Dingwell, Jonathan B; Salinas, Mandy M; Cusumano, Joseph P
2017-06-01
Older adults exhibit increased gait variability that is associated with fall history and predicts future falls. It is not known to what extent this increased variability results from increased physiological noise versus a decreased ability to regulate walking movements. To "walk", a person must move a finite distance in finite time, making stride length (L n ) and time (T n ) the fundamental stride variables to define forward walking. Multiple age-related physiological changes increase neuromotor noise, increasing gait variability. If older adults also alter how they regulate their stride variables, this could further exacerbate that variability. We previously developed a Goal Equivalent Manifold (GEM) computational framework specifically to separate these causes of variability. Here, we apply this framework to identify how both young and high-functioning healthy older adults regulate stepping from each stride to the next. Healthy older adults exhibited increased gait variability, independent of walking speed. However, despite this, these healthy older adults also concurrently exhibited no differences (all p>0.50) from young adults either in how their stride variability was distributed relative to the GEM or in how they regulated, from stride to stride, either their basic stepping variables or deviations relative to the GEM. Using a validated computational model, we found these experimental findings were consistent with increased gait variability arising solely from increased neuromotor noise, and not from changes in stride-to-stride control. Thus, age-related increased gait variability likely precedes impaired stepping control. This suggests these changes may in turn precede increased fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Yentes, Jennifer M; Rennard, Stephen I; Schmid, Kendra K; Blanke, Daniel; Stergiou, Nicholas
2017-06-01
Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls. To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects. Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV 1 /FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables. Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups. Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD.
Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W
2014-04-01
Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Gait variability in community dwelling adults with Alzheimer disease.
Webster, Kate E; Merory, John R; Wittwer, Joanne E
2006-01-01
Studies have shown that measures of gait variability are associated with falling in older adults. However, few studies have measured gait variability in people with Alzheimer disease, despite the high incidence of falls in Alzheimer disease. The purpose of this study was to compare gait variability of community-dwelling older adults with Alzheimer disease and control subjects at various walking speeds. Ten subjects with mild-moderate Alzheimer disease and ten matched control subjects underwent gait analysis using an electronic walkway. Participants were required to walk at self-selected slow, preferred, and fast speeds. Stride length and step width variability were determined using the coefficient of variation. Results showed that stride length variability was significantly greater in the Alzheimer disease group compared with the control group at all speeds. In both groups, increases in walking speed were significantly correlated with decreases in stride length variability. Step width variability was significantly reduced in the Alzheimer disease group compared with the control group at slow speed only. In conclusion, there is an increase in stride length variability in Alzheimer disease at all walking speeds that may contribute to the increased incidence of falls in Alzheimer disease.
Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2018-06-01
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of falling and to target those factors that influence fall risk most. PMID:24120280
Roos, Paulien E; Dingwell, Jonathan B
2013-10-01
Falls are common in older adults. The most common cause of falls is tripping while walking. Simulation studies demonstrated that older adults may be restricted by lower limb strength and movement speed to regain balance after a trip. This review examines how modeling approaches can be used to determine how different measures predict actual fall risk and what some of the causal mechanisms of fall risk are. Although increased gait variability predicts increased fall risk experimentally, it is not clear which variability measures could best be used, or what magnitude of change corresponded with increased fall risk. With a simulation study we showed that the increase in fall risk with a certain increase in gait variability was greatly influenced by the initial level of variability. Gait variability can therefore not easily be used to predict fall risk. We therefore explored other measures that may be related to fall risk and investigated the relationship between stability measures such as Floquet multipliers and local divergence exponents and actual fall risk in a dynamic walking model. We demonstrated that short-term local divergence exponents were a good early predictor for fall risk. Neuronal noise increases with age. It has however not been fully understood if increased neuronal noise would cause an increased fall risk. With our dynamic walking model we showed that increased neuronal noise caused increased fall risk. Although people who are at increased risk of falling reduce their walking speed it had been questioned whether this slower speed would actually cause a reduced fall risk. With our model we demonstrated that a reduced walking speed caused a reduction in fall risk. This may be due to the decreased kinematic variability as a result of the reduced signal-dependent noise of the smaller muscle forces that are required for slower. These insights may be used in the development of fall prevention programs in order to better identify those at increased risk of falling and to target those factors that influence fall risk most. Copyright © 2013 Elsevier B.V. All rights reserved.
Increased walking variability in elderly persons with congestive heart failure
NASA Technical Reports Server (NTRS)
Hausdorff, J. M.; Forman, D. E.; Ladin, Z.; Goldberger, A. L.; Rigney, D. R.; Wei, J. Y.
1994-01-01
OBJECTIVES: To determine the effects of congestive heart failure on a person's ability to walk at a steady pace while ambulating at a self-determined rate. SETTING: Beth Israel Hospital, Boston, a primary and tertiary teaching hospital, and a social activity center for elderly adults living in the community. PARTICIPANTS: Eleven elderly subjects (aged 70-93 years) with well compensated congestive heart failure (NY Heart Association class I or II), seven elderly subjects (aged 70-79 years) without congestive heart failure, and 10 healthy young adult subjects (aged 20-30 years). MEASUREMENTS: Subjects walked for 8 minutes on level ground at their own selected walking rate. Footswitches were used to measure the time between steps. Step rate (steps/minute) and step rate variability were calculated for the entire walking period, for 30 seconds during the first minute of the walk, for 30 seconds during the last minute of the walk, and for the 30-second period when each subject's step rate variability was minimal. Group means and 5% and 95% confidence intervals were computed. MAIN RESULTS: All measures of walking variability were significantly increased in the elderly subjects with congestive heart failure, intermediate in the elderly controls, and lowest in the young subjects. There was no overlap between the three groups using the minimal 30-second variability (elderly CHF vs elderly controls: P < 0.001, elderly controls vs young: P < 0.001), and no overlap between elderly subjects with and without congestive heart failure when using the overall variability. For all four measures, there was no overlap in any of the confidence intervals, and all group means were significantly different (P < 0.05).
Beltran, Eduardo J.; Dingwell, Jonathan B.; Wilken, Jason M.
2014-01-01
Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-minute walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under three each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p < 0.010). Also, AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p < 0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p < 0.050) and MOS variability (p < 0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p < 0.005); mean and variability of the range of COM motion (p < 0.010); and variability of COM peak velocity (p < 0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected walking stability during platform perturbations. PMID:24444777
Mind your step: metabolic energy cost while walking an enforced gait pattern.
Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H
2011-04-01
The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.
Variability in energy cost and walking gait during race walking in competitive race walkers.
Brisswalter, J; Fougeron, B; Legros, P
1998-09-01
The aim of this study was to examine the variability of energy cost (Cw) and race walking gait after a 3-h walk at the competition pace in race walkers of the same performance level. Nine competitive race walkers were studied. In the same week, after a first test of VO2max determination, each subject completed two submaximal treadmill walks (6 min length, 0% grade, 12 km X h(-1) speed) before and after a 3-h overground test completed at the individual competition speed of the race walker. During the two submaximal tests, subjects were filmed between the 2nd and the 4th min, and physiological parameters were recorded between the 4th and the 6th min. Results showed two trends. On the one hand, we observed a significant and systematic increase in energy cost of walking (mean deltaCw = 8.4%), whereas no variation in the gait kinematics prescribed by the rules of race walking was recorded. On the other hand, this increase in metabolic energy demand was accompanied by variations of different magnitude and direction of stride length, of the excursion of the heel and of the maximal ankle flexion at toe-off among the race walkers. These results indicated that competitive race walkers are able to maintain their walking gait with exercise duration apart from a systematic increase in energy cost. Moreover, in this form of locomotion the effect of fatigue on the gait variability seems to be an individual function of the race walk constraints and the constraints of the performer.
Kesler, Anat; Leibovich, Gregory; Herman, Talia; Gruendlinger, Leor; Giladi, Nir; Hausdorff, Jeffrey M
2005-08-28
To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD) and to compare their response to that of healthy elderly controls. 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens) and in near darkness (5 lumens). Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.
Alkjær, Tine; Raffalt, Peter; Petersen, Nicolas C; Simonsen, Erik B
2012-01-01
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking.
Alkjær, Tine; Raffalt, Peter; Petersen, Nicolas C.; Simonsen, Erik B.
2012-01-01
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking. PMID:22615997
Dynamic stability of passive dynamic walking on an irregular surface.
Su, Jimmy Li-Shin; Dingwell, Jonathan B
2007-12-01
Falls that occur during walking are a significant health problem. One of the greatest impediments to solve this problem is that there is no single obviously "correct" way to quantify walking stability. While many people use variability as a proxy for stability, measures of variability do not quantify how the locomotor system responds to perturbations. The purpose of this study was to determine how changes in walking surface variability affect changes in both locomotor variability and stability. We modified an irreducibly simple model of walking to apply random perturbations that simulated walking over an irregular surface. Because the model's global basin of attraction remained fixed, increasing the amplitude of the applied perturbations directly increased the risk of falling in the model. We generated ten simulations of 300 consecutive strides of walking at each of six perturbation amplitudes ranging from zero (i.e., a smooth continuous surface) up to the maximum level the model could tolerate without falling over. Orbital stability defines how a system responds to small (i.e., "local") perturbations from one cycle to the next and was quantified by calculating the maximum Floquet multipliers for the model. Local stability defines how a system responds to similar perturbations in real time and was quantified by calculating short-term and long-term local exponential rates of divergence for the model. As perturbation amplitudes increased, no changes were seen in orbital stability (r(2)=2.43%; p=0.280) or long-term local instability (r(2)=1.0%; p=0.441). These measures essentially reflected the fact that the model never actually "fell" during any of our simulations. Conversely, the variability of the walker's kinematics increased exponentially (r(2)>or=99.6%; p<0.001) and short-term local instability increased linearly (r(2)=88.1%; p<0.001). These measures thus predicted the increased risk of falling exhibited by the model. For all simulated conditions, the walker remained orbitally stable, while exhibiting substantial local instability. This was because very small initial perturbations diverged away from the limit cycle, while larger initial perturbations converged toward the limit cycle. These results provide insight into how these different proposed measures of walking stability are related to each other and to risk of falling.
Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco
2018-01-01
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815
Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K
2013-01-01
Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.
Local dynamic stability and gait variability during attentional tasks in young adults.
Magnani, Rina Márcia; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; de Oliveira Andrade, Adriano; Vieira, Marcus Fraga
2017-06-01
Cell phone use while walking may be a cognitive distraction and reduce visual and motor attention. Thus, the aim of this study was to verify the effects of attentional dual-tasks while using a cell phone in different conditions. Stability, regularity, and linear variability of trunk kinematics, and gait spatiotemporal parameters in young adults were measured. Twenty young subjects of both genders were asked to walk on a treadmill for 4min under the following conditions: (a) looking forward at a fixed target 2.5m away (walking); (b) talking on a cell phone with unilateral handling (talking); (c) texting messages on a cell phone with unilateral handling (texting); and (d) looking forward at the aforementioned target while listening to music without handling the phone (listening). Local dynamic stability measured in terms of the largest Lyapunov exponent decreased while handling a cell phone (talking and texting). Gait variability and regularity increased when talking on a cell phone, but no variable changed in the listening condition. Under all dual-task conditions, there were significant increases in stride width and its variability. We conclude that young adults who use a cell phone when walking adapt their gait pattern conservatively, which can be because of increased attentional demand during cell phone use. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Background Given the documented physical activity disparities that exist among low-income minority communities and the increased focused on socio-ecological approaches to address physical inactivity, efforts aimed at understanding the built environment to support physical activity are needed. This community-based participatory research (CBPR) project investigates walking trails perceptions in a high minority southern community and objectively examines walking trails. The primary aim is to explore if perceived and objective audit variables predict meeting recommendations for walking and physical activity, MET/minutes/week of physical activity, and frequency of trail use. Methods A proportional sampling plan was used to survey community residents in this cross-sectional study. Previously validated instruments were pilot tested and appropriately adapted and included the short version of the validated International Physical Activity Questionnaire, trail use, and perceptions of walking trails. Walking trails were assessed using the valid and reliable Path Environmental Audit Tool which assesses four content areas including: design features, amenities, maintenance, and pedestrian safety from traffic. Analyses included Chi-square, one-way ANOVA's, multiple linear regression, and multiple logistic models. Results Numerous (n = 21) high quality walking trails were available. Across trails, there were very few indicators of incivilities and safety features rated relatively high. Among the 372 respondents, trail use significantly predicted meeting recommendations for walking and physical activity, and MET/minutes/week. While controlling for other variables, significant predictors of trail use included proximity to trails, as well as perceptions of walking trail safety, trail amenities, and neighborhood pedestrian safety. Furthermore, while controlling for education, gender, and income; for every one time per week increase in using walking trails, the odds for meeting walking recommendations increased 1.27 times, and the odds for meeting PA recommendation increased 3.54 times. Perceived and objective audit variables did not predict meeting physical activity recommendations. Conclusions To improve physical activity levels, intervention efforts are needed to maximize the use of existing trails, as well as improve residents' perceptions related to incivilities, safety, conditions of trail, and amenities of the walking trails. This study provides important insights for informing development of the CBPR walking intervention and informing local recreational and environmental policies in this southern community. PMID:22289653
A cognitive dual task affects gait variability in patients suffering from chronic low back pain.
Hamacher, Dennis; Hamacher, Daniel; Schega, Lutz
2014-11-01
Chronic pain and gait variability in a dual-task situation are both associated with higher risk of falling. Executive functions regulate (dual-task) gait variability. A possible cause explaining why chronic pain increases risk of falling in an everyday dual-task situation might be that pain interferes with executive functions and results in a diminished dual-task capability with performance decrements on the secondary task. The main goal of this experiment was to evaluate the specific effects of a cognitive dual task on gait variability in chronic low back pain (CLBP) patients. Twelve healthy participants and twelve patients suffering from CLBP were included. The subjects were asked to perform a cognitive single task, a walking single task and a motor-cognitive dual task. Stride variability of trunk movements was calculated. A two-way ANOVA was performed to compare single-task walking with dual-task walking and the single cognitive task performance with the motor-cognitive dual-task performance. We did not find any differences in both of the single-task performances between groups. However, regarding single-task walking and dual-task walking, we observed an interaction effect indicating that low back pain patients show significantly higher gait variability in the dual-task condition as compared to controls. Our data suggest that chronic pain reduces motor-cognitive dual-task performance capability. We postulate that the detrimental effects are caused by central mechanisms where pain interferes with executive functions which, in turn, might contribute to increased risk of falling.
A new technique for simultaneous monitoring of electrocardiogram and walking cadence
NASA Technical Reports Server (NTRS)
Hausdorff, J. M.; Forman, D. E.; Pilgrim, D. M.; Rigney, D. R.; Wei, J. Y.; Goldberger, A. L. (Principal Investigator)
1992-01-01
A new technique for simultaneously recording continuous electrocardiographic (ECG) data and walking step rate (cadence) is described. The ECG and gait signals are recorded on 2 channels of an ambulatory Holter monitor. Footfall is detected using ultrathin, force-sensitive foot switches and is frequency modulated. The footfall signal provides an indication of the subject's activity (walking or standing), as well as the instantaneous walking rate. Twenty-three young and elderly subjects were studied to demonstrate the use of this ECG and gait recorder. High-quality gait signals were obtained in all subjects, and the effects of walking on the electrocardiogram were assessed. Initial investigation revealed the following findings: (1) Although walking rates were similar in young and elderly subjects, the elderly had both decreased heart rate (HR) variability (p < 0.005) and increased cadence variability (p < 0.0001). (2) Overall, there was an inverse relation between HR and cadence variability (r = -0.73). Three elderly subjects with no known cardiac disease had HR and cadence variability similar to those of the young, whereas elderly subjects with history of congestive heart failure were among those with the lowest HR variability and the highest cadence variability. (3) Low-frequency (approximately equal to 0.1 Hz) HR oscillations (frequently observed during standing) persisted during walking in all young subjects. (4) In some subjects, both step rate and HR oscillated at the same low frequency (approximately equal to 0.1 Hz) previously identified with autonomic control of the baroreflex.(ABSTRACT TRUNCATED AT 250 WORDS).
Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos
2018-01-16
The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values < 0.05). The participants walked with increased stride length and decreased cadence during neck level as compared to waist and chest level. They also showed increased ankle ROM and decreased hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.
Kinematic and ground reaction force accommodation during weighted walking.
James, C Roger; Atkins, Lee T; Yang, Hyung Suk; Dufek, Janet S; Bates, Barry T
2015-12-01
Weighted walking is a functional activity common in daily life and can influence risks for musculoskeletal loading, injury and falling. Much information exists about weighted walking during military, occupational and recreational tasks, but less is known about strategies used to accommodate to weight carriage typical in daily life. The purposes of the study were to examine the effects of weight carriage on kinematics and peak ground reaction force (GRF) during walking, and explore relationships between these variables. Twenty subjects walked on a treadmill while carrying 0, 44.5 and 89 N weights in front of the body. Peak GRF, sagittal plane joint/segment angular kinematics, stride length and center of mass (COM) vertical displacement were measured. Changes in peak GRF and displacement variables between weight conditions represented accommodation. Effects of weight carriage were tested using analysis of variance. Relationships between peak GRF and kinematic accommodation variables were examined using correlation and regression. Subjects were classified into sub-groups based on peak GRF responses and the correlation analysis was repeated. Weight carriage increased peak GRF by an amount greater than the weight carried, decreased stride length, increased vertical COM displacement, and resulted in a more extended and upright posture, with less hip and trunk displacement during weight acceptance. A GRF increase was associated with decreases in hip extension (|r|=.53, p=.020) and thigh anterior rotation (|r|=.57, p=.009) displacements, and an increase in foot anterior rotation displacement (|r|=.58, p=.008). Sub-group analysis revealed that greater GRF increases were associated with changes at multiple sites, while lesser GRF increases were associated with changes in foot and trunk displacement. Weight carriage affected walking kinematics and revealed different accommodation strategies that could have implications for loading and stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of walking velocity on hindlimb kinetics during stance in normal horses.
Khumsap, S; Clayton, H M; Lanovaz, J L
2001-04-01
The objectives of this study were to measure the effect of walking velocity on net joint moments and joint powers in the hindlimb during stance and to use the data to predict these variables at different walking velocities. Videographic and force data were collected synchronously from 5 sound horses walking over a force plate at a range of velocities. Force and kinematic data from 56 trials were combined using an inverse dynamic solution to determine net joint moments and joint powers. Analysis by simple regression and correlation (P < 0.05, r2 > or = 0.30, r > 0.50) showed that, in early stance, there were significant velocity-dependent increases in the peak magnitudes of the following variables: extensor moment and positive power at the hip, flexor moment and positive power at the stifle, extensor moment, negative and positive power at the tarsus, and flexor moment and negative power at the fetlock. In late stance, there were significant velocity-dependent increases in the peak magnitudes of the following variables: flexor moment at the hip, negative power at the stifle and flexor moment and positive power at the tarsus. As velocity increased, the hip showed an increase in energy generation, whereas the tarsus showed increases in both energy generation and absorption. It is concluded that an increase in walking velocity is associated with increases in peak magnitudes of the net joint moments and joint powers in the hindlimb; and that energy generation at the hip makes the largest contribution to the increase in velocity.
van Asseldonk, Edwin H F; Veneman, Jan F; Ekkelenkamp, Ralf; Buurke, Jaap H; van der Helm, Frans C T; van der Kooij, Herman
2008-08-01
"Assist as needed" control algorithms promote activity of patients during robotic gait training. Implementing these requires a free walking mode of a device, as unassisted motions should not be hindered. The goal of this study was to assess the normality of walking in the free walking mode of the LOPES gait trainer, an 8 degrees-of-freedom lightweight impedance controlled exoskeleton. Kinematics, gait parameters and muscle activity of walking in a free walking mode in the device were compared with those of walking freely on a treadmill. Average values and variability of the spatio-temporal gait variables showed no or small (relative to cycle-to-cycle variability) changes and the kinematics showed a significant and relevant decrease in knee angle range only. Muscles involved in push off showed a small decrease, whereas muscles involved in acceleration and deceleration of the swing leg showed an increase of their activity. Timing of the activity was mainly unaffected. Most of the observed differences could be ascribed to the inertia of the exoskeleton. Overall, walking with the LOPES resembled free walking, although this required several adaptations in muscle activity. These adaptations are such that we expect that Assist as Needed training can be implemented in LOPES.
Vieira, Marcus Fraga; de Sá E Souza, Gustavo Souto; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; Andrade, Adriano O
2016-10-01
The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4min prior (PreT) the test, which was followed by three series of 4min of walking with 4min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20min should be considered for injury prevention in tasks with similar demands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and Older Adults during Walking
Soangra, Rahul
2017-01-01
Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants' fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. PMID:28255224
Influence of water depth on energy expenditure during aquatic walking in people post stroke.
Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou
2018-05-11
This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p < .05). The participants demonstrated reduction in all variables as the water depth increased from thigh depth to chest depth. Significantly higher values in EE and VO 2 were found when the water depth increased from waist depth to chest depth. However, no significant difference was found in all variables between thigh-depth and waist-depth walking. Only thigh-depth walking revealed significant differences when compared with land walking in all variables. People post stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.
Mansfield, Avril; Wong, Jennifer S; Bryce, Jessica; Brunton, Karen; Inness, Elizabeth L; Knorr, Svetlana; Jones, Simon; Taati, Babak; McIlroy, William E
2015-10-01
Regaining independent ambulation is important to those with stroke. Increased walking practice during "down time" in rehabilitation could improve walking function for individuals with stroke. To determine the effect of providing physiotherapists with accelerometer-based feedback on patient activity and walking-related goals during inpatient stroke rehabilitation. Participants with stroke wore accelerometers around both ankles every weekday during inpatient rehabilitation. Participants were randomly assigned to receive daily feedback about walking activity via their physiotherapists (n = 29) or to receive no feedback (n = 28). Changes in measures of daily walking (walking time, number of steps, average cadence, longest bout duration, and number of "long" walking bouts) and changes in gait control and function assessed in-laboratory were compared between groups. There was no significant increase in walking time, number of steps, longest bout duration, or number of long walking bouts for the feedback group compared with the control group (P values > .20). However, individuals who received feedback significantly increased cadence of daily walking more than the control group (P = .013). From the in-laboratory gait assessment, individuals who received feedback had a greater increase in walking speed and decrease in step time variability than the control group (P values < .030). Feedback did not increase the amount of walking completed by individuals with stroke. However, there was a significant increase in cadence, indicating that intensity of daily walking was greater for those who received feedback than the control group. Additionally, more intense daily walking activity appeared to translate to greater improvements in walking speed. © The Author(s) 2015.
Load redistribution in walking and trotting Beagles with induced forelimb lameness.
Abdelhadi, Jalal; Wefstaedt, Patrick; Galindo-Zamora, Vladimir; Anders, Alexandra; Nolte, Ingo; Schilling, Nadja
2013-01-01
To evaluate the load redistribution mechanisms in walking and trotting dogs with induced forelimb lameness. 7 healthy adult Beagles. Dogs walked and trotted on an instrumented treadmill to determine control values for peak and mean vertical force as well as vertical impulse for all 4 limbs. A small sphere was attached to the ventral pad of the right forelimb paw to induce a reversible lameness, and recordings were repeated for both gaits. Additionally, footfall patterns were assessed to test for changes in temporal gait variables. During walking and trotting, peak and mean vertical force as well as vertical impulse were decreased in the ipsilateral forelimb, increased in the contralateral hind limb, and remained unchanged in the ipsilateral hind limb after lameness was induced. All 3 variables were increased in the contralateral forelimb during trotting, whereas only mean vertical force and vertical impulse were increased during walking. Stance phase duration increased in the contralateral forelimb and hind limb during walking but not during trotting. Analysis of the results suggested that compensatory load redistribution mechanisms in dogs depend on the gait. All 4 limbs should be evaluated in basic research and clinical studies to determine the effects of lameness on the entire body. Further studies are necessary to elucidate specific mechanisms for unloading of the affected limb and to determine the long-term effects of load changes in animals with chronic lameness.
Richards, Elizabeth A; Ogata, Niwako; Cheng, Ching-Wei
2016-01-01
To facilitate physical activity (PA) adoption and maintenance, promotion of innovative population-level strategies that focus on incorporating moderate-intensity lifestyle PAs are needed. The purpose of this randomized controlled trial was to evaluate the Dogs, Physical Activity, and Walking intervention, a 3-month, social cognitive theory (SCT), e-mail-based PA intervention. In a longitudinal, repeated-measures design, 49 dog owners were randomly assigned to a control (n = 25) or intervention group (n = 24). The intervention group received e-mail messages (twice weekly for 4 weeks and weekly for 8 weeks) designed to influence SCT constructs of self-efficacy, self-regulation, outcome expectations and expectancies, and social support. At baseline and every 3 months through 1 year, participants completed self-reported questionnaires of individual, interpersonal, and PA variables. Linear mixed models were used to assess for significant differences in weekly minutes of dog walking and theoretical constructs between groups (intervention and control) across time. To test self-efficacy as a mediator of social support for dog walking, tests for mediation were conducted using the bootstrapping technique. With the exception of Month 9, participants in the intervention group accumulated significantly more weekly minutes of dog walking than the control group. On average, the intervention group accumulated 58.4 more minutes (SD = 18.1) of weekly dog walking than the control group (p < .05). Self-efficacy partially mediated the effect of social support variables on dog walking. Results indicate that a simple SCT-based e-mail intervention is effective in increasing and maintaining an increase in dog walking among dog owners at 12-month follow-up. In light of these findings, it may be advantageous to design dog walking interventions that focus on increasing self-efficacy for dog walking by fostering social support.
Two Independent Contributions to Step Variability during Over-Ground Human Walking
Collins, Steven H.; Kuo, Arthur D.
2013-01-01
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C
2014-02-01
A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.
Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke.
Wright, Rachel L; Bevins, Joseph W; Pratt, David; Sackley, Catherine M; Wing, Alan M
2016-01-01
Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson's disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling.
Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke
Wright, Rachel L.; Bevins, Joseph W.; Pratt, David; Sackley, Catherine M.; Wing, Alan M.
2016-01-01
Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson’s disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling. PMID:27313563
Stegemöller, Elizabeth L; Wilson, Jonathan P; Hazamy, Audrey; Shelley, Mack C; Okun, Michael S; Altmann, Lori J P; Hass, Chris J
2014-06-01
Cognitive impairments in Parkinson disease (PD) manifest as deficits in speed of processing, working memory, and executive function and attention abilities. The gait impairment in PD is well documented to include reduced speed, shortened step lengths, and increased step-to-step variability. However, there is a paucity of research examining the relationship between overground walking and cognitive performance in people with PD. This study sought to examine the relationship between both the mean and variability of gait spatiotemporal parameters and cognitive performance across a broad range of cognitive domains. A cross-sectional design was used. Thirty-five participants with no dementia and diagnosed with idiopathic PD completed a battery of 12 cognitive tests that yielded 3 orthogonal factors: processing speed, working memory, and executive function and attention. Participants completed 10 trials of overground walking (single-task walking) and 5 trials of overground walking while counting backward by 3's (dual-task walking). All gait measures were impaired by the dual task. Cognitive processing speed correlated with stride length and walking speed. Executive function correlated with step width variability. There were no significant associations with working memory. Regression models relating speed of processing to gait spatiotemporal variables revealed that including dual-task costs in the model significantly improved the fit of the model. Participants with PD were tested only in the on-medication state. Different characteristics of gait are related to distinct types of cognitive processing, which may be differentially affected by dual-task walking due to the pathology of PD. © 2014 American Physical Therapy Association.
Barbieri, Dechristian França; Srinivasan, Divya; Mathiassen, Svend Erik; Nogueira, Helen Cristina; Oliveira, Ana Beatriz
2015-01-01
Postures and muscle activity in the upper body were recorded from 50 academics office workers during 2 hours of normal work, categorised by observation into computer work (CW) and three non-computer (NC) tasks (NC seated work, NC standing/walking work and breaks). NC tasks differed significantly in exposures from CW, with standing/walking NC tasks representing the largest contrasts for most of the exposure variables. For the majority of workers, exposure variability was larger in their present job than in CW alone, as measured by the job variance ratio (JVR), i.e. the ratio between min-min variabilities in the job and in CW. Calculations of JVRs for simulated jobs containing different proportions of CW showed that variability could, indeed, be increased by redistributing available tasks, but that substantial increases could only be achieved by introducing more vigorous tasks in the job, in casu illustrated by cleaning.
Kim, Jongmin; Kazmierczak, Kris A; Breur, Gert J
2011-09-01
To compare temporospatial variables (TSVs) and kinetic variables (KVs) for fore-limbs and hind limbs of small and large dogs of various breeds during walking and to determine associations among body weight (BW), TSVs, and KVs in these groups. 12 adult dogs with no evidence of lameness. Dogs (grouped according to BW as small [< 10 kg; n = 6] or large [> 25 kg; 6]) were walked in a straight line at their preferred velocity on a wooden platform with an embedded pressure-sensing walkway. Five valid trials were analyzed for each dog; mean TSVs and KVs were determined for each group. The TSVs and KVs for forelimbs and hind limbs were compared between groups, and correlations among BW, TSVs, and KVs were determined. Small dogs had significantly smaller TSVs and KVs than did large dogs. Temporal variables of small dogs and absolute vertical force variables of small and large dogs increased as BW increased. However, normalized peak vertical force and weight distribution values among the 4 limbs were similar between groups. Substantial similarities and differences were detected in gait characteristics between small and large dogs. Results indicated TSVs and KVs can be used for comparison of the walking gait between dogs or for comparison of variables between limbs in an individual dog. Use of the pressure-sensing walkway is a simple method for acquisition of TSVs and KVs for large and small dogs.
Within-day variability on short and long walking tests in persons with multiple sclerosis.
Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik
2014-03-15
To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Toda, Haruki; Nagano, Akinori; Luo, Zhiwei
2016-01-01
[Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419
Dual-tasks and walking fast: relationship to extra-pyramidal signs in advanced Alzheimer disease.
Camicioli, Richard; Bouchard, Thomas; Licis, Lisa
2006-10-25
Extra-pyramidal signs (EPS) and cadence predicted falls risk in patients with advanced Alzheimer disease (AD). Dual task performance predicts falls with variable success. Dual-task performance and walking fast were examined in advanced AD patients with EPS (EPS+, >3 modified Unified Parkinson's Disease Rating Scale [UPDRS] signs) or without EPS (EPS-, three or less UPDRS signs). Demographics, mental and functional status, behavioral impairment, EPS, and quantitative gait measures (GaitRite) were determined. The effects of an automatic dual-task (simple counting) and of walking fast on spatial and temporal gait characteristics were compared between EPS+ and EPS- subjects using a repeated measures design. Cadence decreased, while stride time, swing time and variability in swing time increased with the dual task. Results were insignificant after adjusting for secondary task performance. With walking fast, speed, cadence and stride length increased while stride time, swing time and double support time decreased. Although EPS+ subjects were slower and had decreased stride length, dual task and walking fast effects did not differ from EPS- subjects. Patient characteristics, the type of secondary task and the specific gait measures examined vary in the literature. In this moderately to severely demented population, EPS did not affect "unconscious" (dual task) or "conscious" (walking fast) gait modulation. Given their high falls risk, and retained ability to modulate walking, EPS+ AD patients may be ideal candidates for interventions aimed at preventing falls.
Changes in resting and walking energy expenditure and walking speed during pregnancy in obese women.
Byrne, Nuala M; Groves, Ainsley M; McIntyre, H David; Callaway, Leonie K
2011-09-01
Energy-conserving processes reported in undernourished women during pregnancy are a recognized strategy for providing the energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy-conserving mechanisms. We tested the hypothesis that obese women would show behavioral adaptation [ie, a decrease in self-selected walking (SSW) speed] but not metabolic compensation [ie, a decrease in resting metabolic rate (RMR) or the metabolic cost of walking] during gestation. RMR, SSW speed, metabolic cost of walking, and anthropometric variables were measured in 23 women aged 31 ± 4 y with a BMI (in kg/m(2)) of 33.6 ± 2.5 (mean ± SD) at ≈15 and 30 wk of gestation. RMR was also measured in 2 cohorts of nonpregnant control subjects matched for the age, weight, and height of the pregnant cohort at 15 (n = 23) and 30 (n = 23) wk. Gestational weight gain varied widely (11.3 ± 5.4 kg), and 52% of the women gained more weight than is recommended. RMR increased significantly by an average of 177 ± 176 kcal/d (11 ± 12%; P < 0.0001); however, the within-group variability was large. Both the metabolic cost of walking and SSW speed decreased significantly (P < 0.01). Whereas RMR increased in >80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Although the increase in RMR was greater than that explained by weight gain, evidence of both behavioral and biological compensation in the metabolic cost of walking was observed in obese women during gestation. The trial is registered with the Australian Clinical Trials Registry as ACTRN012606000271505.
The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis.
Nishiyori, Ryota; Lai, Byron; Lee, Do Kyeong; Vrongistinos, Konstantinos; Jung, Taeyou
2016-03-01
This study aimed to examine how spatiotemporal and kinematic gait variables are influenced by the application of a cuff weight during aquatic walking in people post-stroke. The secondary purpose was to compare the differences in gait responses between the placements of cuff weights on the proximal (knee weight) and distal end (ankle weight) of the shank. Twenty-one participants post-stroke with hemiparesis aged 66.3 ± 11.3 years participated in a cross-sectional comparative study. Participants completed two aquatic walking trials at their self-selected maximum walking speed across an 8-m walkway under each of the three conditions: 1) walking with a knee weight; 2) walking with an ankle weight; and 3) walking with no weight. Cuff weights were worn on the paretic leg of each participant. Gait speed, cadence, step width and joint kinematics of the hip, knee and ankle joints were recorded by a customized three-dimensional underwater motion analysis system. Mean aquatic walking speeds significantly increased with the use of cuff weights when compared to walking with no weight. Changes in gait variables were found in the non-paretic leg with the addition of weight, while no significant changes were found in the paretic leg. The results suggest that the use of additional weight can be helpful if the goal of gait training is to improve walking speed of people post-stroke during pool floor walking. However, it is interesting to note that changes in gait variables were not found in the paretic limb where favourable responses were expected to occur. Copyright © 2014 John Wiley & Sons, Ltd.
Moretto, P; Bisiaux, M; Lafortune, M A
2007-01-01
The purpose of this study was to determine if using similar walking velocities obtained from fractions of the Froude number (N(Fr)) and leg length can lead to kinematic and kinetic similarities and lower variability. Fifteen male subjects walked on a treadmill at 0.83 (VS(1)) and 1.16ms(-1) (VS(2)) and then at two similar velocities (V(Sim27) and V(Sim37)) determined from two fractions of the N(Fr) (0.27 and 0.37) so that the average group velocity remained unchanged in both conditions (VS(1)=V (Sim27)andVS(2)=V (Sim37)). N(Fr) can theoretically be used to determine walking velocities proportional to leg lengths and to establish dynamic similarities between subjects. This study represents the first attempt at using this approach to examine plantar pressure. The ankle and knee joint angles were studied in the sagittal plane and the plantar pressure distribution was assessed with an in-shoe measurement device. The similarity ratios were computed from anthropometric parameters and plantar pressure peaks. Dynamically similar conditions caused a 25% reduction in leg joint angles variation and a 10% significant decrease in dimensionless pressure peak variability on average of five footprint locations. It also lead to heel and under-midfoot pressure peaks proportional to body mass and to an increase in the number of under-forefoot plantar pressure peaks proportional to body mass and/or leg length. The use of walking velocities derived from N(Fr) allows kinematic and plantar pressure similarities between subjects to be observed and leads to a lower inter-subject variability. In-shoe pressure measurements have proven to be valuable for the understanding of lower extremity function. Set walking velocities used for clinical assessment mask the effects of body size and individual gait mechanics. The anthropometric scaling of walking velocities (fraction of N(Fr)) should improve identification of unique walking strategies and pathological foot functions.
By your own two feet: factors associated with active transportation in Canada.
Butler, Gregory P; Orpana, Heather M; Wiens, Alexander J
2007-01-01
The purpose of this study is to examine socio-demographic, geographic and physical activity correlates of walking and cycling for non-leisure purposes, i.e., to work, school, or errands, in Canada. Cross-sectional data from the Canadian Community Health Survey (CCHS) 2003 (n = 127,610) were analyzed using logistic regression to identify factors associated with active transportation. The dependent variables were walking 6+ hours per week and any cycling per week. Independent variables were based on age; marital, education, working and immigrant status; income; geographic location; smoking; and other physical activity. Age and income were associated with both walking and cycling, as was geographic location and other physical activity. The results demonstrated that, while similar, walking and cycling are associated with different factors, and that socio-demographic, geographic and health behaviour variables must be taken into consideration when modelling these transportation modes. Although walking and cycling are relatively easy means to incorporate physical activity in daily life, these results suggest that it is the young and the physically active who engage in them. This research points to a need to address barriers among those who could benefit the most from increased use of both modes of travel.
The influence of gait speed on the stability of walking among the elderly.
Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo
2016-06-01
Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.
Milner, Clare E; Brindle, Richard A
2016-01-01
There has been increased interest recently in measuring kinematics within the foot during gait. While several multisegment foot models have appeared in the literature, the Oxford foot model has been used frequently for both walking and running. Several studies have reported the reliability for the Oxford foot model, but most studies to date have reported reliability for barefoot walking. The purpose of this study was to determine between-day (intra-rater) and within-session (inter-trial) reliability of the modified Oxford foot model during shod walking and running and calculate minimum detectable difference for common variables of interest. Healthy adult male runners participated. Participants ran and walked in the gait laboratory for five trials of each. Three-dimensional gait analysis was conducted and foot and ankle joint angle time series data were calculated. Participants returned for a second gait analysis at least 5 days later. Intraclass correlation coefficients and minimum detectable difference were determined for walking and for running, to indicate both within-session and between-day reliability. Overall, relative variables were more reliable than absolute variables, and within-session reliability was greater than between-day reliability. Between-day intraclass correlation coefficients were comparable to those reported previously for adults walking barefoot. It is an extension in the use of the Oxford foot model to incorporate wearing a shoe while maintaining marker placement directly on the skin for each segment. These reliability data for walking and running will aid in the determination of meaningful differences in studies which use this model during shod gait. Copyright © 2015 Elsevier B.V. All rights reserved.
van Dijk, Jan-Willem; Eijsvogels, Thijs M; Nyakayiru, Jean; Schreuder, Tim H A; Hopman, Maria T; Thijssen, Dick H; van Loon, Luc J C
2016-07-01
Despite its general benefits for health, exercise complicates the maintenance of stable blood glucose concentrations in individuals with type 1 diabetes. The aim of the current study was to examine changes in food intake, insulin administration, and 24-h glycemic control in response to consecutive days with prolonged walking exercise (∼8h daily) in individuals with type 1 diabetes. Ten individuals with type 1 diabetes participating in the worlds' largest walking event were recruited for this observational study. Simultaneous measurements of 24-h glycemic control (continuous glucose monitoring), insulin administration and food intake were performed during a non-walking day (control) and during three subsequent days with prolonged walking exercise (daily distance 40 or 50km). Despite an increase in daily energy (31±18%; p<0.01) and carbohydrate (82±71g; p<0.01) intake during walking days, subjects lowered their insulin administration by 26±16% relative to the control day (p<0.01). Average 24-h blood glucose concentrations, the prevalence of hyperglycemia (blood glucose >10 mmol/L) and hypoglycemia (blood glucose <3.9mmol/L) did not differ between the control day and walking days (p>0.05 for all variables). The prolonged walking exercise was associated with a modest increase in glycemic variability compared with the control day (p<0.05). Prolonged walking exercise allows for profound reductions in daily insulin administration in persons with type 1 diabetes, despite large increments in energy and carbohydrate intake. When taking such adjustments into account, prolonged moderate-intensity exercise does not necessarily impair 24-h glycemic control. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30-77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3's (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30-40; 41-50; 51-60; 61-77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30–77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3’s (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30–40; 41–50; 51–60; 61–77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging. PMID:26305896
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking
2011-01-01
Background Motorized treadmills are widely used in research or in clinical therapy. Small kinematics, kinetics and energetics changes induced by Treadmill Walking (TW) as compared to Overground Walking (OW) have been reported in literature. The purpose of the present study was to characterize the differences between OW and TW in terms of stride-to-stride variability. Classical (Standard Deviation, SD) and non-linear (fractal dynamics, local dynamic stability) methods were used. In addition, the correlations between the different variability indexes were analyzed. Methods Twenty healthy subjects performed 10 min TW and OW in a random sequence. A triaxial accelerometer recorded trunk accelerations. Kinematic variability was computed as the average SD (MeanSD) of acceleration patterns among standardized strides. Fractal dynamics (scaling exponent α) was assessed by Detrended Fluctuation Analysis (DFA) of stride intervals. Short-term and long-term dynamic stability were estimated by computing the maximal Lyapunov exponents of acceleration signals. Results TW did not modify kinematic gait variability as compared to OW (multivariate T2, p = 0.87). Conversely, TW significantly modified fractal dynamics (t-test, p = 0.01), and both short and long term local dynamic stability (T2 p = 0.0002). No relationship was observed between variability indexes with the exception of significant negative correlation between MeanSD and dynamic stability in TW (3 × 6 canonical correlation, r = 0.94). Conclusions Treadmill induced a less correlated pattern in the stride intervals and increased gait stability, but did not modify kinematic variability in healthy subjects. This could be due to changes in perceptual information induced by treadmill walking that would affect locomotor control of the gait and hence specifically alter non-linear dependencies among consecutive strides. Consequently, the type of walking (i.e. treadmill or overground) is important to consider in each protocol design. PMID:21345241
Walk Score® and Transit Score® and Walking in the Multi-Ethnic Study of Atherosclerosis
Hirsch, Jana A.; Moore, Kari A.; Evenson, Kelly R.; Rodriguez, Daniel A; Diez Roux, Ana V.
2013-01-01
Background Walk Score® and Transit Score® are open-source measures of the neighborhood built environment to support walking (“walkability”) and access to transportation. Purpose To investigate associations of Street Smart Walk Score and Transit Score with self-reported transport and leisure walking using data from a large multi-city and diverse population-based sample of adults. Methods Data from a sample of 4552 residents of Baltimore MD; Chicago IL; Forsyth County NC; Los Angeles CA; New York NY; and St. Paul MN from the Multi-Ethnic Study of Atherosclerosis (2010–2012) were linked to Walk Score and Transit Score (collected in 2012). Logistic and linear regression models estimated ORs of not walking and mean differences in minutes walked, respectively, associated with continuous and categoric Walk Score and Transit Score. All analyses were conducted in 2012. Results After adjustment for site, key sociodemographic, and health variables, a higher Walk Score was associated with lower odds of not walking for transport and more minutes/week of transport walking. Compared to those in a “walker’s paradise,” lower categories of Walk Score were associated with a linear increase in odds of not transport walking and a decline in minutes of leisure walking. An increase in Transit Score was associated with lower odds of not transport walking or leisure walking, and additional minutes/week of leisure walking. Conclusions Walk Score and Transit Score appear to be useful as measures of walkability in analyses of neighborhood effects. PMID:23867022
O'Halloran, Joseph; Hamill, Joseph; McDermott, William J; Remelius, Jebb G; Van Emmerik, Richard E A
2012-03-01
Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.
Changes in physical activity and travel behaviors in residents of a mixed-use development.
Mumford, Karen G; Contant, Cheryl K; Weissman, Jennifer; Wolf, Jean; Glanz, Karen
2011-11-01
Mixed-use developments may be especially promising settings for encouraging walking and other types of physical activity. This study examined the physical activity and travel behaviors of individuals before and after they relocated to Atlantic Station, a mixed-use redevelopment community in metropolitan Atlanta. A survey study was conducted to compare the behaviors, experiences, and attitudes of Atlantic Station residents before and after moving to a mixed-use neighborhood. Data were collected in 2008 and 2009 and analyzed in 2010. Key dependent variables were self-reported physical activity and travel behaviors including walking for recreation and transport, automobile use, and use of public transportation. Study participants included 101 adult residents of Atlantic Station, most of whom were female, young, and well educated. There were significant increases in walking for recreation or fitness (46%-54%; p<0.05) and walking for transportation (44%-84%; p<0.001) after moving into the mixed-use development. Respondents also reported reduced automobile travel and increased time spent using public transportation after moving to Atlantic Station. Because this study used individuals as their own controls, there is more control over confounding lifestyle variables compared to cross-sectional studies of individuals living in different neighborhoods. Adults who move to a denser, mixed-use neighborhood increase their levels of walking for both recreation and transportation, decrease their automobile travel, and increase their use of public transportation. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter
2016-01-01
Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy. PMID:27471457
The hour-to-hour influence of weather conditions on walking and cycling among Dutch older adults.
Prins, Richard G; van Lenthe, F J
2015-09-01
physical activity (PA) is an important factor to promote healthy ageing. However, older adults are not physically active enough. Socio-ecological models suggest that weather conditions are determinants of PA and may bias relations between other environmental factors and PA. This may especially be the case for the most vulnerable and inactive older persons. Understanding the role of weather conditions is based on daily or seasonal variation in weather, but it can be improved by using hour-to-hour measured weather conditions. to study the hour-to-hour relationships between weather factors and objectively measured walking and cycling in a sample of Dutch older adults. baseline data (2013) of a sub-sample of older adults (3,248 observations clustered in 43 adults) participating in The Neighborhood Walking in Rotterdam Older ADultS (NEW.ROADS) trial were used. Participants wore a GPS logger for 7 consecutive days. Hour-to-hour weather data (temperature, wind speed, rain and sun time) for the city of Rotterdam were retrieved from the Royal Netherlands Meteorological Institute. Multilevel linear regression models were fitted with minutes walked and minutes cycled as dependent variables and the weather variables as independent variables. the time older adults walked increased with higher temperature, higher wind speed and the absence of rain. The time cycled increased with higher temperature. this study improves the evidence of weather factors as a determinant for walking and cycling in older adults. Studies on the relation between environmental factors and PA should consider adjustment for weather factors. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rapp, Kilian; Mikolaizak, Stefanie; Rothenbacher, Dietrich; Denkinger, Michael D; Klenk, Jochen
2018-01-01
Physical activity is considered an effective measure to promote health in older people. There is evidence that the number of outdoor trips increases physical activity by increasing walking duration. The objective of this study was to analyse the relationship between daily time out-of-home and walking duration. Furthermore, predictors for walking duration and time out-of-home were evaluated. Walking duration was measured prospectively over a 1 week period by a body-fixed sensor and the time out-of-home was assessed by a questionnaire at the same days. Seven thousand, two hundred and forty-three days from 1289 older people (mean age 75.4 years) with both sensor-based measures and completed questionnaires were included in the analyses. To account for several observation days per participant multilevel regression analyses were applied. Analyses were stratified according to the time out-of-home (more or less than 100 min/day). In the group with less than 100 min out-of-home, each additional minute out-of-home added 20 s to overall walking duration. If the time exceeded 100 min the additional increase of walking duration was only moderate or weak. Leaving the home once added 40 min of walking, the following trips 15 to 20 min. Increasing age, lower gait speed, comorbidities, low temperature, rain and specific week days (Sunday) decreased both the time out-of-home and walking duration. Other variables like gender (female), isolation or living with a spouse reduced the time out-of-home without affecting walking duration. Being out-of-home increases daily walking duration. The association is strongest if the time out-of-home is 100 min or less.
Does walking strategy in older people change as a function of walking distance?
Najafi, Bijan; Helbostad, Jorunn L; Moe-Nilssen, Rolf; Zijlstra, Wiebren; Aminian, Kamiar
2009-02-01
This study investigates whether the spatio-temporal parameters of gait in the elderly vary as a function of walking distance. The gait pattern of older subjects (n=27) over both short (SWD<10 m) and long (LWD>20 m) walking was evaluated using an ambulatory device consisting of body-worn sensors (Physilog). The stride velocity (SV), gait cycle time (GCT), and inter-cycle variability of each parameter (CV) were evaluated for each subject. Analysis was undertaken after evaluating the errors and the test-retest reliability of the Physilog device compared with an electronic walkway system (GaitRite) over the SWD with different walking speeds. While both systems were highly reliable with respect to the SV and GCT parameters (ICC>0.82), agreement for the gait variability was poor. Interestingly, our data revealed that the measured gait parameters over SWD and LWD were significantly different. LWD trials had a mean increase of 5.2% (p<0.05) in SV, and a mean decrease of 3.7% (p<0.05) in GCT compared with SWD trials. Although variability in both the SV and GCT measured during LWD trials decreased by an average of 1% relative to the SWD case, the drop was not significant. Moreover, reliability for gait variability measures was poor, irrespective of the instrument and despite a moderate improvement for LWD trials. Taken together, our findings indicate that for valid and reliable comparisons, test and retest should be performed under identical distance conditions. Furthermore, our findings suggest that the older subjects may choose different walking strategies for SWD and LWD conditions.
Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.
Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae
2017-12-08
This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
Background Previous studies testing the association between the built environment and walking behavior have been largely cross-sectional and have yielded mixed results. This study reports on a natural experiment in which changes to the built environment were implemented at a university campus in Hong Kong. Longitudinal data on walking behaviors were collected using surveys, one before and one after changes to the built environment, to test the influence of changes to the built environment on walking behavior. Methods Built environment data are from a university campus in Hong Kong, and include land use, campus bus services, pedestrian network, and population density data collected from campus maps, the university developmental office, and field surveys. Walking behavior data were collected at baseline in March 2012 (n = 198) and after changes to the built environment from the same cohort of subjects in December 2012 (n = 169) using a walking diary. Geographic information systems (GIS) was used to map walking routes and built environment variables, and compare each subject’s walking behaviors and built environment exposure before and after the changes to the built environment. Walking behavior outcomes were changes in: i) walking distance, ii) destination-oriented walking, and iii) walked altitude range. Multivariable linear regression models were used to test for associations between changes to the built environment and changes in walking behaviors. Results Greater pedestrian network connectivity predicted longer walking distances and an increased likelihood of walking as a means of transportation. The increased use of recreational (vs. work) buildings, largely located at mid-range altitudes, as well as increased population density predicted greater walking distances.Having more bus services and a greater population density encouraged people to increase their walked altitude range. Conclusions In this longitudinal study, changes to the built environment were associated with changes in walking behaviors. Use of GIS combined with walking diaries presents a practical method for mapping and measuring changes in the built environment and walking behaviors, respectively. Additional longitudinal studies can help clarify the relationships between the built environment and walking behaviors identified in this natural experiment. PMID:25069949
An apparent contradiction: increasing variability to achieve greater precision?
Rosenblatt, Noah J; Hurt, Christopher P; Latash, Mark L; Grabiner, Mark D
2014-02-01
To understand the relationship between variability of foot placement in the frontal plane and stability of gait patterns, we explored how constraining mediolateral foot placement during walking affects the structure of kinematic variance in the lower-limb configuration space during the swing phase of gait. Ten young subjects walked under three conditions: (1) unconstrained (normal walking), (2) constrained (walking overground with visual guides for foot placement to achieve the measured unconstrained step width) and, (3) beam (walking on elevated beams spaced to achieve the measured unconstrained step width). The uncontrolled manifold analysis of the joint configuration variance was used to quantify two variance components, one that did not affect the mediolateral trajectory of the foot in the frontal plane ("good variance") and one that affected this trajectory ("bad variance"). Based on recent studies, we hypothesized that across conditions (1) the index of the synergy stabilizing the mediolateral trajectory of the foot (the normalized difference between the "good variance" and "bad variance") would systematically increase and (2) the changes in the synergy index would be associated with a disproportionate increase in the "good variance." Both hypotheses were confirmed. We conclude that an increase in the "good variance" component of the joint configuration variance may be an effective method of ensuring high stability of gait patterns during conditions requiring increased control of foot placement, particularly if a postural threat is present. Ultimately, designing interventions that encourage a larger amount of "good variance" may be a promising method of improving stability of gait patterns in populations such as older adults and neurological patients.
Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.
Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou
2018-03-01
To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all P<.05) during pool floor walking compared with OW. A 2×2 mixed model analysis of variance revealed a significant group × condition interaction in V˙o 2 , in which the control group increased V˙o 2 from OW to pool floor walking, whereas the stroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.
Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers.
Stephen, Damian G; Wilcox, Bethany J; Niemi, James B; Franz, Jason R; Franz, Jason; Kerrigan, Dr; Kerrigan, D Casey; D'Andrea, Susan E
2012-07-01
The purpose of this study was to determine whether providing subsensory stochastic-resonance mechanical vibration to the foot soles of elderly walkers could decrease gait variability. In a randomized double-blind controlled trial, 29 subjects engaged in treadmill walking while wearing sandals customized with three actuators capable of producing stochastic-resonance mechanical vibration embedded in each sole. For each subject, we determined a subsensory level of vibration stimulation. After a 5-min acclimation period of walking with the footwear, subjects were asked to walk on the treadmill for six trials, each 30s long. Trials were pair-wise random: in three trials, actuators provided subsensory vibration; in the other trials, they did not. Subjects wore reflective markers to track body motion. Stochastic-resonance mechanical stimulation exhibited baseline-dependent effects on spatial stride-to-stride variability in gait, slightly increasing variability in subjects with least baseline variability and providing greater reductions in variability for subjects with greater baseline variability (p<.001). Thus, applying stochastic-resonance mechanical vibrations on the plantar surface of the foot reduces gait variability for subjects with more variable gait. Stochastic-resonance mechanical vibrations may provide an effective intervention for preventing falls in healthy elderly walkers. Published by Elsevier B.V.
Sedighi, Alireza; Ulman, Sophia M.
2018-01-01
The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614
Risk of falls in older people during fast-walking--the TASCOG study.
Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K
2012-07-01
To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (p<0.05). A higher risk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (p<0.05). Tests of fast-walking may be useful in identifying older individuals at risk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.
Reuter, I.; Mehnert, S.; Leone, P.; Kaps, M.; Oechsner, M.; Engelhardt, M.
2011-01-01
Symptoms of Parkinson's disease (PD) progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW) on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS), and health-related quality of life (PDQ 39). 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study. PMID:21603199
Seay, Joseph F.; Gregorczyk, Karen N.; Hasselquist, Leif
2016-01-01
Abstract Influences of load carriage and inclination on spatiotemporal parameters were examined during treadmill and overground walking. Ten soldiers walked on a treadmill and overground with three load conditions (00 kg, 20 kg, 40 kg) during level, uphill (6% grade) and downhill (-6% grade) inclinations at self-selected speed, which was constant across conditions. Mean values and standard deviations for double support percentage, stride length and a step rate were compared across conditions. Double support percentage increased with load and inclination change from uphill to level walking, with a 0.4% stance greater increase at the 20 kg condition compared to 00 kg. As inclination changed from uphill to downhill, the step rate increased more overground (4.3 ± 3.5 steps/min) than during treadmill walking (1.7 ± 2.3 steps/min). For the 40 kg condition, the standard deviations were larger than the 00 kg condition for both the step rate and double support percentage. There was no change between modes for step rate standard deviation. For overground compared to treadmill walking, standard deviation for stride length and double support percentage increased and decreased, respectively. Changes in the load of up to 40 kg, inclination of 6% grade away from the level (i.e., uphill or downhill) and mode (treadmill and overground) produced small, yet statistically significant changes in spatiotemporal parameters. Variability, as assessed by standard deviation, was not systematically lower during treadmill walking compared to overground walking. Due to the small magnitude of changes, treadmill walking appears to replicate the spatiotemporal parameters of overground walking. PMID:28149338
Predictive value of age of walking for later motor performance in children with mental retardation.
Kokubun, M; Haishi, K; Okuzumi, H; Hosobuchi, T; Koike, T
1996-12-01
The purpose of the present study was to clarify the predictive value of age of walking for later motor performance in children with mental retardation. While paying due attention to other factors, our investigation focused on the relationship between a subject's age of walking, and his or her subsequent beam-walking performance. The subjects were 85 children with mental retardation with an average age of 13 years and 3 months. Beam-walking performance was measured by a procedure developed by the authors. Five low beams (5 cm) which varied in width (12.5, 10, 7.5, 5 and 2.5 cm) were employed. The performance of subjects was scored from zero to five points according to the width of the beam that they were able to walk without falling off. From the results of multiple regression analysis, three independent variables were found to be significantly related to beam-walking performance. The age of walking was the most basic variable: partial correlation coefficient (PCC) = -45; standardized partial regression coefficient (SPRC) = -0.41. The next variable in importance was walking duration (PCC = 0.38; SPRC = 0.31). The autism variable also contributed significantly (PCC = 0.28; SPRC = 0.22). Therefore, within the age range used in the present study, the age of walking in children with mental retardation was thought to have sufficient predictive value, even when the variables which might have possibly affected their subsequent performance were taken into consideration; the earlier the age of walking, the better the beam-walking performance.
Mazaheri, Masood; Negahban, Hossein; Soltani, Maryam; Mehravar, Mohammad; Tajali, Shirin; Hessam, Masumeh; Salavati, Mahyar; Kingma, Idsart
2017-08-01
The present experiment was conducted to examine the hypothesis that challenging control through narrow-base walking and/or dual tasking affects ACL-injured adults more than healthy control adults. Twenty male ACL-injured adults and twenty healthy male adults walked on a treadmill at a comfortable speed under two base-of-support conditions, normal-base versus narrow-base, with and without a cognitive task. Gait patterns were assessed using mean and variability of step length and mean and variability of step velocity. Cognitive performance was assessed using the number of correct counts in a backward counting task. Narrow-base walking resulted in a larger decrease in step length and a more pronounced increase in variability of step length and of step velocity in ACL-injured adults than in healthy adults. For most of the gait parameters and for backward counting performance, the dual-tasking effect was similar between the two groups. ACL-injured adults adopt a more conservative and more unstable gait pattern during narrow-base walking. This can be largely explained by deficits of postural control in ACL-injured adults, which impairs gait under more balance-demanding conditions. The observation that the dual-tasking effect did not differ between the groups may be explained by the fact that walking is an automatic process that involves minimal use of attentional resources, even after ACL injury. Clinicians should consider the need to include aspects of terrain complexity, such as walking on a narrow walkway, in gait assessment and training of patients with ACL injury. III.
Urban form relationships with walk trip frequency and distance among youth.
Frank, Lawrence; Kerr, Jacqueline; Chapman, Jim; Sallis, James
2007-01-01
To assess the relationship among objectively measured urban form variables, age, and walking in youth. Cross-sectional analyses of travel diary data mapped against urban form characteristics within a 1-km buffer of participant's place of residence. Setting. Youth in the Atlanta, Georgia region with selection stratified by income, household size, and residential density. A total of 3161 5- to 20-year-olds who completed 2-day travel diaries. Diaries of those under 15 years were completed by a parent or legal guardian. Walking distances were calculated from a 2-day travel diary. Residential density, intersection density, land use mix, and commercial and recreation space were assessed within a 1-km network distance around residences. Analysis. Logistic regression analyses were performed for each urban form variable by age groups controlling for the demographic variables. All variables were then entered simultaneously into an analysis of the whole sample. All five urban form variables tested were related to walking. Recreation space was the only variables associated with walking across the four different age groups. All the urban form variables were related to walking in the 12 to 15 years age cohort. For this group, the odds of walking were 3. 7 times greater for those in highest- versus lowest-density tertile and 2.6 times greater for those with at least one commercial and 2.5 times greater for those with at least one recreational destination within 1 km from home. In the analysis of the full sample, number of cars, recreation space, and residential density were most strongly related to walking. Access to recreation or open space was the most important urban form variable related to walking for all age groups. Children aged 12 to 15 years old may be particularly influenced by urban form.
Woo, M A; Moser, D K; Stevenson, L W; Stevenson, W G
1997-09-01
The 6-minute walk and heart rate variability have been used to assess mortality risk in patients with heart failure, but their relationship to each other and their usefulness for predicting mortality at 1 year are unknown. To assess the relationships between the 6-minute walk test, heart rate variability, and 1-year mortality. A sample of 113 patients in advanced stages of heart failure (New York Heart Association Functional Class III-IV, left ventricular ejection < 0.25) were studied. All 6-minute walks took place in an enclosed, level, measured corridor and were supervised by the same nurse. Heart rate variability was measured by using (1) a standard-deviation method and (2) Poincaré plots. Data on RR intervals obtained by using 24-hour Holter monitoring were analyzed. Survival was determined at 1 year after the Holter recording. The results showed no significant associations between the results of the 6-minute walk and the two measures of heart rate variability. The results of the walk were related to 1-year mortality but not to the risk of sudden death. Both measures of heart rate variability had significant associations with 1-year mortality and with sudden death. However, only heart rate variability measured by using Poincaré plots was a predictor of total mortality and risk of sudden death, independent of left ventricular ejection fraction, serum levels of sodium, results of the 6-minute walk test, and the standard-deviation measure of heart rate variability. Results of the 6-minute walk have poor association with mortality and the two measures of heart rate variability in patients with advanced-stage heart failure and a low ejection fraction. Further studies are needed to determine the optimal clinical usefulness of the 6-minute walk and heart rate variability in patients with advanced-stage heart failure.
Lilley, Thomas; Herb, Christopher C; Hart, Joseph; Hertel, Jay
2018-06-01
Chronic ankle instability (CAI) is a condition resulting from a lateral ankle sprain. Shank-rearfoot joint-coupling variability differences have been found in CAI patients; however, joint-coupling variability (VCV) of the ankle and proximal joints has not been explored. Our purpose was to analyse VCV in adults with and without CAI during gait. Four joint-coupling pairs were analysed: knee sagittal-ankle sagittal, knee sagittal-ankle frontal, hip frontal-ankle sagittal and hip frontal-ankle frontal. Twenty-seven adults participated (CAI:n = 13, Control:n = 14). Lower extremity kinematics were collected during walking (4.83 km/h) and jogging (9.66 km/h). Vector-coding was used to assess the stride-to-stride variability of four coupling pairs. During walking, CAI patients exhibited higher VCV than healthy controls for knee sagittal-ankle frontal in latter parts of stance thru mid-swing. When jogging, CAI patients demonstrated lower VCV with specific differences occurring across various intervals of gait. The increased knee sagittal-ankle frontal VCV in CAI patients during walking may indicate an adaptation to deal with the previously identified decrease in variability in transverse plane shank and frontal plane rearfoot coupling during walking; while the decreased ankle-knee and ankle-hip VCV identified in CAI patients during jogging may represent a more rigid, less adaptable sensorimotor system ambulating at a faster speed.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719
Lobet, S; Detrembleur, C; Hermans, C
2013-03-01
Few studies have assessed the changes produced by multiple joint impairments (MJI) of the lower limbs on gait in patients with haemophilia (PWH). In patients with MJI, quantifiable outcome measures are necessary if treatment benefits are to be compared. This study was aimed at observing the metabolic cost, mechanical work and efficiency of walking among PWH with MJI and to investigate the relationship between joint damage and any changes in mechanical and energetic variables. This study used three-dimensional gait analysis to investigate the kinematics, cost, mechanical work and efficiency of walking in 31 PWH with MJI, with the results being compared with speed-matched values from a database of healthy subjects. Regarding energetics, the mass-specific net cost of transport (C(net)) was significantly higher for PWH with MJI compared with control and directly related to a loss in dynamic joint range of motion. Surprisingly, however, there was no substantial increase in mechanical work, with PWH being able to adopt a walking strategy to improve energy recovery via the pendulum mechanism. This probable compensatory mechanism to economize energy likely counterbalances the supplementary work associated with an increased vertical excursion of centre of mass (CoM) and lower muscle efficiency of locomotion. Metabolic variables were probably the most representative variables of gait disability for these subjects with complex orthopaedic degenerative disorders. © 2012 Blackwell Publishing Ltd.
Song, Chorong; Ikei, Harumi; Kobayashi, Maiko; Miura, Takashi; Taue, Masao; Kagawa, Takahide; Li, Qing; Kumeda, Shigeyoshi; Imai, Michiko; Miyazaki, Yoshifumi
2015-03-02
There has been increasing attention on the therapeutic effects of the forest environment. However, evidence-based research that clarifies the physiological effects of the forest environment on hypertensive individuals is lacking. This study provides scientific evidence suggesting that a brief forest walk affects autonomic nervous system activity in middle-aged hypertensive individuals. Twenty participants (58.0±10.6 years) were instructed to walk predetermined courses in forest and urban environments (as control). Course length (17-min walk), walking speed, and energy expenditure were equal between the forest and urban environments to clarify the effects of each environment. Heart rate variability (HRV) and heart rate were used to quantify physiological responses. The modified semantic differential method and Profile of Mood States were used to determine psychological responses. The natural logarithm of the high-frequency component of HRV was significantly higher and heart rate was significantly lower when participants walked in the forest than when they walked in the urban environment. The questionnaire results indicated that, compared with the urban environment, walking in the forest increased "comfortable", "relaxed", "natural" and "vigorous" feelings and decreased "tension-anxiety," "depression," "anxiety-hostility," "fatigue" and "confusion". A brief walk in the forest elicited physiological and psychological relaxation effects on middle-aged hypertensive individuals.
The Gait Disorder in Downbeat Nystagmus Syndrome
Schniepp, Roman; Wuehr, Max; Huth, Sabrina; Pradhan, Cauchy; Schlick, Cornelia; Brandt, Thomas; Jahn, Klaus
2014-01-01
Background Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder. Methods Investigation of walking in 50 DBN patients (age 72±11 years, 23 females) and 50 healthy controls (HS) (age 70±11 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different walking speeds and walking with eyes closed. Results In DBN, gait velocity was reduced (p<0.001) with a reduced stride length (p<0.001), increased base of support (p<0.050), and increased double support (p<0.001). Walking with eyes closed led to significant gait changes in both HS and DBN. These changes were more pronounced in DBN patients (p<0.001). Speed-dependency of gait variability revealed significant differences between the subgroups of DBN and DBNCA (p<0.050). Conclusions (I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia. PMID:25140517
The gait disorder in downbeat nystagmus syndrome.
Schniepp, Roman; Wuehr, Max; Huth, Sabrina; Pradhan, Cauchy; Schlick, Cornelia; Brandt, Thomas; Jahn, Klaus
2014-01-01
Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder. Investigation of walking in 50 DBN patients (age 72 ± 11 years, 23 females) and 50 healthy controls (HS) (age 70 ± 11 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different walking speeds and walking with eyes closed. In DBN, gait velocity was reduced (p<0.001) with a reduced stride length (p<0.001), increased base of support (p<0.050), and increased double support (p<0.001). Walking with eyes closed led to significant gait changes in both HS and DBN. These changes were more pronounced in DBN patients (p<0.001). Speed-dependency of gait variability revealed significant differences between the subgroups of DBN and DBNCA (p<0.050). (I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia.
Cubo, Esther; Leurgans, Sue; Goetz, Christopher G
2004-12-01
In a randomized single blind parallel study, we tested the efficacy of an auditory metronome on walking speed and freezing in Parkinson's disease (PD) patients with freezing gait impairment during their 'on' function. No pharmacological treatment is effective in managing 'on' freezing in PD. Like visual cues that can help overcome freezing, rhythmic auditory pacing may provide cues that help normalize walking pace and overcome freezing. Non-demented PD patients with freezing during their 'on' state walked under two conditions, in randomized order: unassisted walking and walking with the use of an audiocassette with a metronome recording. The walking trials were randomized and gait variables were rated from videotapes by a blinded evaluator. Outcome measures were total walking time (total trial time-total freezing time), which was considered the time over a course of specified length, freezing time, average freeze duration and number of freezes. All outcomes were averaged across trials for each person and then compared across conditions using Signed Rank tests. Twelve non-demented PD patients with a mean age of 65.8 +/- 11.2 years, and mean PD duration of 12.4 +/- 7.3 years were included. The use of the metronome slowed ambulation and increased the total walking time (P < 0.0005) only during the first visit, without affecting any freezing variable. In the nine patients who took the metronome recording home and used it daily for 1 week while walking, freezing remained unimproved. Though advocated in prior publications as a walking aid for PD patients, auditory metronome pacing slows walking and is not a beneficial intervention for freezing during their 'on' periods.
The effect of light touch on balance control during overground walking in healthy young adults.
Oates, A R; Unger, J; Arnold, C M; Fung, J; Lanovaz, J L
2017-12-01
Balance control is essential for safe walking. Adding haptic input through light touch may improve walking balance; however, evidence is limited. This research investigated the effect of added haptic input through light touch in healthy young adults during challenging walking conditions. Sixteen individuals walked normally, in tandem, and on a compliant, low-lying balance beam with and without light touch on a railing. Three-dimensional kinematic data were captured to compute stride velocity (m/s), relative time spent in double support (%DS), a medial-lateral margin of stability (MOS ML ) and its variance (MOS ML CV), as well as a symmetry index (SI) for the MOS ML . Muscle activity was evaluated by integrating electromyography signals for the soleus, tibialis anterior, and gluteus medius muscles bilaterally. Adding haptic input decreased stride velocity, increased the %DS, had no effect on the MOS ML magnitude, decreased the MOS ML CV, had no effect on the SI, and increased activity of most muscles examined during normal walking. During tandem walking, stride velocity and the MOS ML CV decreased, while %DS, MOS ML magnitude, SI, and muscle activity did not change with light touch. When walking on a low-lying, compliant balance beam, light touch had no effect on walking velocity, MOS ML magnitude, or muscle activity; however, the %DS increased and the MOS ML CV and SI decreased when lightly touching a railing while walking on the balance beam. The decreases in the MOS ML CV with light touch across all walking conditions suggest that adding haptic input through light touch on a railing may improve balance control during walking through reduced variability.
Access to Health Care Services for the Disabled Elderly
Taylor, Donald H; Hoenig, Helen
2006-01-01
Objective To determine whether difficulty walking and the strategies persons use to compensate for this deficit influenced downstream Medicare expenditures. Data Source Secondary data analysis of Medicare claims data (1999–2000) for age-eligible Medicare beneficiaries (N = 4,997) responding to the community portion of the 1999 National Long Term Care Survey (NLTCS). Study Design Longitudinal cohort study. Walking difficulty and compensatory strategy were measured at the 1999 NLTCS, and used to predict health care use as measured in Medicare claims data from the survey date through year-end 2000. Data Extraction Respondents to the 1999 community NLTCS with complete information on key explanatory variables (walking difficulty and compensatory strategy) were linked with Medicare claims to define outcome variables (health care use and cost). Principal Findings Persons who reported it was very difficult to walk had more downstream home health visits (1.1/month, p<.001), but fewer outpatient physician visits (−0.16/month, p<.001) after controlling for overall disease burden. Those using a compensatory strategy for walking also had increased home health visits/month (0.55 for equipment, 1.0 for personal assistance, p<.001 for both) but did not have significantly reduced outpatient visits. Persons reporting difficulty walking had increased downstream Medicare costs ranging from $163 to $222/month (p<.001) depending upon how difficult walking was. Less than half of the persons who used equipment to adapt to walking difficulty had their difficulty fully compensated by the use of equipment. Persons using equipment that fully compensated their difficulty used around $300/month less in Medicare-financed costs compared with those with residual difficulty. Conclusions Difficulty walking and use of compensatory strategies are correlated with the use of Medicare-financed services. The potential impact on the Medicare program is large, given how common such limitations are among the elderly. PMID:16704510
Effect of walking speed on the gait of king penguins: An accelerometric approach.
Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán
2015-12-21
Little is known about non-human bipedal gaits. This is probably due to the fact that most large animals are quadrupedal and that non-human bipedal animals are mostly birds, whose primary form of locomotion is flight. Very little research has been conducted on penguin pedestrian locomotion with the focus instead on their associated high energy expenditure. In animals, tri-axial accelerometers are frequently used to estimate physiological energy cost, as well as to define the behaviour pattern of a species, or the kinematics of swimming. In this study, we showed how an accelerometer-based technique could be used to determine the biomechanical characteristics of pedestrian locomotion. Eight king penguins, which represent the only family of birds to have an upright bipedal gait, were trained to walk on a treadmill. The trunk tri-axial accelerations were recorded while the bird was walking at four different speeds (1.0, 1.2, 1.4 and 1.6km/h), enabling the amplitude of dynamic body acceleration along the three axes (amplitude of DBAx, DBAy and DBAz), stride frequency, waddling and leaning amplitude, as well as the leaning angle to be defined. The magnitude of the measured variables showed a significant increase with increasing speed, apart from the backwards angle of lean, which decreased with increasing speed. The variability of the measured variables also showed a significant increase with speed apart from the DBAz amplitude, the waddling amplitude, and the leaning angle, where no significant effect of the walking speed was found. This paper is the first approach to describe 3D biomechanics with an accelerometer on wild animals, demonstrating the potential of this technique. Copyright © 2015 Elsevier Ltd. All rights reserved.
Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte
2016-01-01
Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport. PMID:26784933
Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte
2016-01-01
Active transport is a convenient way to incorporate physical activity in adolescents' daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17-18 years), to school and to other destinations. 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport.
Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander
2016-01-01
Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158
Hemmingsson, Erik; Ekelund, Ulf; Udden, Joanna
2011-08-01
The impact of walking and bicycling on insulin resistance (IR) in women with abdominal obesity is unclear. Pooled analysis of data from a randomized trial on physically active commuting (bicycling + walking vs walking only) in women with abdominal obesity [n = 98; age:47.3 ± 7.6 yrs; waist circumference (WC):103.1 ± 7.8 cm]. Bicycling and walking data were collected during 7 consecutive days by trip meters (Trelock FC-410) and pedometers (Yamax digiwalker SW-200) at baseline, 2, 4, and 6 months. Owing to a skew distribution we analyzed bicycling as a binary dummy variable with a 10 km/week cut-off. Fasting serum insulin and homeostatic model assessment - insulin resistance (HOMA-IR) were assessed at baseline and 6 months, as were body mass index (BMI), WC, and dual x-ray absorptiometry (DXA)-assessed % whole-body fat. Increased bicycling by 10 km/wk was associated with reductions in fasting serum insulin at follow-up independent of age, treatment allocation, baseline phenotype, Δ walking, and Δ % body fat (β = -10.9, P = .042), but not HOMA-IR (β = -2.0, P = .13). Increased walking was not associated with fasting serum insulin (P = .33) or HOMA-IR (P = .44) at follow-up, after adjustment for the same covariates and Δ bicycling. Increased bicycling but not walking was associated with reduced insulin levels at follow-up. Bicycling may be more effective than walking for reducing insulin levels in abdominally obese women.
Decker, Leslie M; Cignetti, Fabien; Hunt, Nathaniel; Potter, Jane F; Stergiou, Nicholas; Studenski, Stephanie A
2016-08-01
A U-shaped relationship between cognitive demand and gait control may exist in dual-task situations, reflecting opposing effects of external focus of attention and attentional resource competition. The purpose of the study was twofold: to examine whether gait control, as evaluated from step-to-step variability, is related to cognitive task difficulty in a U-shaped manner and to determine whether age modifies this relationship. Young and older adults walked on a treadmill without attentional requirement and while performing a dichotic listening task under three attention conditions: non-forced (NF), forced-right (FR), and forced-left (FL). The conditions increased in their attentional demand and requirement for inhibitory control. Gait control was evaluated by the variability of step parameters related to balance control (step width) and rhythmic stepping pattern (step length and step time). A U-shaped relationship was found for step width variability in both young and older adults and for step time variability in older adults only. Cognitive performance during dual tasking was maintained in both young and older adults. The U-shaped relationship, which presumably results from a trade-off between an external focus of attention and competition for attentional resources, implies that higher-level cognitive processes are involved in walking in young and older adults. Specifically, while these processes are initially involved only in the control of (lateral) balance during gait, they become necessary for the control of (fore-aft) rhythmic stepping pattern in older adults, suggesting that attentional resources turn out to be needed in all facets of walking with aging. Finally, despite the cognitive resources required by walking, both young and older adults spontaneously adopted a "posture second" strategy, prioritizing the cognitive task over the gait task.
Taylor, Morag E; Delbaere, Kim; Mikolaizak, A Stefanie; Lord, Stephen R; Close, Jacqueline C T
2013-01-01
Impaired gait may contribute to the increased rate of falls in cognitively impaired older people. We investigated whether gait under simple and dual task conditions could predict falls in this group. The study sample consisted of 64 community dwelling older people with mild to moderate cognitive impairment. Participants walked at their preferred speed under three conditions: (a) simple walking, (b) walking while carrying a glass of water and (c) walking while counting backwards from 30. Spatiotemporal gait parameters were measured using the GAITRite(®) mat. Falls were recorded prospectively for 12months with the assistance of carers. Twenty-two (35%) people fell two or more times in the 12month follow-up period. There was a significant main effect of gait condition and a significant main effect of faller status for mean value measures (velocity, stride length, double support time and stride width) and for variability measures (swing time variability and stride length variability). Examination of individual gait parameters indicated that the multiple fallers walked more slowly, had shorter stride length, spent longer time in double support, had a wider support width and showed more variability in stride length and swing time (p<0.05). There was no significant interaction between gait condition and faller status for any of the gait variables. In conclusion, dual task activities adversely affect gait in cognitively impaired older people. Multiple fallers performed worse in each gait condition but the addition of a functional or cognitive secondary task provided no added benefit in discriminating fallers from non-fallers with cognitive impairment. Copyright © 2012 Elsevier B.V. All rights reserved.
Hearst, Mary O; Sirard, John R; Forsyth, Ann; Parker, Emily D; Klein, Elizabeth G; Green, Christine G; Lytle, Leslie A
2013-04-01
Understanding the contextual factors associated with why adults walk is important for those interested in increasing walking as a mode of transportation and leisure. This paper investigates the relationships between neighborhood-level sociodemographic context, individual level sociodemographic characteristics and walking for leisure and transport. Data from two community-based studies of adults (n=550) were used to determine the association between the area-sociodemographic environment (ASDE), calculated from U.S. Census variables, and individual-level SES as potential correlates of walking behavior. Descriptive statistics, mean comparisons and Pearson's correlations coefficients were used to assess bivariate relationships. Generalized estimating equations were used to model the relationship between ASDE, as quartiles, and walking behavior. Adjusted models suggest adults engage in more minutes of walking for transportation and less walking for leisure in the most disadvantaged compared to the least disadvantaged neighborhoods but adding individual level demographics and SES eliminated the significant results. However, when models were stratified for free or reduced cost lunch, of those with children who qualified for free or reduced lunch, those who lived in the wealthiest neighborhoods engaged in 10.7 minutes less of total walking per day compared to those living in the most challenged neighborhoods (p<0.001). Strategies to increase walking for transportation or leisure need to take account of individual level socioeconomic factors in addition to area-level measures.
Chien, Jung Hung; Mukherjee, Mukul; Siu, Ka-Chun; Stergiou, Nicholas
2016-05-01
When maintaining postural stability temporally under increased sensory conflict, a more rigid response is used where the available degrees of freedom are essentially frozen. The current study investigated if such a strategy is also utilized during more dynamic situations of postural control as is the case with walking. This study attempted to answer this question by using the Locomotor Sensory Organization Test (LSOT). This apparatus incorporates SOT inspired perturbations of the visual and the somatosensory system. Ten healthy young adults performed the six conditions of the traditional SOT and the corresponding six conditions on the LSOT. The temporal structure of sway variability was evaluated from all conditions. The results showed that in the anterior posterior direction somatosensory input is crucial for postural control for both walking and standing; visual input also had an effect but was not as prominent as the somatosensory input. In the medial lateral direction and with respect to walking, visual input has a much larger effect than somatosensory input. This is possibly due to the added contributions by peripheral vision during walking; in standing such contributions may not be as significant for postural control. In sum, as sensory conflict increases more rigid and regular sway patterns are found during standing confirming the previous results presented in the literature, however the opposite was the case with walking where more exploratory and adaptive movement patterns are present.
Comparing Types of Financial Incentives to Promote Walking: An Experimental Test.
Burns, Rachel J; Rothman, Alexander J
2018-04-19
Offering people financial incentives to increase their physical activity is an increasingly prevalent intervention strategy. However, little is known about the relative effectiveness of different types of incentives. This study tested whether incentives based on specified reinforcement types and schedules differentially affected the likelihood of meeting a walking goal and explored if observed behavioural changes may have been attributable to the perceived value of the incentive. A 2 (reinforcement type: cash reward, deposit contract) × 2 (schedule: fixed, variable) between-subjects experiment with a hanging control condition was conducted over 8 weeks (n = 153). Although walking was greater in the incentive conditions relative to the control condition, walking did not differ across incentive conditions. Exploratory analyses indicated that the perceived value of the incentive was associated with the likelihood of meeting the walking goal, but was not affected by reinforcement type or schedule. The reinforcement type and schedule manipulations tested in this study did not differentially affect walking. Given that walking behaviour was associated with perceived value, designing incentive strategies that optimise the perceived value of the incentive may be a promising avenue for future research. © 2018 The International Association of Applied Psychology.
Bar-Haim, Simona; Harries, Netta; Hutzler, Yeshayahu; Belokopytov, Mark; Dobrov, Igor
2013-09-01
To describe Re-Step™, a novel mechatronic shoe system that measures center of pressure (COP) gait parameters and complexity of COP dispersion while walking, and to demonstrate these measurements in healthy controls and individuals with hemiparesis and cerebral palsy (CP) before and after perturbation training. The Re-Step™ was used to induce programmed chaotic perturbations to the feet while walking for 30 min for 36 sessions over 12-weeks of training in two subjects with hemiparesis and two with CP. Baseline measurements of complexity indices (fractal dimension and approximate entropy) tended to be higher in controls than in those with disabilities, while COP variability, mean and variability of step time and COP dispersion were lower. After training the disabled subjects these measurement values tended toward those of the controls, along with a decrease in step time, 10 m walk time, average step time, percentage of double support and increased Berg balance score. This pilot trial reveals the feasibility and applicability of this unique measurement and perturbation system for evaluating functional disabilities and changes with interventions to improve walking. Implication for Rehabilitation Walking, of individuals with cerebral palsy and hemiparesis following stroke, can be viewed in terms of a rigid motor behavior that prevents adaptation to changing environmental conditions. Re-Step system (a) measures and records linear and non-linear gait parameters during free walking to provide a detailed evaluation of walking disabilities, (b) is an intervention training modality that applies unexpected perturbations during walking. This perturbation intervention may improve gait and motor functions of individuals with hemiparesis and cerebral plasy.
Control of locomotor stability in stabilizing and destabilizing environments.
Wu, Mengnan/Mary; Brown, Geoffrey; Gordon, Keith E
2017-06-01
To develop effective interventions targeting locomotor stability, it is crucial to understand how people control and modify gait in response to changes in stabilization requirements. Our purpose was to examine how individuals with and without incomplete spinal cord injury (iSCI) control lateral stability in haptic walking environments that increase or decrease stabilization demands. We hypothesized that people would adapt to walking in a predictable, stabilizing viscous force field and unpredictable destabilizing force field by increasing and decreasing feedforward control of lateral stability, respectively. Adaptations in feedforward control were measured using after-effects when fields were removed. Both groups significantly (p<0.05) decreased step width in the stabilizing field. When the stabilizing field was removed, narrower steps persisted in both groups and subjects with iSCI significantly increased movement variability (p<0.05). The after-effect of walking in the stabilizing field was a suppression of ongoing general stabilization mechanisms. In the destabilizing field, subjects with iSCI took faster steps and increased lateral margins of stability (p<0.05). Step frequency increases persisted when the destabilizing field was removed (p<0.05), suggesting that subjects with iSCI made feedforward adaptions to increase control of lateral stability. In contrast, in the destabilizing field, non-impaired subjects increased movement variability (p<0.05) and did not change step width, step frequency, or lateral margin of stability (p>0.05). When the destabilizing field was removed, increases in movement variability persisted (p<0.05), suggesting that non-impaired subjects made feedforward decreases in resistance to perturbations. Published by Elsevier B.V.
Disability affects the 6-minute walking distance in obese subjects (BMI>40 kg/m(2)).
Donini, Lorenzo Maria; Poggiogalle, Eleonora; Mosca, Veronica; Pinto, Alessandro; Brunani, Amelia; Capodaglio, Paolo
2013-01-01
In obese subjects, the relative reduction of the skeletal muscle strength, the reduced cardio-pulmonary capacity and tolerance to effort, the higher metabolic costs and, therefore, the increased inefficiency of gait together with the increased prevalence of co-morbid conditions might interfere with walking. Performance tests, such as the six-minute walking test (6MWT), can unveil the limitations in cardio-respiratory and motor functions underlying the obesity-related disability. Therefore the aims of the present study were: to explore the determinants of the 6-minute walking distance (6MWD) and to investigate the predictors of interruption of the walk test in obese subjects. Obese patients [body mass index (BMI)>40 kg/m(2)] were recruited from January 2009 to December 2011. Anthropometry, body composition, specific questionnaire for Obesity-related Disabilities (TSD-OC test), fitness status and 6MWT data were evaluated. The correlation between the 6MWD and the potential independent variables (anthropometric parameters, body composition, muscle strength, flexibility and disability) were analysed. The variables which were singularly correlated with the response variable were included in a multivariated regression model. Finally, the correlation between nutritional and functional parameters and test interruption was investigated. 354 subjects (87 males, mean age 48.5 ± 14 years, 267 females, mean age 49.8 ± 15 years) were enrolled in the study. Age, weight, height, BMI, fat mass and fat free mass indexes, handgrip strength and disability were significantly correlated with the 6MWD and considered in the multivariate analysis. The determination coefficient of the regression analysis ranged from 0.21 to 0.47 for the different models. Body weight, BMI, waist circumference, TSD-OC test score and flexibility were found to be predictors of the 6MWT interruption. The present study demonstrated the impact of disability in obese subjects, together with age, anthropometric data, body composition and strength, on the 6-minute walking distance.
Disability Affects the 6-Minute Walking Distance in Obese Subjects (BMI>40 kg/m2)
Donini, Lorenzo Maria; Poggiogalle, Eleonora; Mosca, Veronica; Pinto, Alessandro; Brunani, Amelia; Capodaglio, Paolo
2013-01-01
Introduction In obese subjects, the relative reduction of the skeletal muscle strength, the reduced cardio-pulmonary capacity and tolerance to effort, the higher metabolic costs and, therefore, the increased inefficiency of gait together with the increased prevalence of co-morbid conditions might interfere with walking. Performance tests, such as the six-minute walking test (6MWT), can unveil the limitations in cardio-respiratory and motor functions underlying the obesity-related disability. Therefore the aims of the present study were: to explore the determinants of the 6-minute walking distance (6MWD) and to investigate the predictors of interruption of the walk test in obese subjects. Methods Obese patients [body mass index (BMI)>40 kg/m2] were recruited from January 2009 to December 2011. Anthropometry, body composition, specific questionnaire for Obesity-related Disabilities (TSD-OC test), fitness status and 6MWT data were evaluated. The correlation between the 6MWD and the potential independent variables (anthropometric parameters, body composition, muscle strength, flexibility and disability) were analysed. The variables which were singularly correlated with the response variable were included in a multivariated regression model. Finally, the correlation between nutritional and functional parameters and test interruption was investigated. Results 354 subjects (87 males, mean age 48.5±14 years, 267 females, mean age 49.8±15 years) were enrolled in the study. Age, weight, height, BMI, fat mass and fat free mass indexes, handgrip strength and disability were significantly correlated with the 6MWD and considered in the multivariate analysis. The determination coefficient of the regression analysis ranged from 0.21 to 0.47 for the different models. Body weight, BMI, waist circumference, TSD-OC test score and flexibility were found to be predictors of the 6MWT interruption. Discussion The present study demonstrated the impact of disability in obese subjects, together with age, anthropometric data, body composition and strength, on the 6-minute walking distance. PMID:24146756
Collision judgment when using an augmented-vision head-mounted display device
Luo, Gang; Woods, Russell L; Peli, Eli
2016-01-01
Purpose We have developed a device to provide an expanded visual field to patients with tunnel vision by superimposing minified edge images of the wide scene, in which objects appear closer to the heading direction than they really are. We conducted experiments in a virtual environment to determine if users would overestimate collision risks. Methods Given simulated scenes of walking or standing with intention to walk towards a given direction (intended walking) in a shopping mall corridor, participants (12 normally sighted and 7 with tunnel vision) reported whether they would collide with obstacles appearing at different offsets from variable walking paths (or intended directions), with and without the device. The collision envelope (CE), a personal space based on perceived collision judgments, and judgment uncertainty (variability of response) were measured. When the device was used, combinations of two image scales (5× minified and 1:1) and two image types (grayscale or edge images) were tested. Results Image type did not significantly alter collision judgment (p>0.7). Compared to the without-device baseline, minification did not significantly change the CE of normally sighted subjects for simulated walking (p=0.12), but increased CE by 30% for intended walking (p<0.001). Their uncertainty was not affected by minification (p>0.25). For the patients, neither CE nor uncertainty was affected by minification (p>0.13) in both walking conditions. Baseline CE and uncertainty were greater for patients than normally-sighted subjects in simulated walking (p=0.03), but the two groups were not significantly different in all other conditions. Conclusion Users did not substantially overestimate collision risk, as the 5× minified images had only limited impact on collision judgments either during walking or before starting to walk. PMID:19458339
Collision judgment when using an augmented-vision head-mounted display device.
Luo, Gang; Woods, Russell L; Peli, Eli
2009-09-01
A device was developed to provide an expanded visual field to patients with tunnel vision by superimposing minified edge images of the wide scene, in which objects appear closer to the heading direction than they really are. Experiments were conducted in a virtual environment to determine whether users would overestimate collision risks. Given simulated scenes of walking or standing with intention to walk toward a given direction (intended walking) in a shopping mall corridor, participants (12 normally sighted and 7 with tunnel vision) reported whether they would collide with obstacles appearing at different offsets from variable walking paths (or intended directions), with and without the device. The collision envelope (CE), a personal space based on perceived collision judgments, and judgment uncertainty (variability of response) were measured. When the device was used, combinations of two image scales (5x minified and 1:1) and two image types (grayscale or edge images) were tested. Image type did not significantly alter collision judgment (P > 0.7). Compared to the without-device baseline, minification did not significantly change the CE of normally sighted subjects for simulated walking (P = 0.12), but increased CE by 30% for intended walking (P < 0.001). Their uncertainty was not affected by minification (P > 0.25). For the patients, neither CE nor uncertainty was affected by minification (P > 0.13) in both walking conditions. Baseline CE and uncertainty were greater for patients than normally sighted subjects in simulated walking (P = 0.03), but the two groups were not significantly different in all other conditions. Users did not substantially overestimate collision risk, as the x5 minified images had only limited impact on collision judgments either during walking or before starting to walk.
Fleerkotte, Bertine M; Koopman, Bram; Buurke, Jaap H; van Asseldonk, Edwin H F; van der Kooij, Herman; Rietman, Johan S
2014-03-04
There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10 MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6 MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance.
2014-01-01
Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite these potential benefits, robotic gait-training devices have not yet demonstrated clear advantages over conventional gait-training approaches, in terms of functional outcomes. This might be due to the reduced active participation and step-to-step variability in most robotic gait-training strategies, when compared to manually assisted therapy. Impedance-controlled devices can increase active participation and step-to-step variability. The aim of this study was to assess the effect of impedance-controlled robotic gait training on walking ability and quality in chronic iSCI individuals. Methods A group of 10 individuals with chronic iSCI participated in an explorative clinical trial. Participants trained three times a week for eight weeks using an impedance-controlled robotic gait trainer (LOPES: LOwer extremity Powered ExoSkeleton). Primary outcomes were the 10-meter walking test (10MWT), the Walking Index for Spinal Cord Injury (WISCI II), the six-meter walking test (6MWT), the Timed Up and Go test (TUG) and the Lower Extremity Motor Scores (LEMS). Secondary outcomes were spatiotemporal and kinematics measures. All participants were tested before, during, and after training and at 8 weeks follow-up. Results Participants experienced significant improvements in walking speed (0.06 m/s, p = 0.008), distance (29 m, p = 0.005), TUG (3.4 s, p = 0.012), LEMS (3.4, p = 0.017) and WISCI after eight weeks of training with LOPES. At the eight-week follow-up, participants retained the improvements measured at the end of the training period. Significant improvements were also found in spatiotemporal measures and hip range of motion. Conclusion Robotic gait training using an impedance-controlled robot is feasible in gait rehabilitation of chronic iSCI individuals. It leads to improvements in walking ability, muscle strength, and quality of walking. Improvements observed at the end of the training period persisted at the eight-week follow-up. Slower walkers benefit the most from the training protocol and achieve the greatest relative improvement in speed and walking distance. PMID:24594284
Westgarth, Carri; Christley, Robert M; Christian, Hayley E
2014-08-20
Physical inactivity and sedentary behaviour are major threats to population health. A considerable proportion of people own dogs, and there is good evidence that dog ownership is associated with higher levels of physical activity. However not all owners walk their dogs regularly. This paper comprehensively reviews the evidence for correlates of dog walking so that effective interventions may be designed to increase the physical activity of dog owners. Published findings from 1990-2012 in both the human and veterinary literature were collated and reviewed for evidence of factors associated with objective and self-reported measures of dog walking behaviour, or reported perceptions about dog walking. Study designs included cross-sectional observational, trials and qualitative interviews. There is good evidence that the strength of the dog-owner relationship, through a sense of obligation to walk the dog, and the perceived support and motivation a dog provides for walking, is strongly associated with increased walking. The perceived exercise requirements of the dog may also be a modifiable point for intervention. In addition, access to suitable walking areas with dog supportive features that fulfil dog needs such as off-leash exercise, and that also encourage human social interaction, may be incentivising. Current evidence suggests that dog walking may be most effectively encouraged through targeting the dog-owner relationship and by providing dog-supportive physical environments. More research is required to investigate the influence of individual owner and dog factors on 'intention' to walk the dog as well as the influence of human social interaction whilst walking a dog. The effects of policy and cultural practices relating to dog ownership and walking should also be investigated. Future studies must be of a higher quality methodological design, including accounting for the effects of confounding between variables, and longitudinal designs and testing of interventions in a controlled design in order to infer causality.
NASA Technical Reports Server (NTRS)
McDonald, P. V.; Basdogan, C.; Bloomberg, J. J.; Layne, C. S.
1996-01-01
We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
McDonald, P V; Basdogan, C; Bloomberg, J J; Layne, C S
1996-11-01
We examined the lower limb joint kinematics observed during pre- and postflight treadmill walking performed by seven subjects from three Space Shuttle flights flown between March 1992 and February 1994. Basic temporal characteristics of the gait patterns, such as stride time and duty cycle, showed no significant changes after flight. Evaluation of phaseplane variability across the gait cycle suggests that postflight treadmill walking is more variable than preflight, but the response throughout the course of a cycle is joint dependent and, furthermore, the changes are subject dependent. However, analysis of the phaseplane variability at the specific locomotor events of heel strike and toe off indicated statistically significant postflight increases in knee variability at the moment of heel strike and significantly higher postflight hip joint variability at the moment of toe off. Nevertheless, the observation of component-specific variability was not sufficient to cause a change in the overall lower limb joint system stability, since there was no significant change in an index used to evaluate this at both toe off and heel strike. The implications of the observed lower limb kinematics for head and gaze control during locomotion are discussed in light of a hypothesized change in the energy attenuation capacity of the musculoskeletal system in adapting to weightlessness.
Identifying Stride-To-Stride Control Strategies in Human Treadmill Walking
Dingwell, Jonathan B.; Cusumano, Joseph P.
2015-01-01
Variability is ubiquitous in human movement, arising from internal and external noise, inherent biological redundancy, and from the neurophysiological control actions that help regulate movement fluctuations. Increased walking variability can lead to increased energetic cost and/or increased fall risk. Conversely, biological noise may be beneficial, even necessary, to enhance motor performance. Indeed, encouraging more variability actually facilitates greater improvements in some forms of locomotor rehabilitation. Thus, it is critical to identify the fundamental principles humans use to regulate stride-to-stride fluctuations in walking. This study sought to determine how humans regulate stride-to-stride fluctuations in stepping movements during treadmill walking. We developed computational models based on pre-defined goal functions to compare if subjects, from each stride to the next, tried to maintain the same speed as the treadmill, or instead stay in the same position on the treadmill. Both strategies predicted average behaviors empirically indistinguishable from each other and from that of humans. These strategies, however, predicted very different stride-to-stride fluctuation dynamics. Comparisons to experimental data showed that human stepping movements were generally well-predicted by the speed-control model, but not by the position-control model. Human subjects also exhibited no indications they corrected deviations in absolute position only intermittently: i.e., closer to the boundaries of the treadmill. Thus, humans clearly do not adopt a control strategy whose primary goal is to maintain some constant absolute position on the treadmill. Instead, humans appear to regulate their stepping movements in a way most consistent with a strategy whose primary goal is to try to maintain the same speed as the treadmill at each consecutive stride. These findings have important implications both for understanding how biological systems regulate walking in general and for being able to harness these mechanisms to develop more effective rehabilitation interventions to improve locomotor performance. PMID:25910253
Ground reaction forces on stairs: effects of stair inclination and age.
Stacoff, Alex; Diezi, Christian; Luder, Gerhard; Stüssi, Edgar; Kramers-de Quervain, Inès A
2005-01-01
The goals of the study were to compare data of vertical ground reaction force (GRF) parameters during level walking, stair ascent and descent on three different stair inclinations and three different age groups. Twenty healthy subjects of three age groups (young 33.7 years; middle 63.6 years; old 76.5 years) were tested during the seven test conditions with 8-10 repetitions. Vertical forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. The results showed that during level walking the vertical GRF curves were very regular and repetitive, the trail-to-trial variability and left-right asymmetry of defined test parameters being around 2-5% and 3-5%. During stair ascent the vertical GRF force pattern was found to change slightly compared to level gait, but considerably compared to stair descent. On the steep stair the average vertical load increased up to 1.6 BW, and variability (5-10%) and asymmetry (5-15%) were increased significantly. The steep stair descent condition was found to be the most demanding test showing the largest variability and asymmetry and thus, the least stable gait pattern. Age was found to be a factor which should be considered, because the young age group walked faster and produced larger vertical GRF maxima during level walking and on stair ascent than the middle and old age group. Differences between the middle and old age group were found to be small. The present investigation is the first to provide normative data of GRF parameters on gait variability and symmetry of two consecutive steps during level gait and stair ambulation. It is the intention that the results of this study may be used as a basis for comparison with patient data.
Pantoni, Camila Bianca Falasco; Di Thommazo-Luporini, Luciana; Mendes, Renata Gonçalves; Caruso, Flávia Cristina Rossi; Mezzalira, Daniel; Arena, Ross; Amaral-Neto, Othon; Catai, Aparecida Maria; Borghi-Silva, Audrey
2016-01-01
Continuous positive airway pressure (CPAP) has been used as an effective support to decrease the negative pulmonary effects of coronary artery bypass graft (CABG) surgery. However, it is unknown whether CPAP can positively influence patients undergoing CABG during exercise. This study evaluated the effectiveness of CPAP on the first day of ambulation after CABG in patients undergoing inpatient cardiac rehabilitation (CR). Fifty-four patients after CABG surgery were randomly assigned to receive either inpatient CR and CPAP (CPG) or standard CR without CPAP (CG). Cardiac rehabilitation included walking and CPAP pressures were set between 10 to 12 cmH2O. Participants were assessed on the first day of walking at rest and during walking. Outcome measures included breathing pattern variables, exercise time in seconds (ETs), dyspnea/leg effort ratings, and peripheral oxygen saturation (SpO2). Twenty-seven patients (13 CPG vs 14 CG) completed the study. Compared with walking without noninvasive ventilation assistance, CPAP increased ETs by 43.4 seconds (P = .040) during walking, promoted better thoracoabdominal coordination, increased ventilation during walking by 12.5 L/min (P = .001), increased SpO2 values at the end of walking by 2.6% (P = .016), and reduced dyspnea ratings by 1 point (P = .008). Continuous positive airway pressure can positively influence exercise tolerance, ventilatory function, and breathing pattern in response to a single bout of exercise after CABG.
Prahm, Kira P.; Witting, Nanna; Vissing, John
2014-01-01
Objective The 6-minute walk test is widely used to assess functional status in neurological disorders. However, the test is subject to great inter-test variability due to fluctuating motivation, fatigue and learning effects. We investigated whether inter-test variability of the 6MWT can be reduced by heart rate correction. Methods Sixteen patients with neuromuscular diseases, including Facioscapulohumeral muscular dystrophy, Limb-girdle muscular dystrophy, Charcot-Marie-Tooths, Dystrophia Myotonica and Congenital Myopathy and 12 healthy subjects were studied. Patients were excluded if they had cardiac arrhythmias, if they received drug treatment for hypertension or any other medical conditions that could interfere with the interpretation of the heart rate and walking capability. All completed three 6-minute walk tests on three different test-days. Heart rate was measured continuously. Results Successive standard 6-minute walk tests showed considerable learning effects between Tests 1 and 2 (4.9%; P = 0.026), and Tests 2 and 3 (4.5%; P = 0.020) in patients. The same was seen in controls between Tests 1 and 2 (8.1%; P = 0.039)). Heart rate correction abolished this learning effect. Conclusion A modified 6-minute walk test, by correcting walking distance with average heart rate during walking, decreases the variability among repeated 6-minute walk tests, and should be considered as an alternative outcome measure to the standard 6-minute walk test in future clinical follow-up and treatment trials. PMID:25479403
Sánchez, Marina Castel; Bussmann, Johannes; Janssen, Wim; Horemans, Herwin; Chastin, Sebastian; Heijenbrok, Majanka; Stam, Henk
2015-09-01
To describe the course of walking behaviour over a period of 1 year after stroke, using accelerometry, and to compare 1-year data with those from a healthy group. One-year follow-up cohort study. Twenty-three stroke patients and 20 age-matched healthy subjects. Accelerometer assessments were made in the participants' daily environment for 8 h/day during the 1st (T1), 12th (T2) and 48th (T3) weeks after stroke, and at one time-point in healthy subjects. Primary outcomes were: percentage of time walking and upright (amount); mean duration and number of walking periods (distribution); step regularity and gait symmetry (quality); and walking speed. Time walking, time upright, and number of walking bouts increased during T1 and T2 (p < 0.01) and then levelled off (p > 0.30). Mean duration of walking periods showed no significant improvements (p > 0.30) during all phases. Step regularity, gait symmetry and gait speed showed a tendency to increase consistently from T1 to T3. At T3, amount and distribution variables reached the level of the healthy group, but significant differences remained (p < 0.02) in step regularity and gait speed. In this cohort, different outcomes of walking behaviour showed different patterns and levels of recovery, which supports the multi-dimensional character of gait.
Tanigawa, Takanori; Takechi, Hajime; Arai, Hidenori; Yamada, Minoru; Nishiguchi, Shu; Aoyama, Tomoki
2014-10-01
It is very important to maintain cognitive function in patients with mild cognitive disorder. The aim of the present study was to determine whether the amount of physical activity is associated with memory function in older adults with mild cognitive disorder. A total of 47 older adults with mild cognitive disorder were studied; 30 were diagnosed with mild Alzheimer's disease and 17 with mild cognitive impairment. The global cognitive function, memory function, physical performance and amount of physical activity were measured in these patients. We divided these patients according to their walking speed (<1 m/s or >1 m/s). A total of 26 elderly patients were classified as the slow walking group, whereas 21 were classified as the normal walking group. The normal walking group was younger and had significantly better scores than the slow walking group in physical performance. Stepwise multiple linear regression analysis showed that only the daily step counts were associated with the Scenery Picture Memory Test in patients of the slow walking group (β=0.471, P=0.031), but not other variables. No variable was significantly associated with the Scenery Picture Memory Test in the normal walking group. Memory function was strongly associated with the amount of physical activity in patients with mild cognitive disorder who showed slow walking speed. The results show that lower physical activities could be a risk factor for cognitive decline, and that cognitive function in the elderly whose motor function and cognitive function are declining can be improved by increasing the amount of physical activity. © 2014 Japan Geriatrics Society.
Coogan, Matthew A; Karash, Karla H; Adler, Thomas; Sallis, James
2007-01-01
To examine the association of personal values, the built environment, and auto availability with walking for transportation. Participants were drawn from 11 U.S. metropolitan areas with good transit services. 865 adults who had recently made or were contemplating making a residential move. Respondents reported if walking was their primary mode for nine trip purposes. "Personal values" reflected ratings of 15 variables assessing attitudes about urban and environmental attributes, with high reliability (ot = 0.85). Neighborhood form was indicated by a three-item scale. Three binary variables were created to reflect (1) personal values, (2) neighborhood form, and (3) auto availability. The association with walking was reported for each of the three variables, each combination of two variables, and the combination of three variables. An analysis of covariance was applied, and a hierarchic linear regression model was developed. All three variables were associated with walking, and all three variables interacted. The standardized coefficients were 0.23for neighborhood form, 0.21 for autos per person, and 0.18 for personal values. Positive attitudes about urban attributes, living in a supportive neighborhood, and low automobile availability significantly predicted more walking for transportation. A framework for further research is proposed in which a factor representing the role of the automobile is examined explicitly in addition to personal values and urban form.
Overload From Anxiety: A Non-Motor Cause for Gait Impairments in Parkinson's Disease.
Ehgoetz Martens, Kaylena A; Silveira, Carolina R A; Intzandt, Brittany N; Almeida, Quincy J
2018-01-01
Threatening situations lead to observable gait deficits in individuals with Parkinson's disease (PD) who suffer from high trait anxiety levels. The specific characteristics of gait that are affected appear to be similar to behaviors observed while walking during a dual-task (DT) condition. Yet, it remains unclear whether anxiety is similar to a cognitive load. If it were, then those with PD who have high trait anxiety might be expected to be more susceptible to DT interference during walking. Thus, the overall aim of this study was to evaluate whether trait anxiety influences gait during single-task (ST) and DT walking. Seventy participants (high-anxiety PD [HA-PD], N=26; low-anxiety PD [LA-PD], N=26; healthy control [HC], N=18) completed three ST and three DT walking trials on a data-collecting carpet. The secondary task consisted of digit monitoring while walking. Results showed that during both ST and DT gait, the HA-PD group demonstrated significant reductions in walking speed and step length, as well as increased step length variability and step time variability compared with healthy controls and the LA-PD group. Notably, ST walking in the HA-PD group resembled (i.e., it was not significantly different from) the gait behaviors seen during a DT in the LA-PD and HC groups. These results suggest that trait anxiety may consume processing resources and limit the ability to compensate for gait impairments in PD.
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
Physiological and Perceptual Responses to Nordic Walking in a Natural Mountain Environment
Grainer, Alessandro; Zerbini, Livio; Reggiani, Carlo; Pavei, Gaspare
2017-01-01
Background: Interest around Nordic Walking (NW) has increased in recent years. However, direct comparisons of NW with normal walking (W), particularly in ecologically valid environments is lacking. The aim of our study was to compare NW and W, over long distances in a natural mountain environment. Methods: Twenty one subjects (13 male/8 female, aged 41 ± 12 years, body mass index BMI 24.1 ± 3.7), walked three distinct uphill paths (length 2.2/3.4/7 km) with (NW) or without (W) walking poles over two separate days. Heart rate (HR), energy expenditure (EE), step length (SL), walking speed (WS), total steps number (SN) and rating of perceived exertion (RPE) were monitored. Results: HR (+18%) and EE (+20%) were higher in NW than in W whilst RPE was similar. SN (−12%) was lower and SL (+15%) longer in NW. WS was higher (1.64 vs. 1.53 m s−1) in NW. Conclusions: Our data confirm that, similarly to previous laboratory studies, differences in a range of walking variables are present between NW and W when performed in a natural environment. NW appears to increase EE compared to W, despite a similar RPE. Thus, NW could be a useful as aerobic training modality for weight control and cardiorespiratory fitness. PMID:29039775
Physiological and Perceptual Responses to Nordic Walking in a Natural Mountain Environment.
Grainer, Alessandro; Zerbini, Livio; Reggiani, Carlo; Marcolin, Giuseppe; Steele, James; Pavei, Gaspare; Paoli, Antonio
2017-10-17
Background: Interest around Nordic Walking (NW) has increased in recent years. However, direct comparisons of NW with normal walking (W), particularly in ecologically valid environments is lacking. The aim of our study was to compare NW and W, over long distances in a natural mountain environment. Methods: Twenty one subjects (13 male/8 female, aged 41 ± 12 years, body mass index BMI 24.1 ± 3.7), walked three distinct uphill paths (length 2.2/3.4/7 km) with (NW) or without (W) walking poles over two separate days. Heart rate (HR), energy expenditure (EE), step length (SL), walking speed (WS), total steps number (SN) and rating of perceived exertion (RPE) were monitored. Results: HR (+18%) and EE (+20%) were higher in NW than in W whilst RPE was similar. SN (-12%) was lower and SL (+15%) longer in NW. WS was higher (1.64 vs. 1.53 m s -1 ) in NW. Conclusions: Our data confirm that, similarly to previous laboratory studies, differences in a range of walking variables are present between NW and W when performed in a natural environment. NW appears to increase EE compared to W, despite a similar RPE. Thus, NW could be a useful as aerobic training modality for weight control and cardiorespiratory fitness.
Knaepen, Kristel; Marusic, Uros; Crea, Simona; Rodríguez Guerrero, Carlos D; Vitiello, Nicola; Pattyn, Nathalie; Mairesse, Olivier; Lefeber, Dirk; Meeusen, Romain
2015-04-01
Walking with a lower limb prosthesis comes at a high cognitive workload for amputees, possibly affecting their mobility, safety and independency. A biocooperative prosthesis which is able to reduce the cognitive workload of walking could offer a solution. Therefore, we wanted to investigate whether different levels of cognitive workload can be assessed during symmetrical, asymmetrical and dual-task walking and to identify which parameters are the most sensitive. Twenty-four healthy subjects participated in this study. Cognitive workload was assessed through psychophysiological responses, physical and cognitive performance and subjective ratings. The results showed that breathing frequency and heart rate significantly increased, and heart rate variability significantly decreased with increasing cognitive workload during walking (p<.05). Performance measures (e.g., cadence) only changed under high cognitive workload. As a result, psychophysiological measures are the most sensitive to identify changes in cognitive workload during walking. These parameters reflect the cognitive effort necessary to maintain performance during complex walking and can easily be assessed regardless of the task. This makes them excellent candidates to feed to the control loop of a biocooperative prosthesis in order to detect the cognitive workload. This information can then be used to adapt the robotic assistance to the patient's cognitive abilities. Copyright © 2015 Elsevier B.V. All rights reserved.
Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K
2015-07-12
Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce the likelihood of toe-ground contacts is to attain higher mid-swing clearance by eliminating the MTC event, i.e. demonstrating non-MTC gaits cycles.
Telles, Shirley; Sharma, Sachin Kr.; Yadav, Arti; Singh, Nilkamal; Balkrishna, Acharya
2014-01-01
Background Walking and yoga have been independently evaluated for weight control; however, there are very few studies comparing the 2 with randomization. Material/Methods The present study compared the effects of 90 minutes/day for 15 days of supervised yoga or supervised walking on: (i) related biochemistry, (ii) anthropometric variables, (iii) body composition, (iv) postural stability, and (v) bilateral hand grip strength in overweight and obese persons. Sixty-eight participants, of whom 5 were overweight (BMI ≥25 kg/m2) and 63 were obese (BMI ≥30 kg/m2; group mean age ±S.D., 36.4±11.2 years; 35 females), were randomized as 2 groups – (i) a yoga group and (ii) a walking group – given the same diet. Results All differences were pre-post changes within each group. Both groups showed a significant (p<0.05; repeated measures ANOVA, post-hoc analyses) decrease in: BMI, waist circumference, hip circumference, lean mass, body water, and total cholesterol. The yoga group increased serum leptin (p<0.01) and decreased LDL cholesterol (p<0.05). The walking group decreased serum adiponectin (p<0.05) and triglycerides (p<0.05). Conclusions Both yoga and walking improved anthropometric variables and serum lipid profile in overweight and obese persons. The possible implications are discussed. PMID:24878827
Perceived individual, social, and environmental factors for physical activity and walking.
Granner, Michelle L; Sharpe, Patricia A; Hutto, Brent; Wilcox, Sara; Addy, Cheryl L
2007-07-01
Few studies have explored associations of individual, social, and environmental factors with physical activity and walking behavior. A random-digit-dial questionnaire, which included selected individual, social, and environmental variables, was administered to 2025 adults, age 18 y and older, in two adjacent counties in a southeastern state. Logistic regressions were conducted adjusting for age, race, sex, education, and employment. In multivariate models, somewhat different variables were associated with physical activity versus regular walking. Self-efficacy (OR = 19.19), having an exercise partner (OR = 1.47), recreation facilities (OR = 1.54), and safety of trails from crime (OR = 0.72) were associated with physical activity level; while self-efficacy (OR = 4.22), known walking routes (OR = 1.54), recreation facilities (OR = 1.57-1.59), and safety of trails from crime (OR = 0.69) were associated with regular walking behavior. Physical activity and walking behaviors were associated with similar variables in this study.
The effect of dual tasking on foot kinematics in people with functional ankle instability.
Tavakoli, Sanam; Forghany, Saeed; Nester, Christopher
2016-09-01
Some cases of repeated inversion ankle sprains are thought to have a neurological basis and are termed functional ankle instability (FAI). In addition to factors local to the ankle, such as loss of proprioception, cognitive demands have the ability to influence motor control and may increase the risk of repetitive lateral sprains. The purpose of this study was to investigate the effect of cognitive demand on foot kinematics in physically active people with functional ankle instability. 21 physically active participants with FAI and 19 matched healthy controls completed trials of normal walking (single task) and normal walking while performing a cognitive task (dual task). Foot motion relative to the shank was recorded. Cognitive performance, ankle kinematics and movement variability in single and dual task conditions was characterized. During normal walking, the ankle joint was significantly more inverted in FAI compared to the control group pre and post initial contact. Under dual task conditions, there was a statistically significant increase in frontal plane foot movement variability during the period 200ms pre and post initial contact in people with FAI compared to the control group (p<0.05). Dual task also significantly increased plantar flexion and inversion during the period 200ms pre and post initial contact in the FAI group (p<0.05). participants with FAI demonstrated different ankle movement patterns and increased movement variability during a dual task condition. Cognitive load may increase risk of ankle instability in these people. Copyright © 2016 Elsevier B.V. All rights reserved.
Huisinga, Jessie M.; St. George, Rebecca J.; Spain, Rebecca; Overs, Shannon; Horak, Fay B.
2015-01-01
Objective To understand examined the relationship between postural response latencies obtained during postural perturbations and representative measures of balance during standing (sway variables) and during walking (trunk motion). Design Cross-sectional Setting University medical center balance disorders laboratory Participants Forty persons with MS were compared with 20 similar aged control subjects. Twenty subjects with MS had normal walking velocity group and 20 had slow walking velocity based on the 25-foot walk time greater than 5 seconds. Interventions None Main Outcome Measures Postural response latency, sway variables, trunk motion variables Results: We found that subjects with MS with either slow or normal walking velocities had significantly longer postural response latencies than the healthy control group. Postural response latency was not correlated with the 25-ft walk time. Postural response latency was significantly correlated with center of pressure sway variables during quiet standing: root mean square (ρ = 0.334, p=0.040), range (ρ=0.385, p=0.017), mean velocity (ρ=0.337, p=0.038), and total sway area (ρ=0.393, p=0.015). Postural response latency was also significantly correlated with motion of the trunk during walking: sagittal plane range of motion (ρ=0.316, p=0.050) and standard deviation of transverse plane range of motion (ρ=-0.430, p=0.006). Conclusions These findings clearly indicate that slow postural responses to external perturbations in patients with MS contribute to disturbances in balance control, both during standing and walking. PMID:24445088
Braking and Propulsive Impulses Increase with Speed during Accelerated and Decelerated Walking
Peterson, Carrie L.; Kautz, Steven A.; Neptune, Richard R.
2011-01-01
The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from ten healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0 to 1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects’ preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking. PMID:21356590
Williams, Stefanie L; French, David P
2014-02-05
Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of seasonality effects by selecting the most extreme summer and winter months to assess PA. In addition, participants recruited to behaviour change interventions might have higher levels of motivation to change and are less affected by seasonal barriers. Current Controlled Trials ISRCTN95932902.
The effect of spasticity, sense and walking aids in falls of people after chronic stroke.
Soyuer, Ferhan; Oztürk, Ahmet
2007-05-15
To study the effects of spasticity, sensory impairment, and type of walking aid on falls in community dwellers with chronic stroke. Functional Independence Measure (FIM) Instrument, Joint Position Sense Evaluation (JPS), the Rivermead motor assessment scale (RMA), Ashworth Scale, Tinetti Assessment Tool were used to assess 100 cases. Fifty-three of the cases were grouped as nonfallers, 36 as one-time fallers and 11 as repeat fallers. These 3 groups were found to be different from each other in respect to FIM, Tinetti test and RMA (p < 0.001). In respect to knee JPS, nonfallers and one-time faller groups were found to be different from repeat fallers (p = 0.001). There is a difference among the groups in respect to Ashworth assessment (p < 0.001), use of walking aid (p = 0.01) and type of walking aid (p = 0.01). Some 43% of the cases use a walking aid (58.1% cane, 41.9% high cane). According to Ordinal logistic regression analysis, it was found that the possibility of fall increased (p < 0.01), as the value of spasticity increased while the possibility of the fall of the individuals with stroke decreased (p < 0.00 - 0.01) as Tinetti, RMA and FIM variables increased. In respect to falls, spasticity is also an indicator for chronic stroke patients, as is motor impairment, functional situation, impairment of balance and walking. Sensory impairment, using a walking aid and the type were found to be ineffective.
Keall, Michael; Chapman, Ralph; Howden-Chapman, Philippa; Witten, Karen; Abrahamse, Wokje; Woodward, Alistair
2015-12-01
There is increased interest in the effectiveness and co-benefits of measures to promote walking and cycling, including health gains from increased physical activity and reductions in fossil fuel use and vehicle emissions. This paper analyses the changes in walking and cycling in two New Zealand cities that accompanied public investment in infrastructure married with programmes to encourage active travel. Using a quasi-experimental two-group pre-post study design, we estimated changes in travel behaviour from baseline in 2011 to mid-programme in 2012, and postprogramme in 2013. The intervention and control cities were matched in terms of sociodemographic variables and baseline levels of walking and cycling. A face-to-face survey obtained information on walking and cycling. We also drew from the New Zealand Travel Survey, a national ongoing survey of travel behaviour, which was conducted in the study areas. Estimates from the two surveys were combined using meta-analysis techniques. The trips and physical activity were evaluated. Relative to the control cities, the odds of trips being by active modes (walking or cycling) increased by 37% (95% CI 8% to 73%) in the intervention cities between baseline and postintervention. The net proportion of trips made by active modes increased by about 30%. In terms of physical activity levels, there was little evidence of an overall change. Comparing the intervention cities with the matched controls, we found substantial changes in walking and cycling, and conclude that the improvements in infrastructure and associated programmes appear to have successfully arrested the general decline in active mode use evident in recent years. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Danks, Kelly A.; Pohlig, Ryan T.; Roos, Margie; Wright, Tamara R.; Reisman, Darcy S.
2016-01-01
Background/Purpose Many factors appear to be related to physical activity after stroke, yet it is unclear how these factors interact and which ones might be the best predictors. Therefore, the purpose of this study was twofold: 1) to examine the relationship between walking capacity and walking activity, and 2) to investigate how biopsychosocial factors and self-efficacy relate to walking activity, above and beyond walking capacity impairment post-stroke. Methods Individuals greater than 3 months post-stroke (n=55) completed the Yesavage Geriatric Depression Scale (GDS), Fatigue Severity Scale (FSS), Modified Cumulative Illness Rating (MCIR) Scale, Walk 12, Activities Specific Balance Confidence (ABC) Scale, Functional Gait Assessment (FGA), and oxygen consumption testing. Walking activity data was collected via a StepWatch Activity Monitor (SAM). Predictors were grouped into 3 constructs: (1) Walking Capacity: oxygen consumption and FGA; (2) Biopsychosocial: GDS, FSS, and MCIR; (3) Self-Efficacy: Walk 12 and ABC. Moderated sequential regression models were used to examine what factors best predicted walking activity. Results Walking capacity explained 35.9% (p<0.001) of the variance in walking activity. Self-efficacy (ΔR2 = 0.15, p<0.001) and the interaction between the FGA*ABC (ΔR2 = 0.047, p<0.001) significantly increased the variability explained. FGA (β=0.37, p=0.01), MCIR (β=−0.26, p=0.01), and Walk 12 (β=−0.45, p=0.00) were each individually significantly associated with walking activity. Discussion/Conclusion While measures of walking capacity and self-efficacy significantly contributed to "real-world" walking activity, balance self-efficacy moderated the relationship between walking capacity and walking activity. Improving low balance self-efficacy may augment walking capacity and translate to improved walking activity post-stroke. PMID:27548750
Dog ownership, functional ability, and walking in community-dwelling older adults.
Gretebeck, Kimberlee A; Radius, Kaitlyn; Black, David R; Gretebeck, Randall J; Ziemba, Rosemary; Glickman, Lawrence T
2013-07-01
Regular walking improves overall health and functional ability of older adults, yet most are sedentary. Dog ownership/pet responsibility may increase walking in older adults. Goals of this study were to identify factors that influence older adult walking and compare physical activity, functional ability and psychosocial characteristics by dog ownership status. In this cross-sectional study, older adults (65-95 years of age, n = 1091) completed and returned questionnaires via postal mail. Measures included: Physical Activity Scale for the Elderly, Physical Functioning Questionnaire and Theory of Planned Behavior Questionnaire. Dog owner/dog walkers (n = 77) reported significantly (P < .05) more total walking, walking frequency, leisure and total physical activity and higher total functional ability than dog owner/nondog walkers (n = 83) and nondog owners (n = 931). Dog owner/nondog walkers reported lower intention and perceived behavioral control and a less positive attitude than dog owner/dog walkers (P < .05). Dog owner/ dog walkers were significantly different than the nondog walker groups in nearly every study variable. Many dog owners (48.1%) reported walking their dogs regularly and the dog owner/dog walkers participated in nearly 50% more total walking than the 2 nondog walking groups, suggesting that pet obligation may provide a purposeful activity that motivates some older dog owners to walk.
Race walking gait and its influence on race walking economy in world-class race walkers.
Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan
2018-03-06
The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.
The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.
Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J
2016-01-01
In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.
Gladwell, Valerie F; Kuoppa, Pekka; Tarvainen, Mika P; Rogerson, Mike
2016-03-03
Walking within nature (Green Exercise) has been shown to immediately enhance mental well-being but less is known about the impact on physiology and longer lasting effects. Heart rate variability (HRV) gives an indication of autonomic control of the heart, in particular vagal activity, with reduced HRV identified as a risk factor for cardiovascular disease. Night-time HRV allows vagal activity to be assessed whilst minimizing confounding influences of physical and mental activity. The aim of this study was to investigate whether a lunchtime walk in nature increases night-time HRV. Participants (n = 13) attended on two occasions to walk a 1.8 km route through a built or a natural environment. Pace was similar between the two walks. HRV was measured during sleep using a RR interval sensor (eMotion sensor) and was assessed at 1-2 h after participants noted that they had fallen asleep. Markers for vagal activity were significantly greater after the walk in nature compared to the built walk. Lunchtime walks in nature-based environments may provide a greater restorative effect as shown by vagal activity than equivalent built walks. Nature walks may improve essential recovery during night-time sleep, potentially enhancing physiological health.
Pua, Yong-Hao; Clark, Ross A; Ong, Peck-Hoon
2015-01-01
To provide proof-of-concept for the validity of the Wii Balance Board (WBB) measures to predict the type of walking aids required by inpatients with a recent (≤4 days) total knee arthroplasty (TKA). A cross-sectional sample of 89 inpatients (mean age, 67.0±8 years) with TKA was analyzed. A multivariable proportional odds prediction model was constructed using 8 pre-specified predictors – namely, age, sex, body mass index, knee pain, knee range-of-motion, active knee lag, and WBB-derived standing balance. The type of walking aids prescribed on day 4 post-surgery was the outcome of interest – an ordinal variable with 4 categories (walking stick, narrow- and broad-base quadstick, and walking frame). Women, increasing body mass index, and poorer standing balance were independently associated with greater odds for requiring walking aids with a larger base-of-support. The concordance-index of the prediction model was 0.74. The model comprising only WBB-derived standing balance had nearly half (44%) the explanatory power of the full model. Adding WBB-derived standing balance to conventional demographic and knee variables resulted in a continuous net reclassification index of 0.60 (95%CI,0.19-1.01), predominantly due to better identification of patients who required walking aids with a large base-of-support (sensitivity gain). The WBB was able to provide quantitative measures of standing balance which could assist healthcare professionals in prescribing the appropriate type of walking aids for patients. Further investigation is needed to assess whether using the WBB could lead to meaningful changes in clinical outcomes such as falls.
Pua, Yong-Hao; Clark, Ross A.; Ong, Peck-Hoon
2015-01-01
Background and Objectives To provide proof-of-concept for the validity of the Wii Balance Board (WBB) measures to predict the type of walking aids required by inpatients with a recent (≤4days) total knee arthroplasty (TKA). Methods A cross-sectional sample of 89 inpatients (mean age, 67.0±8years) with TKA was analyzed. A multivariable proportional odds prediction model was constructed using 8 pre-specified predictors – namely, age, sex, body mass index, knee pain, knee range-of-motion, active knee lag, and WBB-derived standing balance. The type of walking aids prescribed on day 4 post-surgery was the outcome of interest – an ordinal variable with 4 categories (walking stick, narrow- and broad-base quadstick, and walking frame). Results Women, increasing body mass index, and poorer standing balance were independently associated with greater odds for requiring walking aids with a larger base-of-support. The concordance-index of the prediction model was 0.74. The model comprising only WBB-derived standing balance had nearly half (44%) the explanatory power of the full model. Adding WBB-derived standing balance to conventional demographic and knee variables resulted in a continuous net reclassification index of 0.60 (95%CI,0.19-1.01), predominantly due to better identification of patients who required walking aids with a large base-of-support (sensitivity gain). Conclusions The WBB was able to provide quantitative measures of standing balance which could assist healthcare professionals in prescribing the appropriate type of walking aids for patients. Further investigation is needed to assess whether using the WBB could lead to meaningful changes in clinical outcomes such as falls. PMID:25615952
Free-living and laboratory gait characteristics in patients with multiple sclerosis
Nair, K. P. S.; Clarke, Alison J.; Van der Meulen, Jill M.; Mazzà, Claudia
2018-01-01
Background Wearable sensors offer the potential to bring new knowledge to inform interventions in patients affected by multiple sclerosis (MS) by thoroughly quantifying gait characteristics and gait deficits from prolonged daily living measurements. The aim of this study was to characterise gait in both laboratory and daily life conditions for a group of patients with moderate to severe ambulatory impairment due to MS. To this purpose, algorithms to detect and characterise gait from wearable inertial sensors data were also validated. Methods Fourteen patients with MS were divided into two groups according to their disability level (EDSS 6.5–6.0 and EDSS 5.5–5.0, respectively). They performed both intermittent and continuous walking bouts (WBs) in a gait laboratory wearing waist and shank mounted inertial sensors. An algorithm (W-CWT) to estimate gait events and temporal parameters (mean and variability values) using data recorded from the waist mounted sensor (Dynaport, Mc Roberts) was tested against a reference algorithm (S-REF) based on the shank-worn sensors (OPAL, APDM). Subsequently, the accuracy of another algorithm (W-PAM) to detect and classify WBs was also tested. The validated algorithms were then used to quantify gait characteristics during short (sWB, 5–50 steps), intermediate (iWB, 51–100 steps) and long (lWB, >100 steps) daily living WBs and laboratory walking. Group means were compared using a two-way ANOVA. Results W-CWT compared to S-REF showed good gait event accuracy (0.05–0.10 s absolute error) and was not influenced by disability level. It slightly overestimated stride time in intermittent walking (0.012 s) and overestimated highly variability of temporal parameters in both intermittent (17.5%–58.2%) and continuous walking (11.2%–76.7%). The accuracy of W-PAM was speed-dependent and decreased with increasing disability. The ANOVA analysis showed that patients walked at a slower pace in daily living than in the laboratory. In daily living gait, all mean temporal parameters decreased as the WB duration increased. In the sWB, the patients with a lower disability score showed, on average, lower values of the temporal parameters. Variability decreased as the WB duration increased. Conclusions This study validated a method to quantify walking in real life in people with MS and showed how gait characteristics estimated from short walking bouts during daily living may be the most informative to quantify level of disability and effects of interventions in patients moderately affected by MS. The study provides a robust approach for the quantification of recognised clinically relevant outcomes and an innovative perspective in the study of real life walking. PMID:29715279
Does Availability of Worksite Supports for Physical Activity Differ by Industry and Occupation?
Dodson, Elizabeth A; Hipp, J Aaron; Lee, Jung Ae; Yang, Lin; Marx, Christine M; Tabak, Rachel G; Brownson, Ross C
2018-03-01
To explore combinations of worksite supports (WSS) for physical activity (PA) that may assist employees in meeting PA recommendations and to investigate how availability of WSS differs across industries and occupations. Cross-sectional. Several Missouri metropolitan areas. Adults employed >20 h/wk outside the home. Survey utilized existing self-reported measures (eg, presence of WSS for PA) and the International Physical Activity Questionnaire. Logistic regression was conducted for 2 outcome variables: leisure and transportation PA. Independent variables included 16 WSS. Of particular interest were interaction effects between WSS variables. Analyses were stratified by 5 occupation and 7 industry types. Overall, 2013 people completed the survey (46% response rate). Often, availability of 1 WSS did not increase the likelihood of meeting PA recommendations, but several pairs of WSS did. For example, in business occupations, the odds of meeting PA recommendations through transportation PA increased when employees had access to showers and incentives to bike/walk (odds ratio [OR] = 1.6; 95% confidence interval [CI] = 1.16-2.22); showers and maps (OR = 1.25; 1.02-1.55); maps and incentives to bike/walk (OR = 1.48; 1.04-2.12). Various combinations of WSS may increase the likelihood that employees will meet PA recommendations. Many are of low or no cost, including flexible time for exercise and maps of worksite-adjacent walk/bike routes. Findings may be instructive for employers seeking to improve employee health through worksite PA.
Karstoft, Kristian; Winding, Kamilla; Knudsen, Sine H; Nielsen, Jens S; Thomsen, Carsten; Pedersen, Bente K; Solomon, Thomas P J
2013-02-01
To evaluate the feasibility of free-living walking training in type 2 diabetic patients and to investigate the effects of interval-walking training versus continuous-walking training upon physical fitness, body composition, and glycemic control. Subjects with type 2 diabetes were randomized to a control (n = 8), continuous-walking (n = 12), or interval-walking group (n = 12). Training groups were prescribed five sessions per week (60 min/session) and were controlled with an accelerometer and a heart-rate monitor. Continuous walkers performed all training at moderate intensity, whereas interval walkers alternated 3-min repetitions at low and high intensity. Before and after the 4-month intervention, the following variables were measured: VO(2)max, body composition, and glycemic control (fasting glucose, HbA(1c), oral glucose tolerance test, and continuous glucose monitoring [CGM]). Training adherence was high (89 ± 4%), and training energy expenditure and mean intensity were comparable. VO(2)max increased 16.1 ± 3.7% in the interval-walking group (P < 0.05), whereas no changes were observed in the continuous-walking or control group. Body mass and adiposity (fat mass and visceral fat) decreased in the interval-walking group only (P < 0.05). Glycemic control (elevated mean CGM glucose levels and increased fasting insulin) worsened in the control group (P < 0.05), whereas mean (P = 0.05) and maximum (P < 0.05) CGM glucose levels decreased in the interval-walking group. The continuous walkers showed no changes in glycemic control. Free-living walking training is feasible in type 2 diabetic patients. Continuous walking offsets the deterioration in glycemia seen in the control group, and interval walking is superior to energy expenditure-matched continuous walking for improving physical fitness, body composition, and glycemic control.
Souza, Thales R.; Araújo, Vanessa L.; Silva, Paula L.; Carvalhais, Viviane O. C.; Resende, Renan A.; Fonseca, Sérgio T.
2016-01-01
ABSTRACT Background Reducing rearfoot eversion is a commonly desired effect in clinical practice to prevent or treat musculoskeletal dysfunction. Interventions that pull the lower limb into external rotation may reduce rearfoot eversion. Objective This study investigated whether the use of external rotation elastic bands, of different levels of stiffness, will decrease rearfoot eversion during walking. We hypothesized that the use of elastic bands would decrease rearfoot eversion and that the greater the band stiffness, the greater the eversion reduction. Method Seventeen healthy participants underwent three-dimensional kinematic analysis of the rearfoot and shank. The participants walked on a treadmill with and without high- and low-stiffness bands. Frontal-plane kinematics of the rearfoot-shank joint complex was obtained during the stance phase of walking. Repeated-measures ANOVAs were used to compare discrete variables that described rearfoot eversion-inversion: mean eversion-inversion; eversion peak; and eversion-inversion range of motion. Results The low-stiffness and high-stiffness bands significantly decreased eversion and increased mean eversion-inversion (p≤0.037) and eversion peak (p≤0.006) compared with the control condition. Both bands also decreased eversion-inversion range of motion (p≤0.047) compared with control by reducing eversion. The high-stiffness band condition was not significantly different from the low-stiffness band condition for any variables (p≥0.479). Conclusion The results indicated that the external rotation bands decreased rearfoot eversion during walking. This constitutes preliminary experimental evidence suggesting that increasing external rotation moments at the lower limb may reduce rearfoot eversion, which needs further testing. PMID:27849289
Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study
Soares-Miranda, Luisa; Sattelmair, Jacob; Chaves, Paulo; Duncan, Glen; Siscovick, David S; Stein, Phyllis K; Mozaffarian, Dariush
2014-01-01
Background Cardiac mortality and electrophysiologic dysfunction both increase with age. Heart rate variability (HRV) provides indices of autonomic function and electrophysiology that are associated with cardiac risk. How habitual physical activity (PA) among older adults prospectively relates to HRV, including nonlinear indices of erratic sinus patterns, is not established. We hypothesized that increasing levels of both total leisure-time activity and walking would be prospectively associated with more favorable time-domain, frequency-domain, and nonlinear HRV measures in older adults. Methods and Results We evaluated serial longitudinal measures of both PA and 24-hour Holter HRV over 5 years among 985 older US adults in the community-based Cardiovascular Health Study. After multivariable adjustment, greater total leisure-time activity, walking distance, and walking pace were each prospectively associated with specific, more favorable HRV indices, including higher 24-hour standard-deviation-of-all-normal-to-normal-intervals (SDNN, p-trend=0.009, 0.02, 0.06, respectively) and ultra-low-frequency-power (p-trend=0.02, 0.008, 0.16, respectively). Greater walking pace was also associated with higher short-term-fractal-scaling-exponent (p-trend=0.003) and lower Poincare ratio (p-trend=0.02), markers of less erratic sinus patterns. Conclusions Greater total leisure-time activity, as well as walking alone, were prospectively associated with more favorable and specific indices of autonomic function in older adults, including several suggestive of more normal circadian fluctuations and less erratic sinoatrial firing. Our results suggest potential mechanisms that might contribute to lower cardiovascular mortality with habitual PA later in life. PMID:24799513
Sullivan, Katherine J; Knowlton, Barbara J; Dobkin, Bruce H
2002-05-01
To investigate the effect of practice paradigms that varied treadmill speed during step training with body weight support in subjects with chronic hemiparesis after stroke. Randomized, repeated-measures pilot study with 1- and 3-month follow-ups. Outpatient locomotor laboratory. Twenty-four individuals with hemiparetic gait deficits whose walking speeds were at least 50% below normal. Participants were stratified by locomotor severity based on initial walking velocity and randomly assigned to treadmill training at slow (0.5mph), fast (2.0mph), or variable (0.5, 1.0, 1.5, 2.0mph) speeds. Participants received 20 minutes of training per session for 12 sessions over 4 weeks. Self-selected overground walking velocity (SSV) was assessed at the onset, middle, and end of training, and 1 and 3 months later. SSV improved in all groups compared with baseline (P<.001). All groups increased SSV in the 1-month follow-up (P<.01) and maintained these gains at the 3-month follow-up (P=.77). The greatest improvement in SSV across training occurred with fast training speeds compared with the slow and variable groups combined (P=.04). Effect size (ES) was large between fast compared with slow (ES=.75) and variable groups (ES=.73). Training at speeds comparable with normal walking velocity was more effective in improving SSV than training at speeds at or below the patient's typical overground walking velocity. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Arm swing as a potential new prodromal marker of Parkinson's disease.
Mirelman, Anat; Bernad-Elazari, Hagar; Thaler, Avner; Giladi-Yacobi, Eytan; Gurevich, Tanya; Gana-Weisz, Mali; Saunders-Pullman, Rachel; Raymond, Deborah; Doan, Nancy; Bressman, Susan B; Marder, Karen S; Alcalay, Roy N; Rao, Ashwini K; Berg, Daniela; Brockmann, Kathrin; Aasly, Jan; Waro, Bjørg Johanne; Tolosa, Eduardo; Vilas, Dolores; Pont-Sunyer, Claustre; Orr-Urtreger, Avi; Hausdorff, Jeffrey M; Giladi, Nir
2016-10-01
Reduced arm swing is a well-known clinical feature of Parkinson's disease (PD), often observed early in the course of the disease. We hypothesized that subtle changes in arm swing and axial rotation may also be detectable in the prodromal phase. The purpose of this study was to evaluate the relationship between the LRRK2-G2019S mutation, arm swing, and axial rotation in healthy nonmanifesting carriers and noncarriers of the G2019S mutation and in patients with PD. A total of 380 participants (186 healthy nonmanifesting controls and 194 PD patients) from 6 clinical sites underwent gait analysis while wearing synchronized 3-axis body-fixed sensors on the lower back and bilateral wrists. Participants walked for 1 minute under the following 2 conditions: (1) usual walking and (2) dual-task walking. Arm swing amplitudes, asymmetry, variability, and smoothness were calculated for both arms along with measures of axial rotation. A total of 122 nonmanifesting participants and 67 PD patients were carriers of the G2019S mutation. Nonmanifesting mutation carriers walked with greater arm swing asymmetry and variability and lower axial rotation smoothness under the dual task condition when compared with noncarriers (P < .04). In the nonmanifesting mutation carriers, arm swing asymmetry was associated with gait variability under dual task (P = .003). PD carriers showed greater asymmetry and variability of movement than PD noncarriers, even after controlling for disease severity (P < .009). The G2019S mutation is associated with increased asymmetry and variability among nonmanifesting participants and patients with PD. Prospective studies should determine if arm swing asymmetry and axial rotation smoothness may be used as motor markers of prodromal PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Body Acceleration as Indicator for Walking Economy in an Ageing Population.
Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R
2015-01-01
In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, p<0.01) and regularity along the frontal (anteroposterior) and lateral (mediolateral) axes (r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively). Together, the three variables explained 46% of the inter-subject variance (p<0.001) with a standard error of estimate of 0.30 J/m/kg. WCostmin and regularity along the frontal and lateral axes were related to age (WCostmin: r2 = 0.44, p<0.001; regularity: r2 = 0.16, p<0.05 and r2 = 0.12, p<0.05 respectively frontal and lateral). The age associated decline in walking economy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.
Environmental supports for walking/biking and traffic safety: income and ethnicity disparities.
Yu, Chia-Yuan
2014-10-01
The present study investigates the influence of income, ethnicity, and built environmental characteristics on the percentages of workers who walk/bike as well as on pedestrian/cyclist crash rates. Furthermore, income and ethnicity disparities are also explored. This study chose 162 census tracts in Austin as the unit of analysis. To explore income and ethnicity differences in built environments, this study examined the associations of the poverty rate, the percentage of white population, and the percentage of Hispanic population to each built environmental variable. Path models were applied to examine environmental supports of walking/biking and pedestrian/cyclist safety. Areas with high poverty rates had more biking trips and experienced more cyclist crashes, while areas with a high percentage of white population generated more walking trips and fewer pedestrian crashes. Sidewalk completeness and mixed land uses promoted walking to work but increased the crash risk for pedestrians as well. In terms of biking behaviors, road density and transit stop density both increased biking trips and cyclist crashes. Environmental designs that both encourage walking/biking trips and generate more safety threats should attract more attention from policy makers. Policies should also be more devoted to enhancing the mobility and health for areas with high poverty rates. Copyright © 2014 Elsevier Inc. All rights reserved.
CAN STABILITY REALLY PREDICT AN IMPENDING SLIP-RELATED FALL AMONG OLDER ADULTS?
Yang, Feng; Pai, Yi-Chung
2015-01-01
The primary purpose of this study was to systematically evaluate and compare the predictive power of falls for a battery of stability indices, obtained during normal walking among community-dwelling older adults. One hundred and eighty seven community-dwelling older adults participated in the study. After walking regularly for 20 strides on a walkway, participants were subjected to an unannounced slip during gait under the protection of a safety harness. Full body kinematics and kinetics were monitored during walking using a motion capture system synchronized with force plates. Stability variables, including feasible-stability-region measurement, margin of stability, the maximum Floquet multiplier, the Lyapunov exponents (short- and long-term), and the variability of gait parameters (including the step length, step width, and step time) were calculated for each subject. Accuracy of predicting slip outcome (fall vs. recovery) was examined for each stability variable using logistic regression. Results showed that the feasible-stability-region measurement predicted fall incidence among these subjects with the highest accuracy (68.4%). Except for the step width (with an accuracy of 60.2%), no other stability variables could differentiate fallers from those who did not fall for the sample studied in this study. The findings from the present study could provide guidance to identify individuals at increased risk of falling using the feasible-stability-region measurement or variability of the step width. PMID:25458148
Effects of dual task on turning ability in stroke survivors and older adults.
Hollands, K L; Agnihotri, D; Tyson, S F
2014-09-01
Turning is an integral component of independent mobility in which stroke survivors frequently fall. This study sought to measure the effects of competing cognitive demands on the stepping patterns of stroke survivors, compared to healthy age-match adults, during turning as a putative mechanism for falls. Walking and turning (90°) was assessed under single (walking and turning alone) and dual task (subtracting serial 3s while walking and turning) conditions using an electronic, pressure-sensitive walkway. Dependent measures were time to turn, variability in time to turn, step length, step width and single support time during three steps of the turn. Turning ability in single and dual task conditions was compared between stroke survivors (n=17, mean ± SD: 59 ± 113 months post-stroke, 64 ± 10 years of age) and age-matched healthy counterparts (n=15). Both groups took longer, were more variable, tended to widen the second step and, crucially, increased single support time on the inside leg of the turn while turning and distracted. Increased single support time during turning may represent biomechanical mechanism, within stepping patterns of turning under distraction, for increased risk of falls for both stroke survivors and older adults. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Yelnik, A P; Tasseel Ponche, S; Andriantsifanetra, C; Provost, C; Calvalido, A; Rougier, P
2015-12-01
The Romberg test, with the subject standing and with eyes closed, gives diagnostic arguments for a proprioceptive disorder. Closing the eyes is also used in balance rehabilitation as a main way to stimulate neural plasticity with proprioceptive, vestibular and even cerebellar disorders. Nevertheless, standing and walking with eyes closed or with eyes open in the dark are certainly 2 different tasks. We aimed to compare walking with eyes open, closed and wearing black or white goggles in healthy subjects. A total of 50 healthy participants were randomly divided into 2 protocols and asked to walk on a 5-m pressure-sensitive mat, under 3 conditions: (1) eyes open (EO), eyes closed (EC) and eyes open with black goggles (BG) and (2) EO, EO with BG and with white goggles (WG). Gait was described by velocity (m·s(-1)), double support (% gait cycle), gait variability index (GVI/100) and exit from the mat (%). Analysis involved repeated measures Anova, Holm-Sidak's multiple comparisons test for parametric parameters (GVI) and Dunn's multiple comparisons test for non-parametric parameters. As compared with walking with EC, walking with BG produced lower median velocity, by 6% (EO 1.26; BG 1.01 vs EC 1.07 m·s(-1), P=0.0328), and lower mean GVI, by 8% (EO 91.8; BG 66.8 vs EC 72.24, P=0.009). Parameters did not differ between walking under the BG and WG conditions. The goggle task increases the difficulty in walking with visual deprivation compared to the Romberg task, so the goggle task can be proposed to gradually increase the difficulty in walking with visual deprivation (from eyes closed to eyes open in black goggles). Copyright © 2015 Elsevier Masson SAS. All rights reserved.
2014-01-01
Background Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. Methods 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. Results There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p < .001). Season did not significantly predict intention or objective walking behaviour, or moderate the effects of TPB variables on intention or behaviour. Conclusion Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of seasonality effects by selecting the most extreme summer and winter months to assess PA. In addition, participants recruited to behaviour change interventions might have higher levels of motivation to change and are less affected by seasonal barriers. Trial registration Current Controlled Trials ISRCTN95932902 PMID:24499405
Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers.
Zhang, Songning; Clowers, Kurt G; Powell, Douglas
2006-12-01
Short-leg walking boots offer several advantages over traditional casts. However, their effects on ground reaction forces (GRF) and three-dimensional (3D) biomechanics are not fully understood. The purpose of the study was to examine 3D lower extremity kinematics and joint dynamics during walking in two different short-leg walking boots. Eleven (five females and six males) healthy subjects performed five level walking trials in each of three conditions: two testing boot conditions, Gait Walker (DeRoyal Industries, Inc.) and Equalizer (Royce Medical Co.), and one pair of laboratory shoes (Noveto, Adidas). A force platform and a 6-camera Vicon motion analysis system were used to collect GRFs and 3D kinematic data during the testing session. A one-way repeated measures analysis of variance (ANOVA) was used to evaluate selected kinematic, GRF, and joint kinetic variables (p<0.05). The results revealed that both short-leg walking boots were effective in minimizing ankle eversion and hip adduction. Neither walker increased the bimodal vertical GRF peaks typically observed in normal walking. However, they did impose a small initial peak (<1BW) earlier in the stance phase. The Gait Walker also exhibited a slightly increased vertical GRF during midstance. These characteristics may be related to the sole materials/design, the restriction of ankle movements, and/or the elevated heel heights of the tested walkers. Both walkers appeared to increase the demand on the knee extensors while they decreased the demand of the knee and hip abductors based on the joint kinetic results.
Troped, Philip J; Tamura, Kosuke; McDonough, Meghan H; Starnes, Heather A; James, Peter; Ben-Joseph, Eran; Cromley, Ellen; Puett, Robin; Melly, Steven J; Laden, Francine
2017-04-01
The built environment predicts walking in older adults, but the degree to which associations between the objective built environment and walking for different purposes are mediated by environmental perceptions is unknown. We examined associations between the neighborhood built environment and leisure and utilitarian walking and mediation by the perceived environment among older women. Women (N = 2732, M age = 72.8 ± 6.8 years) from Massachusetts, Pennsylvania, and California completed a neighborhood built environment and walking survey. Objective population and intersection density and density of stores and services variables were created within residential buffers. Perceived built environment variables included measures of land use mix, street connectivity, infrastructure for walking, esthetics, traffic safety, and personal safety. Regression and bootstrapping were used to test associations and indirect effects. Objective population, stores/services, and intersection density indirectly predicted leisure and utilitarian walking via perceived land use mix (odds ratios (ORs) = 1.01-1.08, 95 % bias corrected and accelerated confidence intervals do not include 1). Objective density of stores/services directly predicted ≥150 min utilitarian walking (OR = 1.11; 95% CI = 1.02, 1.22). Perceived land use mix (ORs = 1.16-1.44) and esthetics (ORs = 1.24-1.61) significantly predicted leisure and utilitarian walking, CONCLUSIONS: Perceived built environment mediated associations between objective built environment variables and walking for leisure and utilitarian purposes. Interventions for older adults should take into account how objective built environment characteristics may influence environmental perceptions and walking.
Factors associated with fear of falling in people with Parkinson’s disease
2014-01-01
Background This study aimed to comprehensibly investigate potential contributing factors to fear of falling (FOF) among people with idiopathic Parkinson’s disease (PD). Methods The study included 104 people with PD. Mean (SD) age and PD-duration were 68 (9.4) and 5 (4.2) years, respectively, and the participants’ PD-symptoms were relatively mild. FOF (the dependent variable) was investigated with the Swedish version of the Falls Efficacy Scale, i.e. FES(S). The first multiple linear regression model replicated a previous study and independent variables targeted: walking difficulties in daily life; freezing of gait; dyskinesia; fatigue; need of help in daily activities; age; PD-duration; history of falls/near falls and pain. Model II included also the following clinically assessed variables: motor symptoms, cognitive functions, gait speed, dual-task difficulties and functional balance performance as well as reactive postural responses. Results Both regression models showed that the strongest contributing factor to FOF was walking difficulties, i.e. explaining 60% and 64% of the variance in FOF-scores, respectively. Other significant independent variables in both models were needing help from others in daily activities and fatigue. Functional balance was the only clinical variable contributing additional significant information to model I, increasing the explained variance from 66% to 73%. Conclusions The results imply that one should primarily target walking difficulties in daily life in order to reduce FOF in people mildly affected by PD. This finding applies even when considering a broad variety of aspects not previously considered in PD-studies targeting FOF. Functional balance performance, dependence in daily activities, and fatigue were also independently associated with FOF, but to a lesser extent. Longitudinal studies are warranted to gain an increased understanding of predictors of FOF in PD and who is at risk of developing a FOF. PMID:24456482
Michael, Yvonne L; Carlson, Nichole E
2009-07-30
Using data from the SHAPE trial, a randomized 6-month neighborhood-based intervention designed to increase walking activity among older adults, this study identified and analyzed social-ecological factors mediating and moderating changes in walking activity. Three potential mediators (social cohesion, walking efficacy, and perception of neighborhood problems) and minutes of brisk walking were assessed at baseline, 3-months, and 6-months. One moderator, neighborhood walkability, was assessed using an administrative GIS database. The mediating effect of change in process variables on change in brisk walking was tested using a product-of-coefficients test, and we evaluated the moderating effect of neighborhood walkability on change in brisk walking by testing the significance of the interaction between walkability and intervention status. Only one of the hypothesized mediators, walking efficacy, explained the intervention effect (product of the coefficients (95% CI) = 8.72 (2.53, 15.56). Contrary to hypotheses, perceived neighborhood problems appeared to suppress the intervention effects (product of the coefficients (95% CI = -2.48, -5.6, -0.22). Neighborhood walkability did not moderate the intervention effect. Walking efficacy may be an important mediator of lay-lead walking interventions for sedentary older adults. Social-ecologic theory-based analyses can support clinical interventions to elucidate the mediators and moderators responsible for producing intervention effects.
Neuromuscular activation patterns during treadmill walking after space flight
NASA Technical Reports Server (NTRS)
Layne, C. S.; McDonald, P. V.; Bloomberg, J. J.
1997-01-01
Astronauts adopt a variety of neuromuscular control strategies during space flight that are appropriate for locomoting in that unique environment, but are less than optimal upon return to Earth. We report here the first systematic investigation of potential adaptations in neuromuscular activity patterns associated with postflight locomotion. Astronaut-subjects were tasked with walking on a treadmill at 6.4 km/h while fixating a visual target 30 cm away from their eyes after space flights of 8-15 days. Surface electromyography was collected from selected lower limb muscles and normalized with regard to mean amplitude and temporal relation to heel strike. In general, high correlations (more than 0.80) were found between preflight and postflight activation waveforms for each muscle and each subject: however relative activation amplitude around heel strike and toe off was changed as a result of flight. The level of muscle cocontraction and activation variability, and the relationship between the phasic characteristics of the ankle musculature in preparation for toe off also were altered by space flight. Subjects also reported oscillopsia during treadmill walking after flight. These findings indicate that, after space flight, the sensory-motor system can generate neuromuscular-activation strategies that permit treadmill walking, but subtle changes in lower-limb neuromuscular activation are present that may contribute to increased lower limb kinematic variability and oscillopsia also present during postflight walking.
Yogev-Seligmann, Galit; Giladi, Nir; Brozgol, Marina; Hausdorff, Jeffrey M
2012-01-01
Impairments in the ability to perform another task while walking (ie, dual tasking [DT]) are associated with an increased risk of falling. Here we describe a program we developed specifically to improve DT performance while walking based on motor learning principles and task-specific training. We examined feasibility, potential efficacy, retention, and transfer to the performance of untrained tasks in a pilot study among 7 patients with Parkinson's disease (PD). Seven patients (Hoehn and Yahr stage, 2.1±0.2) were evaluated before, after, and 1 month after 4 weeks of DT training. Gait speed and gait variability were measured during usual walking and during 4 DT conditions. The 4-week program of one-on-one training included walking while performing several distinct cognitive tasks. Gait speed and gait variability during DT significantly improved. Improvements were also seen in the DT conditions that were not specifically trained and were retained 1 month after training. These initial findings support the feasibility of applying a task-specific DT gait training program for patients with PD and suggest that it positively affects DT gait, even in untrained tasks. The present results are also consistent with the possibility that DT gait training enhances divided attention abilities during walking. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Validation of the Hexoskin wearable vest during lying, sitting, standing, and walking activities.
Villar, Rodrigo; Beltrame, Thomas; Hughson, Richard L
2015-10-01
We tested the validity of the Hexoskin wearable vest to monitor heart rate (HR), breathing rate (BR), tidal volume (VT), minute ventilation, and hip motion intensity (HMI) in comparison with laboratory standard devices during lying, sitting, standing, and walking. Twenty healthy young volunteers participated in this study. First, participants walked 6 min on a treadmill at speeds of 1, 3, and 4.5 km/h followed by increasing treadmill grades until 80% of their predicted maximal heart rate. Second, lying, sitting, and standing tasks were performed (5 min each) followed by 6 min of treadmill walking at 80% of their ventilatory threshold. Analysis of each individual's mean values under each resting or exercise condition by the 2 measurement systems revealed low coefficient of variation and high intraclass correlation values for HR, BR, and HMI. The Bland-Altman results from HR, BR, and HMI indicated no deviation of the mean value from zero and relatively small variability about the mean. VT and minute ventilation were provided in arbitrary units by the Hexoskin device; however, relative magnitude of change from Hexoskin closely tracked the laboratory standard method. Hexoskin presented low variability, good agreement, and consistency. The Hexoskin wearable vest was a valid and consistent tool to monitor activities typical of daily living such as different body positions (lying, sitting, and standing) and various walking speeds.
Mastoid vibration affects dynamic postural control during gait in healthy older adults
NASA Astrophysics Data System (ADS)
Chien, Jung Hung; Mukherjee, Mukul; Kent, Jenny; Stergiou, Nicholas
2017-01-01
Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration.
Impact of motor fluctuations on real-life gait in Parkinson's patients.
Silva de Lima, Ana Lígia; Evers, Luc J W; Hahn, Tim; de Vries, Nienke M; Daeschler, Margaret; Boroojerdi, Babak; Terricabras, Dolors; Little, Max A; Bloem, Bastiaan R; Faber, Marjan J
2018-05-01
People with PD (PWP) have an increased risk of becoming inactive. Wearable sensors can provide insights into daily physical activity and walking patterns. (1) Is the severity of motor fluctuations associated with sensor-derived average daily walking quantity? (2) Is the severity of motor fluctuations associated with the amount of change in sensor-derived walking quantity after levodopa intake? 304 Dutch PWP from the Parkinson@Home study were included. At baseline, all participants received a clinical examination. During the follow-up period (median: 97 days; 25-Interquartile range-IQR: 91 days, 75-IQR: 188 days), participants used the Fox Wearable Companion app and streamed smartwatch accelerometer data to a cloud platform. The first research question was assessed by linear regression on the sensor-derived mean time spent walking/day with the severity of fluctuations (MDS-UPDRS item 4.4) as independent variable, controlled for age and MDS-UPDRS part-III score. The second research question was assessed by linear regression on the sensor-derived mean post-levodopa walking quantity, with the sensor-derived mean pre-levodopa walking quantity and severity of fluctuations as independent variables, controlled for mean time spent walking per day, age and MDS-UPDRS part-III score. PWP spent most time walking between 8am and 1pm, summing up to 72 ± 39 (mean ± standard deviation) minutes of walking/day. The severity of motor fluctuations did not influence the mean time spent walking (B = 2.4 ± 1.9, p = 0.20), but higher age (B = -1.3 ± 0.3, p = < 0.001) and greater severity of motor symptoms (B = -0.6 ± 0.2, p < 0.001) was associated with less time spent walking (F(3216) = 14.6, p < .001, R 2 = .17). The severity of fluctuations was not associated with the amount of change in time spent walking in relation to levodopa intake in any part of the day. Analysis of sensor-derived gait quantity suggests that the severity of motor fluctuations is not associated with changes in real-life walking patterns in mildly to moderate affected PWP. Copyright © 2018 Elsevier B.V. All rights reserved.
Hazuda, Helen P.
2015-01-01
Background Mexican Americans comprise the most rapidly growing segment of the older US population and are reported to have poorer functional health than European Americans, but few studies have examined factors contributing to ethnic differences in walking speed between Mexican Americans and European Americans. Objective The purpose of this study was to examine factors that contribute to walking speed and observed ethnic differences in walking speed in older Mexican Americans and European Americans using the disablement process model (DPM) as a guide. Design This was an observational, cross-sectional study. Methods Participants were 703 Mexican American and European American older adults (aged 65 years and older) who completed the baseline examination of the San Antonio Longitudinal Study of Aging (SALSA). Hierarchical regression models were performed to identify the contribution of contextual, lifestyle/anthropometric, disease, and impairment variables to walking speed and to ethnic differences in walking speed. Results The ethic difference in unadjusted mean walking speed (Mexican Americans=1.17 m/s, European Americans=1.29 m/s) was fully explained by adjustment for contextual (ie, age, sex, education, income) and lifestyle/anthropometric (ie, body mass index, height, physical activity) variables; adjusted mean walking speed in both ethnic groups was 1.23 m/s. Contextual variables explained 20.3% of the variance in walking speed, and lifestyle/anthropometric variables explained an additional 8.4%. Diseases (ie, diabetes, stroke, chronic obstructive pulmonary disease) explained an additional 1.9% of the variance in walking speed; impairments (ie, FEV1, upper leg pain, and lower extremity strength and range of motion) contributed an additional 5.5%. Thus, both nonmodifiable (ie, contextual, height) and modifiable (ie, impairments, body mass index, physical activity) factors contributed to walking speed in older Mexican Americans and European Americans. Limitations The study was conducted in a single geographic area and included only Mexican American Hispanic individuals. Conclusions Walking speed in older Mexican Americans and European Americans is influenced by modifiable and nonmodifiable factors, underscoring the importance of the DPM framework, which incorporates both factors into the physical therapist patient/client management process. PMID:25592187
The CHOICE study: a "taste-test" of utilitarian vs. leisure walking among older adults.
Hekler, Eric B; Castro, Cynthia M; Buman, Matthew P; King, Abby C
2012-01-01
Utilitarian walking (e.g., walking for transport) and leisure walking (e.g., walking for health/recreation) are encouraged to promote health, yet few studies have explored specific preferences for these two forms of physical activity or factors that impact such preferences. A quasi-experimental crossover design was used to evaluate how training underactive midlife and older adults in each type of walking impacted total steps taken and how it was linked to their subsequent choice of walking types. Participants (N = 16) were midlife and older adults (M age = 64 ± 8 years) who were mostly women (81%) and white (75%). To control for order effects, participants were randomized to instruction in either utilitarian or leisure walking for 2 weeks and then the other type for 2 weeks. Participants then entered a 2-week "free choice" phase in which they chose any mixture of the walking types. Outcome variables included walking via OMRON pedometer and the ratio of utilitarian versus leisure walking during the free-choice phase. Participants completed surveys about their neighborhood (NEWS) and daily travel to multiple locations. Instruction in leisure-only, utilitarian-only, and a freely chosen mixture of the two each resulted in significant increases in steps taken relative to baseline (ps < 0.05). Having to go to multiple locations daily and traveling greater distances to locations were associated with engagement in more utilitarian walking. In contrast, good walking paths, neighborhood aesthetics, easy access to exercise facilities, and perceiving easier access to neighborhood services were associated with more leisure walking. Results from this pilot study suggest that midlife and older adults may most easily meet guidelines through either leisure only or a mixture of leisure and utilitarian walking, and tailored suggestions based on the person's neighborhood may be useful.
Hsiao, HaoYuan; Zabielski, Thomas M; Palmer, Jacqueline A; Higginson, Jill S; Binder-Macleod, Stuart A
2016-12-08
Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session. Participants (N=43) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill. Propulsive impulse, peak propulsive force, and mean propulsive value (propulsive impulse divided by duration) were analyzed. In addition, each participant׳s cadence was calculated. Pearson correlation coefficients were used to determine the relationships between different measurements of propulsion versus walking speed as well as changes in propulsion versus changes in walking speed. Stepwise linear regression was used to determine which measurement of propulsion best predicted walking speed and changes in walking speed. The results showed that all 3 measurements of propulsion were correlated to walking speed, with peak propulsive force showed the strongest correlation. Similarly, when participants increased their walking speeds, changes in peak propulsive forces showed the strongest correlation to changes in walking speed. In addition, multiplying each measurement by cadence improved the correlations. The present study suggests that measuring peak propulsive force and cadence may be most appropriate of the variables studied to characterize propulsion in individuals poststroke. Copyright © 2016 Elsevier Ltd. All rights reserved.
Krasovsky, Tal; Weiss, Patrice L; Kizony, Rachel
2018-04-06
Texting while walking (TeWW) has become common among people of all ages, and mobile phone use during gait is increasingly associated with pedestrian injury. Although dual-task walking performance is known to decline with age, data regarding the effect of age on dual-task performance in ecological settings are limited. The objective of this study was to evaluate the effect of age, environment (indoors/outdoors), and mixed reality (merging of real and virtual environments) on TeWW performance. A cross-sectional design was used. Young (N = 30; 27.8 ± 4.4 years) and older (N = 20; 68.9 ± 3.9 years) adults performed single and dual-task texting and walking indoors and outdoors, with and without a mixed reality display. Participants also completed evaluations of visual scanning and cognitive flexibility (Trail Making Test) and functional mobility (Timed Up and Go). Indoors, similar interference to walking and texting occurred for both groups, but only older adults' gait variability increased under dual task conditions. Outdoors, TeWW was associated with larger age-related differences in gait variability, texting accuracy, and gait dual-task costs. Young adults with better visual scanning and cognitive flexibility performed TeWW with lower gait costs (r = 0.52 to r = 0.65). The mixed reality display was unhelpful and did not modify walking or texting. Older adults tested in this study were relatively high-functioning. Gaze of participants was not directly monitored. Although young and older adults possess the resources necessary for TeWW, older adults pay an additional "price" when dual-tasking, especially outdoors. TeWW may have potential as an ecologically-valid assessment and/or an intervention paradigm for dual task performance among older adults as well as for clinical populations.
Gaze shifts during dual-tasking stair descent.
Miyasike-daSilva, Veronica; McIlroy, William E
2016-11-01
To investigate the role of vision in stair locomotion, young adults descended a seven-step staircase during unrestricted walking (CONTROL), and while performing a concurrent visual reaction time (RT) task displayed on a monitor. The monitor was located at either 3.5 m (HIGH) or 0.5 m (LOW) above ground level at the end of the stairway, which either restricted (HIGH) or facilitated (LOW) the view of the stairs in the lower field of view as participants walked downstairs. Downward gaze shifts (recorded with an eye tracker) and gait speed were significantly reduced in HIGH and LOW compared with CONTROL. Gaze and locomotor behaviour were not different between HIGH and LOW. However, inter-individual variability increased in HIGH, in which participants combined different response characteristics including slower walking, handrail use, downward gaze, and/or increasing RTs. The fastest RTs occurred in the midsteps (non-transition steps). While gait and visual task performance were not statistically different prior to the top and bottom transition steps, gaze behaviour and RT were more variable prior to transition steps in HIGH. This study demonstrated that, in the presence of a visual task, people do not look down as often when walking downstairs and require minimum adjustments provided that the view of the stairs is available in the lower field of view. The middle of the stairs seems to require less from executive function, whereas visual attention appears a requirement to detect the last transition via gaze shifts or peripheral vision.
Changes in step-width during dual-task walking predicts falls.
Nordin, E; Moe-Nilssen, R; Ramnemark, A; Lundin-Olsson, L
2010-05-01
The aim was to evaluate whether gait pattern changes between single- and dual-task conditions were associated with risk of falling in older people. Dual-task cost (DTC) of 230 community living, physically independent people, 75 years or older, was determined with an electronic walkway. Participants were followed up each month for 1 year to record falls. Mean and variability measures of gait characteristics for 5 dual-task conditions were compared to single-task walking for each participant. Almost half (48%) of the participants fell at least once during follow-up. Risk of falling increased in individuals where DTC for performing a subtraction task demonstrated change in mean step-width compared to single-task walking. Risk of falling decreased in individuals where DTC for carrying a cup and saucer demonstrated change compared to single-task walking in mean step-width, mean step-time, and step-length variability. Degree of change in gait characteristics related to a change in risk of falling differed between measures. Prognostic guidance for fall risk was found for the above DTCs in mean step-width with a negative likelihood ratio of 0.5 and a positive likelihood ratio of 2.3, respectively. Findings suggest that changes in step-width, step-time, and step-length with dual tasking may be related to future risk of falling. Depending on the nature of the second task, DTC may indicate either an increased risk of falling, or a protective strategy to avoid falling. Copyright 2010. Published by Elsevier B.V.
Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease.
Loffredo, Lorenzo; Perri, Ludovica; Catasca, Elisa; Pignatelli, Pasquale; Brancorsini, Monica; Nocella, Cristina; De Falco, Elena; Bartimoccia, Simona; Frati, Giacomo; Carnevale, Roberto; Violi, Francesco
2014-07-02
NOX-2, the catalytic subunit of NADPH oxidase, has a key role in the formation of reactive oxidant species and is implicated in impairing flow-mediated dilation (FMD). Dark chocolate exerts artery dilatation via down-regulating NOX2-mediated oxidative stress. The aim of this study was to investigate whether dark chocolate improves walking autonomy in peripheral artery disease (PAD) patients via an oxidative stress-mediated mechanism. FMD, serum levels of isoprostanes, nitrite/nitrate (NOx) and sNOX2-dp, a marker of blood NOX2 activity, maximal walking distance (MWD) and maximal walking time (MWT) were studied in 20 PAD patients (14 males and 6 females, mean age: 69±9 years) randomly allocated to 40 g of dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa) in a single blind, cross-over design. The above variables were assessed at baseline and 2 hours after chocolate ingestion. Dark chocolate intake significantly increased MWD (+11%; P<0.001), MWT (+15%; P<0.001), serum NOx (+57%; P<0.001) and decreased serum isoprostanes (-23%; P=0.01) and sNOX2-dp (-37%; P<0.001); no changes of the above variables were observed after milk chocolate intake. Serum epicatechin and its methylated metabolite significantly increased only after dark chocolate ingestion. Multiple linear regression analysis showed that Δ of MWD was independently associated with Δ of MWT (P<0.001) and Δ of NOx (P=0.018). In vitro study demonstrated that HUVEC incubated with a mixture of polyphenols significantly increased nitric oxide (P<0.001) and decreased E-selectin (P<0.001) and VCAM1 (P<0.001). In PAD patients dark but not milk chocolate acutely improves walking autonomy with a mechanism possibly related to an oxidative stress-mediated mechanism involving NOX2 regulation. http://www.clinicaltrials.gov. Unique identifier: NCT01947712. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Dark Chocolate Acutely Improves Walking Autonomy in Patients With Peripheral Artery Disease
Loffredo, Lorenzo; Perri, Ludovica; Catasca, Elisa; Pignatelli, Pasquale; Brancorsini, Monica; Nocella, Cristina; De Falco, Elena; Bartimoccia, Simona; Frati, Giacomo; Carnevale, Roberto; Violi, Francesco
2014-01-01
Background NOX‐2, the catalytic subunit of NADPH oxidase, has a key role in the formation of reactive oxidant species and is implicated in impairing flow‐mediated dilation (FMD). Dark chocolate exerts artery dilatation via down‐regulating NOX2‐mediated oxidative stress. The aim of this study was to investigate whether dark chocolate improves walking autonomy in peripheral artery disease (PAD) patients via an oxidative stress‐mediated mechanism. Methods and Results FMD, serum levels of isoprostanes, nitrite/nitrate (NOx) and sNOX2‐dp, a marker of blood NOX2 activity, maximal walking distance (MWD) and maximal walking time (MWT) were studied in 20 PAD patients (14 males and 6 females, mean age: 69±9 years) randomly allocated to 40 g of dark chocolate (>85% cocoa) or 40 g of milk chocolate (≤35% cocoa) in a single blind, cross‐over design. The above variables were assessed at baseline and 2 hours after chocolate ingestion. Dark chocolate intake significantly increased MWD (+11%; P<0.001), MWT (+15%; P<0.001), serum NOx (+57%; P<0.001) and decreased serum isoprostanes (−23%; P=0.01) and sNOX2‐dp (−37%; P<0.001); no changes of the above variables were observed after milk chocolate intake. Serum epicatechin and its methylated metabolite significantly increased only after dark chocolate ingestion. Multiple linear regression analysis showed that Δ of MWD was independently associated with Δ of MWT (P<0.001) and Δ of NOx (P=0.018). In vitro study demonstrated that HUVEC incubated with a mixture of polyphenols significantly increased nitric oxide (P<0.001) and decreased E‐selectin (P<0.001) and VCAM1 (P<0.001). Conclusion In PAD patients dark but not milk chocolate acutely improves walking autonomy with a mechanism possibly related to an oxidative stress‐mediated mechanism involving NOX2 regulation. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01947712. PMID:24990275
The Reliability and Validity of Measures of Gait Variability in Community-Dwelling Older Adults
Brach, Jennifer S.; Perera, Subashan; Studenski, Stephanie; Newman, Anne B.
2009-01-01
Objective To examine the test-retest reliability and concurrent validity of variability of gait characteristics. Design Cross-sectional study. Setting Research laboratory. Participants Older adults (N=558) from the Cardiovascular Health Study. Interventions Not applicable. Main Outcome Measures Gait characteristics were measured using a 4-m computerized walkway. SD determined from the steps recorded were used as the measures of variability. Intraclass correlation coefficients (ICC) were calculated to examine test-retest reliability of a 4-m walk and two 4-m walks. To establish concurrent validity, the measures of gait variability were compared across levels of health, functional status, and physical activity using independent t tests and analysis of variances. Results Gait variability measures from the two 4-m walks demonstrated greater test-retest reliability than those from the single 4-m walk (ICC=.22–.48 and ICC=.40–.63, respectively). Greater step length and stance time variability were associated with poorer health, functional status and physical activity (P<.05). Conclusions Gait variability calculated from a limited number of steps has fair to good test-retest reliability and concurrent validity. Reliability of gait variability calculated from a greater number of steps should be assessed to determine if the consistency can be improved. PMID:19061741
Effect of footwear on the external knee adduction moment - A systematic review.
Radzimski, Andy Oliver; Mündermann, Annegret; Sole, Gisela
2012-06-01
Footwear modifications have been investigated as conservative interventions to decrease peak external knee adduction moment (EKAM) and pain associated with knee osteoarthritis (OA). To evaluate the literature on the effect of different footwear and orthotics on the peak EKAM during walking and/or running. A systematic search of databases resulted in 348 articles of which 33 studies were included. Seventeen studies included healthy individuals and 19 studies included subjects with medial knee OA. Quality assessment (modified Downs and Black quality index) showed an (average±SD) of 73.1±10.1%. The most commonly used orthotic was the lateral wedge, with three studies on the medial wedge. Lateral wedging was associated with decreased peak EKAM in healthy participants and participants with medial knee OA while there is evidence for increased peak EKAM with the use of medial wedges. Modern footwear (subjects' own shoe, "stability" and "mobility" shoes, clogs) were likely to increase the EKAM compared to barefoot walking in individuals with medial knee OA. Walking in innovative shoes ("variable stiffness") decreased the EKAM compared to control shoes. Similarly, shoes with higher heels, sneakers and dress shoes increased EKAM in healthy individuals compared to barefoot walking. Further development may be needed toward optimal footwear for patients with medial knee OA with the aim of obtaining similar knee moments to barefoot walking. Copyright © 2011 Elsevier B.V. All rights reserved.
Kwakkel, Gert; Wagenaar, Robert C
2002-05-01
The effects of different durations of rehabilitation sessions for the upper extremities (UEs) and lower extremities (LEs) on the recovery of interlimb coordination in hemiplegic gait in patients who have had a stroke were investigated. Fifty-three subjects who had strokes involving their middle cerebral arteries were assigned to rehabilitation programs with (1) an emphasis on the LEs, (2) an emphasis on the paretic UE, or (3) a condition in which the paretic arm (UE) and leg (LE) were immobilized with an inflatable pressure splint (control treatment). The 3 treatment regimens were applied for 30 minutes, 5 days a week, during the first 20 weeks after onset of stroke. All subjects also participated in a rehabilitation program 5 days a week that consisted of 15 minutes of UE exercises and 15 minutes of LE exercises in addition to a weekly 11/2-hour session of training in activities of daily living. A repeated-measures design was used. Differences among the 3 treatment regimens were evaluated in terms of comfortable and maximal walking speeds. In addition, mean continuous relative phase (CRP) between paretic arm and leg (PAL) movements and nonparetic arm and leg (NAL) movements and standard deviations of CRP of both limb pairs as a measurement of stability (variability) were evaluated. Comfortable walking speed improved in the group that received interventions involving the LEs compared with the group that received interventions involving the UEs and the group that received the control treatment. No differences among the 3 treatment conditions were found for the mean CRP of NAL and PAL as well as the standard deviation of CRP of both limb pairs. With the exception of an improved comfortable walking speed as a result of a longer duration of rehabilitation sessions, no differential effects of duration of rehabilitation sessions for the LEs and UEs on the variable we measured related to hemiplegic gait were found. Increasing walking speed, however, resulted in a larger mean CRP for both limb pairs, with increased stability and asymmetry of walking, indicating that walking speed influences interlimb coordination in hemiplegic gait.
Smith, Victoria Mj; Varsanik, Jonathan S; Walker, Rachel A; Russo, Andrew W; Patel, Kevin R; Gabel, Wendy; Phillips, Glenn A; Kimmel, Zebadiah M; Klawiter, Eric C
2018-01-01
Gait disturbance is a major contributor to clinical disability in multiple sclerosis (MS). A sensor was developed to assess walking speed at home for people with MS using infrared technology in real-time without the use of wearables. To develop continuous in-home outcome measures to assess gait in adults with MS. Movement measurements were collected continuously for 8 months from six people with MS. Average walking speed and peak walking speed were calculated from movement data, then analyzed for variability over time, by room (location), and over the course of the day. In-home continuous gait outcomes and variability were correlated with standard in-clinic gait outcomes. Measured in-home average walking speed of participants ranged from 0.33 m/s to 0.96 m/s and peak walking speed ranged from 0.89 m/s to 1.51 m/s. Mean total within-participant coefficient of variation for daily average walking speed and peak walking speed were 10.75% and 10.93%, respectively. Average walking speed demonstrated a moderately strong correlation with baseline Timed 25-Foot Walk (r s = 0.714, P = 0.111). New non-wearable technology provides reliable and continuous in-home assessment of walking speed.
Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel
2010-03-15
Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.
Froehle, Andrew W; Nahhas, Ramzi W; Sherwood, Richard J; Duren, Dana L
2013-05-01
Walking gait is generally held to reach maturity, including walking at adult-like velocities, by 7-8 years of age. Lower limb length, however, is a major determinant of gait, and continues to increase until 13-15 years of age. This study used a sample from the Fels Longitudinal Study (ages 8-30 years) to test the hypothesis that walking with adult-like velocity on immature lower limbs results in the retention of immature gait characteristics during late childhood and early adolescence. There was no relationship between walking velocity and age in this sample, whereas the lower limb continued to grow, reaching maturity at 13.2 years in females and 15.6 years in males. Piecewise linear mixed models regression analysis revealed significant age-related trends in normalized cadence, initial double support time, single support time, base of support, and normalized step length in both sexes. Each trend reached its own, variable-specific age at maturity, after which the gait variables' relationships with age reached plateaus and did not differ significantly from zero. Offsets in ages at maturity occurred among the gait variables, and between the gait variables and lower limb length. The sexes also differed in their patterns of maturation. Generally, however, immature walkers of both sexes took more frequent and relatively longer steps than did mature walkers. These results support the hypothesis that maturational changes in gait accompany ongoing lower limb growth, with implications for diagnosing, preventing, and treating movement-related disorders and injuries during late childhood and early adolescence. Copyright © 2012 Elsevier B.V. All rights reserved.
Heredia-Jimenez, Jose; Latorre-Roman, Pedro; Santos-Campos, Maria; Orantes-Gonzalez, Eva; Soto-Hermoso, Victor M
2016-03-01
Gait disorders in fibromyalgia patients affect several gait parameters and different muscle recruitment patterns. The aim of this study was to assess the gait differences observed during a six-minute walk test between fibromyalgia patients and healthy controls. Forty-eight women with fibromyalgia and 15 healthy women were evaluated. Fibromyalgia patients met the American College of Rheumatology criteria for fibromyalgia selected of an ambulatory care. Both patients and controls had a negative history of musculoskeletal disease, neurological disorders, and gait abnormalities. The 15 controls were healthy women matched to the patients in age, height and body weight. Spatio-temporal gait variables and the rate of perceived exertion during the six-minute walk test (all subjects) and Fibromyalgia Impact Questionnaire (fibromyalgia subjects) were evaluated. All walking sets on the GaitRITE were collected and the gait variables were selected at three stages during the six-minute walk test: two sets at the beginning, two sets at 3 min and two sets at the end of the test. In addition, the Fibromyalgia Impact Questionnaire was used for the fibromyalgia patients. Fibromyalgia patients showed a significant decrease in all spatio-temporal gait variables at each of the three stages and had a lower walk distance covered in the six-minute walk test and higher rate of perceived exertion. No correlations were found between the Fibromyalgia Impact Questionnaire and gait variables. The fibromyalgia and control subjects showed lower gait fatigue indices between the middle and last stages. Gait analysis during a six-minute walk test is a good tool to assess the fatigue and physical symptoms of patients with fibromyalgia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Almurdhi, M M; Brown, S J; Bowling, F L; Boulton, A J M; Jeziorska, M; Malik, R A; Reeves, N D
2017-06-01
To investigate alterations in walking strategy and dynamic sway (unsteadiness) in people with impaired glucose tolerance and people with Type 2 diabetes in relation to severity of neuropathy and vitamin D levels. A total of 20 people with Type 2 diabetes, 20 people with impaired glucose tolerance and 20 people without either Type 2 diabetes or impaired glucose tolerance (control group) underwent gait analysis using a motion analysis system and force platforms, and detailed assessment of neuropathy and serum 25 hydroxy-vitamin D levels. Ankle strength (P = 0.01) and power (P = 0.003) during walking and walking speed (P = 0.008) were preserved in participants with impaired glucose tolerance but significantly lower in participants with Type 2 diabetes compared with control participants; however, step width (P = 0.005) and dynamic medio-lateral sway (P = 0.007) were significantly higher and posterior maximal movement (P = 0.000) was lower in participants with impaired glucose tolerance, but preserved in those with Type 2 diabetes compared with the control group. Dynamic medio-lateral sway correlated with corneal nerve fibre length (P = 0.001) and corneal nerve branch density (P = 0.001), but not with vibration perception threshold (P = 0.19). Serum 25 hydroxy-vitamin D levels did not differ significantly among the groups (P = 0.10) and did not correlate with any walking variables or measures of dynamic sway. Early abnormalities in walking strategy and dynamic sway were evident in participants with impaired glucose tolerance, whilst there was a reduction in ankle strength, power and walking speed in participants with Type 2 diabetes. Unsteadiness correlated with small-, but not large-fibre neuropathy and there was no relationship between vitamin D levels and walking variables. © 2017 Diabetes UK.
The Not-so-Random Drunkard's Walk
ERIC Educational Resources Information Center
Ehrhardt, George
2013-01-01
This dataset contains the results of a quasi-experiment, testing Karl Pearson's "drunkard's walk" analogy for an abstract random walk. Inspired by the alternate hypothesis that drunkards stumble to the side of their dominant hand, it includes data on intoxicated test subjects walking a 10' line. Variables include: the…
Exploration of walking behavior in Vermont using spatial regression.
DOT National Transportation Integrated Search
2015-06-01
This report focuses on the relationship between walking and its contributing factors by : applying spatial regression methods. Using the Vermont data from the New England : Transportation Survey (NETS), walking variables as well as 170 independent va...
de Melo, Gileno Edu Lameira; Kleiner, Ana Francisca Rozin; Lopes, Jamile Benite Palma; Dumont, Arislander Jonathan Lopes; Lazzari, Roberta Delasta; Galli, Manuela; Oliveira, Claudia Santos
2018-04-07
To evaluate the effects of gait training with virtual reality (VR) on walking distance and physical fitness in individuals with Parkinson's Disease (PD). Thirty-seven individuals with PD participated in this prospective, randomized, controlled clinical trial. They were randomly allocated to a control group submitted to conventional training (n = 12), a treadmill group submitted to gait training on a treadmill (n = 13) and a VR group submitted to gait training using the XboxTM (n = 12). Clinical measures, gait variables and the Six-Minute Walk Test (6MWT) were evaluated: pre-intervention, after one intervention session, post-intervention and follow up (30 days after intervention). The VR and treadmill groups travelled longer distances on the 6MWT and had faster gait speed in comparison to the control group. The VR and treadmill groups demonstrated an increase in pre-6MWT HR. The VR group had more intense HR after the first session and throughout training, but these gains were not maintained at the follow-up. The present findings demonstrate that gait training with a VR program is as effective as treadmill training with regard to gains in walking distance and improvements in temporal gait variables in individuals with PD.
Walking stability during cell phone use in healthy adults.
Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S
2015-05-01
The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Walking Stability during Cell Phone Use in Healthy Adults
Kao, Pei-Chun; Higginson, Christopher I.; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S.
2015-01-01
The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. PMID:25890490
The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia.
Schniepp, Roman; Schlick, Cornelia; Pradhan, Cauchy; Dieterich, Marianne; Brandt, Thomas; Jahn, Klaus; Wuehr, Max
2016-07-01
Cerebellar ataxia (CA) results in discoordination of body movements (ataxia), a gait disorder, and falls. All three aspects appear to be obviously interrelated; however, experimental evidence is sparse. This study systematically correlated the clinical rating of the severity of ataxia with dynamic stability measures and the fall frequency in patients with CA. Clinical severity of CA in patients with sporadic (n = 34) and hereditary (n = 24) forms was assessed with the Scale for the Assessment and Rating of Ataxia (SARA). Gait performance was examined during slow, preferred, and maximally fast walking speeds. Spatiotemporal variability parameters in the fore-aft and medio-lateral directions were analyzed. The fall frequency was assessed using a standardized interview about fall events within the last 6 months. Fore-aft gait variability showed significant speed-dependent characteristics with highest magnitudes during slow and fast walking. The SARA score correlated positively with fore-aft gait variability, most prominently during fast walking. The fall frequency was significantly associated to fore-aft gait variability during slow walking. Severity of ataxia, dynamic stability, and the occurrence of falls were interrelated in a speed-dependent manner: (a) Severity of ataxia symptoms was closely related to instability during fast walking. (b) Fall frequency was associated with instability during slow walking. These findings suggest the presence of a speed-dependent, twofold cerebellar locomotor control. Assessment of gait performance during non-preferred, slow and fast walking speeds provides novel insights into the pathophysiology of cerebellar locomotor control and may become a useful approach in the clinical evaluation of patients with CA.
Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K.
2016-01-01
Introduction It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. Methods 35 young (16 males; 21.0±2.6 years) and 32 old (18 males; 71.3±6.2 years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Results Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=−0.34, P=0.048) and balance (r=−0.41, P=0.014) among old adults. Conclusions An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. PMID:27989926
Change in gait after high tibial osteotomy: A systematic review and meta-analysis.
Lee, Seung Hoon; Lee, O-Sung; Teo, Seow Hui; Lee, Yong Seuk
2017-09-01
We conducted a meta-analysis to analyze how high tibial osteotomy (HTO) changes gait and focused on the following questions: (1) How does HTO change basic gait variables? (2) How does HTO change the gait variables in the knee joint? Twelve articles were included in the final analysis. A total of 383 knees was evaluated. There were 237 open wedge (OW) and 143 closed wedge (CW) HTOs. There were 4 level II studies and 8 level III studies. All studies included gait analysis and compared pre- and postoperative values. One study compared CWHTO and unicompartmental knee arthroplasty (UKA), and another study compared CWHTO and OWHTO. Five studies compared gait variables with those of healthy controls. One study compared operated limb gait variables with those in the non-operated limb. Gait speed, stride length, knee adduction moment, and lateral thrust were major variables assessed in 2 or more studies. Walking speed increased and stride length was increased or similar after HTO compared to the preoperative value in basic gait variables. Knee adduction moment and lateral thrust were decreased after HTO compared to the preoperative knee joint gait variables. Change in co-contraction of the medial side muscle after surgery differed depending on the degree of frontal plane alignment. The relationship between change in knee adduction moment and change in mechanical axis angle was controversial. Based on our systematic review and meta-analysis, walking speed and stride length increased after HTO. Knee adduction moment and lateral thrust decreased after HTO compared to the preoperative values of gait variables in the knee joint. Copyright © 2017 Elsevier B.V. All rights reserved.
Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.
Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C
2004-02-01
To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.
Panter, Jenna; Desousa, Carol; Ogilvie, David
2013-01-01
Objective Small increases in walking or cycling for transport could contribute to population health improvement. We explore the individual, workplace and environmental characteristics associated with the incorporation of walking and cycling into car journeys. Methods In 2009, participants from the Commuting and Health in Cambridge study (UK) reported transport modes used on the commute in the last week as well as individual, workplace and environmental characteristics. Logistic regression was used to assess the explanatory variables associated with incorporating walking or cycling into car commuting journeys. Results 31% of car commuters (n = 419, mean age 43.3 years, SD 0.3) regularly incorporated walking or cycling into their commute. Those without access to car parking at work (OR: 26.0, 95% CI:11.8 to 57.2) and who reported most supportive environments for walking and cycling en route to work (highest versus lowest tertile, OR: 2.7, 95% CI 1.4 to 5.5) were more likely to incorporate walking or cycling into their car journeys. Conclusions Interventions that provide pleasant and convenient routes, limit or charge for workplace car parking and provide free off-site car parking may encourage car commuters to incorporate walking and cycling into car journeys. The effects of such interventions remain to be evaluated. PMID:23375993
Panter, Jenna; Desousa, Carol; Ogilvie, David
2013-03-01
Small increases in walking or cycling for transport could contribute to population health improvement. We explore the individual, workplace and environmental characteristics associated with the incorporation of walking and cycling into car journeys. In 2009, participants from the Commuting and Health in Cambridge study (UK) reported transport modes used on the commute in the last week as well as individual, workplace and environmental characteristics. Logistic regression was used to assess the explanatory variables associated with incorporating walking or cycling into car commuting journeys. 31% of car commuters (n=419, mean age 43.3 years, SD 0.3) regularly incorporated walking or cycling into their commute. Those without access to car parking at work (OR: 26.0, 95% CI:11.8 to 57.2) and who reported most supportive environments for walking and cycling en route to work (highest versus lowest tertile, OR: 2.7, 95% CI 1.4 to 5.5) were more likely to incorporate walking or cycling into their car journeys. Interventions that provide pleasant and convenient routes, limit or charge for workplace car parking and provide free off-site car parking may encourage car commuters to incorporate walking and cycling into car journeys. The effects of such interventions remain to be evaluated. Copyright © 2013 Elsevier Inc. All rights reserved.
Walking on four limbs: A systematic review of Nordic Walking in Parkinson disease.
Bombieri, Federica; Schena, Federico; Pellegrini, Barbara; Barone, Paolo; Tinazzi, Michele; Erro, Roberto
2017-05-01
Nordic Walking is a relatively high intensity activity that is becoming increasingly popular. It involves marching using poles adapted from cross-country skiing poles in order to activate upper body muscles that would not be used during normal walking. Several studies have been performed using this technique in Parkinson disease patients with contradictory results. Thus, we reviewed here all studies using this technique in Parkinson disease patients and further performed a meta-analysis of RCTs where Nordic Walking was evaluated against standard medical care or other types of physical exercise. Nine studies including four RCTs were reviewed for a total of 127 patients who were assigned to the Nordic Walking program. The majority of studies reported beneficial effects of Nordic Walking on either motor or non-motor variables, but many limitations were observed that hamper drawing definitive conclusions and it is largely unclear whether the benefits persist over time. It would appear that little baseline disability is the strongest predictor of response. The meta-analysis of the 4 RCTs yielded a statistically significant reduction of the UPDRS-3 score, but its value of less than 1 point does not appear to be clinically meaningful. Well-designed, large RCTs should be performed both against standard medical care and other types of physical exercise to definitively address whether Nordic Walking can be beneficial in PD. Copyright © 2017. Published by Elsevier Ltd.
Uphill walking: Biomechanical demand on the lower extremities of obese adolescents.
Strutzenberger, Gerda; Alexander, Nathalie; Bamboschek, Dominik; Claas, Elisabeth; Langhof, Helmut; Schwameder, Hermann
2017-05-01
The number of obesity prevalence in adolescents is still increasing. Obesity treatment programs typically include physical activity with walking being recommended as appropriate activity, but limited information exists on the demand uphill walking places on the joint loading and power of obese adolescents. Therefore, the purpose of this study was to investigate the effect of different inclinations on step characteristics, sagittal and frontal joint angles, joint moments and joint power of obese adolescents in comparison to their normal-weight peers. Eleven obese (14.5±1.41 years, BMI: 31.1±3.5kg/m 2 ) and eleven normal-weight adolescents (14.3±1.86 years, BMI: 19.0±1.7kg/m 2 ) walked with 1.11m/s on a ramp with two imbedded force plates (AMTI, 1000Hz) at three inclinations (level, 6°, 12°). Kinematic data were collected via an infrared-camera motion system (Vicon, 250Hz). The two-way (inclination, group) ANOVA indicated a significant effect of inclination on almost all variables analysed, with the hip joint being the most affected by inclination, followed by the knee and ankle joint. The obese participants additionally spent less time in swing phase, walked with an increased knee flexion and valgus angle and an increased peak hip flexion and adduction moment. Hip joint power of obese adolescents was especially in the steepest inclination significantly increased compared to their normal-weight peers. Obese adolescents demonstrate increased joint loading compared to their normal-weight peers and in combination with a musculoskeletal malalignment they might be prone to an increased overuse injury risk. Copyright © 2017 Elsevier B.V. All rights reserved.
Psarakis, Michael; Greene, David; Cole, Michael H; Lord, Stephen R; Hoang, Phu; Brodie, Matthew A D
2018-04-27
People with Multiple Sclerosis (PwMS) often experience a decline in gait performance, which can compromise their independence and increase falls. Ankle joint contractures in PwMS are common and often result in compensatory gait patterns to accommodate reduced ankle range of motion (ROM). Using advances in wearable technology, the aim of this study was to quantify head and pelvis movement patterns that occur in PwMS with disability and determine how these secondary gait compensations impact on gait stability. Twelve healthy participants and twelve PwMS participated in the study. Head and pelvis movements were measured using two tri-axial accelerometers. Measures of gait compensation, mobility, variability, asymmetry, stability and fatigue were assessed during a six-minute walking test. Compared to healthy controls, PwMS had greater vertical asymmetry in their head and pelvic movements (Cohen's d=1.85 & 1.60). Lower harmonic ratios indicated that PwMS were more unstable than controls (Cohen's d=-1.61 to -3.06), even after adjusting for their slower walking speeds. In the PwMS, increased compensatory movements were correlated with reduced ankle active ROM (r=-0.71), higher disability (EDSS) scores (r=0.58), unstable gait (r=-0.76), reduced mobility (r=-0.76) and increased variability (r=0.83). Wearable device technology provides an efficient and reliable way to screen for excessive compensatory movements often present in PwMS and provides clinically-important information that impacts on mobility, stride time variability and gait stability. This information may help clinicians identify PwMS at high risk of falling and develop better rehabilitation interventions that, in addition to improving mobility, may help target the underlying causes of unstable gait. © 2018 Institute of Physics and Engineering in Medicine.
Grabiner, Mark D; Marone, Jane R; Wyatt, Marilynn; Sessoms, Pinata; Kaufman, Kenton R
2018-06-01
The fractal scaling evident in the step-to-step fluctuations of stepping-related time series reflects, to some degree, neuromotor noise. The primary purpose of this study was to determine the extent to which the fractal scaling of step width, step width and step width variability are affected by performance of an attention-demanding task. We hypothesized that the attention-demanding task would shift the structure of the step width time series toward white, uncorrelated noise. Subjects performed two 10-min treadmill walking trials, a control trial of undisturbed walking and a trial during which they performed a mental arithmetic/texting task. Motion capture data was converted to step width time series, the fractal scaling of which were determined from their power spectra. Fractal scaling decreased by 22% during the texting condition (p < 0.001) supporting the hypothesized shift toward white uncorrelated noise. Step width and step width variability increased 19% and five percent, respectively (p < 0.001). However, a stepwise discriminant analysis to which all three variables were input revealed that the control and dual task conditions were discriminated only by step width fractal scaling. The change of the fractal scaling of step width is consistent with increased cognitive demand and suggests a transition in the characteristics of the signal noise. This may reflect an important advance toward the understanding of the manner in which neuromotor noise contributes to some types of falls. However, further investigation of the repeatability of the results, the sensitivity of the results to progressive increases in cognitive load imposed by attention-demanding tasks, and the extent to which the results can be generalized to the gait of older adults seems warranted. Copyright © 2018 Elsevier B.V. All rights reserved.
Niederer, Daniel; Bumann, Anke; Mühlhauser, Yvonne; Schmitt, Mareike; Wess, Katja; Engeroff, Tobias; Wilke, Jan; Vogt, Lutz; Banzer, Winfried
2018-05-01
Mobile phone tasks like texting, typing, and dialling during walking are known to impact gait characteristics. Beyond that, the effects of performing smartphone-typical actions like researching and taking self-portraits (selfie) on gait have not been investigated yet. We aimed to investigate the effects of smartphone usage on relevant gait characteristics and to reveal potential association of basic cognitive and walking plus smartphone dual-task abilities. Our cross-sectional, cross-over study on physically active, healthy participants was performed on two days, interrupted by a 24-h washout in between. Assessments were: 1) Cognitive testing battery consisting of the trail making test (TMT A and B) and the Stroop test 2) Treadmill walking under five smartphone usage conditions: no use (control condition), reading, dialling, internet searching and taking a selfie in randomized order. Kinematic and kinetic gait characteristics were assessed to estimate conditions influence. In our sample of 36 adults (24.6 ± 1 years, 23 female, 13 male), ANCOVAs followed by post-hoc t-tests revealed that smartphone usage impaired all tested gait characteristics: gait speed (decrease, all conditions): F = 54.7, p < 0.001; cadence (increase, all): F = 38.3, p < 0.001; double stride length (decrease, all): F = 33.8, p < 0.001; foot external rotation (increase during dialling, researching, selfie): F = 16.7, p < 0.001; stride length variability (increase): F = 11.7, p < 0.001; step width variability (increase): F = 5.3, p < 0.001; step width (Friedmann test and Wilcoxon Bonferroni-Holm-corrected post-hoc analyses, increase): Z = -2.3 to -2.9; p < 0.05); plantar pressure proportion (increase during reading and researching) (Z = -2.9; p < 0.01). The ability to keep usual gait quality during smartphone usage was systematically associated with the TMT B time regarding cadence and double stride length for reading (r = -0.37), dialling (r = -0.35) and taking a selfie (r = -0.34). Smartphone usage substantially impacts walking characteristics in most situations. Changes of gait patterns indicate higher cognitive loads and lower awareness. Copyright © 2018 Elsevier B.V. All rights reserved.
Could Sensory Mechanisms Be a Core Factor That Underlies Freezing of Gait in Parkinson’s Disease?
Ehgoetz Martens, Kaylena A.; Pieruccini-Faria, Frederico; Almeida, Quincy J.
2013-01-01
The main objective of this study was to determine how manipulating the amount of sensory information available about the body and surrounding environment influenced freezing of gait (FOG), while walking through a doorway. It was hypothesized that the more limited the sensory information, the greater the occurrence of freezing of gait. Nineteen patients with Parkinsoǹs disease who experience freezing of gait (PD-FOG) walked through a doorway or into open space in complete darkness. The three doorway conditions included: (i) FRAME (DARK) – walking through the remembered door frame; (ii) FRAME - walking through the door with the door frame illuminated; (iii) FRAME+BODY - walking through the door (both the door and the limbs illuminated). Additionally, two conditions of walking away from the doorway included: (iv) NO FRAME (DARK) - walking into open space; (v) NO FRAME+BODY - walking into open space with the limbs illuminated, to evaluate whether perception (or fear) of the doorway might account for FOG behaviour. Key outcome measures included: the number of freezing of gait episodes recorded, total duration of freezing of gait, and the percentage of time spent frozen. Significantly more freezing of gait episodes occurred when participants walked toward the doorway in complete darkness compared to walking into open space (p<0.05). Similar to previous studies, velocity (p<0.001) and step length (p<0.0001) significantly decreased when walking through the door in complete darkness, compared to all other conditions. Significant increases in step width variability were also identified but only when walking into open space (p<0.005). These results support the notion that sensory deficits may have a profound impact on freezing of gait that need to be carefully considered. PMID:23667499
Walking on sunshine: scoping review of the evidence for walking and mental health.
Kelly, Paul; Williamson, Chloë; Niven, Ailsa G; Hunter, Ruth; Mutrie, Nanette; Richards, Justin
2018-06-01
Walking has well-established positive relationships with, and effects on, physical health. In contrast, while poor mental health contributes substantially to global health burden, an overview of the benefits from walking has not previously been published. We aimed to scope the literature and present what is known, and highlight what is not known, about walking and mental health. Design: Scoping review. Ovid (Medline), ProQuest, Web of Science.Screening and reporting: 13 014 records were identified and screened by a team of researchers. Included full texts were analysed and reported according to mental health outcome. For the 8 mental health outcomes (identified a priori), there were a total of 5 systematic reviews and 50 individual papers included. Depression had the most evidence and existing systematic reviews were reported. Evidence for anxiety, psychological stress, psychological well-being, subjective well-being and social isolation and loneliness varied in volume and effectiveness, but no harmful effects were identified. There were no studies for walking and resilience. The setting and context of walking seems to be important variables. The evidence base that suggests walking benefits mental health is growing, but remains fragmented and incomplete for some important outcomes. Policy and national guidelines should promote the known mental health benefits of increased walking and future research should directly address the gaps we have identified. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Task difficulty has no effect on haptic anchoring during tandem walking in young and older adults.
Costa, Andréia Abud da Silva; Santos, Luciana Oliveira Dos; Mauerberg-deCastro, Eliane; Moraes, Renato
2018-02-14
This study assessed the contribution of the "anchor system's" haptic information to balance control during walking at two levels of difficulty. Seventeen young adults and seventeen older adults performed 20 randomized trials of tandem walking in a straight line, on level ground and on a slightly-raised balance beam, both with and without the use of the anchors. The anchor consists of two flexible cables, whose ends participants hold in each hand, to which weights (125 g) are attached at the opposing ends, and which rest on the ground. As the participants walk, they pull on the cables, dragging the anchors. Spatiotemporal gait variables (step speed and single- and double-support duration) were processed using retro-reflective markers on anatomical sites. An accelerometer positioned in the cervical region registered trunk acceleration. Walking on the balance beam increased single- and double-support duration and reduced step speed in older adults, which suggests that this condition was more difficult than walking on the level ground. The anchors reduced trunk acceleration in the frontal plane, but the level of difficulty of the walking task showed no effect. Thus, varying the difficulty of the task had no influence on the way in which participants used the anchor system while tandem walking. The older adults exhibited more difficulty in walking on the balance beam as compared to the younger adults; however, the effect of the anchor system was similar in both groups. Copyright © 2017 Elsevier B.V. All rights reserved.
Lacquaniti, F; Ivanenko, Y P; Zago, M
2002-10-01
The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power output over a gait cycle (3, 4), phase control could be used for limiting the overall energy expenditure with increasing speed (22). Adaptation to different walking conditions, such as changes in body posture, body weight unloading and backward walk, also involves inter-segmental phase tuning, as does the maturation of limb kinematics in toddlers.
The effect of virtual reality on gait variability.
Katsavelis, Dimitrios; Mukherjee, Mukul; Decker, Leslie; Stergiou, Nicholas
2010-07-01
Optic Flow (OF) plays an important role in human locomotion and manipulation of OF characteristics can cause changes in locomotion patterns. The purpose of the study was to investigate the effect of the velocity of optic flow on the amount and structure of gait variability. Each subject underwent four conditions of treadmill walking at their self-selected pace. In three conditions the subjects walked in an endless virtual corridor, while a fourth control condition was also included. The three virtual conditions differed in the speed of the optic flow displayed as follows--same speed (OFn), faster (OFf), and slower (OFs) than that of the treadmill. Gait kinematics were tracked with an optical motion capture system. Gait variability measures of the hip, knee and ankle range of motion and stride interval were analyzed. Amount of variability was evaluated with linear measures of variability--coefficient of variation, while structure of variability i.e., its organization over time, were measured with nonlinear measures--approximate entropy and detrended fluctuation analysis. The linear measures of variability, CV, did not show significant differences between Non-VR and VR conditions while nonlinear measures of variability identified significant differences at the hip, ankle, and in stride interval. In response to manipulation of the optic flow, significant differences were observed between the three virtual conditions in the following order: OFn greater than OFf greater than OFs. Measures of structure of variability are more sensitive to changes in gait due to manipulation of visual cues, whereas measures of the amount of variability may be concealed by adaptive mechanisms. Visual cues increase the complexity of gait variability and may increase the degrees of freedom available to the subject. Further exploration of the effects of optic flow manipulation on locomotion may provide us with an effective tool for rehabilitation of subjects with sensorimotor issues.
Du, Wenchong; Wilmut, Kate; Barnett, Anna L
2015-10-01
Several studies have shown that Developmental Coordination Disorder (DCD) is a condition that continues beyond childhood. Although adults with DCD report difficulties with dynamic balance, as well as frequent tripping and bumping into objects, there have been no specific studies on walking in this population. Some previous work has focused on walking in children with DCD but variation in the tasks and measures used has led to inconsistent findings. The aim of the current study therefore was to examine the characteristics of level walking in adults with and without DCD. Fifteen adults with DCD and 15 typically developing (TD) controls walked barefoot at a natural pace up and down an 11 m walkway for one minute. Foot placement measures and velocity and acceleration of the body were recorded, as well as measures of movement variability. The adults with DCD showed similar gait patterns to the TD group in terms of step length, step width, double support time and stride time. The DCD group also showed similar velocity and acceleration to the TD group in the medio-lateral, anterior-posterior and vertical direction. However, the DCD group exhibited greater variability in all foot placement and some body movement measures. The finding that adults with DCD have a reduced ability to produce consistent movement patterns is discussed in relation to postural control limitations and compared to variability of walking measures found in elderly populations. Copyright © 2015 Elsevier B.V. All rights reserved.
Khumsap, S; Clayton, H M; Lanovaz, J L
2001-06-01
To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.
Christiansen, Lars B; Cerin, Ester; Badland, Hannah; Kerr, Jacqueline; Davey, Rachel; Troelsen, Jens; van Dyck, Delfien; Mitáš, Josef; Schofield, Grant; Sugiyama, Takemi; Salvo, Deborah; Sarmiento, Olga L; Reis, Rodrigo; Adams, Marc; Frank, Larry; Sallis, James F
2016-12-01
Mounting evidence documents the importance of urban form for active travel, but international studies could strengthen the evidence. The aim of the study was to document the strength, shape, and generalizability of relations of objectively measured built environment variables with transport-related walking and cycling. This cross-sectional study maximized variation of environments and demographics by including multiple countries and by selecting adult participants living in neighborhoods based on higher and lower classifications of objectively measured walkability and socioeconomic status. Analyses were conducted on 12,181 adults aged 18-66 years, drawn from 14 cities across 10 countries worldwide. Frequency of transport-related walking and cycling over the last seven days was assessed by questionnaire and four objectively measured built environment variables were calculated. Associations of built environment variables with transport-related walking and cycling variables were estimated using generalized additive mixed models, and were tested for curvilinearity and study site moderation. We found positive associations of walking for transport with all the environmental attributes, but also found that the relationships was only linear for land use mix, but not for residential density, intersection density, and the number of parks. Our findings suggest that there may be optimum values in these attributes, beyond which higher densities or number of parks could have minor or even negative impact. Cycling for transport was associated linearly with residential density, intersection density (only for any cycling), and land use mix, but not with the number of parks. Across 14 diverse cities and countries, living in more densely populated areas, having a well-connected street network, more diverse land uses, and having more parks were positively associated with transport-related walking and/or cycling. Except for land-use-mix, all built environment variables had curvilinear relationships with walking, with a plateau in the relationship at higher levels of the scales.
Christiansen, Lars B.; Cerin, Ester; Badland, Hannah; Kerr, Jacqueline; Davey, Rachel; Troelsen, Jens; van Dyck, Delfien; Mitáš, Josef; Schofield, Grant; Sugiyama, Takemi; Salvo, Deborah; Sarmiento, Olga L.; Reis, Rodrigo; Adams, Marc; Frank, Larry; Sallis, James F.
2016-01-01
Introduction Mounting evidence documents the importance of urban form for active travel, but international studies could strengthen the evidence. The aim of the study was to document the strength, shape, and generalizability of relations of objectively measured built environment variables with transport-related walking and cycling. Methods This cross-sectional study maximized variation of environments and demographics by including multiple countries and by selecting adult participants living in neighborhoods based on higher and lower classifications of objectively measured walkability and socioeconomic status. Analyses were conducted on 12,181 adults aged 18–66 years, drawn from 14 cities across 10 countries worldwide. Frequency of transport-related walking and cycling over the last seven days was assessed by questionnaire and four objectively measured built environment variables were calculated. Associations of built environment variables with transport-related walking and cycling variables were estimated using generalized additive mixed models, and were tested for curvilinearity and study site moderation. Results We found positive associations of walking for transport with all the environmental attributes, but also found that the relationships was only linear for land use mix, but not for residential density, intersection density, and the number of parks. Our findings suggest that there may be optimum values in these attributes, beyond which higher densities or number of parks could have minor or even negative impact. Cycling for transport was associated linearly with residential density, intersection density (only for any cycling), and land use mix, but not with the number of parks. Conclusion Across 14 diverse cities and countries, living in more densely populated areas, having a well-connected street network, more diverse land uses, and having more parks were positively associated with transport-related walking and/or cycling. Except for land-use-mix, all built environment variables had curvilinear relationships with walking, with a plateau in the relationship at higher levels of the scales. PMID:28111613
Gait Transitions of Persons with and without Intellectual Disability
ERIC Educational Resources Information Center
Agiovlasitis, Stamatis; Yun, Joonkoo; Pavol, Michael J.; McCubbin, Jeffrey A.; Kim, So-Yeun
2008-01-01
This study examined whether the walk-to-run transition speed (W-RTS) and the run-to-walk transition speed (R-WTS) were different or more variable between participants with and without intellectual disability (ID). Nine adults with ID and 10 adults without ID completed in a series of walk-to-run and run-to-walk trials on a treadmill. W-RTS and…
Manor, Brad; Newton, Elizabeth; Abduljalil, Amir; Novak, Vera
2012-09-01
Diabetic peripheral neuropathy (DPN) alters walking. Yet, the compensatory role of central locomotor circuits remains unclear. We hypothesized that walking outcomes would be more closely related to regional gray matter volumes in older adults with DPN as compared with nonneuropathic diabetic patients and nondiabetic control subjects. Clinically important outcomes of walking (i.e., speed, stride duration variability, and double support time) were measured in 29 patients with DPN (type 2 diabetes with foot-sole somatosensory impairment), 68 diabetic (DM) patients (type 2 diabetes with intact foot-sole sensation), and 89 control subjects. Global and regional gray matter volumes were calculated from 3 Tesla magnetic resonance imaging. DPN subjects walked more slowly (P = 0.005) with greater stride duration variability (P < 0.001) and longer double support (P < 0.001) as compared with DM and control subjects. Diabetes was associated with less cerebellar gray matter volume (P < 0.001), but global gray matter volume was similar between groups. DPN subjects with lower gray matter volume globally (P < 0.004) and regionally (i.e., cerebellum, right-hemisphere dorsolateral prefrontal cortex, basal ganglia, P < 0.005) walked more slowly with greater stride duration variability and/or longer double support. Each relationship was stronger in DPN than DM subjects. In control subjects, brain volumes did not relate to walking patterns. Strong relationships between brain volumes and walking outcomes were observed in the DPN group and to a lesser extent the DM group, but not in control subjects. Individuals with DPN may be more dependent upon supraspinal elements of the motor control system to regulate several walking outcomes linked to poor health in elderly adults.
Manor, Brad; Newton, Elizabeth; Abduljalil, Amir; Novak, Vera
2012-01-01
OBJECTIVE Diabetic peripheral neuropathy (DPN) alters walking. Yet, the compensatory role of central locomotor circuits remains unclear. We hypothesized that walking outcomes would be more closely related to regional gray matter volumes in older adults with DPN as compared with nonneuropathic diabetic patients and nondiabetic control subjects. RESEARCH DESIGN AND METHODS Clinically important outcomes of walking (i.e., speed, stride duration variability, and double support time) were measured in 29 patients with DPN (type 2 diabetes with foot-sole somatosensory impairment), 68 diabetic (DM) patients (type 2 diabetes with intact foot-sole sensation), and 89 control subjects. Global and regional gray matter volumes were calculated from 3 Tesla magnetic resonance imaging. RESULTS DPN subjects walked more slowly (P = 0.005) with greater stride duration variability (P < 0.001) and longer double support (P < 0.001) as compared with DM and control subjects. Diabetes was associated with less cerebellar gray matter volume (P < 0.001), but global gray matter volume was similar between groups. DPN subjects with lower gray matter volume globally (P < 0.004) and regionally (i.e., cerebellum, right-hemisphere dorsolateral prefrontal cortex, basal ganglia, P < 0.005) walked more slowly with greater stride duration variability and/or longer double support. Each relationship was stronger in DPN than DM subjects. In control subjects, brain volumes did not relate to walking patterns. CONCLUSIONS Strong relationships between brain volumes and walking outcomes were observed in the DPN group and to a lesser extent the DM group, but not in control subjects. Individuals with DPN may be more dependent upon supraspinal elements of the motor control system to regulate several walking outcomes linked to poor health in elderly adults. PMID:22665216
Buster, Thad; Burnfield, Judith; Taylor, Adam P; Stergiou, Nicholas
2013-12-01
Elliptical training may be an option for practicing walking-like activity for individuals with traumatic brain injuries (TBI). Understanding similarities and differences between participants with TBI and neurologically healthy individuals during elliptical trainer use and walking may help guide clinical applications incorporating elliptical trainers. Ten participants with TBI and a comparison group of 10 neurologically healthy participants underwent 2 familiarization sessions and 1 data collection session. Kinematic data were collected as participants walked on a treadmill or on an elliptical trainer. Gait-related measures, including coefficient of multiple correlations (a measure of similarity between ensemble joint movement profiles; coefficient of multiple correlations [CMCs]), critical event joint angles, variability of peak critical event joint angles (standard deviations [SDs]) of peak critical event joint angles, and maximum Lyapunov exponents (a measure of the organization of the variability [LyEs]) were compared between groups and conditions. Coefficient of multiple correlations values comparing the similarity in ensemble motion profiles between the TBI and comparison participants exceeded 0.85 for the hip, knee, and ankle joints. The only critical event joint angle that differed significantly between participants with TBI and comparison participants was the ankle during terminal stance. Variability was higher for the TBI group (6 of 11 comparisons significant) compared with comparison participants. Hip and knee joint movement patterns of both participants with TBI and comparison participants on the elliptical trainer were similar to walking (CMCs ≥ 0.87). Variability was higher during elliptical trainer usage compared with walking (5 of 11 comparisons significant). Hip LyEs were higher during treadmill walking. Ankle LyEs were greater during elliptical trainer usage. Movement patterns of participants with TBI were similar to, but more variable than, those of comparison participants while using both the treadmill and the elliptical trainer. If incorporation of complex movements similar to walking is a goal of rehabilitation, elliptical training is a reasonable alternative to treadmill-based training.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A65) for more insights from the authors.
Increased gait unsteadiness in community-dwelling elderly fallers
NASA Technical Reports Server (NTRS)
Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.
1997-01-01
OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p < .0002). In contrast, walking speed of the elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.
Novak, Peter; Novak, Vera
2006-05-04
Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44-79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS.
Anson, Eric; Rosenberg, Russell; Agada, Peter; Kiemel, Tim; Jeka, John
2013-11-26
Most current applications of visual feedback to improve postural control are limited to a fixed base of support and produce mixed results regarding improved postural control and transfer to functional tasks. Currently there are few options available to provide visual feedback regarding trunk motion while walking. We have developed a low cost platform to provide visual feedback of trunk motion during walking. Here we investigated whether augmented visual position feedback would reduce trunk movement variability in both young and older healthy adults. The subjects who participated were 10 young and 10 older adults. Subjects walked on a treadmill under conditions of visual position feedback and no feedback. The visual feedback consisted of anterior-posterior (AP) and medial-lateral (ML) position of the subject's trunk during treadmill walking. Fourier transforms of the AP and ML trunk kinematics were used to calculate power spectral densities which were integrated as frequency bins "below the gait cycle" and "gait cycle and above" for analysis purposes. Visual feedback reduced movement power at very low frequencies for lumbar and neck translation but not trunk angle in both age groups. At very low frequencies of body movement, older adults had equivalent levels of movement variability with feedback as young adults without feedback. Lower variability was specific to translational (not angular) trunk movement. Visual feedback did not affect any of the measured lower extremity gait pattern characteristics of either group, suggesting that changes were not invoked by a different gait pattern. Reduced translational variability while walking on the treadmill reflects more precise control maintaining a central position on the treadmill. Such feedback may provide an important technique to augment rehabilitation to minimize body translation while walking. Individuals with poor balance during walking may benefit from this type of training to enhance path consistency during over-ground locomotion.
Yoon, Sukhoon; Kim, Joo Nyeon; Lim, Hee Sung
2016-12-01
[Purpose] This study aimed to examine the effects of an 8-week modified Pilates program on the variability of inter-joint coordination in the elderly during walking. [Subjects and Methods] Twenty elderly participants with no recent history of orthopedic abnormalities (age, 67.9 ± 2.7 years; height, 163.7 ± 8.9 cm; weight, 67.1 ± 11.6 kg) were recruited for this study and randomly allocated to a modified Pilates exercise group or a control group. Three-dimensional motion analysis was performed on both groups to evaluate the effects of the Pilates exercise. [Results] There was no significant difference in the joint variability of the ankle, knee, and hip joints between the groups, both before training and after training. However, there was a significant increase in the hip-knee deviation phase value in the exercise group after the program was completed, and this increase was also significant when compared with that in the control group. [Conclusion] This study has demonstrated that an 8-week modified Pilates exercise program can have a positive impact on the gait of elderly participants, potentially by enhancing neuromuscular adjustment, which may have positive implications for reducing their fall risk.
Determinants of Major League Baseball Pitchers' Career Length.
Hardy, Rich; Ajibewa, Tiwaloluwa; Bowman, Ray; Brand, Jefferson C
2017-02-01
To investigate variables (injury, position, performance, and pitching volume) that affect the career longevity of Major League Baseball pitchers. To be eligible, pitchers must have entered Major League Baseball between 1989 and 1992 without missing information for the variables on the website http://www.baseball-reference.com. The variables assessed were average innings pitched per year before and after age 25 years, earned run average, walks and hits divided by innings pitched, strikeout to walk ratio, pitching position, time on the disabled list, length of career, and starting and retirement age. We used analysis of variance to compare the differences between groups and a regression model to assess the relationship between variables before age 25 years and career length. Mean retirement age for the group was 31.74 (95% confidence interval 30.83-32.65) and mean career length was 10.97 (95% confidence interval, 10.02-11.92) years. Innings pitched after age 25 years increased slightly, but not significantly, from the number of innings pitched before age 25 years, 85.35 versus 74.25, P = .5063. Career earned run average was not significantly different after age 25 years compared with before age 25 years, 4.83 versus 5.58, respectively, P = .8834. Both strikeout to walk ratio, 1.55 to 1.77, P = .0022, and walks and hits divided by innings pitched, 1.63 to 1.50, P = .0339, improved significantly after age 25 years compared with before age 25 years. The position the player started and ended his career (starter or reliever) did not influence career length. Multiple regression analysis comparing the variables from before age 25 revealed only the number of innings pitched before age 25 were positively related to career length, R 2 = 0.1408, P < .0001. All other variables analyzed before age 25 years were not significantly related to career length. The only studied variable that had significant relationship, which was weak to low, with career length was innings pitched per year before age 25 years. All other variables analyzed before age 25 years were not significantly related to career length. Level IV, case series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Hart, Raphael; Ballaz, Laurent; Robert, Maxime; Pouliot, Annie; D'Arcy, Sylvie; Raison, Maxime; Lemay, Martin
2014-08-01
Children with a neuromuscular disease are prone to early muscular fatigue. The objective of the present study was to evaluate the effects of fatigue induced by a walking exercise on the strength, postural control, and gait of children with a neuromuscular disease. Maximal isometric knee strength (extension and flexion), quiet standing postural control, and gait were evaluated in 12 children (8.8 [1.4] yrs) with a neuromuscular disease before and after a walking exercise. The participants were asked to stop walking when they considered themselves "very fatigued." After the exercise-induced fatigue, a significant increase in range of motion in pelvis obliquity, hip abduction and adduction, and ankle flexion and extension during gait was reported along with an increase in stride length variability. Fatigue also reduced the knee flexor strength and had a detrimental effect on postural control. Fatigue affects the strength, postural control, and gait of children with a neuromuscular disease and could notably increase the risks of falling and the occurrence of serious injuries.
Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo
2017-07-01
This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.
NASA Astrophysics Data System (ADS)
Syafriharti, R.; Kombaitan, B.; Kusumantoro, I. P.; Syabri, I.
2018-05-01
Access mode is an important factor in public transport systems. Most of the train users from Cicalengka to Padalarang via Bandung use paratransit as access mode. Access modes under this study are only paratransit and walking. This study aims to explore the relationship between access mode choice to the station and the perception about walking distance to station, perception about attributes of paratransit service quality which consist of accessibility, cheapness, comfortable, swiftness, safety, security and easiness. Of all the variables tested, walking distance to the station is the only variable relating to the mode access choice. So, a person will tend to use paratransit when his/her perception of walking distance to station is relatively far away. While perceptions about the quality of paratransit service can not determine whether a person will choose paratransit or not.
Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.
Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J
2009-10-01
Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.
Murphy, Marie H; Murtagh, Elaine M; Boreham, Colin Ag; Hare, Lesley G; Nevill, Alan M
2006-05-22
A significant proportion of Europeans do not meet the recommendations for 30 mins of physical activity 5 times per week. Whether lower frequency, moderate intensity exercise alters cardiovascular disease (CVD) risk has received little attention. This study examined the effects of 45 minutes self-paced walking, 2 d. wk(-1) on aerobic fitness, blood pressure (BP), body composition, lipids and C-Reactive Protein (CRP) in previously sedentary civil servants. 37 subjects (24 women) aged 41.5 +/- 9.3 years were randomly assigned to either two 45 minute walks per week (walking group) or no training (control group). Aerobic fitness, body composition, blood pressure (BP), CRP and lipoprotein variables were measured at baseline and following 8 weeks. Steps counts were measured at baseline and during weeks 4 and 8 of the intervention. Compared to the control group, the walking group showed a significant reduction in systolic BP and maintained body fat levels (P < 0.05). There were no changes other risk factors. Subjects took significantly more steps on the days when prescribed walking was performed (9303 +/- 2665) compared to rest days (5803 +/- 2749; P < 0.001). These findings suggest that walking twice per week for 45 minutes at approximately 62% HRmax, improves activity levels, reduces systolic BP and prevents an increase in body fat in previously sedentary adults. This walking prescription, however, failed to induce significant improvements in other markers of cardiovascular disease risk following eight weeks of training.
Adaptive random walks on the class of Web graphs
NASA Astrophysics Data System (ADS)
Tadić, B.
2001-09-01
We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.
Do kinematic metrics of walking balance adapt to perturbed optical flow?
Thompson, Jessica D; Franz, Jason R
2017-08-01
Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4±3.8years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8min of prolonged exposure followed by 1min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training. Copyright © 2017 Elsevier B.V. All rights reserved.
Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A
2013-01-01
Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.
Ko, Mansoo; Hughes, Lynne; Lewis, Harriet
2012-03-01
The impact of walking speed has not been evaluated as a feasible outcome measure associated with peak plantar pressure (PPP) distribution, which may result in tissue damage in persons with diabetic foot complications. The objective of this pilot study was to determine the walking speed and PPP distribution during barefoot walking in persons with diabetes. Nine individuals with diabetes and nine age-gender matched individuals without diabetes participated in this study. Each individual was marked at 10 anatomical landmarks for vibration and tactile pressure sensation tests to determine the severity of sensory deficits on the plantar surface of the dominant limb foot. A steady state walking speed, PPP, the fore and rear foot (F/R) PPP ratio and gait variables were measured during barefoot walking. Persons with diabetes had a significantly slower walking speed than the age-gender matched group resulting in a significant reduction of PPP at the F/R foot during barefoot walking (p < 0.05). There was no significant difference in F/R foot PPP ratio in the diabetic group compared with the age-gender matched group during barefoot walking (p > 0.05). There was a significant difference between the diabetic and non-diabetic groups for cadence, step time, toe out angle and the anterior-posterior excursion (APE) for centre of force (p < 0.05). Walking speed may be a potential indicator for persons with diabetes to identify PPP distribution during barefoot walking in a diabetic foot. However, the diabetic group demonstrated a more cautious walking pattern than the age-gender matched group by decreasing cadence, step length and APE, and increasing step time and toe in/out angle. People with diabetes may reduce the risk of foot ulcerations as long as they are able to prevent severe foot deformities such as callus, hammer toe or charcot foot. Copyright © 2011 John Wiley & Sons, Ltd.
Takahashi, Paul Y; Baker, Mitzi A; Cha, Stephan; Targonski, Paul V
2012-01-01
Determine the relationship between walkability scores (using the Walk Score(®)) and activity levels (both bicycle and walking) in adults aged between 70 and 85 years in Rochester, Minnesota. This was a self-reported cross-sectional survey in adults aged over 70 years living in Rochester, Minnesota. Analysis used t-tests or chi-square analysis as appropriate. The primary endpoint was bicycle use or walking. The predictor variables were the Walk Score(®) as determined by their address, Charlson index, Duke Activity Status Index (DASI), and a 12-item short-form survey (SF-12) scores. Secondary analysis used an outcome of functional status (using the DASI) and walkability scores. Fifty-three individuals completed the surveys (48% return rate). The average age in the overall cohort was 77.02 years. Eighty-nine percent of individuals could walk at least a block and 15.1% rode their bicycles. The Walk Scores(®) did not differ between those who walked (38.9 ± 27.4) and those that did not (40.0 ± 36.08; P = 0.93). In a similar fashion, the Walk Scores(®) were not different for those who biked (36.38 ± 27.68) and those that did not (39.44 ± 28.49; P = 0.78). There was no relationship between Walk Scores(®) and DASI; however, a decreased DASI score was associated with increased age and comorbid illness (Charlson Score). In this small pilot survey, there was no difference in Walk Scores(®) between those older adults who walked or biked, compared to those that did not. The Walk Scores(®) were low in both groups, which may indicate the lack of accessibility for all older adults living in Rochester, Minnesota. The functional status seemed to be more related to age or comorbid conditions than the built environment.
Balance confidence is related to features of balance and gait in individuals with chronic stroke
Schinkel-Ivy, Alison; Wong, Jennifer S.; Mansfield, Avril
2016-01-01
Reduced balance confidence is associated with impairments in features of balance and gait in individuals with sub-acute stroke. However, an understanding of these relationships in individuals at the chronic stage of stroke recovery is lacking. This study aimed to quantify relationships between balance confidence and specific features of balance and gait in individuals with chronic stroke. Participants completed a balance confidence questionnaire and clinical balance assessment (quiet standing, walking, and reactive stepping) at 6 months post-discharge from inpatient stroke rehabilitation. Regression analyses were performed using balance confidence as a predictor variable and quiet standing, walking, and reactive stepping outcome measures as the dependent variables. Walking velocity was positively correlated with balance confidence, while medio-lateral centre of pressure excursion (quiet standing) and double support time, step width variability, and step time variability (walking) were negatively correlated with balance confidence. This study provides insight into the relationships between balance confidence and balance and gait measures in individuals with chronic stroke, suggesting that individuals with low balance confidence exhibited impaired control of quiet standing as well as walking characteristics associated with cautious gait strategies. Future work should identify the direction of these relationships to inform community-based stroke rehabilitation programs for individuals with chronic stroke, and determine the potential utility of incorporating interventions to improve balance confidence into these programs. PMID:27955809
Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis
Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael
2015-01-01
Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789
Insights into gait disorders: walking variability using phase plot analysis, Parkinson's disease.
Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken
2013-09-01
Gait variability may have greater utility than spatio-temporal parameters and can, be an indication for risk of falling in people with Parkinson's disease (PD). Current methods rely on prolonged data collection in order to obtain large datasets which may be demanding to obtain. We set out to explore a phase plot variability analysis to differentiate typically developed adults (TDAs) from PD obtained from two 10 m walks. Fourteen people with PD and good mobility (Rivermead Mobility Index≥8) and ten aged matched TDA were recruited and walked over 10-m at self-selected walking speed. An inertial measurement unit was placed over the projected centre of mass (CoM) sampling at 100 Hz. Vertical CoM excursion was derived to determine modelled spatiotemporal data after which the phase plot analysis was applied producing a cloud of datapoints. SDA described the spread and SDB the width of the cloud with β the angular vector of the data points. The ratio (∀) was defined as SDA: SDB. Cadence (p=.342) and stride length (p=.615) did not show a significance between TDA and PD. A difference was found for walking speed (p=.041). Furthermore a significant difference was found for β (p=.010), SDA (p=.004) other than SDB (p=.385) or ratio ∀ (p=.830). Two sequential 10-m walks showed no difference in PD for cadence (p=.193), stride length (p=.683), walking speed (p=.684) and β (p=.194), SDA (p=.051), SDB (p=.145) or ∀ (p=.226). The proposed phase plot analysis, performed on CoM motion could be used to reliably differentiate PD from TDA over a 10-m walk. Copyright © 2013 Elsevier B.V. All rights reserved.
Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.
Llewellyn, M; Yang, J F; Prochazka, A
1990-01-01
Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.
Effect of ambient light and age-related macular degeneration on precision walking.
Alexander, M Scott; Lajoie, Kim; Neima, David R; Strath, Robert A; Robinovitch, Stephen N; Marigold, Daniel S
2014-08-01
To determine how age-related macular degeneration (AMD) and changes in ambient light affect the control of foot placement while walking. Ten older adults with AMD and 11 normal-sighted controls performed a precision walking task under normal (∼600 lx), dim (∼0.7 lx), and after a sudden reduction (∼600 to 0.7 lx) of light. The precision walking task involved subjects walking and stepping to the center of a series of irregularly spaced, low-contrast targets. Habitual visual acuity and contrast sensitivity and visual field function were also assessed. There were no differences between groups when performing the walking task in normal light (p > 0.05). In reduced lighting, older adults with AMD were less accurate and more variable when stepping across the targets compared to controls (p < 0.05). A sudden reduction of light proved the most challenging for this population. In the AMD group, contrast sensitivity and visual acuity were not significantly correlated with walking performance. Visual field thresholds in the AMD group were only associated with greater foot placement error and variability in the dim light walking condition (r = -0.69 to -0.87, p < 0.05). While walking performance is similar between groups in normal light, poor ambient lighting results in decreased foot placement accuracy in older adults with AMD. Improper foot placement while walking can lead to a fall and possible injury. Thus, to improve the mobility of those with AMD, strategies to enhance the environment in reduced lighting situations are necessary.
Neighborhood walkability and walking behavior: the moderating role of action orientation.
Friederichs, Stijn A H; Kremers, Stef P J; Lechner, Lilian; de Vries, Nanne K
2013-05-01
In promoting physical activity, it is important to gain insight into environmental factors that facilitate or hinder physical activity and factors that may influence this environment-behavior relationship. As the personality factor of action orientation reflects an individual's capacity to regulate behavior it may act as a moderator in the environment-behavior relationship. The current study addressed the relationship between neighborhood walkability and walking behavior and the influence of action orientation on this relationship. Three hundred and forty-seven Dutch inhabitants [mean age 43.1 (SD 17.1)] completed a web based questionnaire assessing demographic variables, neighborhood walkability (Neighborhood Environment Walkability Scale), variables of the Theory of Planned Behavior, action orientation, and walking behavior. The results show that high levels of neighborhood walkability are positively associated with walking behavior and that this influence is largely unmediated by cognitive processes. A positive influence of neighborhood walkability on walking behavior was identified in the action-oriented subpopulation, whereas in the state-oriented part of the population, this influence was absent. The findings suggest that the influence of neighborhood environment on walking behavior has a relatively large unconscious, automatic component. In addition, the results suggest that the walkability-walking relationship is moderated by action orientation.
Variability of gait, bilateral coordination, and asymmetry in women with fibromyalgia.
Heredia-Jimenez, J; Orantes-Gonzalez, E; Soto-Hermoso, V M
2016-03-01
To analyze how fibromyalgia affected the variability, asymmetry, and bilateral coordination of gait walking at comfortable and fast speeds. 65 fibromyalgia (FM) patients and 50 healthy women were analyzed. Gait analysis was performed using an instrumented walkway (GAITRite system). Average walking speed, coefficient of variation (CV) of stride length, swing time, and step width data were obtained and bilateral coordination and gait asymmetry were analyzed. FM patients presented significantly lower speeds than the healthy group. FM patients obtained significantly higher values of CV_StrideLength (p=0.04; p<0.001), CV_SwingTime (p<0.001; p<0.001), CV_StepWidth (p=0.004; p<0.001), phase coordination index (p=0.01; p=0.03), and p_CV (p<0.001; p=0.001) than the control group, walking at comfortable or fast speeds. Gait asymmetry only showed significant differences in the fast condition. FM patients walked more slowly and presented a greater variability of gait and worse bilateral coordination than healthy subjects. Gait asymmetry only showed differences in the fast condition. The variability and the bilateral coordination were particularly affected by FM in women. Therefore, variability and bilateral coordination of gait could be analyzed to complement the gait evaluation of FM patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of rhythmic auditory cueing on gait in people with Alzheimer disease.
Wittwer, Joanne E; Webster, Kate E; Hill, Keith
2013-04-01
To determine whether rhythmic music and metronome cues alter spatiotemporal gait measures and gait variability in people with Alzheimer disease (AD). A repeated-measures study requiring participants to walk under different cueing conditions. University movement laboratory. Of the people (N=46) who met study criteria (a diagnosis of probable AD and ability to walk 100m) at routine medical review, 30 (16 men; mean age ± SD, 80±6y; revised Addenbrooke's Cognitive Examination range, 26-79) volunteered to participate. Participants walked 4 times over an electronic walkway synchronizing to (1) rhythmic music and (2) a metronome set at individual mean baseline comfortable speed cadence. Gait spatiotemporal measures and gait variability (coefficient of variation [CV]). Data from individual walks under each condition were combined. A 1-way repeated-measures analysis of variance was used to compare uncued baseline, cued, and retest measures. Gait velocity decreased with both music and metronome cues compared with baseline (baseline, 110.5cm/s; music, 103.4cm/s; metronome, 105.4cm/s), primarily because of significant decreases in stride length (baseline, 120.9cm; music, 112.5cm; metronome, 114.8cm) with both cue types. This was coupled with increased stride length variability compared with baseline (baseline CV, 3.4%; music CV, 4.3%; metronome CV, 4.5%) with both cue types. These changes did not persist at (uncued) retest. Temporal variability was unchanged. Rhythmic auditory cueing at comfortable speed tempo produced deleterious effects on gait in a single session in this group with AD. The deterioration in spatial gait parameters may result from impaired executive function associated with AD. Further research should investigate whether these instantaneous cue effects are altered with more practice or with learning methods tailored to people with cognitive impairment. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Goh, Choon-Hian; Ng, Siew-Cheok; Kamaruzzaman, Shahrul Bahyah; Chin, Ai-Vyrn; Tan, Maw Pin
2017-10-01
The aim of this study was to determine the relationship between falls and beat-to-beat blood pressure (BP) variability.Continuous noninvasive BP measurement is as accurate as invasive techniques. We evaluated beat-to-beat supine and standing BP variability (BPV) using time and frequency domain analysis from noninvasive continuous BP recordings.A total of 1218 older adults were selected. Continuous BP recordings obtained were analyzed to determine standard deviation (SD) and root mean square of real variability (RMSRV) for time domain BPV and fast-Fourier transform low frequency (LF), high frequency (HF), total power spectral density (PSD), and LF:HF ratio for frequency domain BPV.Comparisons were performed between 256 (21%) individuals with at least 1 fall in the past 12 months and nonfallers. Fallers were significantly older (P = .007), more likely to be female (P = .006), and required a longer time to complete the Timed-Up and Go test (TUG) and frailty walk test (P ≤ .001). Standing systolic BPV (SBPV) was significantly lower in fallers compared to nonfallers (SBPV-SD, P = .016; SBPV-RMSRV, P = .033; SBPV-LF, P = .003; SBPV-total PSD, P = .012). Nonfallers had significantly higher supine to standing ratio (SSR) for SBPV-SD, SBPV-RMSRV, and SBPV-total PSD (P = .017, P = .013, and P = .009). In multivariate analyses, standing BPV remained significantly lower in fallers compared to nonfallers after adjustment for age, sex, diabetes, frailty walk, and supine systolic BP. The reduction in frequency-domain SSR among fallers was attenuated by supine systolic BP, TUG, and frailty walk.In conclusion, reduced beat-to-beat BPV while standing is independently associated with increased risk of falls. Changes between supine and standing BPV are confounded by supine BP and walking speed.
Saunders, Jeffrey A.
2014-01-01
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194
[The efficacy of the exoskeleton ExoAtlet to restore walking in patients with multiple sclerosis].
Kotov, S V; Lijdvoy, V Yu; Sekirin, A B; Petrushanskaya, K A; Pismennaya, E V
2017-01-01
To investigate the efficacy and safety of the exoskeleton ExoAtlet in complex therapy of patients with multiple sclerosis (MS). A pilot study within the prospective open controlled program was conducted. Eighteen patients with relapsing-remitting MS (RRMS) in remission and secondary progressive MS (SPMS) with the level of neurological deficit on the EDSS from 3 to 7 points have completed the study. EDSS, MSFC, HADS, MoCA scales were administered and the force measuring insoles F-Scan Tekscan (USA) were used to study the biomechanics of walking. Good tolerability of workload within 30-40 min. was observed. The improvement in the EDSS was detected in 9 patients, in whole, a significant positive trend (p<0.01) was shown. The study of the biomechanics of the walk showed its significant impairment compared to healthy individuals: reduction of parameters of rate, speed and step length, significant instability, pronounced asymmetry, the decrease in support and shock lower limb function, high coefficient of variability of the parameters, the phenomenon of recurrence of the vertical component of support reactions. After a course of exercise of walking in the exoskeleton, the walking speed and stability increased, oscillation of the body decreased, support function increased, the phenomenon of cyclical changes of the vertical component of support reactions reduced. The results of the pilot study showed promising future research opportunities for robotic-assisted walking and maintenance of the vertical posture with the help of the exoskeleton ExoAtlet to restore the abilities of movement in MS patients with locomotor disorders.
Effects of shoe sole geometry on toe clearance and walking stability in older adults.
Thies, S B; Price, C; Kenney, L P J; Baker, R
2015-07-01
Thirty-five percent of people above age 65 fall each year, and half of their falls are associated with tripping: tripping, an apparently 'mundane' everyday problem, therefore, significantly impacts on older people's health and associated medical costs. To avoid tripping and subsequent falling, sufficient toe clearance during the swing phase is crucial. We previously found that a rocker-shaped shoe sole enhances toe clearance in young adults, thereby decreasing their trip-risk. This study investigates whether such sole design also enhances older adults' toe clearance, without inadvertently affecting their walking stability. Toe clearance and its variability are reported together with measures of walking stability for twelve older adults, walking in shoes with rocker angles of 10°, 15°, and 20°. Surface inclinations (flat, incline, decline) were chosen to reflect a potential real-world environment. Toe clearance increased substantially from the 10° to the 15° rocker angle (p=0.003) without compromising measures of walking stability (p>0.05). A further increase in rocker angle to 20° resulted in less substantial enhancement of toe clearance and came at the cost of a decrease in gait speed on the decline. The novelty of this investigation lies in the exploration of the trade-off between reduction of trip-risk through footwear design and adverse effects on walking stability on real-life relevant surfaces. Our two studies suggest that the current focus on slip-resistance in footwear design may need to be generalised to include other factors that affect trip-risk. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Maclean, Linda M; Brown, Laura J E; Khadra, H; Astell, Arlene J
2017-03-01
Previous studies exploring the effects of attention-prioritization on cognitively healthy older adults' gait and cognitive dual task (DT) performance have shown DT cost in gait outcomes but inconsistent effects on cognitive performance, which may reflect task difficulty (the cognitive load). This study aimed to identify whether changing the cognitive load during a walking and counting DT improved the challenge/sensitivity of the cognitive task to observe prioritization effects on concurrent gait and cognitive performance outcomes. Seventy-two cognitively healthy older adults (Mean=73years) walked 15m, counted backwards in 3s and 7s as single tasks (ST), and concurrently walked and counted backwards as DTs. Attention-prioritization was examined in Prioritizing Walking (PW) and Prioritizing Counting (PC) DT conditions. Dual-task performance costs (DTC) were calculated for number of correct cognitive responses (CCR) in the counting tasks, and step-time variability and velocity in the gait task. All DT conditions showed a benefit (DTB) for cognitive outcomes with trade-off cost to gait. In the Serial 3s task, the cognitive DTBs increased in PC over the PW condition (p<0.05), with a greater cost to walking velocity (p<0.05). DT effects were more pronounced in the Serial 7s with a lower cognitive DTB when PC than when PW, (p<0.05) with no trade-off increase in cost to gait outcomes (p<0.05). The findings suggest that increased cognitive load during a gait and cognitive DT produces more pronounced gait measures of attention-prioritization in cognitively healthy older adults. A cognitive load effect was also observed in the cognitive outcomes, with unexpected results. Copyright © 2017 Elsevier B.V. All rights reserved.
Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T
2015-01-01
To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). RA patients underwent the timed 400-meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition (using whole-body dual X-ray absorptiometry, and abdominal and thigh computed tomography) were assessed and their associations with walking speed explored. A total of 132 RA patients had data for the 400-meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, nontreatment with disease-modifying antirheumatic drugs, and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristic was associated with a 20% lower walking speed among those with worse body composition (P < 0.001), compared with only a 6% lower speed among those with better body composition (P = 0.010 for interaction). Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, nonarticular indicators were collectively more potent indicators of an individual's mobility limitations. Copyright © 2015 by the American College of Rheumatology.
Using factor analysis to identify neuromuscular synergies during treadmill walking
NASA Technical Reports Server (NTRS)
Merkle, L. A.; Layne, C. S.; Bloomberg, J. J.; Zhang, J. J.
1998-01-01
Neuroscientists are often interested in grouping variables to facilitate understanding of a particular phenomenon. Factor analysis is a powerful statistical technique that groups variables into conceptually meaningful clusters, but remains underutilized by neuroscience researchers presumably due to its complicated concepts and procedures. This paper illustrates an application of factor analysis to identify coordinated patterns of whole-body muscle activation during treadmill walking. Ten male subjects walked on a treadmill (6.4 km/h) for 20 s during which surface electromyographic (EMG) activity was obtained from the left side sternocleidomastoid, neck extensors, erector spinae, and right side biceps femoris, rectus femoris, tibialis anterior, and medial gastrocnemius. Factor analysis revealed 65% of the variance of seven muscles sampled aligned with two orthogonal factors, labeled 'transition control' and 'loading'. These two factors describe coordinated patterns of muscular activity across body segments that would not be evident by evaluating individual muscle patterns. The results show that factor analysis can be effectively used to explore relationships among muscle patterns across all body segments to increase understanding of the complex coordination necessary for smooth and efficient locomotion. We encourage neuroscientists to consider using factor analysis to identify coordinated patterns of neuromuscular activation that would be obscured using more traditional EMG analyses.
Quantifying center of pressure variability in chondrodystrophoid dogs.
Blau, S R; Davis, L M; Gorney, A M; Dohse, C S; Williams, K D; Lim, J-H; Pfitzner, W G; Laber, E; Sawicki, G S; Olby, N J
2017-08-01
The center of pressure (COP) position reflects a combination of proprioceptive, motor and mechanical function. As such, it can be used to quantify and characterize neurologic dysfunction. The aim of this study was to describe and quantify the movement of COP and its variability in healthy chondrodystrophoid dogs while walking to provide a baseline for comparison to dogs with spinal cord injury due to acute intervertebral disc herniations. Fifteen healthy adult chondrodystrophoid dogs were walked on an instrumented treadmill that recorded the location of each dog's COP as it walked. Center of pressure (COP) was referenced from an anatomical marker on the dogs' back. The root mean squared (RMS) values of changes in COP location in the sagittal (y) and horizontal (x) directions were calculated to determine the range of COP variability. Three dogs would not walk on the treadmill. One dog was too small to collect interpretable data. From the remaining 11 dogs, 206 trials were analyzed. Mean RMS for change in COPx per trial was 0.0138 (standard deviation, SD 0.0047) and for COPy was 0.0185 (SD 0.0071). Walking speed but not limb length had a significant effect on COP RMS. Repeat measurements in six dogs had high test retest consistency in the x and fair consistency in the y direction. In conclusion, COP variability can be measured consistently in dogs, and a range of COP variability for normal chondrodystrophoid dogs has been determined to provide a baseline for future studies on dogs with spinal cord injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
2013-01-01
Background Emerging evidence suggests that walking and cycling for different purposes such as transport or recreation may be associated with different attributes of the physical environment. Few studies to date have examined these behaviour-specific associations, particularly in the UK. This paper reports on the development, factor structure and test-retest reliability of a new scale assessing perceptions of the environment in the neighbourhood (PENS) and the associations between perceptions of the environment and walking and cycling for transport and recreation. Methods A new 13-item scale was developed for assessing adults’ perceptions of the environment in the neighbourhood (PENS). Three sets of analyses were conducted using data from two sources. Exploratory and confirmatory factor analyses were used to identify a set of summary environmental variables using data from the iConnect baseline survey (n = 3494); test-retest reliability of the individual and summary environmental items was established using data collected in a separate reliability study (n = 166); and multivariable logistic regression was used to determine the associations of the environmental variables with walking for transport, walking for recreation, cycling for transport and cycling for recreation, using iConnect baseline survey data (n = 2937). Results Four summary environmental variables (traffic safety, supportive infrastructure, availability of local amenities and social order), one individual environmental item (street connectivity) and a variable encapsulating general environment quality were identified for use in further analyses. Intraclass correlations of these environmental variables ranged from 0.44 to 0.77 and were comparable to those seen in other similar scales. After adjustment for demographic and other environmental factors, walking for transport was associated with supportive infrastructure, availability of local amenities and general environment quality; walking for recreation was associated with supportive infrastructure; and cycling for transport was associated only with street connectivity. There was limited evidence of any associations between environmental attributes and cycling for recreation. Conclusion PENS is acceptable as a short instrument for assessing perceptions of the urban environment. Previous findings that different attributes of the environment may be associated with different behaviours are confirmed. Policy action to create supportive environments may require a combination of environmental improvements to promote walking and cycling for different purposes. PMID:23815872
ERIC Educational Resources Information Center
Getchell, Nancy; Whitall, Jill
2003-01-01
Compared coupling characteristics of clapping simultaneous with walking or galloping, consistency across trials, and phasing variability among 4-, 6-, 8-, and 10-year-olds. Found that for walk/clap tasks, children adopted adult-like coupling patterns by age 8 and with the same consistency by age 10. Across age, children became less variable in…
Zietek, P; Zietek, J; Szczypior, K; Safranow, K
2015-06-01
Earlier and more intensive physiotherapy exercise after total knee arthroplasty (TKA) enhance recovery, but the best combination of intensity and duration has not been determined. To determine whether adding a single, 15-minute walk on the day of surgery to a fast-track rehabilitation protocol would reduce knee pain and improve knee function after TKA. A randomized single-blind study. Inpatient. Patients with primary osteoarthrosis after TKA. Patients undergoing TKA were randomly assigned to a standard, fast-track rehabilitation protocol consisting of a single, 15-minute walk with a high-rolling walker 4 to 6 hours after recovery from spinal anesthesia or to an intensive protocol, in which patients took a second 15-minute walk at least 3 hours after the first, only on the day of surgery. Outcomes were pain measured on a visual analog scale, Knee Society's (KSS) clinical and functional scores, Oxford knee scores, and Spielberger State-Trait Anxiety Inventory scores. Patients were blinded to group assignment. Since most data were non-normally distributed non-parametric tests were used. Groups were compared with Mann-Whitney U test (for continuous variables). Association between continuous variables was evaluated with Spearman`s rank correlation coefficient. Chi-square or Fisher's exact test was used to assess differences in categorical variables. Of 86 patients assessed for eligibility, 66 were randomly assigned. The 31 evaluable patients on the intensive protocol (mean age, 68 years; 18 women) did not differ significantly from the 31 (mean age, 70 years; 20 women) on the standard protocol on any baseline characteristic or on any outcome measure on any day. On the second postoperative day, pain while walking dropped from a mean of 6.1 to a mean of 4.9 in the intensive group and from 6.4 to 5.4 in the standard group. Results for pain at rest were 3.3 to 2.2, respectively, for the intensive group and 4.0 to 3.0 for the standard group. At 2 weeks, pain at rest was 2.8 in both groups, and pain while walking was 3.0, respectively, for the intensive group and 3.4 for the standard group. At 2 weeks, mean (SD) KSS clinical and KSS function scores were, respectively, 74.9 (12.5) and 51.6 (16.2) in the intensive group and 71.2 (14.3) and 46.3 (16.1) in the standard group. Older age correlated with decreasing knee function (rS=-0.43, P<0.001), and less knee flexion correlated with preoperatively higher state anxiety (rS=-0.37, P=0.005) and trait anxiety (rS=-0.29, P=0.027). The study is limited by its small sample. The fast-track program was not in line with the best available evidence following knee arthroplasty, because patients did not undergo such treatment as NMES. Finally, the intervention itself was modest. Adding an additional 15-minute walk to a fast-track rehabilitation protocol did not increase pain, but neither did it improve functional recovery. A 15-minute walk immediately after recovery from spinal anesthesia did not increase pain in patients with TKA. More intense exercise during this period might improve functional recovery without increasing pain.
Malcolm, Philippe; Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H
2015-02-22
Robotic ankle-foot prostheses that provide net positive push-off work can reduce the metabolic rate of walking for individuals with amputation, but benefits might be sensitive to push-off timing. Simple walking models suggest that preemptive push-off reduces center-of-mass work, possibly reducing metabolic rate. Studies with bilateral exoskeletons have found that push-off beginning before leading leg contact minimizes metabolic rate, but timing was not varied independently from push-off work, and the effects of push-off timing on biomechanics were not measured. Most lower-limb amputations are unilateral, which could also affect optimal timing. The goal of this study was to vary the timing of positive prosthesis push-off work in isolation and measure the effects on energetics, mechanics and muscle activity. We tested 10 able-bodied participants walking on a treadmill at 1.25 m · s(-1). Participants wore a tethered ankle-foot prosthesis emulator on one leg using a rigid boot adapter. We programmed the prosthesis to apply torque bursts that began between 46% and 56% of stride in different conditions. We iteratively adjusted torque magnitude to maintain constant net positive push-off work. When push-off began at or after leading leg contact, metabolic rate was about 10% lower than in a condition with Spring-like prosthesis behavior. When push-off began before leading leg contact, metabolic rate was not different from the Spring-like condition. Early push-off led to increased prosthesis-side vastus medialis and biceps femoris activity during push-off and increased variability in step length and prosthesis loading during push-off. Prosthesis push-off timing had no influence on intact-side leg center-of-mass collision work. Prosthesis push-off timing, isolated from push-off work, strongly affected metabolic rate, with optimal timing at or after intact-side heel contact. Increased thigh muscle activation and increased human variability appear to have caused the lack of reduction in metabolic rate when push-off was provided too early. Optimal timing with respect to opposite heel contact was not different from normal walking, but the trends in metabolic rate and center-of-mass mechanics were not consistent with simple model predictions. Optimal push-off timing should also be characterized for individuals with amputation, since meaningful benefits might be realized with improved timing.
Ishii, Kaori; Shibata, Ai; Oka, Koichiro
2010-08-05
An understanding of the contributing factors to be considered when examining how individuals engage in physical activity is important for promoting population-based physical activity. The environment influences long-term effects on population-based health behaviors. Personal variables, such as self-efficacy and social support, can act as mediators of the predictive relationship between the environment and physical activity. The present study examines the direct and indirect effects of environmental, psychological, and social factors on walking, moderate-intensity activity excluding walking, and vigorous-intensity activity among Japanese adults. The participants included 1,928 Japanese adults aged 20-79 years. Seven sociodemographic attributes (e.g., gender, age, education level, employment status), psychological variables (self-efficacy, pros, and cons), social variables (social support), environmental variables (home fitness equipment, access to facilities, neighborhood safety, aesthetic sensibilities, and frequency of observing others exercising), and the International Physical Activity Questionnaire were assessed via an Internet-based survey. Structural equation modeling was conducted to determine associations between environmental, psychological, and social factors with physical activity. Environmental factors could be seen to have indirect effects on physical activity through their influence on psychological and social variables such as self-efficacy, pros and cons, and social support. The strongest indirect effects could be observed by examining the consequences of environmental factors on physical activity through cons to self-efficacy. The total effects of environmental factors on physical activity were 0.02 on walking, 0.02 on moderate-intensity activity excluding walking, and 0.05 on vigorous-intensity activity. The present study indicates that environmental factors had indirect effects on walking, moderate-intensity activity excluding walking and vigorous-intensity activity among Japanese adults, especially through the effects on these factors of self-efficacy, social support, and pros and cons. The findings of the present study imply that intervention strategies to promote more engagement in physical activity for population-based health promotion may be necessary.
2010-01-01
Background An understanding of the contributing factors to be considered when examining how individuals engage in physical activity is important for promoting population-based physical activity. The environment influences long-term effects on population-based health behaviors. Personal variables, such as self-efficacy and social support, can act as mediators of the predictive relationship between the environment and physical activity. The present study examines the direct and indirect effects of environmental, psychological, and social factors on walking, moderate-intensity activity excluding walking, and vigorous-intensity activity among Japanese adults. Methods The participants included 1,928 Japanese adults aged 20-79 years. Seven sociodemographic attributes (e.g., gender, age, education level, employment status), psychological variables (self-efficacy, pros, and cons), social variables (social support), environmental variables (home fitness equipment, access to facilities, neighborhood safety, aesthetic sensibilities, and frequency of observing others exercising), and the International Physical Activity Questionnaire were assessed via an Internet-based survey. Structural equation modeling was conducted to determine associations between environmental, psychological, and social factors with physical activity. Results Environmental factors could be seen to have indirect effects on physical activity through their influence on psychological and social variables such as self-efficacy, pros and cons, and social support. The strongest indirect effects could be observed by examining the consequences of environmental factors on physical activity through cons to self-efficacy. The total effects of environmental factors on physical activity were 0.02 on walking, 0.02 on moderate-intensity activity excluding walking, and 0.05 on vigorous-intensity activity. Conclusions The present study indicates that environmental factors had indirect effects on walking, moderate-intensity activity excluding walking and vigorous-intensity activity among Japanese adults, especially through the effects on these factors of self-efficacy, social support, and pros and cons. The findings of the present study imply that intervention strategies to promote more engagement in physical activity for population-based health promotion may be necessary. PMID:20684794
Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F
2014-01-01
To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy.
Schniepp, Roman; Schlick, Cornelia; Schenkel, Fabian; Pradhan, Cauchy; Jahn, Klaus; Brandt, Thomas; Wuehr, Max
2017-02-01
Patients with bilateral vestibular failure (BVF) exhibit imbalance when standing and walking that is linked to a higher fall risk. The purpose of this study was to identify risk factors for falls in BVF. We therefore systematically investigated the interrelationship of clinical and demographic characteristics, gait impairments, and the fall frequency of these patients. Clinical and demographic characteristics as well as quantitative measures of gait performance on a pressure-sensitive gait carpet were collected from 55 patients with different etiologies of BVF. Clinical and demographic data as well as spatiotemporal gait characteristics were used for ANOVA testing and a logistic regression model with categorized fall events as dependent variables. The impairment of peripheral vestibular function, duration of disease, and the overall gait status were not associated with the history of falls in patients with BVF. In contrast, the most predictive factors for falls in BVF were an increase in temporal gait variability, especially at slow walking speeds (p < 0.001; OR = 1.3), and the presence of a concomitant peripheral neuropathy (p < 0.045; OR = 3.6). BVF patients with a high risk of falling exhibit specific gait alterations in a speed-dependent manner. In particular, increased gait fluctuations during slow walking are most predictive for an increased fall risk. The presence of a concomitant peripheral neuropathy further critically impairs postural stability in these patients. Clinical assessment of both these aspects is therefore important to identify those patients at a particularly high fall risk and to initiate preventive procedures early.
Hurt, Christopher P.; Brown, David A.
2018-01-01
Background Step kinematic variability has been characterized during gait using spatial and temporal kinematic characteristics. However, people can adopt different trajectory paths both between individuals and even within individuals at different speeds. Single point measures such as minimum toe clearance (MTC) and step length (SL) do not necessarily account for the multiple paths that the foot may take during the swing phase to reach the same foot fall endpoint. The purpose of this study was to test a step-by-step foot trajectory area (SBS-FTA) variability measure that is able to characterize sagittal plane foot trajectories of varying areas, and compare this measure against MTC and SL variability at different speeds. We hypothesize that the SBS-FTA variability would demonstrate increased variability with speed. Second, we hypothesize that SBS-FTA would have a stronger curvilinear fit compared with the CV and SD of SL and MTC. Third, we hypothesize SBS-FTA would be more responsive to change in the foot trajectory at a given speed compared to SL and MTC. Fourth, SBS-FTA variability would not strongly co-vary with SL and MTC variability measures since it represents a different construct related to foot trajectory area variability. Methods We studied 15 nonimpaired individuals during walking at progressively faster speeds. We calculated SL, MTC, and SBS-FTA area. Results SBS-FTA variability increased with speed, had a stronger curvilinear fit compared with the CV and SD of SL and MTC, was more responsive at a given speed, and did not strongly co-vary with SL and MTC variability measures. Conclusion SBS foot trajectory area variability was sensitive to change with faster speeds, captured a relationship that the majority of the other measures did not demonstrate, and did not co-vary strongly with other measures that are also components of the trajectory. PMID:29370202
The effects of error augmentation on learning to walk on a narrow balance beam.
Domingo, Antoinette; Ferris, Daniel P
2010-10-01
Error augmentation during training has been proposed as a means to facilitate motor learning due to the human nervous system's reliance on performance errors to shape motor commands. We studied the effects of error augmentation on short-term learning of walking on a balance beam to determine whether it had beneficial effects on motor performance. Four groups of able-bodied subjects walked on a treadmill-mounted balance beam (2.5-cm wide) before and after 30 min of training. During training, two groups walked on the beam with a destabilization device that augmented error (Medium and High Destabilization groups). A third group walked on a narrower beam (1.27-cm) to augment error (Narrow). The fourth group practiced walking on the 2.5-cm balance beam (Wide). Subjects in the Wide group had significantly greater improvements after training than the error augmentation groups. The High Destabilization group had significantly less performance gains than the Narrow group in spite of similar failures per minute during training. In a follow-up experiment, a fifth group of subjects (Assisted) practiced with a device that greatly reduced catastrophic errors (i.e., stepping off the beam) but maintained similar pelvic movement variability. Performance gains were significantly greater in the Wide group than the Assisted group, indicating that catastrophic errors were important for short-term learning. We conclude that increasing errors during practice via destabilization and a narrower balance beam did not improve short-term learning of beam walking. In addition, the presence of qualitatively catastrophic errors seems to improve short-term learning of walking balance.
How humans use visual optic flow to regulate stepping during walking.
Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B
2017-09-01
Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.
Variety Wins: Soccer-Playing Robots and Infant Walking.
Ossmy, Ori; Hoch, Justine E; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E
2018-01-01
Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a "feature" or a "bug?" In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of "RoboCup." In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths-straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence.
Hong, Jinhyun
2016-08-01
The relationship between the built environment and walking has been analyzed for decades. However, the seasonality effects on the relationship between the built environment and walking have not been well examined even though weather is one of the key determinants of walking. Therefore, this study used 2007-8 Scottish Household Survey data collected over two years and estimated the interaction effects between the urbanization setting (i.e., residential locations: urban, town and rural areas) and seasons (i.e., spring, summer, autumn and winter) on walking. Scottish Urban-rural classification scheme is measured based on the population and access to large cities, and used as a key independent variable. The number of walking days for specific purposes such as work or shopping (utilitarian walking) during the past 7 days is used as a dependent variable. The results show that there are significant geographical variations of seasonality effect on utilitarian walking. That is, people living in rural areas are more sensitive to seasonality impacts than those living in urban areas. In addition, we found that the association between urbanization setting and utilitarian walking varies across seasons, indicating that their relationship can be miss-estimated if we ignore the seasonality effects. Therefore, policy makers and practitioners should consider the seasonality effects to evaluate the effectiveness of land use policy correctly. Finally, we still find the significant association between the urbanization setting and utilitarian walking behaviour with the consideration of seasonality effects, supporting the claim of New Urbanism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mendoza, Jason A; Cowan, David; Liu, Yan
2013-01-01
Background Few reports examined long term predictors of children’s active commuting to school (walking or cycling to school, ACS). Purpose To identify predictors of ACS over one school year among a sample of children with relatively high rates of ACS. Methods Parents were surveyed in September 2010 (Time 1) and April 2011 (Time 2). The dependent variable was children’s commuting mode to school (active versus passive). Independent variables included: 1) parents’ outcome expectations (from Social Cognitive Theory: the expected risks/benefits for their child doing ACS), 2) distance to school, 3) participation in an adult-led walk to school group, 4) temperature, and 5) child demographics. Generalized mixed-models estimated odds ratios for ACS (n=369 or 49.7% of Time 1 respondents). Results Males (OR=2.59, 95% CI [1.57–4.30]), adult-led walk to school group participation (OR=1.80, 95% CI [1.14–2.86]), parents’ outcome expectations (OR=1.26, 95% CI [1.14–1.39]), temperature (OR=1.03, 95% CI [1.01–1.07), distance to school (OR=0.23, 95% CI [0.14–0.37]), and Latino ethnicity (OR=0.28, 95% CI [0.12–0.65]) were associated with ACS. Conclusions Programs and policies sensitive to parents’ concerns, e.g. adult-led walk to school groups, and targeting Latinos and girls appear promising for increasing ACS. PMID:23575275
Effects of modified Pilates on variability of inter-joint coordination during walking in the elderly
Roh, SuYeon; Yoon, Sukhoon; Kim, Joo Nyeon; Lim, Hee Sung
2016-01-01
[Purpose] This study aimed to examine the effects of an 8-week modified Pilates program on the variability of inter-joint coordination in the elderly during walking. [Subjects and Methods] Twenty elderly participants with no recent history of orthopedic abnormalities (age, 67.9 ± 2.7 years; height, 163.7 ± 8.9 cm; weight, 67.1 ± 11.6 kg) were recruited for this study and randomly allocated to a modified Pilates exercise group or a control group. Three-dimensional motion analysis was performed on both groups to evaluate the effects of the Pilates exercise. [Results] There was no significant difference in the joint variability of the ankle, knee, and hip joints between the groups, both before training and after training. However, there was a significant increase in the hip-knee deviation phase value in the exercise group after the program was completed, and this increase was also significant when compared with that in the control group. [Conclusion] This study has demonstrated that an 8-week modified Pilates exercise program can have a positive impact on the gait of elderly participants, potentially by enhancing neuromuscular adjustment, which may have positive implications for reducing their fall risk. PMID:28174474
NASA Astrophysics Data System (ADS)
Sugar, Thomas G.; Hollander, Kevin W.; Hitt, Joseph K.
2011-04-01
Developing bionic ankles poses great challenges due to the large moment, power, and energy that are required at the ankle. Researchers have added springs in series with a motor to reduce the peak power and energy requirements of a robotic ankle. We developed a "robotic tendon" that reduces the peak power by altering the required motor speed. By changing the required speed, the spring acts as a "load variable transmission." If a simple motor/gearbox solution is used, one walking step would require 38.8J and a peak motor power of 257 W. Using an optimized robotic tendon, the energy required is 21.2 J and the peak motor power is reduced to 96.6 W. We show that adding a passive spring in parallel with the robotic tendon reduces peak loads but the power and energy increase. Adding a passive spring in series with the robotic tendon reduces the energy requirements. We have built a prosthetic ankle SPARKy, Spring Ankle with Regenerative Kinetics, that allows a user to walk forwards, backwards, ascend and descend stairs, walk up and down slopes as well as jog.
Mayo, Nancy E; Feldman, Liane; Scott, Susan; Zavorsky, Gerald; Kim, Do Jun; Charlebois, Patrick; Stein, Barry; Carli, Francesco
2011-09-01
Abdominal surgery represents a physiologic stress and is associated with a period of recovery during which functional capacity is often diminished. "Prehabilitation" is a program to increase functional capacity in anticipation of an upcoming stressor. We reported recently the results of a randomized trial comparing 2 prehabilitation programs before colorectal surgery (stationary cycling plus weight training versus a recommendation to increase walking coupled with breathing exercises); however, adherence to the programs was low. The objectives of this study were to estimate: (1) the extent to which physical function could be improved with either prehabilitation program and identify variables associated with response; and (2) the impact of change in preoperative function on postoperative recovery. This study involved a reanalysis of data arising from a randomized trial. The primary outcome measure was functional walking capacity measured by the Six-Minute Walk Test; secondary outcomes were anxiety, depression, health-related quality of life, and complications (Clavien classification). Multiple linear regression was used to estimate the extent to which key variables predicted change in functional walking capacity over the prehabilitation and follow-up periods. We included 95 people who completed the prehabilitation phase (median, 38 days; interquartile range, 22-60), and 75 who were also evaluated postoperatively (mean, 9 weeks). During prehabilitation, 33% improved their physical function, 38% stayed within 20 m of their baseline score, and 29% deteriorated. Among those who improved, mental health, vitality, self-perceived health, and peak exercise capacity also increased significantly. Women were less likely to improve; low baseline walking capacity, anxiety, and the belief that fitness aids recovery were associated with improvements during prehabilitation. In the postoperative phase, the patients who had improved during prehabilitation were also more likely to have recovered to their baseline walking capacity than those with no change or deterioration (77% vs 59% and 32%; P = .0007). Patients who deteriorated were at greater risk of complications requiring reoperation and/or intensive care management. Significant predictors of poorer recovery included deterioration during prehabilitation, age >75 years, high anxiety, complications requiring intervention, and timing of follow-up assessment. In a group of patients undergoing scheduled colorectal surgery, meaningful changes in functional capacity can be achieved over several weeks of prehabilitation. Patients and those who care for them, especially those with poor physical capacity, should consider a prehabilitation regimen to enhance functional exercise capacity before colectomy. Copyright © 2011 Mosby, Inc. All rights reserved.
Novak, Peter; Novak, Vera
2006-01-01
Background Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). Methods This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44–79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). Results The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Conclusion Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS. PMID:16674823
Sutherland, Natasha; Harrison, Alexander; Doherty, Patrick
2018-05-17
Exercise-based cardiac rehabilitation (CR) is an effective intervention for patients with heart failure (HF), in which one of the main targets is to increase physical capacity. In the HF population this is traditionally assessed using distance covered during a walking test. This study aims to establish the extent to which change in walking ability, in HF patients attending CR, is determined by patient characteristics and service provision. The study utilised routine clinical data from the National Audit of Cardiac Rehabilitation to perform a robust analysis. Change, in metres, between pre- and post-CR six-minute walk tests was calculated. Multivariate linear regression models were used to explore the relationship between patient characteristics, service-level variables, and change in metres walked. Complete and valid data from 633 patients was analysed, and a mean change of 51.30 m was calculated. Female gender (-34.13 m, p = 0.007), being retired (-36.41 m, p = 0.001) and being married/in a relationship (-32.54 m, p = 0.023) were all significant negative predictors of change. There was an additional negative relationship with body mass index (BMI) whereby for every unit increase in BMI, predicted change reduces by 2.48 m (p = 0.006). This study identified significant patient-level characteristics strongly associated with limited improvement in walking ability following CR. Improving physical capacity is a core component of CR, therefore services should aim to account for baseline characteristics identified in this study as part of tailoring the CR intervention around the individual. Pre- and post-CR physical capacity assessments, which constitute minimum standards for CR, are worryingly low and should be given high priority. Copyright © 2017. Published by Elsevier B.V.
MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLeod, C. L.; Ivezic, Z.; Bullock, E.
2010-10-01
We model the time variability of {approx}9000 spectroscopically confirmed quasars in SDSS Stripe 82 as a damped random walk (DRW). Using 2.7 million photometric measurements collected over 10 yr, we confirm the results of Kelly et al. and Kozlowski et al. that this model can explain quasar light curves at an impressive fidelity level (0.01-0.02 mag). The DRW model provides a simple, fast (O(N) for N data points), and powerful statistical description of quasar light curves by a characteristic timescale ({tau}) and an asymptotic rms variability on long timescales (SF{sub {infinity}}). We searched for correlations between these two variability parametersmore » and physical parameters such as luminosity and black hole mass, and rest-frame wavelength. Our analysis shows SF{sub {infinity}} to increase with decreasing luminosity and rest-frame wavelength as observed previously, and without a correlation with redshift. We find a correlation between SF{sub {infinity}} and black hole mass with a power-law index of 0.18 {+-} 0.03, independent of the anti-correlation with luminosity. We find that {tau} increases with increasing wavelength with a power-law index of 0.17, remains nearly constant with redshift and luminosity, and increases with increasing black hole mass with a power-law index of 0.21 {+-} 0.07. The amplitude of variability is anti-correlated with the Eddington ratio, which suggests a scenario where optical fluctuations are tied to variations in the accretion rate. However, we find an additional dependence on luminosity and/or black hole mass that cannot be explained by the trend with Eddington ratio. The radio-loudest quasars have systematically larger variability amplitudes by about 30%, when corrected for the other observed trends, while the distribution of their characteristic timescale is indistinguishable from that of the full sample. We do not detect any statistically robust differences in the characteristic timescale and variability amplitude between the full sample and the small subsample of quasars detected by ROSAT. Our results provide a simple quantitative framework for generating mock quasar light curves, such as currently used in LSST image simulations.« less
The Need for Speed in Rodent Locomotion Analyses
Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.
2016-01-01
Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845
Development of 1-Mile Walk Tests to Estimate Aerobic Fitness in Children
ERIC Educational Resources Information Center
Sung, Hoyong; Collier, David N.; DuBose, Katrina D.; Kemble, C. David; Mahar, Matthew T.
2018-01-01
To examine the reliability and validity of 1-mile walk tests for estimation of aerobic fitness (VO[subscript 2max]) in 10- to 13-year-old children and to cross-validate previously published equations. Participants (n = 61) walked 1-mile on two different days. Self-reported physical activity, demographic variables, and aerobic fitness were used in…
Motyl, Jillian M; Driban, Jeffrey B; McAdams, Erica; Price, Lori Lyn; McAlindon, Timothy E
2013-05-10
The 20-meter walk test is a physical function measure commonly used in clinical research studies and rehabilitation clinics to measure gait speed and monitor changes in patients' physical function over time. Unfortunately, the reliability and sensitivity of this walk test are not well defined and, therefore, limit our ability to evaluate real changes in gait speed not attributable to normal variability. The aim of this study was to assess the test-restest reliability and sensitivity of the 20-meter walk test, at a self-selected pace, among patients with mild to moderate knee osteoarthritis (OA) and to suggest a standardized protocol for future test administration. This was a measurement reliability study. Fifteen consecutive people enrolled in a randomized-controlled trial of intra-articular corticosteroid injections for knee OA participated in this study. All participants completed 4 trials on 2 separate days, 7 to 21 days apart (8 trials total). Each day was divided into 2 sessions, which each involved 2 walking trials. We compared walk times between trials with Wilcoxon signed-rank tests. Similar analyses compared average walk times between sessions. To confirm these analyses, we also calculated Spearman correlation coefficients to assess the relationship between sessions. Finally, smallest detectable differences (SDD) were calculated to estimate the sensitivity of the 20-meter walk test. Wilcoxon signed-rank tests between trials within the same session demonstrated that trials in session 1 were significantly different and in the subsequent 3 sessions, the median differences between trials were not significantly different. Therefore, the first session of each day was considered a practice session, and the SDD between the second session of each day were calculated. SDD was -1.59 seconds (walking slower) and 0.15 seconds (walking faster). Practice trials and a standardized protocol should be used in administration of the 20-meter walk test. Changes in walk time between -1.59 seconds (walking slower) and 0.15 seconds (walking faster) should be considered within the range of normal variability of 20-meter walking speed. The primary limitation of our study was a small sample size, which may influence the generalizability of our findings.
Frankel, Allan; Grillo, Sarah Pratt; Pittman, Mary; Thomas, Eric J; Horowitz, Lisa; Page, Martha; Sexton, Bryan
2008-01-01
Objective To evaluate the impact of rigorous WalkRounds on frontline caregiver assessments of safety climate, and to clarify the steps and implementation of rigorous WalkRounds. Data Sources/Study Setting Primary outcome variables were baseline and post WalkRounds safety climate scores from the Safety Attitudes Questionnaire (SAQ). Secondary outcomes were safety issues elicited through WalkRounds. Study period was August 2002 to April 2005; seven hospitals in Massachusetts agreed to participate; and the project was implemented in all patient care areas. Study Design Prospective study of the impact of rigorously applied WalkRounds on frontline caregivers assessments of safety climate in their patient care area. WalkRounds were conducted weekly and according to the seven-step WalkRounds Guide. The SAQ was administered at baseline and approximately 18 months post-WalkRounds implementation to all caregivers in patient care areas. Results Two of seven hospitals complied with the rigorous WalkRounds approach; hospital A was an academic teaching center and hospital B a community teaching hospital. Of 21 patient care areas, SAQ surveys were received from 62 percent of respondents at baseline and 60 percent post WalkRounds. At baseline, 10 of 21 care areas (48 percent) had safety climate scores below 60 percent, whereas post-WalkRounds three care areas (14 percent) had safety climate scores below 60 percent without improving by 10 points or more. Safety climate scale scores in hospital A were 62 percent at baseline and 77 percent post-WalkRounds (t=2.67, p=.03), and in hospital B were 46 percent at baseline and 56 percent post WalkRounds (t=2.06, p=.06). Main safety issues by category were equipment/facility (A [26 percent] and B [33 percent]) and communication (A [24 percent] and B [18 percent]). Conclusions WalkRounds implementation requires significant organizational will; sustainability requires outstanding project management and leadership engagement. In the patient care areas that rigorously implemented WalkRounds, frontline caregiver assessments of patient safety increased. SAQ results such as safety climate scores facilitate the triage of quality improvement efforts, and provide consensus assessments of frontline caregivers that identify themes for improvement. PMID:18671751
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2014-01-01
Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.
Jaywant, Abhishek; Ellis, Terry D; Roy, Serge; Lin, Cheng-Chieh; Neargarder, Sandy; Cronin-Golomb, Alice
2016-05-01
To examine the feasibility and efficacy of a home-based gait observation intervention for improving walking in Parkinson disease (PD). Participants were randomly assigned to an intervention or control condition. A baseline walking assessment, a training period at home, and a posttraining assessment were conducted. The laboratory and participants' home and community environments. Nondemented individuals with PD (N=23) experiencing walking difficulty. In the gait observation (intervention) condition, participants viewed videos of healthy and parkinsonian gait. In the landscape observation (control) condition, participants viewed videos of moving water. These tasks were completed daily for 8 days. Spatiotemporal walking variables were assessed using accelerometers in the laboratory (baseline and posttraining assessments) and continuously at home during the training period. Variables included daily activity, walking speed, stride length, stride frequency, leg swing time, and gait asymmetry. Questionnaires including the 39-item Parkinson Disease Questionnaire (PDQ-39) were administered to determine self-reported change in walking, as well as feasibility. At posttraining assessment, only the gait observation group reported significantly improved mobility (PDQ-39). No improvements were seen in accelerometer-derived walking data. Participants found the at-home training tasks and accelerometer feasible to use. Participants found procedures feasible and reported improved mobility, suggesting that observational training holds promise in the rehabilitation of walking in PD. Observational training alone, however, may not be sufficient to enhance walking in PD. A more challenging and adaptive task, and the use of explicit perceptual learning and practice of actions, may be required to effect change. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Effect of multilayer high-compression bandaging on ankle range of motion and oxygen cost of walking
Roaldsen, K S; Elfving, B; Stanghelle, J K; Mattsson, E
2012-01-01
Objective To evaluate the effects of multilayer high-compression bandaging on ankle range of motion, oxygen consumption and subjective walking ability in healthy subjects. Method A volunteer sample of 22 healthy subjects (10 women and 12 men; aged 67 [63–83] years) were studied. The intervention included treadmill-walking at self-selected speed with and without multilayer high-compression bandaging (Proforeº), randomly selected. The primary outcome variables were ankle range of motion, oxygen consumption and subjective walking ability. Results Total ankle range of motion decreased 4% with compression. No change in oxygen cost of walking was observed. Less than half the subjects reported that walking-shoe comfort or walking distance was negatively affected. Conclusion Ankle range of motion decreased with compression but could probably be counteracted with a regular exercise programme. There were no indications that walking with compression was more exhausting than walking without. Appropriate walking shoes could seem important to secure gait efficiency when using compression garments. PMID:21810941
Variety Wins: Soccer-Playing Robots and Infant Walking
Ossmy, Ori; Hoch, Justine E.; MacAlpine, Patrick; Hasan, Shohan; Stone, Peter; Adolph, Karen E.
2018-01-01
Although both infancy and artificial intelligence (AI) researchers are interested in developing systems that produce adaptive, functional behavior, the two disciplines rarely capitalize on their complementary expertise. Here, we used soccer-playing robots to test a central question about the development of infant walking. During natural activity, infants' locomotor paths are immensely varied. They walk along curved, multi-directional paths with frequent starts and stops. Is the variability observed in spontaneous infant walking a “feature” or a “bug?” In other words, is variability beneficial for functional walking performance? To address this question, we trained soccer-playing robots on walking paths generated by infants during free play and tested them in simulated games of “RoboCup.” In Tournament 1, we compared the functional performance of a simulated robot soccer team trained on infants' natural paths with teams trained on less varied, geometric paths—straight lines, circles, and squares. Across 1,000 head-to-head simulated soccer matches, the infant-trained team consistently beat all teams trained with less varied walking paths. In Tournament 2, we compared teams trained on different clusters of infant walking paths. The team trained with the most varied combination of path shape, step direction, number of steps, and number of starts and stops outperformed teams trained with less varied paths. This evidence indicates that variety is a crucial feature supporting functional walking performance. More generally, we propose that robotics provides a fruitful avenue for testing hypotheses about infant development; reciprocally, observations of infant behavior may inform research on artificial intelligence. PMID:29867427
Sugiyama, T; Leslie, E; Giles-Corti, B; Owen, N
2008-05-01
Studies have shown associations between health indices and access to "green" environments but the underlying mechanisms of this association are not clear. To examine associations of perceived neighbourhood "greenness" with perceived physical and mental health and to investigate whether walking and social factors account for the relationships. A mailed survey collected the following data from adults (n = 1895) in Adelaide, Australia: physical and mental health scores (12-item short-form health survey); perceived neighbourhood greenness; walking for recreation and for transport; social coherence; local social interaction and sociodemographic variables. After adjusting for sociodemographic variables, those who perceived their neighbourhood as highly green had 1.37 and 1.60 times higher odds of better physical and mental health, respectively, compared with those who perceived the lowest greenness. Perceived greenness was also correlated with recreational walking and social factors. When walking for recreation and social factors were added to the regression models, recreational walking was a significant predictor of physical health; however, the association between greenness and physical health became non-significant. Recreational walking and social coherence were associated with mental health and the relationship between greenness and mental health remained significant. Perceived neighbourhood greenness was more strongly associated with mental health than it was with physical health. Recreational walking seemed to explain the link between greenness and physical health, whereas the relationship between greenness and mental health was only partly accounted for by recreational walking and social coherence. The restorative effects of natural environments may be involved in the residual association of this latter relationship.
Promoting healthy eating and physical activity short-term effects of a mass media campaign.
Beaudoin, Christopher E; Fernandez, Carolyn; Wall, Jerry L; Farley, Thomas A
2007-03-01
Soaring obesity levels present a severe health risk in the United States, especially in low-income minority populations. High-frequency paid television and radio advertising, as well as bus and streetcar signage. A mass media campaign in New Orleans to promote walking and fruit and vegetable consumption in a low-income, predominantly African-American urban population. Messages tailored with consideration of the African-American majority. Random-digit-dial telephone surveys using cross-sectional representative samples at baseline in 2004 and following the onset of the campaign in 2005. Survey items on campaign message recall; attitudes toward walking, snack food avoidance, and fruit and vegetable consumption; and behaviors related to fruit and vegetable consumption, snack food consumption, and utilitarian and leisure walking. From baseline, there were significant increases in message recall measures, positive attitudes toward fruit and vegetable consumption, and positive attitudes toward walking. Behaviors did not change significantly. In 2005, message recall measures were associated with positive levels of each of the outcome variables. Over 5 months, the media campaign appeared to have stimulated improvements in attitudes toward healthy diet and walking behaviors addressed by the campaign. These findings encourage the continuation of the media campaign, with future evaluation to consider whether the behavioral measures change.
McCormack, Gavin R; Friedenreich, Christine M; Giles-Corti, Billie; Doyle-Baker, Patricia K; Shiell, Alan
2013-09-01
The built and social environments may contribute to physical activity motivations and behavior. We examined the extent to which the Theory of Planned Behavior (TPB) mediated the association between neighborhood walkability and walking. Two random cross-sectional samples (n = 4422 adults) completed telephone interviews capturing walking-related TPB variables (perceived behavioral control (PBC), attitudes, subjective norm, intention). Of those, 2006 completed a self-administered questionnaire capturing walkability, social support (friends, family, dog ownership), and neighborhood-based transportation (NTW) and recreational walking (NRW). The likelihood of undertaking 1) any vs. none and 2) sufficient vs. insufficient levels (≥150 vs. <150 minutes/week) of NTW and NWR, in relation to walkability, social support, and TPB was estimated. Any and sufficient NTW were associated with access to services, connectivity, residential density, not owning a dog (any NTW only), and friend and family support. Any and sufficient NRW were associated with neighborhood aesthetics (any NRW only), dog ownership, and friend and family support. PBC partially mediated the association between access to services and NTW (any and sufficient), while experiential attitudes partially mediated the association between neighborhood aesthetics and any NRW. Interventions that increase positive perceptions of the built environment may motivate adults to undertake more walking.
Mutrie, Nanette
2012-01-01
Background. Physical activity can positively influence health for older adults. Primary care is a good setting for physical activity promotion. Objective. To assess the feasibility of a pedometer-based walking programme in combination with physical activity consultations. Methods. Design: Two-arm (intervention/control) 12-week randomized controlled trial with a 12-week follow-up for the intervention group. Setting: One general practice in Glasgow, UK. Participants: Participants were aged ≥65 years. The intervention group received two 30-minute physical activity consultations from a trained practice nurse, a pedometer and a walking programme. The control group continued as normal for 12 weeks and then received the intervention. Both groups were followed up at 12 and 24 weeks. Outcome measures: Step counts were measured by sealed pedometers and an activPALTM monitor. Psychosocial variables were assessed and focus groups conducted. Results. The response rate was 66% (187/284), and 90% of those randomized (37/41) completed the study. Qualitative data suggested that the pedometer and nurse were helpful to the intervention. Step counts (activPAL) showed a significant increase from baseline to week 12 for the intervention group, while the control group showed no change. Between weeks 12 and 24, step counts were maintained in the intervention group, and increased for the control group after receiving the intervention. The intervention was associated with improved quality of life and reduced sedentary time. Conclusions. It is feasible to recruit and retain older adults from primary care and help them increase walking. A larger trial is necessary to confirm findings and consider cost-effectiveness. PMID:22843637
Gait characteristics and spatio-temporal variables of climbing in bonobos (Pan paniscus).
Schoonaert, Kirsten; D'Août, Kristiaan; Samuel, Diana; Talloen, Willem; Nauwelaerts, Sandra; Kivell, Tracy L; Aerts, Peter
2016-11-01
Although much is known about the terrestrial locomotion of great apes, their arboreal locomotion has been studied less extensively. This study investigates arboreal locomotion in bonobos (Pan paniscus), focusing on the gait characteristics and spatio-temporal variables associated with locomotion on a pole. These features are compared across different substrate inclinations (0°, 30°, 45°, 60°, and 90°), and horizontal quadrupedal walking is compared between an arboreal and a terrestrial substrate. Our results show greater variation in footfall patterns with increasing incline, resulting in more lateral gait sequences. During climbing on arboreal inclines, smaller steps and strides but higher stride frequencies and duty factors are found compared to horizontal arboreal walking. This may facilitate better balance control and dynamic stability on the arboreal substrate. We found no gradual change in spatio-temporal variables with increasing incline; instead, the results for all inclines were clustered together. Bonobos take larger strides at lower stride frequencies and lower duty factors on a horizontal arboreal substrate than on a flat terrestrial substrate. We suggest that these changes are the result of the better grip of the grasping feet on an arboreal substrate. Speed modulation of the spatio-temporal variables is similar across substrate inclinations and between substrate types, suggesting a comparable underlying motor control. Finally, we contrast these variables of arboreal inclined climbing with those of terrestrial bipedal locomotion, and briefly discuss the results with respect to the origin of habitual bipedalism. Am. J. Primatol. 78:1165-1177, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Li, F.; Fisher, K; Brownson, R.; Bosworth, M.
2005-01-01
Objective: To examine the relation between built environment factors (representing several dimensions of urban form of neighbourhoods) and walking activity at both the neighbourhood level and the resident level, in an older adult sample. Design, setting, participants: A cross sectional, multilevel design with neighbourhoods as the primary sampling unit and senior residents as the secondary unit. Five hundred and seventy seven residents (mean age = 74 years, SD = 6.3 years) participated in the survey, which was conducted among 56 city defined neighbourhoods in Portland, Oregon, USA. Neighbourhood level variables were constructed using geographical information systems. Resident level variables consisted of a mix of self reports and geocoded data on the built environment. Main outcome measure: Self reported neighbourhood walking. Main results: A positive relation was found between built environment factors (density of places of employment, household density, green and open spaces for recreation, number of street intersections) and walking activity at the neighbourhood level. At the resident level, perceptions of safety for walking and number of nearby recreational facilities were positively related to high levels of walking activity. A significant interaction was observed between number of street intersections and perceptions of safety from traffic. Conclusions: Certain neighbourhood built environment characteristics related to urban form were positively associated with walking activity in the neighbourhoods of senior residents. Public health promotion of walking activity/urban mobility and the design of interventions need to consider the contribution of neighbourhood level built environment influences. PMID:15965138
A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.
Zhang, Xiuli; Paquette, Max R; Zhang, Songning
2013-11-06
Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear.
Smith, Jo Armour; Gordon, James; Kulig, Kornelia
2017-10-01
The cognitive control of gait is altered in individuals with low back pain, but it is unclear if this alteration persists between painful episodes. Locomotor perturbations such as walking turns may provide a sensitive measure of gait adaptation during divided attention in young adults. The purpose of this study was to investigate changes in gait during turns performed with divided attention, and to compare healthy young adults with asymptomatic individuals who have a history of recurrent low back pain (rLBP). Twenty-eight participants performed 90° ipsilateral walking turns at a controlled speed of 1.5m/s. During the divided attention condition they concurrently performed a verbal 2-back task. Step length and width, trunk-pelvis and hip excursion, inter-segmental coordination and stride-to-stride variability were quantified using motion capture. Mixed-model ANOVA were used to examine the effect of divided attention and group, and interaction effects on the selected variables. Step length variability decreased significantly with divided attention in the healthy group but not in the rLBP group (post-hoc p=0.024). Inter-segmental coordination variability was significantly decreased during divided attention (main effect of condition p <0.000). There were small but significant reductions in hip axial and sagittal motion across groups (main effect of condition p=0.044 and p=0.040 respectively), and a trend toward increased frontal motion in the rLBP group only (post-hoc p=0.048). These findings suggest that the ability to switch attentional resources during gait is altered in young adults with a history of rLBP, even between symptomatic episodes. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effects of Music Salience on the Gait Performance of Young Adults.
de Bruin, Natalie; Kempster, Cody; Doucette, Angelica; Doan, Jon B; Hu, Bin; Brown, Lesley A
2015-01-01
The presence of a rhythmic beat in the form of a metronome tone or beat-accentuated original music can modulate gait performance; however, it has yet to be determined whether gait modulation can be achieved using commercially available music. The current study investigated the effects of commercially available music on the walking of healthy young adults. Specific aims were (a) to determine whether commercially available music can be used to influence gait (i.e., gait velocity, stride length, cadence, stride time variability), (b) to establish the effect of music salience on gait (i.e., gait velocity, stride length, cadence, stride time variability), and (c) to examine whether music tempi differentially effected gait (i.e., gait velocity, stride length, cadence, stride time variability). Twenty-five participants walked the length of an unobstructed walkway while listening to music. Music selections differed with respect to the salience or the tempo of the music. The genre of music and artists were self-selected by participants. Listening to music while walking was an enjoyable activity that influenced gait. Specifically, salient music selections increased measures of cadence, velocity, and stride length; in contrast, gait was unaltered by the presence of non-salient music. Music tempo did not differentially affect gait performance (gait velocity, stride length, cadence, stride time variability) in these participants. Gait performance was differentially influenced by music salience. These results have implications for clinicians considering the use of commercially available music as an alternative to the traditional rhythmic auditory cues used in rehabilitation programs. © the American Music Therapy Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Oka, Mayumi; Yamamoto, Mio; Mure, Kanae; Takeshita, Tatsuya; Arita, Mikio
2016-01-01
This study aims to investigate factors that contribute to the differences in incidence of hypertension between different regions in Japan, by accounting for not only individual lifestyles, but also their living environments. The target participants of this survey were individuals who received medical treatment for hypertension, as well as hypertension patients who have not received any treatment. The objective variable for analysis was the incidence of hypertension as data aggregated per prefecture. We used data (in men) including obesity, salt intake, vegetable intake, habitual alcohol consumption, habitual smoking, and number of steps walked per day. The variables within living environment included number of rail stations, standard/light vehicle usage, and slope of habitable land. In addition, we analyzed data for the variables related to medical environment including, participation rate in medical check-ups and number of hospitals. We performed multiple stepwise regression analyses to elucidate the correlation of these variables by using hypertension incidence as the objective variable. Hypertension incidence showed a significant negative correlation with walking and medical check-ups, and a significant positive correlation with light-vehicle usage and slope. Between the number of steps and variables related to the living environment, number of rail stations showed a significant positive correlation, while, standard- and light-vehicle usage showed significant negative correlation. Moreover, with stepwise multiple regression analysis, walking showed the strongest effect. The differences in daily walking based on living environment were associated with the disparities in the hypertension incidence in Japan. PMID:27788198
Give your ideas some legs: the positive effect of walking on creative thinking.
Oppezzo, Marily; Schwartz, Daniel L
2014-07-01
Four experiments demonstrate that walking boosts creative ideation in real time and shortly after. In Experiment 1, while seated and then when walking on a treadmill, adults completed Guilford's alternate uses (GAU) test of creative divergent thinking and the compound remote associates (CRA) test of convergent thinking. Walking increased 81% of participants' creativity on the GAU, but only increased 23% of participants' scores for the CRA. In Experiment 2, participants completed the GAU when seated and then walking, when walking and then seated, or when seated twice. Again, walking led to higher GAU scores. Moreover, when seated after walking, participants exhibited a residual creative boost. Experiment 3 generalized the prior effects to outdoor walking. Experiment 4 tested the effect of walking on creative analogy generation. Participants sat inside, walked on a treadmill inside, walked outside, or were rolled outside in a wheelchair. Walking outside produced the most novel and highest quality analogies. The effects of outdoor stimulation and walking were separable. Walking opens up the free flow of ideas, and it is a simple and robust solution to the goals of increasing creativity and increasing physical activity. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Thies, Sibylle B; Richardson, James K; Demott, Trina; Ashton-Miller, James A
2005-08-01
Patients with peripheral neuropathy (PN) report greater difficulty walking on irregular surfaces with low light (IL) than on flat surfaces with regular lighting (FR). We tested the primary hypothesis that older PN patients would demonstrate greater step width and step width variability under IL conditions than under FR conditions. Forty-two subjects (22 male, 20 female: mean +/- S.D.: 64.7 +/- 9.8 years) with PN underwent history, physical examination, and electrodiagnostic testing. Subjects were asked to walk 10 m at a comfortable speed while kinematic and force data were measured at 100 Hz using optoelectronic markers and foot switches. Ten trials were conducted under both IL and FR conditions. Step width, time, length, and speed were calculated with a MATLAB algorithm, with the standard deviation serving as the measure of variability. The results showed that under IL, as compared to FR, conditions subjects demonstrated greater step width (197.1 +/- 40.8 mm versus 180.5 +/- 32.4 mm; P < 0.001) and step width variability (40.4 +/- 9.0 mm versus 34.5 +/- 8.4 mm; P < 0.001), step time and its variability (P < 0.001 and P = 0.003, respectively), and step length variability (P < 0.001). Average step length and gait speed decreased under IL conditions (P < 0.001 for both). Step width variability and step time variability correlated best under IL conditions with a clinical measure of PN severity and fall history, respectively. We conclude that IL conditions cause PN patients to increase the variability of their step width and other gait parameters.
Robertson, L. B.; Ward Thompson, C.; Aspinall, P.; Millington, C.; McAdam, C.; Mutrie, N.
2012-01-01
We investigated the relationship between walking levels and the local neighbourhood physical environment during the Walking for Wellbeing in the West (WWW) randomised pedometer-based community intervention. Walking activity was recorded as step counts at baseline (n = 76), and at 3 months (n = 57), 6 months (n = 54), and 12 months (n = 45) post-intervention. Objective physical environment data were obtained from GIS datasets and street surveys conducted using the SWAT audit tool. Sixty-nine environment variables were reduced to eight environment factors using principal axis factoring, and the relationship between environment factors and (i) step counts, and (ii) the change in step counts relative to baseline, was examined using hierarchical multiple linear regression, controlling for age, gender, income, and deprivation. Five environment factors were significant predictors of step counts, but none were significant predictors of the change in step counts relative to baseline. None of the demographic variables included in the analysis were significant predictors at any stage of the study. Total variance explained by the environment ranged from 6% (P < 0.05) to 34% (P < 0.01), with lowest levels during the initial stages of the study. The physical environment appears to have influenced walking levels during the WWW intervention, and to have contributed to the maintenance of walking levels post-intervention. PMID:22899944
Robertson, L B; Ward Thompson, C; Aspinall, P; Millington, C; McAdam, C; Mutrie, N
2012-01-01
We investigated the relationship between walking levels and the local neighbourhood physical environment during the Walking for Wellbeing in the West (WWW) randomised pedometer-based community intervention. Walking activity was recorded as step counts at baseline (n = 76), and at 3 months (n = 57), 6 months (n = 54), and 12 months (n = 45) post-intervention. Objective physical environment data were obtained from GIS datasets and street surveys conducted using the SWAT audit tool. Sixty-nine environment variables were reduced to eight environment factors using principal axis factoring, and the relationship between environment factors and (i) step counts, and (ii) the change in step counts relative to baseline, was examined using hierarchical multiple linear regression, controlling for age, gender, income, and deprivation. Five environment factors were significant predictors of step counts, but none were significant predictors of the change in step counts relative to baseline. None of the demographic variables included in the analysis were significant predictors at any stage of the study. Total variance explained by the environment ranged from 6% (P < 0.05) to 34% (P < 0.01), with lowest levels during the initial stages of the study. The physical environment appears to have influenced walking levels during the WWW intervention, and to have contributed to the maintenance of walking levels post-intervention.
[Factors associated with slow walking speed in older adults of a district in Lima, Peru].
Rodríguez, Gabriela; Burga-Cisneros, Daniella; Cipriano, Gabriela; Ortiz, Pedro J; Tello, Tania; Casas, Paola; Aliaga, Elizabeth; Varela, Luis F
2017-01-01
To determine the factors associated with slow walking speed in older adults living in a district of Lima, Peru. Analysis of secondary data. Adults older than 60 years were included in the study, while adults with physical conditions who did not allow the evaluation of the walking speed were excluded. The dependent variable was slow walking speed (less than 1 m/s), and the independent variables were sociodemographic, clinical, and geriatric data. Raw and adjusted prevalence ratios (PR) were calculated with 95% confidence intervals (95% CI). The study sample included 416 older adults aged 60 to 99 years, and 41% of the participants met the slow walking speed criterion. The factors associated with slow walking speed in this sample were female gender (PR, 1.45; 95% CI, 1.13-1.88), age > 70 years (PR, 1.73; 95% CI, 1.30- 2.30), lower level of education (PR, 2.07, 95% CI, 1.20-3.55), social-familial problems (PR, 1.66; 95% CI, 1.08-2.54), diabetes mellitus (PR, 1.35; 95% CI, 1.01-1.80), and depression (PR, 1.41; 95% CI, 1.02-1.95). The modifiable factors associated with slow walking speed in older adults included clinical and social-familial problems, and these factors are susceptible to interventions from the early stages of life.
Durand, Casey P; Tang, Xiaohui; Gabriel, Kelley P; Sener, Ipek N; Oluyomi, Abiodun O; Knell, Gregory; Porter, Anna K; Oelscher, Deanna M; Kohl, Harold W
2016-06-01
Use of public transit is cited as a way to help individuals incorporate regular physical activity into their day. As a novel research topic, however, there is much we do not know. The aim of this analysis was to identify the correlation between distance to a transit stop and the probability it will be accessed by walking. We also sought to understand if this relation was moderated by trip, personal or household factors. Data from the 2012 California Household Travel Survey was used for this cross-sectional analysis. 2,573 individuals were included, representing 6,949 transit trips. Generalized estimating equations modeled the probability of actively accessing public transit as a function of distance from origin to transit stop, and multiple trip, personal and household variables. Analyses were conducted in 2014 and 2015. For each mile increase in distance from the point of origin to the transit stop, the probability of active access decreased by 12%. With other factors held equal, at two miles from a transit stop there is a 50% chance someone will walk to a stop versus non-active means. The distance-walking relation was modified by month the trips were taken. Individuals appear to be willing to walk further to reach transit than existing guidelines indicate. This implies that for any given transit stop, the zone of potential riders who will walk to reach transit is relatively large. Future research should clarify who transit-related walkers are, and why some are more willing to walk longer distances to transit than others.
Center of Pressure Trajectory during Gait: A Comparison of Four Foot Positions
Lugade, Vipul; Kaufman, Kenton
2014-01-01
Knowledge of the center of pressure (COP) trajectory during stance can elucidate possible foot pathology, provide comparative effectiveness of foot orthotics, and allow for appropriate calculation of balance control and joint kinetics during gait. Therefore, the goal of this study was to investigate the COP movement when walking at self-selected speeds with plantigrade, equinus, inverted, and everted foot positions. A total of 13 healthy subjects were asked to walk barefoot across an 8 meter walkway with embedded force plates. The COP was computed for each stance limb using the ground reaction forces and moments collected from three force plates. Results demonstrated that the COP excursion was 83% of the foot length and 27% of the foot width in the anterior-posterior and medial lateral directions for plantigrade walking, respectively. Regression equations explained 94% and 44% of the anterior-posterior and medial-lateral COP variability during plantigrade walking. While the range of motion and COP velocity was similar for inverted and everted walking, the COP remained on the lateral and medial aspects of the foot for these two walking conditions, respectively. A reduced anterior-posterior COP range of motion and velocity was demonstrated during equinus walking. Ankle joint motion in the frontal and sagittal planes supported this COP movement, with increased inversion and plantar flexion demonstrated during inverted and equinus conditions, respectively. Results from this study demonstrated the COP kinematics during simulated pathological gait conditions, with the COP trajectory providing an additional tool for the evaluation of patients with pathology. PMID:24447906
Durand, Casey P.; Tang, Xiaohui; Gabriel, Kelley P.; Sener, Ipek N.; Oluyomi, Abiodun O.; Knell, Gregory; Porter, Anna K.; oelscher, Deanna M.; Kohl, Harold W.
2015-01-01
Introduction Use of public transit is cited as a way to help individuals incorporate regular physical activity into their day. As a novel research topic, however, there is much we do not know. The aim of this analysis was to identify the correlation between distance to a transit stop and the probability it will be accessed by walking. We also sought to understand if this relation was moderated by trip, personal or household factors. Methods Data from the 2012 California Household Travel Survey was used for this cross-sectional analysis. 2,573 individuals were included, representing 6,949 transit trips. Generalized estimating equations modeled the probability of actively accessing public transit as a function of distance from origin to transit stop, and multiple trip, personal and household variables. Analyses were conducted in 2014 and 2015. Results For each mile increase in distance from the point of origin to the transit stop, the probability of active access decreased by 12%. With other factors held equal, at two miles from a transit stop there is a 50% chance someone will walk to a stop versus non-active means. The distance-walking relation was modified by month the trips were taken. Conclusions Individuals appear to be willing to walk further to reach transit than existing guidelines indicate. This implies that for any given transit stop, the zone of potential riders who will walk to reach transit is relatively large. Future research should clarify who transit-related walkers are, and why some are more willing to walk longer distances to transit than others. PMID:27429905
Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment
NASA Astrophysics Data System (ADS)
Piatnitski, A.; Zhizhina, E.
2017-11-01
The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.
Aach, Mirko; Cruciger, Oliver; Sczesny-Kaiser, Matthias; Höffken, Oliver; Meindl, Renate Ch; Tegenthoff, Martin; Schwenkreis, Peter; Sankai, Yoshiyuki; Schildhauer, Thomas A
2014-12-01
Treadmill training after traumatic spinal cord injury (SCI) has become an established therapy to improve walking capabilities. The hybrid assistive limb (HAL) exoskeleton has been developed to support motor function and is tailored to the patients' voluntary drive. To determine whether locomotor training with the exoskeleton HAL is safe and can increase functional mobility in chronic paraplegic patients after SCI. A single case experimental A-B (pre-post) design study by repeated assessments of the same patients. The subjects performed 90 days (five times per week) of HAL exoskeleton body weight supported treadmill training with variable gait speed and body weight support. Eight patients with chronic SCI classified by the American Spinal Injury Association (ASIA) Impairment Scale (AIS) consisting of ASIA A (zones of partial preservation [ZPP] L3-S1), n=4; ASIA B (with motor ZPP L3-S1), n=1; and ASIA C/D, n=3, who received full rehabilitation in the acute and subacute phases of SCI. Functional measures included treadmill-associated walking distance, speed, and time, with additional analysis of functional improvements using the 10-m walk test (10MWT), timed-up and go test (TUG test), 6-minute walk test (6MWT), and the walking index for SCI II (WISCI II) score. Secondary physiologic measures including the AIS with the lower extremity motor score (LEMS), the spinal spasticity (Ashworth scale), and the lower extremity circumferences. Subjects performed standardized functional testing before and after the 90 days of intervention. Highly significant improvements of HAL-associated walking time, distance, and speed were noticed. Furthermore, significant improvements have been especially shown in the functional abilities without the exoskeleton for over-ground walking obtained in the 6MWT, TUG test, and the 10MWT, including an increase in the WISCI II score of three patients. Muscle strength (LEMS) increased in all patients accompanied by a gain of the lower limb circumferences. A conversion in the AIS was ascertained in one patient (ASIA B to ASIA C). One patient reported a decrease of spinal spasticity. Hybrid assistive limb exoskeleton training results in improved over-ground walking and leads to the assumption of a beneficial effect on ambulatory mobility. However, evaluation in larger clinical trials is required. Copyright © 2014 Elsevier Inc. All rights reserved.
Built Environment, Adiposity, and Physical Activity in Adults Aged 50–75
Li, Fuzhong; Harmer, Peter A.; Cardinal, Bradley J.; Bosworth, Mark; Acock, Alan; Johnson-Shelton, Deborah; Moore, Jane M.
2008-01-01
Background Few studies have investigated the built environment and its association with health—especially excess adiposity—and physical activity in the immediate pre-Baby Boom/early-Baby Boom generations, soon to be the dominant demographic in the U.S. The purpose of this study was to examine this relationship. Methods This study used a cross-sectional, multilevel design with neighborhoods as the primary sampling unit (PSU). Residents (N=1221; aged 50–75) were recruited from 120 neighborhoods in Portland OR. The independent variables at the PSU level involved GIS-derived measures of land-use mix, distribution of fast-food outlets, street connectivity, access to public transportation, and green and open spaces. Dependent variables included resident-level measures of excess adiposity (BMI ≥25), three walking activities, and physical activity. Data were collected in 2006–2007 and analyzed in 2007. Results Each unit (i.e., 10%) increase in land-use mix was associated with a 25% reduction in the prevalence of overweight/obesity. However, a 1-SD increase in the density of fast-food outlets was associated with a 7% increase in overweight/obesity. Higher mixed-use land was positively associated with all three types of walking activities and the meeting of physical activity recommendations. Neighborhoods with high street connectivity, high density of public transit stations, and green and open spaces were related in varying degrees to walking and the meeting of physical activity recommendations. The analyses adjusted for neighborhood- and resident-level sociodemographic characteristics. Conclusions Findings suggest the need for public health and city planning officials to address modifiable neighborhood-level, built-environment characteristics to create more livable residential communities aimed at both addressing factors that may influence unhealthy eating and promoting active, healthy lifestyles in this rapidly growing population. PMID:18541175
Workout at work: laboratory test of psychological and performance outcomes of active workstations.
Sliter, Michael; Yuan, Zhenyu
2015-04-01
With growing concerns over the obesity epidemic in the United States and other developed countries, many organizations have taken steps to incorporate healthy workplace practices. However, most workers are still sedentary throughout the day--a major contributor to individual weight gain. The current study sought to gather preliminary evidence of the efficacy of active workstations, which are a possible intervention that could increase employees' physical activity while they are working. We conducted an experimental study, in which boredom, task satisfaction, stress, arousal, and performance were evaluated and compared across 4 randomly assigned conditions: seated workstation, standing workstation, cycling workstation, and walking workstation. Additionally, body mass index (BMI) and exercise habits were examined as moderators to determine whether differences in these variables would relate to increased benefits in active conditions. The results (n = 180) showed general support for the benefits of walking workstations, whereby participants in the walking condition had higher satisfaction and arousal and experienced less boredom and stress than those in the passive conditions. Cycling workstations, on the other hand, tended to relate to reduced satisfaction and performance when compared with other conditions. The moderators did not impact these relationships, indicating that walking workstations might have psychological benefits to individuals, regardless of BMI and exercise habits. The results of this study are a preliminary step in understanding the work implications of active workstations. (c) 2015 APA, all rights reserved).
Henderson, Emily J; Lord, Stephen R; Brodie, Matthew A; Gaunt, Daisy M; Lawrence, Andrew D; Close, Jacqueline C T; Whone, A L; Ben-Shlomo, Y
2016-03-01
Falls are a frequent and serious complication of Parkinson's disease and are related partly to an underlying cholinergic deficit that contributes to gait and cognitive dysfunction in these patients. Gait dysfunction can lead to an increased variability of gait from one step to another, raising the likelihood of falls. In the ReSPonD trial we aimed to assess whether ameliorating this cholinergic deficit with the acetylcholinesterase inhibitor rivastigmine would reduce gait variability. We did this randomised, double-blind, placebo-controlled, phase 2 trial at the North Bristol NHS Trust Hospital, Bristol, UK, in patients with Parkinson's disease recruited from community and hospital settings in the UK. We included patients who had fallen at least once in the year before enrolment, were able to walk 18 m without an aid, had no previous exposure to an acetylcholinesterase inhibitor, and did not have dementia. Our clinical trials unit randomly assigned (1:1) patients to oral rivastigmine or placebo capsules (both taken twice a day) using a computer-generated randomisation sequence and web-based allocation. Rivastigmine was uptitrated from 3 mg per day to the target dose of 12 mg per day over 12 weeks. Both the trial team and patients were masked to treatment allocation. Masking was achieved with matched placebo capsules and a dummy uptitration schedule. The primary endpoint was difference in step time variability between the two groups at 32 weeks, adjusted for baseline age, cognition, step time variability, and number of falls in the previous year. We measured step time variability with a triaxial accelerometer during an 18 m walking task in three conditions: normal walking, simple dual task with phonemic verbal fluency (walking while naming words beginning with a single letter), and complex dual task switching with phonemic verbal fluency (walking while naming words, alternating between two letters of the alphabet). Analysis was by modified intention to treat; we excluded from the primary analysis patients who withdrew, died, or did not attend the 32 week assessment. This trial is registered with ISRCTN, number 19880883. Between Oct 4, 2012 and March 28, 2013, we enrolled 130 patients and randomly assigned 65 to the rivastigmine group and 65 to the placebo group. At week 32, compared with patients assigned to placebo (59 assessed), those assigned to rivastigmine (55 assessed) had improved step time variability for normal walking (ratio of geometric means 0.72, 95% CI 0.58-0.88; p=0.002) and the simple dual task (0.79; 0.62-0.99; p=0.045). Improvements in step time variability for the complex dual task did not differ between groups (0.81, 0.60-1.09; p=0.17). Gastrointestinal side-effects were more common in the rivastigmine group than in the placebo group (p<0.0001); 20 (31%) patients in the rivastigmine group versus three (5%) in the placebo group had nausea and 15 (17%) versus three (5%) had vomiting. Rivastigmine can improve gait stability and might reduce the frequency of falls. A phase 3 study is needed to confirm these findings and show cost-effectiveness of rivastigmine treatment. Parkinson's UK. Copyright © 2016 Henderson et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd.. All rights reserved.
Intra-fraction motion of the prostate is a random walk
NASA Astrophysics Data System (ADS)
Ballhausen, H.; Li, M.; Hegemann, N.-S.; Ganswindt, U.; Belka, C.
2015-01-01
A random walk model for intra-fraction motion has been proposed, where at each step the prostate moves a small amount from its current position in a random direction. Online tracking data from perineal ultrasound is used to validate or reject this model against alternatives. Intra-fraction motion of a prostate was recorded by 4D ultrasound (Elekta Clarity system) during 84 fractions of external beam radiotherapy of six patients. In total, the center of the prostate was tracked for 8 h in intervals of 4 s. Maximum likelihood model parameters were fitted to the data. The null hypothesis of a random walk was tested with the Dickey-Fuller test. The null hypothesis of stationarity was tested by the Kwiatkowski-Phillips-Schmidt-Shin test. The increase of variance in prostate position over time and the variability in motility between fractions were analyzed. Intra-fraction motion of the prostate was best described as a stochastic process with an auto-correlation coefficient of ρ = 0.92 ± 0.13. The random walk hypothesis (ρ = 1) could not be rejected (p = 0.27). The static noise hypothesis (ρ = 0) was rejected (p < 0.001). The Dickey-Fuller test rejected the null hypothesis ρ = 1 in 25% to 32% of cases. On average, the Kwiatkowski-Phillips-Schmidt-Shin test rejected the null hypothesis ρ = 0 with a probability of 93% to 96%. The variance in prostate position increased linearly over time (r2 = 0.9 ± 0.1). Variance kept increasing and did not settle at a maximum as would be expected from a stationary process. There was substantial variability in motility between fractions and patients with maximum aberrations from isocenter ranging from 0.5 mm to over 10 mm in one patient alone. In conclusion, evidence strongly suggests that intra-fraction motion of the prostate is a random walk and neither static (like inter-fraction setup errors) nor stationary (like a cyclic motion such as breathing, for example). The prostate tends to drift away from the isocenter during a fraction, and this variance increases with time, such that shorter fractions are beneficial to the problem of intra-fraction motion. As a consequence, fixed safety margins (which would over-compensate at the beginning and under-compensate at the end of a fraction) cannot optimally account for intra-fraction motion. Instead, online tracking and position correction on-the-fly should be considered as the preferred approach to counter intra-fraction motion.
Cott, Cheryl A; Dawson, Pamela; Sidani, Souraya; Wells, Donna
2002-01-01
The purpose of this study was to investigate the effects of a walking/talking program on residents' communication, ambulation, and level of function when there were two residents to one care provider (2:1). A randomized control trial design was used. Subjects were residents with Alzheimer disease in three geriatric long-term care facilities in Metropolitan Toronto. Residents who met the inclusion criteria were randomly assigned to one of three groups: walk-and-talk group (30 min, 5 times per week for 16 weeks, walking/talking in pairs), talk-only group (30 min, 5 times per week for 16 weeks, talk only in pairs), or no intervention. The outcome measures were the Functional Assessment of Communication Skills for Adults, the 2-min walk test, and London Psychogeriatric Rating Scale. Residents who received the walk-and-talk intervention did not demonstrate statistically significant differences in the outcome variables measured posttest when compared with residents who received the talk-only intervention or no intervention, even after controlling for individual differences. Variability in the outcomes measured posttest is explained by differences in the residents' level of cognitive impairment before the study rather than by study group membership. These findings are contradictory to those of previous studies.
van Wijk, Daniël C; Groeniger, Joost Oude; van Lenthe, Frank J; Kamphuis, Carlijn B M
2017-03-31
This study examined whether characteristics of the residential built environment (i.e. population density, level of mixed land use, connectivity, accessibility of facilities, accessibility of green) contributed to educational inequalities in walking and cycling among adults. Data from participants (32-82 years) of the 2011 survey of the Dutch population-based GLOBE study were used (N = 2375). Highest attained educational level (independent variable) and walking for transport, cycling for transport, walking in leisure time and cycling in leisure time (dependent variables) were self-reported in the survey. GIS-systems were used to obtain spatial data on residential built environment characteristics. A four-step mediation-based analysis with log-linear regression models was used to examine to contribution of the residential built environment to educational inequalities in walking and cycling. As compared to the lowest educational group, the highest educational group was more likely to cycle for transport (RR 1.13, 95% CI 1.04-1.23), walk in leisure time (RR 1.12, 95% CI 1.04-1.21), and cycle in leisure time (RR 1.12, 95% CI 1.03-1.22). Objective built environment characteristics were related to these outcomes, but contributed minimally to educational inequalities in walking and cycling. On the other hand, compared to the lowest educational group, the highest educational group was less likely to walk for transport (RR 0.91, 95% CI 0.82-1.01), which could partly be attributed to differences in the built environment. This study found that objective built environment characteristics contributed minimally to educational inequalities in walking and cycling in the Netherlands.
Lower-Limb Joint Coordination Pattern in Obese Subjects
Ranavolo, Alberto; Donini, Lorenzo M.; Mari, Silvia; Serrao, Mariano; Silvetti, Alessio; Iavicoli, Sergio; Cava, Edda; Asprino, Rosa; Pinto, Alessandro; Draicchio, Francesco
2013-01-01
The coordinative pattern is an important feature of locomotion that has been studied in a number of pathologies. It has been observed that adaptive changes in coordination patterns are due to both external and internal constraints. Obesity is characterized by the presence of excess mass at pelvis and lower-limb areas, causing mechanical constraints that central nervous system could manage modifying the physiological interjoint coupling relationships. Since an altered coordination pattern may induce joint diseases and falls risk, the aim of this study was to analyze whether and how coordination during walking is affected by obesity. We evaluated interjoint coordination during walking in 25 obese subjects as well as in a control group. The time-distance parameters and joint kinematics were also measured. When compared with the control group, obese people displayed a substantial similarity in joint kinematic parameters and some differences in the time-distance and in the coupling parameters. Obese subjects revealed higher values in stride-to-stride intrasubjects variability in interjoint coupling parameters, whereas the coordinative mean pattern was unaltered. The increased variability in the coupling parameters is associated with an increased risk of falls and thus should be taken into account when designing treatments aimed at restoring a normal locomotion pattern. PMID:23484078
Biofeedback training effects on minimum toe clearance variability during treadmill walking.
Tirosh, Oren; Cambell, Amity; Begg, Rezaul K; Sparrow, W A
2013-08-01
A number of variability analysis techniques, including Poincaré plots and detrended fluctuation analysis (DFA) were used to investigate minimum toe clearance (MTC) control during walking. Ten young adults walked on a treadmill for 10 min at preferred speed in three conditions: (i) no-intervention baseline, (ii) with biofeedback of MTC within a target range, and (iii) no-biofeedback retention. Mean, median, standard deviation (SD), and inter quartile range of MTC during biofeedback (45.57 ± 11.65, 44.98 ± 11.57, 7.08 ± 2.61, 8.58 ± 2.77 mm, respectively) and retention (56.95 ± 20.31, 56.69 ± 20.94, 10.68 ± 5.41, 15.38 ± 10.19 mm) were significantly greater than baseline (30.77 ± 9.49, 30.51 ± 9.49, 3.04 ± 0.77, 3.66 ± 0.91 mm). Relative to baseline, skewness was reduced in biofeedback and retention but only significantly for retention (0.88 ± 0.51, 0.63 ± 0.55, and 0.40 ± 0.40, respectively). Baseline Poincaré measures (SD1 = 0.25, SD2 = 0.34) and DFA (α1 = 0.72 and α2 = 0.64) were lower than biofeedback (SD1 = 0.58, SD2 = 0.83, DFA α1 = 0.76 and α2 = 0.92) with significantly greater variability in retention compared to biofeedback only in the long-term SD2 and α2 analyses. Increased DFA longer-term correlations α2 in retention confirm that a novel gait pattern was acquired with a longer-term variability structure. Short- and long-term variability analyses were both useful in quantifying gait adaptations with biofeedback. The findings provide evidence that MTC can be modified with feedback, suggesting future applications in gait training procedures for impaired populations designed to reduce tripping risk.
Simonsick, E M; Guralnik, J M; Fried, L P
1999-06-01
To determine how severity of walking difficulty and sociodemographic, psychosocial, and health-related factors influence walking behavior in disabled older women. Cross-sectional analyses of baseline data from the Women's Health and Aging Study (WHAS). An urban community encompassing 12 contiguous zip code areas in the eastern portion of Baltimore City and part of Baltimore County, Maryland. A total of 920 moderately to severely disabled community-resident women, aged 65 years and older, identified from an age-stratified random sample of Medicare beneficiaries. Walking behavior was defined as minutes walked for exercise and total blocks walked per week. Independent variables included self-reported walking difficulty, sociodemographic factors, psychological status (depression, mastery, anxiety, and cognition), and health-related factors (falls and fear of falling, fatigue, vision and balance problems, weight, smoking, and cane use). Walking at least 8 blocks per week was strongly negatively related to severity of walking difficulty. Independent of difficulty level, older age, black race, fatigue, obesity, and cane use were also negatively associated with walking; living alone and high mastery had a positive association with walking. Even among functionally limited women, sociocultural, psychological, and health-related factors were independently associated with walking behavior. Thus, programs aimed at improving walking ability need to address these factors in addition to walking difficulties to maximize participation and compliance.
Gray, Michelle; Paulson, Sally; Powers, Melissa
2016-04-01
The aim of this investigation was to determine the relationship between usual and maximal walking velocities with measures of functional fitness (FF). Fifty-seven older adults (78.2 ± 6.6 years) were recruited from a local retirement community. All participants completed the following assessments: 10-m usual and maximal walk, Short Physical Performance Battery (SPPB), 6-min walk (6MW), 8-foot up-and-go (UPGO), and 30-s chair stand. Based on their SPPB performance, low (≤ 9) and high (≥ 10) FF groups were formed. Among all participants, maximal walking velocity, not usual walking velocity, was significantly correlated with SPPB (r = .35; p < .05 and r = .19; p > .05, respectively). In the high functioning group, both maximal and usual walking velocities were correlated, but correlation coefficients were stronger for all variables for maximal walking velocity. These results suggest different walking conditions may be necessary to use for high and low functioning older adults; specifically, maximal walking velocity may be a preferred measure among high functioning older adults.
Ledford, Christy J W
2012-10-01
Examining interpersonal (physician-patient) communication strategies for promoting walking exercise to patients with type 2 diabetes assigned to primary care clinics, the study evaluated two message design variables--frame and presentation mode--as influencers of communication and adoption success. The single-site, four-week, prospective intervention study followed a 2×3 factorial, non-equivalent comparison group quasi-experimental design. Results showed frame was significantly related to steps walked; however, when including patient activation as an interaction, frame was non-significant. The model including patient activation interactions, however, detected significant mode effects on behavior. Results provide evidence that statistics are most effectively used with activated patients.
Perceptual-motor regulation in locomotor pointing while approaching a curb.
Andel, Steven van; Cole, Michael H; Pepping, Gert-Jan
2018-02-01
Locomotor pointing is a task that has been the focus of research in the context of sport (e.g. long jumping and cricket) as well as normal walking. Collectively, these studies have produced a broad understanding of locomotor pointing, but generalizability has been limited to laboratory type tasks and/or tasks with high spatial demands. The current study aimed to generalize previous findings in locomotor pointing to the common daily task of approaching and stepping on to a curb. Sixteen people completed 33 repetitions of a task that required them to walk up to and step onto a curb. Information about their foot placement was collected using a combination of measures derived from a pressure-sensitive walkway and video data. Variables related to perceptual-motor regulation were analyzed on an inter-trial, intra-step and inter-step level. Similar to previous studies, analysis of the foot placements showed that, variability in foot placement decreased as the participants drew closer to the curb. Regulation seemed to be initiated earlier in this study compared to previous studies, as shown by a decreasing variability in foot placement as early as eight steps before reaching the curb. Furthermore, it was shown that when walking up to the curb, most people regulated their walk in a way so as to achieve minimal variability in the foot placement on top of the curb, rather than a placement in front of the curb. Combined, these results showed a strong perceptual-motor coupling in the task of approaching and stepping up a curb, rendering this task a suitable test for perceptual-motor regulation in walking. Copyright © 2017 Elsevier B.V. All rights reserved.
Straudi, S; Benedetti, M G; Venturini, E; Manca, M; Foti, C; Basaglia, N
2013-01-01
Gait disorders are common in multiple sclerosis (MS) and lead to a progressive reduction of function and quality of life. Test the effects of robot-assisted gait rehabilitation in MS subjects through a pilot randomized-controlled study. We enrolled MS subjects with Expanded Disability Status Scale scores within 4.5-6.5. The experimental group received 12 robot-assisted gait training sessions over 6 weeks. The control group received the same amount of conventional physiotherapy. Outcomes measures were both biomechanical assessment of gait, including kinematics and spatio-temporal parameters, and clinical test of walking endurance (six-minute walk test) and mobility (Up and Go Test). 16 subjects (n = 8 experimental group, n = 8 control group) were included in the final analysis. At baseline the two groups were similar in all variables, except for step length. Data showed walking endurance, as well as spatio-temporal gait parameters improvements after robot-assisted gait training. Pelvic antiversion and reduced hip extension during terminal stance ameliorated after aforementioned intervention. Robot-assisted gait training seems to be effective in increasing walking competency in MS subjects. Moreover, it could be helpful in restoring the kinematic of the hip and pelvis.
2017-01-01
The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls. PMID:28700633
Chidori, Kazuhiro; Yamamoto, Yuji
2017-01-01
The aim of this study was to evaluate the effects of the lateral amplitude and regularity of upper body fluctuation on step time variability. Return map analysis was used to clarify the relationship between step time variability and a history of falling. Eleven healthy, community-dwelling older adults and twelve younger adults participated in the study. All of the subjects walked 25 m at a comfortable speed. Trunk acceleration was measured using triaxial accelerometers attached to the third lumbar vertebrae (L3) and the seventh cervical vertebrae (C7). The normalized average magnitude of acceleration, the coefficient of determination ($R^2$) of the return map, and the step time variabilities, were calculated. Cluster analysis using the average fluctuation and the regularity of C7 fluctuation identified four walking patterns in the mediolateral (ML) direction. The participants with higher fluctuation and lower regularity showed significantly greater step time variability compared with the others. Additionally, elderly participants who had fallen in the past year had higher amplitude and a lower regularity of fluctuation during walking. In conclusion, by focusing on the time evolution of each step, it is possible to understand the cause of stride and/or step time variability that is associated with a risk of falls.
Different knee joint loading patterns in ACL deficient copers and non-copers during walking.
Alkjær, Tine; Henriksen, Marius; Simonsen, Erik B
2011-04-01
Rupture of the anterior cruciate ligament (ACL) causes changes in the walking pattern. ACL deficient subjects classified as copers and non-copers have been observed to adopt different post-injury walking patterns. How these different patterns affect the knee compression and shear forces is unresolved. Thus, the aim of the present study was to investigate how different walking patterns observed between copers, non-copers, and controls affect the knee compression and shear forces during walking. Three-dimensional gait analyses were performed in copers (n = 9), non-copers (n = 10), and control subjects (n =19). The net knee joint moment, knee joint reaction forces, and the sagittal knee joint angle were input parameters to a biomechanical model that assessed the knee compression and shear forces. The results showed that the non-copers walked with significantly reduced knee compression and shear forces than the controls. The overall knee compression force pattern was similar between the copers and controls, although this variable was significantly increased at heel strike in the copers compared to both non-copers and controls. The peak shear force was significantly dependent on the peak knee extensor moment. This covariance was significantly different between groups meaning that at a given knee extensor moment the shear force was significantly reduced in the copers compared to controls. The different knee joint loading patterns observed between non-copers and copers reflected the different walking strategies adopted by these groups, which may have implications for the knee joint stability. The strategy adopted by the copers may resemble an effective way to stabilize the knee joint during walking after an ACL rupture and that the knee kinematics may play a key role for this strategy. It is clinically relevant to investigate if gait retraining would enable non-copers to walk as copers and thereby improve their knee joint stability.
Bayesian dynamic modeling of time series of dengue disease case counts.
Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander
2017-07-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.
Ebrahimi, Samaneh; Kamali, Fahimeh; Razeghi, Mohsen; Haghpanah, Seyyed Arash
2017-04-01
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P<0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P<0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P<0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Decker, Leslie; Houser, Jeremy J.; Noble, John M.; Karst, Gregory M.; Stergiou, Nicholas
2009-01-01
This study aims to investigate the effects of shoe traction and obstacle height on lower extremity relative phase dynamics (analysis of intralimb coordination) during walking to better understand the mechanisms employed to avoid slippage following obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of shoes (low and high traction). A coordination analysis was used and phasing relationships between lower extremity segments were examined. The results demonstrated that significant behavioral changes were elicited under varied obstacle heights and frictional conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more in-phase relationship between the interacting lower limb segments. The higher the obstacle and the lower the shoe traction, the more unstable the system became. These changes in phasing relationship and variability are indicators of alterations in coordinative behavior, which if pushed further may have lead to falling. PMID:19187929
Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S
2015-01-01
Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.
Identifying clusters of active transportation using spatial scan statistics.
Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David
2009-08-01
There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.
Identifying Clusters of Active Transportation Using Spatial Scan Statistics
Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David
2009-01-01
Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451
Dog walking: its association with physical activity guideline adherence and its correlates.
Hoerster, Katherine D; Mayer, Joni A; Sallis, James F; Pizzi, Nicole; Talley, Sandra; Pichon, Latrice C; Butler, Dalila A
2011-01-01
We examined the prevalence and correlates of dog walking among dog owners, and whether dog walking is associated with meeting the American College of Sports Medicine/American Heart Association physical activity guidelines. In March 2008, we mailed a survey to dog-owning clients from two San Diego County veterinary clinics. Useable data were obtained from 984 respondents, and 75 of these completed retest surveys. We assessed associations between potential correlates and dog walking (i.e., yes/no dog walking for at least 10 min in past week). Test-retest reliability of measures was generally high. Approximately one-third of the sample (31.5%) were not dog walkers. Proportions of dog walkers versus non-dog walkers meeting United States guidelines were 64.3% and 55.0%, respectively. Dog walking was independently associated with meeting guidelines in a multivariate model (odds ratio=1.59, p=0.004). Three variables were independently associated with dog walking in a multivariate model: dog encouragement of dog walking, dog-walking obligation, and dog-walking self-efficacy. Dog walking was associated with meeting physical activity guidelines, making it a viable method for promoting physical activity. Dog-walking obligation and self-efficacy may be important mediators of dog walking and may need to be targeted if interventions are to be successful. Published by Elsevier Inc.
Cohen-Holzer, Marilyn; Sorek, Gilad; Schweizer, Maayan; Katz-Leurer, Michal
2017-01-01
An intensive hybrid program, combining constraint with bimanual training, improves upper extremity function as well as walking endurance of children with unilateral cerebral palsy (UCP). Endurance improvement may be associated with the cardiac autonomic regulation system (CARS) adaptation, known to be impaired among these children. To examine the influence of an intensive hybrid program on CARS, walking endurance and the correlation with upper extremity function of children with UCP. Twenty-four children aged 6-10 years with UCP participated in a hybrid program, 10 days, 6 hours per day. Data were collected pre-, post- and 3-months post-intervention. Main outcome measures included the Polar RS800CX for heart rate (HR) and heart rate variability (HRV) data, the 6-Minute Walk Test (6MWT) for endurance, and the Assisting Hand Assessment (AHA) and Jebsen-Taylor Test of Hand Function (JTTHF) for bimanual and unimanual function. A significant reduction in HR and an increase in HRV at post- and 3-month post-intervention was noted (χ22= 8.3, p = 0.016) along with a significant increase in 6MWT with a median increase of 81 meters (χ22= 11.0, p = 0.004) at the same interval. A significant improvement was noted in unimanual and bimanual performance following the intervention. An intensive hybrid program effectively improved CARS function as well as walking endurance and upper extremity function in children with UCP (213).
Torres-Oviedo, Gelsy; Bastian, Amy J
2010-12-15
Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.
The effects of basic fitness parameters on the implementation of specific military activities.
Sporiš, Goran; Harasin, Dražen; Baić, Mario; Krističević, Tomislav; Krakan, Ivan; Milanović, Zoran; Cular, Dražen; Bagarić-Krakan, Lucija
2014-12-01
The aim of this study was to determine whether basic fitness parameters have the impact on the specific military activity such as walking 18 km with 25 kg of load. The members of Croatian Armed Forces (30 soldiers) were tested before the beginning of the training program. The study has included variables for the assessment of muscular endurance: push-ups in 2 minutes, sit-ups in 2 minutes, maximum number of pull-ups before dropping from the bar, bench press with 70% of body weight-max number of repetitions, max number of squats for 60 seconds, then the variables for the assessment of aerobic capacity: the 3200m run and relative oxygen uptake using the direct method of measurement on a treadmill as well as the variable for the assessment of body fat (body fat %). As the criterion variable, it was used the 18 km walking with 25 kg of load. The results of the regression analysis have shown statistically significant relation of predictor variables with the criterion variable. The two variables, 3200m run and RVO2 had a significant Beta coefficient. Based on the obtained results it could be concluded that great cardio-respiratory endurance has a much larger impact on the walking length of 18 km with a load of 25 kg than other fitness parameters.
Stabilization of cat paw trajectory during locomotion
Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.
2014-01-01
We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676
Paterson, Kade; Hill, Keith; Lythgo, Noel
2011-02-01
Measures of walking instability such as stride dynamics and gait variability have been shown to identify future fallers in older adult populations with gait limitations or mobility disorders. This study investigated whether measures of walking instability can predict future fallers (over a prospective 12 month period) in a group of healthy and active older women. Ninety-seven healthy active women aged between 55 and 90 years walked for 7 min around a continuous walking circuit. Gait data recorded by a GAITRite(®) walkway and foot-mounted accelerometers were used to calculate measures of stride dynamics and gait variability. The participant's physical function and balance were assessed. Fall incidence was monitored over the following 12 months. Inter-limb differences (p≤0.04) in stride dynamics were found for fallers (one or more falls) aged over 70 years, and multiple fallers (two or more falls) aged over 55 years, but not in non-fallers or a combined group of single and non-fallers. No group differences were found in the measures of physical function, balance or gait, including variability. Additionally, no gait variable predicted falls. Reduced coordination of inter-limb dynamics was found in active healthy older fallers and multiple fallers despite no difference in other measures of intrinsic falls risk. Evaluating inter-limb dynamics may be a clinically sensitive technique to detect early gait instability and falls risk in high functioning older adults, prior to change in other measures of physical function, balance and gait. Copyright © 2010 Elsevier B.V. All rights reserved.
1992-12-01
suspect :mat, -n2 extent predict:.on cas jas ccsiziveiv crrei:=e amonc e v:arious models, :he fandom *.;aik, learn ha r ur e, i;<ea- variable and Bemis...Functions, Production Rate Adjustment Model, Learning Curve Model. Random Walk Model. Bemis Model. Evaluating Model Bias, Cost Prediction Bias. Cost...of four cost progress models--a random walk model, the tradiuonai learning curve model, a production rate model Ifixed-variable model). and a model
Does external walking environment affect gait patterns?
Patterson, Matthew R; Whelan, Darragh; Reginatto, Brenda; Caprani, Niamh; Walsh, Lorcan; Smeaton, Alan F; Inomata, Akihiro; Caulfield, Brian
2014-01-01
The objective of this work is to develop an understanding of the relationship between mobility metrics obtained outside of the clinic or laboratory and the context of the external environment. Ten subjects walked with an inertial sensor on each shank and a wearable camera around their neck. They were taken on a thirty minute walk in which they mobilized over the following conditions; normal path, busy hallway, rough ground, blind folded and on a hill. Stride time, stride time variability, stance time and peak shank rotation rate during swing were calculated using previously published algorithms. Stride time was significantly different between several of the conditions. Technological advances mean that gait variables can now be captured as patients go about their daily lives. The results of this study show that the external environment has a significant impact on the quality of gait metrics. Thus, context of external walking environment is an important consideration when analyzing ambulatory gait metrics from the unsupervised home and community setting.
Neural correlates of gait variability in people with multiple sclerosis with fall history.
Kalron, Alon; Allali, Gilles; Achiron, Anat
2018-05-28
Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Walking for Transportation and Leisure Among U.S. Adults--National Health Interview Survey 2010.
Paul, Prabasaj; Carlson, Susan A; Carroll, Dianna D; Berrigan, David; Fulton, Janet E
2015-06-16
Walking, the most commonly reported physical activity among U.S. adults, is undertaken in various domains, including transportation and leisure. This study examined prevalence, bout length, and mean amount of walking in the last week for transportation and leisure, by selected characteristics. Self-reported data from the 2010 National Health Interview Survey (N = 24,017) were analyzed. Prevalence of transportation walking was 29.4% (95% CI: 28.6%-30.3%) and of leisure walking was 50.0% (95% CI: 49.1%-51.0%). Prevalence of transportation walking was higher among men; prevalence of leisure walking was higher among women. Most (52.4%) transportation walking bouts were 10 to 15 minutes; leisure walking bouts were distributed more evenly (28.0%, 10-15 minutes; 17.1%, 41-60 minutes). Mean time spent in transportation walking was higher among men, decreased with increasing BMI, and varied by race/ethnicity and region of residence. Mean time spent leisure walking increased with increasing age and with decreasing BMI. Demographic correlates and patterns of walking differ by domain. Interventions focusing on either leisure or transportation walking should consider correlates for the specific walking domain. Assessing prevalence, bout length, and mean time of walking for transportation and leisure separately allows for more comprehensive surveillance of walking.
A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes
2013-01-01
Background Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Methods Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. Results A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. Conclusions The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear. PMID:24196492
2014-01-01
Background We sought to determine if adult residents living at high altitude have developed sufficient adaptation to a hypoxic environment to match the functional capacity of a similar population at sea level. To test this hypothesis, we compared the 6-min walk test distance (6MWD) in 334 residents living at sea level vs. at high altitude. Methods We enrolled 168 healthy adults aged ≥35 years residing at sea level in Lima and 166 individuals residing at 3,825 m above sea level in Puno, Peru. Participants completed a 6-min walk test, answered a sociodemographics and clinical questionnaire, underwent spirometry, and a blood test. Results Average age was 54.0 vs. 53.8 years, 48% vs. 43% were male, average height was 155 vs. 158 cm, average blood oxygen saturation was 98% vs. 90%, and average resting heart rate was 67 vs. 72 beats/min in Lima vs. Puno. In multivariable regression, participants in Puno walked 47.6 m less (95% CI -81.7 to -13.6 m; p < 0.01) than those in Lima. Other variables besides age and height that were associated with 6MWD include change in heart rate (4.0 m per beats/min increase above resting heart rate; p < 0.001) and percent body fat (-1.4 m per % increase; p = 0.02). Conclusions The 6-min walk test predicted a lowered functional capacity among Andean high altitude vs. sea level natives at their altitude of residence, which could be explained by an incomplete adaptation or a protective mechanism favoring neuro- and cardioprotection over psychomotor activity. PMID:24484777
A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: a feasibility study.
Takahashi, Kota Z; Lewek, Michael D; Sawicki, Gregory S
2015-02-25
In persons post-stroke, diminished ankle joint function can contribute to inadequate gait propulsion. To target paretic ankle impairments, we developed a neuromechanics-based powered ankle exoskeleton. Specifically, this exoskeleton supplies plantarflexion assistance that is proportional to the user's paretic soleus electromyography (EMG) amplitude only during a phase of gait when the stance limb is subjected to an anteriorly directed ground reaction force (GRF). The purpose of this feasibility study was to examine the short-term effects of the powered ankle exoskeleton on the mechanics and energetics of gait. Five subjects with stroke walked with a powered ankle exoskeleton on the paretic limb for three 5 minute sessions. We analyzed the peak paretic ankle plantarflexion moment, paretic ankle positive work, symmetry of GRF propulsion impulse, and net metabolic power. The exoskeleton increased the paretic plantarflexion moment by 16% during the powered walking trials relative to unassisted walking condition (p < .05). Despite this enhanced paretic ankle moment, there was no significant increase in paretic ankle positive work, or changes in any other mechanical variables with the powered assistance. The exoskeleton assistance appeared to reduce the net metabolic power gradually with each 5 minute repetition, though no statistical significance was found. In three of the subjects, the paretic soleus activation during the propulsion phase of stance was reduced during the powered assistance compared to unassisted walking (35% reduction in the integrated EMG amplitude during the third powered session). This feasibility study demonstrated that the exoskeleton can enhance paretic ankle moment. Future studies with greater sample size and prolonged sessions are warranted to evaluate the effects of the powered ankle exoskeleton on overall gait outcomes in persons post-stroke.
Rothman, Linda; To, Teresa; Buliung, Ron; Macarthur, Colin; Howard, Andrew
2014-03-01
To estimate the proportion of children living within walking distance who walk to school in Toronto, Canada and identify built and social environmental correlates of walking. Observational counts of school travel mode were done in 2011, at 118 elementary schools. Built environment data were obtained from municipal sources and school field audits and mapped onto school attendance boundaries. The influence of social and built environmental features on walking counts was analyzed using negative binomial regression. The mean proportion observed walking was 67% (standard deviation=14.0). Child population (incidence rate ratio (IRR) 1.36), pedestrian crossover (IRR 1.32), traffic light (IRR 1.19), and intersection densities (IRR 1.03), school crossing guard (IRR 1.14) and primary language other than English (IRR 1.20) were positively correlated with walking. Crossing guard presence reduced the influence of other features on walking. This is the first large observational study examining school travel mode and the environment. Walking proportions were higher than those previously reported in Toronto, with large variability. Associations between population density and several roadway design features and walking were confirmed. School crossing guards may override the influence of roadway features on walking. Results have important implications for policies regarding walking promotion. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Ryder, Holly H; Faloon, Kathryn J; Lévesque, Lucie; McDonald, Deanna
2009-10-01
Most adults do not walk enough to obtain health benefits. Pedometers have been successfully utilized to motivate and increase walking. Given that libraries are a place where community members seek health resources, they are a logical setting for increasing community accessibility to pedometers. The purpose was to examine the feasibility of lending pedometers to library patrons to increase walking. In five Canadian public libraries, 90 pedometers were made available for 6 months. A total of 41 library patrons (33 women, 8 men, age range 18 to 65 or older) completed a survey about their walking patterns and pedometer use. More than 330 loans were made. Chisquare analysis found significant associations between walking and motivation to walk more (p < .05), walking and goal setting (p < .05), and motivation to walk more and setting a walking goal (p < .001). Results provide preliminary evidence that lending pedometers through local libraries is an effective, low-cost approach to enhance walking in community members.
Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care
2013-01-01
Background Frailty in the elderly increases their vulnerability and leads to a greater risk of adverse events. According to various studies, the prevalence of the frailty syndrome in persons age 65 and over ranges between 3% and 37%, depending on age and sex. Walking speed in itself is considered a simple indicator of health status and of survival in older persons. Detecting frailty in primary care consultations can help improve care of the elderly, and walking speed may be an indicator that could facilitate the early diagnosis of frailty in primary care. The objective of this work was to estimate frailty-syndrome prevalence and walking speed in an urban population aged 65 years and over, and to analyze the relationship between the two indicators from the perspective of early diagnosis of frailty in the primary care setting. Methods Population cohort of persons age 65 and over from two urban neighborhoods in northern Madrid (Spain). Cross-sectional analysis. Bivariate and multivariate analysis with binary logistic regression to study the variables associated with frailty. Different cut-off points between 0.4 and 1.4 m/s were used to study walking speed in this population. The relationship between frailty and walking speed was analyzed using likelihood ratios. Results The study sample comprised 1,327 individuals age 65 and older with mean age 75.41 ± 7.41 years; 53.4% were women. Estimated frailty in the study population was 10.5% [95% CI: 8.9-12.3]. Frailty increased with age (OR = 1.14; 95% CI: 1.10-1.19) and was associated with poor self-rated health (OR = 2.52; 95% CI: 1.43-4.44), number of drugs prescribed (OR = 1.17; 95% CI: 1.08-1.26) and disability (OR = 6.58; 95% CI: 3.92-11.05). Walking speed less than 0.8 m/s was found in 42.6% of cases and in 56.4% of persons age 75 and over. Walking speed greater than 0.9 m/s ruled out frailty in the study sample. Persons age 75 and older with walking speed <0.8 m/s are at particularly high risk of frailty (32.1%). Conclusions Frailty-syndrome prevalence is high in persons aged 75 and over. Detection of walking speed <0.8 m/s is a simple approach to the diagnosis of frailty in the primary care setting. PMID:23782891
Hirsch, Jana A.; Moore, Kari A.; Clarke, Philippa J.; Rodriguez, Daniel A.; Evenson, Kelly R.; Brines, Shannon J.; Zagorski, Melissa A.; Diez Roux, Ana V.
2014-01-01
Lack of longitudinal research hinders causal inference on the association between the built environment and walking. In the present study, we used data from 6,027 adults in the Multi-Ethnic Study of Atherosclerosis who were 45–84 years of age at baseline to investigate the association of neighborhood built environment with trends in the amount of walking between 2000 and 2012. Walking for transportation and walking for leisure were assessed at baseline and at 3 follow-up visits (median follow-up = 9.15 years). Time-varying built environment measures (measures of population density, land use, number of destinations, bus access, and street connectivity) were created using geographic information systems. We used linear mixed models to estimate the associations between baseline levels of and a change in each built environment feature and a change in the frequency of walking. After adjustment for potential confounders, we found that higher baseline levels of population density, area zoned for retail, social destinations, walking destinations, and street connectivity were associated with greater increases in walking for transportation over time. Higher baseline levels of land zoned for residential use and distance to buses were associated with less pronounced increases (or decreases) in walking for transportation over time. Increases in the number of social destinations, the number of walking destinations, and street connectivity over time were associated with greater increases in walking for transportation. Higher baseline levels of both land zoned for retail and walking destinations were associated with greater increases in leisure walking, but no changes in built environment features were associated with leisure walking. The creation of mixed-use, dense developments may encourage adults to incorporate walking for transportation into their everyday lives. PMID:25234431
Dalfampridine Effects Beyond Walking Speed in Multiple Sclerosis
Fjeldstad, Cecilie; Suárez, Gustavo; Klingler, Michael; Henney, Herbert R.; Rabinowicz, Adrian L.
2015-01-01
Background: Dalfampridine extended release (ER) improves walking in people with multiple sclerosis (MS), as demonstrated by walking speed improvement. This exploratory study evaluated treatment effects of dalfampridine-ER on gait, balance, and walking through treatment withdrawal and reinitiation. Methods: Dalfampridine-ER responders, based on Timed 25-Foot Walk (T25FW) assessment before study entry, were included in this open-label, three-period, single-center study. Period 1: on-drug evaluations performed at screening and 1 week after screening. Period 2: dalfampridine-ER withdrawal and off-drug evaluations (days 5 and 11). Period 3: dalfampridine-ER reinitiation/final on-drug evaluation (day 15). Primary outcome variables: NeuroCom composite scores for gait and balance; balance was evaluated if gait changes were significant. Secondary variables: individual NeuroCom scores, walking speed (T25FW) and distance (2-Minute Walk Test [2MWT]), and balance (Berg Balance Scale [BBS]). Results: All 20 patients completed the study: mean age, 53.1 years; mean MS duration, 11.3 years; mean time taking dalfampridine-ER, 315.3 days. NeuroCom gait composite scores worsened during period 2 relative to period 1 and improved during period 3; the mean ± SD difference in gait composite scores on drug was 4.03 ± 1.51 points (P = .015). Balance composite scores did not change significantly. Improvements were observed for off-drug versus on-drug for T25FW (0.36 ft/sec, P < .001), 2MWT (25.4 ft, P = .006), and BBS (1.7 points, P = .003). Safety profile was consistent with previous studies. Conclusions: Significant improvements in gait, walking speed, distance, and balance were demonstrated by dalfampridine-ER reinitiation after a 10-day withdrawal period. PMID:26664333
Hafer, Jocelyn F; Boyer, Katherine A
2017-01-01
Coordination variability (CV) quantifies the variety of movement patterns an individual uses during a task and may provide a measure of the flexibility of that individual's motor system. While there is growing popularity of segment CV as a marker of motor system health or adaptability, it is not known how many strides of data are needed to reliably calculate CV. This study aimed to determine the number of strides needed to reliably calculate CV in treadmill walking and running, and to compare CV between walking and running in a healthy population. Ten healthy young adults walked and ran at preferred speeds on a treadmill and a modified vector coding technique was used to calculate CV for the following segment couples: pelvis frontal plane vs. thigh frontal plane, thigh sagittal plane vs. shank sagittal plane, thigh sagittal plane vs. shank transverse plane, and shank transverse plane vs. rearfoot frontal plane. CV for each coupling of interest was calculated for 2-15 strides for each participant and gait type. Mean CV was calculated across the entire gait cycle and, separately, for 4 phases of the gait cycle. For running and walking 8 and 10 strides, respectively, were sufficient to obtain a reliable CV estimate. CV was significantly different between walking and running for the thigh vs. shank couple comparisons. These results suggest that 10 strides of treadmill data are needed to reliably calculate CV for walking and running. Additionally, the differences in CV between walking and running suggest that the role of knee (i.e., inter-thigh- shank) control may differ between these forms of locomotion. Copyright © 2016 Elsevier B.V. All rights reserved.
Duncan, Dustin T; Méline, Julie; Kestens, Yan; Day, Kristen; Elbel, Brian; Trasande, Leonardo; Chaix, Basile
2016-06-20
Few studies have used GPS data to analyze the relationship between Walk Score, transportation choice and walking. Additionally, the influence of Walk Score is understudied using trips rather than individuals as statistical units. The purpose of this study is to examine associations at the trip level between Walk Score, transportation mode choice, and walking among Paris adults who were tracked with GPS receivers and accelerometers in the RECORD GPS Study. In the RECORD GPS Study, 227 participants were tracked during seven days with GPS receivers and accelerometers. Participants were also surveyed with a GPS-based web mapping application on their activities and transportation modes for all trips (6969 trips). Walk Score, which calculates neighborhood walkability, was assessed for each origin and destination of every trip. Multilevel logistic and linear regression analyses were conducted to estimate associations between Walk Score and walking in the trip or accelerometry-assessed number of steps for each trip, after adjustment for individual/neighborhood characteristics. The mean overall Walk Scores for trip origins were 87.1 (SD = 14.4) and for trip destinations 87.1 (SD = 14.5). In adjusted trip-level associations between Walk Score and walking only in the trip, we found that a walkable neighborhood in the trip origin and trip destination was associated with increased odds of walking in the trip assessed in the survey. The odds of only walking in the trip were 3.48 (95% CI: 2.73 to 4.44) times higher when the Walk Score for the trip origin was "Walker's Paradise" compared to less walkable neighborhoods (Very/Car-Dependent or Somewhat Walkable), with an identical independent effect of trip destination Walk Score on walking. The number of steps per 10 min (as assessed with accelerometry) was cumulatively higher for trips both originating and ending in walkable neighborhoods (i.e., "Very Walkable"). Walkable neighborhoods were associated with increases in walking among adults in Paris, as documented at the trip level. Creating walkable neighborhoods (through neighborhood design increased commercial activity) may increase walking trips and, therefore, could be a relevant health promotion strategy to increase physical activity.
Duncan, Dustin T.; Méline, Julie; Kestens, Yan; Day, Kristen; Elbel, Brian; Trasande, Leonardo; Chaix, Basile
2016-01-01
Background: Few studies have used GPS data to analyze the relationship between Walk Score, transportation choice and walking. Additionally, the influence of Walk Score is understudied using trips rather than individuals as statistical units. The purpose of this study is to examine associations at the trip level between Walk Score, transportation mode choice, and walking among Paris adults who were tracked with GPS receivers and accelerometers in the RECORD GPS Study. Methods: In the RECORD GPS Study, 227 participants were tracked during seven days with GPS receivers and accelerometers. Participants were also surveyed with a GPS-based web mapping application on their activities and transportation modes for all trips (6969 trips). Walk Score, which calculates neighborhood walkability, was assessed for each origin and destination of every trip. Multilevel logistic and linear regression analyses were conducted to estimate associations between Walk Score and walking in the trip or accelerometry-assessed number of steps for each trip, after adjustment for individual/neighborhood characteristics. Results: The mean overall Walk Scores for trip origins were 87.1 (SD = 14.4) and for trip destinations 87.1 (SD = 14.5). In adjusted trip-level associations between Walk Score and walking only in the trip, we found that a walkable neighborhood in the trip origin and trip destination was associated with increased odds of walking in the trip assessed in the survey. The odds of only walking in the trip were 3.48 (95% CI: 2.73 to 4.44) times higher when the Walk Score for the trip origin was “Walker’s Paradise” compared to less walkable neighborhoods (Very/Car-Dependent or Somewhat Walkable), with an identical independent effect of trip destination Walk Score on walking. The number of steps per 10 min (as assessed with accelerometry) was cumulatively higher for trips both originating and ending in walkable neighborhoods (i.e., “Very Walkable”). Conclusions: Walkable neighborhoods were associated with increases in walking among adults in Paris, as documented at the trip level. Creating walkable neighborhoods (through neighborhood design increased commercial activity) may increase walking trips and, therefore, could be a relevant health promotion strategy to increase physical activity. PMID:27331818
Walking economy is predictably determined by speed, grade, and gravitational load.
Ludlow, Lindsay W; Weyand, Peter G
2017-11-01
The metabolic energy that human walking requires can vary by more than 10-fold, depending on the speed, surface gradient, and load carried. Although the mechanical factors determining economy are generally considered to be numerous and complex, we tested a minimum mechanics hypothesis that only three variables are needed for broad, accurate prediction: speed, surface grade, and total gravitational load. We first measured steady-state rates of oxygen uptake in 20 healthy adult subjects during unloaded treadmill trials from 0.4 to 1.6 m/s on six gradients: -6, -3, 0, 3, 6, and 9°. Next, we tested a second set of 20 subjects under three torso-loading conditions (no-load, +18, and +31% body weight) at speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates spanned a 14-fold range from supine rest to the greatest single-trial walking mean (3.1 ± 0.1 to 43.3 ± 0.5 ml O 2 ·kg -body -1 ·min -1 , respectively). As theorized, the walking portion (V̇o 2-walk = V̇o 2-gross - V̇o 2-supine-rest ) of the body's gross metabolic rate increased in direct proportion to load and largely in accordance with support force requirements across both speed and grade. Consequently, a single minimum-mechanics equation was derived from the data of 10 unloaded-condition subjects to predict the pooled mass-specific economy (V̇o 2-gross , ml O 2 ·kg -body + load -1 ·min -1 ) of all the remaining loaded and unloaded trials combined ( n = 1,412 trials from 90 speed/grade/load conditions). The accuracy of prediction achieved ( r 2 = 0.99, SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) leads us to conclude that human walking economy is predictably determined by the minimum mechanical requirements present across a broad range of conditions. NEW & NOTEWORTHY Introduced is a "minimum mechanics" model that predicts human walking economy across a broad range of conditions from only three variables: speed, surface grade, and body-plus-load mass. The derivation/validation data set includes steady-state loaded and unloaded walking trials ( n = 3,414) that span a fourfold range of walking speeds on each of six different surface gradients (-6 to +9°). The accuracy of our minimum mechanics model ( r 2 = 0.99; SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) appreciably exceeds that of currently used standards. Copyright © 2017 the American Physiological Society.
Kahlert, Daniela; Schlicht, Wolfgang
2015-08-21
Traffic safety and pedestrian friendliness are considered to be important conditions for older people's motivation to walk through their environment. This study uses an experimental study design with computer-simulated living environments to investigate the effect of micro-scale environmental factors (parking spaces and green verges with trees) on older people's perceptions of both motivational antecedents (dependent variables). Seventy-four consecutively recruited older people were randomly assigned watching one of two scenarios (independent variable) on a computer screen. The scenarios simulated a stroll on a sidewalk, as it is 'typical' for a German city. In version 'A,' the subjects take a fictive walk on a sidewalk where a number of cars are parked partially on it. In version 'B', cars are in parking spaces separated from the sidewalk by grass verges and trees. Subjects assessed their impressions of both dependent variables. A multivariate analysis of covariance showed that subjects' ratings on perceived traffic safety and pedestrian friendliness were higher for Version 'B' compared to version 'A'. Cohen's d indicates medium (d = 0.73) and large (d = 1.23) effect sizes for traffic safety and pedestrian friendliness, respectively. The study suggests that elements of the built environment might affect motivational antecedents of older people's walking behavior.
De Asha, Alan R; Johnson, Louise; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G
2013-02-01
Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment. Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions. Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ≤ 0.002). The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot. Copyright © 2012 Elsevier Ltd. All rights reserved.
Metabolic Cost of Lateral Stabilization during Walking in People with Incomplete Spinal Cord Injury
Matsubara, J.H.; Wu, M.; Gordon, K.E.
2015-01-01
People with incomplete spinal cord injury (iSCI) expend considerable energy to walk, which can lead to rapid fatigue and limit community ambulation. Selecting locomotor patterns that enhance lateral stability may contribute to this population’s elevated cost of transport. The goal of the current study was to quantify the metabolic energy demands of maintaining lateral stability during gait in people with iSCI. To quantify this metabolic cost, we observed ten individuals with iSCI walking with and without external lateral stabilization. We hypothesized that with external lateral stabilization, people with iSCI would adapt their gait by decreasing step width, which would correspond with a substantial decrease in cost of transport. Our findings support this hypothesis. Subjects significantly (p < 0.05) decreased step width by 22%, step width variability by 18%, and minimum lateral margin of stability by 25% when they walked with external lateral stabilization compared to unassisted walking. Metabolic cost of transport also decreased significantly (p < 0.05) by 10% with external lateral stabilization. These findings suggest that this population is capable of adapting their gait to meet changing demands placed on balance. The percent reduction in cost of transport when walking with external lateral stabilization was strongly correlated with functional impairment level as assessed by subjects’ scores on the Berg Balance Scale (R = 0.778) and Lower Extremity Motor Score (R = 0.728). These relationships suggest that as functional balance and strength decrease, the amount of metabolic energy used to maintain lateral stability during gait will increase. PMID:25670651
[Assessing Motor-Cognition Interaction of Patients with Cognitive Disorders: Clinical Aspects].
Schniepp, R; Wuehr, M; Schöberl, F; Zwergal, A
2016-08-01
Difficulties of walking and deficits of cognitive functions appear to be associated in the elderly. Thus, clinical assessment in geriatry and neurology should focus on: (1) diagnostic approaches covering both domains of everyday functioning; (2) therapeutic interventions that take into account possible interactions and synergies of both domains. In order to assess the capability for motor-cognitive interactions in the elderly it is recommended to investigate walking patterns during dual-tasks (e.g. walking and counting backwards, walking and naming words) and to examine clinical tests of everyday mobility tasks, such as the Timed-up-and-go-Test and spatial navigation tasks. Patients with cognitive disorders often perform inferior with a reduction of walking speed and an increase of stepping variability. Dual-task performance appears to be a reliable parameter for long-term observations of the course of the disease. Moreover, it might improve the quality of the gait examination during diagnostic or therapeutic interventions (e.g. the spinal tap test in patients with NPH). Several studies further highlight gait deficits during dual-task walking as a marker for the everyday functioning and the quality of life in elderly persons and patients with cognitive disorders.Therapeutic approaches in this context comprise complex motor-cognitive interventions, such as Thai Chi and Dalcroze rhythmic exercises. These interventions appear to act synergistically in motor and cognitive domains. First evidence for the efficacy for improving executive functions and reducing the fall risk of patients with cognitive impairments is given, thought randomized, controlled trials are rare. © Georg Thieme Verlag KG Stuttgart · New York.
Seethapathi, Nidhi; Srinivasan, Manoj
2015-09-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).
Seethapathi, Nidhi; Srinivasan, Manoj
2015-01-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072
Wittwer, Joanne E; Webster, Kate E; Hill, Keith
2013-02-01
Rhythmic auditory cues including music and metronome beats have been used, sometimes interchangeably, to improve disordered gait arising from a range of clinical conditions. There has been limited investigation into whether there are optimal cue types. Different cue types have produced inconsistent effects across groups which differed in both age and clinical condition. The possible effect of normal ageing on response to different cue types has not been reported for gait. The aim of this study was to determine the effects of both rhythmic music and metronome cues on gait spatiotemporal measures (including variability) in healthy older people. Twelve women and seven men (>65 years) walked on an instrumented walkway at comfortable pace and then in time to each of rhythmic music and metronome cues at comfortable pace stepping frequency. Music but not metronome cues produced a significant increase in group mean gait velocity of 4.6 cm/s, due mostly to a significant increase in group mean stride length of 3.1cm. Both cue types produced a significant but small increase in cadence of 1 step/min. Mean spatio-temporal variability was low at baseline and did not increase with either cue type suggesting cues did not disrupt gait timing. Study findings suggest music and metronome cues may not be used interchangeably and cue type as well as frequency should be considered when evaluating effects of rhythmic auditory cueing on gait. Further work is required to determine whether optimal cue types and frequencies to improve walking in different clinical groups can be identified. Copyright © 2012 Elsevier B.V. All rights reserved.
Insights into gait disorders: walking variability using phase plot analysis, Huntington's disease.
Collett, Johnny; Esser, Patrick; Khalil, Hanan; Busse, Monica; Quinn, Lori; DeBono, Katy; Rosser, Anne; Nemeth, Andrea H; Dawes, Helen
2014-09-01
Huntington's disease (HD) is a progressive inherited neurodegenerative disorder. Identifying sensitive methodologies to quantitatively measure early motor changes have been difficult to develop. This exploratory observational study investigated gait variability and symmetry in HD using phase plot analysis. We measured the walking of 22 controls and 35 HD gene carriers (7 premanifest (PreHD)), 16 early/mid (HD1) and 12 late stage (HD2) in Oxford and Cardiff, UK. The unified Huntington's disease rating scale-total motor scores (UHDRS-TMS) and disease burden scores (DBS) were used to quantify disease severity. Data was collected during a clinical walk test (8.8 or 10 m) using an inertial measurement unit attached to the trunk. The 6 middle strides were used to calculate gait variability determined by spatiotemporal parameters (co-efficient of variation (CoV)) and phase plot analysis. Phase plots considered the variability in consecutive wave forms from vertical movement and were quantified by SDA (spatiotemporal variability), SDB (temporal variability), ratio ∀ (ratio SDA:SDB) and Δangleβ (symmetry). Step time CoV was greater in manifest HD (p<0.01, both manifest groups) than controls, as was stride length CoV for HD2 (p<0.01). No differences were found in spatiotemporal variability between PreHD and controls (p>0.05). Phase plot analysis identified differences between manifest HD and controls for SDB, Ratio ∀ and Δangle (all p<0.01, both manifest groups). Furthermore Ratio ∀ was smaller in PreHD compared with controls (p<0.01). Ratio ∀ also produced the strongest correlation with UHDRS-TMS (r=-0.61, p<0.01) and was correlated with DBS (r=-0.42, p=0.02). Phase plot analysis may be a sensitive method of detecting gait changes in HD and can be performed quickly during clinical walking tests. Copyright © 2014 Elsevier B.V. All rights reserved.
Tibiofemoral contact forces during walking, running and sidestepping.
Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G
2016-09-01
We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20
Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.
Ding, Meng; Fan, Guolian
2015-11-01
We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.
Mayne, Darren J; Morgan, Geoffrey G; Willmore, Alan; Rose, Nectarios; Jalaludin, Bin; Bambrick, Hilary; Bauman, Adrian
2013-12-24
Walkability describes the capacity of the built environment to support walking for various purposes. This paper describes the construction and validation of two objective walkability indexes for Sydney, Australia. Walkability indexes using residential density, intersection density, land use mix, with and without retail floor area ratio were calculated for 5,858 Sydney Census Collection Districts in a geographical information system. Associations between variables were evaluated using Spearman's rho (ρ). Internal consistency and factor structure of indexes were estimated with Cronbach's alpha and principal components analysis; convergent and predictive validity were measured using weighted kappa (κw) and by comparison with reported walking to work at the 2006 Australian Census using logistic regression. Spatial variation in walkability was assessed using choropleth maps and Moran's I. A three-attribute abridged Sydney Walkability Index comprising residential density, intersection density and land use mix was constructed for all Sydney as retail floor area was only available for 5.3% of Census Collection Districts. A four-attribute full index including retail floor area ratio was calculated for 263 Census Collection Districts in the Sydney Central Business District. Abridged and full walkability index scores for these 263 areas were strongly correlated (ρ=0.93) and there was good agreement between walkability quartiles (κw=0.73). Internal consistency ranged from 0.60 to 0.71, and all index variables loaded highly on a single factor. The percentage of employed persons who walked to work increased with increasing walkability: 3.0% in low income-low walkability areas versus 7.9% in low income-high walkability areas; and 2.1% in high income-low walkability areas versus 11% in high income-high walkability areas. The adjusted odds of walking to work were 1.05 (0.96-1.15), 1.58 (1.45-1.71) and 3.02 (2.76-3.30) times higher in medium, high and very high compared to low walkability areas. Associations were similar for full and abridged indexes. The abridged Sydney Walkability Index has predictive validity for utilitarian walking, will inform urban planning in Sydney, and will be used as an objective measure of neighbourhood walkability in a large population cohort. Abridged walkability indexes may be useful in settings where retail floor area data are unavailable.
2013-01-01
Background Walkability describes the capacity of the built environment to support walking for various purposes. This paper describes the construction and validation of two objective walkability indexes for Sydney, Australia. Methods Walkability indexes using residential density, intersection density, land use mix, with and without retail floor area ratio were calculated for 5,858 Sydney Census Collection Districts in a geographical information system. Associations between variables were evaluated using Spearman’s rho (ρ). Internal consistency and factor structure of indexes were estimated with Cronbach’s alpha and principal components analysis; convergent and predictive validity were measured using weighted kappa (κw) and by comparison with reported walking to work at the 2006 Australian Census using logistic regression. Spatial variation in walkability was assessed using choropleth maps and Moran’s I. Results A three-attribute abridged Sydney Walkability Index comprising residential density, intersection density and land use mix was constructed for all Sydney as retail floor area was only available for 5.3% of Census Collection Districts. A four-attribute full index including retail floor area ratio was calculated for 263 Census Collection Districts in the Sydney Central Business District. Abridged and full walkability index scores for these 263 areas were strongly correlated (ρ=0.93) and there was good agreement between walkability quartiles (κw=0.73). Internal consistency ranged from 0.60 to 0.71, and all index variables loaded highly on a single factor. The percentage of employed persons who walked to work increased with increasing walkability: 3.0% in low income-low walkability areas versus 7.9% in low income-high walkability areas; and 2.1% in high income-low walkability areas versus 11% in high income-high walkability areas. The adjusted odds of walking to work were 1.05 (0.96–1.15), 1.58 (1.45–1.71) and 3.02 (2.76–3.30) times higher in medium, high and very high compared to low walkability areas. Associations were similar for full and abridged indexes. Conclusions The abridged Sydney Walkability Index has predictive validity for utilitarian walking, will inform urban planning in Sydney, and will be used as an objective measure of neighbourhood walkability in a large population cohort. Abridged walkability indexes may be useful in settings where retail floor area data are unavailable. PMID:24365133
Naumann, Rebecca B; Dellinger, Ann M; Anderson, Melissa L; Bonomi, Amy E; Rivara, Frederick P; Thompson, Robert S
2009-10-01
There are many factors that influence older adults' travel choices. This paper explores the associations between mode of travel choice for a short trip and older adults' personal characteristics. This study included 406 drivers over the age of 64 who were enrolled in a large integrated health plan in the United States between 1991 and 2001. Bivariate analyses and generalized linear modeling were used to examine associations between choosing to walk or drive and respondents' self-reported general health, physical and functional abilities, and confidence in walking and driving. Having more confidence in their ability to walk versus drive increased an older adult's likelihood of walking to make a short trip by about 20% (PR=1.22; 95% CI: 1.06-1.40), and walking for exercise increased the likelihood by about 50% (PR=1.53; 95% CI=1.22-1.91). Reporting fair or poor health decreased the likelihood of walking, as did cutting down on the amount of driving due to a physical problem. Factors affecting a person's decision to walk for exercise may not be the same as those that influence their decision to walk as a mode of travel. It is important to understand the barriers to walking for exercise and walking for travel to develop strategies to help older adults meet both their exercise and mobility needs. Increasing walking over driving among older adults may require programs that increase confidence in walking and encourage walking for exercise.
Walking for Transportation and Leisure Among U.S. Adults—National Health Interview Survey 2010
Paul, Prabasaj; Carlson, Susan A.; Carroll, Dianna D.; Berrigan, David; Fulton, Janet E.
2015-01-01
Background Walking, the most commonly reported physical activity among U.S. adults, is undertaken in various domains, including transportation and leisure. Methods This study examined prevalence, bout length, and mean amount of walking in the last week for transportation and leisure, by selected characteristics. Self-reported data from the 2010 National Health Interview Survey (N = 24,017) were analyzed. Results Prevalence of transportation walking was 29.4% (95% CI: 28.6%–30.3%) and of leisure walking was 50.0% (95% CI: 49.1%–51.0%). Prevalence of transportation walking was higher among men; prevalence of leisure walking was higher among women. Most (52.4%) transportation walking bouts were 10 to 15 minutes; leisure walking bouts were distributed more evenly (28.0%, 10–15 minutes; 17.1%, 41–60 minutes). Mean time spent in transportation walking was higher among men, decreased with increasing BMI, and varied by race/ethnicity and region of residence. Mean time spent leisure walking increased with increasing age and with decreasing BMI. Conclusion Demographic correlates and patterns of walking differ by domain. Interventions focusing on either leisure or transportation walking should consider correlates for the specific walking domain. Assessing prevalence, bout length, and mean time of walking for transportation and leisure separately allows for more comprehensive surveillance of walking. PMID:25133651
Zheng, Lianqing; Chen, Mengen; Yang, Wei
2009-06-21
To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.
Validity and reliability of the 6 minute walk in persons with fibromyalgia.
King, S; Wessel, J; Bhambhani, Y; Maikala, R; Sholter, D; Maksymowych, W
1999-10-01
To assess the reliability and construct validity of the 6 minute walk (6MW) in persons with fibromyalgia (FM) and to determine an equation for predicting peak oxygen consumption (pVO2) from the distance covered in 6 minutes. Ninety-six women who met the American College of Rheumatology (ACR) criteria for FM were tested on the 6MW and the Fibromyalgia Impact Questionnaire (FIQ). A subset (n = 23) were tested on a separate day for pVO2 during a symptom-limited, incremental treadmill test. Twelve subjects repeated the 6MW five times over 10 days. Heart rate and rating of perceived exertion (RPE) were recorded for each walk. Intraclass correlations were used to determine the reliability of the 6MW. Validity was examined by correlating the 6MW with pVO2 and the FIQ. Body mass index (BMI) and 6MW were independent variables in a stepwise regression to predict pVO2. A significant increase in distance occurred from Walk 1 to Walk 2 (p = 0.000) with the distance maintained on the remaining walks (p = 0.148) The correlations of the 6MW with the FIQ and pVO2 were -0.325 and 0.657, respectively. The regression equation to predict pVO2 from 6MW distance and BMI was: pVO2 (ml/kg/min) = 21.48 + (-0.4316 x BMI) + [0.0304 x distance(m)] (R = 0.76, R2 = 0.66). When using the 6MW it is necessary to conduct a practice walk, with the second walk taken as the baseline measure. It was determined from the correlations that the 6MW cannot replace the FIQ as a measure of function. The 6MW may be used as an indicator of aerobic fitness, although obtaining VO2 by means of a graded exercise test is preferable.
Ramadurai, Deepa; Riordan, Maeveen; Graney, Bridget; Churney, Tara; Olson, Amy L; Swigris, Jeffrey J
2018-05-01
May patients with interstitial lung disease (ILD) require supplementary oxygen (O 2 ) therapy to maintain normoxia. However, ambulatory O 2 delivery devices are constraining and cumbersome. The physiologic and symptomatic impact of these devices on ILD patients is unknown. We conducted a prospective study of 30 clinically stable ILD patients (with varying disease severity), half of whom used O 2 at baseline. Each subject completed two six-minute walk tests (6MWTs); for O 2 users, one walk was completed while wearing a backpack (weight 7.2 pounds) containing a tank with compressed O 2 , and for non-users, one walk was completed with a similarly-weighted backpack. For each subject, during the second walk, no backpack was worn; for the second walk, O 2 users received oxygen via a stationary delivery system. For both walks, O 2 non-users wore a portable metabolic system, which measured variables related to respiratory physiology and gas exchange. Borg dyspnea and exertion ratings were recorded after each walk. Wearing the O 2 -containing backpack resulted in decreased distance covered during the 6MWT, and increased dyspnea and perceived exertion among O 2 users. While wearing the weighted backpack, O 2 non-users had a significantly lower peripheral O 2 saturation and distance-saturation product. Compared with carrying O 2 in the backpack, receiving O 2 via the stationary concentrator resulted in the largest improvement in walk distance for the three subjects with greatest impairment at baseline (6MWT ≤ 300 m). Among ILD patients, carrying portable O 2 versus receiving O 2 via a stationary concentrator results in significantly greater dyspnea and shorter distances covered in timed testing. Patients with the greatest impairment may be affected most. When prescribing O 2 , practitioners should alert patients to this effect and help patients decide on the best O 2 delivery mode to meet their needs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Relation between random walks and quantum walks
NASA Astrophysics Data System (ADS)
Boettcher, Stefan; Falkner, Stefan; Portugal, Renato
2015-05-01
Based on studies of four specific networks, we conjecture a general relation between the walk dimensions dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not. To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to one with a unitary propagator. As in the classical case, the solution ρ (x ,t ) in space and time of this quantum-walk equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ (x ,t ) in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have not been able to access, such as for systems lacking translational symmetries beyond simple trees.
Phenomenological picture of fluctuations in branching random walks
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Munier, S.
2014-10-01
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
Is the Limit-Cycle-Attractor an (almost) invariable characteristic in human walking?
Broscheid, Kim-Charline; Dettmers, Christian; Vieten, Manfred
2018-05-16
Common methods of gait analyses measure step length/width, gait velocity and gait variability to name just a few. Those parameters tend to be changing with fitness and skill of the subjects. But, do stable subject characteristic parameters in walking exist? Does the Limit-Cycle-Attractor qualify as such a parameter?. The attractor method is a new approach focusing on the dynamics of human motion. It classifies the fundamental walking pattern by calculating the Limit-Cycle-Attractor and its variability from acceleration data of the feet. Our hypothesis is that the fundamental walking pattern in healthy controls and in people with Multiple Sclerosis (pwMS) is stable, but can be altered through acute interventions or rehabilitation. For this purpose, two investigations were conducted involving 113 subjects. The short-term stability was tested pre and post a 15 min passive/active MOTOmed (ergometer) session as well as up to 20 min afterwards. The long-term stability was tested over five weeks of rehabilitation once a week in pwMS. The main parameter of interest describes the velocity normalized average difference between two attractors (δM), which is an indicator for the change in movement pattern. The Friedman's two-way ANOVA by ranks did not reveal any significant difference in δM. However, the conventional walking tests (6 min.10 m) improved significantly (p < 0.05) during rehabilitation. Contrary to our original hypothesis, the fundamental walking pattern was highly stable against controlled motor-assisted movement initiation via MOTOmed and rehabilitation treatment. Movement characteristics appeared to be independent of the improved fitness as indicated by the enhanced walking speed and distance. The individual Limit-Cycle-Attractor is extremely robust and might indeed qualify as an (almost) invariable characteristic in human walking. This opens up the possibility to encode the individual walking characteristics. Conditions as Parkinson, Multiple Sclerosis etc., might display disease specific distinctions via the Limit-Cycle-Attractor. Copyright © 2018 Elsevier B.V. All rights reserved.
Nonlinear time series analysis of normal and pathological human walking
NASA Astrophysics Data System (ADS)
Dingwell, Jonathan B.; Cusumano, Joseph P.
2000-12-01
Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.
Fat King Penguins Are Less Steady on Their Feet
Willener, Astrid S. T.; Handrich, Yves; Halsey, Lewis G.; Strike, Siobhán
2016-01-01
Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin’s walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins. PMID:26886216
Fat King Penguins Are Less Steady on Their Feet.
Willener, Astrid S T; Handrich, Yves; Halsey, Lewis G; Strike, Siobhán
2016-01-01
Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin's walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4 km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins.
Schrade, Stefan O; Nager, Yannik; Wu, Amy R; Gassert, Roger; Ijspeert, Auke
2017-07-01
Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers. Actuation with adaptable stiffness is inspired by the human leg stiffness modulation during walking. However, this actuation principle also introduces the stiffness setpoint as an additional degree of freedom that needs to be coordinated with the joint trajectories. As a potential solution to this issue a bio-inspired controller based on a central pattern generator (CPG) is presented in this work. It generates coordinated joint torques and knee stiffness modulations to produce flexible and dynamic gait patterns for an exoskeleton with variable knee stiffness actuation. The CPG controller is evaluated and optimized in simulation using a model of the exoskeleton. The CPG controller produced stable and smooth gait for walking speeds from 0.4 m/s up to 1.57 m/s with a torso stabilizing force that simulated the use of crutches, which are commonly needed by exoskeleton users. Through the CPG, the knee stiffness intrinsically adapted to the frequency and phase of the gait, when the speed was changed. Additionally, it adjusted to changes in the environment in the form of uneven terrain by reacting to ground contact forces. This could allow future exoskeletons to be more adaptive to various environments, thus making ambulation more robust.
Braga, Lays Magalhães; Prado, Gustavo Faibischew; Umeda, Iracema Ioco Kikuchi; Kawauchi, Tatiana Satie; Taboada, Adriana Marques Fróes; Azevedo, Raymundo Soares; Pereira Filho, Horacio Gomes; Grupi, César José; Souza, Hayala Cristina Cavenague; Moreira, Dalmo Antônio Ribeiro; Nakagawa, Naomi Kondo
2016-01-01
Heart rate variability (HRV) analysis is a useful method to assess abnormal functioning in the autonomic nervous system and to predict cardiac events in patients with heart failure (HF). HRV measurements with heart rate monitors have been validated with an electrocardiograph in healthy subjects but not in patients with HF. We explored the reproducibility of HRV in two consecutive six-minute walk tests (6MW), 60-minute apart, using a heart rate monitor (PolarS810i) and a portable electrocardiograph (called Holter) in 50 HF patients (mean age 59 years, NYHA II, left ventricular ejection fraction ~35%). The reproducibility for each device was analysed using a paired t-test or the Wilcoxon signed-rank test. Additionally, we assessed the agreement between the two devices based on the HRV indices at rest, during the 6MW and during recovery using concordance correlation coefficients (CCC), 95% confidence intervals and Bland-Altman plots. The test-retest for the HRV analyses was reproducible using Holter and PolarS810i at rest but not during recovery. In the second 6MW, patients showed significant increases in rMSSD and walking distance. The PolarS810i measurements had remarkably high concordance correlation [0.86
Effects of constrained arm swing on vertical center of mass displacement during walking.
Yang, Hyung Suk; Atkins, Lee T; Jensen, Daniel B; James, C Roger
2015-10-01
The purpose of this study was to determine the effects of constraining arm swing on the vertical displacement of the body's center of mass (COM) during treadmill walking and examine several common gait variables that may account for or mask differences in the body's COM motion with and without arm swing. Participants included 20 healthy individuals (10 male, 10 female; age: 27.8 ± 6.8 years). The body's COM displacement, first and second peak vertical ground reaction forces (VGRFs), and lowest VGRF during mid-stance, peak summed bilateral VGRF, lower extremity sagittal joint angles, stride length, and foot contact time were measured with and without arm swing during walking at 1.34 m/s. The body's COM displacement was greater with the arms constrained (arm swing: 4.1 ± 1.2 cm, arm constrained: 4.9 ± 1.2 cm, p < 0.001). Ground reaction force data indicated that the COM displacement increased in both double limb and single limb stance. However, kinematic patterns visually appeared similar between conditions. Shortened stride length and foot contact time also were observed, although these do not seem to account for the increased COM displacement. However, a change in arm COM acceleration might have contributed to the difference. These findings indicate that a change in arm swing causes differences in vertical COM displacement, which could increase energy expenditure. Copyright © 2015 Elsevier B.V. All rights reserved.
Gerson, Cipriano; Bernardelli, Graziella França; Arena, Ross; Oliveira, Luis Vicente Franco; Valdez, Francisco; Branco, João Nelson Rodrigues
2010-06-01
The six-minute walk test (6MWT) has been used to assess functional capacity, clinical status and prognosis. There are a very few descriptions in the literature on the safety and metabolic impact of the test, especially in patients with severe heart failure, awaiting cardiac transplantation. The aim of the present study was to assess the cardiovascular responses and correlate the performance on the 6MWT with clinical status. From 15 initial candidates, twelve patients (10 males) aged 52 +/- 8 years were submitted to a comprehensive clinical evaluation. The patients performed the 6MWT with electrocardiographic and perceived exertion monitoring in addition to determination of blood lactate concentration. Patients were followed up for 12 months. The patients walked 399.4 +/- 122.5 meters, reaching a perceived exertion (PE) of 14.3 +/- 1.5 and an increase of 34% in resting heart rate. Two patients exhibited a greater severity of arrhythmia prior to the 6MWT, which did not increase during exertion. Four patients exhibited a significant increase in blood lactate levels (>5 mmol/dL) and three interrupted the test prematurely. The distance walked (D) revealed a correlation with the ejection fraction (%) and functional classification (NYHA). After 12 months of follow up, three patients died and seven were re-hospitalized due to heart failure decompensation. Clinical and electrocardiographic behavior suggests that the 6MWT is safe, but may be considered of high intensity for some patients with severe heart failure. Variables related to the performance on the 6MWT may be associated to worsening clinical status in this population.
Wilson, Dawn K; Van Horn, M Lee; Siceloff, E Rebekah; Alia, Kassandra A; St George, Sara M; Lawman, Hannah G; Trumpeter, Nevelyn N; Coulon, Sandra M; Griffin, Sarah F; Wandersman, Abraham; Egan, Brent; Colabianchi, Natalie; Forthofer, Melinda; Gadson, Barney
2015-06-01
The "Positive Action for Today's Health" (PATH) trial tested an environmental intervention to increase walking in underserved communities. Three matched communities were randomized to a police-patrolled walking plus social marketing, a police-patrolled walking-only, or a no-walking intervention. The 24-month intervention addressed safety and access for physical activity (PA) and utilized social marketing to enhance environmental supports for PA. African-Americans (N=434; 62% females; aged 51±16 years) provided accelerometry and psychosocial measures at baseline and 12, 18, and 24 months. Walking attendance and trail use were obtained over 24 months. There were no significant differences across communities over 24 months for moderate-to-vigorous PA. Walking attendance in the social marketing community showed an increase from 40 to 400 walkers per month at 9 months and sustained ~200 walkers per month through 24 months. No change in attendance was observed in the walking-only community. Findings support integrating social marketing strategies to increase walking in underserved African-Americans (ClinicalTrials.gov #NCT01025726).
Increasing Walking in the Hartsfield-Jackson Atlanta International Airport: The Walk to Fly Study.
Fulton, Janet E; Frederick, Ginny M; Paul, Prabasaj; Omura, John D; Carlson, Susan A; Dorn, Joan M
2017-07-01
To test the effectiveness of a point-of-decision intervention to prompt walking, versus motorized transport, in a large metropolitan airport. We installed point-of-decision prompt signage at 4 locations in the airport transportation mall at Hartsfield-Jackson Atlanta International Airport (Atlanta, GA) at the connecting corridor between airport concourses. Six ceiling-mounted infrared sensors counted travelers entering and exiting the study location. We collected traveler counts from June 2013 to May 2016 when construction was present and absent (preintervention period: June 2013-September 2014; postintervention period: September 2014-May 2016). We used a model that incorporated weekly walking variation to estimate the intervention effect on walking. There was an 11.0% to 16.7% relative increase in walking in the absence of airport construction where 580 to 810 more travelers per day chose to walk. Through May 2016, travelers completed 390 000 additional walking trips. The Walk to Fly study demonstrated a significant and sustained increase in the number of airport travelers choosing to walk. Providing signage about options to walk in busy locations where reasonable walking options are available may improve population levels of physical activity and therefore improve public health.
A Spatial Agent-Based Model for the Simulation of Adults’ Daily Walking Within a City
Yang, Yong; Roux, Ana V. Diez; Auchincloss, Amy H.; Rodriguez, Daniel A.; Brown, Daniel G.
2012-01-01
Environmental effects on walking behavior have received attention in recent years because of the potential for policy interventions to increase population levels of walking. Most epidemiologic studies describe associations of walking behavior with environmental features. These analyses ignore the dynamic processes that shape walking behaviors. A spatial agent-based model (ABM) was developed to simulate peoples’ walking behaviors within a city. Each individual was assigned properties such as age, SES, walking ability, attitude toward walking and a home location. Individuals perform different activities on a regular basis such as traveling for work, for shopping, and for recreation. Whether an individual walks and the amount she or he walks is a function distance to different activities and her or his walking ability and attitude toward walking. An individual’s attitude toward walking evolves over time as a function of past experiences, walking of others along the walking route, limits on distances walked per day, and attitudes toward walking of the other individuals within her/his social network. The model was calibrated and used to examine the contributions of land use and safety to socioeconomic differences in walking. With further refinement and validation, ABMs may help to better understand the determinants of walking and identify the most promising interventions to increase walking. PMID:21335269
Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.
Martinez-Villalpando, Ernesto C; Herr, Hugh
2009-01-01
We present a powered knee prosthesis with two series-elastic actuators positioned in parallel in an agonist-antagonist arrangement. To motivate the knee's design, we developed a prosthetic knee model that comprises a variable damper and two series-elastic clutch units that span the knee joint. Using human gait data to constrain the model's joint to move biologically, we varied model parameters using an optimization scheme that minimized the sum over time of the squared difference between the model's joint torque and biological knee values. We then used these optimized values to specify the mechanical and control design of the prosthesis for level-ground walking. We hypothesized that a variable-impedance control design could produce humanlike knee mechanics during steady-state level-ground walking. As a preliminary evaluation of this hypothesis, we compared the prosthetic knee mechanics of an amputee walking at a self-selected gait speed with those of a weight- and height-matched nonamputee. We found qualitative agreement between prosthetic and human knee mechanics. Because the knee's motors never perform positive work on the knee joint throughout the level-ground gait cycle, the knee's electrical power requirement is modest in walking (8 W), decreasing the size of the onboard battery required to power the prosthesis.
Compliant walking appears metabolically advantageous at extreme step lengths.
Kim, Jaehoon; Bertram, John E A
2018-05-19
Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2 = 0.92 for normal walking; r 2 = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.
Hirsch, Jana A; Moore, Kari A; Clarke, Philippa J; Rodriguez, Daniel A; Evenson, Kelly R; Brines, Shannon J; Zagorski, Melissa A; Diez Roux, Ana V
2014-10-15
Lack of longitudinal research hinders causal inference on the association between the built environment and walking. In the present study, we used data from 6,027 adults in the Multi-Ethnic Study of Atherosclerosis who were 45-84 years of age at baseline to investigate the association of neighborhood built environment with trends in the amount of walking between 2000 and 2012. Walking for transportation and walking for leisure were assessed at baseline and at 3 follow-up visits (median follow-up = 9.15 years). Time-varying built environment measures (measures of population density, land use, number of destinations, bus access, and street connectivity) were created using geographic information systems. We used linear mixed models to estimate the associations between baseline levels of and a change in each built environment feature and a change in the frequency of walking. After adjustment for potential confounders, we found that higher baseline levels of population density, area zoned for retail, social destinations, walking destinations, and street connectivity were associated with greater increases in walking for transportation over time. Higher baseline levels of land zoned for residential use and distance to buses were associated with less pronounced increases (or decreases) in walking for transportation over time. Increases in the number of social destinations, the number of walking destinations, and street connectivity over time were associated with greater increases in walking for transportation. Higher baseline levels of both land zoned for retail and walking destinations were associated with greater increases in leisure walking, but no changes in built environment features were associated with leisure walking. The creation of mixed-use, dense developments may encourage adults to incorporate walking for transportation into their everyday lives. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mehdizadeh, Milad; Nordfjaern, Trond; Mamdoohi, Amir Reza; Shariat Mohaymany, Afshin
2017-05-01
Walking to school could improve pupils' health condition and might also reduce the use of motorized transport modes, which leads to both traffic congestion and air pollution. The current study aims to examine the role of parental risk judgements (i.e. risk perception and worry), transport safety attitudes, transport priorities and accident experiences on pupils' walking and mode choices on school trips in Iran, a country with poor road safety records. A total of 1078 questionnaires were randomly distributed among pupils at nine public and private schools in January 2014 in Rasht, Iran. Results from valid observations (n=711) showed that parents with high probability assessments of accidents and strong worry regarding pupils' accident risk while walking were less likely to let their children walk to school. Parents with high safety knowledge were also more likely to allow their pupils to walk to school. Parents who prioritized convenience and accessibility in transport had a stronger tendency to choose motorized modes over walking modes. Also, parents who prioritized safety and security in transport were less likely to allow pupils to walk to school. Elasticities results showed that a one percent increase in priorities of convenience and accessibility, priorities of safety and security, car ownership and walking time from home to school reduced walking among pupils by a probability of 0.62, 0.20, 0.86 and 0.57%, respectively. A one percent increase in parental safety knowledge increased the walking probability by around 0.25%. A 1 unit increase in parental probability assessment and worry towards pupils' walking, decreased the probability of choosing walking mode by 0.11 and 0.05, respectively. Policy-makers who aim to promote walking to schools should improve safety and security of the walking facilities and increase parental safety knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Matzer, Franziska; Nagele, Eva; Lerch, Nikolaus; Vajda, Christian; Fazekas, Christian
2018-04-01
Both physical activity and relaxation have stress-relieving potential. This study investigates their combined impact on the relaxation response while considering participants' initial stress level. In a randomized cross-over trial, 81 healthy adults completed 4 types of short-term interventions for stress reduction, each lasting for 1 hr: (1) physical activity (walking) combined with resting, (2) walking combined with balneotherapy, (3) combined resting and balneotherapy, and (4) resting only. Saliva cortisol, blood pressure, state of mood, and relaxation were measured preintervention and postintervention. Stress levels were determined by validated questionnaires. All interventions were associated with relaxation responses in the variables saliva cortisol, blood pressure, state of mood, and subjective relaxation. No significant differences were found regarding the reduction of salivary cortisol (F = 1.30; p = .281). The systolic blood pressure was reduced best when walking was combined with balneotherapy or resting (F = 7.34; p < .001). Participants with high stress levels (n = 25) felt more alert after interventions including balneotherapy, whereas they reported an increase of tiredness when walking was combined with resting (F = 3.20; p = .044). Results suggest that combining physical activity and relaxation (resting or balneotherapy) is an advantageous short-term strategy for stress reduction as systolic blood pressure is reduced best while similar levels of relaxation can be obtained. Copyright © 2017 John Wiley & Sons, Ltd.
Gait disorders in patients with fibromyalgia.
Auvinet, Bernard; Bileckot, Richard; Alix, Anne-Sophie; Chaleil, Denis; Barrey, Eric
2006-10-01
The objective of this study was to compare gait in patients with fibromyalgia and in matched controls. Measurements must be obtained in patients with fibromyalgia, as the evaluation scales for this disorder are semi-quantitative. We used a patented gait analysis system (Locometrix Centaure Metrix, France) developed by the French National Institute for Agricultural Research. Relaxed walking was evaluated in 14 women (mean age 50+/-5 years; mean height 162+/-5 cm; and mean body weight 68+/-13 kg) meeting American College of Rheumatology criteria for fibromyalgia and in 14 controls matched on sex, age, height, and body weight. Gait during stable walking was severely altered in the patients. Walking speed was significantly diminished (P<0.001) as a result of reductions in stride length (P<0.001) and cycle frequency (P<0.001). The resulting bradykinesia (P<0.001) was the best factor for separating the two groups. Regularity was affected in the patients (P<0.01); this variable is interesting because it is independent of age and sex in healthy, active adults. Measuring the variables that characterize relaxed walking provides useful quantitative data in patients with fibromyalgia.
Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A
2018-04-01
Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.
Williams, Paul T.; Thompson, Paul D.
2013-01-01
Purpose Test whether: 1) walking intensity predicts mortality when adjusted for walking energy expenditure, and 2) slow walking pace (≥24-minute mile) identifies subjects at substantially elevated risk for mortality. Methods Hazard ratios from Cox proportional survival analyses of all-cause and cause-specific mortality vs. usual walking pace (min/mile) in 7,374 male and 31,607 female recreational walkers. Survival times were left censored for age at entry into the study. Other causes of death were treated as a competing risk for the analyses of cause-specific mortality. All analyses were adjusted for sex, education, baseline smoking, prior heart attack, aspirin use, diet, BMI, and walking energy expenditure. Deaths within one year of baseline were excluded. Results The National Death Index identified 1968 deaths during the average 9.4-year mortality surveillance. Each additional minute per mile in walking pace was associated with an increased risk of mortality due to all causes (1.8% increase, P=10-5), cardiovascular diseases (2.4% increase, P=0.001, 637 deaths), ischemic heart disease (2.8% increase, P=0.003, 336 deaths), heart failure (6.5% increase, P=0.001, 36 deaths), hypertensive heart disease (6.2% increase, P=0.01, 31 deaths), diabetes (6.3% increase, P=0.004, 32 deaths), and dementia (6.6% increase, P=0.0004, 44 deaths). Those reporting a pace slower than a 24-minute mile were at increased risk for mortality due to all-causes (44.3% increased risk, P=0.0001), cardiovascular diseases (43.9% increased risk, P=0.03), and dementia (5.0-fold increased risk, P=0.0002) even though they satisfied the current exercise recommendations by walking ≥7.5 metabolic equivalent (MET)-hours per week. Conclusions The risk for mortality: 1) decreases in association with walking intensity, and 2) increases substantially in association for walking pace ≥24 minute mile (equivalent to <400m during a six-minute walk test) even among subjects who exercise regularly. PMID:24260542
Field-Fote, Edelle C.; Yang, Jaynie F.; Basso, D. Michele; Gorassini, Monica A.
2017-01-01
Abstract Restoration of walking ability is an area of great interest in the rehabilitation of persons with spinal cord injury. Because many cortical, subcortical, and spinal neural centers contribute to locomotor function, it is important that intervention strategies be designed to target neural elements at all levels of the neuraxis that are important for walking ability. While to date most strategies have focused on activation of spinal circuits, more recent studies are investigating the value of engaging supraspinal circuits. Despite the apparent potential of pharmacological, biological, and genetic approaches, as yet none has proved more effective than physical therapeutic rehabilitation strategies. By making optimal use of the potential of the nervous system to respond to training, strategies can be developed that meet the unique needs of each person. To complement the development of optimal training interventions, it is valuable to have the ability to predict future walking function based on early clinical presentation, and to forecast responsiveness to training. A number of clinical prediction rules and association models based on common clinical measures have been developed with the intent, respectively, to predict future walking function based on early clinical presentation, and to delineate characteristics associated with responsiveness to training. Further, a number of variables that are correlated with walking function have been identified. Not surprisingly, most of these prediction rules, association models, and correlated variables incorporate measures of volitional lower extremity strength, illustrating the important influence of supraspinal centers in the production of walking behavior in humans. PMID:27673569
Optimal Sensor Placement for Measuring Physical Activity with a 3D Accelerometer
Boerema, Simone T.; van Velsen, Lex; Schaake, Leendert; Tönis, Thijs M.; Hermens, Hermie J.
2014-01-01
Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors with a snug fit on an elastic waist belt. We found that sensor location, type of activity, and their interaction-effect affected sensor output. The most lateral positions on the waist belt were the least sensitive for interference. The effect of mounting was explored, by making two subjects repeat the experimental protocol with sensors more loosely fitted to the elastic belt. The loose fit resulted in lower sensor output, except for the deskwork protocol, where output was higher. In order to increase the reliability and to reduce the variability of sensor output, researchers should place activity sensors on the most lateral position of a participant's waist belt. If the sensor hampers free movement, it may be positioned slightly more forward on the belt. Finally, sensors should be fitted tightly to the body. PMID:24553085
2012-01-01
Background Due to the inconsistent findings of prior studies, we explored the association of perceived safety and police-recorded crime measures with physical activity. Methods The study included 818 Chicago participants of the Multiethnic Study of Atherosclerosis 45 to 84 years of age. Questionnaire-assessed physical activity included a) transport walking; b) leisure walking; and c) non-walking leisure activities. Perceived safety was assessed through an interviewer-administered questionnaire. Police-recorded crime was assessed through 2-year counts of selected crimes (total and outdoor incivilities, criminal offenses, homicides) per 1000 population. Associations were examined using generalized estimating equation logistic regression models. Results Perceiving a safer neighborhood was positively associated with transport walking and perceiving lower violence was associated with leisure walking. Those in the lowest tertile of total or outdoor incivilities were more likely to report transport walking. Models with both perceived safety and police-recorded measures of crime as independent variables had superior fit for both transport walking and leisure walking outcomes. Neither perceived safety nor police-recorded measures of crime were associated with non-walking leisure activity. Conclusions Perceived and police-recorded measures had independent associations with walking and both should be considered in assessing the impact of neighborhood crime on physical activity. PMID:23245527
Record statistics of a strongly correlated time series: random walks and Lévy flights
NASA Astrophysics Data System (ADS)
Godrèche, Claude; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We review recent advances on the record statistics of strongly correlated time series, whose entries denote the positions of a random walk or a Lévy flight on a line. After a brief survey of the theory of records for independent and identically distributed random variables, we focus on random walks. During the last few years, it was indeed realized that random walks are a very useful ‘laboratory’ to test the effects of correlations on the record statistics. We start with the simple one-dimensional random walk with symmetric jumps (both continuous and discrete) and discuss in detail the statistics of the number of records, as well as of the ages of the records, i.e. the lapses of time between two successive record breaking events. Then we review the results that were obtained for a wide variety of random walk models, including random walks with a linear drift, continuous time random walks, constrained random walks (like the random walk bridge) and the case of multiple independent random walkers. Finally, we discuss further observables related to records, like the record increments, as well as some questions raised by physical applications of record statistics, like the effects of measurement error and noise.
Effectiveness of Long and Short Bout Walking on Increasing Physical Activity in Women
Serwe, Katrina M.; Swartz, Ann M.; Hart, Teresa L.; Strath, Scott J.
2011-01-01
Abstract Background The accumulation of physical activity (PA) throughout the day has been suggested as a means to increase PA behavior. It is not known, however, if accumulated PA results in equivalent increases in PA behavior compared with one continuous session. The purpose of this investigation was to compare changes in PA between participants assigned to walk daily in accumulated shorter bouts vs. one continuous session. Methods In this 8-week randomized controlled trial, 60 inactive women were randomly assigned to one of the following: (1) control group, (2) 30 minutes a day of walking 5 days a week in one continuous long bout (LB), or (3) three short 10-minute bouts (SB) of walking a day, all at a prescribed heart rate intensity. Walking was assessed by pedometer and self-reported walking log. Before and after measures were taken of average steps/day, resting systolic and diastolic blood pressure (SBP, DBP), resting heart rate (RHR), six-minute walk test (6MWT) distance, height, weight, body mass index (BMI), and hip and waist circumference. Results Both walking groups significantly increased PA measured as steps/day compared to controls (p < 0.001), and no significant differences were found between LB and SB groups. The LB group demonstrated significant decreases in hip circumference and significant increases in 6MWT distance compared to the control group. Conclusions Both walking groups significantly increased PA participation. LB group participants completed more walking at a higher intensity than the SB and control groups, which resulted in significant increases in health benefits. PMID:21314449
Bayesian dynamic modeling of time series of dengue disease case counts
López-Quílez, Antonio; Torres-Prieto, Alexander
2017-01-01
The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health. PMID:28671941
Koh, Hyeseung Elizabeth; Oh, Jeeyun; Mackert, Michael
2017-12-11
There has been a sharp increase in the number of pedestrians injured while using a mobile phone, but little research has been conducted to explain how and why people use mobile devices while walking. Therefore, we conducted a survey study to explicate the motivations of mobile phone use while walking. The purpose of this study was to identify the critical predictors of behavioral intention to play a popular mobile game, Pokemon Go, while walking, based on the theory of planned behavior (TPB). In addition to the three components of TPB, automaticity, immersion, and enjoyment were added to the model. This study is a theory-based investigation that explores the underlying mechanisms of mobile phone use while walking focusing on a mobile game behavior. Participants were recruited from a university (study 1; N=262) and Amazon Mechanical Turk (MTurk) (study 2; N=197) in the United States. Participants completed a Web-based questionnaire, which included measures of attitude, subjective norms, perceived behavioral control (PBC), automaticity, immersion, and enjoyment. Participants also answered questions regarding demographic items. Hierarchical regression analyses were conducted to examine hypotheses. The model we tested explained about 41% (study 1) and 63% (study 2) of people's intention to play Pokemon Go while walking. The following 3 TPB variables were significant predictors of intention to play Pokemon Go while walking in study 1 and study 2: attitude (P<.001), subjective norms (P<.001), and PBC (P=.007 in study 1; P<.001 in study 2). Automaticity tendency (P<.001), immersion (P=.02), and enjoyment (P=.04) were significant predictors in study 1, whereas enjoyment was the only significant predictor in study 2 (P=.01). Findings from this study demonstrated the utility of TPB in predicting a new behavioral domain-mobile use while walking. To sum up, younger users who are habitual, impulsive, and less immersed players are more likely to intend to play a mobile game while walking. ©Hyeseung Elizabeth Koh, Jeeyun Oh, Michael Mackert. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 11.12.2017.
Oh, Jeeyun; Mackert, Michael
2017-01-01
Background There has been a sharp increase in the number of pedestrians injured while using a mobile phone, but little research has been conducted to explain how and why people use mobile devices while walking. Therefore, we conducted a survey study to explicate the motivations of mobile phone use while walking Objective The purpose of this study was to identify the critical predictors of behavioral intention to play a popular mobile game, Pokemon Go, while walking, based on the theory of planned behavior (TPB). In addition to the three components of TPB, automaticity, immersion, and enjoyment were added to the model. This study is a theory-based investigation that explores the underlying mechanisms of mobile phone use while walking focusing on a mobile game behavior. Methods Participants were recruited from a university (study 1; N=262) and Amazon Mechanical Turk (MTurk) (study 2; N=197) in the United States. Participants completed a Web-based questionnaire, which included measures of attitude, subjective norms, perceived behavioral control (PBC), automaticity, immersion, and enjoyment. Participants also answered questions regarding demographic items. Results Hierarchical regression analyses were conducted to examine hypotheses. The model we tested explained about 41% (study 1) and 63% (study 2) of people’s intention to play Pokemon Go while walking. The following 3 TPB variables were significant predictors of intention to play Pokemon Go while walking in study 1 and study 2: attitude (P<.001), subjective norms (P<.001), and PBC (P=.007 in study 1; P<.001 in study 2). Automaticity tendency (P<.001), immersion (P=.02), and enjoyment (P=.04) were significant predictors in study 1, whereas enjoyment was the only significant predictor in study 2 (P=.01). Conclusions Findings from this study demonstrated the utility of TPB in predicting a new behavioral domain—mobile use while walking. To sum up, younger users who are habitual, impulsive, and less immersed players are more likely to intend to play a mobile game while walking. PMID:29229586
Stance controlled knee flexion improves stimulation driven walking after spinal cord injury
2013-01-01
Background Functional neuromuscular stimulation (FNS) restores walking function after paralysis from spinal cord injury via electrical activation of muscles in a coordinated fashion. Combining FNS with a controllable orthosis to create a hybrid neuroprosthesis (HNP) has the potential to extend walking distance and time by mechanically locking the knee joint during stance to allow knee extensor muscle to rest with stimulation turned off. Recent efforts have focused on creating advanced HNPs which couple joint motion (e.g., hip and knee or knee and ankle) to improve joint coordination during swing phase while maintaining a stiff-leg during stance phase. Methods The goal of this study was to investigate the effects of incorporating stance controlled knee flexion during loading response and pre-swing phases on restored gait. Knee control in the HNP was achieved by a specially designed variable impedance knee mechanism (VIKM). One subject with a T7 level spinal cord injury was enrolled and served as his own control in examining two techniques to restore level over-ground walking: FNS-only (which retained a stiff knee during stance) and VIKM-HNP (which allowed controlled knee motion during stance). The stimulation pattern driving the walking motion remained the same for both techniques; the only difference was that knee extensor stimulation was constant during stance with FNS-only and modulated together with the VIKM to control knee motion during stance with VIKM-HNP. Results Stance phase knee angle was more natural during VIKM-HNP gait while knee hyperextension persisted during stiff-legged FNS-only walking. During loading response phase, vertical ground reaction force was less impulsive and instantaneous gait speed was increased with VIKM-HNP, suggesting that knee flexion assisted in weight transfer to the leading limb. Enhanced knee flexion during pre-swing phase also aided flexion during swing, especially when response to stimulation was compromised. Conclusions These results show the potential advantages of incorporating stance controlled knee flexion into a hybrid neuroprosthesis for walking. The addition of such control to FNS driven walking could also enable non-level walking tasks such as uneven terrain, slope navigation and stair descent where controlled knee flexion during weight bearing is critical. PMID:23826711
Ivanov, Iliya V; Mackeben, Manfred; Vollmer, Annika; Martus, Peter; Nguyen, Nhung X; Trauzettel-Klosinski, Susanne
2016-01-01
Degenerative retinal diseases, especially retinitis pigmentosa (RP), lead to severe peripheral visual field loss (tunnel vision), which impairs mobility. The lack of peripheral information leads to fewer horizontal eye movements and, thus, diminished scanning in RP patients in a natural environment walking task. This randomized controlled study aimed to improve mobility and the dynamic visual field by applying a compensatory Exploratory Saccadic Training (EST). Oculomotor responses during walking and avoiding obstacles in a controlled environment were studied before and after saccade or reading training in 25 RP patients. Eye movements were recorded using a mobile infrared eye tracker (Tobii glasses) that measured a range of spatial and temporal variables. Patients were randomly assigned to two training conditions: Saccade (experimental) and reading (control) training. All subjects who first performed reading training underwent experimental training later (waiting list control group). To assess the effect of training on subjects, we measured performance in the training task and the following outcome variables related to daily life: Response Time (RT) during exploratory saccade training, Percent Preferred Walking Speed (PPWS), the number of collisions with obstacles, eye position variability, fixation duration, and the total number of fixations including the ones in the subjects' blind area of the visual field. In the saccade training group, RTs on average decreased, while the PPWS significantly increased. The improvement persisted, as tested 6 weeks after the end of the training. On average, the eye movement range of RP patients before and after training was similar to that of healthy observers. In both, the experimental and reading training groups, we found many fixations outside the subjects' seeing visual field before and after training. The average fixation duration was significantly shorter after the training, but only in the experimental training condition. We conclude that the exploratory saccade training was beneficial for RP patients and resulted in shorter fixation durations after the training. We also found a significant improvement in relative walking speed during navigation in a real-world like controlled environment.
Ivanov, Iliya V.; Mackeben, Manfred; Vollmer, Annika; Martus, Peter; Nguyen, Nhung X.; Trauzettel-Klosinski, Susanne
2016-01-01
Purpose Degenerative retinal diseases, especially retinitis pigmentosa (RP), lead to severe peripheral visual field loss (tunnel vision), which impairs mobility. The lack of peripheral information leads to fewer horizontal eye movements and, thus, diminished scanning in RP patients in a natural environment walking task. This randomized controlled study aimed to improve mobility and the dynamic visual field by applying a compensatory Exploratory Saccadic Training (EST). Methods Oculomotor responses during walking and avoiding obstacles in a controlled environment were studied before and after saccade or reading training in 25 RP patients. Eye movements were recorded using a mobile infrared eye tracker (Tobii glasses) that measured a range of spatial and temporal variables. Patients were randomly assigned to two training conditions: Saccade (experimental) and reading (control) training. All subjects who first performed reading training underwent experimental training later (waiting list control group). To assess the effect of training on subjects, we measured performance in the training task and the following outcome variables related to daily life: Response Time (RT) during exploratory saccade training, Percent Preferred Walking Speed (PPWS), the number of collisions with obstacles, eye position variability, fixation duration, and the total number of fixations including the ones in the subjects' blind area of the visual field. Results In the saccade training group, RTs on average decreased, while the PPWS significantly increased. The improvement persisted, as tested 6 weeks after the end of the training. On average, the eye movement range of RP patients before and after training was similar to that of healthy observers. In both, the experimental and reading training groups, we found many fixations outside the subjects' seeing visual field before and after training. The average fixation duration was significantly shorter after the training, but only in the experimental training condition. Conclusions We conclude that the exploratory saccade training was beneficial for RP patients and resulted in shorter fixation durations after the training. We also found a significant improvement in relative walking speed during navigation in a real-world like controlled environment. PMID:27351629
Gait performance is not influenced by working memory when walking at a self-selected pace.
Grubaugh, Jordan; Rhea, Christopher K
2014-02-01
Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.
Craig, C L; Tudor-Locke, C; Bauman, A
2007-06-01
Canada on the Move is a national campaign to promote pedometer use and walking among adult Canadians. The purpose of this paper is to investigate the initiative's impact on sufficient walking, defined here as at least an hour daily in the week prior to the survey. Data were collected via the national Canadian Physical Activity Monitor's rolling monthly sample throughout 2004. Population prevalence rates of walking were compared using Bonferroni-adjusted confidence intervals. Correlates of sufficient walking were estimated using odds ratios adjusted for age, sex, income and education. Message recall and pedometer ownership were associated with increased odds of self-reported walking. There was evidence of a campaign effect on walking behavior independent of secular trends. The increased likelihood of sufficient walking suggests an ongoing role for nationally funded public awareness campaigns. The effectiveness of health promotion to increase walking may be enhanced by combining motivational health-related messages with the dissemination and adoption of an easy-to-use tool for self-monitoring purposes.
An online social network to increase walking in dog owners: a randomized trial.
Schneider, Kristin L; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C
2015-03-01
Encouraging dog walking may increase physical activity in dog owners. This cluster-randomized controlled trial investigated whether a social networking Web site (Meetup™) could be used to deliver a multicomponent dog walking intervention to increase physical activity. Sedentary dog owners (n = 102) participated. Eight neighborhoods were randomly assigned to the Meetup™ condition (Meetup™) or a condition where participants received monthly e-mails with content from the American Heart Association regarding increasing physical activity. The Meetup™ intervention was delivered over 6 months and consisted of newsletters, dog walks, community events, and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking, and feasibility of the intervention. Mixed-model analyses examined change from baseline to postintervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (P = 0.04, d = 0.28), with no differences by condition. The time-condition interaction was significant for the perceived outcomes of dog walking (P = 0.04, d = 0.40), such that the Meetup™ condition reported an increase in the perceived positive outcomes of dog walking, whereas the American Heart Association condition did not. Social support, sense of community, and dog walking barriers did not significantly change. Meetup™ logins averaged 58.38 per week (SD, 11.62). Within 2 months of the intervention ending, organization of the Meetup™ groups transitioned from the study staff to Meetup™ members. Results suggest that a Meetup™ group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup™ group and facilitate greater connection among dog owners.
An Online Social Network to Increase Walking in Dog Owners: A Randomized Trial
Schneider, Kristin L.; Murphy, Deirdra; Ferrara, Cynthia; Oleski, Jessica; Panza, Emily; Savage, Clara; Gada, Kimberly; Bozzella, Brianne; Olendzki, Effie; Kern, Daniel; Lemon, Stephenie C.
2014-01-01
PURPOSE Encouraging dog walking may increase physical activity in dog owners. This cluster randomized controlled trial investigated whether a social networking website (Meetup™) could be used to deliver a multi-component dog walking intervention to increase physical activity. METHODS Sedentary dog owners (n=102) participated. Eight neighborhoods were randomly assigned to the Meetup condition (Meetup) or a condition where participants received monthly emails with content from the American Heart Association on increasing physical activity (AHA). The Meetup intervention was delivered over 6 months and consisted of newsletters, dog walks, community events and an activity monitor. The primary outcome was steps; secondary outcomes included social support for walking, sense of community, perceived dog walking outcomes, barriers to dog walking and feasibility of the intervention. RESULTS Mixed model analyses examined change from baseline to post-intervention (6 months) and whether change in outcomes differed by condition. Daily steps increased over time (p=0.04, d=0.28), with no differences by condition. The time x condition interaction was significant for the perceived outcomes of dog walking (p=0.04, d=0.40), such that the Meetup condition reported an increase in the perceived positive outcomes of dog walking, whereas the AHA condition did not. Social support, sense of community and dog walking barriers did not significantly change. Meetup logins averaged 58.38 per week (SD=11.62). Within two months of the intervention ending, organization of the Meetup groups transitioned from study staff to Meetup members. CONCLUSION Results suggest that a Meetup group is feasible for increasing physical activity in dog owners. Further research is needed to understand how to increase participation in the Meetup group and facilitate greater connection among dog owners. PMID:25003777
Villarreal, Dario J.; Gregg, Robert D.
2016-01-01
This paper presents the experimental validation of a novel control strategy that unifies the entire gait cycle of a powered knee-ankle prosthetic leg without the need to switch between controllers for different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific control parameters and switching rules that must be tuned for a specific walking speed. The single controller presented is speed-invariant with a minimal number of control parameters to be tuned. A single, periodic virtual constraint is derived that exactly characterizes the desired actuated joint motion as a function of a mechanical phase variable across walking cycles. A single sensor was used to compute a phase variable related to the residual thigh angle’s phase plane, which was recently shown to robustly represent the phase of non-steady human gait. This phase variable allows the prosthesis to synchronize naturally with the human user for intuitive, biomimetic behavior. A custom powered knee-ankle prosthesis was designed and built to implement the control strategy and validate its performance. A human subject experiment was conducted across multiple walking speeds (1 to 3 miles/hour) in a continuous sequence with the single phase-based controller, demonstrating its adaptability to the user’s intended speed. PMID:28392969
Kahlert, Daniela; Schlicht, Wolfgang
2015-01-01
Traffic safety and pedestrian friendliness are considered to be important conditions for older people’s motivation to walk through their environment. This study uses an experimental study design with computer-simulated living environments to investigate the effect of micro-scale environmental factors (parking spaces and green verges with trees) on older people’s perceptions of both motivational antecedents (dependent variables). Seventy-four consecutively recruited older people were randomly assigned watching one of two scenarios (independent variable) on a computer screen. The scenarios simulated a stroll on a sidewalk, as it is ‘typical’ for a German city. In version ‘A,’ the subjects take a fictive walk on a sidewalk where a number of cars are parked partially on it. In version ‘B’, cars are in parking spaces separated from the sidewalk by grass verges and trees. Subjects assessed their impressions of both dependent variables. A multivariate analysis of covariance showed that subjects’ ratings on perceived traffic safety and pedestrian friendliness were higher for Version ‘B’ compared to version ‘A’. Cohen’s d indicates medium (d = 0.73) and large (d = 1.23) effect sizes for traffic safety and pedestrian friendliness, respectively. The study suggests that elements of the built environment might affect motivational antecedents of older people’s walking behavior. PMID:26308026
The Effect of Increasing Mass upon Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John; Hagan, Donald
2007-01-01
The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.
Effects of changing speed on knee and ankle joint load during walking and running.
de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren
2015-01-01
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.
Camina por Salud: Walking in Mexican-American Women
Keller, Colleen S.; Gonzales, Adelita
2008-01-01
Forty-six percent of older Mexican-American women report no leisure time physical activity (PA); 38.1% are obese. This study (1) evaluated a PA intervention on reduction of risk for coronary heart disease (CHD) and (2) determined which variables affected adherence to PA. For 36 weeks, Group I walked 3 days/week; Group II walked 5 days/week. The investigators measured total body fat, regional fat, blood lipids, and adherence to PA The walking interventions favorably affected body fat, with significant differences in body mass index (BMI) reductions[F (2, 16) = 12.86, p = .001]. No statistical differences were noted in the anthropometric and blood lipid results from baseline to the 36-week measures. PMID:18457751
[A robotic system for gait re-education in patients with an incomplete spinal cord injury].
Esclarín-De Ruz, A; Alcobendas-Maestro, M; Casado-López, R; Muñoz-Gonzalez, A; Florido-Sánchez, M A; González-Valdizán, E
A spinal cord injury involves the loss or alteration of motor patterns in walking, the recovery of which depends partly on the rearrangement of the preserved neural circuits. AIM. To evaluate the changes that take place in the gait of patients with incomplete spinal cord injuries who were treated with a robotic walking system in association with conventional therapy. The study conducted was an open-label, prospective, descriptive trial with statistical inference in patients with C2-L3 spinal cord injuries that were classified as degrees C and D according to the American Spinal Injury Association (ASIA) scale. The variables that were analysed on the first and the last day of the study were: number of walkers, 10-m gait test, the Walking Index for Spinal Cord Injury scale revision, technical aids, muscle balance in the lower limbs, locomotor subscale of the measure of functional independence, modified Ashworth scale for spasticity and the visual analogue scale for pain. At the end, data were recorded from the impression of change scale. The analysis was conducted by means of Student's t, chi squared and Pearson's correlation; p < or = 0.05. Forty-five patients, with a mean age of 44 +/- 14.3 years, finished the study; 76% were males, injury was caused by trauma in 58% of cases, and the time of progression was 139 +/- 70 days. Statistically significant increases were observed in the number of subjects capable of walking, walking speed, less need for technical aids, strength in the lower limbs and independence in activities of daily living. Treatment using the robotic system in association with conventional therapy improves walking capacity in patients with incomplete spinal cord injuries.
Aerobic training modulates T cell activation in elderly women with knee osteoarthritis
Gomes, W.F.; Lacerda, A.C.R.; Brito-Melo, G.E.A.; Fonseca, S.F.; Rocha-Vieira, E.; Leopoldino, A.A.O.; Amorim, M.R.; Mendonça, V.A.
2016-01-01
Osteoarthritis of the knee (kOA) is a disease that mainly affects the elderly and can lead to major physical and functional limitations. However, the specific effects of walking, particularly on the immune system, are unknown. Therefore, this study aimed to analyze the effect of 12 weeks of walking (3×/week) on the leukocyte profile and quality of life (QL) of elderly women with kOA. Sixteen women (age: 67±4 years, body mass index: 28.07±4.16 kg/m2) participated in a walking program. The variables were assessed before and after 12 weeks of training with a progressively longer duration (30–55 min) and higher intensity (72–82% of HRmax determined using a graded incremental treadmill test). The QL was assessed using the Medical Outcomes Study 36-Item Short Form Health Survey (SF-36), and blood samples were collected for analysis with a cell counter and the San Fac flow cytometer. Walking training resulted in a 47% enhancement of the self-reported QL (P<0.05) and a 21% increase in the VO2max (P<0.0001) in elderly women with kOA. Furthermore, there was a reduction in CD4+ cells (pre=46.59±7%, post=44.58±9%, P=0.0189) and a higher fluorescence intensity for CD18+CD4+ (pre=45.30±10, post=64.27±33, P=0.0256) and CD18+CD8+ (pre=64.2±27, post=85.02±35, P=0.0130). In conclusion, the walking program stimulated leukocyte production, which may be related to the immunomodulatory effect of exercise. Walking also led to improvements in the QL and physical performance in elderly women with kOA. PMID:27828665
Can environmental improvement change the population distribution of walking?
Panter, Jenna; Ogilvie, David
2017-06-01
Few studies have explored the impact of environmental change on walking using controlled comparisons. Even fewer have examined whose behaviour changes and how. In a natural experimental study of new walking and cycling infrastructure, we explored changes in walking, identified groups who changed in similar ways and assessed whether exposure to the infrastructure was associated with trajectories of walking. 1257 adults completed annual surveys assessing walking, sociodemographic and health characteristics and use of the infrastructure (2010-2012). Residential proximity to the new routes was assessed objectively. We used latent growth curve models to assess change in total walking, walking for recreation and for transport, used simple descriptive analysis and latent class analysis (LCA) to identify groups who changed in similar ways and examined factors associated with group membership using multinomial regression. LCA identified five trajectories, characterised by consistently low levels; consistently high levels; decreases; short-lived increases; and sustained increases. Those with lower levels of education and lower incomes were more likely to show both short-lived and sustained increases in walking for transport. However, those with lower levels of education were less likely to take up walking. Proximity to the intervention was associated with both uptake of and short-lived increases in walking for transport. Environmental improvement encouraged the less active to take up walking for transport, as well as encouraging those who were already active to walk more. Further research should disentangle the role of socioeconomic characteristics in determining use of new environments and changes in walking. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation.
Wezenberg, Daphne; van der Woude, Lucas H; Faber, Willemijn X; de Haan, Arnold; Houdijk, Han
2013-09-01
To determine the relative aerobic load, walking speed, and walking economy of older adults with a lower-limb prosthesis, and to predict the effect of an increased aerobic capacity on their walking ability. Cross-sectional. Human motion laboratory at a rehabilitation center. Convenience sample of older adults (n=36) who underwent lower-limb amputation because of vascular deficiency or trauma and able-bodied controls (n=21). Not applicable. Peak aerobic capacity and oxygen consumption while walking were determined. The relative aerobic load and walking economy were assessed as a function of walking speed, and a data-based model was constructed to predict the effect of an increased aerobic capacity on walking ability. People with a vascular amputation walked at a substantially higher (45.2%) relative aerobic load than people with an amputation because of trauma. The preferred walking speed in both groups of amputees was slower than that of able-bodied controls and below their most economical walking speed. We predicted that a 10% increase in peak aerobic capacity could potentially result in a reduction in the relative aerobic load of 9.1%, an increase in walking speed of 17.3% and 13.9%, and an improvement in the walking economy of 6.8% and 2.9%, for people after a vascular or traumatic amputation, respectively. Current findings corroborate the notion that, especially in people with a vascular amputation, the peak aerobic capacity is an important determinant for walking ability. The data provide quantitative predictions on the effect of aerobic training; however, future research is needed to experimentally confirm these predictions. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Brach, Jennifer S.; Lowry, Kristin; Perera, Subashan; Hornyak, Victoria; Wert, David; Studenski, Stephanie A.; VanSwearingen, Jessie M.
2016-01-01
Objective The objective was to test the proposed mechanism of action of a task-specific motor learning intervention by examining its effect on measures of the motor control of gait. Design Single blinded randomized clinical trial. Setting University research laboratory. Participants Forty older adults 65 years of age and older, with gait speed >1.0 m/s and impaired motor skill (Figure of 8 walk time > 8 secs). Interventions The two interventions included a task-oriented motor learning and a standard exercise program. Both interventions lasted 12 weeks, with twice weekly one hour physical therapist supervised sessions. Main Outcome Measures Two measure of the motor control of gait, gait variability and smoothness of walking, were assessed pre and post intervention by assessors masked to treatment arm. Results Of 40 randomized subjects; 38 completed the trial (mean age 77.1±6.0 years). Motor control group improved more than standard group in double support time variability (0.13 vs. 0.05 m/s; adjusted difference, AD=0.006, p=0.03). Smoothness of walking in the anterior/posterior direction improved more in motor control than standard for all conditions (usual: AD=0.53, p=0.05; narrow: AD=0.56, p=0.01; dual task: AD=0.57, p=0.04). Conclusions Among older adults with subclinical walking difficulty, there is initial evidence that task-oriented motor learning exercise results in gains in the motor control of walking, while standard exercise does not. Task-oriented motor learning exercise is a promising intervention for improving timing and coordination deficits related to mobility difficulties in older adults, and needs to be evaluated in a definitive larger trial. PMID:25448244
2013-01-01
Background A longitudinal repeated measures design over pregnancy and post-birth, with a control group would provide insight into the mechanical adaptations of the body under conditions of changing load during a common female human lifespan condition, while minimizing the influences of inter human differences. The objective was to investigate systematic changes in the range of motion for the pelvic and thoracic segments of the spine, the motion between these segments (thoracolumbar spine) and temporospatial characteristics of step width, stride length and velocity during walking as pregnancy progresses and post-birth. Methods Nine pregnant women were investigated when walking along a walkway at a self-selected velocity using an 8 camera motion analysis system on four occasions throughout pregnancy and once post birth. A control group of twelve non-pregnant nulliparous women were tested on three occasions over the same time period. The existence of linear trends for change was investigated. Results As pregnancy progresses there was a significant linear trend for increase in step width (p = 0.05) and a significant linear trend for decrease in stride length (p = 0.05). Concurrently there was a significant linear trend for decrease in the range of motion of the pelvic segment (p = 0.03) and thoracolumbar spine (p = 0.01) about a vertical axis (side to side rotation), and the pelvic segment (p = 0.04) range of motion around an anterio-posterior axis (side tilt). Post-birth, step width readapted whereas pelvic (p = 0.02) and thoracic (p < 0.001) segment flexion-extension range of motion decreased and increased respectively. The magnitude of all changes was greater than that accounted for with natural variability with re testing. Conclusions As pregnancy progressed and post-birth there were significant linear trends seen in biomechanical changes when walking at a self-determined natural speed that were greater than that accounted for by natural variability with repeated testing. Not all adaptations were resolved by eight weeks post birth. PMID:23514204
2011-01-01
Background Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system. Patients and methods Fourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC). Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005). In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters. Results Clearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P < 0.026). Conclusions Changes in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be measured objectively. These changes in gait patterns can be described using the motor fatigue index and represent an objective measure to assess motor fatigue in MS patients. The results of this study have important implications for the assessments and treatment evaluations of fatigue in MS. PMID:22029427
Wilson, Dawn K.; Van Horn, M. Lee; Siceloff, E. Rebekah; Alia, Kassandra A.; St. George, Sara M.; Lawman, Hannah G.; Trumpeter, Nevelyn N.; Coulon, Sandra M.; Griffin, Sarah F.; Wandersman, Abraham; Egan, Brent; Colabianchi, Natalie; Forthofer, Melinda; Gadson, Barney
2015-01-01
Background The “Positive Action for Today’s Health” (PATH) trial tested an environmental intervention to increase walking in underserved communities. Methods Three matched communities were randomized to a police-patrolled walking plus social marketing, a police-patrolled walking-only, or a no-walking intervention. The 24-month intervention addressed safety and access for physical activity (PA) and utilized social marketing to enhance environmental supports for PA. African-Americans (N=434; 62 % females; aged 51±16 years) provided accelerometry and psychosocial measures at baseline and 12, 18, and 24 months. Walking attendance and trail use were obtained over 24 months. Results There were no significant differences across communities over 24 months for moderate-to-vigorous PA. Walking attendance in the social marketing community showed an increase from 40 to 400 walkers per month at 9 months and sustained ~200 walkers per month through 24 months. No change in attendance was observed in the walking-only community. Conclusions Findings support integrating social marketing strategies to increase walking in underserved African-Americans (ClinicalTrials.gov #NCT01025726). PMID:25385203
Jasiński, Ryszard; Socha, Małgorzata; Sitko, Ludmiła; Kubicka, Katarzyna; Woźniewski, Marek; Sobiech, Krzysztof A
2015-03-29
Nordic walking and water aerobics are very popular forms of physical activity in the elderly population. The aim of the study was to evaluate the influence of regular health training on the venous blood flow in lower extremities and body composition in women over 50 years old. Twenty-four women of mean age 57.9 (± 3.43) years, randomly divided into three groups (Nordic walking, water aerobics, and non-training), participated in the study. The training lasted 8 weeks, with one-hour sessions twice a week. Dietary habits were not changed. Before and after training vein refilling time and the function of the venous pump of the lower extremities were measured by photoplethysmography. Body composition was determined by bioelectrical impedance. Eight weeks of Nordic walking training improved the venous blood flow in lower extremities and normalized body composition in the direction of reducing chronic venous disorder risk factors. The average values of the refilling time variable (p = 0.04, p = 0.02, respectively) decreased in both the right and the left leg. After training a statistically significant increase in the venous pump function index was found only in the right leg (p = 0.04). A significant increase in fat-free mass, body cell mass and total body water was observed (p = 0.01), whereas body mass, the body mass index, and body fat decreased (p < 0.03). With regard to water aerobic training, no similar changes in the functions of the venous system or body composition were observed.
The effects of gum chewing while walking on physical and physiological functions.
Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi
2018-04-01
[Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21-69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions.
The effects of gum chewing while walking on physical and physiological functions
Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi
2018-01-01
[Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21–69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions. PMID:29706720
Wilson, Dawn K; Trumpeter, Nevelyn N; St George, Sara M; Coulon, Sandra M; Griffin, Sarah; Lee Van Horn, M; Lawman, Hannah G; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D; Kitzman-Ulrich, Heather; Gadson, Barney
2010-11-01
Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. MAIN HYPOTHESES/OUTCOMES: It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Implications of this community-based trial are discussed. Copyright © 2010. Published by Elsevier Inc.
Wilson, Dawn K.; Trumpeter, Nevelyn N.; St. George, Sara M.; Coulon, Sandra M.; Griffin, Sarah; Van Horn, M. Lee; Lawman, Hannah G.; Wandersman, Abe; Egan, Brent; Forthofer, Melinda; Goodlett, Benjamin D.; Kitzman-Ulrich, Heather; Gadson, Barney
2012-01-01
Background Ethnic minorities and lower-income adults have among the highest rates of obesity and lowest levels of regular physical activity (PA). The Positive Action for Today's Health (PATH) trial compares three communities that are randomly assigned to different levels of an environmental intervention to improve safety and access for walking in low income communities. Design and setting Three communities matched on census tract information (crime, PA, ethnic minorities, and income) were randomized to receive either: an intervention that combines a police-patrolled-walking program with social marketing strategies to promote PA, a police-patrolled-walking only intervention, or no-walking intervention (general health education only). Measures include PA (7-day accelerometer estimates), body composition, blood pressure, psychosocial measures, and perceptions of safety and access for PA at baseline, 6, 12, 18, and 24 months. Intervention The police-patrolled walking plus social marketing intervention targets increasing safety (training community leaders as walking captains, hiring off-duty police officers to patrol the walking trail, and containing stray dogs), increasing access for PA (marking a walking route), and utilizes a social marketing campaign that targets psychosocial and environmental mediators for increasing PA. Main hypotheses/outcomes It is hypothesized that the police-patrolled walking plus social marketing intervention will result in greater increases in moderate-to-vigorous PA as compared to the police-patrolled-walking only or the general health intervention after 12 months and that this effect will be maintained at 18 and 24 months. Conclusions Implications of this community-based trial are discussed. PMID:20801233
Wick, Katharina; Faude, Oliver; Schwager, Susanne; Zahner, Lukas; Donath, Lars
2016-05-01
Whether occupational physical activity (PA) will be assessed via questionnaires or accelerometry depends on available resources. Although self-reported data collection seems feasible and inexpensive, obtained information could be biased by demographic determinants. Thus, we aimed at comparing self-reported and objectively measured occupational sitting, standing, and walking times adjusted for socio-demographic variables. Thirty-eight office employees (eight males, 30 females, age 40.8 ± 11.4 years, BMI 23.9 ± 4.2 kg/m(2)) supplied with height-adjustable working desks were asked to report sitting, standing, and walking times using the Occupational Sitting and Physical Activity Questionnaire during one working week. The ActiGraph wGT3X-BT was used to objectively measure occupational PA during the same week. Subjectively and objectively measured data were compared computing the intra-class correlation coefficients, paired t tests and Bland-Altman plots. Furthermore, repeated-measurement ANOVAs for measurement (subjective vs. objective) and socio-demographic variables were calculated. Self-reported data yielded a significant underestimation of standing time (13.3 vs. 17.9%) and an overestimation of walking time (12.7 vs. 5.0%). Significant interaction effects of age and measurement of standing time (F = 6.0, p = .02, ηp(2) = .14) and BMI group and measurement of walking time were found (F = 3.7, p = .04, ηp(2) = .17). Older employees (>39 years) underestimated their standing time, while underweight workers (BMI < 20 kg/m(2)) overestimated their walking time. Self-reported PA data differ from objective data. Demographic variables (age, BMI) affect the amount of self-reported misjudging of PA. In order to improve the validity of self-reported data, a correction formula for the economic assessment of PA by subjective measures is needed, considering age and BMI.
Validity of the Omron HJ-112 pedometer during treadmill walking.
Hasson, Rebecca E; Haller, Jeannie; Pober, David M; Staudenmayer, John; Freedson, Patty S
2009-04-01
The purpose of this investigation was to examine the validity of step counts measured with the Omron HJ-112 pedometer and to assess the effect of pedometer placement. Ninety-two subjects (44 males and 48 females; 71 with body mass index [BMI] <30 kg.m and 21 with BMI >or=30 kg.m) completed three, 12-min bouts of treadmill walking at speeds of 1.12, 1.34, and 1.56 mxs. A subset (21 males and 23 females; 38 BMI <30 kg.m and 6 BMI >or=30 kg.m) completed a variable walking condition. For all conditions, participants wore an Omron HJ-112 pedometer on the hip, in the pants pocket, in the chest shirt pocket, and around the neck. Hip pedometer placement was alternated between right and left sides with the Yamax Digiwalker SW-701. During each walk, an investigator recorded actual steps with a manual hand counter. There was no substantial bias with the Omron in any speed condition (-0.1% to 0.5%). Bias was larger with the Yamax (-3.6% to 2.0%). The largest random error for the Omron was 3.7% in the variable-speed condition for the BMI <30 kg.m group, whereas random errors for the Yamax were larger and up to 20%. None of the Omron placement positions produced statistically significant bias. Hip mounting produced the smallest random error (1.2%), followed by shirt pocket (1.7%), neck (2.2%), and pants pocket (5.8%). The Omron HJ-112 pedometer validly assesses steps in different BMI groups during constant- and variable-speed walking; other than that in the pants pocket, placement of the pedometer has little effect on validity.
Hollands, K L; Pelton, T A; van der Veen, S; Alharbi, S; Hollands, M A
2016-01-01
Although there is evidence that stroke survivors have reduced gait adaptability, the underlying mechanisms and the relationship to functional recovery are largely unknown. We explored the relationships between walking adaptability and clinical measures of balance, motor recovery and functional ability in stroke survivors. Stroke survivors (n=42) stepped to targets, on a 6m walkway, placed to elicit step lengthening, shortening and narrowing on paretic and non-paretic sides. The number of targets missed during six walks and target stepping speed was recorded. Fugl-Meyer (FM), Berg Balance Scale (BBS), self-selected walking speed (SWWS) and single support (SS) and step length (SL) symmetry (using GaitRite when not walking to targets) were also assessed. Stepwise multiple-linear regression was used to model the relationships between: total targets missed, number missed with paretic and non-paretic legs, target stepping speed, and each clinical measure. Regression revealed a significant model for each outcome variable that included only one independent variable. Targets missed by the paretic limb, was a significant predictor of FM (F(1,40)=6.54, p=0.014,). Speed of target stepping was a significant predictor of each of BBS (F(1,40)=26.36, p<0.0001), SSWS (F(1,40)=37.00, p<0.0001). No variables were significant predictors of SL or SS asymmetry. Speed of target stepping was significantly predictive of BBS and SSWS and paretic targets missed predicted FM, suggesting that fast target stepping requires good balance and accurate stepping demands good paretic leg function. The relationships between these parameters indicate gait adaptability is a clinically meaningful target for measurement and treatment of functionally adaptive walking ability in stroke survivors. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hahm, Y.; Yoon, H.
2016-12-01
Retail location is one of the most critical factors explaining the success of store operations. Store owners prefer to choose locations with high visibility and convenient transportation, which might be likely reasons for higher pedestrian volume, hence larger chance to capture impulse shoppers, resulting in more profits. While researches have focused on discerning relationship between pedestrian route choice and physical environments via indirect measures such as survey questionnaire and interviews, recent technologies such as Global Positioning System (GPS) enables collecting direct and precise waking route data. In this study, we investigate the physical environments in which pedestrians prefer to be in commercial district, and further analyze if such locations encompass stores with higher store revenues. The primary method is GPS experiment and travel diary for over hundred visitors of the study site, Hongik University commercial areas in Seoul, South Korea, and statistical analysis, Structural Equation Model (SEM). With SEM, we could assess endogenous latent variables indicating built environments, such as Density, Diversity, Destination Accessibility, Design, and Retail Attraction, and exogenous latent variable, the pedestrian walking choice, based on the observation of pedestrian volume and walking speed. Observed variables include the number of stores, building uses, kind of retail, and pedestrian volume, and walking speed. This research will shed light on planning commercial districts, emphasizing the role of pedestrian walking in the success of retail business, and providing a clue on how to encourage pedestrian visitation by improving physical environment. This work is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2015R1C1A2A01055615)
Liao, Yung; Huang, Pin-Hsuan; Chen, Yi-Ling; Hsueh, Ming-Chun; Chang, Shao-Hsi
2018-04-04
This study examined the prevalence of dog ownership and dog walking and its association with leisure-time walking among metropolitan and nonmetropolitan older adults. A telephone-based cross-sectional survey targeting Taiwanese older adults was conducted in November 2016. Data related to dog ownership, time spent dog walking (categorized as non-dog owner, non-dog walkers, and dog walkers), and sociodemographic variables were obtained from 1074 older adults. Adjusted binary logistic regression was then performed. In this sample, 12% of Taiwanese older adults owned a dog and 31% of them walked their dogs for an average of 232.13 min over 5.9 days/week (standard deviation = 2.03). Older adults living in nonmetropolitan areas were more likely to own a dog (14.7% vs. 9.1%) but less likely to walk their dog (25.9% vs. 39.6%) than were those living in metropolitan areas. Compared with non-dog owners, only older adults living in nonmetropolitan areas who were dog walkers achieved 150 min of leisure-time walking (odds ratio: 3.03, 95% confidence interval: 1.05-8.77), after adjustment for potential confounders. Older Taiwanese adults living in nonmetropolitan areas who owned and walked their dogs were more likely to achieve health-enhancing levels of leisure-time walking. Tailored physical activity interventions for promoting dog walking should be developed for older adults who are dog owners living in nonmetropolitan areas and who do not engage in dog walking.
Foster, Sarah; Hooper, Paula; Knuiman, Matthew; Christian, Hayley; Bull, Fiona; Giles-Corti, Billie
2016-02-16
Numerous cross-sectional studies have investigated the premise that the perception of crime will cause residents to constrain their walking; however the findings to date are inconclusive. In contrast, few longitudinal or prospective studies have examined the impact of crime-related safety on residents walking behaviours. This study used longitudinal data to test whether there is a causal relationship between crime-related safety and walking in the local neighbourhood. Participants in the RESIDential Environments Project (RESIDE) in Perth, Australia, completed a questionnaire before moving to their new neighbourhood (n = 1813) and again approximately one (n = 1467), three (n = 1230) and seven years (n = 531) after relocating. Self-report measures included neighbourhood perceptions (modified NEWS items) and walking inside the neighbourhood (min/week). Objective built environmental measures were generated for each participant's 1600 m neighbourhood at each time-point, and the count of crimes reported to police were generated at the suburb-level for the first three time-points only. The impact of crime-related safety on walking was examined in SAS using the Proc Mixed procedure (marginal repeated measures model with unrestricted variance pattern). Initial models controlled for demographics, time and self-selection, and subsequent models progressively adjusted for other built and social environment factors based on a social ecological model. For every increase of one level on a five-point Likert scale in perceived safety from crime, total walking within the local neighbourhood increased by 18.0 min/week (p = 0.000). This relationship attenuated to an increase of 10.5 min/week after accounting for other built and social environment factors, but remained significant (p = 0.008). Further analyses examined transport and recreational walking separately. In the fully adjusted models, each increase in safety from crime was associated with a 7.0 min/week increase in recreational walking (p = 0.009), however findings for transport walking were non-significant. All associations between suburb-level crime and walking were non-significant. This study provides longitudinal evidence of a potential causal relationship between residents' perceptions of safety from crime and recreational walking. Safety perceptions appeared to influence recreational walking, rather than transport-related walking. Given the popularity of recreational walking and the need to increase levels of physical activity, community social and physical environmental interventions that foster residents' feelings of safety are likely to increase recreational walking and produce public health gains.
Influence of Systematic Increases in Treadmill Walking Speed on Gait Kinematics After Stroke
Tyrell, Christine M.; Roos, Margaret A.; Rudolph, Katherine S.
2011-01-01
Background Fast treadmill training improves walking speed to a greater extent than training at a self-selected speed after stroke. It is unclear whether fast treadmill walking facilitates a more normal gait pattern after stroke, as has been suggested for treadmill training at self-selected speeds. Given the massed stepping practice that occurs during treadmill training, it is important for therapists to understand how the treadmill speed selected influences the gait pattern that is practiced on the treadmill. Objective The purpose of this study was to characterize the effect of systematic increases in treadmill speed on common gait deviations observed after stroke. Design A repeated-measures design was used. Methods Twenty patients with stroke walked on a treadmill at their self-selected walking speed, their fastest speed, and 2 speeds in between. Using a motion capture system, spatiotemporal gait parameters and kinematic gait compensations were measured. Results Significant improvements in paretic- and nonparetic-limb step length and in single- and double-limb support were found. Asymmetry of these measures improved only for step length. Significant improvements in paretic hip extension, trailing limb position, and knee flexion during swing also were found as speed increased. No increases in circumduction or hip hiking were found with increasing speed. Limitations Caution should be used when generalizing these results to survivors of a stroke with a self-selected walking speed of less than 0.4 m/s. This study did not address changes with speed during overground walking. Conclusions Faster treadmill walking facilitates a more normal walking pattern after stroke, without concomitant increases in common gait compensations, such as circumduction. The improvements in gait deviations were observed with small increases in walking speed. PMID:21252308
Fransen, Erik; Perkisas, Stany; Verhoeven, Veronique; Beauchet, Olivier; Remmen, Roy
2017-01-01
Background Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear. Methods Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients. Results The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length), swing time variability, normalised gait speed (corrected for leg length) and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints. Conclusion Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice could facilitate screening for cognitive impairment. PMID:28570662
Brown, Scott C.; Pantin, Hilda; Lombard, Joanna; Toro, Matthew; Huang, Shi; Plater-Zyberk, Elizabeth; Perrino, Tatiana; Perez-Gomez, Gianna; Barrera-Allen, Lloyd; Szapocznik, José
2013-01-01
Background Walk Score® is a nationally and publicly available metric of neighborhood walkability based on proximity to amenities (e.g., retail, food, schools). However, few studies have examined the relationship of Walk Score to walking behavior. Purpose To examine the relationship of Walk Score to walking behavior in a sample of recent Cuban immigrants, who overwhelmingly report little choice in their selection of neighborhood built environments when they arrive in the U.S. Methods Participants were 391 recent healthy Cuban immigrants (M age=37.1 years) recruited within 90 days of arrival in the U.S., and assessed within 4 months of arrival (M=41.0 days in the U.S.), who resided throughout Miami-Dade County FL. Data on participants’ addresses, walking and sociodemographics were collected prospectively from 2008 to 2010. Analyses conducted in 2011 examined the relationship of Walk Score for each participant’s residential address in the U.S. to purposive walking, controlling for age, gender, education, BMI, days in the U.S., and habitual physical activity level in Cuba. Results For each 10-point increase in Walk Score, adjusting for covariates, there was a significant 19% increase in the likelihood of purposive walking, a 26% increase in the likelihood of meeting physical activity recommendations by walking, and 27% more minutes walked in the previous week. Conclusions Results suggest that Walk Score is associated with walking in a sample of recent immigrants who initially had little choice in where they lived in the U.S. These results support existing guidelines indicating that mixed land use (such as parks and restaurants near homes) should be included when designing walkable communities. PMID:23867028
Kaur, Mandeep; Ribeiro, Daniel Cury; Theis, Jean-Claude; Webster, Kate E; Sole, Gisela
2016-12-01
Altered gait patterns follow ing anterior cruciate ligament reconstruction (ACLR) may be associated with long-term impairments and post-traumatic osteoarthritis. This systematic review and meta-analysis compared lower limb kinematics and kinetics of the ACL reconstructed knee with (1) the contralateral limb and (2) healthy age-matched participants during walking, stair climbing, and running. The secondary aim was to describe the differences over time following ACLR for these biomechanical variables. Database searches were conducted from inception to July 2014 and updated in August 2015 for studies exploring peak knee angles and moments following ACLR during walking, stair negotiation, and running. Risk of bias was assessed with a modified Downs and Black quality index for all included studies, and meta-analyses were performed. Forest plots were explored qualitatively for recovery of gait variables over time after surgery. A total of 40 studies were included in the review; 26 of these were rated as low risk and 14 as high risk of bias. The meta-analysis included 27 studies. Strong to moderate evidence indicated no significant difference in peak flexion angles between ACLR and control groups during walking and stair ascent. Strong evidence was found for lower peak flexion moments in participants with ACLR compared with control groups and contralateral limb during walking and stair activities. Strong to moderate evidence was found for lower peak adduction moment in ACLR participants for the injured compared with the contralateral limbs during walking and stair descent. The qualitative assessment for recovery over time indicated a pattern towards restoration of peak knee flexion angle with increasing time from post-surgery. Peak knee adduction moments were lower within the first year following surgery and higher than controls during later phases (5 years). Joint kinematics are restored, on average, 6 years following reconstruction, while knee external flexion moments remain lower than controls. Knee adduction moments are lower during early phases following reconstruction, but are higher than controls, on average, 5 years post-surgery. Findings indicate that knee function is not fully restored following reconstruction, and long-term maintenance programs may be needed.
Reeves, Mathew J; Rafferty, Ann P; Miller, Corinne E; Lyon-Callo, Sarah K
2011-03-01
The extent to which dog walking promotes leisure-time physical activity (LTPA) remains unresolved. We describe the characteristics of people who walk their dog, and assess the impact on LTPA. Information on dog ownership, dog walking patterns, total walking activity and LTPA were assessed in the 2005 Michigan Behavioral Risk Factor Survey. Multiple logistic regression was used to generate adjusted odds ratios (AOR) for the effect of dog walking on total walking and LTPA. Of 5902 respondents 41% owned a dog, and of these, 61% walked their dog for at least 10 minutes at a time. However, only 27% walked their dog at least 150 minutes per week. Dog walking was associated with a significant increase in walking activity and LTPA. Compared with non-dog owners, the odds of obtaining at least 150 minutes per week of total walking were 34% higher for dog walkers (AOR = 1.34, 95% CI = 1.13 to 1.59), and the odds of doing any LTPA were 69% higher (AOR = 1.69, 95% CI = 1.33 to 2.15). Dog walking was associated with more walking and LTPA, however a substantial proportion of dog owners do not walk their dog. The promotion of dog walking could help increase LTPA.
Walking to Work: The Roles of Neighborhood Walkability and Socioeconomic Deprivation.
Kelly, Cheryl M; Lian, Min; Struthers, Jim; Kammrath, Anna
2015-06-16
There are few studies that aimed to find a relationship between transportation-related physical activity and neighborhood socioeconomic condition using a composite deprivation index. The purpose of this study is to assess the relationship of neighborhood walkability and socioeconomic deprivation with percentage of adults walking to work. A walkability index and a socioeconomic deprivation index were created at block group-level. The outcome variable, percentage of adults who walk to work was dichotomized as < 5% of the block group walking to work low and ≥ 5% of the block group walking to work as high and applied logistic regression to examine the association of walkability and socioeconomic deprivation with walking to work. Individuals in the most walkable neighborhoods are almost 5 times more likely to walk to work than individuals in the least walkable neighborhoods (OR = 4.90, 95% CI = 2.80-8.59). After adjusting for neighborhood socioeconomic deprivation, individuals in the most walkable neighborhoods are almost 3 times more likely to walk to work than individuals in the least walkable neighborhoods (OR = 2.98, 95% CI = 1.62-5.49). Walkability (as measured by the walkability index) is a very strong indicator of walking to work even after controlling for neighborhood socioeconomic disadvantage.
Neighborhood Environment and Adherence to a Walking Intervention in African-American Women
Zenk, Shannon N.; Wilbur, JoEllen; Wang, Edward; McDevitt, Judith; Oh, April; Block, Richard; McNeil, Sue; Savar, Nina
2009-01-01
This secondary analysis examined relationships between the environment and adherence to a walking intervention among 252 urban and suburban midlife African-American women. Participants received an enhanced or minimal behavioral intervention. Walking adherence was measured as the percentage of prescribed walks completed. Objective measures of the women’s neighborhoods included: walkability (land use mix, street intersection density, housing unit density, public transit stop density), aesthetics (physical deterioration, industrial land use), availability of outdoor (recreational open space) and indoor (recreation centers, shopping malls) walking facilities/spaces, and safety (violent crime incidents). Ordinary least squares regression estimated relationships. We found presence of one and especially both types of indoor walking facilities were associated with greater adherence. No associations were found between adherence and the other environmental variables. The effect of the enhanced intervention on adherence did not differ by environmental characteristics. Aspects of the environment may influence African-American women who want to be more active. PMID:18669878
Dames, Kevin D; Smith, Jeremy D
2016-10-01
Kinetic and kinematic responses during walking vary by footwear condition. Load carriage also influences gait patterns, but it is unclear how an external load influences barefoot walking. Twelve healthy adults (5 women, 7 men) with no known gait abnormalities participated in this study (age=23±3years, height=1.73±0.11m, and mass=70.90±12.67kg). Ground reaction forces and 3D motion were simultaneously collected during overground walking at 1.5ms -1 in four conditions: Barefoot Unloaded, Shod Unloaded, Barefoot Loaded, and Shod Loaded. Barefoot walking reduced knee and hip joint ranges of motion, as well as stride length, stance time, swing time, and double support time. Load carriage increased stance and double support times. The 15% body weight load increased GRFs ∼15%. Walking barefoot reduced peak anteroposterior GRFs but not peak vertical GRFs. Load carriage increased hip, knee, and ankle joint moments and powers, while walking barefoot increased knee and hip moments and powers. Thus, spatiotemporal and kinematic adjustments to walking barefoot decrease GRFs but increase knee and hip kinetic measures during overground walking. The ankle seems to be less affected by these footwear conditions. Regardless of footwear, loading requires larger GRFs, joint loads, and joint powers. Copyright © 2016 Elsevier B.V. All rights reserved.
Konop, Katherine A; Strifling, Kelly M B; Wang, Mei; Cao, Kevin; Eastwood, Daniel; Jackson, Scott; Ackman, Jeffrey; Altiok, Haluk; Schwab, Jeffrey; Harris, Gerald F
2009-01-01
We evaluated the relationships between upper extremity (UE) kinetics and the energy expenditure index during anterior and posterior walker-assisted gait in children with spastic diplegic cerebral palsy (CP). Ten children (3 boys, 7 girls; mean age 12.1 years; range 8 to 18 years) with spastic diplegic CP, who ambulated with a walker underwent gait analyses that included UE kinematics and kinetics. Upper extremity kinetics were obtained using instrumented walker handles. Energy expenditure index was obtained using the heart rate method (EEIHR) by subtracting resting heart rate from walking heart rate, and dividing by the walking speed. Correlations were sought between the kinetic variables and the EEIHR and temporal and stride parameters. In general, anterior walker use was associated with a higher EEIHR. Several kinetic variables correlated well with temporal and stride parameters, as well as the EEIHR. All of the significant correlations (r>0.80; p<0.005) occurred during anterior walker use and involved joint reaction forces (JRF) rather than moments. Some variables showed multiple strong correlations during anterior walker use, including the medial JRF in the wrist, the posterior JRF in the elbow, and the inferior and superior JRFs in the shoulder. The observed correlations may indicate a relationship between the force used to advance the body forward within the walker frame and an increased EEIHR. More work is needed to refine the correlations, and to explore relationships with other variables, including the joint kinematics.
Farrokhi, Shawn; Jayabalan, Prakash; Gustafson, Jonathan A; Klatt, Brian A; Sowa, Gwendolyn A; Piva, Sara R
2017-07-01
To evaluate whether knee contact force and knee pain are different between continuous and interval walking exercise in patients with knee osteoarthritis (OA). Twenty seven patients with unilateral symptomatic knee OA completed two separate walking exercise sessions on a treadmill at 1.3m/s on two different days: 1) a continuous 45min walking exercise session, and 2) three 15min bouts of walking exercise separated by 1h rest periods for a total of 45min of exercise in an interval format. Estimated knee contact forces using the OpenSim software and knee pain were evaluated at baseline (1st minute of walking) and after every 15min between the continuous and interval walking conditions. A significant increase from baseline was observed in peak knee contact force during the weight-acceptance phase of gait after 30 and 45min of walking, irrespective of the walking exercise condition. Additionally, whereas continuous walking resulted in an increase in knee pain, interval walking did not lead to increased knee pain. Walking exercise durations of 30min or greater may lead to undesirable knee joint loading in patients with knee OA, while performing the same volume of exercise in multiple bouts as opposed to one continuous bout may be beneficial for limiting knee pain. Copyright © 2017. Published by Elsevier B.V.
Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M
2015-10-01
While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.
Carlson, Jordan A; Saelens, Brian E; Kerr, Jacqueline; Schipperijn, Jasper; Conway, Terry L; Frank, Lawrence D; Chapman, Jim E; Glanz, Karen; Cain, Kelli L; Sallis, James F
2015-03-01
To investigate relations of walking, bicycling and vehicle time to neighborhood walkability and total physical activity in youth. Participants (N=690) were from 380 census block groups of high/low walkability and income in two US regions. Home neighborhood residential density, intersection density, retail density, entertainment density and walkability were derived using GIS. Minutes/day of walking, bicycling and vehicle time were derived from processing algorithms applied to GPS. Accelerometers estimated total daily moderate-to-vigorous physical activity (MVPA). Models were adjusted for nesting of days (N=2987) within participants within block groups. Walking occurred on 33%, active travel on 43%, and vehicle time on 91% of the days observed. Intersection density and neighborhood walkability were positively related to walking and bicycling and negatively related to vehicle time. Residential density was positively related to walking. Increasing walking in youth could be effective in increasing total physical activity. Built environment findings suggest potential for increasing walking in youth through improving neighborhood walkability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662
[Results of a physical therapy program in nursing home residents: A randomized clinical trial].
Casilda-López, Jesús; Torres-Sánchez, Irene; Garzón-Moreno, Victor Manuel; Cabrera-Martos, Irene; Valenza, Marie Carmen
2015-01-01
The maintenance of the physical functionality is a key factor in the care of the elderly. Inactive people have a higher risk of death due to diseases associated with inactivity. In addition, the maintenance of optimal levels of physical and mental activity has been suggested as a protective factor against the development and progression of chronic illnesses and disability. The objective of this study is to assess the effectiveness of an 8-week exercise program with elastic bands, on exercise capacity, walking and balance in nursing home residents. A nursing home sample was divided into two groups, intervention group (n=26) and control group (n=25). The intervention group was included in an 8-week physical activity program using elastic bands, twice a week, while the control group was took part in a walking programme. Outcome measurements were descriptive variables (anthropometric characteristics, quality of life, fatigue, fear of movement) and fundamental variables (exercise capacity, walking and balance). A significant improvement in balance and walking speed was observed after the programme. Additionally, exercise capacity improved significantly (P≤.001), and the patients showed an improvement in perceived dyspnea after the physical activity programme in the intervention group. The exercise program was safe and effective in improving dyspnea, exercise capacity, walking, and balance in elderly. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.
Fastenau, Annemieke; van Schayck, Onno C P; Gosselink, Rik; Aretz, Karin C P M; Muris, Jean W M
2013-12-01
In patients with moderate to severe chronic obstructive pulmonary disease (COPD) the six-minute walk distance reflects the functional exercise level for daily physical activity. It is unknown if this also applies to patients with mild to moderate COPD in primary care. To assess the relationship between functional exercise capacity and physical activity in patients with mild to moderate COPD. A cross-sectional study was performed in 51 patients with mild to moderate COPD in primary care. Functional exercise capacity was assessed by the six-minute walk test and physical activity was measured with an accelerometer-based activity monitor. Functional exercise capacity was close to normal values. However, the daily physical activity of the patients could be classified as 'sedentary' and 'low active'. No significant correlations were observed between six-minute walk distance (% predicted) and any of the physical activity variables (steps per day, movement intensity during walking, total active time, total walking time, physical activity level, and time spent in moderate physical activity). A discrepancy was found between functional exercise capacity and daily physical activity in patients with mild to moderate COPD recruited and assessed in primary care. We conclude that these variables represent two different concepts. Our results reinforce the importance of measuring daily physical activity in order to fine-tune treatment (i.e. focusing on enhancement of exercise capacity or behavioural change, or both).
Marek, W; Marek, E; Vogel, P; Mückenhoff, K; Kotschy-Lang, N
2008-11-01
AIMS OF THE INVESTIGATION: The 6-minute-walk-test (6-MW) is an effective tool for measuring physical fitness in elderly patients. The increased walking distance is taken as a parameter for improved physical conditions. Frequently an unaltered walking distance is found after clinical treatment, but heart rate is significantly lower in the second challenge, indicating an improved physical fitness. This positive effect is not recognised when only the walking distance is analysed. An analysis of the 6-MW test was performed on 263 patients before and after 3 - 4 weeks clinical rehabilitation. In a control group of 26 patients 6-MW was repeated after recovery at the beginning and the end of the clinical treatment. Instrumented by a mobile pulse oximeter for recording oxygen saturation and heart rate, patients were instructed to walk as fast as they can do during 6 minutes. Measurements were performed every 30 seconds and printed out. Two new parameters, efficiency (E = S/f (C)), the ratio of distance and mean heart rate, and the theoretical increase in walking distance (S (z) = Delta f (C1)/Delta f (C2) x S (2) - S (1)) were introduced and tested. S (z) = theoretical increase in distance, Delta f (C1) = difference in heart rate at rest and mean heart rate at steady state during the first walk test with distance, S1. Delta f (C2), and S2 are measured during the second walk. Thus, the increase in distance is calculated under the assumption that the second walk test would have been performed by the patient with the same difference in heart rate that he/she achieved in the first walk. The patient groups walked 353 +/- 80 m at 106 +/- 14.3 beats/min in the 1st. 6-MW and 368 +/- 76.9 m at a heart rate of 105 +/- 14.0 beats/min in the final test. The increase of the walking distance was most significant in patients with shorter distances in the 1st 6-MW. A significant increase in the walking distance and in efficiency was found in patients with shorter walking distances or lower heart rates in the final test, using the numerical procedure described above. The patient's performance of the second walk test with an unchanged distance at a lower heart rate reveals an improved physical fitness. This is solely described by an increase by the parameter of efficiency, E. The calculation of the parameter, Sz, theoretical difference in walking distance (i. e., theoretical increase in almost all tests) provides a quantification of the effect of exercise training, even if the patient is not cooperative during the tests. Both parameters have proved to be suitable estimations for the assessment of physical fitness as a beneficial effect of clinical rehabilitation.
Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.
Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon
2015-09-01
[Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.
The social environment and walking behavior among low-income housing residents.
Caspi, Caitlin E; Kawachi, Ichiro; Subramanian, S V; Tucker-Seeley, Reginald; Sorensen, Glorian
2013-03-01
Walking, both for leisure and for travel/errands, counts toward meeting physical activity recommendations. Both social and physical neighborhood environmental features may encourage or inhibit walking. This study examined social capital, perceived safety, and disorder in relation to walking behavior among a population of low-income housing residents. Social and physical disorder were assessed by systematic social observation in the area surrounding 20 low-income housing sites in greater Boston. A cross-sectional survey of 828 residents of these housing sites provided data on walking behavior, socio-demographics, and individual-level social capital and perceived safety of the areas in and around the housing site. Community social capital and safety were calculated by aggregating individual scores to the level of the housing site. Generalized estimating equations were used to estimate prevalence rate ratios for walking less than 10 min per day for a) travel/errands, b) leisure and c) both travel/errands and leisure. 21.8% of participants walked for travel/errands less than 10 min per day, 34.8% for leisure, and 16.8% for both kinds of walking. In fully adjusted models, those who reported low individual-level social capital and safety also reported less overall walking and less walking for travel/errands. Unexpectedly, those who reported low social disorder also reported less walking for leisure, and those who reported high community social capital also walked less for all outcomes. Physical disorder and community safety were not associated with walking behavior. For low-income housing residents, neighborhood social environmental variables are unlikely the most important factors in determining walking behavior. Researchers should carefully weigh the respective limitations of subjective and objective measures of the social environment when linking them to health outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.
2012-01-01
Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500
Franzén, Erika; Paquette, Caroline; Gurfinkel, Victor S; Cordo, Paul J; Nutt, John G; Horak, Fay B
2009-01-01
Rigidity or hypertonicity is a cardinal symptom of Parkinson's disease (PD). We hypothesized that hypertonicity of the body axis affects functional performance of tasks involving balance, walking and turning. The magnitude of axial postural tone in the neck, trunk and hip segments of 15 subjects with PD (both ON and OFF levodopa) and 15 control subjects was quantified during unsupported standing in an axial twisting device in our laboratory as resistance to torsional rotation. Subjects also performed six functional tests (walking in a figure of eight [Figure of Eight], Timed Up & Go, Berg Balance Scale, supine rolling task [rollover], Functional Reach, and standing 360-deg turn-in-place) in the ON and OFF state. Results showed that PD subjects had increased tone throughout the axis compared to control subjects (p=0.008) and that this increase was most prominent in the neck. In PD subjects, axial tone was related to functional performance, but most strongly for tone at the neck and accounted for an especially large portion of the variability in the performance of the Figure of Eight test (rOFF=0.68 and rON=0.74, p<0.05) and the Rollover test (rOFF=0.67and rON=0.55, p<0.05). Our results suggest that neck tone plays a significant role in functional mobility and that abnormally high postural tone may be an important contributor to balance and mobility disorders in individuals with PD. PMID:19573528
Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise
2012-08-28
Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was different for 1.0 m/s gait velocities. Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects.
Anticipatory postural adjustments for altering direction during walking.
Xu, Dali; Carlton, Les G; Rosengren, Karl S
2004-09-01
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.
2013-01-01
Background Regaining independent ambulation is the top priority for individuals recovering from stroke. Thus, physical rehabilitation post-stroke should focus on improving walking function and endurance. However, the amount of walking completed by individuals with stroke attending rehabilitation is far below that required for independent community ambulation. There has been increased interest in accelerometer-based monitoring of walking post-stroke. Walking monitoring could be integrated within the goal-setting process for those with ambulation goals in rehabilitation. The feedback from these devices can be downloaded to a computer to produce reports. The purpose of this study is to determine the effect of accelerometer-based feedback of daily walking activity during rehabilitation on the frequency and duration of walking post-stroke. Methods Participants will be randomly assigned to one of two groups: feedback or no feedback. Participants will wear accelerometers daily during in- and out-patient rehabilitation and, for participants in the feedback group, the participants’ treating physiotherapist will receive regular reports of walking activity. The primary outcome measures are the amount of daily walking completed, as measured using the accelerometers, and spatio-temporal characteristics of walking (e.g. walking speed). We will also examine goal attainment, satisfaction with progress towards goals, stroke self-efficacy, and community-integration. Discussion Increased walking activity during rehabilitation is expected to improve walking function and community re-integration following discharge. In addition, a focus on altering walking behaviour within the rehabilitation setting may lead to altered behaviour and increased activity patterns after discharge. Trial registration ClinicalTrials.gov NCT01521234 PMID:23865593
A method for automated control of belt velocity changes with an instrumented treadmill.
Hinkel-Lipsker, Jacob W; Hahn, Michael E
2016-01-04
Increased practice difficulty during asymmetrical split-belt treadmill rehabilitation has been shown to improve gait outcomes during retention and transfer tests. However, research in this area has been limited by manual treadmill operation. In the case of variable practice, which requires stride-by-stride changes to treadmill belt velocities, the treadmill control must be automated. This paper presents a method for automation of asymmetrical split-belt treadmill walking, and evaluates how well this method performs with regards to timing of gait events. One participant walked asymmetrically for 100 strides, where the non-dominant limb was driven at their self-selected walking speed, while the other limb was driven randomly on a stride-by-stride basis. In the control loop, the key factors to insure that the treadmill belt had accelerated to its new velocity safely during the swing phase were the sampling rate of the A/D converter, processing time within the controller software, and acceleration of the treadmill belt. The combination of these three factors resulted in a total control loop time during each swing phase that satisfied these requirements with a factor of safety that was greater than 4. Further, a polynomial fit indicated that belt acceleration was the largest contributor to changes in this total time. This approach appears to be safe and reliable for stride-by-stride adjustment of treadmill belt speed, making it suitable for future asymmetrical split-belt walking studies. Further, it can be incorporated into virtual reality rehabilitation paradigms that utilize split-belt treadmill walking. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ussery, Emily N; Carlson, Susan A; Whitfield, Geoffrey P; Watson, Kathleen B; Berrigan, David; Fulton, Janet E
2017-06-30
Physical activity confers considerable health benefits, but only half of U.S. adults report participating in levels of aerobic physical activity consistent with guidelines (1,2). Step It Up! The Surgeon General's Call to Action to Promote Walking and Walkable Communities identified walking as an important public health strategy to increase physical activity levels (3). A previous report showed that the self-reported prevalence of walking for transportation or leisure increased by 6 percentage points from 2005 to 2010 (4), but it is unknown whether this increase has been sustained. CDC analyzed National Health Interview Survey (NHIS) data from 2005 (26,551 respondents), 2010 (23,313), and 2015 (28,877) to evaluate trends in the age-adjusted prevalence of self-reported walking among adults aged ≥18 years. The prevalence of walking increased steadily among women, from 57.3% in 2005, to 62.5% in 2010, and to 65.1% in 2015 (significant linear trend). Among men, a significant linear increase in reported walking was observed, from 54.3% in 2005, to 61.8% in 2010, and to 62.8% in 2015, although the increase stalled between 2010 and 2015 (significant linear and quadratic trends). Community design policies and practices that encourage pedestrian activity and programs tailored to the needs of specific population subgroups remain important strategies for promoting walking (3).
Acar, Serap; Savcı, Sema; Kardibak, Didem; Özcan Kahraman, Buse; Akdeniz, Bahri; Özpelit, Ebru; Sevinç, Can
2016-12-20
The aims of the present study were to assess the relationship between the distance walked during the 6-min walk test (6MWT) and exercise capacity as determined by cardiopulmonary exercise testing (CPET) in patients with pulmonary arterial hypertension (PAH) and to investigate the prognostic value of the 6MWT in comparison to clinical parameters of CPET and echocardiography findings. Thirty PAH patients participated in the study. Subject characteristics and New York Heart Association (NYHA) classifications were recorded. All subjects completed the 6MWT and CPET. Relationships among the variables were analyzed by the Pearson correlation test. Correlation coefficients between 6MWT distance and other variables were determined by linear regression analysis. Distance walked in the 6MWT was significantly correlated with the following exercise parameters: peak oxygen consumption, work load, and metabolic equivalents. Additionally, cardiac index was correlated with peak oxygen consumption and metabolic equivalents. We also showed that cardiac index and age were two significant determinants for exercise performance, accounting for 35.4% of the variance in the 6MWT. The 6MWT provides information that may be a better index for the patient's NYHA functional class determination than maximal exercise testing.
Feasibility of Synergy-Based Exoskeleton Robot Control in Hemiplegia.
Hassan, Modar; Kadone, Hideki; Ueno, Tomoyuki; Hada, Yasushi; Sankai, Yoshiyuki; Suzuki, Kenji
2018-06-01
Here, we present a study on exoskeleton robot control based on inter-limb locomotor synergies using a robot control method developed to target hemiparesis. The robot control is based on inter-limb locomotor synergies and kinesiological information from the non-paretic leg and a walking aid cane to generate motion patterns for the assisted leg. The developed synergy-based system was tested against an autonomous robot control system in five patients with hemiparesis and varying locomotor abilities. Three of the participants were able to walk using the robot. Results from these participants showed an improved spatial symmetry ratio and more consistent step length with the synergy-based method compared with that for the autonomous method, while the increase in the range of motion for the assisted joints was larger with the autonomous system. The kinematic synergy distribution of the participants walking without the robot suggests a relationship between each participant's synergy distribution and his/her ability to control the robot: participants with two independent synergies accounting for approximately 80% of the data variability were able to walk with the robot. This observation was not consistently apparent with conventional clinical measures such as the Brunnstrom stages. This paper contributes to the field of robot-assisted locomotion therapy by introducing the concept of inter-limb synergies, demonstrating performance differences between synergy-based and autonomous robot control, and investigating the range of disability in which the system is usable.
Educational nurse-led lifestyle intervention for persons with mental illness.
Rönngren, Ylva; Björk, Annette; Audulv, Åsa; Enmarker, Ingela; Kristiansen, Lisbeth; Haage, David
2018-06-01
Although persons with severe mental illness face an increased risk of mortality and of developing negative health outcomes, research has shown that lifestyle interventions can sufficiently support their health. In response, this study examined a nurse-led lifestyle intervention developed in cooperation with members of municipal and county councils to gauge its impact on the quality of life, cognitive performance, walking capacity, and body composition of persons with severe mental illness. Lasting 26 weeks and involving 38 persons with severe mental illness, the intervention prioritised two components: the interpersonal relationships of persons with severe mental illness, staff, and group leaders and group education about physical and mental health. Pre-post intervention measurements of quality of life collected with the Manchester Short Assessment of Quality of Life, cognitive performance with the Frontal Systems Behaviour Scale, walking capacity with a 6-min walk test, and body composition in terms of waist circumference and body mass index were analysed using a nonparametric test Wilcoxon signed-rank test. Results suggest that the intervention afforded significant improvements in the health-related variables of quality of life, cognitive performance, walking capacity, and waist circumference for persons with severe mental illness. However, long-term studies with control groups and that examine parameters related to cardiovascular risk factors are essential to ensure the sustained impact of the intervention. © 2017 Australian College of Mental Health Nurses Inc.
Use of mobility aids reduces attentional demand in challenging walking conditions.
Miyasike-daSilva, Veronica; Tung, James Y; Zabukovec, Jeanie R; McIlroy, William E
2013-02-01
While mobility aids (e.g., four-wheeled walkers) are designed to facilitate walking and prevent falls in individuals with gait and balance impairments, there is evidence indicating that walkers may increase attentional demands during walking. We propose that walkers may reduce attentional demands under conditions that challenge balance control. This study investigated the effect of walker use on walking performance and attentional demand under a challenged walking condition. Young healthy subjects walked along a straight pathway, or a narrow beam. Attentional demand was assessed with a concurrent voice reaction time (RT) task. Slower RTs, reduced gait speed, and increased number of missteps (>92% of all missteps) were observed during beam-walking. However, walker use reduced attentional demand (faster RTs) and was linked to improved walking performance (increased gait speed, reduced missteps). Data from two healthy older adult cases reveal similar trends. In conclusion, mobility aids can be beneficial by reducing attentional demands and increasing gait stability when balance is challenged. This finding has implications on the potential benefit of mobility aids for persons who rely on walkers to address balance impairments. Copyright © 2012 Elsevier B.V. All rights reserved.
Hurt, Christopher P; Burgess, Jamie K; Brown, David A
2015-03-01
Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5±9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3±4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p=0.004) under some level of BWS (5% n=2, 10% n=3, 20% n=3) whereas nonimpaired controls did not change speed (p=0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r=0.68, p=0.003) and nonparetic braking impulses (r=-0.80, p=0.006), but were not correlated with decreased paretic braking impulses (r=0.50 p=0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb. Copyright © 2015 Elsevier B.V. All rights reserved.
Kempen, Jiska C E; Doorenbosch, Caroline A M; Knol, Dirk L; de Groot, Vincent; Beckerman, Heleen
2016-11-01
Limited walking ability is an important problem for patients with multiple sclerosis. A better understanding of how gait impairments lead to limited walking ability may help to develop more targeted interventions. Although gait classifications are available in cerebral palsy and stroke, relevant knowledge in MS is scarce. The aims of this study were: (1) to identify distinctive gait patterns in patients with MS based on a combined evaluation of kinematics, gait features, and muscle activity during walking and (2) to determine the clinical relevance of these gait patterns. This was a cross-sectional study of 81 patients with MS of mild-to-moderate severity (Expanded Disability Status Scale [EDSS] median score=3.0, range=1.0-7.0) and an age range of 28 to 69 years. The patients participated in 2-dimensional video gait analysis, with concurrent measurement of surface electromyography and ground reaction forces. A score chart of 73 gait items was used to rate each gait analysis. A single rater performed the scoring. Latent class analysis was used to identify gait classes. Analysis of the 73 gait variables revealed that 9 variables could distinguish 3 clinically meaningful gait classes. The 9 variables were: (1) heel-rise in terminal stance, (2) push-off, (3) clearance in initial swing, (4) plantar-flexion position in mid-swing, (5) pelvic rotation, (6) arm-trunk movement, (7) activity of the gastrocnemius muscle in pre-swing, (8) M-wave, and (9) propulsive force. The EDSS score and gait speed worsened in ascending classes. Most participants had mild-to-moderate limitations in walking ability based on their EDSS scores, and the number of walkers who were severely limited was small. Based on a small set of 9 variables measured with 2-dimensional clinical gait analysis, patients with MS could be divided into 3 different gait classes. The gait variables are suggestive of insufficient ankle push-off. © 2016 American Physical Therapy Association.
Thøgersen-Ntoumani, Cecilie; Loughren, Elizabeth A; Duda, Joan L; Fox, Kenneth R; Kinnafick, Florence-Emilie
2010-09-27
Following an extensive recruitment campaign, a 16-week lunchtime intervention to increase walking was implemented with insufficiently physically active University employees to examine programme feasibility and the effects of the programme in increasing walking behaviour, and in improving well-being and work performance. A feasibility study in which participants were randomised to an immediate treatment or a delayed treatment control (to start at 10 weeks) group. For the first ten weeks of the intervention, participants took part in three facilitator-led group walks per week each of thirty minutes duration and were challenged to accumulate another sixty minutes of walking during the weekends. In the second phase of the intervention, the organised group walks ceased to be offered and participants were encouraged to self-organise their walks. Motivational principles were employed using contemporary motivational theory. Outcome measures (including self-reported walking, step counts, cardiovascular fitness, general and work-related well-being and work performance) were assessed at baseline, at the end of the 16-week intervention and (for some) four months after the end of the intervention. Process and outcome assessments were also taken throughout, and following, the intervention. The results of the intervention will determine the feasibility of implementing a lunchtime walking programme to increase walking behaviour, well-being and performance in sedentary employees. If successful, there is scope to implement definitive trials across a range of worksites with the aim of improving both employee and organisational health. Current Controlled Trials ISRCTN81504663.
Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.
Leroux, A; Fung, J; Barbeau, H
1999-06-01
Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.
Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series.
Gorgey, Ashraf S; Wade, Rodney; Sumrell, Ryan; Villadelgado, Lynette; Khalil, Refka E; Lavis, Timothy
2017-01-01
Objectives: To determine whether the use of a powered exoskeleton can improve parameters of physical activity as determined by walking time, stand up time, and number of steps in persons with spinal cord injury (SCI). Methods: Three men with complete (1 C5 AIS A and 2 T4 AIS A) and one man with incomplete (C5 AIS D) SCI participated in a clinical rehabilitation program. In the training program, the participants walked once weekly using a powered exoskeleton (Ekso) for approximately 1 hour over the course of 10 to 15 weeks. Walking time, stand up time, ratio of walking to stand up time, and number of steps were determined. Oxygen uptake (L/min), energy expenditure, and body composition were measured in one participant after training. Results: Over the course of 10 to 15 weeks, the maximum walking time increased from 12 to 57 minutes and the number of steps increased from 59 to 2,284 steps. At the end of the training, the 4 participants were able to exercise for 26 to 59 minutes. For one participant, oxygen uptake increased from 0.27 L/min during rest to 0.55 L/min during walking. Maximum walking speed was 0.24 m/s, and delta energy expenditure increased by 1.4 kcal/min during walking. Body composition showed a modest decrease in absolute fat mass in one participant. Conclusion: Exoskeleton training may improve parameters of physical activity after SCI by increasing the number of steps and walking time. Other benefits may include increasing energy expenditure and improving the profile of body composition.
Contextual barriers to lifestyle physical activity interventions in Hong Kong.
Eves, Frank F; Masters, Rich S W; McManus, Alison; Leung, Moon; Wong, Peggy; White, Mike J
2008-05-01
Increased lifestyle physical activity, for instance, use of active transport, is a current public health target. Active transport interventions that target stair climbing are consistently successful in English-speaking populations yet unsuccessful in Hong Kong. We report two further studies on active transport in the Hong Kong Chinese. Pedestrians on a mass transit escalator system (study 1) and in an air-conditioned shopping mall (study 2) were encouraged to take the stairs for their cardiovascular health by point-of-choice prompts. Observers coded sex, age, and walking on the mass transit system, with the additional variables of presence of children and bags coded in the shopping mall. In the first study, a 1-wk baseline was followed by 4 wk of intervention (N = 76,710) whereas in the second study (shopping mall) a 2-wk baseline was followed by a 2-wk intervention period (N = 18,257). A small but significant increase in stair climbing (+0.29%) on the mass transit system contrasted with no significant changes in the shopping mall (+0.09%). The active transport of walking on the mass transit system was reduced at higher rates of humidity and temperature, with steeper slopes for the effects of climate variables in men than in women. These studies confirm that lifestyle physical activity interventions do not have universal application. The context in which the behavior occurs (e.g., climate) may act as a barrier to active transport.
Do changes in residents' fear of crime impact their walking? Longitudinal results from RESIDE.
Foster, Sarah; Knuiman, Matthew; Hooper, Paula; Christian, Hayley; Giles-Corti, Billie
2014-05-01
To examine the influence of fear of crime on walking for participants in a longitudinal study of residents in new suburbs. Participants (n=485) in Perth, Australia, completed a questionnaire about three years after moving to their neighbourhood (2007-2008), and again four years later (2011-2012). Measures included fear of crime, neighbourhood perceptions and walking (min/week). Objective environmental measures were generated for each participant's neighbourhood, defined as the 1600 m road network distance from home, at each time-point. Linear regression models examined the impact of changes in fear of crime on changes in walking, with progressive adjustment for other changes in the built environment, neighbourhood perceptions and demographics. An increase in fear of crime was associated with a decrease in residents' walking inside the local neighbourhood. For each increase in fear of crime (i.e., one level on a five-point Likert scale) total walking decreased by 22 min/week (p=0.002), recreational walking by 13 min/week (p=0.031) and transport walking by 7 min/week (p=0.064). This study provides longitudinal evidence that changes in residents' fear of crime influence their walking behaviours. Interventions that reduce fear of crime are likely to increase walking and produce public health gains. Copyright © 2014 Elsevier Inc. All rights reserved.
Lemoine, Pablo D; Cordovez, Juan Manuel; Zambrano, Juan Manuel; Sarmiento, Olga L; Meisel, Jose D; Valdivia, Juan Alejandro; Zarama, Roberto
2016-07-01
The effect of transport infrastructure on walking is of interest to researchers because it provides an opportunity, from the public policy point of view, to increase physical activity (PA). We use an agent based model (ABM) to examine the effect of transport infrastructure on walking. Particular relevance is given to assess the effect of the growth of the Bus Rapid Transit (BRT) system in Bogotá on walking. In the ABM agents are assigned a home, work location, and socioeconomic status (SES) based on which they are assigned income for transportation. Individuals must decide between the available modes of transport (i.e., car, taxi, bus, BRT, and walking) as the means of reaching their destination, based on resources and needed travel time. We calibrated the model based on Bogota's 2011 mobility survey. The ABM results are consistent with previous empirical findings, increasing BRT access does indeed increase the number of minutes that individuals walk for transportation, although this effect also depends on the availability of other transport modes. The model indicates a saturation process: as more BRT lanes are added, the increment in minutes walking becomes smaller, and eventually the walking time decreases. Our findings on the potential contribution of the expansion of the BRT system to walking for transportation suggest that ABMs may prove helpful in designing policies to continue promoting walking. Copyright © 2016 Elsevier Inc. All rights reserved.
Cell phones change the way we walk.
Lamberg, Eric M; Muratori, Lisa M
2012-04-01
Cell phone use among pedestrians leads to increased cognitive distraction, reduced situation awareness and increases in unsafe behavior. Performing a dual-task, such as talking or texting with a cell phone while walking, may interfere with working memory and result in walking errors. At baseline, thirty-three participants visually located a target 8m ahead; then vision was occluded and they were instructed to walk to the remembered target. One week later participants were assigned to either walk, walk while talking on a cell phone, or walk while texting on a cell phone toward the target with vision occluded. Duration and final location of the heel were noted. Linear distance traveled, lateral angular deviation from the start line, and gait velocity were derived. Changes from baseline to testing were analyzed with paired t-tests. Participants engaged in cell phone use presented with significant reductions in gait velocity (texting: 33% reduction, p=0.01; talking: 16% reduction, p=0.02). Moreover, participants who were texting while walking demonstrated a 61% increase in lateral deviation (p=0.04) and 13% increase in linear distance traveled (p=0.03). These results suggest that the dual-task of walking while using a cell phone impacts executive function and working memory and influences gait to such a degree that it may compromise safety. Importantly, comparison of the two cell phone conditions demonstrates texting creates a significantly greater interference effect on walking than talking on a cell phone. Copyright © 2011 Elsevier B.V. All rights reserved.
Schrade, Stefan O; Dätwyler, Katrin; Stücheli, Marius; Studer, Kathrin; Türk, Daniel-Alexander; Meboldt, Mirko; Gassert, Roger; Lambercy, Olivier
2018-03-13
Powered exoskeletons are a promising approach to restore the ability to walk after spinal cord injury (SCI). However, current exoskeletons remain limited in their walking speed and ability to support tasks of daily living, such as stair climbing or overcoming ramps. Moreover, training progress for such advanced mobility tasks is rarely reported in literature. The work presented here aims to demonstrate the basic functionality of the VariLeg exoskeleton and its ability to enable people with motor complete SCI to perform mobility tasks of daily life. VariLeg is a novel powered lower limb exoskeleton that enables adjustments to the compliance in the leg, with the objective of improving the robustness of walking on uneven terrain. This is achieved by an actuation system with variable mechanical stiffness in the knee joint, which was validated through test bench experiments. The feasibility and usability of the exoskeleton was tested with two paraplegic users with motor complete thoracic lesions at Th4 and Th12. The users trained three times a week, in 60 min sessions over four months with the aim of participating in the CYBATHLON 2016 competition, which served as a field test for the usability of the exoskeleton. The progress on basic walking skills and on advanced mobility tasks such as incline walking and stair climbing is reported. Within this first study, the exoskeleton was used with a constant knee stiffness. Test bench evaluation of the variable stiffness actuation system demonstrate that the stiffness could be rendered with an error lower than 30 Nm/rad. During training with the exoskeleton, both users acquired proficient skills in basic balancing, walking and slalom walking. In advanced mobility tasks, such as climbing ramps and stairs, only basic (needing support) to intermediate (able to perform task independently in 25% of the attempts) skill levels were achieved. After 4 months of training, one user competed at the CYBATHLON 2016 and was able to perform 3 (stand-sit-stand, slalom and tilted path) out of 6 obstacles of the track. No adverse events occurred during the training or the competition. Demonstration of the applicability to restore ambulation for people with motor complete SCI was achieved. The CYBATHLON highlighted the importance of training and gaining experience in piloting an exoskeleton, which were just as important as the technical realization of the robot.
Deshpande, Nandini; Zhang, Fang
2014-01-01
The ability to maintain stability in the frontal plane (medialateral direction) while walking is commonly included as a component of motor performance assessment. Postural control in the frontal plane may deteriorate faster and earlier with increasing age, compared to that in the sagittal plane (anteroposterior direction). Fifteen young (20-30 years old) and 15 older (>65 years old) healthy participants were recruited to investigate age-related differences in postural control during the normal and narrow-based walking when performed under suboptimal vestibular and lower limb somatosensory conditions achieved by galvanic stimulation and compliant surfaces, respectively. Gait speed decreased in the narrow-based walking condition, with larger decrease in the elderly (by 6%). In the elderly head roll increased with perturbed vestibular information in impaired somatosensory condition (by 40.70%). In both age groups trunk roll increased under impaired somatosensation in the narrow-based walking condition (by 43.62%) but not in normal walking condition. Older participants adopted a more cautious strategy characterized by lower walking speed when walking on a narrow base and exhibited deteriorated integrative ability of the CNS for head control. Accurate lower limb somatosensation may play a critical role in narrow-based walking.
Coulon, Sandra M; Wilson, Dawn K; Griffin, Sarah; St George, Sara M; Alia, Kassandra A; Trumpeter, Nevelyn N; Wandersman, Abraham K; Forthofer, Melinda; Robinson, Shamika; Gadson, Barney
2012-12-01
Evaluating programs targeting physical activity may help to reduce disparate rates of obesity among African Americans. We report formative process evaluation methods and implementation dose, fidelity, and reach in the Positive Action for Today's Health trial. We applied evaluation methods based on an ecological framework in 2 community-based police-patrolled walking programs targeting access and safety in underserved African American communities. One program also targeted social connectedness and motivation to walk using a social marketing approach. Process data were systematically collected from baseline to 12 months. Adequate implementation dose was achieved, with fidelity achieved but less stable in both programs. Monthly walkers increased to 424 in the walking-plus-social marketing program, indicating expanding program reach, in contrast to no increase in the walking-only program. Increased reach was correlated with peer-led Pride Strides (r = .92; P < .001), a key social marketing component, and program social interaction was the primary reason for which walkers reported participating. Formative process evaluation demonstrated that the walking programs were effectively implemented and that social marketing increased walking and perceived social connectedness in African American communities.
Optimal fall indicators for slip induced falls on a cross-slope.
Domone, Sarah; Lawrence, Daniel; Heller, Ben; Hendra, Tim; Mawson, Sue; Wheat, Jonathan
2016-08-01
Slip-induced falls are among the most common cause of major occupational injuries in the UK as well as being a major public health concern in the elderly population. This study aimed to determine the optimal fall indicators for fall detection models which could be used to reduce the detrimental consequences of falls. A total of 264 kinematic variables covering three-dimensional full body model translation and rotational measures were analysed during normal walking, successful recovery from slips and falls on a cross-slope. Large effect sizes were found for three kinematic variables which were able to distinguish falls from normal walking and successful recovery. Further work should consider other types of daily living activities as results show that the optimal kinematic fall indicators can vary considerably between movement types. Practitioner Summary: Fall detection models are used to minimise the adverse consequences of slip-induced falls, a major public health concern. Optimal fall indicators were derived from a comprehensive set of kinematic variables for slips on a cross-slope. Results suggest robust detection of falls is possible on a cross-slope but may be more difficult than level walking.
Walk test and school performance in mouth-breathing children.
Boas, Ana Paula Dias Vilas; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; Sakano, Eulália; Conti, Patricia Blau Margosian; Toro, Adyléia Dalbo Contrera; Ribeiro, José Dirceu
2013-01-01
In recent decades, many studies on mouth breathing (MB) have been published; however, little is known about many aspects of this syndrome, including severity, impact on physical and academic performances. Compare the physical performance in a six minutes walk test (6MWT) and the academic performance of MB and nasal-breathing (NB) children and adolescents. This is a descriptive, cross-sectional, and prospective study with MB and NB children submitted to the 6MWT and scholar performance assessment. We included 156 children, 87 girls (60 NB and 27 MB) and 69 boys (44 NB and 25 MB). Variables were analyzed during the 6MWT: heart rate (HR), respiratory rate, oxygen saturation, distance walked in six minutes and modified Borg scale. All the variables studied were statistically different between groups NB and MB, with the exception of school performance and HR in 6MWT. MB affects physical performance and not the academic performance, we noticed a changed pattern in the 6MWT in the MB group. Since the MBs in our study were classified as non-severe, other studies comparing the academic performance variables and 6MWT are needed to better understand the process of physical and academic performances in MB children.
Durand, Casey P; Zhang, Kai; Salvo, Deborah
2017-08-01
Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.
Final Report Phase I Study to Characterize the Market Potential for Non-Motorized Travel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Ho-Ling; Reuscher, Tim; Wilson, Daniel W
The idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine detail not only about individual travel, but also on transportation and neighborhood infrastructure. In an attempt to characterize the 'market' potential for NMT, the Office of Planning, Federal Highway Administration (FHWA) funded the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) to conduct a study. The objectives of this effort were tomore » identify factors that influence communities to walk and bike and to examine why, or why not, travelers walk and bike in their communities. This study relied on information collected under the 2009 National Household Travel Survey (NHTS) as the major source of data, and was supplemented with data from the American Community Survey (ACS), educational survey, health, employment, and others. Initial statistical screening methods were applied to sort through over 400 potential predictor variables, and examined with various measures (e.g., walk trip per person, walk mileage per person, bike trip per person, bike mileage per person) as the dependent variables. The best geographic level of detail used in the modeling for this study was determined to be the Census block group level for walking and Census tract level for biking. The need for additional supplemental private data (i.e., Walk Scores and Nielsen employment data), and geospatial information that reflects land use and physical environments, became evident after an examination of findings from the initial screening models. To be feasible, in terms of costs and time, the geographic scale of the study region was scaled down to nine selected NHTS add-on regions. These regions were chosen based on various criteria including transit availability, population size, and a mix of geographic locations across the nation. Given the similarities in modeling results from walk trips and walk mileages, additional modeling efforts conducted under the later part of this study were focused on walk trips per person. Bike models were limited only with the stepwise logistic models using Census tracts in the selected regions. Due to NHTS sampling limitations, only about 12% of these tracts have bike trips recorded from NHTS sampled households. The modeling with NHTS bike data proved to be more challenging and time consuming than what was anticipated. Along with the late arrival of Nielsen employment data, the project team had to limit the modeling effort to focus on walking. Therefore, the final modeling and discriminant analysis was conducted only for walking trips.« less
Okamoto, N; Nakatani, T; Okamoto, Y; Iwamoto, J; Saeki, K; Kurumatani, N
2010-04-01
We aimed to investigate the effects of increasing the number of steps each day on physical fitness, and the change in physical fitness according to the angiotensin-converting enzyme (ACE) genotype. A total of 174 participants were randomly assigned to two groups. Subjects in group A were instructed for 24-week trial to increase the number of steps walked each day, while subjects in group B were instructed to engage in brisk walking, at a target heart rate, for 20 min or more a day on two or more days a week. The values of the 3-min shuttle stamina walk test (SSWT) and the 30-s chair-stand test (CS-30) significantly increased, but no differences in increase were found between the groups. A significant relationship was found between the percentage increase in SSWT values and the increase in the number of steps walked by 1 500 steps or more per day over their baseline values. Our results suggest that increasing the number of steps walked daily improves physical fitness. No significant relationships were observed between the change in physical fitness and ACE genotypes. Copyright Georg Thieme Verlag KG Stuttgart . New York.
Cardiovascular responses associated with daily walking in subacute stroke.
Prajapati, Sanjay K; Mansfield, Avril; Gage, William H; Brooks, Dina; McIlroy, William E
2013-01-01
Despite the importance of regaining independent ambulation after stroke, the amount of daily walking completed during in-patient rehabilitation is low. The purpose of this study is to determine if (1) walking-related heart rate responses reached the minimum intensity necessary for therapeutic aerobic exercise (40%-60% heart rate reserve) or (2) heart rate responses during bouts of walking revealed excessive workload that may limit walking (>80% heart rate reserve). Eight individuals with subacute stroke attending in-patient rehabilitation were recruited. Participants wore heart rate monitors and accelerometers during a typical rehabilitation day. Walking-related changes in heart rate and walking bout duration were determined. Patients did not meet the minimum cumulative requirements of walking intensity (>40% heart rate reserve) and duration (>10 minutes continuously) necessary for cardiorespiratory benefit. Only one patient exceeded 80% heart rate reserve. The absence of significant increases in heart rate associated with walking reveals that patients chose to walk at speeds well below a level that has meaningful cardiorespiratory health benefits. Additionally, cardiorespiratory workload is unlikely to limit participation in walking. Measurement of heart rate and walking during in-patient rehabilitation may be a useful approach to encourage patients to increase the overall physical activity and to help facilitate recovery.
Nordic Walking Practice Might Improve Plantar Pressure Distribution
ERIC Educational Resources Information Center
Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto
2011-01-01
Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…
Hachiya, Mizuki; Murata, Shin; Otao, Hiroshi; Ihara, Takehiko; Mizota, Katsuhiko; Asami, Toyoko
2015-01-01
[Purpose] This study aimed to verify the usefulness of a 50-m round walking test developed as an assessment method for walking ability in the elderly. [Subjects] The subjects were 166 elderly requiring long-term care individuals (mean age, 80.5 years). [Methods] In order to evaluate the factors that had affected falls in the subjects in the previous year, we performed the 50-m round walking test, functional reach test, one-leg standing test, and 5-m walking test and measured grip strength and quadriceps strength. [Results] The 50-m round walking test was selected as a variable indicating fall risk based on the results of multiple logistic regression analysis. The cutoff value of the 50-m round walking test for determining fall risk was 0.66 m/sec. The area under the receiver operating characteristic curve was 0.64. The sensitivity of the cutoff value was 65.7%, the specificity was 63.6%, the positive predictive value was 55.0%, the negative predictive value was 73.3%, and the accuracy was 64.5%. [Conclusion] These results suggest that the 50-m round walking test is a potentially useful parameter for the determination of fall risk in the elderly requiring long-term care. PMID:26834327
Hachiya, Mizuki; Murata, Shin; Otao, Hiroshi; Ihara, Takehiko; Mizota, Katsuhiko; Asami, Toyoko
2015-12-01
[Purpose] This study aimed to verify the usefulness of a 50-m round walking test developed as an assessment method for walking ability in the elderly. [Subjects] The subjects were 166 elderly requiring long-term care individuals (mean age, 80.5 years). [Methods] In order to evaluate the factors that had affected falls in the subjects in the previous year, we performed the 50-m round walking test, functional reach test, one-leg standing test, and 5-m walking test and measured grip strength and quadriceps strength. [Results] The 50-m round walking test was selected as a variable indicating fall risk based on the results of multiple logistic regression analysis. The cutoff value of the 50-m round walking test for determining fall risk was 0.66 m/sec. The area under the receiver operating characteristic curve was 0.64. The sensitivity of the cutoff value was 65.7%, the specificity was 63.6%, the positive predictive value was 55.0%, the negative predictive value was 73.3%, and the accuracy was 64.5%. [Conclusion] These results suggest that the 50-m round walking test is a potentially useful parameter for the determination of fall risk in the elderly requiring long-term care.
Human pelvis motions when walking and when riding a therapeutic horse.
Garner, Brian A; Rigby, B Rhett
2015-02-01
A prevailing rationale for equine assisted therapies is that the motion of a horse can provide sensory stimulus and movement patterns that mimic those of natural human activities such as walking. The purpose of this study was to quantitatively measure and compare human pelvis motions when walking to those when riding a horse. Six able-bodied children (inexperienced riders, 8-12years old) participated in over-ground trials of self-paced walking and leader-paced riding on four different horses. Five kinematic measures were extracted from three-dimensional pelvis motion data: anteroposterior, superoinferior, and mediolateral translations, list angle about the anteroposterior axis, and twist angle about the superoinferior axis. There was generally as much or more variability in motion range observed between riding on the different horses as between riding and walking. Pelvis trajectories exhibited many similar features between walking and riding, including distorted lemniscate patterns in the transverse and frontal planes. In the sagittal plane the pelvis trajectory during walking exhibited a somewhat circular pattern whereas during riding it exhibited a more diagonal pattern. This study shows that riding on a horse can generate movement patterns in the human pelvis that emulate many, but not all, characteristics of those during natural walking. Copyright © 2014 Elsevier B.V. All rights reserved.
Liao, Yung; Lin, Cheng-Yi; Huang, Jing-Huei; Park, Jong-Hwan
2017-01-01
This study examined gender differences in the associations between perceived environmental factors and walking for recreation in Taiwanese adults. In 2014, a telephone-based, cross-sectional survey targeting Taiwanese adults (20-64 years) was conducted. Data on nine items about environmental perception, time spent in walking for recreation, and socio-demographic variables were obtained from 1,065 adults using the International Physical Activity Questionnaire-long version and its environmental module. Adults who perceived good aesthetics (adjusted odds ratio [AOR] = 1.74; 95% confidence interval [CI]: 1.36-2.23) and reported seeing people being active (AOR = 1.58; 95% CI: 1.21-2.06) were more likely to perform 150 minutes of recreational walking per week. Furthermore, significant interactions regarding walking for recreation were observed between gender and five environmental correlates: access to shops (p = .046), the presence of sidewalks (p < .001), access to recreational facilities (p = .02), seeing people being active (p = .001), and aesthetics (p < .001). These five perceived environmental factors were positively associated with recreational walking in women but not in men. Gender is a potential modifier between perceived environment and walking for recreation in adults. Perceived environmental factors appear to be more critical for women in performing health-enhancing levels of recreational walking than they are for men.
Karusisi, Noëlla; Thomas, Frédérique; Méline, Julie; Brondeel, Ruben; Chaix, Basile
2014-01-01
Assessing the contextual factors that influence walking for transportation is important to develop more walkable environments and promote physical activity. To advance previous research focused on residential environments and overall walking for transportation, the present study investigates objective environmental factors assessed around the residence, the workplace, the home--work itinerary, and the home--supermarket itinerary, and considered overall walking for transportation but also walking to work and to shops. Data from the RECORD Study involving 7290 participants recruited in 2007-2008, aged 30-79 years, and residing in the Paris metropolitan area were analyzed. Multilevel ordinal regression analyses were conducted to investigate environmental characteristics associated with self-reported overall walking for transportation, walking to work, and walking to shops. High individual education was associated with overall walking for transportation, with walking to work, and walking to shops. Among workers, a high residential neighborhood education was associated with increased overall walking for transportation, while a high workplace neighborhood education was related to an increased time spent walking to work. The residential density of destinations was positively associated with overall walking for transportation, with walking to work, and with walking to shops, while the workplace density of destinations was positively associated with overall walking for transportation among workers. Environmental factors assessed around the itineraries were not associated with walking to work or to the shops. This research improves our understanding of the role of the environments on walking for transportation by accounting for some of the environments visited beyond the residential neighborhood. It shows that workers' walking habits are more influenced by the density of destinations around the workplace than around the residence. These results provide insight for the development of policies and programs to encourage population level active commuting.
Return to activity after concussion affects dual-task gait balance control recovery.
Howell, David R; Osternig, Louis R; Chou, Li-Shan
2015-04-01
Recent work has identified deficits in dual-task gait balance control for up to 2 months after adolescent concussion; however, how resumption of preinjury physical activities affects recovery is unknown. The objective of this study is to examine how return to activity (RTA) affects recovery from concussion on measures of symptom severity, cognition, and balance control during single-task and dual-task walking. Nineteen adolescents with concussion who returned to preinjury activity within 2 months after injury and 19 uninjured, matched controls completed symptom inventories, computerized cognitive testing, and single-task and dual-task gait analyses. Concussion participants were assessed at five time points: within 72 h, 1 wk, 2 wk, 1 month, and 2 months postinjury. Control participants were assessed at the same time points as their matched concussion counterparts. RTA day was documented as the postinjury day in which physical activity participation was allowed. The effect of returning to physical activity was assessed by examining the percent change on each dependent variable across time before and directly after the RTA. Data were analyzed by two-way mixed effects ANOVAs. After the RTA day, concussion participants significantly increased their total center-of-mass medial/lateral displacement (P = 0.009, ηp = .175) and peak velocity (P = 0.048, ηp = 0.104) during dual-task walking when compared with pre-RTA data, whereas no changes for the concussion group or between groups were detected on measures of single-task walking, forward movement, or cognition. Adolescents with concussion displayed increased center-of-mass medial/lateral displacement and velocity during dual-task walking after RTA, suggesting a regression of recovery in gait balance control. This study reinforces the need for a multifaceted approach to concussion management and continued monitoring beyond the point of clinical recovery.
Khan, Soobia Saad; Khan, Saad Jawaid; Usman, Juliana
2017-03-01
Toe-out/-in gait has been prescribed in reducing knee joint load to medial knee osteoarthritis patients. This study focused on the effects of toe-out/-in at different walking speeds on first peak knee adduction moment (fKAM), second peak KAM (sKAM), knee adduction angular impulse (KAAI), net mechanical work by lower limb as well as joint-level contribution to the total limb work during level walking. Gait analysis of 20 healthy young adults was done walking at pre-defined normal (1.18m/s), slow (0.85m/s) and fast (1.43m/s) walking speeds with straight-toe (natural), toe-out (15°>natural) and toe-in (15°
Dog Walking, the Human-Animal Bond and Older Adults' Physical Health.
Curl, Angela L; Bibbo, Jessica; Johnson, Rebecca A
2017-10-01
This study explored the associations between dog ownership and pet bonding with walking behavior and health outcomes in older adults. We used data from the 12th wave (2012) of the Health and Retirement Study which included an experimental human-animal interaction module. Ordinary least squares regression and binary logistic regression models controlling for demographic variables were used to answer the research questions. Dog walking was associated with lower body mass index, fewer activities of daily living limitations, fewer doctor visits, and more frequent moderate and vigorous exercise. People with higher degrees of pet bonding were more likely to walk their dog and to spend more time walking their dog each time, but they reported walking a shorter distance with their dog than those with weaker pet bonds. Dog ownership was not associated with better physical health or health behaviors. This study provides evidence for the association between dog walking and physical health using a large, nationally representative sample. The relationship with one's dog may be a positive influence on physical activity for older adults. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lower limb joint kinetics in walking: the role of industry recommended footwear.
Keenan, Geoffrey S; Franz, Jason R; Dicharry, Jay; Della Croce, Ugo; Kerrigan, D Casey
2011-03-01
The effects of current athletic footwear on lower extremity biomechanics are unknown. The aim of this study was to examine the changes, if any, that occur in peak lower extremity net joint moments while walking in industry recommended athletic footwear. Sixty-eight healthy young adults underwent kinetic evaluation of lower extremity extrinsic joint moments while walking barefoot and while walking in current standard athletic footwear matched to the foot mechanics of each subject while controlling for speed. A secondary analysis was performed comparing peak knee joint extrinsic moments during barefoot walking to those while walking in three different standard footwear types: stability, motion control, and cushion. 3-D motion capture data were collected in synchrony with ground reaction force data collected from an instrumented treadmill. The shod condition was associated with a 9.7% increase in the first peak knee varus moment, and increases in the hip flexion and extension moments. These increases may be largely related to a 6.5% increase in stride length with shoes associated with increases in the ground reaction forces in all three axes. The changes from barefoot walking observed in the peak knee joint moments were similar when subjects walked in all three footwear types. It is unclear to what extent these increased joint moments may be clinically relevant, or potentially adverse. Nonetheless, these differences should be considered in the recommendation as well as the design of footwear in the future. Copyright © 2010 Elsevier B.V. All rights reserved.
Branching random walk with step size coming from a power law
NASA Astrophysics Data System (ADS)
Bhattacharya, Ayan; Subhra Hazra, Rajat; Roy, Parthanil
2015-09-01
In their seminal work, Brunet and Derrida made predictions on the random point configurations associated with branching random walks. We shall discuss the limiting behavior of such point configurations when the displacement random variables come from a power law. In particular, we establish that two prediction of remains valid in this setup and investigate various other issues mentioned in their paper.
Variation between seated and standing/walking postures among male and female call centre operators.
Toomingas, Allan; Forsman, Mikael; Mathiassen, Svend Erik; Heiden, Marina; Nilsson, Tohr
2012-03-02
The dose and time-pattern of sitting has been suggested in public health research to be an important determinant of risk for developing a number of diseases, including cardiovascular disorders and diabetes. The aim of the present study was to assess the time-pattern of seated and standing/walking postures amongst male and female call centre operators, on the basis of whole-shift posture recordings, analysed and described by a number of novel variables describing posture variation. Seated vs. standing/walking was recorded using dichotomous inclinometers throughout an entire work shift for 43 male and 97 female call centre operators at 16 call centres. Data were analysed using an extensive set of variables describing occurrence of and switches between seated and standing/walking, posture similarity across the day, and compliance with standard recommendations for computer work. The majority of the operators, both male and female, spent more than 80% of the shift in a seated posture with an average of 10.4 switches/hour between seated and standing/walking or vice versa. Females spent, on average, 11% of the day in periods of sustained sitting longer than 1 hour; males 4.6% (p = 0.013). Only 38% and 11% of the operators complied with standard recommendations of getting an uninterrupted break from seated posture of at least 5 or 10 minutes, respectively, within each hour of work. Two thirds of all investigated variables showed coefficients of variation between subjects above 0.5. Since work tasks and contractual break schedules were observed to be essentially similar across operators and across days, this indicates that sedentary behaviours differed substantially between individuals. The extensive occurrence of uninterrupted seated work indicates that efforts should be made at call centres - and probably in other settings in the office sector - to introduce more physical variation in terms of standing/walking periods during the work day. We suggest the metrics used in this study for quantifying variation in sedentary behaviour to be of interest even for other dichotomous exposures relevant to occupational and public health, for instance physical activity/inactivity.
Nieuwhof, Freek; Reelick, Miriam F; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Olde Rikkert, Marcel G M; Bloem, Bastiaan R; Muthalib, Makii; Claassen, Jurgen A H R
2016-01-01
Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O 2 Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O 2 Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual walking conditions and across health states.
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2009-02-01
Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.
Simons, Abigail; Koekemoer, Karin; Niekerk, Ashley van; Govender, Rajen
2018-05-19
The risk of pedestrian injury is compounded for children living in low-income communities due to factors such as poor road and pedestrian infrastructure, reliance on walking as a means of transport, and compromised supervision. Parents play an important role in child pedestrian safety. The primary objective of this study was to examine the effects of child pedestrian variables on parental discomfort with regard to letting their child walk to and from school and on the frequency of adult supervision. A cross-sectional study was conducted using a convenience sample from 3 schools participating in a pedestrian safety school initiative. The schools are situated in low-income, high-risk communities in the City of Cape Town. A parent survey form was translated into isiXhosa and sent home with learners to those parents who had consented to participate. The response rate was 70.4%, and only parents of children who walk to and from school were included in the final sample (n = 359). Child pedestrian variables include the time taken to walk to school, parental rating of the child's ability to safely cross the road, and the frequency of adult supervision. More than half of parents reported that their child walked to and from school without adult supervision. About 56% of children took less than 20 min to walk to school. Most parents (61%) were uncomfortable with their child walking to school, although the majority of parents (55.7%) rated their child's ability to cross the road safely as better or significantly better than average (compared to peers). The parents did not perceive any differences in pedestrian risk factors between boys and girls or between younger (6-9 years) and older (10-15 years) children. The time spent by a child walking to school and parents' perceptions of their child's road-crossing ability were found to be significant predictors of parental discomfort (in letting their child walk). Younger children and children who spent less time walking were more likely to be supervised by an adult. Many South African schoolchildren have to navigate the roads without adult supervision from a young age. Caregivers, especially in low-income settings, often have limited options with regard to getting their child to school safely. Regardless of the child's age and gender, the time that they spend on the roads is an important factor for parents in terms of pedestrian safety.
Nadeau, Alexandra; Lungu, Ovidiu; Duchesne, Catherine; Robillard, Marie-Ève; Bore, Arnaud; Bobeuf, Florian; Plamondon, Réjean; Lafontaine, Anne-Louise; Gheysen, Freja; Bherer, Louis; Doyon, Julien
2017-01-01
Background: There is increasing evidence that executive functions and attention are associated with gait and balance, and that this link is especially prominent in older individuals or those who are afflicted by neurodegenerative diseases that affect cognition and/or motor functions. People with Parkinson’s disease (PD) often present gait disturbances, which can be reduced when PD patients engage in different types of physical exercise (PE), such as walking on a treadmill. Similarly, PE has also been found to improve executive functions in this population. Yet, no exercise intervention investigated simultaneously gait and non-motor symptoms (executive functions, motor learning) in PD patients. Objective: To assess the impact of aerobic exercise training (AET) using a stationary bicycle on a set of gait parameters (walking speed, cadence, step length, step width, single and double support time, as well as variability of step length, step width and double support time) and executive functions (cognitive inhibition and flexibility) in sedentary PD patients and healthy controls. Methods: Two groups, 19 PD patients (Hoehn and Yahr ≤2) and 20 healthy adults, matched on age and sedentary level, followed a 3-month stationary bicycle AET regimen. Results: Aerobic capacity, as well as performance of motor learning and on cognitive inhibition, increased significantly in both groups after the training regimen, but only PD patients improved their walking speed and cadence (all p < 0.05; with no change in the step length). Moreover, in PD patients, training-related improvements in aerobic capacity correlated positively with improvements in walking speed (r = 0.461, p < 0.05). Conclusion: AET using stationary bicycle can independently improve gait and cognitive inhibition in sedentary PD patients. Given that increases in walking speed were obtained through increases in cadence, with no change in step length, our findings suggest that gait improvements are specific to the type of motor activity practiced during exercise (i.e., pedaling). In contrast, the improvements seen in cognitive inhibition were, most likely, not specific to the type of training and they could be due to indirect action mechanisms (i.e., improvement of cardiovascular capacity). These results are also relevant for the development of targeted AET interventions to improve functional autonomy in PD patients. PMID:28127282
Maidan, Inbal; Nieuwhof, Freek; Bernad-Elazari, Hagar; Reelick, Miriam F; Bloem, Bas R; Giladi, Nir; Deutsch, Judith E; Hausdorff, Jeffery M; Claassen, Jurgen A H; Mirelman, Anat
2016-11-01
Gait is influenced by higher order cognitive and cortical control mechanisms. Functional near infrared spectroscopy (fNIRS) has been used to examine frontal activation during walking in healthy older adults, reporting increased oxygenated hemoglobin (HbO2) levels during dual task walking (DT), compared with usual walking. To investigate the role of the frontal lobe during DT and obstacle negotiation, in healthy older adults and patients with Parkinson's disease (PD). Thirty-eight healthy older adults (mean age 70.4 ± 0.9 years) and 68 patients with PD (mean age 71.7 ± 1.1 years,) performed 3 walking tasks: (a) usual walking, (b) DT walking, and (c) obstacles negotiation, with fNIRS and accelerometers. Linear-mix models were used to detect changes between groups and within tasks. Patients with PD had higher activation during usual walking (P < .030). During DT, HbO2 increased only in healthy older adults (P < .001). During obstacle negotiation, HbO2 increased in patients with PD (P = .001) and tended to increase in healthy older adults (P = .053). Higher DT and obstacle cost (P < .003) and worse cognitive performance were observed in patients with PD (P = .001). A different pattern of frontal activation during walking was observed between groups. The higher activation during usual walking in patients with PD suggests that the prefrontal cortex plays an important role already during simple walking. However, higher activation relative to baseline during obstacle negotiation and not during DT in the patients with PD demonstrates that prefrontal activation depends on the nature of the task. These findings may have important implications for rehabilitation of gait in patients with PD. © The Author(s) 2016.
Doescher, Mark P; Lee, Chanam; Saelens, Brian E; Lee, Chunkuen; Berke, Ethan M; Adachi-Mejia, Anna M; Patterson, Davis G; Moudon, Anne Vernez
2017-04-01
Walking among Latinos in US Micropolitan towns may vary by language spoken. In 2011-2012, we collected telephone survey and built environment (BE) data from adults in six towns located within micropolitan counties from two states with sizable Latino populations. We performed mixed-effects logistic regression modeling to examine relationships between ethnicity-language group [Spanish-speaking Latinos (SSLs); English-speaking Latinos (ESLs); and English-speaking non-Latinos (ENLs)] and utilitarian walking and recreational walking, accounting for socio-demographic, lifestyle and BE characteristics. Low-income SSLs reported higher amounts of utilitarian walking than ENLs (p = 0.007), but utilitarian walking in this group decreased as income increased. SSLs reported lower amounts of recreational walking than ENLs (p = 0.004). ESL-ENL differences were not significant. We identified no statistically significant interactions between ethnicity-language group and BE characteristics. Approaches to increase walking in micropolitan towns with sizable SSL populations may need to account for this group's differences in walking behaviors.
Exoskeleton Training May Improve Level of Physical Activity After Spinal Cord Injury: A Case Series
Wade, Rodney; Sumrell, Ryan; Villadelgado, Lynette; Khalil, Refka E.; Lavis, Timothy
2017-01-01
Objectives: To determine whether the use of a powered exoskeleton can improve parameters of physical activity as determined by walking time, stand up time, and number of steps in persons with spinal cord injury (SCI). Methods: Three men with complete (1 C5 AIS A and 2 T4 AIS A) and one man with incomplete (C5 AIS D) SCI participated in a clinical rehabilitation program. In the training program, the participants walked once weekly using a powered exoskeleton (Ekso) for approximately 1 hour over the course of 10 to 15 weeks. Walking time, stand up time, ratio of walking to stand up time, and number of steps were determined. Oxygen uptake (L/min), energy expenditure, and body composition were measured in one participant after training. Results: Over the course of 10 to 15 weeks, the maximum walking time increased from 12 to 57 minutes and the number of steps increased from 59 to 2,284 steps. At the end of the training, the 4 participants were able to exercise for 26 to 59 minutes. For one participant, oxygen uptake increased from 0.27 L/min during rest to 0.55 L/min during walking. Maximum walking speed was 0.24 m/s, and delta energy expenditure increased by 1.4 kcal/min during walking. Body composition showed a modest decrease in absolute fat mass in one participant. Conclusion: Exoskeleton training may improve parameters of physical activity after SCI by increasing the number of steps and walking time. Other benefits may include increasing energy expenditure and improving the profile of body composition. PMID:29339900
Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik
2018-01-01
To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.
Optimal haptic feedback control of artificial muscles
NASA Astrophysics Data System (ADS)
Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas
2014-03-01
As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.
Wilson, Dawn K; St George, Sara M; Trumpeter, Nevelyn N; Coulon, Sandra M; Griffin, Sarah F; Wandersman, Abe; Forthofer, Melinda; Gadson, Barney; Brown, Porschia V
2013-03-05
This study describes the development of a social marketing campaign for increasing walking in a low income, high crime community as part of the Positive Action for Today's Health (PATH) trial. Focus groups were conducted with 52 African American adults (ages 18 to 65 yrs), from two underserved communities to develop themes for a social marketing campaign to promote walking. Participants responded to questions concerning social marketing principles related to product, price, place, promotion, and positioning for increasing neighbourhood walking. Focus group data informed the development of the campaign objectives that were derived from the "5 Ps" to promote physical and mental health, social connectedness, safety, and confidence in walking regularly. Focus group themes indicated that physical and mental health benefits of walking were important motivators. Walking for social reasons was also important for overcoming barriers to walking. Police support from trusted officers while walking was also essential to promoting safety for walking. Print materials were developed by the steering committee, with a 12-month calendar and door hangers delivered to residents' homes to invite them to walk. Pride Stride walks empowered community walkers to serve as peer leaders for special walking events to engage new walkers. Essential elements for developing culturally tailored social marketing interventions for promoting walking in underserved communities are outlined for future researchers.
2013-01-01
Background This study describes the development of a social marketing campaign for increasing walking in a low income, high crime community as part of the Positive Action for Today’s Health (PATH) trial. Methods Focus groups were conducted with 52 African American adults (ages 18 to 65 yrs), from two underserved communities to develop themes for a social marketing campaign to promote walking. Participants responded to questions concerning social marketing principles related to product, price, place, promotion, and positioning for increasing neighbourhood walking. Results Focus group data informed the development of the campaign objectives that were derived from the “5 Ps” to promote physical and mental health, social connectedness, safety, and confidence in walking regularly. Focus group themes indicated that physical and mental health benefits of walking were important motivators. Walking for social reasons was also important for overcoming barriers to walking. Police support from trusted officers while walking was also essential to promoting safety for walking. Print materials were developed by the steering committee, with a 12-month calendar and door hangers delivered to residents’ homes to invite them to walk. Pride Stride walks empowered community walkers to serve as peer leaders for special walking events to engage new walkers. Conclusions Essential elements for developing culturally tailored social marketing interventions for promoting walking in underserved communities are outlined for future researchers. PMID:23497164
Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.
Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T
2017-03-08
The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.
Wheeled and standard walkers in Parkinson's disease patients with gait freezing.
Cubo, Esther; Moore, Charity G; Leurgans, Sue; Goetz, Christopher G
2003-10-01
Compare the efficacy of two walking assistance devices (wheeled walker and standard walker) to unassisted walking for patients with PD and gait freezing. Although numerous walking devices are used clinically, their relative effects on freezing and walking speed have never been systematically tested. Nineteen PD patients (14 non-demented) walked under three conditions in randomized order: unassisted walking, standard walker, and wheeled walker. Patients walked up to three times in each condition through a standard course that included rising from a chair, walking through a doorway, straightway walking, pivoting, and return. Total walking time, freezing time and number of freezes were compared for the three conditions using mixed models (walking time) and Friedman's test (freezing). The wheeled walker was further studied by comparing the effect of an attached laser that projected a bar of light on the floor as a visual walking cue. Use of either type of device significantly slowed walking compared to unassisted walking. Neither walker reduced any index of freezing, nor the laser attachment offered any advantage to the wheeled walker. The standard walker increased freezing, and the wheeled walker had no effect on freezing. Among the non-demented subjects (n=14), the same patterns occurred, although the walking speed was less impaired by the wheeled walker than the standard walker in this group. Though walkers may stabilize patients and increase confidence, PD patients walk more slowly when using them, without reducing freezing. Because the wheeled walker was intermediate for walking time and does not aggravate freezing, if walkers are used for these subjects, this type of walker should be favored.
Reference equations for 6-min walk test in healthy Indian subjects (25-80 years).
Palaniappan Ramanathan, Ramanathan; Chandrasekaran, Baskaran
2014-01-01
Six-min walk test (6MWT), a simple functional capacity evaluation tool used globally to determine the prognosis and effectiveness of any therapeutic/medical intervention. However, variability in reference equations derived from western population (due to racial and ethnicity variations) hinders from adequate use of 6MWT clinically. Further, there are no valid Indian studies that predict reference values for 6-min walk distance (6MWD) in healthy Indian normal. We aimed for framing individualized reference equations for 6MWT in healthy Indian population. Anthropometric variables (age, weight, height, and body mass index (BMI)) and 6-min walk in a 30 m corridor were evaluated in 125 subjects (67 females) in a cross-sectional trial. 6MWD significantly correlated with age (r = -0.29), height (r = 0.393), weight (r = 0.08), and BMI (r = -0.17). The gender specific reference equations for healthy Indian individuals were: (1) Males: 561.022 - (2.507 × age [years]) + (1.505 × weight [kg]) - (0.055 × height [cm]). R (2) = 0.288. (2) Indian females: 30.325 - (0.809 × age [years]) - (2.074 × weight [kg]) + (4.235 × height [cm]). R (2) = 0.272. Though the equations possess a small coefficient of determination and larger standard error estimate, the former applicability to Indian population is justified. These reference equations are probably most appropriate for evaluating the walked capacity of Indian patients with chronic diseases.
Six-minute walk test in children and adolescents with cystic fibrosis.
Cunha, Maristela Trevisan; Rozov, Tatiana; de Oliveira, Rosangela Caitano; Jardim, José R
2006-07-01
The 6-min walk test is a simple, rapid, and low-cost method that determines tolerance to exercise. We examined the reproducibility of the 6-min walk test in 16 children with cystic fibrosis (11 female, 5 male; age range, 11.0 +/- 1.9 years). We related the distance walked and the work performed (distance walked x body weight) with nutritional (body mass index and respiratory muscle strength) and clinical (degree of bronchial obstruction and Shwachman score) status. Patients were asked to walk as far as possible upon verbal command on two occasions. There was no statistical difference between distances walked (582.3 +/- 60 and 598.2 +/- 56.8 m, P = 0.31), heart rate, respiratory rate, pulse oxygen saturation, arterial blood pressure, dyspnea, and percentage of maximal heart rate for age in the two tests. Distance walked correlated (Pearson) with maximal expiratory pressure (98.6 +/- 28.1 cmH2O, r = 0.60, P < 0.01), maximal heart rate (157.9 +/- 10.1 bpm, r = 0.59, P < 0.02), Borg dyspnea scale (1.7 +/- 2.4, r = 0.55, P < 0.03), and double product (blood pressure x heart rate; r = 0.59, P < 0.02). The product of distance walked and body weight (work) correlated (Pearson) with height (r = 0.83, P = 0.000), maximal expiratory pressure (r = 0.64, P < 0.01), systolic blood pressure (r = 0.56, P < 0.02), and diastolic blood pressure (r = 0.55, P < 0.03). We conclude that the 6-min walk test is reproducible and easy to perform in children and adolescents with cystic fibrosis. The distance walked was related to the clinical variables studied. Work in the 6-min walk test may be an additional parameter in the determination of physical capacity.
Ambulatory vital signs in the workup of pulmonary embolism using a standardized 3-minute walk test.
Amin, Qamar; Perry, Jeffrey J; Stiell, Ian G; Mohapatra, Subhra; Alsadoon, Abdulaziz; Rodger, Marc
2015-05-01
Diagnosing pulmonary embolism can be difficult given its highly variable clinical presentation. Our objective was to determine whether a decrease in oxygen saturation or an increase in heart rate while ambulating could be used as an objective tool in the diagnosis of pulmonary embolism. This was a two-site tertiary-care-centre prospective cohort study that enrolled adult emergency department or thrombosis clinic patients with suspected or newly confirmed pulmonary embolism. Patients were asked to participate in a standardized 3-minute walk test, which assessed ambulatory heart rate and ambulatory oxygen saturation. The primary outcome was pulmonary embolism. We enrolled 114 patients, including 30 with pulmonary embolism (26.3%). A ≥2% absolute decrease in ambulatory oxygen saturation and an ambulatory change in heart rate >10 beats per minute (BPM) were significantly associated with pulmonary embolism. An ambulatory heart rate change of >10 BPM had a sensitivity of 96.6% (95% confidence interval [CI] 83.3 to 99.4) and a specificity of 31.0% (95% CI 22.1 to 45.0) for pulmonary embolism. A ≥2% absolute decrease ambulatory oxygen saturation had a sensitivity of 80.2% (95% CI 62.7 to 90.5) and a specificity of 39.3% (95% CI 29.5 to 50.0) for pulmonary embolism. The combination of both variables yielded a sensitivity of 100.0% (95% CI 87.0 to 100.0) and a specificity of 11.0% (95% CI 6.6 to 21.0). In summary, our study found that an ambulatory heart rate change of >10 BPM or a ≥2% absolute decrease in ambulatory oxygen saturation from baseline during a standardized 3-minute walk test are highly correlated with pulmonary embolism. Although the findings appear promising, neither of these variables can currently be recommended as a screening tool for pulmonary embolism until larger prospective studies examine their performance either alone or with pre-existing rules.
Holdgate, Matthew R.; Meehan, Cheryl L.; Hogan, Jennifer N.; Miller, Lance J.; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J.
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare. PMID:27414411
Holdgate, Matthew R; Meehan, Cheryl L; Hogan, Jennifer N; Miller, Lance J; Soltis, Joseph; Andrews, Jeff; Shepherdson, David J
2016-01-01
Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare.
McNeill, Lorna H; Emmons, Karen
2012-01-01
Walking is the most commonly reported leisure-time activity. Members of racial/ethnic minority groups and people of low socioeconomic status disproportionately live in urban environments that are perceived to be unsafe, thereby reducing opportunities for engaging in walking. We examined the use of walking maps for increasing physical activity (PA) among low-income residents of public housing sites in Boston, Massachusetts. PA facilities, local businesses, and destinations in a walkable half-mile radius of the housing community were identified and plotted on maps by using geographic information systems technology. Four focus groups (n = 24) were conducted to learn how the walking maps were used by the residents and to understand map features that promoted use. Maps were used by participants to increase their PA, and use of the maps increased participants' awareness of community resources. Maps changed participants' perception of distances and were discussed as a means of fostering a sense of community. Use of the maps also increased participants' awareness of neighborhood incivilities. Barriers to map use were difficulty in interpreting the maps and lack of access to the maps. Walking maps that display PA opportunities and resources may be useful in increasing walking among residents of public housing sites.
Wilson, Dawn K.; Griffin, Sarah; St. George, Sara M.; Alia, Kassandra A.; Trumpeter, Nevelyn N.; Wandersman, Abraham K.; Forthofer, Melinda; Robinson, Shamika; Gadson, Barney
2012-01-01
Objectives. Evaluating programs targeting physical activity may help to reduce disparate rates of obesity among African Americans. We report formative process evaluation methods and implementation dose, fidelity, and reach in the Positive Action for Today’s Health trial. Methods: We applied evaluation methods based on an ecological framework in 2 community-based police-patrolled walking programs targeting access and safety in underserved African American communities. One program also targeted social connectedness and motivation to walk using a social marketing approach. Process data were systematically collected from baseline to 12 months. Results: Adequate implementation dose was achieved, with fidelity achieved but less stable in both programs. Monthly walkers increased to 424 in the walking-plus-social marketing program, indicating expanding program reach, in contrast to no increase in the walking-only program. Increased reach was correlated with peer-led Pride Strides (r = .92; P < .001), a key social marketing component, and program social interaction was the primary reason for which walkers reported participating. Conclusions: Formative process evaluation demonstrated that the walking programs were effectively implemented and that social marketing increased walking and perceived social connectedness in African American communities. PMID:23078486
Lee, Jinkyu; Yoon, Yong-Jin; Shin, Choongsoo S
2017-12-01
The purpose of this study was to investigate the effect of load carriage on the kinematics and kinetics of the ankle and knee joints during uphill walking, including joint work, range of motion (ROM), and stance time. Fourteen males walked at a self-selected speed on an uphill (15°) slope wearing military boots and carrying a rifle in hand without a backpack (control condition) and with a backpack. The results showed that the stance time significantly decreased with backpack carriage (p < .05). The mediolateral impulse significantly increased with backpack carriage (p < .05). In the ankle joints, the inversion-eversion, and dorsi-plantar flexion ROM in the ankle joints increased with backpack carriage (p < .05). The greater dorsi-plantar flexion ROM with backpack carriage suggested 1 strategy for obtaining high plantar flexor power during uphill walking. The result of the increased mediolateral impulse and inversion-eversion ROM in the ankle joints indicated an increase in body instability caused by an elevated center of mass with backpack carriage during uphill walking. The decreased stance time indicated that an increase in walking speed could be a compensatory mechanism for reducing the instability of the body during uphill walking while carrying a heavy backpack.
2012-01-01
Background Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was different for 1.0 m/s gait velocities. Conclusions Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects. PMID:22929169
Perchoux, Camille; Kestens, Yan; Brondeel, Ruben; Chaix, Basile
2015-12-01
Understanding how built environment characteristics influence recreational walking is of the utmost importance to develop population-level strategies to increase levels of physical activity in a sustainable manner. This study analyzes the residential and non-residential environmental correlates of recreational walking, using precisely geocoded activity space data. The point-based locations regularly visited by 4365 participants of the RECORD Cohort Study (Residential Environment and CORonary heart Disease) were collected between 2011 and 2013 in the Paris region using the VERITAS software (Visualization and Evaluation of Regular Individual Travel destinations and Activity Spaces). Zero-inflated negative binomial regressions were used to investigate associations between both residential and non-residential environmental exposure and overall self-reported recreational walking over 7 days. Density of destinations, presence of a lake or waterway, and neighborhood education were associated with an increase in the odds of reporting any recreational walking time. Only the density of destinations was associated with an increase in time spent walking for recreational purpose. Considering the recreational locations visited (i.e., sports and cultural destinations) in addition to the residential neighborhood in the calculation of exposure improved the model fit and increased the environment-walking associations, compared to a model accounting only for the residential space (Akaike Information Criterion equal to 52797 compared to 52815). Creating an environment supportive to walking around recreational locations may particularly stimulate recreational walking among people willing to use these facilities. Copyright © 2015 Elsevier Inc. All rights reserved.
The Effects of Walking Speed on Tibiofemoral Loading Estimated Via Musculoskeletal Modeling
Lerner, Zachary F.; Haight, Derek J.; DeMers, Matthew S.; Board, Wayne J.; Browning, Raymond C.
2015-01-01
Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak early-stance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM. PMID:23878264
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Skou, Søren T; Wrigley, Tim V; Metcalf, Ben R; Hinman, Rana S; Bennell, Kim L
2014-05-01
To investigate associations between self-reported knee confidence and pain, self-reported knee instability, muscle strength, and dynamic varus-valgus joint motion during walking. We performed a cross-sectional analysis of baseline data from 100 participants with symptomatic and radiographic medial tibiofemoral compartment osteoarthritis (OA) and varus malalignment recruited for a randomized controlled trial. The extent of knee confidence, assessed using a 5-point Likert scale item from the Knee Injury and Osteoarthritis Outcome Score, was set as the dependent variable in univariable and multivariable ordinal regression, with pain during walking, self-reported knee instability, quadriceps strength, and dynamic varus-valgus joint motion during walking as independent variables. One percent of the participants were not troubled with lack of knee confidence, 17% were mildly troubled, 50% were moderately troubled, 26% were severely troubled, and 6% were extremely troubled. Significant associations were found between worse knee confidence and higher pain intensity, worse self-reported knee instability, lower quadriceps strength, and greater dynamic varus-valgus joint motion. The multivariable model consisting of the same variables significantly accounted for 24% of the variance in knee confidence (P < 0.001). Worse knee confidence is associated with higher pain, worse self-reported knee instability, lower quadriceps muscle strength, and greater dynamic varus-valgus joint motion during walking. Since previous research has shown that worse knee confidence is predictive of functional decline in knee OA, addressing lack of knee confidence by treating these modifiable impairments could represent a new therapeutic target. Copyright © 2014 by the American College of Rheumatology.
Freeland, Amy L; Banerjee, Shailendra N; Dannenberg, Andrew L; Wendel, Arthur M
2013-03-01
We assessed changes in transit-associated walking in the United States from 2001 to 2009 and documented their importance to public health. We examined transit walk times using the National Household Travel Survey, a telephone survey administered by the US Department of Transportation to examine travel behavior in the United States. People are more likely to transit walk if they are from lower income households, are non-White, and live in large urban areas with access to rail systems. Transit walkers in large urban areas with a rail system were 72% more likely to transit walk 30 minutes or more per day than were those without a rail system. From 2001 to 2009, the estimated number of transit walkers rose from 7.5 million to 9.6 million (a 28% increase); those whose transit-associated walking time was 30 minutes or more increased from approximately 2.6 million to 3.4 million (a 31% increase). Transit walking contributes to meeting physical activity recommendations. Study results may contribute to transportation-related health impact assessment studies evaluating the impact of proposed transit systems on physical activity, potentially influencing transportation planning decisions.
Identifying Belief-Based Targets for the Promotion of Leisure-Time Walking
ERIC Educational Resources Information Center
Rhodes, Ryan E.; Blanchard, Chris M.; Courneya, Kerry S.; Plotnikoff, Ronald C.
2009-01-01
Walking is the most common type of physical activity (PA) and the likely target of efforts to increase PA. No studies, however, have identified the belief-level correlates for walking using the theory of planned behavior. This study elicits salient beliefs about walking and evaluates beliefs that may be most important for walking-promotion…
Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U
2016-01-01
The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.
Longitudinal associations of active commuting with body mass index.
Mytton, Oliver Tristan; Panter, Jenna; Ogilvie, David
2016-09-01
To investigate the longitudinal associations between active commuting (walking and cycling to work) and body mass index (BMI). We used self-reported data on height, weight and active commuting from the Commuting and Health in Cambridge study (2009 to 2012; n=809). We used linear regression to test the associations between: a) maintenance of active commuting over one year and BMI at the end of that year; and b) change in weekly time spent in active commuting and change in BMI over one year. After adjusting for sociodemographic variables, other physical activity, physical wellbeing and maintenance of walking, those who maintained cycle commuting reported a lower BMI on average at one year follow-up (1.14kg/m(2), 95% CI: 0.30 to 1.98, n=579) than those who never cycled to work. No significant association remained after adjustment for baseline BMI. No significant associations were observed for maintenance of walking. An increase in walking was associated with a reduction in BMI (0.32kg/m(2), 95% CI: 0.03 to 0.62, n=651, after adjustment for co-variates and baseline BMI) only when restricting the analysis to those who did not move. No other significant associations between changes in weekly time spent walking or cycling on the commute and changes in BMI were observed. This work provides further evidence of the contribution of active commuting, particularly cycling, to preventing weight gain or facilitating weight loss. The findings may be valuable for employees choosing how to commute and engaging employers in the promotion of active travel. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi
2011-01-01
In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…
Walking in water and on land after an incomplete spinal cord injury.
Tamburella, Federica; Scivoletto, Giorgio; Cosentino, Elena; Molinari, Marco
2013-10-01
Although no data are available on the effects of water environment on the gait of subjects with spinal cord injury (SCI), hydrotherapy is used in the rehabilitation protocols of SCI patients. The aim of this study was to characterize gait features of subjects with incomplete SCI walking in water and on land in comparison with healthy controls (CTRLs) to identify the specificity of water environment on influencing gait in SCI subjects. This is a matched case-control study. Kinematic gait parameters and range of motion of joint angles of 15 SCI subjects and 15 CTRLs were analyzed. Compared with gait on land, gait in water of the SCI patients was characterized by speed and stance phase reduction, gait cycle time increment, and invariance of stride length and range of motion values. Comparison with CTRL data remarked that walking in water reduces gait differences between the groups. Furthermore, in water, the SCI subjects presented a reduction in variability of the hip and knee joint angles, whereas in the CTRLs, a larger variability was observed. Gait in water of the SCI subjects is associated with kinematic parameters more similar to those of the CTRLs, particularly regarding speed, stride length, and stance phase, supporting the idea that walking in a water environment may be of rehabilitative significance for SCI subjects.
The effects of ageing on respiratory muscle function and performance in older adults.
Watsford, Mark L; Murphy, Aron J; Pine, Matthew J
2007-02-01
The reduced physiological capacity evident with ageing may affect the ability to perform many tasks, potentially affecting quality of life. Previous research has clearly demonstrated the reduced capacity of the respiratory system with ageing and described the effect that habitual physical activity has upon this decline. This research aimed to examine the influence of age on respiratory muscle (RM) function and the relationship between RM function and physical performance within the Australian population. Seventy-two healthy older adults (50-79 years) were divided into males (n=36) and females (n=36) and examined for pulmonary function, RM strength, inspiratory muscle endurance (IME) and 1.6 km walking performance. There were no significant age by gender effects for any variables; however, ageing was significantly related to reduced RM function and walking capacity within each gender. Furthermore, regression analysis showed that the RM strength could be predicted from age. Partial correlations controlling for age indicated that expiratory muscle strength was significantly related to walking performance in males (p=0.04), whilst IME contributed significantly to walking performance in all participants. These within-gender effects and relationships indicate that RM strength is an important physiological variable to maintain in the older population, as it may be related to functional ability.
Langrish, Jeremy P; Mills, Nicholas L; Chan, Julian Kk; Leseman, Daan Lac; Aitken, Robert J; Fokkens, Paul Hb; Cassee, Flemming R; Li, Jing; Donaldson, Ken; Newby, David E; Jiang, Lixin
2009-03-13
Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask. Personal exposure to ambient air pollution and exercise was assessed continuously using portable real-time monitors and global positional system tracking respectively. Cardiovascular effects were assessed by continuous 12-lead electrocardiographic and ambulatory blood pressure monitoring. Ambient exposure (PM2.5 86 +/- 61 vs 140 +/- 113 mug/m3; particle number 2.4 +/- 0.4 vs 2.3 +/- 0.4 x 104 particles/cm3), temperature (29 +/- 1 vs 28 +/- 3 degrees C) and relative humidity (63 +/- 10 vs 64 +/- 19%) were similar (P > 0.05 for all) on both study days. During the 2-hour city walk, systolic blood pressure was lower (114 +/- 10 vs 121 +/- 11 mmHg, P < 0.01) when subjects wore a facemask, although heart rate was similar (91 +/- 11 vs 88 +/- 11/min; P > 0.05). Over the 24-hour period heart rate variability increased (SDNN 65.6 +/- 11.5 vs 61.2 +/- 11.4 ms, P < 0.05; LF-power 919 +/- 352 vs 816 +/- 340 ms2, P < 0.05) when subjects wore the facemask. Wearing a facemask appears to abrogate the adverse effects of air pollution on blood pressure and heart rate variability. This simple intervention has the potential to protect susceptible individuals and prevent cardiovascular events in cities with high concentrations of ambient air pollution.
Karstoft, Kristian; Clark, Margaret A; Jakobsen, Ida; Müller, Ida A; Pedersen, Bente K; Solomon, Thomas P J; Ried-Larsen, Mathias
2017-03-01
The aim of this study was to evaluate the effects of oxygen consumption-matched short-term interval walking training (IWT) vs continuous walking training (CWT) on glycaemic control, including glycaemic variability, in individuals with type 2 diabetes. We also assessed whether any training-induced improvements in glycaemic control were associated with systemic oxidative stress levels. Participants (n = 14) with type 2 diabetes completed a crossover trial using three interventions (control intervention [CON], CWT and IWT), each lasting 2 weeks. These were performed in a randomised order (computerised generated randomisation) and separated by washout periods of 4 or 8 weeks after CON or training interventions, respectively. Training included ten supervised treadmill sessions, lasting 60 min/session, and was performed at the research facility. CWT was performed at moderate walking speed (75.6% ± 2.5% of walking peak oxygen consumption [[Formula: see text
Mehrholz, Jan; Mückel, Simone; Oehmichen, Frank; Pohl, Marcus
2014-01-01
Introduction Critical illness myopathy (CIM) and polyneuropathy (CIP) are common complications of critical illness that frequently occur together. Both cause so called intensive care unit (ICU)-acquired muscle weakness. This weakness of limb muscles increases morbidity and delay rehabilitation and recovery of walking ability. Although full recovery has been reported people with severe weakness may take months to improve walking. Focused physical rehabilitation of people with ICU-acquired muscle weakness is therefore of great importance. However, although physical rehabilitation is common, detailed knowledge about the pattern and the time course of recovery of walking function are not well understood. Therefore, the aim of the General Weakness Syndrome Therapy (GymNAST) study is to describe the time course of recovery of walking function and other activities of daily living in these patients. Methods and analysis We conduct a prospective cohort study of people with ICU-acquired muscle weakness with defined diagnosis of CIM or CIP. Based on our sample size calculation, approximately 150 patients will be recruited from the ICU of our hospital in Germany. Amount and content of physical rehabilitation, clinical tests for example, muscle strength and motor function and neuropsychological assessments will be used as independent variables. The primary outcomes will include recovery of walking function and mobility. Secondary outcomes will include global motor function, activities in daily life and participation. Ethics and dissemination The study is being carried out in agreement with the Declaration of Helsinki and conducted with the approval of the local medical Ethics Committee (Landesärztekammer Sachsen, Germany, reference number EK-BR-32/13-1) and with the understanding and written consent of each patient's guardian. The results of this study will be published in peer-reviewed journals and disseminated to the medical society and general public. PMID:25344484
Chang, Yunhee; Jeong, Bora; Kang, Sungjae; Ryu, Jeicheong; Kim, Gyoosuk
2017-01-01
The evaluation of multisegment coordination is important in gaining a better understanding of the gait and physical activities in humans. Therefore, this study aims to verify whether the use of knee sleeves affects the coordination of lower-limb segments during level walking and one-leg hopping. Eleven healthy male adults participated in this study. They were asked to walk 10 m on a level ground and perform one-leg hops with and without a knee sleeve. The segment angles and the response velocities of the thigh, shank, and foot were measured and calculated by using a motion analysis system. The phases between the segment angle and the velocity were then calculated. Moreover, the continuous relative phase (CRP) was calculated as the phase of the distal segment subtracted from the phase of the proximal segment and denoted as CRPTS (thigh–shank), CRPSF (shank–foot), and CRPTF (thigh–foot). The root mean square (RMS) values were used to evaluate the in-phase or out-of-phase states, while the standard deviation (SD) values were utilized to evaluate the variability in the stance and swing phases during level walking and in the preflight, flight, and landing phases during one-leg hopping. The walking velocity and the flight time improved when the knee sleeve was worn (p < 0.05). The segment angles of the thigh and shank also changed when the knee sleeve was worn during level walking and one-leg hopping. The RMS values of CRPTS and CRPSF in the stance phase and the RMS values of CRPSF in the preflight and landing phases changed (p < 0.05 in all cases). Moreover, the SD values of CRPTS in the landing phase and the SD values of CRPSF in the preflight and landing phases increased (p < 0.05 in all cases). These results indicated that wearing a knee sleeve caused changes in segment kinematics and coordination. PMID:28533981
Gait analysis in demented subjects: Interests and perspectives
Beauchet, Olivier; Allali, Gilles; Berrut, Gilles; Hommet, Caroline; Dubost, Véronique; Assal, Frédéric
2008-01-01
Gait disorders are more prevalent in dementia than in normal aging and are related to the severity of cognitive decline. Dementia-related gait changes (DRGC) mainly include decrease in walking speed provoked by a decrease in stride length and an increase in support phase. More recently, dual-task related changes in gait were found in Alzheimer’s disease (AD) and non-Alzheimer dementia, even at an early stage. An increase in stride-to-stride variability while usual walking and dual-tasking has been shown to be more specific and sensitive than any change in mean value in subjects with dementia. Those data show that DRGC are not only associated to motor disorders but also to problem with central processing of information and highlight that dysfunction of temporal and frontal lobe may in part explain gait impairment among demented subjects. Gait assessment, and more particularly dual-task analysis, is therefore crucial in early diagnosis of dementia and/or related syndromes in the elderly. Moreover, dual-task disturbances could be a specific marker of falling at a pre-dementia stage. PMID:18728766
Mansfield, A; Wong, J S; McIlroy, W E; Biasin, L; Brunton, K; Bayley, M; Inness, E L
2015-12-01
To determine if reactive balance control measures predict falls after discharge from stroke rehabilitation. Prospective cohort study. Rehabilitation hospital and community. Independently ambulatory individuals with stroke who were discharged home after inpatient rehabilitation (n=95). Balance and gait measures were obtained from a clinical assessment at discharge from inpatient stroke rehabilitation. Measures of reactive balance control were obtained: (1) during quiet standing; (2) when walking; and (3) in response to large postural perturbations. Participants reported falls and activity levels up to 6 months post-discharge. Logistic and Poisson regressions were used to identify measures of reactive balance control that were related to falls post-discharge. Decreased paretic limb contribution to standing balance control [rate ratio 0.8, 95% confidence interval (CI) 0.7 to 1.0; P=0.011], reduced between-limb synchronisation of quiet standing balance control (rate ratio 0.9, 95% CI 0.8 to 0.9; P<0.0001), increased step length variability (rate ratio 1.4, 95% CI 1.2 to 1.7; P=0.0011) and inability to step with the blocked limb (rate ratio 1.2, 95% CI 1.0 to 1.3; P=0.013) were significantly associated with increased fall rates when controlling for age, stroke severity, functional balance and daily walking activity. Impaired reactive balance control in standing and walking predicted increased risk of falls post-discharge from stroke rehabilitation. Specifically, measures that revealed the capacity of both limbs to respond to instability were related to increased risk of falls. These results suggest that post-stroke rehabilitation strategies for falls prevention should train responses to instability, and focus on remediating dyscontrol in the more-affected limb. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.