) are introduced to the trophic webs through among others phytoplankton. This paper describes BPA, OP and NP concentrations in phytoplankton in the Gulf of Gdansk (Southern Baltic Sea) in the years 2011-2012. The assays of BPA, OP and NP in samples were performed using HPLC with fluorescence detection. The concentrations of BPA, the most commonly used of the three compounds, were over ten times higher than OP and NP concentrations. The concentrations of the studied EDCs in phytoplankton from the Gulf of Gdansk depended on anthropogenic factors and on phytoplankton properties (species composition, biomass, volume). An increase in phytoplankton biomass did not always result in an increase of BPA, OP and NP concentrations. However, the load of the studied EDCs accumulated in phytoplankton biomass increase with a rise of biomass. An increase in BPA, OP and NP concentrations was effected by biomass growth and the proportions ofciliates, dinoflagellates, diatoms and green algae. A strong positive correlation between OP and NP concentrations and negative correlation between BPA concentrations and biomass of organisms with cells measuring <1000 μm(3) in volume results from the differing properties of these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Isoflurane in contrast to propofol promotes fluid extravasation during cardiopulmonary bypass in pigs.

    PubMed

    Brekke, Hege Kristin; Hammersborg, Stig Morten; Lundemoen, Steinar; Mongstad, Arve; Kvalheim, Venny Lise; Haugen, Oddbjørn; Husby, Paul

    2013-10-01

    A highly positive intraoperative fluid balance should be prevented as it negatively impacts patient outcome. Analysis of volume-kinetics has identified an increase in interstitial fluid volume after crystalloid fluid loading during isoflurane anesthesia. Isoflurane has also been associated with postoperative hypoxemia and may be associated with an increase in alveolar epithelial permeability, edema formation, and hindered oxygen exchange. In this article, the authors compare fluid extravasation rates before and during cardiopulmonary bypass (CPB) with isoflurane- versus propofol-based anesthesia. Fourteen pigs underwent 2 h of tepid CPB with propofol (P-group; n = 7) or isoflurane anesthesia (I-group; n = 7). Fluid requirements, plasma volume, colloid osmotic pressures in plasma and interstitial fluid, hematocrit levels, and total tissue water content were recorded, and fluid extravasation rates calculated. Fluid extravasation rates increased in the I-group from the pre-CPB level of 0.27 (0.13) to 0.92 (0.36) ml·kg·min, but remained essentially unchanged in the P-group with significant between-group differences during CPB (pb = 0.002). The results are supported by corresponding changes in interstitial colloid osmotic pressure and total tissue water content. During CPB, isoflurane, in contrast to propofol, significantly contributes to a general increase in fluid shifts from the intravascular to the interstitial space with edema formation and a possible negative impact on postoperative organ function.

  12. Preeclampsia: is it because of the asymptomatic, unrecognized renal scars caused by urinary tract infections in childhood that become symptomatic with pregnancy?

    PubMed

    Ozlü, Tülay; Alçelik, Aytekin; Calişkan, Billur; Dönmez, Melahat Emine

    2012-11-01

    Preeclampsia is an important disease of pregnancy whose exact etiology is still unknown despite continuing developments in medicine. Although most commonly it is believed to be caused by a defective placentation, in this paper, we hypothesize that the primary underlying problem in the development of preeclampsia can be in kidneys in a greater proportion of cases than it is believed today. The increased intravascular volume and the increased work load of kidneys together with the resulting glomerular hypertrophy may precipitate nephrotic syndrome, which in this case is called "preeclampsia" in a previously affected kidney. Urinary tract infections in childhood leaving silent, unrecognized small scars in the kidneys may be the underlying renal cause which disrupts its silence with an increased work load of kidneys prominently occurring after the midtrimester. The histopathologic finding in kidneys with renal scars after childhood urinary tract infections and in preeclampsia is focal segmental glomerulosclerosis in the majority of cases and this similarity strengthens our hypothesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The impact of preload reduction with head-up tilt testing on longitudinal and transverse left ventricular mechanics.

    PubMed

    Schneider, Caroline; Forsythe, Lynsey; Somauroo, John; George, Keith; Oxborough, David

    2018-01-03

    Left ventricular (LV) function is dependent on load, intrinsic contractility and relaxation with a variable impact on specific mechanics. Strain (ε) imaging allows the assessment of cardiac function however the direct relationship between volume and strain is currently unknown. The aim of this study was to establish the impact of preload reduction through head-up tilt (HUT) testing on simultaneous left ventricular (LV) longitudinal and transverse function and their respective contribution to volume change. A focused transthoracic echocardiogram was performed on 10 healthy male participants (23 ± 3 years,) in the supine position and following 1 min and 5 min of HUT testing. Raw temporal longitudinal ε (Ls) and transverse ε (Ts) values were exported and divided into 5% increments across the cardiac cycle and corresponding LV volumes were traced at each 5% increment. This provided simultaneous LV longitudinal and transverse ε and volume-loops (deformation-volume analysis - DVA). There was a leftward- shift of the ε -volume loop from supine to 1 min and 5 min of HUT, p<0.001). Moreover, longitudinal shortening was reduced (p<0.001) with a concomitant increase in transverse thickening from supine to 1min, which was further augmented at 5min (p=0.018). Preload reduction occurs within 1 minute of HUT but does not further reduce at 5 minutes. This decline is associated with a decrease in longitudinal ε and concomitant increase in transverse ε. Consequently, augmented transverse relaxation appears to be an important factor in the maintenance of LV filling in the setting of reduced preload. DVA provides information on the relative contribution of mechanics to a change in LV volume and may have a role in the assessment of clinical populations. © 2018 The authors.

  14. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.

    PubMed

    Schwartz, Daniel; Sample, David J; Grizzard, Thomas J

    2017-06-01

    This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.

  15. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with ZOL not modulating trabecular thickness in CL + NAHU mice. In summary, our integrated model simulates the combination of weightlessness, exercise-induced mechanical strain, and anti-resorptive treatment that astronauts experience during space missions. Based on these results, we conclude that, at the structural and stiffness level, zoledronate treatment during simulated spaceflight does not impede the skeletal response to axial compression. In contrast to our hypothesis, our data show that zoledronate confers no additional mechanical or structural benefit beyond those gained from cyclical loading.

  16. SWMM IMPROVEMENT FOR ANALYZING BMP/LTD PERFORMANCE

    EPA Science Inventory

    Pollution and treatment costs associated with wet weather flows (WWFs) have caused a need for reducing stormwater runoff volumes as well as loads. A number of strategies and best management practices (BMPs) are being used to mitigate runoff volumes and associated nonpoint source...

  17. Height restoration and maintenance after treating unstable osteoporotic vertebral compression fractures by cement augmentation is dependent on the cement volume used.

    PubMed

    Krüger, Antonio; Baroud, Gamal; Noriega, David; Figiel, Jens; Dorschel, Christine; Ruchholtz, Steffen; Oberkircher, Ludwig

    2013-08-01

    Two different procedures, used for percutaneous augmentation of vertebral compression fractures were compared, with respect to height restoration and maintenance after cyclic loading. Additionally the impact of the cement volume used was investigated. Wedge compression fractures were created in 36 human cadavaric vertebrae (T10-L3). Twenty-seven vertebrae were treated with the SpineJack® with different cement volumes (maximum, intermediate, and no cement), and 9 vertebrae were treated with Balloon Kyphoplasty. Vertebral heights were measured pre- and postfracture as well as after treatment and loading. Cyclic loading was performed with 10,000cycles (1Hz, 100-600N). The average anterior height after restoration was 85.56% for Kyphoplasty; 96.20% for SpineJack® no cement; 93.44% for SpineJack® maximum and 96% for the SpineJack® intermediate group. The average central height after restoration was 93.89% for Kyphoplasty; 100.20% for SpineJack® no cement; 99.56% for SpineJack® maximum and 101.13% for the SpineJack® intermediate group. The average anterior height after cyclic loading was 85.33 % for Kyphoplasty; 87.30% in the SpineJack® no cement, 92% in the SpineJack® maximum and 87% in the SpineJack® intermediate group. The average central height after cyclic loading was 92% for Kyphoplasty; 93.80% in the SpineJack® no cement; 98.56% in the SpineJack® maximum and 94.25% in the SpineJack® intermediate group. Height restoration was significantly better for the SpineJack® group compared to Kyphoplasty. Height maintenance was dependent on the cement volume used. The group with the SpineJack® without cement nevertheless showed better results in height maintenance, yet the statistical significance could not be demonstrated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Ionic cross-linked polyether and silica gel mixed matrix membranes for CO 2 separation from flue gas

    DOE PAGES

    Sekizkardes, Ali K.; Zhou, Xu; Nulwala, Hunaid B.; ...

    2017-09-22

    Mixed matrix membranes (MMMs) were prepared by incorporating 10 wt%, 20 wt% and 30 wt% silica gel filler particles into novel ionic cross-linked polyether (IXPE) polymers. Porous silica gel has the advantage of high surface area that can increase the free volume and permeability in a polymer film while also being commercially available and low cost. The MMMs featured high chemical and thermal stability as well as a modest improvement in storage modulus. These features are due to the excellent interfacial interaction between silica gel filler particles and the polymer matrix. Increasing the loading of silica gel particles in MMMsmore » resulted in higher permeability up to 120 Barrer for CO 2, which is about 40% higher than the neat polymer matrix. Finally, most importantly, the MMMs maintained a very high CO 2/N 2 selectivity performance of around 41 for all particle loadings that were tested.« less

  19. Clarification of the circulatory patho-physiology of anaesthesia - implications for high-risk surgical patients.

    PubMed

    Wolff, Christopher B; Green, David W

    2014-12-01

    The paper examines the effects of anaesthesia on circulatory physiology and their implications regarding improvement in perioperative anaesthetic management. Changes to current anaesthetic practice, recommended recently, such as the use of flow monitoring in high risk patients, are already beginning to have an impact in reducing complications but not mortality [1]. Better understanding of the patho-physiology should help improve management even further. Analysis of selected individual clinical trials has been used to illustrate particular areas of patho-physiology and how changes in practice have improved outcome. There is physiological support for the importance of achieving an appropriate rate of oxygen delivery (DO2), particularly following induction of anaesthesia. It is suggested that ensuring adequate DO2 during anaesthesia will avoid development of oxygen debt and hence obviate the need to induce a high, compensatory, DO2 in the post-operative period. In contrast to the usual assumptions underlying strategies requiring a global increase in blood flow [1] by a stroke volume near maximization strategy, blood flow control actually resides entirely at the tissues not at the heart. This is important as the starting point for understanding failed circulatory control as indicated by 'volume dependency'. Local adjustments in blood flow at each individual organ - auto-regulation - normally ensure the appropriate local rate of oxygen supply, i.e. local DO2. Inadequate blood volume leads to impairment of the regulation of blood flow, particularly in the individual tissues with least capable auto-regulatory capability. As demonstrated by many studies, inadequate blood flow first occurs in the gut, brain and kidney. The inadequate blood volume which occurs with induction of anaesthesia is not due to blood volume loss, but probably results from redistribution due to veno-dilation. The increase in venous capacity renders the existing blood volume inadequate to maintain venous return and pre-load. Blood volume shifted to the veins will, necessarily, also reduce the arterial volume. As a result stroke volume and cardiac output fall below normal with little or no change in peripheral resistance. The resulting pre-load dependency is often successfully treated with colloid infusion and, in some studies, 'inotropic' agents, particularly in the immediate post-operative phase. Treatment during the earliest stage of anaesthesia can avoid the build up of oxygen debt and may be supplemented by drugs which maintain or restore venous tone, such as phenylephrine; an alternative to volume expansion. Interpretation of circulatory patho-physiology during anaesthesia confirms the need to sustain appropriate oxygen delivery. It also supports reduction or even elimination of supplementary crystalloid maintenance infusion, supposedly to replace the "mythical" third space loss. As a rational evidence base for future research it should allow for further improvements in anaesthetic management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  20. Dynamics of chest wall volume regulation during constant work rate exercise in patients with chronic obstructive pulmonary disease

    PubMed Central

    Takara, L.S.; Cunha, T.M.; Barbosa, P.; Rodrigues, M.K.; Oliveira, M.F.; Nery, L.E.; Neder, J.A.

    2012-01-01

    This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(VCW) = rib cage (VRC) + abdomen (VAB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) VCW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of VCW regulation as EEVCW increased non-linearly in 17/30 “hyperinflators” and decreased in 13/30 “non-hyperinflators” (P < 0.05). EEVAB decreased slightly in 8 of the “hyperinflators”, thereby reducing and slowing the rate of increase in end-inspiratory (EI) VCW (P < 0.05). In contrast, decreases in EEVCW in the “non-hyperinflators” were due to the combination of stable EEVRC with marked reductions in EEVAB. These patients showed lower EIVCW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIVCW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment. PMID:23250012

  1. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    PubMed

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P < .05. From day 3 to day 7, bone volume fraction, structure model index, trabecular thickness, and trabecular separation decreased significantly on the compression side, but the same parameters increased significantly on the tension side from day 7 to day 14. Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  2. [New methods for determining the relative load due to physical effort of the human body].

    PubMed

    Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja

    2014-01-01

    The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.

  3. Storm loads of culturable and molecular fecal indicators in an inland urban stream.

    PubMed

    Liao, Hehuan; Krometis, Leigh-Anne H; Cully Hession, W; Benitez, Romina; Sawyer, Richard; Schaberg, Erin; von Wagoner, Emily; Badgley, Brian D

    2015-10-15

    Elevated concentrations of fecal indicator bacteria in receiving waters during wet-weather flows are a considerable public health concern that is likely to be exacerbated by future climate change and urbanization. Knowledge of factors driving the fate and transport of fecal indicator bacteria in stormwater is limited, and even less is known about molecular fecal indicators, which may eventually supplant traditional culturable indicators. In this study, concentrations and loading rates of both culturable and molecular fecal indicators were quantified throughout six storm events in an instrumented inland urban stream. While both concentrations and loading rates of each fecal indicator increased rapidly during the rising limb of the storm hydrographs, it is the loading rates rather than instantaneous concentrations that provide a better estimate of transport through the stream during the entire storm. Concentrations of general fecal indicators (both culturable and molecular) correlated most highly with each other during storm events but not with the human-associated HF183 Bacteroides marker. Event loads of general fecal indicators most strongly correlated with total runoff volume, maximum discharge, and maximum turbidity, while event loads of HF183 most strongly correlated with the time to peak flow in a hydrograph. These observations suggest that collection of multiple samples during a storm event is critical for accurate predictions of fecal indicator loading rates and total loads during wet-weather flows, which are required for effective watershed management. In addition, existing predictive models based on general fecal indicators may not be sufficient to predict source-specific genetic markers of fecal contamination. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    PubMed

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  5. Estimation of Local Bone Loads for the Volume of Interest.

    PubMed

    Kim, Jung Jin; Kim, Youkyung; Jang, In Gwun

    2016-07-01

    Computational bone remodeling simulations have recently received significant attention with the aid of state-of-the-art high-resolution imaging modalities. They have been performed using localized finite element (FE) models rather than full FE models due to the excessive computational costs of full FE models. However, these localized bone remodeling simulations remain to be investigated in more depth. In particular, applying simplified loading conditions (e.g., uniform and unidirectional loads) to localized FE models have a severe limitation in a reliable subject-specific assessment. In order to effectively determine the physiological local bone loads for the volume of interest (VOI), this paper proposes a novel method of estimating the local loads when the global musculoskeletal loads are given. The proposed method is verified for the three VOI in a proximal femur in terms of force equilibrium, displacement field, and strain energy density (SED) distribution. The effect of the global load deviation on the local load estimation is also investigated by perturbing a hip joint contact force (HCF) in the femoral head. Deviation in force magnitude exhibits the greatest absolute changes in a SED distribution due to its own greatest deviation, whereas angular deviation perpendicular to a HCF provides the greatest relative change. With further in vivo force measurements and high-resolution clinical imaging modalities, the proposed method will contribute to the development of reliable patient-specific localized FE models, which can provide enhanced computational efficiency for iterative computing processes such as bone remodeling simulations.

  6. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    PubMed Central

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  7. Comparison of metabolic responses of United States Military Academy men and women in acute military load bearing.

    PubMed

    Stauffer, R W; McCarter, M; Campbell, J L; Wheeler, L F

    1987-11-01

    Twenty-four first year United States Military Academy (USMA) men and women were studied to compare metabolic response differences in seven horizontal walking velocities, under three military load bearing conditions. The treadmill protocol consisted of walking or jogging on a horizontal treadmill surface for 3-min intervals at velocities of 3, 3.5, 4, 4.5, 5, 5.5, and 6 mph. The three military load bearing conditions weighed 5, 12, and 20 kg. Metabolic measurements taken at each speed in each of the military load bearing conditions were: minute volume, tidal volume, respiratory rate, absolute and relative to body weight oxygen consumption, and respiratory quotient. Two three-way analyses of variance for repeated measures tests with main effects of gender, military load, and speed revealed that USMA men and women metabolically respond to different military load bearing conditions; they metabolically respond to different walking and jogging velocities under military load bearing conditions; and they have identifiable and quantifiable metabolic response differences to military load bearing. This study was designed to improve USMA physical and military training programs by providing information to equally and uniformly administer the USMA Doctrine of Comparable Training to men and women alike; and additionally to clarify the "...minimal essential adjustments...required because of physiological differences between male and female individuals ..." portion of Public Law 94-106 providing for the admission of women to America's Service Academies.

  8. Mission-Based Analyses of Armor Training Requirements. Volume 7. Training Objectives for the XM1 Loader

    DTIC Science & Technology

    1982-04-01

    the gas particulate filter system MODULE L: OPERATE THE M250 BRENADE LAUNCHER 1L. Load the grenade launcher 2L. Unload the grenade launcher MODULE M...k Initia~ng Stimulus: Thei (11rdLr from the T.C. to load the M250 .p grenade launcher. J ACTION Loader will: 1L. Load the grenade launcher. 2L. Unload

  9. Fatigue performance of variable message sign & luminaire support structures : volume II, fatigue related wind loads on highway support structures.

    DOT National Transportation Integrated Search

    1998-05-01

    In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...

  10. Fatigue performance of variable message sign & luminaire support structures : volume I, fatigue related wind loads on highway support structures

    DOT National Transportation Integrated Search

    1998-04-01

    In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...

  11. Improved characterization of truck traffic volumes and axle loads for mechanistic-empirical pavement design : [executive summary report].

    DOT National Transportation Integrated Search

    2012-12-01

    Traffic is one of the primary inputs in pavement design. Traditional pavement design procedures account for traffic using the equivalent single axle loads (ESALs) accumulated during the life of the pavement structure. This procedure is based on co...

  12. Modelling the effects of ice-sheet activity on CO2 outgassing by Icelandic volcanoes

    NASA Astrophysics Data System (ADS)

    Armitage, J. J.; Ferguson, D.; Petersen, K. D.; Creyts, T. T.

    2017-12-01

    Glacial cycles may play a significant role in mediating the flux of magmatic CO2 between the Earth's mantle and atmosphere. In Iceland, it is thought that late-Pleistocene deglaciation led to a significant volcanic pulse, evidenced by increased post-glacial lava volumes and changes in melt chemistry consistent with depressurization. Investigating the extent to which glacial activity may have affected volcanic CO2 emissions from Iceland, and crucially over what timescale, requires detailed knowledge of how the magma system responded to the growth and collapse of the ice-sheet before and after the LGM. To investigate this, we coupled a model of magma generation and transport with a history of ice-sheet activity. Our results show that the emplacement and removal of the LGM ice-sheet likely led to two significant pulses of magmatic CO2. The first, and most significant of these, is associated with ice-sheet growth and occurs as the magma system recovers from glacial loading. This recovery happens from the base of the melting region upwards, producing a pulse of CO2 rich magma that is predicted to reach the surface around 20 ka after the loading event, close in time to the LGM. The second peak in CO2 output occurs abruptly following deglaciation as a consequence of increased rates of melt generation and transport in the shallow mantle. Although these post-glacial melts are relatively depleted in CO2, the increase in magma flux leads to a short-lived period of elevated CO2 emissions. Our results therefore suggest a negative feedback, whereby ice-sheet growth produces a delayed pulse of magmatic CO2, which, in addition to increased geothermal heat flux, may contribute towards driving deglaciation, which itself then causes further magmatism and CO2 outgassing. This model is consistent with the seismic structure of the asthenosphere below Iceland, and the established compositional and volumetric trends for sub- and post-glacial volcanism in Iceland. These trends show that the earliest subglacial events involved small volumes of enriched melts, while eruptions that were synchronous with or immediately followed deglaciation involved larger volumes of more depleted melts.

  13. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  14. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE PAGES

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...

    2018-03-03

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  15. The Biomechanical Properties of Pedicle Screw Fixation Combined With Trajectory Bone Cement Augmentation in Osteoporotic Vertebrae.

    PubMed

    Fan, Haitao T; Zhang, Renjie J; Shen, Cailiang L; Dong, Fulong L; Li, Yong; Song, Peiwen W; Gong, Chen; Wang, Yijin J

    2016-03-01

    The biomechanics of pedicle screw fixation combined with trajectory cement augmentation with various filling volumes were measured by pull-out, periodic antibending, and compression fatigue tests. To investigate the biomechanical properties of the pedicle screw fixation combined with trajectory bone cement (polymethylmethacrylate) augmentation in osteoporotic vertebrae and to explore the optimum filling volume of the bone cement. Pedicle screw fixation is considered to be the most effective posterior fixation method. The decrease of the bone mineral density apparently increases the fixation failure risk caused by screw loosening and displacement. Trajectory bone cement augmentation has been confirmed to be an effective method to increase the bone intensity and could markedly increase the stability of the fixation interface. Sixteen elderly cadaveric 1-5 lumbar vertebral specimens were diagnosed with osteoporosis. The left and right vertebral pedicles were alternatively randomized for treatment in all groups, with the contralateral pedicles as control. The study groups included: group A (pedicle screw fixation with full trajectory bone cement augmentation), group B (75% filling), group C (50% filling), and group D (25% filling). Finally, the bone cement leakage and dispersion were assessed and the mechanical testing was conducted. The bone cement was well dispersed around the pedicle screw. The augmented bone intensity, pull-out strength, periodic loading times, and compression fatigue performance were markedly higher than those of the control groups. With the increase in trajectory bone cement, the leakage was also increased (P<0.05). The pull-out strength of the pedicle screw was increased with an increase in bone mineral density and trajectory bone cement. It peaked at 75% filling, with the largest power consumption. The optimal filling volume of the bone cement was 75% of the trajectory volume (about 1.03 mL). The use of excessive bone cement did not increase the fixation intensity but increased the risk of leakage.

  16. Atmospheric particulate measurements in Norfolk, Virginia

    NASA Technical Reports Server (NTRS)

    Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.

    1975-01-01

    Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.

  17. High speed turboprop aeroacoustic study (single rotation). Volume 1: Model development

    NASA Technical Reports Server (NTRS)

    Whitfield, C. E.; Gliebe, P. R.; Mani, R.; Mungur, P.

    1989-01-01

    A frequency-domain noncompact-source theory for the steady loading and volume-displacement (thickness) noise of high speed propellers has been developed and programmed. Both near field and far field effects have been considered. The code utilizes blade surface pressure distributions obtained from three-dimensional nonlinear aerodynamic flow field analysis programs as input for evaluating the steady loading noise. Simplified mathematical models of the velocity fields induced at the propeller disk by nearby wing and fuselage surfaces and by angle-of-attack operation have been developed to provide estimates of the unsteady loading imposed on the propeller by these potential field type interactions. These unsteady blade loadings have been coupled to a chordwise compact propeller unsteady loading noise model to provide predictions of unsteady loading noise caused by these installation effects. Finally, an analysis to estimate the corrections to be applied to the free-field noise predictions in order to arrive at the measurable fuselage sound pressure levels has been formulated and programmed. This analysis considers the effects of fuselage surface reflection and diffraction together with surface boundary layer refraction. The steady loading and thickness model and the unsteady loading model have been verified using NASA-supplied data for the SR-2 and SR-3 model propfans. In addition, the steady loading and thickness model has been compared with data from the SR-6 model propfan. These theoretical models have been employed in the evaluation of the SR-7 powered Gulfstream aircraft in terms of noise characteristics at representative takeoff, cruise, and approach operating conditions. In all cases, agreement between theory and experiment is encouraging.

  18. Dynamic Loading Experiments In The Massive Exoplanet Regime

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Hicks, D.; Eggert, J.; Milathianaki, D.; Rothman, S.; Rosen, P.; Collins, G.

    2010-10-01

    Exoplanets have been detected with masses and radii suggesting rocky and hydrogen-rich compositions up to 10 times the mass of the Earth and Jupiter, in similar volumes. The formation and evolution of such bodies, and the distribution and properties of brown dwarfs which are an important component of galactic structures, depend on the equation of state (EOS) and chemistry of constituent matter at pressures 2-200 TPa for Fe-rich and hydrogenic matter respectively. Electronic structure calculations can predict these properties, but experimental measurements are crucial to investigate their accuracy in this regime. Hohlraum-driven configurations at the National Ignition Facility can induce planar ramp or shock loading to 30 TPa, over volumes sufficient to enable percent accuracy in EOS measurements. We are designing configurations using convergent ramp and shock loading for EOS experiments to pressures in excess of 100 TPa.

  19. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    NASA Astrophysics Data System (ADS)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  20. Design of Large Stone Asphalt Mixes for Low-Volume Roads Using Six-Inch Diameter Marshall Specimens

    DOT National Transportation Integrated Search

    1991-01-01

    Premature rutting of road pavements constructed for hauling coal and logs is common. Although these roads carry low volumes of traffic, they are subjected to heavy and channelized wheel loads. Unfortunately, conventional asphalt mixes containing aggr...

Top