Science.gov

Sample records for increased winter snowfall

  1. A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Briner, Jason P.; Ryan-Henry, John J.; Huang, Yongsong

    2016-05-01

    Precipitation is predicted to increase in the Arctic as temperature increases and sea ice retreats. Yet the mechanisms controlling precipitation in the Arctic are poorly understood and quantified only by the short, sparse instrumental record. We use hydrogen isotope ratios (δ2H) of lipid biomarkers in lake sediments from western Greenland to reconstruct precipitation seasonality and summer temperature during the past 8 kyr. Aquatic biomarker δ2H was 100‰ more negative from 6 to 4 ka than during the early and late Holocene, which we interpret to reflect increased winter snowfall. The middle Holocene also had high summer air temperature, decreased early winter sea ice in Baffin Bay and the Labrador Sea, and a strong, warm West Greenland Current. These results corroborate model predictions of winter snowfall increases caused by sea ice retreat and furthermore suggest that warm currents advecting more heat into the polar seas may enhance Arctic evaporation and snowfall.

  2. Impact of declining Arctic sea ice on winter snowfall.

    PubMed

    Liu, Jiping; Curry, Judith A; Wang, Huijun; Song, Mirong; Horton, Radley M

    2012-03-13

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters.

  3. Impact of increasing temperature on snowfall in Switzerland

    NASA Astrophysics Data System (ADS)

    Serquet, G.; Marty, C.; Rebetez, M.

    2012-04-01

    The exact impact of changing temperatures on snow amounts is extremely important for mountainous regions, not only for hydrological aspects but also for winter tourism and the leisure industry in winter ski resorts. However, the impact of increasing temperatures on snowfall amounts is difficult to measure because of the large natural variability of precipitation. In addition, the impact of increasing temperatures varies, depending on region and altitude. Moreover, the impact of the observed increasing trend in temperature on snowfall and snow cover has usually been investigated on a seasonal basis only. On a monthly basis, the relationship between this increase in temperature and snowfall is still largely unknown. Of particular concern are the autumn and spring months and variations with altitude. In order to isolate the impact of changing temperatures on snowfall from the impact of changes in the frequency and intensity of total precipitation, we analyzed the proportion of snowfall days compared to precipitation days for each month from November to April in Switzerland. Our analyses concern 52 meteorological stations located between 200 and 2700 m asl over a 48 year time span. Our results show clear decreasing trends in snowfall days relative to precipitation days for all months (November to April) during the study period 1961-2008. Moreover, the present conditions in December, January and February correspond to those measured in the 1960's in November and March. During the whole snow season, the snowfall ratios have been transferred in elevation by at least 300 m from 1961 to 2008. This means that with an expected temperature increase during the coming decades at least similar to the temperature rise of recent decades, we can assume an additional similar altitudinal transfer of the snowfall days relative to precipitation days ratios. The current situation in November and March could thus become the future situation in December, January and February. During the

  4. Dust Activity during Winter Time in East Asia and Snowfall Obervations and Simulations in Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, L.

    2013-12-01

    Taiwan has relatively frequent snowfall in mountain during winter among regions of the same latitude. The phenomenon is contributed by Taiwan's unique topography - high and steep mountains, and geographical location - sitting on the route the continental polar air mass travels from its birthplace to the ocean, contribute to this phenomenon. Snow occurence, in addition to the freezing-point temperature, when two requirements are met: sufficient vapor and the condensation nuclei in the air. This study pursues the causes of the snowfall activity in Taiwan, the relations between the East Asian dust aerosol and the snowfall activity in Taiwan, and the impacts the climate changes have on the snowfall activity in Taiwan. In this study, Yushan snowfall activity from 1995~2011 and related atmosphere circulations were examined using SYNOP data, NCEP/DOE reanalysis atmospheric data, the observations of the Central Weather Bureau's Yushan Weather Station and the Taiwan Air Quality Monitoring Network of the Environment Protect Administration, Executive Yuan. To provide a quantitative measure of snowfall events and dust activity, a snowfall activity index (SAI) and the DAI Index by Yu et al. (2010) were defined. The time series of yearly SAI and DAI show that East Asian dust storm activity and Taiwan snowfall marked interannual variations during 1995 ~ 2011. For active years such as 2008, 2010, and 2011, SAI was hundreds of times larger than that for inactive years such as 1996, 1999 and 2003; and DAI in active years such as 2001 and 2002 was several tens of times larger than that in inactive years such as 1997 and 2003. In active years when the EAT (East Asian Trough) was shifted eastward, the strength of WPH (West Pacific High) increased in the south and an anticyclone thus occurred. This anticyclone introduced anomalous southwesterly flows along the southeastern coast of mainland China and over Taiwan, resulting in a wetter-than-normal atmosphere in support of snowfall

  5. Winter Snowfall Turns an Emerald White

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ireland's climate is normally mild due to the nearby Gulf Stream, but the waning days of 2000 saw the Emerald Isle's green fields swathed in an uncommon blanket of white. The contrast between summer and winter is apparent in this pair of images of southwestern Ireland acquired by MISR's vertical-viewing (nadir) camera on August 23, 2000 (left) and December 29, 2000 (right). The corresponding Terra orbit numbers are 3628 and 5492, respectively.

    The year 2000 brought record-breaking weather to the British Isles. England and Wales experienced the wettest spring and autumn months since 1766. Despite being one of the warmest years in recent history, a cold snap arrived between Christmas and New Year's Day. According to the UK Meteorological Office, the 18 centimeters (7 inches) of snow recorded at Aldergrove, Northern Ireland, on December 27-28 was the deepest daily fall since 1930.

    Prominent geographical features visible in the MISR images include Galway Bay near the top left. Further south, the mouth of the River Shannon, the largest river in the British Isles, meets the Atlantic Ocean. In the lower portions of the images are the counties of Limerick, Kerry and Cork.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology

  6. 21st century projections of snowfall and winter severity across central-eastern North America

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Lorenz, D. J.; Hoving, C.; Schummer, M.

    2014-12-01

    Statistically downscaled climate projections from nine global climate models (GCMs) are used to force a snow accumulation and ablation model (SNOW-17) across the central-eastern North American Landscape Conservation Cooperatives (LCCs) to develop high-resolution projections of snowfall, snow depth, and winter severity index (WSI) by the mid- and late 21st century. Here, we use projections of a cumulative WSI (CWSI) known to influence autumn-winter waterfowl migration to demonstrate the utility of SNOW-17 results. The application of statistically downscaled climate data and a snow model leads to a better representation of lake processes in the Great Lakes Basin, topographic effects in the Appalachian Mountains, and spatial patterns of climatological snowfall, compared to the original GCMs. Annual mean snowfall is simulated to decline across the region, particularly in early winter (December-January), leading to a delay in the mean onset of the snow season. Due to a warming-induced acceleration of snowmelt, the percentage loss in snow depth exceeds that of snowfall. Across the Plains and Prairie Potholes LCC and Upper Midwest and Great Lakes LCC, daily snowfall events are projected to become less common, but more intense. The greatest reductions in the number of days per year with a present snowpack are expected close to the historical position of the -5°C isotherm in DJFM, around 44°N. The CWSI is projected to decline substantially during December-January, leading to increased likelihood of delays in timing and intensity of autumn-winter waterfowl migrations.

  7. Changes in winter snowfall/precipitation ratio in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Feng, Song; Hu, Qi

    2007-08-01

    The precipitation falling as rain or snow has different impact on regional water resources and their annual distribution. Shift from solid to liquid form of precipitation following the increase of the surface air temperatures could be quite important because such change could influence the timing of spring runoff and cause water shortage in summer. In this study, the ratio of snowfall to precipitation (S/P) for November-March in the contiguous United States is analyzed and temperature effects on the changes of S/P are examined for 1949-2005. Major results show that the S/P ratio has been decreasing strongly in the Pacific Northwest and the central United States. The S/P decreased slightly in the eastern United States. In the Pacific Northwest, the changes of S/P are attributed to decrease of both snowfall and precipitation with snowfall decreasing at a greater rate. In the central United States, decrease of the S/P ratio resulted primarily from the decrease of snowfall and increase of the winter precipitation. Averaged over the contiguous United States, the changes of S/P are mainly related to the changes of the snowfall and with little effect from changes of winter precipitation. Decreases of the S/P ratio are largest in March and least in January. The significant decreases of the S/P ratio are associated with large increase in mean winter wet-day temperatures in the western and central United States. Weak warming in the eastern United States concurred with weak and no change of S/P.

  8. Increased future ice discharge from Antarctica owing to higher snowfall.

    PubMed

    Winkelmann, R; Levermann, A; Martin, M A; Frieler, K

    2012-12-13

    Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.

  9. Winter snowfall and summer photosynthesis for the Great Basin Desert shrubs Artemisia tridentata and Purshia tridentata.

    NASA Astrophysics Data System (ADS)

    Loik, M. E.; Griffith, A. B.; Alpert, H.; Concilio, A. L.; Martinson, S. J.

    2011-12-01

    Snowfall provides the majority of soil water recharge in many western high-elevation North American ecosystems, but climate change may alter the magnitude and timing of snowfall and snow melt events thereby affecting ecosystem processes. Experiments were conducted to test hypotheses about multi-scale linkages of antecedent snow depth variation with soil water content and physiological performance of deeply-rooted shrubs in the western Great Basin Desert. Snow depth was manipulated using eight 50-year old snow fences near Mammoth Lakes, California, USA. Water potential and photosynthetic gas exchange were measured annually in early summer (1 - 2 mo following snowmelt), between 2004 and 2008 for Artemisia tridentata (Asteraceae) and Purshia tridentata (Rosaceae) on plots with increased ("+ snow"), decreased ("- snow") and ambient snow depth. Seasonal patterns were measured from May - September 2005, and four to five months after snowmelt in wet and dry years. Snow depth on +snow plots was about twice that of ambient-depth plots in most years. Depth was about 20% lower on -snow plots. Soil water content in May on +snow plots was roughly double that on ambient and 220% of that on -snow plots. Water potential patterns varied across daily, seasonal, and annual scales, but only on a few occasions was there a significant snow-depth effect. Stomatal conductance (gs) and CO2 assimilation (A) increased for several months after snowmelt in 2005, but there were only a few times when there was a snow depth effect. Photosynthetic gas exchange reflected inter-annual snow depth, but the magnitude of the variation was lower. There was a threshold response of A to October 1 - June 1 cumulative precipitation. For A. tridentata, A differed as a function of Snow Water Equivalents (SWE) across five years of measurements. Results suggest that plant water relations for these two deeply-rooted shrub species are resilient to variation in winter snow depth and subsequent spring soil water

  10. Reduced winter snowfall damages the structure and function of wintergreen ferns.

    PubMed

    Tessier, Jack T

    2014-06-01

    • Premise of the study: The full impact of climate change on ecosystems and the humans that depend on them is uncertain. Anthropogenic climate change is resulting in winters with less snow than is historically typical. This deficit may have an impact on wintergreen ferns whose fronds lie prostrate under the snowpack and are thereby protected from frost.• Methods: Frost damage and ecophysiological traits were quantified for three species of wintergreen fern (Dryopteris intermedia, Dryopteris marginalis, and Polystichum acrostichoides) near Delhi, NY following the winters of 2012 (which had very little snowfall) and 2013 (which had typical snowfall).• Key results: Dryopteris intermedia was the most common species and had the highest percentage of frost-damaged fronds and the highest percentage of its cover damaged in 2012. Frost damage was significantly less in 2013 for all species. Polystichum acrostichoides had the highest vernal photosynthetic rate in undamaged fronds, and all three species had a negative net photosynthetic rate in frost-damaged fronds. The wintergreen fern community lost 36.69 ± 2.80% of its productive surface area to frost damage in 2012. Dryopteris intermedia had the thinnest leaves and this trait may have made it the most susceptible to frost damage.• Conclusions: These results demonstrate that repeated winters of little snow may have a significant impact on the structure and functioning of the wintergreen fern community, and species will respond to a reduced snowpack on an individual basis.

  11. Baroclinic Waves and CO2 Snowfalls in Martian Winter Polar Atmosphere Simulated by a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Kuroda, T.; Medvedev, A. S.; Kasaba, Y.; Hartogh, P.

    2016-09-01

    The CO2 snowfalls in winter polar atmosphere have been simulated by a MGCM. Our results show that they are strongly modulated by the synoptic dynamical features such as baroclinic planetary waves, as well as by gravity waves in smaller scale.

  12. Shrinking sea ice, increasing snowfall and thinning lake ice: a complex Arctic linkage explained

    NASA Astrophysics Data System (ADS)

    Brock, Ben W.

    2016-09-01

    The dramatic shrinkage of Arctic sea ice is one of the starkest symptoms of global warming, with potentially severe and far-reaching impacts on arctic marine and terrestrial ecology (Post et al 2013 Science 341 519-24) and northern hemisphere climate (Screen et al 2015 Environ. Res. Lett. 10 084006). In their recent article, Alexeev et al (2016 Environ. Res. Lett. 11 074022) highlight another, and unexpected, consequence of Arctic sea ice retreat: the thinning of lake ice in northern Alaska. This is attributed to early winter ‘ocean effect’ snowfall which insulates lake surfaces and inhibits the formation of deep lake ice. Lake ice thinning has important consequences for Arctic lake hydrology, biology and permafrost degradation.

  13. Organic Characteristics of High Sierra Nevada Snowfall during the Winter of 2014

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Andrews, E. D.; Aiken, G.; Butler, K. D.

    2015-12-01

    During the winter of 2014 snow samples were collected from Tuolumne Meadows in Yosemite National Park (elevation 2600 m) for the determination of the organic constituents. Samples were collected from the middle of the snowpack during January - April (referred to as "snowpack" samples), from three depths in a cross-sectional pit dug in mid April ("snow pit" samples) and from fresh snow collected during two snowstorms ("snowstorm" samples). Samples were frozen immediately after collection in sealed glass containers and thawed just prior to analysis. The DOC concentration of snowpack samples varied from 0.9 - 1.7 mg C/L; the DOC of snowstorm samples had much lower values (0.3 - 0.4 mg C/L). DOC concentrations of snow taken from the top third of the snow pit in mid-April was much higher (6.6 mg C/L), but this sample had large amounts of "debris"; the snow samples from the middle and bottom of the snow pit had concentrations similar to the snowpack samples. Snows were fractionated into hydrophobic, transphilic and hydrophilic acid fractions (HPOA, TPIA and HPIA, respectively); HPOA comprised between 30 and 44% of the total, TPIA ranged from 8-16% and HPIA ranged from 19-28%. Samples collected from the snow pit at the end of the winter always had lower percentages of TPIA and HPIA than those taken from the snowpack during the winter. All snow samples were also analyzed for low molecular weight organic acids (LMWOA) via ion chromatography, and all samples contained trace amounts of formate, acetate and oxalate, with acetate generally being predominant. A few of the samples showed evidence of trace amounts of propionate and butyrate, but no other organic acids could be positively identified. If it is assumed that the LMWOA fraction consisted of the three anions above (acetate, formate and oxalate), then the percentage of the HPIA which was LMWOA ranged from 5-15% with uniformly higher percentages occurring in the snowpack samples than in the snow pit samples taken at the

  14. Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region

    NASA Astrophysics Data System (ADS)

    Hartnett, Justin Joseph

    Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The

  15. Comparisons of Snowfall Measurements in Complex Terrain Made During the 2010 Winter Olympics in Vancouver

    NASA Astrophysics Data System (ADS)

    Boudala, Faisal S.; Isaac, George A.; Rasmussen, Roy; Cober, Stewart G.; Scott, Bill

    2014-01-01

    Solid precipitation (SP) intensity () using four automatic gauges, Pluvio, PARSIVEL (PArticle, SIze and VELocity), FD12P and POSS, and radar reflectivity factor () using the POSS and PARSIVEL were measured at a naturally sheltered station (VOA) located at high level (1,640 m) on the Whistler Mountain in British Colombia, Canada. The R s and other standard meteorological parameters were collected from March 2009, and from November 2009, to February 2010. The wind speed (ws) measured during this period ranged from 0 to 4.5 ms-1, with a mean value of 0.5 ms-1. The temperature varied from 4 to -17 °C. The SP amount reported by the PARSIVEL was higher than that reported by the Pluvio by more than a factor of 2, while the FD12P and POSS measured relatively smaller amounts, but much closer to that reported by the Pluvio and manual measurements. The dependence of R s from the PARSIVEL on wind speed was examined, but no significant dependence was found. The PARSIVEL's precipitation retrieval algorithm was modified and tested using three different snow density size relationships ( ρ s- D) reported in literature. It was found that after modification of the algorithm, the derived R s amounts using the raw data agreed reasonably well with the Pluvio. Statistical analysis shows that more than 95 % of data measured by POSS appears to correlates well with the reflectivity factors determined using the three ρ s- D relationships. The automated Pluvio accumulation and manually determined daily SP amount (SPm) measured during five winter months were compared. The mean ratio (MR) and the mean difference (MD), and the correlation coefficient ( r) calculated using the data collected using the two methods, were found to be 0.96, 0.4 and 0.6 respectively, indicating respectable agreement between these two methods, with only the Pluvio underestimating the amount by about 4 %.

  16. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.

    PubMed

    Bjorkman, Anne D; Elmendorf, Sarah C; Beamish, Alison L; Vellend, Mark; Henry, Gregory H R

    2015-12-01

    Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long-term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21-year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05-0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species - especially for early-flowering species - while spring temperature was significantly related to flowering time only for later-flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species' phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses

  17. Future changes in daily snowfall intensity projected by large ensemble regional climate experiments

    NASA Astrophysics Data System (ADS)

    Kawase, H.

    2015-12-01

    We investigate the future changes in daily snowfall intensity in Japan analyzing the large ensemble regional climate experiments. Dynamical downscalings are conducted by Non-Hydrostatic Regional Climate Model (NHRCM) with 20 km from the global climate projections using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM). Fifty ensemble experiments are performed in the present climate. For the future climate projections, 90 ensemble experiments are performed based on the six patterns of SST changes in the periods when 4 K rise in global-mean surface air temperature is projected. The accumulated snowfall in winter decreases in Japan except for the northern parts of Japan. Especially, the inland areas in the Sea of Japan side, which is famous for the heaviest snowfall region in the world, shows the remarkable decrease in snowfall in the future climate. The experiments also show increased number of days without snowfall and decreased number of days with weak snowfall due to significant warming in the most parts of Japan. On the other hand, the extreme daily snowfall, which occurs once ten years, would increase at higher elevations in the Sea of Japan side. This means that extreme daily snowfall in the present climate would occur more frequently in the future climate. The warmer atmosphere can contain more water vapor and warmer ocean can supply more water vapor to the low atmosphere. The surface air temperature at higher elevations is still lower than 0 degree Celsius, which could result in the increased extreme daily snowfall.

  18. ATMS Snowfall Rate Product and Its Applications

    NASA Astrophysics Data System (ADS)

    Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.

    2015-12-01

    A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project

  19. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  20. Trends of Future Heavy Snowfall and Accumulated Freezing Indexes in Japanese Snowy Cold Region

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Matsuzawa, M.

    2015-12-01

    To achieve sufficient, effective winter road maintenance, it is important that long-term snow and ice hazard mitigation plans be examined and formulated by taking into consideration the influence of climate change. In this study, we have developed a method of predicting more accurately the indexes of heavy snowfall events that occur over short periods of time and future projections of winter temperatures based on the relationship of observed data to the climate model predicted values. The indexes for heavy snowfall were the maximum 24-hour snowfall and the frequency of 10-cm or more snowfall within a maximum 6-hour period. Indexes for cold weather were the accumulated freezing index in winter and the number of days of freeze-thaw days. Subsequently, we have applied this methodology for Japanese snowy cold regions, in order to clarify the trends for near future and century-end future period changes. The results indicate that current measures to mitigate the effects of extremely heavy snowfall in inland areas of Hokkaido may require enhancement of operational procedures. In addition, the possibility of pavement and concrete damage in the colder regions is expected to increase due to the increment in the number of freeze-thaw days. Based upon the results of this study, we will identify the road management issues associated with climate change using the recent trends and predictions for the near future and century-end future climate periods.

  1. Contrasting responses of mean and extreme snowfall to climate change.

    PubMed

    O'Gorman, Paul A

    2014-08-28

    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as -9 °C, compared to -14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain-snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.

  2. Sunspots and Snowfall

    ERIC Educational Resources Information Center

    Starr, Richard R.

    1978-01-01

    Examination of the snowfall and total precipitation data for Rochester, New York, suggests a correlation with sunspot activity. Data from other locations tend to support the thesis, but the ability to predict yearly snowfall or total precipitation amounts from sunspot activity has yet to be developed. (Author/CP)

  3. Variations in northern hemisphere snowfall: An analysis of historical trends and the projected response to anthropogenic forcing in the twenty-first century

    NASA Astrophysics Data System (ADS)

    Krasting, John P.

    Snowfall is an important feature of the Earth's climate system that has the ability to influence both the natural world and human activity. This dissertation examines past and future changes in snowfall related to increasing concentrations of anthropogenic greenhouse gases. Snowfall observations for North America, derived snowfall products for the Northern Hemisphere, and simulations performed with 13 coupled atmosphere-ocean global climate models are analyzed. The analysis of the spatial pattern of simulated annual trends on a grid point basis from 1951 to 1999 indicates that a transition zone exists above 60° N latitude across the Northern Hemisphere that separates negative trends in annual snowfall in the mid-latitudes and positive trends at higher latitudes. Regional analysis of observed annual snowfall indicates that statistically significant trends are found in western North America, Japan, and southern Russia. A majority of the observed historical trends in annual snowfall elsewhere in the Northern Hemisphere, however, are not statistically significant and this result is consistent with model simulations. Projections of future snowfall indicate the presence of a similar transition zone between negative and positive snowfall trends that corresponds with the area between the -10 to -15°C isotherms of the multi-model mean temperature of the late twentieth century in each of the fall, winter, and spring seasons. Redistributions of snowfall throughout the entire snow season are likely -- even in locations where there is little change in annual snowfall. Changes in the fraction of precipitation falling as snow contribute to decreases in snowfall across most Northern Hemisphere regions, while changes in precipitation typically contribute to increases in snowfall. Snowfall events less than or equal to 5 cm are found to decrease in the future across most of the Northern Hemisphere, while snowfall events greater than or equal to 20 cm increase in some locations

  4. Snowfall Retrivals Using a Video Disdrometer

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Kucera, P. A.

    2004-12-01

    A video disdrometer has been recently developed at NASA/Wallops Flight Facility in an effort to improve surface precipitation measurements. One of the goals of the upcoming Global Precipitation Measurement (GPM) mission is to provide improved satellite-based measurements of snowfall in mid-latitudes. Also, with the planned dual-polarization upgrade of US National Weather Service weather radars, there is potential for significant improvements in radar-based estimates of snowfall. The video disdrometer, referred to as the Rain Imaging System (RIS), was deployed in Eastern North Dakota during the 2003-2004 winter season to measure size distributions, precipitation rate, and density estimates of snowfall. The RIS uses CCD grayscale video camera with a zoom lens to observe hydrometers in a sample volume located 2 meters from end of the lens and approximately 1.5 meters away from an independent light source. The design of the RIS may eliminate sampling errors from wind flow around the instrument. The RIS operated almost continuously in the adverse conditions often observed in the Northern Plains. Preliminary analysis of an extended winter snowstorm has shown encouraging results. The RIS was able to provide crystal habit information, variability of particle size distributions for the lifecycle of the storm, snowfall rates, and estimates of snow density. Comparisons with coincident snow core samples and measurements from the nearby NWS Forecast Office indicate the RIS provides reasonable snowfall measurements. WSR-88D radar observations over the RIS were used to generate a snowfall-reflectivity relationship from the storm. These results along with several other cases will be shown during the presentation.

  5. Increasing Sun Protection in Winter Outdoor Recreation

    PubMed Central

    Walkosz, Barbara J.; Buller, David B.; Andersen, Peter A.; Scott, Michael D.; Dignan, Mark B.; Cutter, Gary R.; Maloy, Julie A.

    2009-01-01

    Background Unprotected and excessive exposure to ultraviolet radiation (UVR) is the primary risk factor for skin cancer. Design A pair-matched, group-randomized, pre-test/post-test, quasi-experimental design, with ski resorts as the unit of randomization, tested the effectiveness of Go Sun Smart, a multi-channel skin cancer prevention program. Independent samples of guests were taken at baseline (2001) and follow-up (2002); data were analyzed in 2006. Setting and Participants A total of 6516 adult guests at 26 ski resorts in the western U.S. and Canada were recruited, consented, and interviewed on chairlifts. This study was nested within an occupational intervention for ski resort workers. Intervention Ski resorts were pair-matched and randomized to receive Go Sun Smart, which consisted of print, electronic, visual, and interpersonal skin cancer prevention messages. Main Outcome Measures Sun-protection behaviors, sunburning, recall of sun-protection messages, and the association of message exposure to sun protection. Results The difference in recall of all sun-protection messages, messages on signs and posters, and the Go Sun Smart logo was significant between the intervention and control resorts. Reported use of sun-protection practices was higher by guests at intervention ski areas using more (a higher dose of) Go Sun Smart materials. Intervention-group guests who recalled a sun-safety message were more likely to practice sun safety than intervention-group guests who did not recall a message and control-group guests. Conclusions While the mere implementation of Go Sun Smart did not produce sun-safety improvements, Go Sun Smart appeared to be effective for guests who encountered and remembered it. Many factors can work against message exposure. Signage seemed to produce the greatest increase in exposure to sun-safety messages. PMID:18471586

  6. Natural Variability during Snowfall: Observations of Snowflake Microstructure and Calculations of Corresponding Snowfall Scattering Properties

    NASA Astrophysics Data System (ADS)

    Gergely, M.; Garrett, T. J.

    2015-12-01

    Significant progress has been achieved in approximating snowflakes and ice-cloud particles by increasingly more realistic and detailed shape models and in calculating associated scattering properties crucial to snowfall remote sensing. The applied approximations of the snowflake microstructure applied for the scattering calculations, however, are still based on few available field measurement data, often integrated over many individual snow storms, and only include several microstructural properties that cannot fully capture the natural variability during snowfall, e.g. different degrees of riming or aggregate snowflakes formed from more than one distinct ice crystal habit. In this study, (i) the natural variability of key microstructural properties during snowfall is quantified for individual snow storms based on high-resolution multi-view snowflake imaging data collected with the Multi-Angle Snowflake Camera (MASC) at Alta ski area (Alta, UT), and (ii) the corresponding variability in snowflake scattering properties is calculated. In addition to snowflake size, orientation and aspect ratio, 'particle complexity' (specifying snowflake perimeter and brightness variations in the MASC snowflake images) is included in the presented approach, yielding a quantitative and objective measure of characteristic snowflake microstructure, including crystal habit and degree of riming, important for realistically modelling snowfall scattering properties. The aim is to present an analysis of the impact of the observed natural microstructural variability on the derived snowflake scattering properties and ultimately on the snowfall radar reflectivity integrated over the obtained variability of snowflake microstructure and scattering properties.

  7. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  8. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.

    PubMed

    Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D

    2015-10-01

    Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth

  9. Decreased winter severity increases viability of a montane frog population

    PubMed Central

    McCaffery, Rebecca M.; Maxell, Bryce A.

    2010-01-01

    Many proximate causes of global amphibian declines have been well documented, but the role that climate change has played and will play in this crisis remains ambiguous for many species. Breeding phenology and disease outbreaks have been associated with warming temperatures, but, to date, few studies have evaluated effects of climate change on individual vital rates and subsequent population dynamics of amphibians. We evaluated relationships among local climate variables, annual survival and fecundity, and population growth rates from a 9-year demographic study of Columbia spotted frogs (Rana luteiventris) in the Bitterroot Mountains of Montana. We documented an increase in survival and breeding probability as severity of winter decreased. Therefore, a warming climate with less severe winters is likely to promote population viability in this montane frog population. More generally, amphibians and other ectotherms inhabiting alpine or boreal habitats at or near their thermal ecological limits may benefit from the milder winters provided by a warming climate as long as suitable habitats remain intact. A more thorough understanding of how climate change is expected to benefit or harm amphibian populations at different latitudes and elevations is essential for determining the best strategies to conserve viable populations and allow for gene flow and shifts in geographic range. PMID:20421473

  10. Increased body mass of ducks wintering in California's Central Valley

    USGS Publications Warehouse

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  11. Future snowfall in western and central Europe projected with a high-resolution regional climate model ensemble

    NASA Astrophysics Data System (ADS)

    Vries, Hylke; Lenderink, Geert; Meijgaard, Erik

    2014-06-01

    Snowfall frequency and intensity are influenced strongly by climate change. Here we separate the basic frequency change resulting from a gradually warming climate, from the intensity changes, by focusing on snowfall on days where the mean temperature is below freezing (Hellmann days). Using an ensemble of simulations, obtained with the high-resolution regional climate model KNMI-RACMO2 driven by the EC-EARTH global climate model and RCP4.5 and RCP8.5 forcing scenarios, we show that in addition to the strong decrease in the number of Hellmann days, also a substantial reduction in the mean Hellmann-day snowfall can be expected over large parts of western and central Europe. Moreover, seasonal snowfall extremes display trends that are comparable or even larger. Projected intensity reductions are locally as large as -30% per degree warming, thus being in sharp contrast to mean winter precipitation, which increases in most future climate scenarios. Exceptions are the high Alps and parts of Scandinavia, which may see an increase of up to +10% per degree warming.

  12. Shift from Snowfall to Rainfall in the Canadian Rockies: Consequences for Snowpacks, Glacier Mass Balance and Streamflow in an Emerging Drought

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Pradhananga, D.; Schirmer, M.; Conway, J. P.; Helgason, W.; Whitfield, P. H.

    2015-12-01

    The winter and spring of 2014-15 brought abnormal warmth to much of Western Canada and a transition from snowfall to rainfall for many winter and spring precipitation events in the Canadian Rocky Mountains where snowfall normally dominates precipitation volumes in these seasons. Spring and summer remained abnormally warm and exceptionally dry. The impact of a warm winter and dry spring and summer resulted in substantial reduction in snowfall and a shift to earlier rainfall in the Canadian Rockies. As a result peak snow accumulation was from 1/3 to 1/2 of long term averages at upper middle elevations and low elevation valley snowpacks ablated shortly after forming in early December. Snowmelt occurred 2 to 6 weeks earlier than average, resulting in earlier than normal spring freshets and exposure of glacier firn and ice. June 1st snow accumulation was completely ablated or at record low values for most observation stations. The shift from winter and spring snowfall to rainfall and subsequent low summer rainfall resulted in the emergence of exceptionally wide-spread forest fires, rapid glacier melt, low streamflow and severe agricultural drought in Western Canada. By mid-July the seasonal snowpack had largely ablated, discharge rates in the Bow River at Calgary were 40% of average, many mountain streams had dried up and the Athabasca Glacier had experienced 3 m of ice melt. The Cold Regions Hydrological Model was used to simulate the impacts of the snowfall to rainfall transition on the snow redistribution, sublimation and melt processes, runoff and evapotranspiration that control the water balance of selected mountain environments in this period, employing Harder and Pomeroy's Psychrometric Energy Balance Method to estimate precipitation phase. The results help to diagnose how a "warm drought" impacts the hydrology and glaciology of cold regions environments and suggest the possible impacts of future warmer climates and increased rainfall fraction on this region.

  13. A Snowfall Impact Scale Derived from Northeast Storm Snowfall Distributions.

    NASA Astrophysics Data System (ADS)

    Kocin, Paul J.; Uccellini, Louis W.

    2004-02-01

    A Northeast snowfall impact scale (NESIS) is presented to convey a measure of the impact of heavy snowfall in the Northeast urban corridor, a region that extends from southern Virginia to New England. The scale is derived from a synoptic climatology of 30 major snowstorms in the Northeast urban corridor and applied to the snowfall distribution of 70 snowstorms east of the Rocky Mountains. NESIS is similar in concept to other meteorological scales that are designed to simplify complex phenomena into an easily understood range of values. The Fujita scale for tornadoes and the Saffir Simpson scale for hurricanes measure the potential for destruction to property and loss of life by wind-related damage (and storm surge for Saffir Simpson) through use of a categorical ranking (0 or 1 5).

  14. Trends in snowfall versus rainfall in the western United States

    USGS Publications Warehouse

    Knowles, N.; Dettinger, M.D.; Cayan, D.R.

    2006-01-01

    The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949-2004. The trends toward reduce d SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than -5??C. Most SFE reductions were associated with winter wet-day temperature increases between 0?? and +3??C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends. The trends toward reduced SFE/P ratios w ere most pronounced in March regionwide and in January near the West Coast, corresponding, to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming, trend to produce SFE/P declines across the study region, mean January temperatures were cooler. with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast. Extending the analysis back to 1920 sho ws that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation. they also appear to result from still longer-term climate shifts.

  15. An evaluation of the Wyoming gauge system for snowfall measurement

    USGS Publications Warehouse

    Yang, D.; Kane, D.L.; Hinzman, L.D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.Y.T.; Leavesley, G.H.; Emerson, D.G.; Hanson, C.L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind-induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this intercomparison experiment. The intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80-90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  16. Deeper winter snow reduces ecosystem C losses but increases the global warming potential of Arctic tussock tundra over the growing season.

    NASA Astrophysics Data System (ADS)

    Blanc-Betes, E.; Welker, J. M.; Gomez-Casanovas, N.; Gonzalez-Meler, M. A.

    2015-12-01

    Arctic winter precipitation is projected to increase globally over the next decades, spatial variability encompassing areas with increases and decreases in winter snow. Changes in winter precipitation strongly affect C dynamics in Arctic systems and may lead to major positive climate forcing feedbacks. However, impacts of predicted changes in snowfall and accumulation on the rate and form of C fluxes (CO2 and CH4) and associated forcing feedbacks from Arctic tundra remain uncertain. We investigated how changes in winter precipitation affect net ecosystem CO2 and CH4 fluxes and budgets of moist acidic tundra in an 18-yrs snow fence experiment over a complete growing season at Toolik Lake, AK. Arctic tundra under ambient winter precipitation (CTL) was a net source of CO2 and CH4, yielding net C losses over the growing season. Reduced snow (-15-30% snow depth; RS) switched the system to a net CO2 sink mostly by limiting SOC decomposition within colder soils. Snow additions progressively reduced net ecosystem CO2 losses compared to CTL, switching the system into a weaker net CO2 source with medium additions (+20-45% snow depth; MS) and into a small net CO2 sink with high additions (+70-100% snow depth; HS). Increasingly wetter soils with snow additions constrained the temperature sensitivity of aerobic decomposition and favored the anaerobic metabolism, buffering ecosystem CO2 losses despite substantial soil warming. Accordingly, Arctic tundra switched from a sustained CH4 sink at RS site to an increasingly stronger CH4 source with snow additions. Accounting for both CO2 and CH4, the RS site became a net C sink over the growing season, overall reducing the global warming potential (CO2 equiv.; GWP) of the system relative to CTL. Snow additions progressively reduced net C losses at the MS site compared to CTL and the system transitioned into a net C sink at HS plots, partly due to the slower metabolism of anaerobic decomposition. However, given the greater radiative

  17. Improving Radar Snowfall Measurements Using a Video Disdrometer

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Kucera, P. A.

    2005-05-01

    A video disdrometer has been recently developed at NASA/Wallops Flight Facility in an effort to improve surface precipitation measurements. The recent upgrade of the UND C-band weather radar to dual-polarimetric capabilities along with the development of the UND Glacial Ridge intensive atmospheric observation site has presented a valuable opportunity to attempt to improve radar estimates of snowfall. The video disdrometer, referred to as the Rain Imaging System (RIS), has been deployed at the Glacial Ridge site for most of the 2004-2005 winter season to measure size distributions, precipitation rate, and density estimates of snowfall. The RIS uses CCD grayscale video camera with a zoom lens to observe hydrometers in a sample volume located 2 meters from end of the lens and approximately 1.5 meters away from an independent light source. The design of the RIS may eliminate sampling errors from wind flow around the instrument. The RIS has proven its ability to operate continuously in the adverse conditions often observed in the Northern Plains. The RIS is able to provide crystal habit information, variability of particle size distributions for the lifecycle of the storm, snowfall rates, and estimates of snow density. This information, in conjunction with hand measurements of density and crystal habit, will be used to build a database for comparisons with polarimetric data from the UND radar. This database will serve as the basis for improving snowfall estimates using polarimetric radar observations. Preliminary results from several case studies will be presented.

  18. Climatological characterization of wind and snowfall in Minnesota and assessing the impacts of living snow fences

    NASA Astrophysics Data System (ADS)

    Shulski, Martha Elizabeth Durr

    Blowing and drifting snow on roadways is a common occurrence in Minnesota due to the topographic, vegetative, and winter climate characteristics of this area. Through proper road design and the use of snow fences this problem can be alleviated, however snowfall and wind climatological information must first be analyzed. Archived climatological records for locations in Minnesota were recently compiled. Snowfall time series data show a statistically significant increase of 28cm in the annual total since 1890. The increase is shown to occur for November--December while February and March show a decrease. This increase is largely due to an increase in the frequency of snow events less than 10cm. Wind data from federal observing sites in Minnesota show a correlation to landscape variability, with a high frequency of higher wind speeds in western and southern Minnesota. A snow relocation factor needed to quantify seasonal snow transport was calculated and shows a strong dependence on the wind speed distribution. A case study of the 2000--01 winter season allowed for examination of snow storage and agricultural implications of three living snow fence designs in southern Minnesota (two 8-row strips of corn, twin-row honeysuckle, single-row honeysuckle/red cedar). For a winter with high seasonal snowfall and spring rainfall, results of snow storage and modeled seasonal snow transport show good agreement for the two corn row strips. However, snow storage totaled approximately 50% of the modeled snow transport for the honeysuckle fence designs, which appeared to reach storage capacity prior to the end of the snow season. A key factor is the absence of a bottom gap, which promotes leeward displacement of the downwind drift and prevents snow deposition on the fence. Soil temperature and frost depth data show a moderation in temperatures and a decrease in freezing depth with an increase in associated snowpack depth. Post-season soil moisture shows no significant variability with

  19. Synoptic climatological study on the decrease in heavy snowfall days in Hokuriku District of Central Japan after the latter half of 1980s

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Kan, Yuusuke

    2010-05-01

    Many reports point out that the total snowfall amount in winter in the Japan Sea side of the Japan Islands, such as Hokuriku District, decreased considerably after the latter half of 1980s, in coincidence with the Global Warming together with the interdecadal variation. As for around December, this seems to be partly because more precipitation in the winter monsoon situation is brought as rainfall (not as snowfall), due to the warmer temperature than before. On the other hand, contribution of the daily heavy snowfall events there would be also important for mid-winter when the air temperature is the lowest in a year. Thus the present study examined the contribution of the heavy snowfall events to the difference of the total snowfall amount before and after the middle of 1980s, based on the daily data at several operational surface observation stations of JMA in the Hokuriku District for 1971 - 2001. Then the related daily atmospheric fields were analyzed climatologically with use of the NCEP/NCAR re-analysis data with every 2.5 degrees latitude/longitude interval. In the former half of the analysis period, the larger total snowfall amount in January in the Hokuriku District, such as at Takada, was greatly contributed to by the heavy snowfall events with more than 30 cm/day (referred to as "heavy snowfall day", hereafter). The decrease in the total amount in the latter half of that period was due to that in the contribution of "heavy snowfall days". Furthermore, the "heavy snowfall days" tended to appear in the persistent snowfall episodes (including also the days with 10 cm/day), before around 1986. In short, the decrease in the total snowfall in the latter half period there seems to be reflected by the weakening of persistency of heavy snowfall episodes. As shown by Akiyama (1981a and b) in detail, there are several different synoptic situations in the winter monsoon situation for bringing heavy snowfall there (the "mountain snow type" and the "plateau snow type

  20. Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions: INCREASE IN WINTER HAZE IN EASTERN CHINA

    SciTech Connect

    Yang, Yang; Liao, Hong; Lou, Sijia

    2016-11-05

    The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980–2014 and simulated PM2.5 concentrations for 1985–2005 from the Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105–122.5°E, 20–45°N) increased from 21 d in 1980 to 42 d in 2014, and from 22 to 30 d between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985–2005, with concentrations averaged over eastern China increasing from 16.1 μg m-3 in 1985 to 38.4 μg m-3 in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (±6.2) μg m-3 decade-1 over eastern China. The increasing trend was only 1.8 (±1.5) μg m-3 decade-1 when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s-1 decade-1 over 1985–2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades.

  1. Climate Change Impact on Snowfall, Evapotransportation and Streamflow in a Temperate, Wet Watershed

    NASA Astrophysics Data System (ADS)

    al Aamery, N. M. H.; Fox, J.; Snyder, M. A.

    2015-12-01

    Climate change is expected to significantly impact hydrological processes and streamflow at a regional scale, and the motivation of this research is to gain a better understanding of these processes in temperate, wet regions. While numerous studies have recently focused on projected reductions in snowfall and the impact on streamflow in dry and mountainous regions, much less research has investigated hydrologic processes and streamflow in temperate, wet regions which are expected to receive increases in precipitation during the winter season. We use dynamically and statistically downscaled climate projections and perform hydrological simulations using the Soil Water Assessment Tool (SWAT) for central Kentucky, USA. The study region is chosen because it is located in a region that receives a mixture of rain, snow and ice in wintertime, and thus the region is expected to be particularly sensitive to future changes in precipitation and temperature. The SWAT model was first evaluated in a hindcast analyses for the South Elkhorn Watershed and then driven for future conditions by using downscaled temperature and precipitation data from three different projects including the North American Regional Climate Change Assessment Program, Coupled Model Intercomparison Project Phase 5, and Coupled Model Intercomparison Project Phase 3. The average ensemble climate change results indicates an increase in the average annual of daily temperature by 2.6oC for the period 2046 to 2065 as compared to the period 1981 to 2000, and predicts an increase in the annual precipitation by 8%, with the majority of the increase coming in winter (14% in winter and 2% in summer). SWAT suggests a significant stream flow impact due to climate change including an increase in the average annual stream flow by as much as 26%; attributed to the fact that the climate projections predict more precipitation in winter which increases the snowfall and changes the surface albedo. Hence, the evapotranspiration

  2. Synoptic Weather Patterns Leading to Snowfall in the Northeastern United States and the Resulting Spatial Distribution of Snowfall Amounts

    NASA Astrophysics Data System (ADS)

    Karmosky, C. C.

    2006-05-01

    Frozen precipitation results in hazardous conditions in the densely populated northeastern United States, yet little attention has been given to the important relationship between synoptic weather patterns and snowfall amounts. Recent increases in total seasonal snowfall amounts in some parts of the region have been attributed to increases in the frequency and/or intensity of certain weather patterns. Direct accounts of synoptic weather patterns are rarely recorded in conjunction with standard meteorological observations, and, as such, they must be diagnosed after the fact. Given the difficulty in isolating consistent synoptic weather patterns from standard meteorological datasets, to date there has been no quantitative study on the amount of snow that falls from each of the distinct synoptic systems that affect the region (nor' easters, lake-effect storms, overrunning events, etc.). This study isolates distinct synoptic types using four-times daily synoptic weather data, principal components analysis and clustering analysis for several cities in the region stretching from Maine to southwestern Virginia. The results of this synoptic typing are specific to the city for which the analysis was performed, and are not necessarily directly comparable to neighboring cities. The algorithm used to delineate synoptic types does, however, take into consideration the temporal progression of synoptic weather patterns over each city and isolates days that are transitional from one synoptic pattern to another. The calendar of daily synoptic types generated in this study is joined to a relatively high resolution, gridded snowfall dataset to isolate areas where a given synoptic pattern is responsible for a given percentage of snowfall. The final product is a series of monthly and seasonal maps of snowfall distributions resulting from each of the individual synoptic patterns.

  3. Association between quantity and duration of snowfall and risk of myocardial infarction

    PubMed Central

    Auger, Nathalie; Potter, Brian J.; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Paris, Clément; Kosatsky, Tom

    2017-01-01

    BACKGROUND: Although aggregate data suggest a link between snowfall and myocardial infarction (MI), individual risk has yet to be assessed. We evaluated the association between quantity and duration of snowfall and the risk of MI using nonaggregated administrative health data. METHODS: We used a case–crossover study design to investigate the association between snowfall and hospital admission or death due to MI in the province of Quebec, Canada, between November and April during 1981–2014. The main exposure measures were quantity (in centimetres) and duration (in hours) of snowfall by calendar day. We computed odds ratios (ORs) and 95% confidence intervals (CIs) for the association between daily snowfall and MI, adjusted for minimum daily temperatures. RESULTS: In all, 128 073 individual hospital admissions and 68 155 deaths due to MI were included in the analyses. The likelihood of MI was increased the day after a snowfall among men but not among women. Compared with 0 cm, 20 cm of snowfall was associated with an OR of 1.16 for hospital admission (95% CI 1.11–1.21) and 1.34 for death (95% CI 1.26–1.42) due to MI the following day among men. Corresponding ORs among women were 1.01 (95% CI 0.95–1.07) and 1.04 (95% CI 0.96–1.13). Similar but smaller associations were observed for snowfall duration (0 h v. 24 h) and MI. INTERPRETATION: Both the quantity and duration of snowfall were associated with subsequent risk of hospital admission or death due to MI, driven primarily by an effect in men. These data have implications for public health initiatives in regions with snowstorms. PMID:28202557

  4. Increasing Winter Maximal Metabolic Rate Improves Intrawinter Survival in Small Birds.

    PubMed

    Petit, Magali; Clavijo-Baquet, Sabrina; Vézina, François

    Small resident bird species living at northern latitudes increase their metabolism in winter, and this is widely assumed to improve their chances of survival. However, the relationship between winter metabolic performance and survival has yet to be demonstrated. Using capture-mark-recapture, we followed a population of free-living black-capped chickadees (Poecile atricapillus) over 3 yr and evaluated their survival probability within and among winters. We also measured the size-independent body mass (Ms), hematocrit (Hct), basal metabolic rate (BMR), and maximal thermogenic capacity (Msum) and investigated how these parameters influenced survival within and among winters. Results showed that survival probability was high and constant both within (0.92) and among (0.96) winters. They also showed that while Ms, Hct, and BMR had no significant influence, survival was positively related to Msum-following a sigmoid relationship-within but not among winter. Birds expressing an Msum below 1.26 W (i.e., similar to summer levels) had a <50% chance of survival, while birds with an Msum above 1.35 W had at least a 90% chance of surviving through the winter. Our data therefore suggest that black-capped chickadees that are either too slow or unable to adjust their phenotype from summer to winter have little chances of survival and thus that seasonal upregulation of metabolic performance is highly beneficial. This study is the first to document in an avian system the relationship between thermogenic capacity and winter survival, a proxy of fitness.

  5. Polarization Lidar Liquid Cloud Detection Algorithm for Winter Mountain Storms

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie

    1992-01-01

    We have collected an extensive polarization lidar dataset from elevated sites in the Tushar Mountains of Utah in support of winter storm cloud seeding research and experiments. Our truck-mounted ruby lidar collected zenith, dual-polarization lidar data through a roof window equipped with a wiper system to prevent snowfall accumulation. Lidar returns were collected at a rate of one shot every 1 to 5 min during declared storm periods over the 1985 and 1987 mid-Jan. to mid-Mar. Field seasons. The mid-barrier remote sensor field site was located at 2.57 km MSL. Of chief interest to weather modification efforts are the heights of supercooled liquid water (SLW) clouds, which must be known to assess their 'seedability' (i.e., temperature and height suitability for artificially increasing snowfall). We are currently re-examining out entire dataset to determine the climatological properties of SLW clouds in winter storms using an autonomous computer algorithm.

  6. Relationships between snowfall density and solid hydrometeors, based on measured size and fall speed, for snowpack modeling applications

    NASA Astrophysics Data System (ADS)

    Ishizaka, Masaaki; Motoyoshi, Hiroki; Yamaguchi, Satoru; Nakai, Sento; Shiina, Toru; Muramoto, Ken-ichiro

    2016-11-01

    initial densities for numerical snowpack models, and the snow-to-liquid ratio for winter weather forecasting. In fact, we found that this method can more accurately estimate snowfall density compared with using meteorological elements, which is the method generally used in current snowpack models, even though some issues remain in parameterization for practical use. Transferability of the method developed in the temperate climate zone, where riming and aggregation are predominant, to other snowy areas is also an issue. However, the methodology presented in this study would be useful for other kinds of snow.

  7. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub.

    SciTech Connect

    Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent

    2004-01-10

    Kwit, C., D. J. Levey; C. H. Greenberg, S. F. Pearson, J.P. McCarty, and S. Sargent. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia. 139:30-34. Abstract: We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology.

  8. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    NASA Astrophysics Data System (ADS)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  9. Circulation patterns governing October snowfalls in southern Siberia

    NASA Astrophysics Data System (ADS)

    Bednorz, Ewa; Wibig, Joanna

    2015-12-01

    This study is focused on early fall season in southern Siberia (50-60 N) and is purposed as a contribution to the discussion on the climatic relevance of October Eurasian snow cover. Analysis is based on the daily snow depth data from 43 stations from years 1980-2012, available in the database of All-Russian Research Institute of Hydrometeorological Information—World Data Centre. The snow cover season in southern Siberia starts in early autumn and the number of days with snowfall varies from less than 5 days in the southernmost zone along the parallel 50 N to more than 25 days in the northeastern part of the analyzed area. October snowfall in southern Siberia is associated with occurrence of negative anomalies of sea level pressure (SLP), usually spreading right over the place of recorded intense snowfall or extending eastward from it. Negative anomalies of air temperature at the 850 hPa geopotential level (T850) occurring with increased cyclonic activity are also observed. Negative T850 anomalies are located west or northwest of the SLP depressions. Counterclockwise circulation around low-pressure systems transports cold Arctic air from the north or even colder Siberian polar air from the east, to the west, and northwest parts of cyclones, and induces negative anomalies of temperature. The pattern of T850 anomalies during heavy snowfalls in the eastern part of the southern Siberia is shifted counterclockwise in regard to SLP anomalies: the strongest negative T850 anomalies are located west or northwest of the SLP depressions.

  10. Multiyear Evidence from Ground-based Observations and Modeling of the Impact of Dust on Snowfall in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Creamean, J.; Ault, A. P.; Collins, D. B.; Cahill, J. F.; Fitzgerald, E.; White, A. B.; Neiman, P. J.; Wick, G. A.; Fan, J.; Leung, L.; Ralph, F. M.; Prather, K. A.

    2011-12-01

    Aerosols that have the ability to act as ice nuclei (IN) can impact cloud formation and alter the type, amount, and location of precipitation. IN such as dust and biological aerosols can lead to early initiation of the ice phase that enhances riming and thus precipitation. Depending on temperature conditions, this can lead to increased snowfall at the surface. Potential snowfall enhancement in mountainous regions such as California's Sierra Nevada has large implications on regional water supply, which in turn can affect agricultural and ecosystem productivity, the amount of renewable energy from hydropower, and many other water uses. However, the magnitude of the effect of IN on precipitation intensity, form, and patterns during intense winter storms in the Sierra Nevada is poorly understood. During three consecutive winters (2009-2011) of the CalWater field campaign, the chemical composition of precipitation residues were measured at Sugar Pine Dam, a remote rural site in the Sierra Nevada. Some precipitation events occurred during storms that were characterized by atmospheric river (AR) conditions, which are ideal for generating copious amounts of orographic precipitation. Large fractions of dust and biological aerosols were measured as residues in precipitation samples collected during storms with increased snowfall and lower surface temperatures. In most cases, higher fractions of dust were measured in samples during stronger ARs, while higher fractions of biological or water-insoluble organic residues were measured during weaker ARs throughout all three winters. During the winter storms of CalWater, we observed an increase over time in the fraction of dust and biological residues combined, from 20% in 2009 to 82% in 2011 of the total residues in all precipitation samples, in addition to a decrease in average surface temperature (from 4.8 to 2.3 °C), an increase in the total amount of precipitation (from 253 to 374 mm), and an increase in the frequency of

  11. A study of lightning flashes attending periods of banded snowfall

    NASA Astrophysics Data System (ADS)

    Market, Patrick S.; Becker, Amy E.

    2009-01-01

    Lightning flashes (N = 1088) associated with 24 thundersnow events in the central United States were analyzed to document flash polarity, signal strength, and multiplicity. Negative lightning flashes (N = 872; 80%) dominated positive flashes (N = 216; 20%) with wintry precipitation in this study, which stands in contrast to the majority of the research done on winter thunderstorms (primarily in Japan). Otherwise, limited work has been done, although thundersnow has been documented in the mid-latitudes of North America, Europe and Asia. Statistics on peak amplitude were determined for negative (positive) flashes, yielding mean and standard deviation values of -24 kA +/- 22 kA (+38 kA +/- 34 kA). A subset of winter lightning events (N = 16) were then sought that occurred with banded (single or multiple) snowfall, as banding often denotes greater organization in the atmosphere (e.g., a jet streak aloft to aid in ascent, or a low level jet streak to aid with moisture and thermal transport) and thus the potential for deeper snow totals. Radar reflectivity values were recorded at the location of each lightning flash, as well as the maximum radar reflectivity within the associated snow band. The location of the lightning activity within the snow band was also noted as being either leading edge (LE), trailing edge (TE), core (C), or not correlated (NC), with respect to the motion of the parent band. The majority of lightning flashes were found downstream of areas of highest radar reflectivity with respect to the motion of the snow bands, and not with the highest reflectivity values. If one uses the highest reflectivity values in a snowband as a proxy for the greatest surface snowfall intensity, then the ground terminus of a cloud-to-ground lightning (CG) flash is often not co-located with the heaviest snowfall rates. However, the work completed here does place the location of the typical CG flash ~15 km downstream of the snowband location, so one could use the occurrence

  12. An assessment of the changing nature of the winter hydroclimate in eastern North America and its impacts on risk management

    NASA Astrophysics Data System (ADS)

    Moore, Kent

    2016-04-01

    The winter hydroclimate of eastern North America is characterized by a complex and spatially varying combination of snow and rain. Much of this complexity stems from the presence of Great Lakes that are a source of heat and moisture during the winter months. Lake effect snowfall can result in heavy snowfall in highly localized regions downstream of the lakes. In addition the average mean winter temperature in the region is close to freezing and so there is enhanced sensitivity as to the phase of the precipitation. The region has warmed by 1-2.5 oC during the winter over the past 30 years and so there is concern that the character of the winter hydroclimate may be changing. Here we use reanalysis fields as well as the results of AMIP model runs, with horizontal resolutions ranging from 100 km to 16 km, to investigate the changes that have occurred in the winter hydroclimate of the region. It is shown that a horizontal resolution below ~40 km is needed to resolve the observed spatial gradients in snowfall and rainfall in the region. Over the past 30 years, the mean and 95th percentile snowfall rates in the southern part of the region have decreased by as much as 20% with an increase of a similar magnitude in both these parameters in its northwest. There has also been an increase in the mean and 95th percentile rainfall rates across much the region that exceeds 100% in the vicinity of Lake Superior, the largest and most northern of the Great Lakes. These changes are attributed to the warming that the region has experienced and are expected to continue into the future. They have and will continue to impact a number of societal functions including winter road maintenance as well as influencing the management of property risks such as flooding.

  13. The 8th-10 th January 2009 snowfalls: a case of Mediterranean warm advection event

    NASA Astrophysics Data System (ADS)

    Aguado, F.; Ayensa, E.; Barriga, M.; Del Hoyo, J.; Fernández, A.; Garrido, N.; Martín, A.; Martín, F.; Roa, I. Martínez, A.; Pascual, R.

    2009-09-01

    From 8 th to 10 th of January 2009, significant snowfalls were reported in many areas of the Iberian Peninsula and the Balearic Islands. This relevant event was very important from the meteorological and social impact point of views. The snow affected many zones, especially the regions of Madrid, Castilla & León and Castilla-La Mancha (Spanish central plateau) with the persistence and thickness of solid precipitation. Up to twenty-five centimetres of snow were reported in some places. On 9th of January the snowfalls caused great social and media impact due to the fact that they took place in the early hours in the Madrid metropolitan areas, affecting both air traffic and land transport. The "Madrid-Barajas" airport was closed and the city was collapsed during several hours. A study of this situation appears in the poster. The snowstorm was characterized by the previous irruption of an European continental polar air mass, that subsequently interacted with a wet and warm air mass of Mediterranean origin, all preceded by low level easterly flows. This type of snowfall is called "warm advection". These winter situations are very efficient from precipitation point of view, generating significant snowfalls and affecting a lot of areas.

  14. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  15. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering signature and a statistical approach

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Seo, Eun-Kyoung

    2013-02-01

    has been long believed that the dominant microwave signature of snowfall over land is the brightness temperature decrease caused by ice scattering. However, our analysis of multiyear satellite data revealed that on most of occasions, brightness temperatures are rather higher under snowfall than nonsnowfall conditions, likely due to the emission by cloud liquid water. This brightness temperature increase masks the scattering signature and complicates the snowfall detection problem. In this study, we propose a statistical method for snowfall detection, which is developed by using CloudSat radar to train high-frequency passive microwave observations. To capture the major variations of the brightness temperatures and reduce the dimensionality of independent variables, the detection algorithm is designed to use the information contained in the first three principal components resulted from Empirical Orthogonal Function (EOF) analysis, which capture ~99% of the total variances of brightness temperatures. Given a multichannel microwave observation, the algorithm first transforms the brightness temperature vector into EOF space and then retrieves a probability of snowfall by using the CloudSat radar-trained look-up table. Validation has been carried out by case studies and averaged horizontal snowfall fraction maps. The result indicated that the algorithm has clear skills in identifying snowfall areas even over mountainous regions.

  16. Less exposure to daily ambient light in winter increases sensitivity of melatonin to light suppression.

    PubMed

    Higuchi, Shigekazu; Motohashi, Yutaka; Ishibashi, Keita; Maeda, Takafumi

    2007-01-01

    This study was carried out to examine the seasonal difference in the magnitude of the suppression of melatonin secretion induced by exposure to light in the late evening. The study was carried out in Akita (39 degrees North, 140 degrees East), in the northern part of Japan, where the duration of sunshine in winter is the shortest. Ten healthy male university students (mean age: 21.9+/-1.2 yrs) volunteered to participate twice in the study in winter (from January to February) and summer (from June to July) 2004. According to Japanese meteorological data, the duration of sunshine in Akita in the winter (50.5 h/month) is approximately one-third of that in summer (159.7 h/month). Beginning one week prior to the start of the experiment, the level of daily ambient light to which each subject was exposed was recorded every minute using a small light sensor that was attached to the subject's wrist. In the first experiment, saliva samples were collected every hour over a period of 24 h in a dark experimental room (<15 lux) to determine peak salivary melatonin concentration. The second experiment was conducted after the first experiment to determine the percentage of melatonin suppression induced by exposure to light. The starting time of exposure to light was set 2 h before the time of peak salivary melatonin concentration detected in the first experiment. The subjects were exposed to light (1000 lux) for 2 h using white fluorescent lamps (4200 K). The percentage of suppression of melatonin by light was calculated on the basis of the melatonin concentration determined before the start of exposure to light. The percentage of suppression of melatonin 2 h after the start of exposure to light was significantly greater in winter (66.6+/-18.4%) than summer (37.2+/-33.2%), p<0.01). The integrated level of daily ambient light from rising time to bedtime in summer was approximately twice that in winter. The results suggest that the increase in suppression of melatonin by light in

  17. Greater effect of increasing shrub height on winter versus summer soil temperature

    NASA Astrophysics Data System (ADS)

    Paradis, Mélissa; Lévesque, Esther; Boudreau, Stéphane

    2016-08-01

    Shrub expansion is increasingly observed in arctic and subarctic environments. The development of shrub structure may significantly impact the abiotic environment at the local scale. Our objective was to reconstruct the development of the vertical structure of Betula glandulosa Michx. and to evaluate its effects on winter and summer soil temperature and on snow depth. Stratified sampling of the shrub revealed that shrub biomass distribution followed a similar pattern in stands of contrasting heights. Woody biomass was maximal in the lower stratum and relatively stable in the intermediate strata, while the foliar biomass tracked the vertical development of the shrub structure. Dendrochronological analysis revealed that shrub stands are relatively young; most of the dominant stems started their development after 1990. Shrub height was positively associated with both the dominant stem age and its vertical growth rate. Temperature differences among sites were greater during winter (ca 10 °C) than during summer (ca 2 °C), while the sum of freezing degree-days varied from 680 °C to 2125 °C. Shrub height was the most plausible variable explaining snow depth, winter ground level temperature and the sum of freezing degree-days. However, woody biomass in the 30-40 cm strata best explained summer ground level temperature. Our results suggest that the development of a shrub structure will have far-reaching consequences on the abiotic environment of subarctic ecosystems.

  18. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  19. Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall

    NASA Astrophysics Data System (ADS)

    Savina, M.; Schäppi, B.; Molnar, P.; Burlando, P.; Sevruk, B.

    2012-01-01

    A comparison of a heated tipping-bucket and an electronic weighing precipitation gage for snowfall was conducted over a 173 day period in winter 2009 and 2010 at the Zermatt weather station in the Swiss Alps (1638 m a.s.l.). The main advantages of the electronic weighing system were lower evaporation losses and a higher accuracy in assessing the beginning of snowfall events. The tipping-bucket gage measured overall 23.7% less precipitation due to heating-related losses, and showed a mean delay of ˜ 30 min in recording the beginning of the events. The delay can be explained by the time it takes to melt the snow and fill the first tip at the given time sampling resolution (˜ 20 min) and by evaporation losses (˜ 10 min). The delay is important if accurate identification of the beginning of events is required.

  20. Ubiquity of biological ice nucleators in snowfall.

    PubMed

    Christner, Brent C; Morris, Cindy E; Foreman, Christine M; Cai, Rongman; Sands, David C

    2008-02-29

    Despite the integral role of ice nucleators (IN) in atmospheric processes leading to precipitation, their sources and distributions have not been well established. We examined IN in snowfall from mid- and high-latitude locations and found that the most active were biological in origin. Of the IN larger than 0.2 micrometer that were active at temperatures warmer than -7 degrees C, 69 to 100% were biological, and a substantial fraction were bacteria. Our results indicate that the biosphere is a source of highly active IN and suggest that these biological particles may affect the precipitation cycle and/or their own precipitation during atmospheric transport.

  1. Snowfall Rates Obtained from Radar Reflectivity within a 50 km Range.

    DTIC Science & Technology

    1981-09-15

    measurements yielded a correlation coefficient of 0.88. However, in correlating the total storm snowfall, the amount of radar-measured snowfall above a...reference snowfall measurement site was made equal to the snowfall actually measured at this location. This calibration technique improved the storm snowfall correlation coefficient to 0.96. (author)

  2. Increasing late winter-early spring fire activity in Northern Spain: climate change or human footprint?

    NASA Astrophysics Data System (ADS)

    Carracedo Martín, Virginia; García Codron, Juan Carlos; Rasilla Álvarez, Domingo

    2016-04-01

    Most of the fire activity across Spain concentrates during the summer months, but a secondary peak appears also during late winter and early spring (February and March). This peak represents a tiny fraction of the burned surface but in northern Spain becomes the main fire season, representing up to 60 % of the total burned surface. Moreover, the impact of this "unseasonal" fire regime is becoming more relevant; an analysis of the temporal evolution of the burned surface since 2005 shows that the suppression efforts of summer forest fires have apparently succeeded, while the opposite has occurred with late winter-early spring forest fires. For example, during March 2012 more than 22,000 ha were burned in the Spanish provinces of Asturias and Cantabria, while about 14,000 suffers the effects of fires in Northern Portugal. Anthropogenic factor (mostly linked to an extensive cattle farming in the mountains) are the main cause of such fire activity, but atmospheric factors also play a relevant role in the spread of this fires. Consequently, the main aim of this poster is to explore if the recent evolution of forest fires in the study area are consequence of an aggravation of the atmospheric conditions driving to more fire risk conditions, or other factor could also explain the increase in fire activity. Burned surface data obtained from official statistics since 1971 were compared with atmospheric data at two temporal scales: daily fire risk values calculated from synoptic records and long term drought indices (SPI and SPEI). The results show a long term increase in both daily fire risk and drought conditions, but this trend can be related to the background warming of the area, rather to an increase in the frequency and magnitude of the extreme fire weather events. Thus, we consider that the regional atmospheric evolution cannot explain by itself the recent increase in late winter-early spring fire activity. Additional anthropogenic factors, such as recent changes in

  3. Analysis of a snowfall event produced by mountains waves in Guadarrama Mountains (Spain)

    NASA Astrophysics Data System (ADS)

    Gascón, Estíbaliz; Sánchez, José Luis; Fernández-González, Sergio; Merino, Andrés; López, Laura; García-Ortega, Eduardo

    2014-05-01

    Heavy snowfall events are fairly uncommon precipitation processes in the Iberian Peninsula. When large amounts of snow accumulate in large cities with populations that are unaccustomed to or unprepared for heavy snow, these events have a major impact on their daily activities. On 16 January 2013, an extreme snowstorm occurred in Guadarrama Mountains (Madrid, Spain) during an experimental winter campaign as a part of the TECOAGUA Project. Strong northwesterly winds, high precipitation and temperatures close to 0°C were detected throughout the whole day. During this episode, it was possible to continuously take measurements of different variables involved in the development of the convection using a multichannel microwave radiometer (MMWR). The significant increase in the cloud thickness observed vertically by the MMWR and registered precipitation of 43 mm in 24 hours at the station of Navacerrada (Madrid) led us to consider that we were facing an episode of strong winter convection. Images from the Meteosat Second Generation (MSG) satellite suggested that the main source of the convection was the formation of mountain waves on the south face of the Guadarrama Mountains. The event was simulated in high resolution using the WRF mesoscale model, an analysis of which is based on the observational simulations and data. Finally, the continuous measurements obtained with the MMWR allowed us to monitor the vertical situation above the Guadarrama Mountains with temporal resolution of 2 minutes. This instrument has a clear advantage in monitoring short-term episodes of this kind in comparison to radiosondes, which usually produce data at 0000 and 1200 UTC. Acknowledgements This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22). The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2.

  4. Altered snowfall and soil disturbance influence the early life stage transitions and recruitment of a native and invasive grass in a cold desert.

    PubMed

    Gornish, Elise S; Aanderud, Zachary T; Sheley, Roger L; Rinella, Mathew J; Svejcar, Tony; Englund, Suzanne D; James, Jeremy J

    2015-02-01

    Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment, structuring plant populations and communities, especially in mid-latitude systems. These water-limited and frequently invaded environments experience tremendous variation in snowfall, and species in these systems must contend with harsh winter conditions and frequent disturbance. In this study, we examined the mechanisms driving the effects of snowpack depth and soil disturbance on the germination, emergence, and establishment of the native Pseudoroegnaria spicata and the invasive Bromus tectorum, two grass species that are widely distributed across the cold deserts of North America. The absence of snow in winter exposed seeds to an increased frequency and intensity of freeze-thaw cycles and greater fungal pathogen infection. A shallower snowpack promoted the formation of a frozen surface crust, reducing the emergence of both species (more so for P. spicata). Conversely, a deeper snowpack recharged the soil and improved seedling establishment of both species by creating higher and more stable levels of soil moisture availability following spring thaw. Across several snow treatments, experimental disturbance served to decrease the cumulative survival of both species. Furthermore, we observed that, regardless of snowpack treatment, most seed mortality (70-80%) occurred between seed germination and seedling emergence (November-March), suggesting that other wintertime factors or just winter conditions in general limited survival. Our results suggest that snowpack variation and legacy effects of the snowpack influence emergence and establishment but might not facilitate invasion of cold deserts.

  5. Decadal increase of organic compounds in winter and spring atmospheric aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Kawamura, K.; Kobayashi, M.; Tachibana, E.; Lee, M.; Jung, J.

    2014-12-01

    A rapid economic growth in China and other East Asian countries may have changed molecular level organic composition of atmospheric aerosols in East Asia. Molecular level composition is required to better evaluate the roles of organic aersols on climate, air quality and public health. Diacids and oxoacids account for a significant fraction of atmospheric organic matter and their secondary sources are more important than their primary sources. Atmospheric aerosol samples (n = 698) were collected during 2001-2008 at Gosan site in Jeju Island, South Korea. They were analyzed for saturated (C2-C10), unsaturated aliphatic (C4-C5), multifunctional (C3-C7) and aromatic (C8) diacids and oxoacids (C2-C9). According to monthly average concentration, oxalic acid (C2) is the most abundant followed by malonic acid (C3) and succinic acid (C4) in the homologous series of saturated diacids (C2-C10) whereas glyoxylic acid (ωC2) is most abundant in the homologous series of oxoacids (C2-C9). The monthly median, 25th percentile and 75th percentile concentrations of saturated and multifunctional diacids and oxoacids showed the highest in spring (March-May). In contrast, those concentrations for unsaturated aliphatic and aromatic diacids were observed the highest in winter (December-February). The monthly median and percentile (25th and 75th) concentrations of all diacids and oxoacids showed the second peak in the autumn (September-November) while those concentrations were recorded lowest in summer (June-August). A steady increment or decrement was not found in the monthly median and percentile (25th and 75th) concentrations of diacids and oxoacids in any month. However, the curve fitting of those concentrations over the study period shows an incremental trend for major diacids and oxoacids in winter and spring. For example, the monthly median, 25th percentile and 75th percentile concentrations of all major diacids and oxoacids increased up to 3 times from 2001 to 2008 in winter and

  6. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth

    NASA Astrophysics Data System (ADS)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin

    2016-06-01

    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  7. Changes in snowfall and snow on the ground in the Western Canadian Arctic and implications to streamflow

    NASA Astrophysics Data System (ADS)

    Marsh, P.; Lesack, L.; Shi, X.; Yang, D.

    2014-12-01

    The climate of the Western Canadian Arctic has undergone dramatic warming of air temperature over the last 50 years. In addition, there have been apparent decreases in both snow depth on the ground at the end of winter and winter precipitation. However, there have been significant changes in methods used, including changes in snow on the ground observations, and snowfall measurements. This presentation will analyze the various existing data sets at the Environment Canada weather stations at Inuvik and Tuktoyaktuk, Northwest Territories, and at nearby long term research stations of Trail Valley and Havikpak Creeks to better consider changes in snowfall and snow on the ground. This paper will then consider the implications to runoff and will consider the possible implications of change in snow and the observed later, and reduced, snowmelt runoff observed at Trail Valley and Havikpak Creeks.

  8. Winter weather and cardiovascular mortality in Minneapolis-St. Paul.

    PubMed Central

    Baker-Blocker, A

    1982-01-01

    A study of vital statistics data from five Minneapolis-St. Paul winters indicates cardiovascular mortality is influenced by winter temperatures and snow. Although air temperature was not statistically implicated in triggering cardiovascular mortality in four of the five study winters, during the winter of 1976-77, about 15 per cent of the variance in daily cardiovascular mortality could be attributed to fluctuations in the daily minimum air temperature. Snow influenced mortality on the day of occurrence as well as the two days following a snowfall. There appear to be some differences in the ability of winter weather to influence mortality from acute myocardial infarction (ICD 410) and old myocardial infarction (ICD 412). The variance in daily ICD 410 mortality attributable to the influence of snow is somewhat less than that in daily ICD 412 mortality. The greatest variance in daily ICD 412 mortality that could be ascribed to snow occurred during the winter of 1974-75, and was 13 per cent. It is likely that rain intermixed with snow may also trigger increased mortality from cardiovascular disease. A combination of rain and snow can produce dramatic increased in mortality from ICD 410. Study of mortality data from five winters indicates that snow is somewhat more important in triggering deaths from heart disease than is air temperature. PMID:7058966

  9. [Distribution of PGEs contents and its factors in snowfall and snow cover over the arid region in Changji City].

    PubMed

    Liu, Yu-Yan; Liu, Hao-Feng; Zhang, Lan

    2013-02-01

    This paper was to select a small-medium sized City, Changji city, over the arid region, study the distribution of platinum group metals(PGEs) contents and influencing factors in snowfall and snow cover. Samples were analysed by ICP-MS. The results revealed that the annual contents of Rh, Pd and Pt in snowfall were on the average value of 0.43 ng.L-1 ranging from not detected to 2.24 ng.L-1 , 60.07 ng.L-1 ranging from 46.66 to 84.25 ng.L-1 and 4.54 ng.L-1 ranging from 3.02 ng.L-1 to 6.38 ng.L-1 respectively. The difference of PGEs levels was found in different occurrences of snowfall, tended to increase before snowfall due to the longer arid days. PGEs contents maybe influenced by the amount of snowfall, the less snowfall, the higher PGEs contents reflected. The annual levels of Rh, Pd and Pt in snow cover were in the range of 2.50-18.80 ng.L-1 (av. 6.65 ng.L-1), 46.83-199.20 ng.L-1 (av. 83.45 ng.L-1) ,4. 27-13.78 ng.L-1 (av. 8.17 ng.L-1) respectively. PGEs content in snow cover were far higher than that of snowfall, PGEs in snowfall were only obtained from atmospheric PGEs rinsed by single time of snowfall, while PGEs were not only from the accumulation of PGEs in frequent times of snowfall and the snow cover under the long time exposure, but also continuously accepted the PGEs from atmospheric dry deposition. PGEs content of snow cover in all sampling sites were demonstrated as follows: traffic area > residential-culture-education district > square of park > suburban farmland. the input way of PGEs in snow cover was found a remarkable difference with the amount of input within different function areas, which was the main reason caused that PGEs content of snow cover in each function area varied and had a certain regularity.

  10. Climatic Warming Increases Winter Wheat Yield but Reduces Grain Nitrogen Concentration in East China

    PubMed Central

    Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat. PMID:24736557

  11. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  12. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  13. Demographic consequences of increased winter births in a large aseasonally breeding mammal (Bos taurus) in response to climate change.

    PubMed

    Burthe, Sarah; Butler, Adam; Searle, Kate R; Hall, Stephen J G; Thackeray, Stephen J; Wanless, Sarah

    2011-11-01

    1. Studies examining changes in the scheduling of breeding in response to climate change have focused on species with well-defined breeding seasons. Species exhibiting year-round breeding have received little attention and the magnitudes of any responses are unknown. 2. We investigated phenological data for an enclosed feral population of cattle (Bos taurus L.) in northern England exhibiting year-round breeding. This population is relatively free of human interference. 3. We assessed whether the timing of births had changed over the last 60 years, in response to increasing winter and spring temperatures, changes in herd density, and a regime of lime fertilisation. 4. Median birth date became earlier by 1·0 days per year. Analyses of the seasonal distribution of calving dates showed that significantly fewer calves were born in summer (decline from 44% of total births to 20%) and significantly more in winter (increase from 12% to 30%) over the study period. The most pronounced changes occurred in winter, with significant increases in both the proportion and number of births. Winter births arise from conceptions in the previous spring, and we considered models that investigated climate and weather variables associated with the winter preceding and the spring of conceptions. 5. The proportion of winter births was higher when the onset of the plant growing season was earlier during the spring of conceptions. This relationship was much weaker during years when the site had been fertilised with lime, suggesting that increased forage biomass was over-riding the impacts of changing plant phenology. When the onset of the growing season was late, winter births increased with female density. 6. Recruitment estimates from a stage-structured state-space population model were significantly negatively correlated with the proportion of births in the preceding winter, suggesting that calves born in winter are less likely to survive than those born in other seasons. 7.

  14. Effect of reduced winter precipitation and increased temperature on watershed solute flux, 1988-2002, Northern Michigan

    USGS Publications Warehouse

    Stottlemyer, R.; Toczydlowski, D.

    2006-01-01

    Since 1987 we have studied weekly change in winter (December-April) precipitation, snowpack, snowmelt, soil water, and stream water solute flux in a small (176-ha) Northern Michigan watershed vegetated by 65-85 year-old northern hardwoods. Our primary study objective was to quantify the effect of change in winter temperature and precipitation on watershed hydrology and solute flux. During the study winter runoff was correlated with precipitation, and forest soils beneath the snowpack remained unfrozen. Winter air temperature and soil temperature beneath the snowpack increased while precipitation and snowmelt declined. Atmospheric inputs declined for H+, NO 3- , NH 4+ , dissolved inorganic nitrogen (DIN), and SO 42- . Replicated plot-level results, which could not be directly extrapolated to the watershed scale, showed 90% of atmospheric DIN input was retained in surface shallow (<15 cm deep) soils while SO 42- flux increased 70% and dissolved organic carbon (DOC) 30-fold. Most stream water base cation (C B), HCO 3- , and Cl- concentrations declined with increased stream water discharge, K+, NO 3- , and SO 42- remained unchanged, and DOC and dissolved organic nitrogen (DON) increased. Winter stream water solute outputs declined or were unchanged with time except for NO 3- and DOC which increased. DOC and DIN outputs were correlated with the percentage of winter runoff and stream discharge that occurred when subsurface flow at the plot-level was shallow (<25 cm beneath Oi). Study results suggest that the percentage of annual runoff occurring as shallow lateral subsurface flow may be a major factor regulating solute outputs and concentrations in snowmelt-dominated ecosystems. ?? Springer 2006.

  15. GCM response of northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide

    SciTech Connect

    Stephenson, D.B.; Held, I.M. )

    1993-10-01

    The response of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled ocean-atmosphere R15, 9-level GCM to gradually increasing CO[sub 2] amounts is analyzed with emphasis on the changes in the stationary waves and storm tracks in the Northern Hemisphere wintertime troposphere. A large part of the change is described by an equivalent-barotropic stationary wave with a high over eastern Canada and a low over southern Alaska. Consistent with this, the Atlantic jet weakens near the North American coast. Perpetual winter runs of an R15, nine-level atmospheric GCM with sea surface temperature, sea ice thickness, and soil moisture values prescribed from the coupled GCM results are able to reproduce the coupled model's response qualitatively. Consistent with the weakened baroclinicity associated with the stationary wave change, the Atlantic storm track weakens with increasing CO[sub 2] concentrations while the Pacific storm track does not change in strength substantially. An R15, nine-level atmospheric model linearized about the zonal time-mean state is used to analyze the contributions to the stationary wave response. With mountains, diabatic heating, and transient forcings the linear model gives a stationary wave change in qualitative agreement with the change seen in the coupled and perpetual models. Transients and diabatic heating appear to be the major forcing terms, while changes in zonal-mean basic state and topographic forcing play only a small role. A substantial part of the diabatic response is due to changes in tropical latent heating. 25 refs., 36 figs.

  16. Elevated streamflows increase dam passage by juvenile coho salmon during winter: Implications of climate change in the Pacific Northwest

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Rondorf, Dennis W.; Serl, John D.; Kohn, Mike; Bumbaco, Karin A.

    2012-01-01

    A 4-year evaluation was conducted to determine the proportion of juvenile coho salmon Oncorhynchus kisutch passing Cowlitz Falls Dam, on the Cowlitz River, Washington, during winter. River and reservoir populations of coho salmon parr were monitored using radiotelemetry to determine if streamflow increases resulted in increased downstream movement and dam passage. This was of interest because fish that pass downstream of Cowlitz Falls Dam become landlocked in Riffe Lake and are lost to the anadromous population. Higher proportions of reservoir-released fish (0.391-0.480) passed Cowlitz Falls Dam than did river-released fish (0.037-0.119). Event-time analyses demonstrated that streamflow increases were important predictors of dam passage rates during the study. The estimated effect of increasing streamflows on the risk of dam passage varied annually and ranged from 9% to 75% for every 28.3 m3/s increase in streamflow. These results have current management implications because they demonstrate the significance of dam passage by juvenile coho salmon during winter months when juvenile fish collection facilities are typically not operating. The results also have future management implications because climate change predictions suggest that peak streamflow timing for many watersheds in the Pacific Northwest will shift from late spring and early summer to winter. Increased occurrence of intense winter flood events is also expected. Our results demonstrate that juvenile coho salmon respond readily to streamflow increases and initiate downstream movements during winter months, which could result in increased passage at dams during these periods if climate change predictions are realized in the coming decades.

  17. Ensemble Predictions of Future Snowfall Scenarios in the Karakorum and Hindu-Kush Mountains Using Downscaled GCM Data

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2014-12-01

    Climate change is affecting the seasonality and mass of snow, and impacting the water resources of hundreds of millions of people who depend on streamflow originating in High Asia. Global climate model (GCM) outputs are the primary forcing data used to investigate future projections of changes in snow and glacier processes; however, these processes occur at a much finer spatial scale than the resolution of current GCMs. To facilitate studying the cryosphere in High Asia, we developed a software package to downscale monthly GCM data to 30-arcseconds for any global land area. Using this downscaling package, we produce an ensemble of downscaled GCM data from 2020-2100, corresponding to representative concentration pathways (RCPs) 4.5 and 8.5. We then use these data to model changes to snowfall in the Karakorum and Hindu Kush (KHK) region, which is located in High Asia. The ensemble mean of these data predict that total annual snowfall in 2095 will decrease by 22% under RCP 4.5 and 46% under RCP 8.5, relative to 1950-2000 climatological values. For both scenarios, the changes in snowfall are dependent on elevation, with the maximum decreases in snowfall occurring at approximately 2,300 m. While total snowfall decreases, an interesting feature of snowfall change for the RCP 8.5 scenario is that the ensemble mean projection shows an increase in snowfall for elevations between 3,000- 5,000 m relative to historic values. These fine-scale spatial, temporal, and elevation-dependent patterns of changes in projected snowfall significantly affect the energy balance of the snowpack, in turn affecting timing of melt and discharge. Therefore, our work can be coupled with a glacio-hydrological model to assess effects of these snowfall patterns on other processes or compared to existing model results to assess treatment of snow processes in the existing model. Our method is designed to downscale climate data for any global land area, allowing for the production of these fine

  18. Characteristics of Heavy Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in Korea

    NASA Astrophysics Data System (ADS)

    Seong, D. K.; Seok, S. W.; Eun, S. H.; Kim, B. G.; Reum, K. A.; Lee, K. M.; Jeon, H. R.; Byoung Choel, C.; Park, Y. S.

    2015-12-01

    Characteristics of heavy snowfall and snow crystal habits have been investigated in the campaign of Experiment on Snow Storms At Yeongdong (ESSAY) using radiosonde soundings, Global Navigation Satellite System (GNSS), and a digital camera with a magnifier for taking a photograph of snowfall crystals. The analysis period is mainly both winters of 2014 and 2015. The synoptic situations are similar to those of the previous studies such as the Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, which eventually results in the northeasterly or easterly flows and the long-lasting snowfall episodes in the Yeongdong region. The snow crystal habits observed in the ESSAY campaign were mainly dendrite, consisting of 70% of the entire habits. The rimed habits were frequently captured when two-layered clouds were observed, probably through the process of freezing of super-cooled droplets on the ice particles. The homogeneous habit such as dendrite was shown in case of shallow clouds with its thickness of below 500 m whereas various habits were captured such as graupel, dendrites, rimed dendrites, aggregates of dendrites, plates, rimed plates, etc in the thick cloud with its thickness greater than 1.5 km. The dendrites appeared to be dominant in the condition of cloud top temperature specifically ranging -12~-16℃. Interestingly temporal evolutions of snow crystal habits were consistently shown for several snowfall events such as changes from rimed particles to dendrites(or aggregated dendrites). The association of snow crystal habits with temperature and super-saturation in the cloud will be in detail examined. However, better understandings of characteristics of snow crystal habits would contribute to preventing breakdown accidents such as a greenhouse destruction and collapse of a temporary building due to heavy snowfall, and traffic accidents due to snow-slippery road condition, providing a higher

  19. Characteristics of Lightning within Electrified Snowfall Events using Total Lightning Measurements

    NASA Astrophysics Data System (ADS)

    Schultz, C. J.; Bruning, E. C.; Lang, T. J.; Kuhlman, K. M.

    2015-12-01

    Lightning within heavy snowfall indicates the presence of heavy snowfall rates. Most studies within the literature examine this phenomenon using ground based networks that are primarily designed for identifying cloud to ground flashes. Thus, very little study of the three dimensional structure of the lightning flashes within heavy snowfall has been accomplished. Herein, total lightning mapping arrays, interferometers and ground based networks like the National Lightning Detection Network (NLDN) are utilized to document the characteristics of these flashes, including flash size, polarity, flash initiation location and inferred charge structure. A total of six events are examined, resulting in a total of approximately 80 flashes. Both individual case studies and overall population statistics will be used to characterize flashes within this winter environment. Many of these flashes are found to initiate from tall objects like television and radio communication towers, and come to ground in multiple locations along their path, resulting in one LMA derived flash containing multiple NLDN identified flashes. Cloud-to-ground flashes of both polarities are noted within the 80 flash sample. In one case, 3 separate flashes which resulted in ground flashes of both polarities were observed coming out of the same overall charge structure. This structure exhibited a highly sloped nature in the LMA data from east to west, and both +IC and -IC components of flashes were observed by the NLDN in the same region where the flashes initiated. A decrease in flash size is noted with time in at least three of these events due to weaker updraft (compared to their summertime thunderstorm counter parts) and smaller available of supercooled liquid water as inferred through trends in radar observations. These limiting factors are hypothesized to result in slower charging rates, and smaller flash sizes with time. Several flashes also exhibit sloped structures that match reflectivity

  20. Snowfall induced severe pile-ups in southern Finland on 17 March 2005

    NASA Astrophysics Data System (ADS)

    Juga, I.; Hippi, M.

    2009-09-01

    Weather has a great impact on road traffic and several studies have shown that accident risk increases especially during wintry weather conditions. Heavy snowfall, rain or sleet on an icy road surface and formation of hoar frost can make the driving conditions hazardous. Poor visibility, caused by snowfall or dense fog can increase the accident risk significantly and severe pile-ups on highways are possible. The risk for accidents increases, when many drivers can't adjust their speed to the worsening driving conditions even though the hazard is visible. This study presents a severe pile-up case that occurred in southern Finland near Helsinki city on Thursday 17 March 2005. Before this occasion, cold and clear weather prevailed for many days and the driving conditions were mostly fair. On 17 March a low pressure was approaching southern Finland from west. Light snowfall reached the Helsinki metropolitan area early in the morning and it was followed by a band of dense snowfall. During the rush hours, just before 0800 h, pile-ups occurred on four separate highways near Helsinki city almost at the same time (within about ten minutes). In total, almost 300 cars were crashed, 3 persons died and more than 60 persons got injured. The occurrence of dense snowfall during the rush hours had a great impact on driving conditions. The drivers heading towards Helsinki from north or northeast drove at first in clear, dry conditions, with only local light snowfall. But the sudden worsening of weather (and visibility) was a surprise for many although warnings for poor driving conditions were issued the previous evening on radio and TV. In addition to this, automatic vehicle speed measurements showed that the mean speed that morning was only a few km/h lower than on a normal day. When studying the weather situation, it appeared that near the surface there was a thin layer of cold air (2 m temperature being -5…-8 degrees) and warmer air above it. In this kind of situation super

  1. Snowfall Measurements at a Boreal Forest Site in Saskatchewan/Canada: Contribution to WMO Solid Precipitation Intercomparison Experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). As part of Canada's contribution to the WMO SPICE project, a test site has been set up in the southern Canadian Boreal forest to compare the DFIR and bush gauge and test other instruments. Snowfall and meteorological data have been collected over the past 2 winters. This presentation will summarize the results of recent data analyses, evaluate the performance of various gauges for snowfall observations in the northern regions, and discuss future perspectives regarding cold/mountain region precipitation research. The methods and results of this research will improve precipitation measurements and data quality over the cold and mountain regions, directly supporting the WMO SPICE and the MOUNTerrain projects.

  2. The impact of a windshield in a tipping bucket rain gauge on the reduction of losses in precipitation measurements during snowfall events

    NASA Astrophysics Data System (ADS)

    Buisan, Samuel T.; Collado, Jose Luis; Alastrue, Javier

    2016-04-01

    The amount of snow available controls the ecology and hydrological response of mountainous areas and cold regions and affects economic activities including winter tourism, hydropower generation, floods and water supply. An accurate measurement of snowfall accumulation amount is critical and source of error for a better evaluation and verification of numerical weather forecast, hydrological and climate models. It is well known that the undercatch of solid precipitation resulting from wind-induced updrafts at the gauge orifice is the main factor affecting the quality and accuracy of the amount of snowfall precipitation. This effect can be reduced by the use of different windshields. Overall, Tipping Bucket Rain Gauges (TPBRG) provide a large percentage of the precipitation amount measurements, in all climate regimes, estimated at about 80% of the total of observations by automatic instruments. In the frame of the WMO-SPICE project, we compared at the Formigal-Sarrios station (Spanish Pyrenees, 1800 m a.s.l.) the measured precipitation in two heated TPBRGs, one of them protected with a single alter windshield in order to reduce the wind bias. Results were contrasted with measured precipitation using the SPICE reference gauge (Pluvio2 OTT) in a Double Fence Intercomparison Reference (DFIR). Results reported that shielded reduces undercatch up to 40% when wind speed exceeds 6 m/s. The differences when compared with the reference gauge reached values higher than 70%. The inaccuracy of these measurements showed a significant impact in nowcasting operations and climatology in Spain, especially during some heavy snowfall episodes. Also, hydrological models showed a better agreement with the observed rivers flow when including the precipitation not accounted during these snowfall events. The conclusions of this experiment will be used to take decisions on the suitability of the installation of windshields in stations characterized by a large quantity of snowfalls during the

  3. CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China

    PubMed Central

    Liu, Sheng; Xu, Hangmei; Ding, Jiuming; Chen, Han Y. H.; Wang, Jiashe; Xu, Zikun; Ruan, Honghua; Chen, Yuwei

    2016-01-01

    Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at heavy, moderate, and light levels, which yielded aboveground biomass inputs to the soil at 22.12 ± 0.73 (mean ± 1 s.e.m.), 10.40 ± 1.09, and 5.95 ± 0.73 Mg per hectare, respectively. We found that soil respiration rate and annual cumulative CO2 emissions were significantly higher in heavily damaged sites than moderately and lightly damaged sites. Soil temperature was the most important environmental factor affecting soil respiration rate across all studied stands. However, soil respiration sensitivity to temperature (Q10) decreased in heavily damaged sites. Microbial biomass carbon and its proportion to total SOC increased with damage intensity. Soil respiration rate was positively correlated to microbial biomass carbon and soil moisture. Our results indicated that the increase of soil respiration following canopy disturbance from winter storm resulted from increased microbial biomass carbon, soil moisture, and temperature. PMID:27468803

  4. CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Xu, Hangmei; Ding, Jiuming; Chen, Han Y. H.; Wang, Jiashe; Xu, Zikun; Ruan, Honghua; Chen, Yuwei

    2016-07-01

    Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at heavy, moderate, and light levels, which yielded aboveground biomass inputs to the soil at 22.12 ± 0.73 (mean ± 1 s.e.m.), 10.40 ± 1.09, and 5.95 ± 0.73 Mg per hectare, respectively. We found that soil respiration rate and annual cumulative CO2 emissions were significantly higher in heavily damaged sites than moderately and lightly damaged sites. Soil temperature was the most important environmental factor affecting soil respiration rate across all studied stands. However, soil respiration sensitivity to temperature (Q10) decreased in heavily damaged sites. Microbial biomass carbon and its proportion to total SOC increased with damage intensity. Soil respiration rate was positively correlated to microbial biomass carbon and soil moisture. Our results indicated that the increase of soil respiration following canopy disturbance from winter storm resulted from increased microbial biomass carbon, soil moisture, and temperature.

  5. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells.

    PubMed

    Fedyaeva, A V; Stepanov, A V; Lyubushkina, I V; Pobezhimova, T P; Rikhvanov, E G

    2014-11-01

    Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (Triticum aestivum L.) cultured cells under heat treatment. Elevation of temperature to 37-50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55-60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.

  6. Long-term continuous monitoring of mercury in the Russian arctic: winter increase of atmospheric mercury depletion events

    NASA Astrophysics Data System (ADS)

    Pankratov, Fidel; Mahura, Alexander; Popov, Valentin; Katz, Oleg

    2014-05-01

    Among pollutants mercury is a major environmental concern due to its ecological hazard. The mercury can reside in the atmosphere for a long time high, and it is a reason of its global propagation in the Northern Hemisphere and elevated mercury concentrations are reported in the Arctic environment. First time, in 1995, the effect of atmospheric mercury depletion in the troposphere was found at the Canadian station Alert. This phenomenon (called the Atmospheric Mercury Depletion Event - AMDE) is observed during April-June, when the Polar sunrise starts till the end of the snowmelt. The same effect was reported for other polar stations situated to the north of 60° N. Long-term continuous monitoring of gaseous elemental mercury in the surface air at the polar station Amderma (69,720N; 61,620E) using the analyzer Tekran 2537A has been conducted from Jun 2001 to date. Individual measurements were collected every thirty minutes. It has been shown, that during eleven years of observations the AMDEs were observed every year, from the end of March till early June. For the winter period (Dec-Feb) these events of the atmospheric mercury depletion were registered from 2010 to 2013, which had not been observed before. A large number of hours during the day, when the concentration of mercury was recorded at level of below 1 ng/m3, was registered during Dec-Feb. The sun declination above the horizon is negative, and solar activity is still not enough to trigger the photochemical reactions. The these last 3 years confirmed a tendency to displacement of AMDEs to the winter season, which leads to an additional factor entry of mercury in various biological objects, due to the additional deposition of various forms of mercury on the snowpack. At the same time, especially during the winter seasons, there is a substantial increase (up to 8 times) of AMDEs, compared with the previous years. In particular, in winter 2013 the maximum number of AMDs reached 31 cases. The explanation can be

  7. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction

    NASA Astrophysics Data System (ADS)

    Tissier, Mathilde L.; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-05-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species.

  8. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction

    PubMed Central

    Tissier, Mathilde L.; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-01-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species. PMID:27150008

  9. Estimation and Mapping of the Winter-Time Increase of the Water Ice Amount in the Martian Surface Soil Based on the TES TI Seasonal Variations Analysis

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. O.; Zabalueva, E. V.; Christensen, P. R.

    2008-03-01

    In the work we presents the preliminary results of new method for estimation and global mapping of the winter-time increase of the water ice in the martian surface soil based on the TES TI data analysis.

  10. Storage conditions affecting increase in falling number of soft red winter wheat grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by malting, by incubating wheat stalks,...

  11. Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2011-01-01

    Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models

  12. Simulations of historical and future trends in snowfall and groundwater recharge for basins draining to Long Island Sound

    USGS Publications Warehouse

    Bjerklie, David M.; Viger, Roland; Trombley, Thomas J.

    2011-01-01

    A regional watershed model was developed for watersheds contributing to Long Island Sound, including the Connecticut River basin. The study region covers approximately 40 900 km2, extending from a moderate coastal climate zone in the south to a mountainous northern New England climate zone dominated by snowmelt in the north. The input data indicate that precipitation and temperature have been increasing for the last 46 years (1961– 2006) across the region. Minimum temperature has increased more than maximum temperature over the same period (1961–2006). The model simulation indicates that there was an upward trend in groundwater recharge across most of the modeled region. However, trends in increasing precipitation and groundwater recharge are not significant at the 0.05 level if the drought of 1961–67 is removed from the time series. The trend in simulated snowfall is not significant across much of the region, although there is a significant downward trend in southeast Connecticut and in central Massachusetts. To simulate future trends, two input datasets, one assuming high carbon emissions and one assuming low carbon emissions, were developed from GCM forecasts. Under both of the carbon emission scenarios, simulations indicate that historical trends will continue, with increases in groundwater recharge over much of the region and substantial snowfall decreases across Massachusetts, Connecticut, southern Vermont, and southern New Hampshire. The increases in groundwater recharge and decreases in snowfall are most pronounced for the high emission scenario.

  13. Body mass loss during adaptation to short winter-like days increases food foraging, but not food hoarding.

    PubMed

    Teubner, Brett J W; Bartness, Timothy J

    2009-04-20

    Siberian hamsters markedly reduce their body/lipid mass ( approximately 20-45%) in short 'winter-like' days (SD). Decreases in body/lipid mass associated with food deprivation or lipectomy result in increases in foraging and food hoarding. When at their SD-induced body/lipid mass nadir, food hoarding is not increased despite their decreases in body/lipid mass, but hoarding was not tested during the dynamic period of body/lipid mass loss (first 5-6 weeks of SDs). Therefore, we tested for changes in foraging/hoarding during this initial period in Siberian hamsters housed in a simulated burrow with a wheel running-based foraging system and exposed to either long 'summer-like' days (LD) or SDs. Two foraging effort conditions were used: 10 Revolutions/Pellet (pellet delivered after running 10 revolutions) and a Free Wheel/Free Food condition (wheel available, food pellets non-contingently available). Regardless of the foraging condition, body mass was significantly reduced across 8 weeks of SDs ( approximately 15%). Foraging increased after 7 weeks in SDs, but food hoarding did not increase compared to LDs. Instead food hoarding significantly decreased in SDs at Weeks 2-5 compared with Week 0 values, with the 10 Revolutions/Pellet foraging group returning to LD levels thereafter and the Free Wheel/Free Food group remaining reduced from Weeks 2-7. Collectively, we found that SDs decreased body mass, increased foraging after 7 weeks, and increased food hoarding, but only after an initial decrease and not above that seen in LDs. These data suggest that SD-induced body/lipid mass losses do not engender similar behavioral responses as seen with food deprivation or lipectomy.

  14. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  15. Increase in body size is correlated to warmer winters in a passerine bird as inferred from time series data.

    PubMed

    Björklund, Mats; Borras, Antoni; Cabrera, Josep; Senar, Juan Carlos

    2015-01-01

    Climate change is expected to affect natural populations in many ways. One way of getting an understanding of the effects of a changing climate is to analyze time series of natural populations. Therefore, we analyzed time series of 25 and 20 years, respectively, in two populations of the citril finch (Carduelis citrinella) to understand the background of a dramatic increase in wing length in this species over this period, ranging between 1.3 and 2.9 phenotypic standard deviations. We found that the increase in wing length is closely correlated to warmer winters and in one case to rain in relation to temperature in the summer. In order to understand the process of change, we implemented seven simulation models, ranging from two nonadaptive models (drift and sampling), and five adaptive models with selection and/or phenotypic plasticity involved and tested these models against the time series of males and females from the two population separately. The nonadaptive models were rejected in each case, but the results were mixed when it comes to the adaptive models. The difference in fit of the models was sometimes not significant indicating that the models were not different enough. In conclusion, the dramatic change in mean wing length can best be explained as an adaptive response to a changing climate.

  16. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes.

    PubMed

    Creissen, Henry E; Jorgensen, Tove H; Brown, James K M

    2016-07-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming.

  17. Universal multifractal analysis of high-resolution snowfall data

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Berne, Alexis

    2016-04-01

    Universal multifractal analysis offers useful insights into the scaling properties of precipitation data. While much work has been done on the scaling properties of rainfall fields, less is known about the scaling properties of solid precipitation such as snowfall, especially at high resolution. We present results of a universal multifractal (UM) analysis of high-resolution solid precipitation data. The data were recorded using a 2D-video-disdrometer (2DVD) situated in the Swiss Alps. Analysis was performed on a one-hour period of snowfall, during which time the mean wind speed was zero, temperatures were low, and no hail was detected. The 2DVD recorded information on individual particles, from which we calculated snow mass. Three "cuts" of the spatio-temporal snowfall process were analysed using the UM framework. First, high-resolution timeseries of precipitation intensity at 100 ms temporal resolution were analysed. These results show two scaling regimes with a transition area between them. Second, we analysed reconstructed vertical columns of particle concentration and snow mass, assuming no horizontal wind and constant vertical velocity (equal to the one recorded on the ground). Strong scaling was observed in the particle concentration fields, with the influence of large (and therefore rare) snowflakes degrading the quality of the scaling observed for higher moments of the particle distribution. There was a clear difference between the measured fields and fields in which the vertical distribution of particles was made homogeneous, indicating that the measured snowfall fields contained non-homogeneous fields. Scaling behaviour was observed down to vertical scales of about 0.5 m, which is similar to published results using rain data. Finally, we used the UM framework to investigate the scaling properties of 2D maps of snow accumulation over a subset of the instrument collection area of 5.12 x 5.12 cm^2. As expected from the vertical column analysis, given that

  18. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground based weather radar network over Sweden

    NASA Astrophysics Data System (ADS)

    Norin, L.; Devasthale, A.; L'Ecuyer, T. S.; Wood, N. B.; Smalley, M.

    2015-08-01

    To be able to estimate snowfall accurately is important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain-gauges to estimate precipitation in this context. The Cloud Profiling Radar (CPR) onboard CloudSat is especially proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and ability to provide near-global vertical structure. The importance of having snowfall estimates from CloudSat/CPR further increases in the high latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. Here we intercompared snowfall estimates from two observing systems, CloudSat and Swerad, the Swedish national weather radar network. Swerad offers one of the best calibrated data sets of precipitation amount at very high latitudes that are anchored to rain-gauges and that can be exploited to evaluate usefulness of CloudSat/CPR snowfall estimates in the polar regions. In total 7.2×105 matchups of CloudSat and Swerad over Sweden were inter-compared covering all but summer months (October to May) from 2008 to 2010. The intercomparison shows encouraging agreement between these two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46-82 km), when the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station as Swerad's sensitivity decreases as a function of distance and Swerad also tends to overshoots low level precipitating systems further away from the station, leading to underestimation of snowfall rate and occasionally missing

  19. Whale, Whale, Everywhere: Increasing Abundance of Western South Atlantic Humpback Whales (Megaptera novaeangliae) in Their Wintering Grounds.

    PubMed

    Bortolotto, Guilherme A; Danilewicz, Daniel; Andriolo, Artur; Secchi, Eduardo R; Zerbini, Alexandre N

    2016-01-01

    The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563-25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595-24,500) and 19,429 (CV = 0.101, 95% CI = 15,958-23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated.

  20. Whale, Whale, Everywhere: Increasing Abundance of Western South Atlantic Humpback Whales (Megaptera novaeangliae) in Their Wintering Grounds

    PubMed Central

    Danilewicz, Daniel; Andriolo, Artur; Secchi, Eduardo R.; Zerbini, Alexandre N.

    2016-01-01

    The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563–25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595–24,500) and 19,429 (CV = 0.101, 95% CI = 15,958–23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated. PMID:27736958

  1. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle

    USGS Publications Warehouse

    Kapnick, Sarah B.; Delworth, Thomas L.; Ashfaq, Moetasim; Malyshev, Sergey; Milly, Paul C.D.

    2014-01-01

    The high mountains of Asia, including the Karakoram, Himalayas and Tibetan Plateau, combine to form a region of perplexing hydroclimate changes. Glaciers have exhibited mass stability or even expansion in the Karakoram region1, 2, 3, contrasting with glacial mass loss across the nearby Himalayas and Tibetan Plateau1, 4, a pattern that has been termed the Karakoram anomaly. However, the remote location, complex terrain and multi-country fabric of high-mountain Asia have made it difficult to maintain longer-term monitoring systems of the meteorological components that may have influenced glacial change. Here we compare a set of high-resolution climate model simulations from 1861 to 2100 with the latest available observations to focus on the distinct seasonal cycles and resulting climate change signatures of Asia’s high-mountain ranges. We find that the Karakoram seasonal cycle is dominated by non-monsoonal winter precipitation, which uniquely protects it from reductions in annual snowfall under climate warming over the twenty-first century. The simulations show that climate change signals are detectable only with long and continuous records, and at specific elevations. Our findings suggest a meteorological mechanism for regional differences in the glacier response to climate warming.

  2. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress

    PubMed Central

    Shi, Yuhua; Cui, Zhengyong; Luo, Yongli; Zheng, Mengjing; Chen, Jin; Li, Yanxia; Yin, Yanping; Wang, Zhenlin

    2016-01-01

    Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar) and Jimai 20 (a control cultivar), were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA). The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA) between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05). Heat stress also decreased the zeatin riboside (ZR) content, but increased the gibberellin (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05) increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05), whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat. PMID:27203573

  3. Sensitivity of an energy balance climate model with predicted snowfall rates

    NASA Technical Reports Server (NTRS)

    Bowman, K. P.

    1985-01-01

    A snowfall parameterization and a polar-ice-sheet model are developed and applied to the two-level zonally averaged seasonal energy-balance climate model of Held and Suarez (1979), and sensitivity experiments involving changes in insolation are performed both with and without ice sheets. The results are presented in tables and graphs, and the hydrological-cycle response to insolation changes is found to be similar to that predicted by global-circulation models employing prescribed precipitation levels, with a somewhat higher sensitivity in the snow line. The area covered by ice sheets in the ice-sheet models is shown to be greater than that covered by permanent snow in the models without ice sheets, an effect attributed to lower surface temperatures over the ice. It is inferred that an increase in the solar constant can cause increased high-latitude precipitation but not an ice age.

  4. The social impact of the snowfall of 8 March 2010 in Catalonia

    NASA Astrophysics Data System (ADS)

    Amaro, J.; Llasat, M. C.; Aran, M.

    2010-09-01

    The snowfall of 8 March 2010 affected almost all Catalonia, but especially the northeast where snow thickness was between 20 and 30 cm, locally with higher values up to 60 cm. Strong winds followed the event, exceeding 90 km/h in some places. As a result, infrastructures and public services, also private properties were damaged. Thousands of people were left stranded by the circulatory collapse, suspensions of railway service and by falling branches or trees on road infrastructures blocking accesses to residential areas. The regional government approved funds of 21.4 millions of Euros to mitigate the damage caused by this event, mainly invested in forest cleanup operations and in repairing road damage. The social impact of this event has been so high that 210 news have been published in a newspaper until 23 April, 190 of them during the month of March. From the study of the characteristics of this episode it can be stated that in the coast and pre-costal area, temperature at the same moment of precipitation was between 0ºC and 2ºC and humidity was high. In these zones, the type of precipitation was wet snow. It has to be considered that the combination of wet snow and wind can be a risk because of the ice-weight accumulated on objects (trees, electricity pylons...). As a consequence important damage happened in power network with significant collateral effects and more than 450,000 customers were affected by a power outage during some days. In this study we will compare the consequences of this event with others by means of information published in press. As a result, some set of consequences that are repeated regardless of the magnitude of the phenomenon will be identified. Finally, this event is also an example of the incision of social networks. This snowfall has been classified by mass media as the first "snowfall 2.0": 81600 entrances in Google, 132 Facebook groups and 750 videos made by amateurs in internet. From this study, we will present some reflexions

  5. Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections

    NASA Astrophysics Data System (ADS)

    Pons, M. R.; Herrera, S.; Gutiérrez, J. M.

    2016-06-01

    In a previous study Pons et al. (Clim Res 54(3):197-207, 2010. doi: 10.3354/cr01117g) reported a significant decreasing trend of snowfall occurrence in the Northern Iberian Peninsula since the mid 70s. The study was based on observations of annual snowfall frequency (measured as the annual number of snowfall days NSD) from a network of 33 stations ranging from 60 to 1350 m. In the present work we analyze the skill of Regional Climate Models (RCMs) to reproduce this trend for the period 1961-2000 (using both reanalysis- and historical GCM-driven boundary conditions) and the trend and the associated uncertainty of the regional future projections obtained under the A1B scenario for the first half of the twenty-first century. In particular, we consider the regional simulation dataset from the EU-funded ENSEMBLES project, consisting of thirteen state-of-the-art RCMs run at 25 km resolution over Europe. While ERA40 severely underestimates both the mean NSD and its observed trend (-2.2 days/decade), the corresponding RCM simulations driven by the reanalysis appropriately capture the interannual variability and trends of the observed NSD (trends ranging from -3.4 to -0.7, -2.1 days/decade for the ensemble mean). The results driven by the GCM historical runs are quite variable, with trends ranging from -8.5 to 0.2 days/decade (-1.5 days/decade for the ensemble mean), and the greatest uncertainty by far being associated with the particular GCM used. Finally, the trends for the future 2011-2050 A1B runs are more consistent and significant, ranging in this case from -3.7 to -0.5 days/decade (-2.0 days/decade for the ensemble mean), indicating a future significant decreasing trend. These trends are mainly determined by the increasing temperatures, as indicated by the interannual correlation between temperature and NSD (-0.63 in the observations), which is preserved in both ERA40- and GCM-driven simulations.

  6. Exploring Alternate Parameterizations for Snowfall with Validation from Satellite and Terrestrial Radars

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.; Jedlovec, Gary J.

    2009-01-01

    Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single-moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a midlatitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of CloudSat reflectivity is performed by adopting the discrete-dipole parameterizations and databases provided in literature, and demonstrate an improved capability in simulating radar reflectivity at W-band versus Mie scattering

  7. Exploring Alternative Parameterizations for Snowfall with Validation from Satellite and Terrestrial Radars

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2009-01-01

    Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. The combination of reliable cloud microphysics and radar reflectivity may constrain radiative transfer models used in satellite simulators during future missions, including EarthCARE and the NASA Global Precipitation Measurement. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a mid latitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of

  8. Understanding heavy lake-effect snowfall: The vertical structure of radar reflectivity in a deep snowband over and downwind of Lake Ontario

    NASA Astrophysics Data System (ADS)

    Welsh, Daniel James

    The distribution of radar-estimated precipitation from lake-effect snow bands over and downwind of Lake Ontario shows more snowfall in downwind areas than over the lake itself. Here we examine two non-exclusive processes contributing to this: the collapse of convection that lofts hydrometeors over the lake and allows then to settle them downwind, and stratiform ascent over land, due to surface cooling, frictional convergence, and terrain, leading to more uniformly distributed precipitation there. The main data sources for this study are vertical profiles of radar reflectivity and hydrometeor vertical velocity in a well-defined, deep long-lake-axis-parallel band, observed on 11 December, 2013 during the Ontario Winter Lake-effect Systems (OWLeS) project. The profiles are derived from an airborne W-band Doppler radar, as well as an array of four Ka-band radars, a X-band profiling radar, a scanning X-band radar, and a scanning S-band radar. The presence of convection offshore is evident from deep, strong (up to 10 m s-1) updrafts producing bounded weak-echo regions and locally heavily rimed snow particles. The decrease of the standard deviation, skewness, and peak values of Doppler vertical velocity during the downwind shore crossing is consistent with the convection collapse hypothesis. Consistent with the stratiform ascent hypothesis are (a) an increase in mean vertical velocity over land; and (b) an increasing abundance of large snowflakes at low levels and over land, due to depositional growth and aggregation, evident from flight-level and surface particle size distribution data, and from differences in reflectivity profiles from S, X, Ka, and W-band radars at nearly the same time and location.

  9. Sorting out non-sorted circles: Effects of winter climate change on the Collembola community of cryoturbated subarctic tundra

    NASA Astrophysics Data System (ADS)

    Krab, Eveline; Monteux, Sylvain; Becher, Marina; Blume-Werry, Gesche; Keuper, Frida; Klaminder, Jonatan; Kobayashi, Makoto; Lundin, Erik J.; Milbau, Ann; Roennefarth, Jonas; Teuber, Laurenz Michael; Weedon, James; Dorrepaal, Ellen

    2015-04-01

    Non-sorted circles (NSC) are a common type of cryoturbated (frost-disturbed) soil in the arctic and store large amounts of soil organic carbon (SOC) by the burial of organic matter. They appear as sparsely vegetated areas surrounded by denser tundra vegetation, creating patterned ground. Snowfall in the arctic is expected to increase, which will modify freezing intensity and freeze-thaw cycles in soils, thereby impacting on SOC dynamics. Vegetation, soil fauna and microorganisms, important drivers of carbon turnover, may benefit directly from the altered winter conditions and the resulting reduction in cryoturbation, but may also impact each other through trophic cascading. We investigated how Collembola, important decomposer soil fauna in high latitude ecosystems, are affected by increased winter insulation and vegetation cover. We subjected NSC in North-Swedish subarctic alpine tundra to two years of increased thermal insulation (snow fences or fiber cloth) in winter and spring, increasing soil temperatures and strongly reducing freeze-thaw frequency. From these NSC we sampled the Collembola community in: (i) the non-vegetated center, (ii) sparsely vegetated parts in the center and (iii) the vegetated domain surrounding NSC. To link changes in Collembola density and community composition to SOC dynamics, we included measurements of decomposer activity, dissolved organic carbon (DOC) and total extractable nitrogen (TN). We observed differences in Collembola density, community composition and soil fauna activity between the sampling points in the NSC. Specifically Collembola diversity increased with the presence of vegetation and density was higher in the vegetated outer domains. Increased winter insulation did not affect diversity but seemed to negatively affect density and decomposer activity in the vegetated outer domains. Interestingly, SOM distribution over NSC changed with snow addition (also to a lesser extent with fleece insulation) towards less SOM in the

  10. THE INFLUENCE ON EMERGENCY VEHICLE CAUSED BY THE GUERRILLA HEAVY SNOWFALL AND CONSIDERATION ABOUT MEASURES

    NASA Astrophysics Data System (ADS)

    Takahashi, Masanori; Takayama, Jun-Ichi; Nakayama, Shoichiro

    In Nanao City, Ishikawa, it was a sudden snowfall (the following, "guerrilla heavy snowfall") in a short time in January, 2009, and a traffic jam occurred in the various places in city. Therefore, the snow removing was late, and the emergency transportation was late, too. So, Ishikawa Prefecture performed the review of the snow removing system with this guerrilla heavy snowfall as a lesson in the next year. As a result, in January, 2011, similar guerrilla heavy snowfall was generated, but the traffic jam in the city didn't occur that much, and the big hindrance didn't produce the delay of the emergency transportation either. Therefore, in this study, I analyzed the snowfall situation of the year before and after the snow removing system improvement, the traffic jam situation and snow removing dispatch data and compared the difference quantitatively. In addition, after guerrilla heavy snowfall, the study meeting the study meeting was held by prefecture, country, city, town and association of construction industry, and they built the area snow removing cooperation system, so I carried out an interview investigation about the real enforcement situation and progress.

  11. Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends

    PubMed Central

    Merino, Andrés; Fernández, Sergio; Hermida, Lucía; López, Laura; Sánchez, José Luis; García-Ortega, Eduardo; Gascón, Estíbaliz

    2014-01-01

    In recent decades, a decrease in snowfall attributed to the effects of global warming (among other causes) has become evident. However, it is reasonable to investigate meteorological causes for such decrease, by analyzing changes in synoptic scale patterns. On the Iberian Peninsula, the Castilla y León region in the northwest consists of a central plateau surrounded by mountain ranges. This creates snowfalls that are considered both an important water resource and a transportation risk. In this work, we develop a classification of synoptic situations that produced important snowfalls at observation stations in the major cities of Castilla y León from 1960 to 2011. We used principal component analysis (PCA) and cluster techniques to define four synoptic patterns conducive to snowfall in the region. Once we confirmed homogeneity of the series and serial correlation of the snowfallday records at the stations from 1960 to 2011, we carried out a Mann-Kendall test. The results show a negative trend at most stations, so there are a decreased number of snowfall days. Finally, variations in these meteorological variables were related to changes in the frequencies of snow events belonging to each synoptic pattern favorable for snowfall production at the observatory locations. PMID:25152912

  12. Modeling changes in extreme snowfall events in the Central Rocky Mountains Region with the Fully-Coupled WRF-Hydro Modeling System

    NASA Astrophysics Data System (ADS)

    gochis, David; rasmussen, Roy; Yu, Wei; Ikeda, Kyoko

    2014-05-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize large magnitudes of moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of landform can significantly influence vertical velocity profiles and cloud moisture entrainment rates. In this work we report on recent progress in high resolution regional climate modeling of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF-Hydro modeling system forced by high resolution WRF model output can produce credible depictions of winter orographic precipitation and resultant monthly and annual river flows. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March of 2003. First an analysis of the simulated streamflows resulting from the melt out of that event are presented followed by an analysis of projected streamflows from the event where the atmospheric forcing in the WRF model is perturbed using the Psuedo-Global-Warming (PGW) perturbation methodology. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. It is shown that under the assumptions of the PGW method, intense precipitation rates increase during the event and, more importantly, that more precipitation falls as rain versus snow which significantly amplifies the runoff response from one where runoff is produced gradually to where runoff is more

  13. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  14. Winter Weeds.

    ERIC Educational Resources Information Center

    Lindberg, Lois

    1981-01-01

    Try to learn all you can about a plant in the winter. As the season changes, you can see what the dried seed pod is like in bloom. You are a convert if you notice a spectacular show of summer wildflowers and wonder what sort of winter weed will result. (Author/CM)

  15. Biogenic Aerosols—Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report

    SciTech Connect

    Moisseev, Dmitri

    2016-04-01

    The snowfall measurement campaign took place during deployment of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility second ARM Mobile Facility (AMF2) in Finland. The campaign focused on understanding snowfall microphysics and characterizing performance of surface-based snowfall measurement instruments. This was achieved by combining triple frequency (X, Ka, W-band) radar observations of vertical structure of the precipitation, microwave radiometer observations of liquid water path (LWP), and lidar measurements of supercooled water layers with surface-based observations of snowfall rate and particle size distributions. To facilitate accurate surface measurements of snowfall properties, a double-fence intercomparison reference wind protection for the weighing precipitation gauge and two-dimensional (2D)-video disdrometer was built on site. Due to the duplication of some instruments, namely the 2D-video disdrometer and the weighing gauge, we were able to characterize their measurement errors as a function of wind speed, thus aiming at providing a correction procedure for the other ARM sites.

  16. Regional shifts in snowfall, melt in the intermountain west

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-01-01

    The freshwater supplies of the American West rely, for the most part, on snow. The Colorado River, the Rio Grande, and other rivers in the intermountain west—bounded by the Sierra Nevada and Cascade mountains to the west and the Rockies to the east—are the main sources of water for one of the driest parts of the continent, and their flows are predominantly fed by the springtime melt of snow accumulated over the winter. With winter mean temperatures rising in some places by as much as 2.5°C in the past 2 decades, some scientists are concerned that the current hydrological regime of the region could be overthrown, with snow giving way to rain as the dominant form of precipitation. Decreasing snow accumulation and earlier snowmelt onset have been observed in Colorado. Whether these trends extend to the larger intermountain west region, however, is unknown.

  17. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar, LMA, and NLDN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard

    2013-01-01

    Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.

  18. Development of Radar Reflectivity-Snowfall Rate Relationships at Multiple Wavelengths

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew; Bansemer, Aaron; Tanelli, Simone; Wood, Norm

    2015-04-01

    Development of Radar Reflectivity-Snowfall Rate Relationships at Multiple Wavelengths In-situ aircraft measurements of particle size distributions and both direct and indirect estimates of particle mass are used to calculate snowfall rates (S) from a number of NASA field programs. Simultaneously, and in close proximity and time to these measurements, there are direct measurements of the radar reflectivity (Z) at X, KU, KA and W bands from overflying aircraft or from the ground. From these observations, Z-S relationships are developed. In the process, a range of backscatter cross-section models are tested against the radar measurements. We expect these relationships to be very useful for CloudSat, GPM and EarthCARE-derived snowfall products.

  19. Shifts during the snow season in the Romanian Carpathians in response to winter temperature and precipitation change

    NASA Astrophysics Data System (ADS)

    Micu, D.

    2012-04-01

    Snowpack characteristics and duration are considered to be key indicators of climate change in mountain regions, particularly during the winter season when its environmental and economic importance is notable. The present study is focused on relevant snow statistics over a 43-year period of meteorological observations at several climatological stations (15) located above 1,000 m a.s.l. in the Romanian Carpathians. Here the snow season is considered to last from the 1st of November to the 30th of April when snowpack reaches the highest stability and thickness in most of the studied locations. Winter temperature and precipitation change signals are investigated as main triggering factors of snow season changes (i.e. snow vs. rain, seasonal snowfall onset and offset, snowpack duration s.o.). The current mountain climate warming is obvious, determining a generalized decreasing trend of the snow-to-rain ratio. The alpine areas are also experiencing temperature increases and a higher frequency of positive extremes (e.g. winter heat waves). Earlier spring snowmelt was also statistically proved both at regional level and by elevation levels. Winter precipitation varies from year to year and over decades, and changes in amount, intensity, frequency, and type (e.g. snow vs rain) affect both the environment and society. Periods in which snow was abundant or not were also investigated in relation to the large-scale forcing (e.g. the winter North Atlantic Oscillation index fluctuations as a measure of strength of the westerly flow from the Atlantic and of cyclonic activity trends). The shifts observed in the Romanian Carpathians snow season are comparable to winter climate change estimated from observational data recorded also in other European mountain regions (e.g. the Swiss Alps, the French Alps and the Tatra Mts.). The results indicate that since mid-1980s the Romanian Carpathians have shown an obvious trend towards late Fall snowfall and snowpack onset (more evident below

  20. Mean Annual Snowfall at Air National Guard Bases 1950-51 to 1978-79.

    DTIC Science & Technology

    1981-04-01

    T EQUALS TRACE(LESS TH 0.I") 30 - ORANGE ( NEW HAVEN ), CONNECTICUT LRnOu j. 1950/51-1978/79 -MA SNOWFALL (INCHES) J .. 1L U.. . Sir OCT . .NOV DEC JAN...CONNECTICUT Orange ( New Haven ) 32.1 Windsor Locks (Bradley Field) 50.0 DELAWARE Wilmington 21.8 DISTRICT OF COLUMBIA Camp Simms (Andrews AF3) 22.2...Newark) 28.0 McGuire AFB 23.5 NEW MEXICO Kirtland AFB 10.6 3_ 1 . . . .. .. . . .. I - -- - - MEAN SNOWFAL L E A JN NEW YORK Albany-Schenectady 66.8

  1. Analysis of the hazardous low-altitude snowfall, 8th March 2010, in Catalonia

    NASA Astrophysics Data System (ADS)

    Aran, M.; Rigo, T.; Bech, J.; Brucet, C.; Vilaclara, E.

    2010-09-01

    During winter season snow precipitation is quite frequent in the Pyrenees (north-east of the Iberian Peninsula). On average the total amount of fresh snow at 2200 metres is of 250 cm. However, important snow episodes at low latitudes are unlikely. From 1947 to 2009, 16 significant snow episodes took place in the Barcelona and 18 in Girona areas. On 8th March 2010, a severe wet snow event had a high social impact on these regions. One of the most remarkable features of this episode was the type of precipitation (wet snow) and the large amount of precipitation combined with strong wind gust that caused the collapse of electricity pylons and tree forests. The damage was very important in the north-eastern part and the regional government approved funds of 21.4 million € to reduce the impact caused by this event. Although diagnosis of other low altitude snowfall events in Catalonia has been done previously, the analysis of this event can contribute to characterise a little bit better these snow episodes. In this study, we will present the synoptic framework characterised by the presence of a deep low in the north-east of Catalonia and moving through Ebro valley to the Catalan coast. To do this we will use ECMWF reanalyses and Meteosat images. The main features to predict this snow event and the critical point were the total amount of precipitation and snow level forecasted by mesoscale models (MM5, WRF). The model outputs for precipitation, temperature and wind will be compared with automatic weather, radar and radiosounding data. The snow level and the type of precipitation are compared with the information received from spotters. The main storm was characterised by moderate vertical development with tops of 8 km (4 km were the average height during the initial and final phase of the event). Also, lightning activity was observed, 310 intra-cloud and 128 cloud-to-ground. The type of precipitation at a specific location in the eastern zone temporally changed because

  2. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  3. Why Does Rhinopithecus bieti Prefer the Highest Elevation Range in Winter? A Test of the Sunshine Hypothesis

    PubMed Central

    Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo

    2011-01-01

    Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine

  4. Relationship between the trajectory of mid-latitude cyclones in the eastern Pacific Ocean and the isotopic composition of snowfall in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Vasquez, K. T.; Sickman, J. O.; Lucero, D. M.; Heard, A. M.

    2014-12-01

    Climate change has caused a change in the Sierra Nevada snowpack and the timing of its snowmelt, threatening a valuable water resource that provides for 25 million people and 5 million hectares of irrigated land. Understanding past and future variations in the snowpack is crucial in order to plan future water management. Of particular importance would be an archive of the variability of past snowfall, which can be recorded through the isotopic records found in local paleoproxies (e.g., diatoms). We propose to quantify the relationship between sources of atmospheric moisture in the Sierra Nevada and the isotopic composition of its snowpack to uncover whether isotopic variations recorded in paloearchives are a result of the isotopic composition of the precipitation, thereby showing whether these archives could serve as a reliable source of atmospheric moisture. Preliminary analysis conducted from December 2012 to March 2013 at Sequoia National Park resulted in statistically significant correlations between the isotopic composition of the winter snowfall and storm track trajectories. It was observed that storms originating from more northern latitudes had predominantly lighter isotopes (more negative δ 2H and δ18O) and sub-tropical/tropical Pacific storms showed more positive δ 2H and δ18O. This pattern reflects the isotopic gradient of the Pacific Ocean and can prove useful when interpreting the climatic significance of the δ2H and δ18O values in analyzed proxies. While our initial investigation was promising, the winter of 2012 -2013 was abnormally dry compared to long-term averages. Before directing our investigation to known paleoproxies, we aim to determine if the correlation between storm tracks and isotopic composition of precipitation holds in years with average and above average precipitation through analysis of archived samples from calendar years 2007 - 2011 from Giant Forest in Sequoia National Park (southern sierra) and Manzanita Lake in Lassen

  5. Correlation of Radar Reflectivity and Snowfall Rate during Moderate to Heavy Snow

    DTIC Science & Technology

    1978-04-03

    surface temperature below freezing), the correlation coefficient between radar returns and snowfall rate runs as high as r = 0.85. However, in wet snow...surface temperature above freezing) with bright band characteristics, the correlation coefficient is very poor, as low as r = 0.35. In spite of this

  6. Effect of storm trajectories on snowfall chemistry in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Ingersoll, G.P.; Tonnessen, K.A.; Campbell, D.H.; Glass, B.R.; Torizzo, A.O.

    2001-01-01

    Snowfall samples from snowstorms lasting 1 to 4 days were collected near the Bear Lake snow telemetry (SnoTel) site in Rocky Mountain National Park, Colorado (ROMO), during the 1998-99 snowfall season to determine if storms moving in from different directions affect the chemistry of precipitation in the park. Storm pathways to Bear Lake during snowfall events were estimated using the HYSPLIT4 backward-trajectory model developed by the National Oceanic and Atmospheric Administration. Deposition of acidic ions of nitrate and sulfate in snowfall during the study varied substantially (two- to threefold) depending on storm trajectory because air masses traversing the park originated from different surrounding areas, including some having large sources of emissions of nitrate and sulfate. Concentrations of nitrate and sulfate in samples were lowest when storms reached ROMO from north and east of the park and were elevated when air masses traveled from the west where a number of power plants are located. Concentrations were highest in storms reaching ROMO from the south, a region with urban areas including Metropolitan Denver.

  7. Integrating multiple temporal scales of snowfall, soil, and plant processes at the Great Basin Desert - Sierra Nevada ecotone

    NASA Astrophysics Data System (ADS)

    Loik, M. E.

    2012-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Many climate models envision changes in California's Sierra Nevada snow pack characteristics, which would severely impact the storage and release of water for one of the world's largest economies. Climate change threatens the sustainability of this water supply through altered snowfall timing, reduced snowpack depth, changes in snow water equivalents, earlier snowmelt, and highly-uncertain but plausible scenarios of rain-on-snow events. Climate model scenarios envision reduced snow pack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes, such as carbon storage? To address this question, experiments utilize large-scale, long-term snow fences to manipulate snow depth and melt timing at a desert-montane ecotone in eastern California, USA. A combination of instantaneous gas exchange and water potential measurements, plant community surveys, annual ring growth increments, in situ instrumentation, and long-term snow course data were used to couple physical and biological processes at daily, monthly, annual, and decadal scales. At this site, long-term April 1 snow pack depth averages 1344 mm (1928-2011) with a CV of 48%. Snow fences increased equilibrium drift snow depth by 200%. Soil moisture pulses were shorter in duration and lower in magnitude in low- than medium- or high-snowfall years. Evapotranspiration (ET) in this arid location accounted for about 37 mol m-2 d-1 of water loss from the snow pack between January 1 and May 1; sublimation was 10% of ET for the same period. Despite considerable interannual variation in snow depth and total precipitation, plant water potential stayed relatively constant over eight consecutive years, but photosynthesis was highly variable. Over the long-term, changes in snow depth and melt timing have impacted growth of only three

  8. Increases in Whole Blood Glucose Measurements Using Optically Based Self-Monitoring of Blood Glucose Analyzers Due to Extreme Canadian Winters

    PubMed Central

    Cembrowski, George C.; Smith, Barbara; O'Malley, Ellen M.

    2009-01-01

    Background Temperature and humidity have been reported to influence the results of whole blood glucose (WBG) measurements. Methods To determine whether patient WBG values were affected by seasonal variation, we conducted a retrospective analysis of 3 years' worth of weekly averages of patient WBG in five Edmonton hospitals. Results In all five hospitals, the winter WBG averages were consistently higher than the summer WBG averages, with the differences varying between 5% and 9%. Whole blood glucose averages were negatively correlated with the outside temperature. This seasonal variation was not observed in weekly patient averages of specimens run in a central hospital laboratory. Interpretation It is probable that the seasonal variation of WBG arises from the very low indoor humidities that are associated with external subzero temperatures. These increases in WBG in cold weather may be due to limitations in the WBG measuring systems when operated in decreased humidities and/or increased evaporation of the blood sample during the blood glucose measurement process. The implications of this seasonal variation are significant in that it (1) introduces increased variability in patient WBG, (2) may result in increased glucose-lowering therapy during periods of external cold and low indoor humidity, and (3) confounds evaluations of WBG meter technology in geographic regions of subzero temperature and low indoor humidity. To mitigate the risk of diagnosing and treating factitious hyperglycemia, the humidity of patient care areas must be strictly controlled. PMID:20144309

  9. A physical model to estimate snowfall over land using AMSU-B observations

    NASA Astrophysics Data System (ADS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-05-01

    In this study, we present a physical model to retrieve snowfall rate over land using brightness temperature observations from NOAA's Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 ± 1 GHz, 183.3 ± 3 GHz, and 183.3 ± 7 GHz. The retrieval model is applied to the New England blizzard of 5 March 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the discrete-dipole approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori database in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about ±5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Ze and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Ze-R relationships fall in the range of previously established Ze-R relationships for snowfall. This suggests that the current physical

  10. Investigating the impact of spaceborne radar blind zone on surface snowfall statistics in polar regions

    NASA Astrophysics Data System (ADS)

    Maahn, Maximilian; Burgard, Clara; Crewell, Susanne; Gorodetskaya, Irina; Kneifel, Stefan; Lhermitte, Stef; Van Tricht, Kristof; van Lipzig, Nicole

    2016-04-01

    Currently, global statistics of snowfall are only available from the CloudSat satellite launched in 2006. However, measurements of CloudSat can be only obtained at an altitude of at least 1200 m above ground, because measurements below are contaminated by ground clutter. As a consequence, global estimates of snowfall at the surface have to be estimated from observations at 1200 m above ground. In the presented study, it is investigated how this blind zone impacts snowfall statistics obtained from CloudSat observations in polar regions. For this, 12-months datasets containing observations of a vertically pointing 24 GHz Micro Rain Radar (MRR) are analyzed for three sites: the Belgian Princess Elisabeth station in East-Antarctica, and for Ny-Ålesund as well as Longyearbyen in Svalbard, Norway. Statistical comparison of CloudSat and MRR observations shows that MRRs are suited to study snowfall when reflectivity exceeds -5 dBz. To study the vertical variability of snowfall, MRR radar reflectivity profiles are analyzed with respect to changes in frequency distribution, the number of observed snow events and total precipitation. Results show that the blind zone leads to reflectivity being underestimated by up to 1 dB, the number of events being altered by ±5% and the precipitation amount being underestimated by 9 to 11 percentage points. In order to account for future satellite missions which feature a smaller blind-zone, also the impact of a reduced blind zone of 600 m is analyzed. Even though reducing the blind zone to 600 m leads to better representation of mean reflectivity, it does not improve the bias in event numbers and total precipitation amount.

  11. Nutrition for winter sports.

    PubMed

    Meyer, Nanna L; Manore, Melinda M; Helle, Christine

    2011-01-01

    Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.

  12. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,…

  13. Winter Wonderlands

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  14. Winter Workshop.

    ERIC Educational Resources Information Center

    Council of Outdoor Educators of Quebec, Montreal.

    Materials on 11 topics presented at a winter workshop for Quebec outdoor educators have been compiled into this booklet. Action story, instant replay, shoe factory, sound and action, and find an object to fit the description are described and recommended as group dynamic activities. Directions for five games (Superlative Selection; Data…

  15. Weather Support to Deicing Decision Making (WSDDM): A Winter Weather Nowcasting System.

    NASA Astrophysics Data System (ADS)

    Rasmussen, Roy; Dixon, Mike; Hage, Frank; Cole, Jeff; Wade, Chuck; Tuttle, John; McGettigan, Starr; Carty, Thomas; Stevenson, Lloyd; Fellner, Warren; Knight, Shelly; Karplus, Eli; Rehak, Nancy

    2001-04-01

    This paper describes a winter weather nowcasting system called Weather Support to Deicing Decision Making (WSDDM), designed to provide airline, airport, and air traffic users with winter weather information relevant to their operations. The information is provided on an easy to use graphical display and characterizes airport icing conditions for nonmeteorologists. The system has been developed and refined over a series of winter-long airport demonstrations at Denver's Stapleton International Airport, Chicago's O'Hare International Airport, and New York's LaGuardia Airport. The WSDDM system utilizes commercially available weather information in the form of Next Generation Weather Radar WSR-88D radar reflectivity data depicted as color coded images on a window of the display and Aviation Routine Weather Report (METAR) surface weather reports from Automated Surface Observating System stations and observers. METAR information includes wind speed and direction, air temperature, and precipitation type/rate, which are routinely updated on an hourly basis or more frequently if conditions are changing. Recent studies have shown that the liquid equivalent snowfall rate is the most important factor in determining the holdover time of a deicing fluid. However, the current operational snowfall intensity reported in METARs is based on visibility, which has been shown to give misleading information on liquid equivalent rates in many cases due to the wide variation in density and shape of snow. The particular hazard has been identified as high visibility-high snowfall conditions. The WSDDM system addresses this potentially hazardous condition through the deployment of snow gauges at an airport. These snow gauges report real-time estimates of the liquid equivalent snowfall rate once every minute to WSDDM users. The WSDDM system also provides 30-min nowcasts of liquid equivalent snowfall rate through the use of a real-time calibration of radar reflectivity and snow gauge snowfall

  16. Projected Influences of Changes in Weather Severity on Autumn-Winter Distributions of Dabbling Ducks in the Mississippi and Atlantic Flyways during the Twenty-First Century.

    PubMed

    Notaro, Michael; Schummer, Michael; Zhong, Yafang; Vavrus, Stephen; Van Den Elsen, Lena; Coluccy, John; Hoving, Christopher

    2016-01-01

    Projected changes in the relative abundance and timing of autumn-winter migration are assessed for seven dabbling duck species across the Mississippi and Atlantic Flyways for the mid- and late 21st century. Species-specific observed relationships are established between cumulative weather severity in autumn-winter and duck population rate of change. Dynamically downscaled projections of weather severity are developed using a high-resolution regional climate model, interactively coupled to a one-dimensional lake model to represent the Great Lakes and associated lake-effect snowfall. Based on the observed relationships and downscaled climate projections of rising air temperatures and reduced snow cover, delayed autumn-winter migration is expected for all species, with the least delays for the Northern Pintail and the greatest delays for the Mallard. Indeed, the Mallard, the most common and widespread duck in North America, may overwinter in the Great Lakes region by the late 21st century. This highlights the importance of protecting and restoring wetlands across the mid-latitudes of North America, including the Great Lakes Basin, because dabbling ducks are likely to spend more time there, which would impact existing wetlands through increased foraging pressure. Furthermore, inconsistency in the timing and intensity of the traditional autumn-winter migration of dabbling ducks in the Mississippi and Atlantic Flyways could have social and economic consequences to communities to the south, where hunting and birdwatching would be affected.

  17. Projected Influences of Changes in Weather Severity on Autumn-Winter Distributions of Dabbling Ducks in the Mississippi and Atlantic Flyways during the Twenty-First Century

    PubMed Central

    Notaro, Michael; Schummer, Michael; Zhong, Yafang; Vavrus, Stephen; Van Den Elsen, Lena; Coluccy, John; Hoving, Christopher

    2016-01-01

    Projected changes in the relative abundance and timing of autumn-winter migration are assessed for seven dabbling duck species across the Mississippi and Atlantic Flyways for the mid- and late 21st century. Species-specific observed relationships are established between cumulative weather severity in autumn-winter and duck population rate of change. Dynamically downscaled projections of weather severity are developed using a high-resolution regional climate model, interactively coupled to a one-dimensional lake model to represent the Great Lakes and associated lake-effect snowfall. Based on the observed relationships and downscaled climate projections of rising air temperatures and reduced snow cover, delayed autumn-winter migration is expected for all species, with the least delays for the Northern Pintail and the greatest delays for the Mallard. Indeed, the Mallard, the most common and widespread duck in North America, may overwinter in the Great Lakes region by the late 21st century. This highlights the importance of protecting and restoring wetlands across the mid-latitudes of North America, including the Great Lakes Basin, because dabbling ducks are likely to spend more time there, which would impact existing wetlands through increased foraging pressure. Furthermore, inconsistency in the timing and intensity of the traditional autumn-winter migration of dabbling ducks in the Mississippi and Atlantic Flyways could have social and economic consequences to communities to the south, where hunting and birdwatching would be affected. PMID:27959911

  18. Synoptic characteristics of heavy snowfalls at Busan of Korea caused by polar lows over the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong

    2017-02-01

    The results of the present study prove that snowfall occurred due to the polar low (PL) in the Korean Peninsula and six cases of snowfall exceeding a snow depth of 2 cm over the past 16 years in Busan, South Korea. A strong northwesterly air current with a cold outbreak at the lower level passed through the Korean Peninsula and penetrated into the East/Japan Sea causing the generation and characteristics of a PL. However, a northeasterly air current due to a synoptic low (SL) in East Japan approached the east coast via the East/Japan Sea, which generated a wind field with mesoscale cyclonic circulation. In the center of this cyclone, a strong positive vorticity region was revealed from the lower level to the upper level. The air temperature in the center of the PL was warmer than the surrounding areas at the lower level. As the PL developed and the air temperature decreased, a rapid tropopause drop followed due to the effect of the cold core along with the cutoff low at the mid-level or the higher level. As a result, the stratification became more unstable. The PL moved into Busan as the cold core at the upper level rapidly moved to the lower latitudes, which formed an unstable region around Busan. The PL decayed because the cutoff low, the cold core, and the positive vorticity region at the upper level quickly moved to the east, thereby causing the stratification to stabilize. Also, because the approach to the Japanese Archipelago caused an increase in surface friction, the original structure could no longer be maintained.

  19. On the characteristics of atmospheric circulation associated with snowfall in NW Greece

    NASA Astrophysics Data System (ADS)

    Houssos, E. E.; Lolis, C. J.; Bartzokas, A.

    2009-09-01

    In this work the main atmospheric circulation types, associated with snowfall events in NW Greece, are examined. Also, a validation procedure is followed in order to investigate to what extent the circulation types revealed are related with snowfall in NW Greece. For this purpose, two datasets are used. The first one consists of 6-hourly values of mean sea level pressure, temperature at 850hPa level and 500hPa height in 273 grid-points covering Europe and the Mediterranean, for the 45-year period 1/9/1957 to 31/8/2002. The second one comprises all the 6-hourly observations at the meteorological station of Ioannina (NW Greece). From the first dataset and for each meteorological parameter a data matrix is constructed consisting of 65,744 rows and 273 columns. Each column represents the time series of the parameter at each grid point and each row represents the space series (map) of the parameter at the time of each observation (4 observations per day for the 45-year period). Then, a new matrix is created by merging the matrices of MSL pressure, T-850hPa and Z-500hPa in a united matrix of 65,744 rows x 819 columns. In this way, each row represents the 3-dimensional structure of the atmosphere (based on the 3 parameters used) at the time of each observation. Next, Factor Analysis is applied on this united matrix in order to reduce the dimensionality of the data set. The 819 columns are reduced to 8 (uncorrelated Factors), describing satisfactorily the 3-dimensional structure of the atmosphere, as they explain approximately 86% of the total variance. From the second data set the observations reporting snowfall in Ioannina are found out and then a new data matrix is constructed consisting of the Factor scores rows corresponding to these observations only. In the new matrix (235 rows x 8 columns) each row describes the structure of the atmosphere over Europe and the Mediterranean in the cases of snowfall in Ioannina. Cluster Analysis (K-Means) is applied in this final

  20. Increased capacity for synthesis of the D1 protein and of catalase at low temperature in leaves of cold-hardened winter rye (Secale cereale L.).

    PubMed

    Shang, William; Schmidt, Matthias; Feierabend, Jürgen

    2003-03-01

    The effect of low temperature on protein synthesis, particularly the synthesis of the photolabile proteins D1 of photosystem II and catalase (EC 1.11.1.6), was compared in non-hardened leaves (NHL) and cold-hardened leaves (CHL) of winter rye (Secale cereale L.). At 4 degrees C, both the uptake of L-[(35)S]methionine into leaf sections and its incorporation into proteins were reduced, relative to 25 degrees C. However, much lower reductions were observed in CHL than in NHL. In particular, the proportion of the L-[(35)S]methionine uptake incorporated into membrane proteins at 4 degrees C was considerably higher in CHL than in NHL. At 25 degrees C, the incorporation of L-[(35)S]methionine into both the D1 protein and catalase was lower in CHL than in NHL, in accord with a slower light-induced turnover in CHL. At 4 degrees C, the incorporation into the D1 protein and catalase was, however, much higher in CHL than in NHL, indicating that their de novo synthesis was less suppressed by the low temperature. The results indicate that cold-acclimated leaves had an improved ability to repair the photolabile proteins D1 and catalase at low temperature, relative to NHL. mRNAs for the D1 protein and for leaf catalase were not increased in CHL, relative to NHL. The superior capacity of CHL for repair at low temperature must result from posttranscriptional mechanisms. The translational efficiency of the catalase mRNA was similarly increased in both NHL and CHL during 7-h exposures to high light at 4 degrees C, while the amounts of the catalase transcript declined under these conditions. However, during a recovery period at 22 degrees C, subsequent to an exposure of NHL to 4 degrees C and high light, transient increases of the D1 and catalase mRNAs were observed.

  1. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  2. Strong fluctuation theory for scattering, attenuation, and transmission of microwaves through snowfall

    NASA Technical Reports Server (NTRS)

    Jin, Y.-Q.; Kong, J. A.

    1985-01-01

    The strong fluctuation theory is applied to the study of the atmospheric snowfall which is modeled as a layer of random discrete-scatterers medium. As functions of size distribution, fractional volume, and radius of scatterers, the relationship is illustrated between the reflectivity factor and precipitation rate, the attenuation of the centimeter and millimeter waves, and the line-of-sight transmission of coherent and incoherent wave components. The theoretical results are shown to match favorably with experimental data.

  3. Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters

    USGS Publications Warehouse

    White, Donald E.

    1969-01-01

    Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.

  4. Relationship between the trajectory of mid-latitude cyclones in the eastern Pacific Ocean and the isotopic composition of snowfall in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Vasquez, K. T.; Sickman, J. O.; Heard, A.; Lucero, D.

    2013-12-01

    Diatoms, preserved in lake sediments, provide a potential archive of snowfall variability in the Sierra Nevada through their sensitivity to changes in water chemistry (a proxy for runoff volume) and by recording the isotopic composition of snow-melt (potentially a proxy for sources of atmospheric moisture). In the Sierra Nevada, we hypothesize that the oxygen isotopic composition of diatom silica is principally controlled by snow and that the isotopic composition of snow varies as a function of the tracks of mid-latitude cyclonic storms in the eastern Pacific Ocean. Snow samples from discrete storms were collected from December 2012 to March 2013 at 2042 meters a.s.l. in Sequoia National Park. The δ18O and δ2H values of the snow samples were measured using a temperature-conversion elemental analyzer coupled to a Delta V isotope ratio mass spectrometer. The isotopic measurements were then coupled to 3, 5 and 7-day air mass back trajectories using the NOAA HYSPLIT model. The measured δ18O values ranged from -17.6 to -7.8 per mil and the δ2H ranged from -119.8 to -73.3 per mil. Both δ18O and δ2H were inversely related to the latitude of the storm origin (R^2 values of 0.67 and 0.57, respectively). Winter storms from the Gulf of Alaska were the most isotopically depleted while storms originating in the subtropical/tropical Pacific were the most isotopically enriched, reflecting the overall latitudinal pattern of ocean-water isotope composition in the Pacific Ocean. Our results suggest that the isotopic composition of Sierra Nevada snowfall is influenced by storm track trajectory and this relationship could be useful in interpreting the climatic significance of δ18O of diatom silica preserved in lake cores.

  5. A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-01-01

    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram

  6. Synoptic variability of extreme snowfall in the St. Elias Mountains, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Andin, Caroline; Zdanowicz, Christian; Copland, Luke

    2015-04-01

    Glaciers in the Wrangell and St. Elias Mountains (Alaska and Yukon) are presently experiencing some of the highest regional wastage rates worldwide. While the effect of regional temperatures on glacier melt rates in this region has been investigated, comparatively little is known about how synoptic climate variations, for example in the position and strength of the Aleutian Low, modulate snow accumulation on these glaciers. Such information is needed to accurately forecast future wastage rates, glacier-water resource availability, and contributions to sea-level rise. Starting in 2000, automated weather stations (AWS) were established in the central St-Elias Mountains (Yukon) at altitudes ranging from 1190 to 5400 m asl, to collect climatological data in support of glaciological research. These data are the longest continuous year-round observations of surface climate ever obtained from this vast glaciated region. Here we present an analysis of snowfall events in the icefields of the St-Elias Mountains based on a decade-long series of AWS observations of snow accumulation. Specifically, we investigated the synoptic patterns and air mass trajectories associated with the largest snowfall events (> 25 cm/12 hours) that occurred between 2002 and 2012. Nearly 80% of these events occurred during the cold season (October-March), and in 74 % of cases the precipitating air masses originated from the North Pacific south of 50°N. Zonal air mass advection over Alaska, or from the Bering Sea or the Arctic Ocean, was comparatively rare (20%). Somewhat counter-intuitively, dominant surface winds in the St. Elias Mountains during high snowfall events were predominantly easterly, probably due to boundary-layer frictional drag and topographic funneling effects. Composite maps of sea-level pressure and 700 mb winds reveal that intense snowfall events between 2002 and 2012 were associated with synoptic situations characterized by a split, eastwardly-shifted or longitudinally

  7. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  8. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  9. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    PubMed

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

  10. Do we have to correct winter precipitation for nowcast applications?

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Koch, Roland; Olefs, Marc

    2016-04-01

    In mountain regions like the Alps, a significant fraction of the annual precipitation falls as snow. There is an increasing demand for high-quality analysis, nowcast and short-range forecasts of snowfall. Operational services, such as traffic maintenance, real-time flood-warning systems of hydrological services and avalanche warning products, but also hydropower companies and ski resorts need reliable information on precipitation, snow depth and the corresponding snow water equivalent. However, producing accurate precipitation maps in complex terrain using only remote sensing techniques and uncorrected rain gauge data is a difficult task. In cold and windy conditions, conventional rain gauge measurements are prone to large errors when snow passes the rain gauge and sublimation occurs at heated devices. Empirical correction formulas are given by the WMO to compensate the potential undercatch (Goodison, 2008). The project pluSnow aims to combine snow depth measurements and precipitation data to minimize the error of gauge undercatch on the basis of snow depth data from 63 automatic weather stations (TAWES), operated by the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). These TAWES are equipped with SHM30 laser sensors to measure snow depth with high accuracy and temporal resolution of 0.01 m and 10 minutes, respectively. The pluSnow project will contribute to existing research efforts around the globe which focus on improving the precision of solid precipitation measurements. Here we present a first study based on the original TAWES data between 2006 and 2015. The fraction of solid precipitation to total winter precipitation between November and April (NDJFMA) and the potential undercatch of measured precipitation following Goodison (2008) for all TAWES sorted by altitude are analysed. Examples of the TAWES data in the original high temporal resolution of 10 min are given. The two main parameters used for the correction of precipitation

  11. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line

  12. Can we estimate precipitation rate during snowfall using a scanning terrestrial LiDAR?

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Bair, E. H.; Davis, R. E.; Finnegan, D. C.; Gutmann, E. D.; Dozier, J.

    2012-12-01

    Accurate snowfall measurements in windy areas have proven difficult. To examine a new approach, we have installed an automatic scanning terrestrial LiDAR at Mammoth Mountain, CA. With this LiDAR, we have demonstrated effective snow depth mapping over a small study area of several hundred m2. The LiDAR also produces dense point clouds by detecting falling and blowing hydrometeors during storms. Daily counts of airborne detections from the LiDAR show excellent agreement with automated and manual snow water equivalent measurements, suggesting that LiDAR observations have the potential to directly estimate precipitation rate. Thus, we suggest LiDAR scanners offer advantages over precipitation radars, which could lead to more accurate precipitation rate estimates. For instance, uncertainties in mass-diameter and mass-fall speed relationships used in precipitation radar, combined with low reflectivity of snow in the microwave spectrum, produce errors of up to 3X in snowfall rates measured by radar. Since snow has more backscatter in the near-infrared wavelengths used by LiDAR compared to the wavelengths used by radar, and the LiDAR detects individual hydrometeors, our approach has more potential for directly estimating precipitation rate. A key uncertainty is hydrometeor mass. At our study site, we have also installed a Multi Angle Snowflake Camera (MASC) to measure size, fallspeed, and mass of individual hydrometeors. By combining simultaneous MASC and LiDAR measurements, we can estimate precipitation density and rate.

  13. Remote Measurements of Snowfalls in Wakasa Bay, Japan with Airborne Millimeter- wave Imaging Radiometer and Cloud Radar

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Austin, R.; Liu, G. S.; Racette, P. E.

    2004-01-01

    In this paper we explore the application of combined millimeter-wave radar and radiometry to remotely measure snowfall. During January-February of 2003, a field campaign was conducted with the NASA P-3 aircraft in Wakasa Bay, Japan for the validation of the AMSRE microwave radiometer on board the Aqua satellite. Among the suite of instruments-on board the P-3 aircraft were the Millimeter-wave Imaging Radiometer (MIR) from the NASA Goddard Space Flight Center and the 94 GHz Airborne Cloud Radar (ACR) which is co-owned and operated by NASA Jet Propulsion Laboratory/University of Massachusetts. MIR is a total power, across-track scanning radiometer that measures radiation at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/-7, 220, and 340 GHz. The MIR has flown many successful missions since its completion in May 1992. ACR is a newer instrument and flew only a few times prior to the Wakasa Bay deployment. These two instruments which are particularly well suited for the detection of snowfall functioned normally during flights over snowfall and excellent data sets were acquired. On January 14, 28, and 29 flights were conducted over snowfall events. The MIR and ACR detected strong signals during periods of snowfall over ocean and land. Results from the analysis of these concurrent data sets show that (1) the scattering of millimeter-wave radiation as detected by the MIR is strongly correlated with ACR radar reflectivity profiles, and (2) the scattering is highly frequency-dependent, the higher the frequency the stronger the scattering. Additionally, the more transparent channels of the MIR (e.g., 89, 150, and 220 GHz) are found to display ambiguous signatures of snowfall because of their exposure to surface features. Thus, the snowfall detection and retrievals of snowfall parameters, such as the ice water path (IWP) and median mass diameter (D(me)) are best conducted at the more opaque channels near 183.3 GHz and 340 GHz. Retrievals of IWP and D(me) using

  14. Effects of topographic smoothing on the simulation of winter precipitation in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Norris, Jesse; Bookhagen, Bodo; Kiladis, George N.

    2017-02-01

    Numerous studies have projected future changes in High Mountain Asia water resources based on temperature and precipitation from global circulation models (GCMs) under future climate scenarios. Although the potential benefit of such studies is immense, coarse grid-scale GCMs are unable to resolve High Mountain Asia's complex topography and thus have a biased representation of regional weather and climate. This study investigates biases in the simulation of physical mechanisms that generate snowfall and contribute to snowpack in High Mountain Asia in coarse topography experiments using the Weather Research and Forecasting model. Regional snowpack is event driven, thus 33 extreme winter orographic precipitation events are simulated at fine atmospheric resolution with 6.67 km resolution topography and smoothed 1.85° × 1.25° GCM topography. As with many modified topography experiments performed in other regions, the distribution of precipitation is highly dependent on first-order orographic effects, which dominate regional meteorology. However, we demonstrate that topographic smoothing enhances circulation in simulated extratropical cyclones, with significant impacts on orographic precipitation. Despite precipitation reductions of 28% over the highest ranges, due to reduced ascent on windward slopes, total precipitation over the study domain increased by an average of 9% in smoothed topography experiments on account of intensified extratropical cyclone dynamics and cross-barrier moisture flux. These findings identify an important source of bias in coarse-resolution simulated precipitation in High Mountain Asia, with important implications for the application of GCMs toward projecting future hydroclimate in the region.

  15. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.

    PubMed

    Hughes, Nicole M; Burkey, Kent O; Cavender-Bares, Jeannine; Smith, William K

    2012-03-01

    Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacity for energy dissipation. Seasonal xanthophyll pigment content, chlorophyll fluorescence, leaf nitrogen, and low molecular weight antioxidants (LMWA) of five winter-red and five winter-green angiosperm evergreen species were compared. Our results showed no difference in seasonal xanthophyll pigment content (V+A+Z g(-1) leaf dry mass) or LMWA between winter-red and winter-green species, indicating red-leafed species are not deficient in their capacity for non-photochemical energy dissipation via these mechanisms. Winter-red and winter-green species also did not differ in percentage leaf nitrogen, corroborating previous studies showing no difference in seasonal photosynthesis under saturating irradiance. Consistent with a photoprotective function of anthocyanin, winter-red species had significantly lower xanthophyll content per unit chlorophyll and less sustained photoinhibition than winter-green species (i.e. higher pre-dawn F(v)/F(m) and a lower proportion of de-epoxidized xanthophylls retained overnight). Red-leafed species also maintained a higher maximum quantum yield efficiency of PSII at midday (F'(v)/F'(m)) during winter, and showed characteristics of shade acclimation (positive correlation between anthocyanin and chlorophyll content, and negative correlation with chlorophyll a/b). These results suggest that the capacity for photon energy dissipation (photochemical and non-photochemical) is not limited in red-leafed species, and that anthocyanins more likely function as an alternative photoprotective strategy to increased VAZ/Chl during winter.

  16. Monitoring a convective winter episode of the Iberian Peninsula using a multichannel microwave radiometer

    NASA Astrophysics Data System (ADS)

    Gascón, E.; Sánchez, J. L.; Fernández-González, S.; Hermida, L.; López, L.; García-Ortega, E.; Merino, A.

    2015-02-01

    On 4 March 2011, a heavy snowfall episode affected the central Iberian Peninsula. Under the TECOAGUA Project (aimed at the study of winter cloud masses that produce snow in the Guadarrama Mountains near Madrid), measurements using a ground-based multichannel microwave radiometer (MMWR) with vertical range 10 km recorded this episode of winter convection embedded within stratiform precipitation. In contrast to radiosondes, data retrieval from the MMWR has a clear advantage for identifying hazardous weather phenomena of short duration, such as winter convective episodes. From these continuous measurements, we analyzed the behavior of variables such as temperature, surface pressure, relative humidity, liquid water content, liquid water path, water vapor content, and integrated water vapor throughout the day. The continuous measurements also permitted construction of skew-T log-P profiles every 15 min during the convective episode, indicating vertical evolution of an event with an appearance similar to a "zipper" in which temperature and dew point temperature profiles are "closed" from the surface to 400 hPa and "reopen" at the end of the event. Finally, we selected six indices of stability most suitable for the study of winter convection, namely, the Showalter index, low-topped convection index, most unstable lifted index, most unstable convective available potential energy (MUCAPE), convective inhibition, and MUCAPE level of free convection. Each of these indices has been evaluated for their capacity to warn of meteorological conditions leading to a convective heavy snowfall event.

  17. Large-Scale Antecedent Conditions Associated with 2014-2015 Winter Onset over North America and mid-Winter Storminess Along the North Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.; Benjamin, M.; Winters, A. C.

    2015-12-01

    Winter 2014-2015 was marked by the coldest November weather in 35 years east of the Rockies and record-breaking snowstorms and cold from the eastern Great Lakes to Atlantic Canada in January and February 2015. Record-breaking warmth prevailed across the Intermountain West and Rockies beneath a persistent upper-level ridge. Winter began with a series of arctic air mass surges that culminated in an epic lake-effect snowstorm occurred over western New York before Thanksgiving and was followed by a series of snow and ice storms that disrupted Thanksgiving holiday travel widely. Winter briefly abated in part of December, but returned with a vengeance between mid-January and mid-February 2015 when multiple extreme weather events that featured record-breaking monthly and seasonal snowfalls and record-breaking daily minimum temperatures were observed. This presentation will show how: (1) the recurvature and extratropical transition (ET) of Supertyphoon (STY) Nuri in the western Pacific in early November 2014, and its subsequent explosive reintensification as an extratropical cyclone (EC), disrupted the North Pacific jet stream and downstream Northern Hemisphere (NH) circulation, produced high-latitude ridging and the formation of an omega block over western North America, triggered downstream baroclinic development and the formation of a deep trough over eastern North America, and ushered in winter 2014-2015, (2) the ET/EC of STY Nuri increased subsequent week two predictability over the North Pacific and North America in association with diabatically influenced high-latitude ridge building, and (3) the amplification of the large-scale NH flow pattern beginning in January 2015 resulted in the formation of persistent high-amplitude ridges over northeastern Russia, Alaska, western North America, and the North Atlantic while deep troughs formed over the eastern North Pacific and eastern North America. This persistent amplified flow pattern supported the occurrence of frequent

  18. Radar observation of snowfall from a natural-draft cooling tower plume

    SciTech Connect

    Sauvageot, H.

    1987-11-01

    One of the potential atmospheric effects of energy dissipation at large power parks is the mesoscale modification of the precipitation field. Meteorological conditions favorable for such an influence mainly correspond to naturally precipitating atmospheres and make the identification of the anthropogenic components difficult. In this paper, millimetric Doppler radar data are used in order to analyze the three-dimensional structure of snowfalls associated, in a perturbed environment, with a natural-draft cooling tower park. The plumes observed spread out in the atmospheric boundary layer with spread angles of 15/sup 0/--30/sup 0/ over a distance of more than 20 km. Their main characteristics compare favorably with Koenig's numerical simulation results.

  19. Experimental Increases in Snow Alter Physical, Chemical and Feedback Processes in the High Arctic.

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J.; Arens, S.; Hagedorn, B.; Sletten, R.; Persson, K.

    2006-12-01

    Winter conditions are changing throughout the Arctic. There are observed increases in snowfall across portions of Greenland while the margins of the Greenland Ice Sheet are thinning. However, these changes and the consequences of altered surface dynamics on High Arctic terrestrial ecosystems and their potential feedbacks are unclear. Increases in snow may cause warmer soils in winter, greater rates of winter C losses, increases in winter N mineralization, shorter growing seasons and reduced net C gain in summer due to either reduced gross photosynthesis or increases in ecosystem respiration. In this study, we have constructed replicated snow fences in polar desert and semi-desert (prostrate dwarf shrub) ecosystems in NW Greenland. Our measurements were taken at the deep (1.0 m snow depth) and intermediate (0.35 m snow depth) points along the drift to address these questions: a) how do increases in snow depth alter the surface and subsurface physical and chemical processes of these ecosystems?, and b) to what extent do increases in snow depth alter net CO2 exchange, gross ecosystem photosynthesis and ecosystem respiration? After three years of treatment we have found that in winter, deep snow results in warmer soil temperatures and in the subsequent summer, areas with deep winter snow have colder soil temperatures. This effect is most pronounced immediately following snowmelt and temperatures slowly return to ambient conditions near the end of summer. Deeper snow results in higher soil water contents in early summer but by mid-July soil water contents are the same, regardless of previous winter snow conditions. Net ecosystem CO2 exchange rates are consistently negative (C source to the atmosphere) through most of the growing season and vary in their magnitude by snow depth and ecosystem type. Areas with the deepest snow during winter consistently have the largest losses of CO2 to the atmosphere. The middle snow depth treatment showed lower rates of respiration than

  20. Experimental Increases in Snow Alter Physical, Chemical and Feedback Processes in the High Arctic.

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J.; Sullivan, P.; Sletten, R.; Arens, S.; Kristenson, H.

    2007-12-01

    Winter climate conditions are changing throughout the Arctic. In Greenland, there are observed increases in snowfall across portions of the island while the margins of the Greenland Ice Sheet are thinning. However, these changes and the consequences of altered meteorological surface dynamics on High Arctic terrestrial ecosystems and their potential feedbacks are unclear. Increases in winter snow cover may cause warmer soils in winter, greater rates of winter C losses, increases in winter N mineralization, shorter growing seasons and reduced net C gain in summer due to either reduced gross photosynthesis or increases in ecosystem respiration. In our study, we have constructed replicated snow fences in prostrate dwarf shrub tundra (polar desert and semi- desert) ecosystems in NW Greenland. Our measurements were taken at the deep (1.0 m snow depth) and intermediate (0.35 m snow depth) points along the drift to address these questions: a) how do increases in snow depth alter the surface and subsurface physical and chemical processes of these ecosystems?, and b) to what extent do increases in snow depth alter net CO2 exchange, gross ecosystem photosynthesis and ecosystem respiration? After three years of treatment we have found that in winter, deep snow results in warmer soil temperatures and in the subsequent summer, areas with deep winter snow have colder soil temperatures. This effect is most pronounced immediately following snowmelt and temperatures slowly return to ambient conditions near the end of summer. Deeper snow results in higher soil water contents in early summer, but by mid-July soil water contents have returned to ambient levels. Net ecosystem CO2 exchange rates are consistently negative (CO2 source to the atmosphere) through most of the growing season and vary in their magnitude by snow depth and ecosystem type. Areas with the deepest snow during winter consistently have the largest rates of CO2 loss to the atmosphere. The middle snow depth treatment

  1. Use of Multiple-Angle Snow Camera (MASC) Observations as a Constraint on Radar-Based Retrievals of Snowfall Rate

    NASA Astrophysics Data System (ADS)

    Cooper, S.; Garrett, T. J.; Wood, N.; L'Ecuyer, T. S.

    2015-12-01

    We use a combination of Ka-band Zenith Radar (KaZR) and Multiple-Angle Snow Camera (MASC) observations at the ARM North Slope Alaska Climate Facility Site at Barrow to quantify snowfall. The optimal-estimation framework is used to combine information from the KaZR and MASC into a common retrieval scheme, where retrieved estimates of snowfall are compared to observations at a nearby NWS measurement site for evaluation. Modified from the operational CloudSat algorithm, the retrieval scheme returns estimates of the vertical profile of exponential PSD slope parameter with a constant number density. These values, in turn, can be used to calculate surface snowrate (liquid equivalent) given knowledge of snowflake microphysical properties and fallspeeds. We exploit scattering models for a variety of ice crystal shapes including aggregates developed specifically from observations of snowfall properties at high-latitudes, as well as more pristine crystal shapes involving sector plates, bullet rosettes, and hexagonal columns. As expected, initial retrievals suggest large differences (300% for some events) in estimated snowfall accumulations given the use of the different ice crystal assumptions. The complex problem of how we can more quantitatively link MASC snowflake images to specific radar scattering properties is an ongoing line of research. Here, however, we do quantify the use of MASC observations of fallspeed and PSD parameters as constraint on our optimal-estimation retrieval approach. In terms of fallspeed, we find differences in estimated snowfall of nearly 50% arising from the use of MASC observed fallspeeds relative to those derived from traditional fallspeed parameterizations. In terms of snowflake PSD, we find differences of nearly 25% arising from the use of MASC observed slope parameters relative to those derived from field campaign observations of high-altitude snow events. Of course, these different sources of error conspire to make the estimate of snowfall

  2. Introducing winter canola to the winter wheat-fallow region of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers in the low-rainfall, winter wheat-fallow region of the Pacific Northwest are in need of an alternative crop to diversify their markets, manage pests, and increase wheat yields. Winter canola may be a viable crop option for growers in the region. However, agronomic research for winter canol...

  3. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons

    USGS Publications Warehouse

    Corsi, Steven R.; De Cicco, Laura A.; Lutz, Michelle A.; Hirsch, Robert M.

    2014-01-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006–2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.

  4. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.

    PubMed

    Corsi, Steven R; De Cicco, Laura A; Lutz, Michelle A; Hirsch, Robert M

    2015-03-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006-2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.

  5. Effects of volcanic eruption and global warming on snowfall patterns in the Pacific Northwest: Survey of climate data from 36 stations

    SciTech Connect

    Chatelain, E.E.

    1996-09-01

    Patterns in short term annual snowfall totals and long term glacial mass-balance of glaciers in the Pacific Northwest are affected by episodic global volcanic eruptions and the cyclic appearances of the El Nino oceanic current. A comprehensive analysis of climatic data such as snowfall, snow depth, maximum and minimum temperatures, and total precipitation was undertaken for 18 stations in Oregon and Washington between 1948-1995, and for snow-water data from 18 other stations from 1980-1995. These data were also compared to demonstrate regional variations within a given year. Snowfall maxima and Temperature minima recorded in this period closely followed major volcanic events, whereas Snowfall minima and Temperature maxima recorded in the same period coincided with periodic El Nino patterns. Snowfall totals in El Nino years were uniformly sparse region wide, whereas snowfall patterns in other years displayed some regional variation. Of special interest is the cross-correlation of snow-water and snowfall depth/totals data for the period 1980-1995, which records the patterns before and after the eruptions of Mt. Pinatubo (1991-92).

  6. Arctic sea ice, Eurasia snow, and extreme winter haze in China

    PubMed Central

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-01-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction. PMID:28345056

  7. Arctic sea ice, Eurasia snow, and extreme winter haze in China.

    PubMed

    Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho

    2017-03-01

    The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.

  8. A Winter Survival Unit.

    ERIC Educational Resources Information Center

    Phillips, Ronald E.

    1979-01-01

    The article is a condensation of materials from the winter survival unit of a Canadian snow ecology course. The unit covers: cold physiology, frostbite, snowblindness, hypothermia, winter campout, and survival strategies. (SB)

  9. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  10. 2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea

    NASA Astrophysics Data System (ADS)

    Shim, T.; Kim, B.; Kim, S.

    2012-12-01

    In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of

  11. Ross River virus infection surveillance in the Greater Perth Metropolitan area--has there been an increase in cases in the winter months?

    PubMed

    Selvey, Linda A; Donnelly, Jenny A; Lindsay, Michael D; PottumarthyBoddu, Sudha; D'Abrera, Victoria C; Smith, David W

    2014-06-30

    An increase in off-season (June to September) Ross River virus (RRV) notifications from the greater Perth metropolitan area was observed from 2006 to 2009. We investigated the increase to determine whether it is likely to have reflected a true increase in off-season cases. A single positive RRV IgM test result is sufficient for RRV notification but where follow-up testing was performed, the positive predictive value of an IgM test where IgG was negative was very low in the off-season and also in the season when using the only commercially available test kit. The increase in off-season notifications was not associated with an increase in off-season testing. Some Perth laboratories use more stringent notification criteria than the nationally agreed RRV case definition, and the geographical distribution of samples tested varies between laboratories. Our findings make a strong case to change the nationally agreed case definition for RRV to not accept a single IgM positive test result as laboratory definitive evidence where the IgG is negative. Our study also identified a range of challenges in interpreting changes in seasonal patterns and geographical distribution of RRV. Any such observed changes should be investigated through further data analysis and/or mosquito trapping and testing in order to assess validity.

  12. Snowfall measurements using a combination of high spectral resolution lidar and radar observations

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2009-04-01

    Aerodynamic flow around gauges and the horizontal transport of windblown snow along the surface produce errors in snowfall measurements. Comparisons between various snow gauges with and without wind shields show as much as as a factor of two difference between measurements(Yang et al., 1999). These problems are particularly significant in the high Arctic where snowfall amount are very low and blowing snow is frequent. This paper describes a lidar-radar based technique to measure the downward flux of snow at an altitude of ~100m. When particles are small compared to the wavelength, radar reflectivity is proportional to the number of snowflakes times the square of the mass of the average snowflake. For particles large compared to the wavelength, the lidar extinction cross section is equal to two times the number of snowflakes times the projected average area of the snowflakes. Donovan and Lammeren(2001) show that the ratio of radar to lidar cross sections can be used to define an effective-diameter-prime, which is proportional to the fourth root of the average mass-squared over the average projected area of the snowflakes. If one assumes a crystal shape this can be converted into an effective-diameter which is the average mass over the average area of the flakes. Multiplying the lidar measured projected area times the effective-diameter yields the mass of the particles. The product of this mass and the radar measured vertical velocity then provides the vertical flux of water. In past work we have tested this measurement approach with data acquired in the high Arctic at Eureka, Canada(80 N,90W). Measurements from the University of Wisconsin High Spectral Resolution Lidar and the NOAA 35 GHz cloud radar were used to compute the time-integrated flux of water at 100 m above the surface. This result was compared with Nipper gauge measurements of snowfall acquired as part of the Eureka weather station record. Best agreement was achieved when the crystals where assumed to

  13. Assessment of snowfall accumulation underestimation by tipping bucket gauges in the Spanish operational network

    NASA Astrophysics Data System (ADS)

    Buisán, Samuel T.; Earle, Michael E.; Luís Collado, José; Kochendorfer, John; Alastrué, Javier; Wolff, Mareile; Smith, Craig D.; López-Moreno, Juan I.

    2017-03-01

    Within the framework of the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), the Thies tipping bucket precipitation gauge was assessed against the SPICE reference configuration at the Formigal-Sarrios test site located in the Pyrenees mountain range of Spain. The Thies gauge is the most widely used precipitation gauge by the Spanish Meteorological State Agency (AEMET) for the measurement of all precipitation types including snow. It is therefore critical that its performance is characterized. The first objective of this study is to derive transfer functions based on the relationships between catch ratio and wind speed and temperature. Multiple linear regression was applied to 1 and 3 h accumulation periods, confirming that wind is the most dominant environmental variable affecting the gauge catch efficiency, especially during snowfall events. At wind speeds of 1.5 m s-1 the tipping bucket recorded only 70 % of the reference precipitation. At 3 m s-1, the amount of measured precipitation decreased to 50 % of the reference, was even lower for temperatures colder than -2 °C and decreased to 20 % or less for higher wind speeds.The implications of precipitation underestimation for areas in northern Spain are discussed within the context of the present analysis, by applying the transfer function developed at the Formigal-Sarrios and using results from previous studies.

  14. [Chemical characteristics and insoluble particulates' surface morphology of a snowfall process in the southeastern suburb of Urumqi].

    PubMed

    Lu, Hui; Wei, Wen-Shou; Cui, Cai-Xia; He, Qing; Wang, Yao

    2014-04-01

    In order to understand the composition and potential pollution of metal elements in precipitation in the southeastern suburb of Urumqi on February 21 to 23, 2012, soluble elements were determined by inductively coupled plasma mass spectrometry (ICP-MS); in addition, energy spectrum and morphological analysis were made for insoluble particulates. The results showed that the content of toxic heavy metals in snowfall was a little high; and the enrichment factors of Se, As and Cd were 124.65, 57.69 and 36.70, respectively, showing a typical coal pollution characteristic. The back trajectory cluster analysis suggested that the coal fly ash of snowfall mainly induced by air masses originated from the coal-fire power plant in the Southwestern sampling site. Morphology analyses conducted under an scan electron microscope demonstrated fly ash coming from coal burning process and irregular mineral are in the majority of insoluble particulates in snowfall, soot aggregates were compact, when the soot was wetted (the hygroscopic behaviour), and the morphology changed further. Insoluble particulates of the southeastern suburb of Urumqi were coal fly ash and insoluble soil minerals.

  15. Winter leaf reddening in 'evergreen' species.

    PubMed

    Hughes, Nicole M

    2011-05-01

    Leaf reddening during autumn in senescing, deciduous tree species has received widespread attention from the public and in the scientific literature, whereas leaf reddening in evergreen species during winter remains largely ignored. Winter reddening can be observed in evergreen herbs, shrubs, vines and trees in Mediterranean, temperate, alpine, and arctic regions, and can persist for several months before dissipating with springtime warming. Yet, little is known about the functional significance of this colour change, or why it occurs in some species but not others. Here, the biochemistry, physiology and ecology associated with winter leaf reddening are reviewed, with special focus on its possible adaptive function. Photoprotection is currently the favoured hypothesis for winter reddening, but alternative explanations have scarcely been explored. Intraspecific reddening generally increases with sunlight incidence, and may also accompany photosynthetic inferiority in photosynthetically 'weak' (e.g. low-nitrogen) individuals. Red leaves tend to show symptoms of shade acclimation relative to green, consistent with a photoprotective function. However, winter-red and winter-green species often cohabitate the same high-light environments, and exhibit similar photosynthetic capacities. The factors dictating interspecific winter leaf colouration therefore remain unclear. Additional outstanding questions and future directions are also highlighted, and possible alternative functions of winter reddening discussed.

  16. Winter fattening in the dark-eyed junco: plasticity and possible interaction with migration trade-offs.

    PubMed

    Rogers, C M; Nolan, V; Ketterson, E D

    1994-05-01

    Although fat often supplies the major source of metabolic fuel during winter fasts of birds, this critical life-history trait is little studied by ecologists. In the dark-eyed junco Junco hyemalis, we have in a series of studies investigated the extent of plasticity in the winter fat reserve. Earlier (Rogers et al. 1993), we reported (1) a highly variable pattern of geographic variation in the winter fat reserve of junco populations in eastern North America, (2) disappearance of statistically significant interpopulation variation after experimental displacement to a common latitude, and (3) post-displacement temporal variation in the fat reserve. In analyses reported here, recent temperature, recent snowfall (a measure of short-term predictability of resources), season (perhaps reflecting continued exposure to unpredictable resources) and daylength explained spatial variation in the fat store. Recent temperature explained temporal variation in the fat reserves of groups of displaced juncos. These results suggest that platticity in a life-history trait has evolved in an uncertain winter environment. Through environment-dependent fattening, the costs of fat can be avoided during warm periods and at locations where fat confers little benefit, whereas benefits of fat can be quickly gained if weather conditions become harsh and snowfall might restrict food. Three types of winter fatteners probably exist among birds: responders (fatten in response to the proximate environment), predictors (fatten in anticipation of long-term environmental conditions), and responder-predictors (combination of both types of regulation). Because dark-eyed juncos select different winter latitudes as they age, we hypothesize that the nonbreeding component of the life-history of juncos includes the co-adapted plastic traits of winter fattening and post-breeding migration. Life-history theory can apparently explain important traits related to fitness in the nonbreeding period.

  17. Comparing Aircraft Observations of Snowfall to Forecasts Using Single or Two Moment Bulk Water Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.

  18. Comparing Physics Scheme Performance for a Lake Effect Snowfall Event in Northern Lower Michigan

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Arnott, Justin M.

    2012-01-01

    High resolution forecast models, such as those used to predict severe convective storms, can also be applied to predictions of lake effect snowfall. A high resolution WRF model forecast model is provided to support operations at NWS WFO Gaylord, Michigan, using a 12 ]km and 4 ]km nested configuration. This is comparable to the simulations performed by other NWS WFOs adjacent to the Great Lakes, including offices in the NWS Eastern Region who participate in regional ensemble efforts. Ensemble efforts require diversity in initial conditions and physics configurations to emulate the plausible range of events in order to ascertain the likelihood of different forecast scenarios. In addition to providing probabilistic guidance, individual members can be evaluated to determine whether they appear to be biased in some way, or to better understand how certain physics configurations may impact the resulting forecast. On January 20 ]21, 2011, a lake effect snow event occurred in Northern Lower Michigan, with cooperative observing and CoCoRaHS stations reporting new snow accumulations between 2 and 8 inches and liquid equivalents of 0.1 ]0.25 h. The event of January 21, 2011 was particularly well observed, with numerous surface reports available. It was also well represented by the WRF configuration operated at NWS Gaylord. Given that the default configuration produced a reasonable prediction, it is used here to evaluate the impacts of other physics configurations on the resulting prediction of the primary lake effect band and resulting QPF. Emphasis here is on differences in planetary boundary layer and cloud microphysics parameterizations, given their likely role in determining the evolution of shallow convection and precipitation processes. Results from an ensemble of seven microphysics schemes and three planetary boundary layer schemes are presented to demonstrate variability in forecast evolution, with results used in an attempt to improve the forecasts in the 2011 ]2012

  19. Winter Art Education Project

    ERIC Educational Resources Information Center

    Jokela, Timo

    2007-01-01

    The purpose of this article is to describe how the Department of Art Education at the University of Lapland in Finland has developed winter art as a method of environmental and community-based art education. I will focus on the Snow Show Winter Art Education Project, a training project funded by the European Union and the State Provincial Office…

  20. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar LMA, and NWN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Bruning, Eric C.; Carey, Lawrence D.; Blakeslee, Richard J.

    2013-01-01

    Tall structures play and important role in development of winter time lightning flashes.To what extent still needs to be assessed. Tower initiated flashes typically occur as banded structures pass near/overhead. Hi resolution RHI s from polarimetric radar show that the lightning has a tendency to propagate through layered structures within these snowstorms.

  1. Winter and Summer Views of the Salt Lake Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera. Salt Lake City, situated near the southeastern shore of the Great Salt Lake, is host to the 2002 Winter Olympic Games, which open Friday, February 8. Venues for five of the scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained in these images. Some of the outdoor events take place at Ogden, situated north of Salt Lake City and at Park City, located to the east. Salt Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere enhances the moisture content of winter storms. These factors, in combination with natural cloud seeding by salt crystals from the lake, are believed to result in greater snowfall in neighboring areas compared to more distant locales. In addition to the obvious difference in snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The distinctly different coloration between the northern and southern arms of the Great Salt Lake is the result of a rock-filled causeway built in 1953 to support a permanent railroad. The causeway has resulted in decreased circulation between the two arms and higher salinity on the northern side. The southern part of the lake includes the large Antelope Island, and at full resolution a bridge connecting it to the mainland can be discerned. These images are natural color views acquired on February 8, 2001 and June 16, 2001, respectively. Each image represents an area of about 220 kilometers x 285 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  2. Declining Sea Ice Extent Links Early Winter Climate to Changing Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Arp, C. D.; Jones, B. M.; Cai, L.

    2015-12-01

    Lakes on the Alaskan North Slope regulate surface energy balance and interactions with permafrost as well as providing important habitat. Winter lake ice regimes (floating-ice or bedfast-ice conditions) determine whether lakes develop and maintain taliks and can support overwintering fish habitat. Lake ice thickness is a key variable determining whether a lake has a bedfast or floating-ice regime. Recent observations suggest a trend towards more lakes with floating-ice conditions due to thinner ice growth, but the broader scale associated climate conditions driving these regime shift are less certain. This study finds that the changing arctic summer/fall sea ice conditions might be affecting lake ice thickness on the North Slope. Late ocean freeze-up near the Alaskan coast leads to warmer weather and more snowfall in the early winter. Warmer early winters and thicker snowpack result in thinner lake ice the following winter thus potentially developing more ice-floating lakes before the start of the summer. Experiments with a regional atmospheric model WRF for two years with very different sea ice conditions indicate that the extent of open water next to the North Slope is a crucial factor for developing thicker snowpack, also warmer air temperature in early winter.

  3. Tree-ring-based snowfall record for cold arid western Himalaya, India since A.D. 1460

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Bhutiyani, Mahendra R.

    2013-07-01

    Understanding snowfall variations in high-elevation cold arid regions of the western Himalaya is important as snowmelt water is the main source of water to meet the scores of socioeconomic needs. The ground-based observational data, though limited to the last two decades, show decreasing snowfall, raising the concern of looming water scarcity in the region. The tree-ring data of Himalayan cedar from a network of six moisture-stressed sites, where snowmelt water is the sole source of soil moisture for tree growth, were used to develop the November-April snow water equivalent (SWE) extending back to A.D. 1460. The reconstruction revealed persistent severe droughts in the 1780s followed by the 1480s and relatively lesser magnitude droughts in the 1540s-1560s, 1740s, and early twentieth century. The pluvial conditions observed in 1948-1958 and 1986-1996 stand out over any other period of such duration. The SWE reconstruction revealed large-scale spatial coherence with the corresponding month's Palmer Drought Severity Index over the western Himalayan region. Significant relationship observed between SWE reconstruction and January-March Chenab River flow revealed its potential utility in understanding water resource availability in the long-term perspective.

  4. American woodcock winter distribution and fidelity to wintering areas

    USGS Publications Warehouse

    Diefenbach, D.R.; Derleth, E.L.; Vander Haegen, W.M.; Nichols, J.D.; Hines, J.E.

    1990-01-01

    We examined winter distribution and fidelity to wintering areas for the American Woodcock (Scolopax minor), which exhibits reversed, sexual size dimorphism. Band-recovery data revealed no difference in winter distributions of different age/sex classes for woodcock from the same breeding areas. Similarly, band recoveries from woodcock banded on wintering grounds revealed no difference in fidelity to wintering sites. Males may winter north of a latitude that is optimal for survival based on physiological considerations, but they gain a reproductive advantage if they are among the first to arrive on the breeding grounds. This may explain our results, which indicate males and females have similar distribution patterns during winter.

  5. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994-2013)

    NASA Astrophysics Data System (ADS)

    Salerno, F.; Guyennon, N.; Thakuri, S.; Viviano, G.; Romano, E.; Vuillermoz, E.; Cristofanelli, P.; Stocchi, P.; Agrillo, G.; Ma, Y.; Tartari, G.

    2015-06-01

    Studies on recent climate trends from the Himalayan range are limited, and even completely absent at high elevation (> 5000 m a.s.l.). This study specifically explores the southern slopes of Mt. Everest, analyzing the time series of temperature and precipitation reconstructed from seven stations located between 2660 and 5600 m a.s.l. during 1994-2013, complemented with the data from all existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period. Overall we find that the main and most significant increase in temperature is concentrated outside of the monsoon period. Above 5000 m a.s.l. the increasing trend in the time series of minimum temperature (+0.072 °C yr-1) is much stronger than of maximum temperature (+0.009 °C yr-1), while the mean temperature increased by +0.044 °C yr-1. Moreover, we note a substantial liquid precipitation weakening (-9.3 mm yr-1) during the monsoon season. The annual rate of decrease in precipitation at higher elevations is similar to the one at lower elevations on the southern side of the Koshi Basin, but the drier conditions of this remote environment make the fractional loss much more consistent (-47% during the monsoon period). Our results challenge the assumptions on whether temperature or precipitation is the main driver of recent glacier mass changes in the region. The main implications are the following: (1) the negative mass balances of glaciers observed in this region can be more ascribed to a decrease in accumulation (snowfall) than to an increase in surface melting; (2) the melting has only been favoured during winter and spring months and close to the glaciers terminus; (3) a decrease in the probability of snowfall (-10%) has made a significant impact only at glacier ablation zone, but the magnitude of this decrease is distinctly lower than the observed decrease in precipitation; (4) the decrease in accumulation could have caused the observed decrease in glacier flow

  6. Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.

    2009-01-01

    Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud

  7. Altered snowfall and soil disturbance influence the early life stage transitions and recruitment of a native and invasive grass in a cold desert

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment; structuring plant populations and communities, especially in mid-latitude systems. These water-limi...

  8. Jet streak circulations associated with a moderate snowfall event as diagnosed from NGM model output. [Nested Grid Model

    NASA Technical Reports Server (NTRS)

    Kocin, Paul J.; Uccellini, Louis W.; Skillman, William C.; Grumm, Richard H.

    1989-01-01

    The existence, evolution, and interaction of vertical circulations associated with upper-level jet streaks during a moderate snowfall event are diagnosed using a nested grid model (NGM). The event itself is overviewed, and the diagnosis of transverse circulations utilizing NGM output is discussed. Focus is placed on the identification of the horizontal and vertical components of the circulation, the temporal evolution of the circulation, and the comparison of the circulation from successive model forecasts. A preliminary analysis of the model data indicates that the horizontal and vertical branches of the circulations can be diagnosed from the model output, and the horizontal and vertical components of the circulations may be identified and followed during an individual forecast cycle.

  9. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is…

  10. Mammals in Winter.

    ERIC Educational Resources Information Center

    Wapner, Suzanne

    1985-01-01

    Mammals that tolerate the winter cold and stay active all year exploit the harsh northern climate to their advantage. By simple experiments and observation you can better understand their adaptations which include furry bodies, snowshoe feet, extra blubber, light coloration, and strategically distributed food caches. (JHZ)

  11. Influenza, Winter Olympiad, 2002

    PubMed Central

    Rubin, Michael A.; Samore, Matthew H.; Lopansri, Bert; Lahey, Timothy; McGuire, Heather L.; Winthrop, Kevin L.; Dunn, James J.; Willick, Stuart E.; Vosters, Randal L.; Waeckerle, Joseph F.; Carroll, Karen C.; Gwaltney, Jack M.; Hayden, Frederick G.; Elstad, Mark R.; Sande, Merle A.

    2006-01-01

    Prospective surveillance for influenza was performed during the 2002 Salt Lake City Winter Olympics. Oseltamivir was administered to patients with influenzalike illness and confirmed influenza, while their close contacts were given oseltamivir prophylactically. Influenza A/B was diagnosed in 36 of 188 patients, including 13 athletes. Prompt management limited the spread of this outbreak. PMID:16494733

  12. Winter Playscape Dreaming

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2006-01-01

    Winter, like all seasons, adds a new sense of mystery and discovery to the world of young children. It is the time when they can study snowflakes, find icicles, or observe the birds that share their yards. This article presents ideas and suggestions on how to plan a playscape. A playscape is a man-made seasonal playground for young children. It…

  13. A New Standard Installation Method of the Offline Seismic Observation Station in Heavy Snowfall Area of Tohoku Region

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Nakayama, T.; Hori, S.; Sato, T.; Chiba, Y.; Okada, T.; Matsuzawa, T.

    2015-12-01

    Soon after the 2011 Tohoku earthquake, seismic activity of Tohoku region, NE Japan is induced in the inland area of Akita prefecture and the border area between Fukushima and Yamagata prefectures. We plan to install a total of 80 offline seismic observation stations in these areas for studying the effect of megathrust earthquake on the activities of inland earthquakes. In our project, maintenance will be held twice-a-year for 4 years from 2015 by using 2.0Hz short-period 3-component seismometer, KVS-300 and ultra-low-power data logger, EDR-X7000 (DC12V 0.08W power supply). We installed seismometer on the rock surface or the slope of the natural ground at the possible sites confirmed with low noise level to obtain distinct seismic waveform data. We report an improvement in installation method of the offline seismic observation station in the heavy snowfall area of Tohoku region based on the retrieved data. In the conventional method, seismometer was installed in the hand-dug hole of a slope in case it is not waterproof. Data logger and battery were installed in the box container on the ground surface, and then, GPS antenna was installed on the pole fixed by stepladder. There are risks of the inclination of seismometer and the damage of equipment in heavy snowfall area. In the new method, seismometer is installed in the robust concrete box on the buried basement consists of precast concrete mass to keep its horizontality. Data logger, battery, and GPS antenna are installed on a high place by using a single pole with anchor bolt and a pole mount cabinet to enhance their safety. As a result, total costs of installation are kept down because most of the equipment is reusable. Furthermore, an environmental burden of waste products is reduced.

  14. Trends in snowfall versus rainfall in the Western United States--Revisited

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Knowles, N.; Cayan, D. R.

    2015-12-01

    Knowles et al. (J. Climate, 2006) documented long-term (1949-2004) trends in precipitation form, with a smaller fraction of precipitation falling, in recent decades, on days with reported snow compared to days when no snow was reported (and when precipitation was presumably rain). This precipitation-amount-corrected trend was found at three-quarters of 261 cooperative weather stations across the region. The trends correlated with corresponding trends towards warmer winter air temperatures at the weather stations involved. An update of those analyses through the more recent period indicates that the overall swing towards less precipitation fraction occurring on snowy days has continued through the intervening years, with 21st Century rain/snow fractions remaining significantly higher than historical norms at most stations. The same data have also been used to develop site-specific statistical relations between precipitation form (snowy-day precipitation vs purely rainy day) and air temperatures by logistical regressions at over 200 stations across the West, to determine whether the general temperature trends mentioned above have, in fact, been large enough to explain the trending precipitation forms. That is, were the warming trends detected across the West large enough to actually raise temperatures above the local snow-rain thresholds at most stations? The regression relations show that the temperature at which half of the wet days have been snowy historically varies, from station to station, across a range from -2ºC to +4ºC. Thus at some stations winter storm temperatures would have to rise above about -2ºC to markedly impact precipitation forms, while at other stations, temperature had to rise above +4ºC. Nonetheless, observed temperature trends since 1950 have been sufficient to explain the observed regional precipitation-form trends. The fitted precipitation form-temperature relations also provide a basis for estimating precipitation forms in hydrological

  15. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  16. Winter Wilderness Travel and Camping.

    ERIC Educational Resources Information Center

    Gilchrest, Norman

    Knowledge and skill are needed for safe and enjoyable travel and camping in the wilderness in winter. The beauty of snow and ice, reduced human use, and higher tolerance of animals toward humans make the wilderness attractive during winter. The uniqueness of winter travel presents several challenges that are not present in other seasons. Safety is…

  17. A potential vorticity-based index for the East Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Huang, Wenyu; Wang, Bin; Wright, Jonathon S.

    2016-08-01

    A novel dynamically based index that reflects the strength of the regional potential vorticity (PV) intrusion on the 300 K isentropic surface is proposed as a reliable measure of East Asian winter monsoon (EAWM) intensity. The index captures essential aspects of the EAWM, including its climatic influences on East Asia, its continuous weakening trend since the 1980s, and its close relationships with the Siberian high, Arctic Oscillation, and El Niño. The use of a potential vorticity framework enables the definition of a new metric called continuous PV intrusion duration (CPVID), which can be used to monitor and explain wintertime weather extremes like the extreme snowfall event that occurred in south China during January 2008. The CPVID of March is comparable to that of December, indicating that data from this month should be included in estimates of the strength of the EAWM.

  18. [Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat].

    PubMed

    Li, Xiang-dong; Zhang, De-qi; Wang, Han-fang; Shao, Yun-hui; Fang, Bao-ting; Lyu, Feng-rong; Yue, Jun-qin; Ma, Fu-ju

    2015-03-01

    The effect of temperature increment before the over-wintering period on winter wheat development and grain yield was evaluated in an artificial climate chamber (TPG 1260, Australia) from 2010 to 2011. Winter wheat cultivar 'Zhengmai 7698' was used in this study. Three temperature increment treatments were involved in this study, i.e., temperature increment last 40, 50 and 60 days, respectively, before the over-wintering period. Control was not treated by temperature increment. The results showed that temperature increment before the over-wintering period had no significant effect on earlier phase spike differentiation. But an apparent effect on later phase spike differentiation was observed. High temperature effect on spike differentiation disappeared when the difference of effective accumulated temperature between the temperature increment treatment and the control was lower than 25 °C. However, the foliar age at the jointing stage was enhanced more than 0.8, heading and physiological ripening were advanced 1 day each, when the effective accumulated temperature before the over-wintering period increased 60 °C. Higher effective accumulated temperature before the over-wintering period accelerated winter wheat growth and development, which resulted in a short spike differentiation period. Winter wheat was easy to suffer freeze damage, which lead to floret abortion and spikelet death in spring under this situation. Meanwhile, higher effective accumulated temperature before the over-wintering period also reduced, photosynthetic capacity of flag leaf, shortened the grain filling period, and led to wheat grain yield reduction.

  19. Winter and Summer Views of the Salt Lake Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera. Salt Lake City, situated near the southeastern shore of the Great Salt Lake, is host to the 2002 Winter Olympic Games, which open Friday, February 8. Venues for five of the scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained in these images. Some of the outdoor events take place at Ogden, situated north of Salt Lake City and at Park City, located to the east.

    Salt Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere enhances the moisture content of winter storms. These factors, in combination with natural cloud seeding by salt crystals from the lake, are believed to result in greater snowfall in neighboring areas compared to more distant locales.

    In addition to the obvious difference in snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The distinctly different coloration between the northern and southern arms of the Great Salt Lake is the result of a rock-filled causeway built in 1953 to support a permanent railroad. The causeway has resulted in decreased circulation between the two arms and higher salinity on the northern side. The southern part of the lake includes the large Antelope Island, and at full resolution a bridge connecting it to the mainland can be discerned.

    These images are natural color views acquired on February 8, 2001 and June 16, 2001, during Terra orbits 6093 and 7957, respectively. Each image represents an area of about 220 kilometers x 285 kilometers.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth

  20. Winter Frost and Fog

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog.

    Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  1. The History of Winter: A Professional Development "Teacher as Scientist" Experiential Learning Field Experience.

    NASA Astrophysics Data System (ADS)

    Gabrys, R. E.

    2007-12-01

    ) Program, the Global Snowflake Network (GSN) launched in the winter of 2006 engages an international audience including both formal and informal education groups. The goal is to provide an interactive online data resource in science and education for the characterization of snowfall and related weather systems. The Global Snowflake Network has been accepted as an education outreach proposal for the International Polar Year. Collaborations with other agencies and universities also with IPY-accepted proposals are now underway. HOW and the GSN are endorsed by the NASA Goddard Education Office and many of the Goddard Snow and Ice Team scientists. Together these programs offer a unique, sustainable, and proven outreach for the Cryosphere research program. Snowflakes are like frozen data points, their shape is a record of atmospheric conditions at the time of their formation. The shapes of snowflakes vary over the winter season, with the source of a weather system and over the course of a given snowfall. The objective of the Global Snowflake Network (GSN) is to create a global ground team of teachers, students, families, and researchers worldwide to identify snowflake types during the progress of snowfalls. The result is a unique and scientifically valid resource useful to meteorology and scientific modeling of Earth's Hydrosphere. The Global Snowflake Network (GSN), simultaneously a science program and an education program is presented as a simple, scientifically valid project that has the potential to spread the IPY message and produce a lasting resource to further scientific understanding of Earth's hydrology through the study of snow.

  2. The Winter Olympics--On Ice.

    ERIC Educational Resources Information Center

    Hoover, Barbara G.

    1998-01-01

    Describes several science activities designed around the upcoming Winter Olympics ice skating events which demonstrate the scientific principles behind the sport. Students learn that increasing the pressure on ice will lead to the ice melting, the principle involved in the spinning swing, and the technology of skates and skating outfits. (PVD)

  3. Spirit's Winter Work Site

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  4. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  5. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  6. Yield and yield components of winter-type safflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Safflower (Carthamus tinctorius L.) is a minor yet widely grown oil seed crop adapted to semi-arid regions. The nascent development of winter adapted safflower, allowing fall planting,could substantially increase seed production over spring planting. In this study four winter type safflower accessi...

  7. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  8. Impacts of a changing winter precipitation regime on the Great Snowforest of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Knudsvig, H.; Dery, S. J.; Coxson, D.

    2012-12-01

    Rising air temperatures have profoundly impacted British Columbia (BC) mountain ecosystems, including its Interior Wetbelt. This region supports the sole Interior Temperate Rainforest (ITR), or perhaps more appropriately "snowforest", of North America. This snowforest encompasses about 30,500 km2 and contains Western redcedar (Thuja plicata) and western hemlock (Tsuga heteropylla) in excess of 1500 years old. This region is projected to be one of the more vulnerable biogeoclimatic zones in BC due to forest operations and climate change. Loss of snow as a storage medium has the potential to negatively affect the forest. A decrease in snow water equivalent (SWE) has the potential to decrease soil moisture values; impacts of decreased water availability in this region have the possibility to affect soil moisture storage, vegetative species composition, flora and fauna interdependence, and pathogen outbreaks. Given the projected climate change in high latitude and altitude areas, this project analyzes the contemporary and potential future climate of BC's Interior Wetbelt and explores the possible environmental and ecohydrological impacts of climate change on the snowforest. Models project an increase in air temperature and precipitation but a decrease in snowfall in this region. Analyses of the snow depth, SWE, and temperature from the Upper Fraser River Basin automated snow pillow sites of the BC River Forecast Centre (RFC) were conducted; snow depth, SWE, and temperature were also measured at the field site via automated weather stations and bi-monthly snow surveys. Surveys recorded depth and SWE after observed peak accumulation and continued until snowpack was depleted in 80% of the field site. To determine the influence of precipitation on the soil moisture levels in the ITR, soil moisture and water table levels were measured for the 2011-12 water year in addition to meteorological conditions; snow, spring water, and near surface ground water samples were collected

  9. The Influence of El Niño and La Niña on Winter Climate Conditions at 138 Ski Resorts in Western North America

    NASA Astrophysics Data System (ADS)

    Pidwirny, M. J.; Mei Turney, A.

    2014-12-01

    This research examines the effect El Niño and La Niña have on the climate conditions of 138 ski resorts in western North America. Using ClimateWNA, monthly values for snowfall and degree days < 0°C (a measure of winter season coldness) were generated for the mid-slope elevation of the resorts for the primary ski season months of December, January, February, and March. From this data, composite values were computed by summing the four months analyzed for each of the two variables, with the December value coming from the previous year. Regression analysis was used to see if a relationship exists between the two climate variables and a summed composite of the monthly Southern Oscillation Index (SOI) for the same four months. Correlation coefficients were determined by regressing the observations for the time period 1935 to 2012. The correlation coefficients were then mapped using ARCGIS to display possible spatial patterns across the study area. Different map symbols were used to identify whether the correlation coefficient was positive or negative, and whether it fell within four levels of statistical significance: P ≥ 0.01, P < 0.01, P < 0.001, and P < 0.0001. Correlation coefficients with probability values equal to P ≥ 0.01 were considered not significant on the map. For the variable degree days < 0°C, resorts located in British Columbia, Alberta, Washington, and coastal south Oregon generally had warmer than usual winters during El Niño events and colder winters when SOI values suggested the occurrence of La Niña. A single resort, Ski Apache in New Mexico showed the opposite trend. Snowfall was found to be higher during La Niña events and lower with El Niño events for a number of resorts above 42° N latitude. Further, the strength of these correlations generally decreased with distance from the coast. Resorts in New Mexico and Arizona generally had more snowfall with El Niño and less snowfall with La Niña.

  10. Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes.

    NASA Astrophysics Data System (ADS)

    Assel, Raymond A.; Janowiak, John E.; Young, Sharolyn; Boyce, Daron

    1996-01-01

    The Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963-93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers.Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures

  11. Winter Clouds Over Mie

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 March 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image shows late winter clouds over the 104 km (65 mi) diameter crater, Mie. Cellular clouds occur in the lower martian atmosphere, surrounding Mie Crater. Their cloudtops are at an altitude that is below the crater rim. Higher than the crater rim occurs a series of lee wave clouds, indicating air circulation moving from west/northwest (left) toward the east/southeast (right). Mie Crater is located in Utopia Planitia, not too far from the Viking 2 landing site, near 48.5 N, 220.4 W. Sunlight illuminates this January 2004 scene from the lower left.

  12. Spirit Scans Winter Haven

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand.

    This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  13. Winter Survival: A Consumer's Guide to Winter Preparedness.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet discusses a variety of topics to help consumers prepare for winter. Tips for the home include: winterizing the home, dealing with a loss of heat or power failure, and what you need to have on hand. Another section gives driving tips and what to do in a storm. Health factors include suggestions for keeping warm, signs and treatment for…

  14. Snow line analysis in the Romanian Carpathians under the influence of winter warming

    NASA Astrophysics Data System (ADS)

    Micu, Dana; Cosmin Sandric, Ionut

    2013-04-01

    The Romanian Carpathians are subject to winter warming as statistically proved by station measurements over a 47 year period (1961-2007). Herein, the snow season is considered to last from the 1st of November to the 30th of April, when snowpack usually reaches the highest stability and thickness. This paper investigates the signals of winter temperature and precipitation change at 17 mountain station located above 1,000 m, as being considered the main triggering factors of large fluctuations in snow amount and duration in these mountains. Fewer snowfalls were recorded all over the Romanian Carpathians after the mid 80s and over large mountain areas (including the alpine ones) the frequency of positive temperature extremes became higher (e.g. winter heat waves). Late Fall snowfalls and snowpack onsets (mainly in mid elevation areas, located below 1,700 m) and particularly the shifts towards early Spring snowmelts (at all the sites) were statistically proved to explain the decline of snow cover duration across the Carpathians. However, the sensitivity of snow cover duration to recent winter warming is still blurred in the high elevation areas (above 2,000 m). The trends in winter climate variability observed in the Romanian Carpathians beyond 1,000 m altitude are fairly comparable to those estimated in other European mountain ranges from observational data (e.g. the Swiss Alps, the French Alps and the Tatra Mts.). In relation to the climate change signals derived from observational data provided by low density mountain meteorological network (of about 3.3 stations per km2 in the areas above 1,000 m), the paper analysis the spatial probability and evolution trends of snow line in each winter season across the Romanian Carpathians, based on Landsat satellite data (MSS, TM and ETM+), with sufficiently high spatial (30 to 60 m) and temporal resolutions (850 images), over the 1973-2011 period. The Landsat coverage was considered suitable enough to enable an objective

  15. Winter climate limits subantarctic low forest growth and establishment.

    PubMed

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally.

  16. Winter Climate Limits Subantarctic Low Forest Growth and Establishment

    PubMed Central

    Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  17. Duration of prepupal summer dormancy regulates synchronization of adult diapause with winter temperatures in bees of the genus Osmia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osmia (Osmia) bees are strictly univoltine and winter as diapausing adults. In these species, the timing of adult eclosion with the onset of wintering conditions is critical, because adults exposed to long pre-wintering periods show increased lipid loss and winter mortality. Populations from warm ar...

  18. Waterbirds foods in winter-managed ricefields in Mississippi

    USGS Publications Warehouse

    Manley, S.W.; Kaminski, R.M.; Reinecke, K.J.; Gerard, P.D.

    2004-01-01

    Ricefields are important foraging habitats for waterfowl and other waterbirds in primary North American wintering regions. We conducted a large-scale experiment to test effects of post-harvest ricefield treatment, winter water management, and temporal factors on availabilities of rice, moist-soil plant seeds, aquatic invertebrates, and green forage in the Mississippi Alluvial Valley (MAV), Mississippi, USA, fall-winter 1995-1997. Our results revealed that a large decrease in rice grain occurred between harvest and early winter (79-99%), which, if generally true throughout the MAV, would have critical implications on foraging carrying capacity of ricefields for migrating and wintering waterbirds. During the remainder of winter, food resources generally were similar among treatment combinations. An exception was biomass of aquatic invertebrates, which demonstrated potential to increase by late winter in ricefields that remained flooded. We offer revised calculations of foraging carrying capacity for waterfowl in MAV ricefields and recommend continuing research and management designed to increase availability of residual rice and aquatic invertebrates in winter.

  19. Do High-elevation Lakes Record Variations in Snowfall and Atmospheric Rivers in the Sierra Nevada of California?

    NASA Astrophysics Data System (ADS)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.

    2014-12-01

    Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.

  20. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New

  1. Lessons learned from the snow emergency management of winter season 2008-2009 in Piemonte

    NASA Astrophysics Data System (ADS)

    Bovo, Dr.; Pelosini, Dr.; Cordola, Dr.

    2009-09-01

    The winter season 2008-2009 has been characterized by heavy snowfalls over the whole Piemonte, in the Western Alps region. The snowfalls have been exceptional because of their earliness, persistence and intensity. The impact on the regional environment and territory has been relevant, also from the economical point of view, as well as the effort of the people involved in the forecasting, prevention and fighting actions. The environmental induced effects have been shown until late spring. The main critical situations have been arisen from the snowfalls earliness in season, the several snow precipitation events over the plains, the big amount of snow accumulation on the ground, as well as the anomaly with respect to the last 30 years climatic trend of snow conditions in Piemonte. The damage costs to the public property caused by the snowfalls have been estimated by the Regione Piemonte to be 470 million euros, giving evidence of the real emergency dimension of the event, never occurred during the last 20 years. The technical support from the Regional Agency for Environmental Protection of Regione Piemonte (Arpa Piemonte) to the emergency management allowed to analyse and highlight the direct and induced effects of the heavy snowfalls, outlining risk scenarios characterized by different space and time scales. The risk scenarios deployment provided a prompt recommendation list, both for the emergency management and for the natural phenomena evolution surveillance planning to assure the people and property safety. The risk scenarios related to the snow emergency are different according to the geographical and anthropic territory aspects. In the mountains, several natural avalanche releases, characterized frequently by a large size, may affect villages, but they may also interrupt the main and secondary roads both down in the valleys and small villages road access, requiring a long time for the complete and safe snow removal and road re-opening. The avalanches often

  2. Winter fuels report

    SciTech Connect

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  3. Surgical Risks Associated with Winter Sport Tourism

    PubMed Central

    Sanchez, Stéphane; Payet, Cécile; Lifante, Jean-Christophe; Polazzi, Stéphanie; Chollet, François; Carty, Matthew J; Duclos, Antoine

    2015-01-01

    Background Mass tourism during winter in mountain areas may cause significant clustering of body injuries leading to increasing emergency admissions at hospital. We aimed at assessing if surgical safety and efficiency was maintained in this particular context. Methods We selected all emergency admissions of open surgery performed in French hospitals between 2010 and 2012. After identifying mountain areas with increasing volume of surgical stays during winter, we considered seasonal variations in surgical outcomes using a difference-in-differences study design. We computed multilevel regressions to evaluate whether significant increase in emergency cases had an effect on surgical mortality, complications and length of stay. Clustering effect of patients within hospitals was integrated in analysis and surgical outcomes were adjusted for both patient and hospital characteristics. Results A total of 381 hospitals had 559,052 inpatient stays related to emergency open surgery over 3 years. Compared to other geographical areas, a significant peak of activity was noted during winter in mountainous hospitals (Alps, Pyrenees, Vosges), ranging 6-77% volume increase. Peak was mainly explained by tourists’ influx (+124.5%, 4,351/3,496) and increased need for orthopaedic procedures (+36.8%, 4,731/12,873). After controlling for potential confounders, patients did not experience increased risk for postoperative death (ratio of OR 1.01, 95%CI 0.89-1.14, p = 0.891), thromboembolism (0.95, 0.77-1.17, p = 0.621) or sepsis (0.98, 0.85-1.12, p = 0.748). Length of stay was unaltered (1.00, 0.99-1.02, p = 0.716). Conclusion Surgical outcomes are not compromised during winter in French mountain areas despite a substantial influx of major emergencies. PMID:25970625

  4. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.

    PubMed

    Dahal, Keshav; Kane, Khalil; Gadapati, Winona; Webb, Elizabeth; Savitch, Leonid V; Singh, Jasbir; Sharma, Pooja; Sarhan, Fathey; Longstaffe, Fred J; Grodzinski, Bernard; Hüner, Norman P A

    2012-02-01

    The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non-acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22-40% increase in light-saturated rates of CO₂ assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO₂ assimilation and photosynthetic electron transport, (2) the increased efficiency and light-saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non-photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q₁₀) of CO₂ assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17-overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness.

  5. Late Holocene Winter Temperatures in the Eastern Mediterranean and Their Relation to Cultural Changes: The Kocain Cave Record

    NASA Astrophysics Data System (ADS)

    Mert Gokturk, Ozan; Fleitmann, Dominik; Badertscher, Seraina; Cheng, Hai; Edwards, R. Lawrence; Tuysuz, Okan

    2015-04-01

    Based on the δ13C profile of a stalagmite from the Kocain Cave in southern Turkey, we present a new proxy record of winter temperatures for the Eastern Mediterranean covering the last ~5500 years. In this region precisely-dated and highly-resolved paleoclimate records for the cold season are almost non-existent. The comparison of the most recent part of the Kocain record with meteorological observations reveals that stalagmite δ13C values correlate on decadal scale with the amount of snowfall above the cave, which correlates well with average winter temperatures. More negative δ13C values indicate higher drip rates in the cave due to more efficient infiltration during snowmelt above Kocain Cave, during colder winters. Cold periods in the rest of the record coincide with widespread glacier advances, especially with the ones in the Alps during the Bronze Age - Iron Age transition (from ~1000 BC on) and the late Little Ice Age (~1600 to 1850 AD). This further supports the interpretation of δ13C as a temperature proxy. Although winters during the Medieval Climate Anomaly were not continuously warm in the Eastern Mediterranean, winter warmth in the modern era was matched or exceeded several times in the last ~5700 years, especially during the time of Minoan civilization in Crete (~2700 to 1200 BC). Moreover, we provide evidence for the important role of winter cold and drought in the events leading to the unrest in the 16th century Anatolia during the Ottoman rule. Kocain Cave record brings insights into several climatically-induced historical changes in the Eastern Mediterranean, and has the potential to be a key record in a region with a long and vibrant history.

  6. Impact of radiosonde data over the Arctic ice on forecasting winter extreme weather over mid latitude

    NASA Astrophysics Data System (ADS)

    Sato, Kazutoshi; Inoue, Jun; Yamazaki, Akira; Kim, Joo-hong; Maturilli, Marion; Dethloff, Klaus; Hudson, Stephen

    2016-04-01

    In February 2015, the Arctic air outbreak caused extreme cold events and heavy snowfall over the mid latitude, in particular over the North America. During the winter, special radiosonde observations were made on the Norwegian RV Lance around the north of Svalbard under the N-ICE2015 project. We investigated the impact of the radiosonde data on forecasting of a cold extreme event over the eastern North America using the AFES-LETKF experimental ensemble reanalysis version2 (ALERA2) data set. ALERA2 was used as the reference reanalysis (CTL) while the observing-system experiment (OSE) assimilated the same observational data set, except for the radiosonde data obtained by the RV Lance. Using these two reanalysis data as initial values, ensemble forecasting experiments were conducted. Comparing these ensemble forecasts, there were large differences in the position and depth of a predicted tropopause polar vortex. The CTL forecast well predicted the southward intrusion of the polar vortex which pushed a cold air over the eastern North America from the Canadian Archipelago. In the OSE forecast, in contrast, the trough associated with southward intrusion of the polar vortex was weak, which prevented a cold outbreak from Arctic. This result suggested that the radiosonde observations over the central Arctic would improve the skill of weather forecasts during winter.

  7. Nutritional condition of Pacific Black Brant wintering at the extremes of their range

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2006-01-01

    Endogenous stores of energy allow birds to survive periods of severe weather and food shortage during winter. We documented changes in lipid, protein, moisture, and ash in body tissues of adult female Pacific Black Brant (Branta bernicla nigricans) and modeled the energetic costs of wintering. Birds were collected at the extremes of their winter range, in Alaska and Baja California, Mexico. Body lipids decreased over winter for birds in Alaska but increased for those in Baja California. Conversely, body protein increased over winter for Brant in Alaska and remained stable for birds in Baja California. Lipid stores likely fuel migration for Brant wintering in Baja California and ensure winter survival for those in Alaska. Increases in body protein may support earlier reproduction for Brant in Alaska. Predicted energy demands were similar between sites during late winter but avenues of expenditure were different. Birds in Baja California spent more energy on lipid synthesis while those in Alaska incurred higher thermoregulatory costs. Estimated daily intake rates of eelgrass were similar between sites in early winter; however, feeding time was more constrained in Alaska because of high tides and short photoperiods. Despite differences in energetic costs and foraging time, Brant wintering at both sites appeared to be in good condition. We suggest that wintering in Alaska may be more advantageous than long-distance migration if winter survival is similar between sites and constraints on foraging time do not impair body condition. ?? The Cooper Ornithological Society 2006.

  8. [Heavy snowfalls and electrical power cuts in the Muenster area in November and December of 2005: implications on foodstuffs and health sector, private disaster preparedness and stockpiling].

    PubMed

    Menski, U; Gardemann, J

    2009-06-01

    Heavy snowfalls caused electrical power cuts in the rural Muenster area in November and December of 2005. Because of the necessity of complex relief coordination, the incident command was soon transferred to the administrative districts. In a survey, 591 of the affected households were asked in written form on their attitude towards disaster preparedness and private stockpiling of foodstuffs in the districts of Steinfurt und Borken in June, 2006. Even their personal experience of a failure of critical infrastructures had not changed the confidence of the affected population in public disaster management and their unconcerned attitude towards private stockpiling of foodstuffs had not been affected either.

  9. Factors Contributing to Extremely Wet Winters in California

    NASA Astrophysics Data System (ADS)

    Jong, B. T.; Ting, M.; Seager, R.

    2015-12-01

    As California continues to battle the severe drought conditions, it becomes increasingly important to understand the atmospheric and oceanic conditions that may possible break this ongoing drought. Is a strong El Niño, such as the 2015/16 event, enough to break the drought? We examine in this study the possible factors that lead to extremely wet winters (the wettest 15%) in both Northern and Southern CA. The relationships between CA winter precipitation and sea surface temperature conditions in the Pacific, as well as atmospheric circulation are determined by using observational and reanalysis data from 1901 to 2010. One of the key features of the atmospheric circulation is the location of the low pressure anomaly, whether caused by El Niño or other factors. If the anomaly locates right off the US west coast, CA tends to be wet, and vice versa. Furthermore, the duration of the circulation anomaly seems to be crucial. During wet El Niño winters, the peak of the circulation anomaly is in the late winter, whereas, during non-wet El Niño winters, the peak of the anomaly is in the early winter. Thus, an El Niño that can last to late winter is more likely to cause an extremely wet winter in the state. The intensity of El Niño is another critical factor. In the wettest tercile late winter, a strong El Niño can bring about 200% of climatological precipitation to CA, while a weak El Niño can bring only less than 150% of climatology. In combination, only a strong El Niño that can last to late winter may make extremely wet winters very likely in CA. To explore the other factors, composites of circulation anomaly during wet & non-El Niño winters were also analyzed. The results show that a zonally propagating wave train, originating from western North Pacific, contributes to low pressure center and wet winter conditions in the state. Thus, coastal low pressure anomaly is a consistent feature for an extremely wet winters in California, but the origin of forcing can

  10. The Challenge of Winter Backpacking.

    ERIC Educational Resources Information Center

    Cavanaugh, Michael; Mapes, Alan

    1981-01-01

    Tips and techniques for safe and enjoyable winter backpacking are offered. Topics covered include cross county skis, snowshoes, clothing, footwear, shelter, sleeping bags, food, hypothermia prevention, as well as general rules and requirements. (CO)

  11. [Winter sports and shoulder arthroplasty].

    PubMed

    Kirchhoff, C; Imhoff, A B; Hinterwimmer, S

    2008-09-01

    Nowadays, a general negative evaluation of sportive activity regarding different kinds of sport following arthroplasty is at present no more scientifically supported. However, at present no valid guidelines regarding sportive activity of patients after implantation of shoulder joint arthroplasty exist. The question regarding the ability of performing winter sports activities of patients treated with shoulder joint endoprothesis has not been answered so far. Therefore the aim of the presented work was to identify winter sports-specific risks for patients treated with shoulder joint endoprothesis as well as to critically discuss the actual literature in refer to winter sport activities. Criteria for the education of patients with shoulder joint endoprothesis as well as consultation regarding winter sport activities will be provided for the orthopaedic surgeon.

  12. Winter Storms and Extreme Cold

    MedlinePlus

    ... Us Social Media Contact Us FAQS Publications Emergency Alerts Home Search × Close Search Enter Search Term(s): Languages × ... take when you receive a winter weather storm alert from the National Weather Service for your local ...

  13. Lightning Protection against Winter Lightning

    NASA Astrophysics Data System (ADS)

    Sugimoto, Hitoshi

    Winter lightning, which occurs along the Sea of Japan coast, often damages transmission lines and distribution lines with the conventional lightning protection. These lines in mountainous areas suffer extensive damage from winter lightning. It is very important to investigate the features of lightning outages in detail to improve the lightning protection measures against winter lightning, therefore observations of lightning strokes to transmission lines and distribution lines as well as measurements of lightning surges on these lines have been carried out. And then the lightning performance of various protection methods has studied by experiments and analyses. Taking into account these studies, the effective methods have been adopted. This paper presents the lightning protection of transmission lines and distribution lines against winter lightning.

  14. Winter thunderstorms in central Europe in the past and the present

    NASA Astrophysics Data System (ADS)

    Munzar, Jan; Franc, Marek

    Thunderstorms in the territories of the Czech Republic and neighbouring countries are almost exclusively the only phenomena occurring in the warm season. In the cold half of the year, from October to March, an average incidence of thunderstorms is only 2%, with the least occurrence being recorded in January. Yet, winter thunderstorms are dangerous particularly for air traffic because during them, the cloud base is rapidly falling down and visibility is suddenly worsening due to heavy snowfall. Notwithstanding these facts, the issue of their occurrence in the central European space has been paid little attention so far. Long years of study into historical weather extremes in the territory of the Czech Republic revealed over 10 chronicle entries on the occurrence of winter thunderstorms in the period between November and February from the 16th to the beginning of the 20th centuries. The irregular phenomenon was even devoted three occasional prints in central Europe in the second half of the 16th century, two of which were issued in Germany. Fires caused by winter thunderstorms were no sporadic cases. The occurrence of thunderstorms in winter was apparently associated with the passage of pronounced cold fronts. This can be documented on cases from the end of December 1555 when heavy thunderstorms and consequent fires were recorded within a short period of time in Holland, Germany and in Czech lands. It is assumed that the situation in 1627 was similar when a winter thunderstorm was recorded in Prague and in Holešov, southeastern Moravia on 28 December. In February 1581, a thunderstorm in Prague became one of three unusual events publicized by the local occasional newspaper. The beginning of modern studies into winter thunderstorms dates back to the 1960s with the use of lightning flash counters and later also with the use of systems for large-scale lightning flash detection and localization. However, more comprehensive meteorological and climatological assessments of

  15. Lemming winter habitat choice: a snow-fencing experiment.

    PubMed

    Reid, Donald G; Bilodeau, Frédéric; Krebs, Charles J; Gauthier, Gilles; Kenney, Alice J; Gilbert, B Scott; Leung, Maria C-Y; Duchesne, David; Hofer, Elizabeth

    2012-04-01

    The insulative value of early and deep winter snow is thought to enhance winter reproduction and survival by arctic lemmings (Lemmus and Dicrostonyx spp). This leads to the general hypothesis that landscapes with persistently low lemming population densities, or low amplitude population fluctuations, have a low proportion of the land base with deep snow. We experimentally tested a component of this hypothesis, that snow depth influences habitat choice, at three Canadian Arctic sites: Bylot Island, Nunavut; Herschel Island, Yukon; Komakuk Beach, Yukon. We used snow fencing to enhance snow depth on 9-ha tundra habitats, and measured the intensity of winter use of these and control areas by counting rodent winter nests in spring. At all three sites, the density of winter nests increased in treated areas compared to control areas after the treatment, and remained higher on treated areas during the treatment. The treatment was relaxed at one site, and winter nest density returned to pre-treatment levels. The rodents' proportional use of treated areas compared to adjacent control areas increased and remained higher during the treatment. At two of three sites, lemmings and voles showed significant attraction to the areas of deepest snow accumulation closest to the fences. The strength of the treatment effect appeared to depend on how quickly the ground level temperature regime became stable in autumn, coincident with snow depths near the hiemal threshold. Our results provide strong support for the hypothesis that snow depth is a primary determinant of winter habitat choice by tundra lemmings and voles.

  16. The winter anomaly and sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.

    1984-08-01

    Large-scale stratospheric warmings are examined on the basis of 22-year measurements of radio-wave absorption at the Panska Ves observatory. It is shown that these warmings, accompanied by the reversal of wind direction in the lower thermosphere, lead not to an increase but to a decrease in the radio-wave absorption in the lower ionosphere, i.e., to the disappearance of the winter anomaly. It is concluded that the absorption decrease is connected not only with cooling in the mesopause region but also with a total change in the dynamic conditions of the lower ionosphere. The behavior of the winter anomaly in the 1979-1980 and 1981-1982 periods is examined in detail.

  17. Disturbance to wintering western snowy plovers

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2001-01-01

    In order to better understand the nature of disturbances to wintering snowy plovers, I observed snowy plovers and activities that might disturb them at a beach near Devereux Slough in Santa Barbara, California, USA. Disturbance (activity that caused plovers to move or fly) to wintering populations of threatened western snowy plovers was 16 times higher at a public beach than at protected beaches. Wintering plovers reacted to disturbance at half the distance (∼40 m) as has been reported for breeding snowy plovers (∼80 m). Humans, dogs, crows and other birds were the main sources of disturbance on the public beach, and each snowy plover was disturbed, on average, once every 27 weekend min and once every 43 weekday min. Dogs off leash were a disproportionate source of disturbance. Plovers were more likely to fly from dogs, horses and crows than from humans and other shorebirds. Plovers were less abundant near trail heads. Over short time scales, plovers did not acclimate to or successfully find refuge from disturbance. Feeding rates declined with increased human activity. I used data from these observations to parameterize a model that predicted rates of disturbance given various management actions. The model found that prohibiting dogs and a 30 m buffer zone surrounding a 400 m stretch of beach provided the most protection for plovers for the least amount of impact to beach recreation.

  18. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  19. Winter sports dermatology: a review.

    PubMed

    Englund, Sumedha Lamba; Adams, Brian B

    2009-01-01

    As more individuals choose to maintain their fitness level year-round, they inevitably encounter skin problems. During these athletic pursuits, the skin must endure ongoing insult, serving as the interface between the athlete and environmental factors unique to the sport and season. Therefore, primary care physicians and dermatologists must understand how athletic activity and weather contribute to the development of dermatoses. By appropriately recognizing winter sport dermatoses, the practitioner can best provide tailored effective treatment that enables the patient to quickly return to the winter sport.

  20. Winter Outdoor Education Activities: Snowshoes and Exploring the Winter Environment.

    ERIC Educational Resources Information Center

    Matthews, Bruce E.; And Others

    Designed as a resource base upon which elementary school educators can build outdoor learning experiences, this resource packet contains a basic, multidisciplinary snowshoeing lesson plan, pre- and post-trip suggestions, and suggestions for further winter outdoor study on snowshoes. Specifically, there are narratives and illustrations addressed at…

  1. Temporal trends of perfluoroalkyl substances (PFAS) in eggs of coastal and offshore birds: Increasing PFAS levels associated with offshore bird species breeding on the Pacific coast of Canada and wintering near Asia.

    PubMed

    Miller, Aroha; Elliott, John E; Elliott, Kyle H; Lee, Sandi; Cyr, Francois

    2015-08-01

    Perfluoroalkyl substances (PFAS) such as perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) have become virtually ubiquitous throughout the environment, and, based on laboratory studies, have known toxicological consequences. Various national and international voluntary phase-outs and restrictions on these compounds have been implemented over the last 10 to 15 years. In the present study, we examine trends (1990/1991-2010/2011) in aquatic birds (ancient murrelet, Synthliboramphus antiquus [2009 only]; Leach's storm-petrels, Oceanodroma leucorhoa; rhinoceros auklets, Cerorhinca monocerata; double-crested cormorants, Phalacrocorax auritus; and great blue herons, Ardea herodias). The PFCA, PFSA, and stable isotope (δ(15) N and δ(13) C) data collected from these species from the Pacific coast of Canada, ranging over 20 to 30 years, were used to investigate temporal changes in PFAS coupled to dietary changes. Perfluorooctane sulfonic acid (PFOS), the dominant PFSA compound in all 4 species, increased and subsequently decreased in auklet and cormorant eggs in line with the manufacturing phase-out of PFOS and perfluorooctanoic acid (PFOA), but concentrations continuously increased in petrel eggs and remained largely unchanged in heron eggs. Dominant PFCA compounds varied between the offshore and coastal species, with increases seen in the offshore species and little or variable changes seen in the coastal species. Little temporal change was seen in stable isotope values, indicating that diet alone is not driving observed PFAS concentrations.

  2. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.

    PubMed

    Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis

    2014-06-24

    To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

  3. Significant warming of the Antarctic winter troposphere.

    PubMed

    Turner, J; Lachlan-Cope, T A; Colwell, S; Marshall, G J; Connolley, W M

    2006-03-31

    We report an undocumented major warming of the Antarctic winter troposphere that is larger than any previously identified regional tropospheric warming on Earth. This result has come to light through an analysis of recently digitized and rigorously quality controlled Antarctic radiosonde observations. The data show that regional midtropospheric temperatures have increased at a statistically significant rate of 0.5 degrees to 0.7 degrees Celsius per decade over the past 30 years. Analysis of the time series of radiosonde temperatures indicates that the data are temporally homogeneous. The available data do not allow us to unambiguously assign a cause to the tropospheric warming at this stage.

  4. [Effects of irrigation time on the growth and water- and fertilizer use efficiencies of winter wheat].

    PubMed

    Dang, Jian-You; Pei, Xue-Xia; Wang, Jiao-Ai; Zhang, Jing; Cao, Yong; Zhang, Ding-Yi

    2012-10-01

    A field experiment was conducted to study the effects of irrigation time before wintering (November 10th, November 25th, and December 10th) and in spring (March 5th, re-greening stage; and April 5th, jointing stage) on the growth, dry matter translocation, water use efficiency (WUE), and fertilizer use efficiency (FUE) of winter wheat after returning corn straw into soil. The irrigation time before wintering mainly affected the wheat population size before wintering and at jointing stage, whereas the irrigation time in spring mainly affected the spike number, grain yield, dry matter translocation, WUE, and FUE. The effects of irrigation time before wintering to the yield formation of winter wheat were closely related to the irrigation time in spring. When the irrigation time in spring was at re-greening stage, the earlier the irrigation time before wintering, the larger the spike number and the higher the grain yield; when the irrigation time in spring was at jointing stage, the delay of the irrigation time before wintering made the spike number and grain yield decreased after an initial increase, the kernel number per plant increased, while the 1000-kernel mass was less affected. The WUE, nutrition uptake, and FUE all decreased with the delay of the irrigation time before wintering, but increased with the delay of the irrigation time in spring. Therefore, under the conditions of returning corn straw into soil and sowing when the soil had enough moisture, to properly advance the irrigation time before wintering could make the soil more compacted, promote the tillering and increase the population size before winter, and in combining the increased irrigation at jointing stage, could control the invalid tillering in early spring, increase the spiking rate, obtain stable kernel mass, and thus, increase the WUE and FUE, realizing water-saving and high efficiency for winter wheat cultivation.

  5. Confounded winter and spring phenoclimatology on large herbivore ranges

    USGS Publications Warehouse

    Christianson, David; Klaver, Robert W.; Middleton, Arthur; Kauffman, Matthew

    2013-01-01

    Annual variation in winter severity and growing season vegetation dynamics appear to influence the demography of temperate herbivores but parsing winter from spring effects requires independent metrics of environmental conditions specific to each season. We tested for independence in annual variation amongst four common metrics used to describe winter severity and early growing season vegetation dynamics across the entire spatial distribution of elk (Cervus elaphus) in Wyoming from 1989 to 2006. Winter conditions and early growing season dynamics were correlated in a specific way. Winters with snow cover that ended early tended to be followed by early, but slow, rises in the normalized difference vegetation index (NDVI), while long winters with extended periods of snow cover were often followed by late and rapid rises in NDVI. Across the 35 elk ranges, 0.4–86.8 % of the variation in the rate of increase in NDVI’s in spring was explained by the date snow cover disappeared from SNOTEL stations. Because phenoclimatological metrics are correlated across seasons and shifting due to climate change, identifying environmental constraints on herbivore fitness, particularly migratory species, is more difficult than previously recognized.

  6. Winter movement dynamics of Black Brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  7. Winter movement dynamics of black brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998–Mar 2000) using capture–recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  8. Wintering ecology of adult North American ospreys

    USGS Publications Warehouse

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  9. GOES Satellite Movie of 2014 Winter Storms

    NASA Video Gallery

    This new animation of NOAA's GOES-East satellite imagery shows the movement of winter storms from January 1 to March 24 making for a snowier-than-normal winter along the U.S. East coast and Midwest...

  10. A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques

    USGS Publications Warehouse

    Nelson, S.J.; Johnson, K.B.; Weathers, K.C.; Loftin, C.S.; Fernandez, I.J.; Kahl, J.S.; Krabbenhoft, D.P.

    2008-01-01

    Atmospheric mercury (Hg) is delivered to ecosystems via rain, snow, cloud/fog, and dry deposition. The importance of snow, especially snow that has passed through the forest canopy (throughfall), in delivering Hg to terrestrial ecosystems has received little attention in the literature. The snowpack is a dynamic system that links atmospheric deposition and ecosystem cycling through deposition and emission of deposited Hg. To examine the magnitude of Hg delivery via snowfall, and to illuminate processes affecting Hg flux to catchments during winter (cold season), Hg in snow in no-canopy areas and under forest canopies measured with four collection methods were compared: (1) Hg in wet precipitation as measured by the Mercury Deposition Network (MDN) for the site in Acadia National Park, Maine, USA, (2) event throughfall (collected after snowfall cessation for accumulations of >8 cm), (3) season-long throughfall collected using the same apparatus for event sampling but deployed for the entire cold season, and (4) snowpack sampling. Estimates (mean ?? SE) of Hg deposition using these methods during the 91-day cold season in 2004-2005 at conifer sites showed that season-long throughfall Hg flux (1.80 ??g/m2) < snowpack Hg (2.38 ?? 0.68 ??g/m2) < event throughfall flux (5.63 ?? 0.38 ??g/m2). Mercury deposition at the MDN site (0.91 ??g/m2) was similar to that measured at other no-canopy sites in the area using the other methods, but was 3.4 times less than was measured under conifer canopies using the event sampling regime. This indicates that snow accumulated under the forest canopy received Hg from the overstory or exhibited less re-emission of Hg deposited in snow relative to open areas. The soil surface of field-scale plots were sprayed with a natural rain water sample that contained an Hg tracer (202Hg) just prior to the first snowfall to explore whether some snowpack Hg might be explained from soil emissions. The appearance of the 202Hg tracer in the snowpack (0

  11. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last two decades (1994-2013)

    NASA Astrophysics Data System (ADS)

    Salerno, F.; Guyennon, N.; Thakuri, S.; Viviano, G.; Romano, E.; Vuillermoz, E.; Cristofanelli, P.; Stocchi, P.; Agrillo, G.; Ma, Y.; Tartari, G.

    2014-12-01

    Studies on recent climate trends from the Himalayan range are limited, and even completely absent at high elevation. This contribution specifically explores the southern slopes of Mt. Everest (central Himalaya), analyzing the minimum, maximum, and mean temperature and precipitation time series reconstructed from seven stations located between 2660 and 5600m a.s.l. over the last twenty years (1994-2013). We complete this analysis with data from all the existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period. Overall we observe that the main and more significant increase in temperature is concentrated outside of the monsoon period. At higher elevations minimum temperature (0.072 ± 0.011 °C a-1, p < 0.001) increased far more than maximum temperature (0.009 ± 0.012 °C a-1, p > 0.1), while mean temperature increased by 0.044 ± 0.008 °C a-1, p < 0.05. Moreover, we note a substantial precipitation weakening (9.3 ± 1.8mm a-1, p < 0.01 during the monsoon season). The annual rate of decrease at higher elevation is similar to the one at lower altitudes on the southern side of the Koshi Basin, but here the drier conditions of this remote environment make the fractional loss much more consistent (47% during the monsoon period). This study contributes to change the perspective on which climatic driver (temperature vs. precipitation) led mainly the glacier responses in the last twenty years. The main implications are the following: (1) the negative mass balances of glaciers observed in this region can be more ascribed to less accumulation due to weaker precipitation than to an increase of melting processes. (2) The melting processes have only been favored during winter and spring months and close to the glaciers terminus. (3) A decreasing of the probability of snowfall has significantly interested only the glaciers ablation zones (10%, p < 0.05), but the magnitude of this phenomenon is decidedly lower than the

  12. Fertilizer effects on a winter cereal cover crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benefits associated with conservation tillage in the Southeast are improved by using a winter cereal cover crop. In general, cover crop benefits increase as biomass production is increased, but the infertile soils typically require additional N (inorganic or organic). Currently, limited informatio...

  13. 36 CFR 1002.19 - Winter activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open to... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Winter activities....

  14. 36 CFR 2.19 - Winter activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on park roads and in... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Winter activities....

  15. Leadership in American Indian Communities: Winter Lessons

    ERIC Educational Resources Information Center

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that…

  16. Winter cover crops influence Amaranthus palmeri establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  17. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.

    PubMed

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.

  18. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    PubMed

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  19. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies

    PubMed Central

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351

  20. Does Zoning Winter Recreationists Reduce Recreation Conflict?

    NASA Astrophysics Data System (ADS)

    Miller, Aubrey D.; Vaske, Jerry J.; Squires, John R.; Olson, Lucretia E.; Roberts, Elizabeth K.

    2017-01-01

    Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation—often by non-motorized and motorized activity—is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation conflict in the Vail Pass Winter Recreation Area in Colorado, USA. Despite a zoning management system, established groomed travel routes were used by both non-motorized recreationists (backcountry skiers, snowboarders, snowshoers) and motorized recreationists (snowmobilers). We hypothesized that persistent recreation conflict reported by non-motorized recreationists was the result of recreation occurring in areas of mixed non-motorized and motorized use, mostly along groomed routes. We performed a geospatial analysis of recreation [from Global Positioning System (GPS) points, n = 1,233,449] in the Vail Pass Winter Recreation Area to identify areas of mixed non-motorized and motorized use. We then surveyed non-motorized recreationists ( n = 199) to test whether reported conflict is higher for respondents who traveled in areas of mixed-use, compared with respondents traveling outside areas of mixed-use. Results from the geospatial analysis showed that only 0.7 % of the Vail Pass Winter Recreation Area contained recreation from both groups, however that area contained 14.8 % of all non-motorized recreation and 49.1 % of all motorized recreation. Survey analysis results showed higher interpersonal conflict for all five standard conflict variables among non-motorized respondents who traveled in areas of mixed-use, compared with those traveling outside mixed-use areas. Management implications and recommendations for increasing the effectiveness of zoning are provided.

  1. Does Zoning Winter Recreationists Reduce Recreation Conflict?

    PubMed

    Miller, Aubrey D; Vaske, Jerry J; Squires, John R; Olson, Lucretia E; Roberts, Elizabeth K

    2017-01-01

    Parks and protected area managers use zoning to decrease interpersonal conflict between recreationists. Zoning, or segregation, of recreation-often by non-motorized and motorized activity-is designed to limit physical interaction while providing recreation opportunities to both groups. This article investigated the effectiveness of zoning to reduce recreation conflict in the Vail Pass Winter Recreation Area in Colorado, USA. Despite a zoning management system, established groomed travel routes were used by both non-motorized recreationists (backcountry skiers, snowboarders, snowshoers) and motorized recreationists (snowmobilers). We hypothesized that persistent recreation conflict reported by non-motorized recreationists was the result of recreation occurring in areas of mixed non-motorized and motorized use, mostly along groomed routes. We performed a geospatial analysis of recreation [from Global Positioning System (GPS) points, n = 1,233,449] in the Vail Pass Winter Recreation Area to identify areas of mixed non-motorized and motorized use. We then surveyed non-motorized recreationists (n = 199) to test whether reported conflict is higher for respondents who traveled in areas of mixed-use, compared with respondents traveling outside areas of mixed-use. Results from the geospatial analysis showed that only 0.7 % of the Vail Pass Winter Recreation Area contained recreation from both groups, however that area contained 14.8 % of all non-motorized recreation and 49.1 % of all motorized recreation. Survey analysis results showed higher interpersonal conflict for all five standard conflict variables among non-motorized respondents who traveled in areas of mixed-use, compared with those traveling outside mixed-use areas. Management implications and recommendations for increasing the effectiveness of zoning are provided.

  2. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  3. The impact of winter heating on air pollution in China.

    PubMed

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004-2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating.

  4. Metabolic Acclimation to Hypoxia in Winter Cereals 1

    PubMed Central

    Andrews, Christopher J.; Pomeroy, M. Keith

    1989-01-01

    Cold hardened seedlings of winter wheat (Triticum aestivum L. em Thell) show an hypoxic hardening response: an exposure to low temperature flooding increases the tolerance of plants to a subsequent ice encasement exposure. Seedlings of winter barley (Hordeum vulgare L.) do not show such a response in similar experimental conditions. During ice encasement, there are general declines in adenylate energy charge (AEC), total adenylates and ATP:ADP ratios in the crown tissues of two winter wheat cultivars, and a winter barley, but rates of decline are faster in the barley. When the ice period is preceded by low temperature flooding of the whole plant, levels of the adenylate components are raised significantly in the wheats, and to a lesser extent in the barley. The survival of plants in ice preceded by flooding is related to the increased initial level of adenylates at the onset of the ice encasement stress, and the maintenance of higher levels of adenylates and ATP in the early stages of ice encasement as a result of accelerated rates of glycolysis. Higher survival of both winter wheat and barley plants during ice encasement in the light is also associated with significantly higher levels of AEC and adenylates in the early stages of ice encasement. PMID:16667112

  5. Physiological responses of Yellowstone bison to winter nutritional deprivation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian

    1994-01-01

    Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.

  6. Research on Winter Lightning in Japan

    NASA Astrophysics Data System (ADS)

    Ishii, Masaru

    Winter lightning in Japan is known for such characteristics as frequent occurrence of upward lightning and of positive ground flashes. On the engineering side, higher frequencies of troubles at transmission lines or wind turbines in winter due to lightning than those in summer have been experienced in the winter thunderstorm area of Japan, despite the much smaller number of lightning strokes in winter observed by lightning location systems (LLS). Such frequent troubles by lightning in the cold season are unique in Japan, which have promoted intensive research on winter lightning in Japan since 1980s.

  7. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, David H.; Dau, Christian P.; Tibbitts, T. Lee; Sedinger, James S.; Anderson, Betty A.; Hines, James E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  8. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions.

    PubMed

    Desai, Suresh D; Currie, Robert W

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was

  9. Effects of Wintering Environment and Parasite–Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions

    PubMed Central

    Currie, Robert W.

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was

  10. Winter fog is decreasing in the fruit growing region of the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Baldocchi, Dennis; Waller, Eric

    2014-05-01

    The Central Valley of California is home to a variety of fruit and nut trees. These trees account for 95% of the U.S. production, but they need a sufficient amount of winter chill to achieve rest and quiescence for the next season's buds and flowers. In prior work, we reported that the accumulation of winter chill is declining in the Central Valley. We hypothesize that a reduction in winter fog is cooccurring and is contributing to the reduction in winter chill. We examined a 33 year record of satellite remote sensing to develop a fog climatology for the Central Valley. We find that the number of winter fog events, integrated spatially, decreased 46%, on average, over 32 winters, with much year to year variability. Less fog means warmer air and an increase in the energy balance on buds, which amplifies their warming, reducing their chill accumulation more.

  11. Communicating Certainty About Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment

  12. Scenario-based risk analysis of winter snowstorms in the German lowlands

    NASA Astrophysics Data System (ADS)

    von Wulffen, Anja

    2014-05-01

    The northern German lowlands are not especially known for a high frequency of snowfall events. Nevertheless under certain synoptic conditions Lake-Effect-like phenomena caused by the proximity especially of the Baltic Sea can lead to significantly reinforced snowfall intensities that are often accompanied by rather high wind speeds. This makes for infrequent but potentially disastrous snowstorms in a region less accustomed to snow impacts. One possible consequence of an infrastructure failure cascade resulting from severe and longer-lasting snowstorms is a regional disruption of the food supply chain. In the context of "just-in-time"-logistics and the accompanying decrease of storage capabilities, this poses a significant threat to the population's food security. Within the project NeuENV ("New strategies to ensure sufficient food supply in case of crisis in Germany") a snowstorm in the German lowlands involving widespread disruptions of the transportation infrastructure as well as power failures is therefore used as one model for future food supply chain disruptions. In order to obtain a reliable evaluation of the supply chain and crisis management resilience, a detailed snowstorm scenario is being developed. For this purpose, a database of impact reports of past snowstorm events is assembled and analysed to obtain a comprehensive overview of potential infrastructure impairments and failures. Examples of events analysed in this context include the winter 1978/79 with its disastrous snow drifts that commonly attained heights of 3m to 5m leading to a transportation infrastructure collapse across a wide area, the wet snow event in November 2005 in the Münsterland region that caused power failures for up to 250.000 homes, and more recent snowstorms such as Daisy in January 2010. A catalogue of thresholds for relevant parameters indicating when significant failures can be expected is then compiled through a comparison of impact reports with the detailed meteorological

  13. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices

    NASA Astrophysics Data System (ADS)

    Hong, Ja-Young; Ahn, Joong-Bae; Jhun, Jong-Ghap

    2017-01-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The fields regressed onto the indices that resemble the composite strong winter monsoon pattern are simulated more or less weakly in CMIP5 compared to the observation. However, the regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1 to 5 °C under RCP4.5 and from 3 to 7 °C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal

  14. Daily movements of female mallards wintering in Southwestern Louisiana

    USGS Publications Warehouse

    Link, P.T.; Afton, A.D.; Cox, R.R.; Davis, B.E.

    2011-01-01

    Understanding daily movements of waterfowl is crucial to management of winter habitats, especially along the Gulf Coast where hunting pressure is high. Radio-telemetry was used to investigate movements of female Mallards (Anas platyrchychos) wintering in southwestern Louisiana. Movement distances were analyzed from 2,455 paired locations (diurnal and nocturnal) of 126 Mallards during winters 2004-2005 and 2005-2006 to assess effects of winter, female age, areas closed (Lacassine National Wildlife Refuge [LAC], Cameron Prairie National Wildlife Refuge [CAM], Amoco Pool [AMOCO] or open to hunting [OPEN]), and habitat type, including all interactions. Movement distances from the various land management categories were not consistent by age, date, or by winter. Flight distances from LAC increased with date, whereas those from CAM and OPEN did not vary significantly by date. Female Mallards moved short distances between diurnal and nocturnal sites (ranging from 3.1 to 15.0 km by land management category), suggesting that they are able to meet their daily energy requirements within a smaller area than Northern Pintails (Anas acuta, hereafter Pintails), and thus minimize transit energy costs.

  15. Seasonal Forecasts for Northern Hemisphere Winter 2015/16

    NASA Astrophysics Data System (ADS)

    Ineson, Sarah; Scaife, Adam; Comer, Ruth; Dunstone, Nick; Fereday, David; Folland, Chris; Gordon, Margaret; Karpechko, Alexey; Knight, Jeff; MacLachlan, Craig; Smith, Doug; Walker, Brent

    2016-04-01

    The northern winter of 2015/16 gave rise to the strongest El Niño event since 1997/8. Central and eastern Pacific sea surface temperature anomalies exceeded three degrees and closely resembled the strong El Niño in winter of 1982/3. A second feature of this winter was a strong westerly phase of the Quasi-Biennial Oscillation and very strong winds in the stratospheric polar night jet. At the surface, intense extratropical circulation anomalies occurred in both the North Pacific and North Atlantic that were consistent with known teleconnections to the observed phases of ENSO and the QBO. The North Atlantic Oscillation was very positive in the early winter period (Nov-Dec) and was more blocked in the late winter. Initialised climate predictions were able to capture these signals at seasonal lead times. This case study adds to the evidence that north Atlantic circulation exhibits predictability on seasonal timescales, and in this case we show that even aspects of the detailed pattern and sub-seasonal evolution were predicted, providing warning of increased risk of extreme events such as the intense rainfall which caused extreme flooding in the UK in December.

  16. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2016-05-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  17. KPI Graduate Executive Summary Report, Summer 2000-Winter 2001.

    ERIC Educational Resources Information Center

    Sheridan Coll. (Ontario).

    Summarizes findings from the Key Performance Indicator Satisfaction Survey administered by Sheridan College in the summer 2000, fall 2000, and winter 2001 terms. This survey was administered in compliance with the Ontario government's efforts to increase the accountability of the Colleges of Applied Arts and Technology through the measurement of…

  18. Winter cover crops impact on corn production in semiarid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been proposed as a technique to increase soil health. This study examined the impact of winter brassica cover crop cocktails grown after wheat (Triticum aestivum) on corn yields; corn yield losses due to water and N stress; soil bacteria to fungi ratios; mycorrhizal markers; and ge...

  19. Climatology of the winter Red Sea Trough

    NASA Astrophysics Data System (ADS)

    Awad, Adel M.; Almazroui, Mansour

    2016-12-01

    In this study, a new and objective method for detecting the Red Sea Trough (RST) was developed using mean sea level pressure (SLP) data from NCEP/NCAR reanalysis dataset from the winters of 1956 to 2015 to identify the Sudan Low and its trough. Approximately 96% of the winter RSTs were generated near two main sources, South Sudan and southeastern Sudan, and approximately 85% of these troughs were in four of the most outer areas surrounding the northern Red Sea. Moreover, from west to east of the Red Sea, the RST was affected by the relationships between the Siberian High and Azores High. The RST was oriented to the west when the strength of the Siberian High increased and to the east when the strength of the Azores High increased. Furthermore, the synoptic features of the upper level of the RST emphasize the impacts of subtropical anticyclones at 850 hPa on the orientation of the RST, the impacts of the northern cyclone trough and the maximum wind at a pressure level of 250 hPa. The average static stability between 1000 hPa and 500 hPa demonstrated that the RST followed the northern areas of low static stability. The results from previous studies were confirmed by a detailed case study of the RST that extended to its central outermost area. The results of a detailed case study of the short RST indicated that the trough becomes shorter with increasing static stability and that the Azores and Siberian high-pressure systems influence the northern region of the trough while the maximum upper wind shifts south of the climate position.

  20. The importance of agricultural lands for Himalayan birds in winter.

    PubMed

    Elsen, Paul R; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S

    2017-04-01

    The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural

  1. Dynamics of Weight Change and Temperature of Apis mellifera (Hymenoptera: Apidae) Colonies in a Wintering Building With Controlled Temperature.

    PubMed

    Stalidzans, E; Zacepins, A; Kviesis, A; Brusbardis, V; Meitalovs, J; Paura, L; Bulipopa, N; Liepniece, M

    2017-01-04

    Honey bee wintering in a wintering building (indoors) with controlled microclimate is used in some cold regions to minimize colony losses due to the hard weather conditions. The behavior and possible state of bee colonies in a dark room, isolated from natural environment during winter season, was studied by indirect temperature measurements to analyze the expression of their annual rhythm when it is not affected by ambient temperature, rain, snow, wind, and daylight. Thus, the observed behavior in the wintering building is initiated solely by bee colony internal processes. Experiments were carried out to determine the dynamics of temperature above the upper hive body and weight dynamics of indoors and outdoors wintered honey bee colonies and their brood-rearing performance in spring. We found significantly lower honey consumption-related weight loss of indoor wintered colonies compared with outdoor colonies, while no significant difference in the amount of open or sealed brood was found, suggesting that wintering building saves food and physiological resources without an impact on colony activity in spring. Indoor wintered colonies, with or without thermal insulation, did not have significant differences in food consumption and brood rearing in spring. The thermal behavior and weight dynamics of all experimental groups has changed in the middle of February possibly due to increased brood-rearing activity. Temperature measurement above the upper hive body is a convenient remote monitoring method of wintering process. Predictability of food consumption in a wintering building, with constant temperature, enables wintering without oversupply of wintering honey.

  2. Larix decidua δ(18)O tree-ring cellulose mainly reflects the isotopic signature of winter snow in a high-altitude glacial valley of the European Alps.

    PubMed

    Leonelli, Giovanni; Battipaglia, Giovanna; Cherubini, Paolo; Saurer, Matthias; Siegwolf, Rolf T W; Maugeri, Maurizio; Stenni, Barbara; Fusco, Stella; Maggi, Valter; Pelfini, Manuela

    2017-02-01

    We analyzed the chronologies of cellulose stable isotopes (δ(13)C and δ(18)O) and tree-ring widths from European larch (Larix decidua) in a high-altitude site (2190ma.s.l.) at the bottom of a glacial valley in the Italian Alps, and investigated their dependence on monthly meteorological variables and δ(18)O precipitation values. The δ(18)O of tree-ring cellulose appears to be strongly driven by the δ(18)O of winter snowfall (November to March), which suggests that larch trees mostly use the snow-melt water of the previous winter during the growing season. This water, which also comes from the slope streams and from the underground flow of nearby steep slopes, infiltrates the soil in the valley bottom. The tree-ring cellulose δ(18)O values were also found to be influenced by the August precipitation δ(18)O and mean temperature. The associated regression model shows that the δ(18)O chronology from the tree rings explains up to 34% of the variance in the winter precipitation δ(18)O record, demonstrating the potential for reconstructing the δ(18)O isotopic composition of past winter precipitation in the study region. Unlike most other tree-ring studies that focus on growing season signals, in our study the summer signal was small and the winter signal dominant due to the special conditions of the glacial valley. Site topography, geomorphology and soil characteristics in particular influence the stable isotope signal in tree-ring cellulose.

  3. Investigating coherent vortex structures in the near wake of a utility-scale wind turbine using flow visualization with natural snowfalls

    NASA Astrophysics Data System (ADS)

    Dasari, Teja; Hong, Jiarong

    2016-11-01

    Flow visualization techniques using natural snowfall have been shown as an effective tool to probe coherent flow structures around utility-scale wind turbines. Here we present a follow-up study using the data collected during multiple deployments from 2014 to 2016 around the 2.5 MW turbine at EOLOS wind energy research station. The data include flow visualization from different perspectives in the near wake of the turbine. Coherent wake structures, including blade tip vortex, trailing vortex sheet, nacelle-generated structures, and tower vortex characterized by the snow voids, are correlated with atmospheric conditions (e.g. turbulence intensity), turbine operational conditions (e.g. power and tip-speed ratio) as well as turbine response (e.g. tower and blade strain). Physical factors and processes that affect the features and the behaviors of tip vortices including their void size and shape, their stability (e.g. meandering and intermittent appearance) and vortex interaction (e.g. vortex merging and leapfrogging) are analyzed. In particular, a strong influence of the tower on tip-vortex structures is demonstrated through simultaneous comparison of vortex voids at elevations below and above the height of nacelle and the plan view visualization. Sponsored by NSF Fluid Dynamics Program.

  4. Deacclimation may be crucial for winter survival of cereals under warming climate.

    PubMed

    Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika

    2017-03-01

    Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk.

  5. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  6. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  7. Forest tree seedlings may suffer from predicted future winters

    NASA Astrophysics Data System (ADS)

    Domisch, Timo; Repo, Tapani; Martz, Françoise; Rautio, Pasi

    2016-04-01

    Future climate scenarios predict increased precipitation and air temperatures, particularly at high latitudes, and especially so during winter, spring and autumn. However, soil temperatures are more difficult to predict, since they depend strongly on the insulating snow cover. Warm periods during winter can lead to thaw-freeze cycles and flooding, which again can result in the formation of ice layers, affecting soil properties, soil gas concentrations and the survival of tree seedlings. We conducted two laboratory experiments of 20 weeks duration each, simulating winter, spring and early summer, and imposed Scots pine (Pinus sylvestris L.) or downy birch (Betula pubescens Ehrh.) seedlings to four different winter scenarios: (1) ambient snow cover, (2) compressed snow and ice encasement, (3) frozen flood and (4) no snow. We estimated the stress that the seedlings experienced by means of gas exchange, chlorophyll fluorescence and determining above- and belowground biomass and carbohydrate contents, as well as measuring soil oxygen and carbon dioxide concentrations. The seedlings in the snow and compressed snow treatments survived until the end of the experiments, although only those covered with an ambient snow cover showed normal height growth and typical carbohydrate contents. The seedlings in the other treatments showed symptoms of dieback already during early spring and had almost completely died at the end of the experiment. Our results suggest the crucial significance of the protective snow cover, and that a missing soil cover or soil hypoxia and anoxia during winter can be lethal for seedlings, and that respiratory losses and winter desiccation of aboveground organs can further lead to the death of tree seedlings.

  8. Travel distance and mass gain in wintering blackbirds.

    PubMed

    Cresswell

    1999-11-01

    Birds that range over a large area will have a greater mass-dependent risk of predation than more sedentary birds. Birds that travel more may then reduce winter mass gain to compensate for the increased predation risk that greater travelling entails. I tested whether European blackbirds, Turdus merula, that travelled more in winter had a lower mass than more sedentary birds, independently of any confounding effects of food supply on both ranging behaviour and mass gain. I measured change in winter mass and amount of food eaten in conjunction with the distance that blackbirds travelled to a randomly sited mobile feeder. Blackbirds that travelled shorter distances (per trip and in total) and less often to the feeder had the highest mass midwinter relative to their spring mass. Blackbirds with a higher mean mass midwinter also travelled, on average, shorter distances to the feeder. The distance an individual blackbird travelled to the feeder at any one time was probably independent of the state of its daily energy reserves (how much of its daily total mass gain it had achieved at that point). The relationship between distance travelled and mass was probably independent of food supply because distances actually increased at the end of the winter and the amount of food eaten per individual changed little. More mobile blackbirds were therefore likely to have compensated for any increases in predation risk associated with their greater ranges by decreasing winter mass gain, but will have had an increased risk of starvation because of their lower mass. Copyright 1999 The Association for the Study of Animal Behaviour.

  9. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaves of many angiosperm evergreen species turn red during winter, corresponding with synthesis of anthocyanin pigments. The function of winter color change, and why it occurs in some species and not others, is not yet understood. We hypothesized that anthocyanins play a compensatory photoprotect...

  10. Abrupt Decline in the Arctic Winter Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2007-01-01

    Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.

  11. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of...

  12. Increased snow facilitates plant invasion in mixedgrass prairie.

    PubMed

    Blumenthlal, D; Chimner, R A; Welker, J M; Morgan, J A

    2008-07-01

    Although global change is known to influence plant invasion, little is known about interactions between altered precipitation and invasion. In the North American mixedgrass prairie, invasive species are often abundant in wet and nitrogen (N)-rich areas, suggesting that predicted changes in precipitation and N deposition could exacerbate invasion. Here, this possibility was tested by seeding six invasive species into experimental plots of mixedgrass prairie treated with a factorial combination of increased snow, summer irrigation, and N addition. Without added snow, seeded invasive species were rarely observed. Snow addition increased average above-ground biomass of Centaurea diffusa from 0.026 to 66 g m(-2), of Gypsophila paniculata from 0.1 to 7.3 g m(-2), and of Linaria dalmatica from 5 to 101 g m(-2). Given added snow, summer irrigation increased the density of G. paniculata, and N addition increased the density and biomass of L. dalmatica. Plant density responses mirrored those of plant biomass, indicating that increases in biomass resulted, in part, from increases in recruitment. In contrast to seeded invasive species, resident species did not respond to snow addition. These results suggest that increases in snowfall or variability of snowfall may exacerbate forb invasion in the mixedgrass prairie.

  13. The influence of winter swimming on the rheological properties of blood.

    PubMed

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  14. Shifting covariability of North American summer monsoon precipitation with antecedent winter precipitation

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.

    2006-01-01

    Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.

  15. Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes).

    PubMed

    Glanville, Elsa J; Seebacher, Frank

    2010-03-01

    Small mammals that remain active throughout the year at a constant body temperature have a much greater energy and food requirement in winter. Lower body temperatures in winter may offset the increased energetic cost of remaining active in the cold, if cellular metabolism is not constrained by a negative thermodynamic effect. We aimed to determine whether variable body temperatures can be advantageous for small endotherms by testing the hypothesis that body temperature fluctuates seasonally in a wild rat (Rattus fuscipes); conferring an energy saving and reducing food requirements during resource restricted winter. Additionally we tested whether changes in body temperature affected tissue specific metabolic capacity. Winter acclimatized rats had significantly lower body temperatures and thicker fur than summer acclimatized rats. Mitochondrial oxygen consumption and the activity of enzymes that control oxidative (citrate synthase, cytochrome c-oxidase) and anaerobic (lactate dehydrogenase) metabolism were elevated in winter and were not negatively affected by the lower body temperature. Energy transfer modeling showed that lower body temperatures in winter combined with increased fur thickness to confer a 25 kJ day(-1) energy saving, with up to 50% owing to reduced body temperature alone. We show that phenotypic plasticity at multiple levels of organization is an important component of the response of a small endotherm to winter. Mitochondrial function compensates for lower winter body temperatures, buffering metabolic heat production capacity.

  16. Animals in Winter. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    de Sairigne, Catherine

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume introduces the habits of a variety of animals during the winter. Topics include: (1) surviving during winter, including concepts such as migration, hibernation, and skin color change; (2) changing…

  17. Stem rust resistance in 'Jagger' winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Jagger" has been utilized widely as a parent to develop hard red winter wheat varieties throughout the U.S. southern Great Plains. Jagger has resistance to stem rust pathogen race TTTTF, which is virulent to many winter wheat cultivars, yet the genetic basis of this resistance remains unknown. Mark...

  18. Nuclear Winter: Scientists in the Political Arena

    NASA Astrophysics Data System (ADS)

    Badash, Lawrence

    2001-03-01

    The nuclear winter phenomenon is used to illustrate the many paths by which scientific advice reaches decision makers in the United States government. Because the Reagan administration was hostile to the strategic policy that the scientific discovery seemed to demand, the leading proponent of nuclear winter, Carl Sagan, used his formidable talent for popularization to reach a larger audience.

  19. Does cold winter weather produce depressive symptoms?

    NASA Astrophysics Data System (ADS)

    Garvey, Michael J.; Goodes, Mike; Furlong, Candy; Tollefson, Gary D.

    1988-06-01

    To examine whether harsh winter weather is associated with depressive symptoms, 45 healthy subjects from Minnesota were compared to 42 subjects from California near the end of the winter season. No differences in the prevalence of depressive symptoms were found between the two groups.

  20. The Winter Environment. Environmental Education Curriculum.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    Winter seems to hold more mysteries than any other season. It changes the behavior of wildlife and also brings about drastic changes in plant life. This unit, designed around the following two ideas: (1) to develop an appreciation and understanding of the winter season and (2) to understand how plants and wildlife are affected by the winter…

  1. Short winters threaten temperate fish populations

    PubMed Central

    Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.

    2015-01-01

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973–2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations. PMID:26173734

  2. Short winters threaten temperate fish populations.

    PubMed

    Farmer, Troy M; Marschall, Elizabeth A; Dabrowski, Konrad; Ludsin, Stuart A

    2015-07-15

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973-2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations.

  3. Short winters threaten temperate fish populations

    NASA Astrophysics Data System (ADS)

    Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.

    2015-07-01

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973-2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations.

  4. Mass dynamics of wintering Pacific Black Brant: Body, adipose tissue, organ, and muscle masses vary with location

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2007-01-01

    We compared body size and mass of the whole body, organs, adipose tissue, and muscles of adult Pacific Black Brant (Branta bernicla nigricans (Lawrence, 1846)) collected concurrently in Alaska and Baja California during the fall, winter, and spring of 2002–2003. Head and tarsal lengths of males were similar between sites and slightly larger for females in Alaska than in Baja California. Brant appear to operate under similar physiological bounds, but patterns of nutrient allocation differ between sites. Birds wintering in Alaska lost similar amounts of adipose tissue during early winter as birds in Baja California gained during late winter before migration. Masses of the body, adipose tissue, and flight muscles during mid-winter were similar between sites. Seasonal adipose tissue deposition may, therefore, equally favor winter residency or long-distance migration. Gonad and liver masses increased in late winter for birds in Alaska but not for those in Baja California, suggesting birds wintering in Baja may delay reproductive development in favor of allocating reserves needed for migration. Phenotypic flexibility allows Brant to use widely divergent wintering sites. The wintering location of Brant likely depends more upon changes in environmental conditions and food availability, than upon physiological differences between the two wintering populations.

  5. A Pan-arctic Survey about the Meaning of Winter Respiration in Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Selbmann, A. K.; Natali, S.

    2015-12-01

    The arctic is warming at twice the rate of the rest of the planet, with the greatest warming occurring during the winter months. Despite the cold temperatures during the winter, microbial activity continues and leads to a release of soil carbon during a criticial period when plant uptake has ceased. Due to the warming climate, huge pools of carbon stored in permafrost soils are expected to be released to the atmosphere. To identify the annual carbon balance of arctic ecosystems and potential impacts caused by a rise in temperatures, understanding the magnitude of winter respiration is essential. In order to refine current and future estimates of carbon loss from permafrost ecosystems, we conducted a pan-arctic synthesis of winter respiration from northern high latitude regions. We examined differences in cumulative winter respiration among permafrost zones, biomes, ecosystem types, and effects of measurement method on winter respiration estimates. We also examined effect of air temperature and precipitation (Worldclim database) on rates of winter respiration. The database contained 169 measurement points from 46 study sites located throughout the permafrost zones. We found that 21.6 % of annual respiration is happening during non-growing season, which can shift ecosystems from annual sinks during the growing season to net sources of carbon on an annual basis. Across studies, the average carbon loss during the winter was 66 g CO2-C. There was a strong relationship between mean annual air temperature and winter respiration, and lower respiration in continuous compared to discontinuous permafrost zones and northern areas without permafrost. The present results clarify the contribution of winter respiration to annual carbon balance and show the sensitivity of carbon release to rising temperatures in northern high latitudes. These results suggest that permafrost degradation and increased temperature will lead to a higher release of carbon from the Arctic in wintertime

  6. Effects of climate on mid-winter ice jams

    NASA Astrophysics Data System (ADS)

    Beltaos, Spyros

    2002-03-01

    The breakup of ice in Canadian rivers and the ensuing ice jams have a multitude of socio-economic impacts. Equally important, but not as well understood, is the strong relationship between the breakup event and the aquatic ecosystem in terms of both habitat and life cycle. Because breakup processes are highly sensitive to weather conditions, there is concern over the potential effects of changing climatic patterns on the ice-jam regime and thus on the stream ecology and local economy. Though breakup commonly occurs in the spring, it is occasionally triggered by mid-winter thaws, which are typical of the more temperate regions of Canada. Mid-winter jams can be more destructive than spring ones and may also have repercussions on the spring event. Current knowledge suggests that small perturbations in winter temperature can produce major changes in the incidence of breakup and ice jams, by altering snowstorms into rainfall events. This expectation is confirmed by a hydroclimatic analysis of field observations and historical data on the upper reach of the Saint John River, which forms the boundary between New Brunswick, Canada and Maine, USA. A slight warming in the past 80 years has been accompanied by a considerable increase in the occurrence of mild winter days, thus contributing to increasing rainfall amounts. This results in augmented flows during the winter, which are lately becoming capable of effecting breakup of the river-ice cover. Implications for future trends in the ice regime of the Saint John River and of other Canadian rivers are discussed.

  7. Periphyton dynamics in a subalpine mountain stream during winter

    USGS Publications Warehouse

    Gustina, G.W.; Hoffmann, J.P.

    2000-01-01

    We conducted two experiments to determine the activity of and factors which control periphyton during winter in Stevensville Brook, Vermont. The first experiment during winter/spring 1994 examined the effect of a 300 to 450% difference in light and doubling of flow (low and high light, slow and fast flow) on periphyton chlorophyll a (chl a) and ash-free dry mass (AFDM) from stream rocks and artificial substrata. A second experiment was performed to determine whether periphyton was nitrogen or phosphorus limited. In addition, stream water was sampled during fall/winter 1994/95 for nitrate (NO3), ammonia (NH4), soluble reactive phosphorus (SRP), and total phosphorus (TP) to determine the availability of nutrients in Stevensville Brook. Increases of up to 250% for AFDM and 600% for chl a during the first study indicated robust activity throughout the winter despite low temperatures and light. Flow had a negative effect and sampling date was found to have a significant effect on periphyton biomass (chl a and AFDM) while light was found to influence increases in AFDM on clay tiles only. Water analyses showed that SRP was less than 0.001 mg L-1, NH4 and TP were low and often undetectable, and NO3 remained at about 0.20 mg L-1. Results from the nutrient enrichment experiment showed a significant response of chl a to P but not N and no response of AFDM to enrichment with either N or P. In Stevensville Brook during winter, the algal community, as represented by the chl a concentration, is predominantly controlled by phosphorus concentrations and is influenced to a lesser extent by flow; the periphyton community as a whole, represented by AFDM, is controlled mostly by stream flow and light.

  8. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer

    PubMed Central

    Stokkan, Karl-Arne; Folkow, Lars; Dukes, Juliet; Neveu, Magella; Hogg, Chris; Siefken, Sandra; Dakin, Steven C.; Jeffery, Glen

    2013-01-01

    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter. PMID:24174115

  9. What do we know about winter active ground beetles (Coleoptera, Carabidae) in Central and Northern Europe?

    PubMed Central

    Jaskuła, Radomir; Soszyńska-Maj, Agnieszka

    2011-01-01

    Abstract This paper summarizes the current knowledge on winter active Carabidae in Central and Northern Europe. In total 73 winter active species are listed, based on literature and own observations. Ground beetles are among the three most numerous Coleoptera families active during the autumn to spring period. The winter community of Carabidae is composed both of larvae (mainly autumn breeding species) and adults, as well as of epigeic species and those inhabiting tree trunks. Supranivean fauna is characterized by lower species diversity than the subnivean fauna. The activity of ground beetles decreases in late autumn, is lowest during mid-winter and increases in early spring. Carabidae are noted as an important food source in the diet of insectivorous mammals. They are also predators, hunting small winter active invertebrates. PMID:21738431

  10. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    PubMed

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply.

  11. Density- and Size-Dependent Winter Mortality and Growth of Late Chaoborus flavicans Larvae

    PubMed Central

    Schröder, Arne

    2013-01-01

    Winter processes such as overwinter survival and growth of individuals can have wide-ranging consequences for population dynamics and communities within and across seasons. In freshwater organisms winter processes have been mainly studied in fish despite that invertebrates also have substantial impacts on lake and pond food webs. One of the major invertebrate consumers in lake and ponds is the planktonic larvae of the dipteran insect Chaoborus spec. However, while much is known about Chaoborus feeding ecology, behaviour and structuring role in food webs, its winter ecology and how it affects its populations are poorly understood. Here size- and density-dependent winter mortality and body growth of late Chaoborus flavicans larvae were quantified over naturally occurring size and density ranges in autumn and under natural winter conditions using two field enclosure experiments. Winter mortality increased with autumn density but decreased with autumn body size while winter growth rates decreased with autumn density and body sizes. There was also a density- and size-independent background mortality component. The proportion of pupae found in spring decreased strongly and exponentially with autumn density. These results may explain the commonly observed univoltine life cycle and multi-annual density fluctuations in northern Chaoborus populations. They further demonstrate the relevance of winter processes and conditions for freshwater invertebrates and ecosystems. PMID:24124517

  12. Use of habitats by female norther pintails wintering in southwestern Louisiana

    USGS Publications Warehouse

    Cox, R.R.; Afton, A.D.

    1997-01-01

    The breeding population of norther pintails (Anas acuta) in 1996 was 39% below the long-term average. Because winter habitat quality may influence subsequent breeding population size in pintails, identification of habitats used by wintering pintails and factors influencing use of habitats may be important for managing for population increase. We examined variation in diel use of habitats by radiotagged female pintails (n = 272) in southwestern Louisiana in relation to age (imm and ad), winter (1991-92 and 1992-93), and time period within winters (pre-hunting season, first hunting season, time between split hunting seasons, second hunting season, and post-hunting season). Diurnal use of refuges was significantly greater during hunting seasons than during immediately preceding or succeeding nonhunting seasons. Consequently, we reject Tamissier's (1976) hypothesis that high diurnal use of refuges by pintails in southwestern Louisiana occurs later in winters. Time-period differences in diurnal and nocturnal use of habitats (large permanent pools, marsh, rice, fallow [idle], and other agriculture [primarily soybeans]) were not consistent between winters. Diel use of refuges or habitats did not differ in relation to female age. Females used fallow and ice agriculture extensively, particularly at night, and these habitats collectively accounted for 68-93% of nocturnal use. Differential use of habitats between winters was related to annual differences in relative abundance of rice and fallow agriculture. Proximity of refuges to agricultural areas should be an important management consideration for wintering pintails and other waterfowl.

  13. Sleep in fall/winter seasonal affective disorder: effects of light and changing seasons.

    PubMed

    Anderson, J L; Rosen, L N; Mendelson, W B; Jacobsen, F M; Skwerer, R G; Joseph-Vanderpool, J R; Duncan, C C; Wehr, T A; Rosenthal, N E

    1994-05-01

    Disturbances of sleep are a hallmark of seasonal affective disorders (SAD), as they are of other mood disorders. Fall/winter SAD patients most often report hypersomnia. Among responses of 293 SAD patients on a symptom questionnaire, complaints of winter hypersomnia (80%) greatly exceeded insomnia (10%), hypersomnia plus insomnia (5%), or no sleep difficulty (5%). Increased sleep length in fall/winter is not unique to SAD. Among 1571 individuals across four latitudes surveyed at random from the general population, winter sleep increases of < or = 2 hr/day relative to summer were reported by nearly half. However, hypersomnia had a low correlation (r = 0.29) with the total number of other SAD symptoms that were reported in this sample. Ten SAD patients kept daily sleep logs across 1 yr that showed increases in fall and winter (sleeping most in October; least in May) whose maximum averaged 2.7 hr per day more weekend sleep than in spring and summer. These winter increases might have been somewhat attenuated since most received light therapy during part of the winter. Nocturnal EEG recordings of depressed SAD patients in winter showed decreased sleep efficiency, decreased delta sleep percentage, and increased REM density (but normal REM latency) in comparison with recordings: (1) from themselves in summer; (2) from themselves after > or = 9 days of light therapy; or (3) from age- and gender-matched healthy controls. Thus, the extent of fall/winter oversleeping recorded by our SAD patients did not differ dramatically from that reported by the general population, but sleep complaints of our SAD patients have been accompanied by features of sleep architecture that are different from healthy controls and are reversed by summer or by bright-light therapy.

  14. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  15. Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream

    USGS Publications Warehouse

    French, William E.; Vondracek, Bruce C.; Ferrington, Leonard C.; Finlay, Jacques C.; Dieterman, Douglas J.

    2014-01-01

    Winter can be a stressful period for stream-dwelling salmonid populations, often resulting in reduced growth and survival. Stream water temperatures have been identified as a primary mechanism driving reductions in fitness during winter. However, groundwater inputs can moderate water temperature and may reduce winter severity. Additionally, seasonal reductions in prey availability may contribute to decreased growth and survival, although few studies have examined food webs supporting salmonids under winter conditions. This study employed diet, stable isotope, and mark-recapture techniques to examine winter (November through March) feeding, growth, and condition of brown troutSalmo trutta in a groundwater-dominated stream (Badger Creek, Minnesota, USA). Growth was greater for fish ≤ 150 mm (mean = 4.1 mg g−1 day−1) than for those 151–276 mm (mean = 1.0 mg g−1 day−1) during the winter season. Overall condition from early winter to late winter did not vary for fish ≤150 mm (mean relative weight (Wr) = 89.5) and increased for those 151–276 mm (mean Wr = 85.8 early and 89.4 late). Although composition varied both temporally and by individual, brown trout diets were dominated by aquatic invertebrates, primarily Amphipods, Dipterans, and Trichopterans. Stable isotope analysis supported the observations of the dominant prey taxa in stomach contents and indicated the winter food web was supported by a combination of allochthonous inputs and aquatic macrophytes. Brown trout in Badger Creek likely benefited from the thermal regime and increased prey abundance present in this groundwater-dominated stream during winter.

  16. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    PubMed

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.

  17. The influence of tropical forcing on extreme winter precipitation in the western Himalaya

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Hoell, Andrew; Norris, Jesse; Kiladis, George N.; Tahir, Adnan A.

    2017-02-01

    Within the Karakoram and western Himalaya (KH), snowfall from winter westerly disturbances (WD) maintains the region's snowpack and glaciers, which melt seasonally to sustain water resources for downstream populations. WD activity and subsequent precipitation are influenced by global atmospheric variability and tropical-extratropical interactions. On interannual time-scales, El Niño related changes in tropical diabatic heating induce a Rossby wave response over southwest Asia that is linked with enhanced dynamical forcing of WD and available moisture. Consequently, extreme orographic precipitation events are more frequent during El Niño than La Niña or neutral conditions. A similar spatial pattern of tropical diabatic heating is produced by the MJO at intraseasonal scales. In comparison to El Niño, the Rossby wave response to MJO activity is less spatially uniform over southwest Asia and varies on shorter time-scales. This study finds that the MJO's relationship with WD and KH precipitation is more complex than that of ENSO. Phases of the MJO propagation cycle that favor the dynamical enhancement of WD simultaneously suppress available moisture over southwest Asia, and vice versa. As a result, extreme precipitation events in the KH occur with similar frequency in most phases of the MJO, however, there is a transition in the relative importance of dynamical forcing and moisture in WD to orographic precipitation in the KH as the MJO evolves. These findings give insight into the dynamics and predictability of extreme precipitation events in the KH through their relationship with global atmospheric variability, and are an important consideration in evaluating Asia's water resources.

  18. Snowpack chemistry at selected sites in Colorado and New Mexico during winter 1999-2000

    USGS Publications Warehouse

    Ingersoll, George P.

    2000-01-01

    Snowpacks at two high-elevation (> 3,000 m) sampling sites near McPhee and Sanchez Reservoirs in southern Colorado were selected to collect representative samples of atmospheric deposition to the surrounding watersheds during winter 1999-2000. In February 2000, annual snowpacks at two sites were sampled to determine concentrations of nitrate and sulfate; concentrations of the trace elements arsenic, mercury, and selenium; and the sulfur isotope ratios that result from atmospheric deposition to the area. Snowpack chemistry data at the two sites sampled in 1999-2000 are compared to 1993-99 averages at 10 other snow-sampling sites in Colorado and New Mexico that generally are downwind of the Four Corners area of the southwestern United States. Although concentrations of ammonium and nitrate in the 1999-2000 snowpacks were fairly typical compared to averages established at nearby sites in southern Colorado and northern New Mexico, chloride and sulfate concentrations were below the 1993-99 average, while arsenic, mercury, and selenium in snow were much below the 1993-99 average. However, very similar sulfur-isotope ratios (that are not a function of precipitation amounts) deposited in snowpacks at the nearby sites indicate the snowpack chemistries at the new sampling locations near McPhee and Sanchez reservoirs were affected by similar sources of sulfate. Representative samples of coal burned during the 1999-2000 snowfall season at three power plants near Four Corners also were analyzed for sulfur content and trace elements. Results from separate, independent laboratories show similar concentrations and provide an initial baseline that will be used for general comparisons of coal chemistry to snowpack chemistry.

  19. Herbivory on shoalgrass by wintering redheads in Texas

    USGS Publications Warehouse

    Mitchell, C.A.; Custer, T.W.; Zwank, P.J.

    1994-01-01

    An estimated 80% of redheads (Aythya americana) winter on the Laguna Madre of south Texas and Mexico and feed almost exclusively on shoalgrass (Halodule wrightii) rhizomes. Shoalgrass abundance has decreased by 60% over the past 30 years, and because the effects of shoalgrass loss on wintering redheads are unknown, we initiated a study to define habitat selection criteria and document the effect of wintering redheads on shoalgrass in the lower Laguna Madre, Texas. Redheads consumed an average of 75% of shoalgrass rhizome biomass at collection sites each winter. When rhizome biomass was grazed to a mean biomass of ltoreq 0.18 g dry mass/core (approximately 10 g dry mass/ml), shoalgrass did not recover to its previous level the following growing season. Thirty-three percent of the sites (10) were grazed below 0.18 g dry mass/core during both years of the study, while 64% (19) were grazed below 0.18 g during 1 or the other of the 2 winters. Ramet number was positively correlated (P lt 0.001, r-2 = 0.54) with rhizome biomass; however, this relationship was influenced by grazing intensity. Heavy grazing reduced the amount of rhizome attached to each ramet compared with ungrazed ramets. Grazing had no effect on root biomass (P = 0.388), rhizome moisture content (P = 0.553), or soil magnesium, phosphorous, and potassium (P = 0.102, 0.499, 0.162, respectively). Redhead presence increased (P = 0.042) soil nitrogen levels. Foraging areas selected by redheads within the lower Laguna Madre had lower (P = 0.026) salinities (24 ppt) than areas not selected (35 ppt). Redheads did not select foraging areas in relation to crude protein levels in rhizomes. Shoalgrass habitat in the Laguna Madre should be protected from further losses and enhanced where possible.

  20. Diagnostics of Winter Precipitation Over the Western Himalayas

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Yasunari, T.

    2011-12-01

    The Indian subcontinent is surrounded by the mighty Himalayas in the north. It is characterized by heterogeneous topography and landuse variability from west to east. Apart from these, due to seasonal changes western, central and eastern Himalayas are having different precipitation patterns. In the present study winter (Dec, Jan, Feb - DJF) precipitation over the western Himalayas (WH) is analyzed. The WH receives almost one third of annual precipitation due to eastward moving cyclonic storms, Western Disturbance, during winter. Wet and dry winter precipitation years' composites show strengthening of westerly at 200 and 500 hPa and southerly at 850hPa during wet winters. Also, at 200hPa higher westerly with significant region from Saudi Arabia to Indian subcontinent and at 850hPa higher southerly with significant region from Afghanistan and adjoining Pakistan is discernible. Large scale wind field shows existence of wavelike pattern during wet years. Higher water vapor flux and outgoing longwave radiation corroborate with wet winter conditions. Further analysis based on composite years' daily pentad climatology illustrates spells of higher precipitation in wet year than that in dry year. Analysis of some individual composite peak precipitation days show formation of cyclonic flow west of 80oE at 500hPa in large scale westerly than that in the seasonal average. In addition distinct lower geopotential field difference between 500 to 925hPa is seen over Saudi Arabia to north of India. Increased convergence of water vapor flux over Arabian Sea is observed during wet precipitation years. Such changes in large scale fields suggest that during wet period flow patterns become conducive for higher precipitation over the WH. The mechanism responsible for these circulation patterns for wet (or dry) spells and years will also be discussed at the session.

  1. Selenium accumulation in sea ducks wintering at Lake Ontario.

    PubMed

    Schummer, Michael L; Badzinski, Shannon S; Petrie, Scott A; Chen, Yu-Wei; Belzile, Nelson

    2010-04-01

    Numbers of wintering sea ducks, including buffleheads (Bucephala albeola; BUFF), common goldeneyes (Bucephala clangula; COGO), and long-tailed ducks (Clangula hyemalis; LTDU), increased substantially at Lake Ontario after Dreissenid mussels (Dreissena bugensis and D. polymorpha) colonized the Great Lakes. Invertebrates, including Dreissenid mussels, are major diving duck prey items that can transfer some trace elements, such as selenium (Se) to higher trophic levels. Se can be problematic for waterfowl and it often has been detected at elevated levels in organisms using the Great Lakes. There are, however, few data on hepatic Se concentrations in sea ducks, particularly during the winter at Lake Ontario. In this study, we evaluated interspecific differences and temporal trends in hepatic Se concentrations among BUFF (n = 77), COGO (n = 77), and LTDU (n = 79) wintering at Lake Ontario. All three species accumulated Se throughout winter, but COGO did so at a higher rate than did BUFF and LTDU. Overall, Se concentrations were higher in LTDU [mean = 22.7; 95% CI = 20.8-24.8 microg/g dry weight (dw)] than in BUFF ([mean = 12.3; 95% CI = 11.6-13.1 microg/g dw) and COGO ([mean = 12.0; 95% CI = 10.7-3.5 microg/g dw) throughout the winter. Se concentrations were deemed elevated (>33 microg/g dw) in 0%, 5%, and 19% of BUFF, COGO, and LTDU, respectively. Presently there are no data on Se toxicity end points for these species, so it is unclear how acquiring concentrations of these magnitudes affect their short- and long-term health or reproduction.

  2. The History of Winter and the Global Snowflake Network, Engaging Teachers and Students in Science Field Research in Snow and Ice

    NASA Astrophysics Data System (ADS)

    Bender, K. J.; Wasilewski, P. J.; Gabrys, R. E.

    2006-05-01

    A weeklong Professional development/"Teacher as scientist" Cryosphere science training camp held annually in February in Lake Placid, NY, the History of Winter program (HOW) has been serving teachers in the NASA Goddard Space Flight Center service area since 2000. Currently, HOW participants include university faculty interested in enhancing their pre-service science education programs, in-service teachers and pre-service education students. HOW utilizes a stratified professional development approach to science content mastery and delivery while involving participants in scientific field research. Each year program components and resources are added to HOW to provide continued, sustainable interest in the program and to support participants as they continue their HOW experience. An offshoot of the HOW Program, the Global Snowflake Network (GSN) launched in the winter of 2006 engages an international audience including both formal and informal education groups. The goal is to provide an interactive online data resource in science and education for the characterization of snowfall and related weather systems. The Global Snowflake Network has been accepted as an education outreach proposal for the International Polar Year. Collaborations with other agencies and universities also with IPY-accepted proposals are now underway. HOW and the GSN are endorsed by the NASA Goddard Education Office and many of the Goddard Snow and Ice scientists. Together these programs offer a unique, sustainable, and proven outreach for the Cryosphere research program.

  3. Incidence of mass movement processes after an historical episode of heavy snowfall in the Asturian Massif (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David

    2015-04-01

    as landslides, 5 as rockfalls, 4 as mixed typology of rockfalls with a big amount of mud, and 2 as debris flow. One person died as a consecuence of a rockfall. Thirty out of thirty six events anthropic intervention is proved. It acted as a prior conditioning where the previous topography has been modified (in 29 cases), either as a direct triggering mechanism at least in one landslide episode. The sequence analysis of the events shows that their number and frequency increases with episodes of snow melting during the snowstorm breaks, announcing the highest instabilities on 10th and 11th of March, coinciding with a rainfall peak. However the connection with the rainfall episode seems weak compared with the one than can be settled with the rise of temperatures and the resulting melting intensification. It caused the progressive water saturation of surface formations, that reached a maximum during the second break, triggering 20 events during the 11th of March 1888.

  4. [The skin, cold and winter sports].

    PubMed

    Claes, G; Henry, F; Letawe, C; Piérard, G E

    2001-04-01

    Winter sports are responsible for various dermatoses which could be often avoided by simple preventive procedures. Both the severity and duration of cold exposure combined with wind speed, altitude and environmental hygrometric value govern the potential types of cold injuries.

  5. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Jianping Mao )

    1992-12-24

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95% level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight. 21 refs., 2 figs., 1 tab.

  6. Essential Outdoor Sun Safety Tips for Winter

    MedlinePlus

    ... the risk for damage. Both snow and strong wind can wear away sunscreen and reduce its effectiveness, ... protect your skin from the bitter cold, heavy winds and winter sun, follow these important sun protection ...

  7. Physical characteristics of Eurasian winter temperature variability

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Yul; Son, Seok-Woo

    2016-04-01

    Despite the on-going global warming, recent winters in Eurasian mid-latitudes were much colder than average. In an attempt to better understand the physical characteristics for cold Eurasian winters, major sources of variability in surface air temperature (SAT) are investigated based on cyclostationary EOF analysis. The two leading modes of SAT variability represent the effect of Arctic amplification (AA) and the Arctic oscillation (AO), respectively. These two modes are distinct in terms of the physical characteristics, including surface energy fluxes and tropospheric circulations, and result in significantly different winter SAT patterns over the Eurasian continent. The AA-related SAT anomalies are dipolar with warm Arctic, centered at the Barents-Kara Seas, and cold East Asia. In contrast, the negative AO-related SAT anomalies are characterized by widespread cold anomalies in Northern Eurasia. Relative importance of the AA and the negative AO contributions to cold Eurasian winters is sensitive to the region of interest.

  8. Early Allergies -- Payback for a Mild Winter?

    MedlinePlus

    ... Early Allergies -- Payback for a Mild Winter? Early blooms may start you sneezing and sniffling ahead of ... dormant, Caudle said. Also, trees are starting to bloom in many parts of the United States, in ...

  9. How to Find Insects Weathering the Winter.

    ERIC Educational Resources Information Center

    Brody, Jane

    1979-01-01

    Discusses how and where to find insects and other invertebrates in winter, as well as how to collect samples in order to watch those animals reappear in spring. Includes crickets, honey bees, mosquitoes, house flies, and butterflies and moths. (MA)

  10. Zika Still a Threat During Winter Months

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162518.html Zika Still a Threat During Winter Months Public health ... doesn't necessarily mean the end of the Zika threat in the United States, a public health ...

  11. Comparison of generalist predators in winter-flooded and conventionally managed rice paddies and identification of their limiting factors.

    PubMed

    Takada, Mayura B; Takagi, Shun; Iwabuchi, Shigeki; Mineta, Takuya; Washitani, Izumi

    2014-01-01

    Winter-flooding of rice paddies without the application of agricultural chemicals is attracting attention as a new agricultural method for enhancing the habitat conditions of wintering waterfowl in rice paddy ecosystems throughout Japan and east Asia. Conditions in these paddies are expected to result in restoration of not only the winter habitats of waterfowl but also those of other taxonomic groups during the rice growing season. In this study, we tested whether the diversity of summer spiders--ubiquitous predators in rice paddies--was higher in the winter-flooded paddies than in the conventional ones by conducting field measurements in 31 winter-flooded and 7 conventional paddies. Limiting factors of spiders in the winter-flooded paddies were then examined. Results revealed that both the density and species richness of spiders were significantly higher in the winter-flooded paddies than in the conventional ones both before and after the insecticide application against pecky rice bug Stenotus rubrovittatus (Matsumura)(Hemiptera: Miridae) to conventional paddies. In addition, spider density and species richness in the winter-flooded paddies correlated with the availability of two prey groups--chironomids and other nematocera. These findings suggest that in the winter-flooded paddies the diversity of generalist predators is higher than in the conventional ones during the rice-growing season and that the combination of management at both the landscape and field level is likely more effective for increasing spider abundance in winter-flooded paddies.

  12. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  13. Near cessation of Eighteen Degree Water renewal in the western North Atlantic in the warm winter of 2011-2012

    NASA Astrophysics Data System (ADS)

    Billheimer, Sam; Talley, Lynne D.

    2013-12-01

    The winter of 2011-2012 was a particularly weak season for the renewal of "Eighteen Degree Water" (EDW), the Subtropical Mode Water of the western North Atlantic, as demonstrated by Argo and repeat hydrography. Weak, late winter buoyancy forcing produced shallower than usual winter mixed layers throughout the subtropical gyre, failing to thoroughly ventilate the underlying mode water, and can likely be attributed to the coinciding high, positive phase of the North Atlantic Oscillation (NAO). The only region where EDW was renewed was in the far northeastern Sargasso Sea where it is understood that the Gulf Stream plays a central role in formation; no EDW formed over the large regions of the gyre where deep winter mixed layers driven by surface buoyancy loss normally create EDW. The present investigation evaluates 2011-2012 winter buoyancy content anomalies, surface buoyancy fluxes, and advection of buoyancy via the Gulf Stream and compares them with the previous seven winters that exhibited more vigorous EDW formation. The weak 2011-2012 formation did not result from increased Gulf Stream heat advection, and was also not driven by preconditioning as the buoyancy content of the region prior to the onset of winter forcing was not unusually high. Rather, the weak formation resulted from climatologically weak surface cooling late in winter. The winter of 2007-2008 also experienced particularly weak EDW formation under similar conditions, including a high NAO and weak late winter surface cooling.

  14. ENSO and winter storms in California

    USGS Publications Warehouse

    Cayan, D.R.; Bromirski, Peter

    2003-01-01

    The frequency and intensity of North Pacific winter storms that penetrate the California coast drives the winds, sea level, precipitation and streamflow that are crucial influences on coastal processes. There is considerable variability of these storm characteristics, in large part owing to the El Nino/Southern Oscillation (ENSO} phenomenon. There is a great contrast of the storm characteristics during the El Nino phase vs. the La Nina phase, with the largest scale, southerly extensive winter storms generated during El Nino.

  15. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    PubMed

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  16. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as "key areas." These forty-three areas constitute a network of areas that hold sites that likely are important to wintering North American herons. Within each area, we identify specific sites that are potentially important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  17. Breeding sites and winter site fidelity of Piping Plovers wintering in The Bahamas, a previously unknown major wintering area

    USGS Publications Warehouse

    Gratto-Trevor, Cheri; Haig, Susan M.; Miller, Mark P.; Mullins, Thomas D.; Maddock, Sidney; Roche, Erin A.; Moore, Predensa

    2016-01-01

    Most of the known wintering areas of Piping Plovers (Charadrius melodus) are along the Atlantic and Gulf coasts of the United States and into Mexico, and in the Caribbean. However, 1066 threatened/endangered Piping Plovers were recently found wintering in The Bahamas, an area not previously known to be important for the species. Although representing about 27% of the birds counted during the 2011 International Piping Plover Winter Census, the location of their breeding site(s) was unknown. Thus, our objectives were to determine the location(s) of their breeding site(s) using molecular markers and by tracking banded individuals, identify spring and fall staging sites, and examine site fidelity and survival. We captured and color-banded 57 birds in January and February 2010 in The Bahamas. Blood samples were also collected for genetic evaluation of the likely subspecies wintering in The Bahamas. Band re-sightings and DNA analysis revealed that at least 95% of the Piping Plovers wintering in The Bahamas originated on the Atlantic coast of the United States and Canada. Re-sightings of birds banded in The Bahamas spanned the breeding distribution of the species along the Atlantic coast from Newfoundland to North Carolina. Site fidelity to breeding and wintering sites was high (88–100%). Spring and fall staging sites were located along the Atlantic coast of the United States, with marked birds concentrating in the Carolinas. Our estimate of true survival for the marked birds was 0.71 (95% CI: 0.61–0.80). Our results indicate that more than one third of the Piping Plover population that breeds along the Atlantic coast winters in The Bahamas. By determining the importance of The Bahamas to the Atlantic subspecies of Piping Plovers, future conservation efforts for these populations can be better focused on where they are most needed.

  18. Evidence of a change in water chemistry in Canada's subarctic associated with enhanced winter streamflow

    NASA Astrophysics Data System (ADS)

    Spence, C.; Kokelj, S. V.; Kokelj, S. A.; McCluskie, M.; Hedstrom, N.

    2015-01-01

    winter streamflow is a characteristic of a nival/pluvial regime that has emerged in parts of the subarctic Canadian Shield because of increasingly common late summer rains. This phenomenon is part of a widespread trend toward higher winter streamflow in watersheds across the circumpolar north. There may be implications for biogeochemical systems as streamflow regimes undergo these types of changes associated with climate warming. Streamflow and geochemical fluxes were observed over 2 years with different winter flow conditions in a subarctic Canadian Shield catchment. Results show that higher wintertime loads of carbon and solutes associated with enhanced winter streamflow were in association with an expansion of contributing areas to run off over what would have existed during typical winter recession. Furthermore, the wet fall conditions that lead to enhanced winter streamflow require water tables close to the topographic surface in highly conductive organic soil layers, which is a similar to the condition during the spring melt. Fall rainfall-runoff leaves an ample volume of water in the lakes that are ubiquitous in this landscape. This water maintains winter streamflow during a time when it traditionally would have ceased. A slowing of biological activity under lake ice increases net mineralization and nitrification rates. This convergence of nitrogen cycling and winter streamflow produced a disproportionate flux of inorganic nitrogen from the study catchment. A conceptual model of how enhanced winter streamflow changes water chemistry in a lake-dominated shield landscape is proposed and may be used as a benchmark to guide hypotheses of process interactions, change in other landscapes, or across scales.

  19. Do wintering Harlequin Ducks forage nocturnally at high latitudes?

    USGS Publications Warehouse

    Rizzolo, D.J.; Esler, Daniel; Roby, D.D.; Jarvis, R.L.

    2005-01-01

    We monitored radio-tagged Harlequin Ducks (Histrionicus histrionicus) to determine whether nocturnal feeding was part of their foraging strategy during winter in south-central Alaska. Despite attributes of our study site (low ambient temperatures, harsh weather, short day length) and study species (small body size, high daytime foraging rates) that would be expected to favor nocturnal foraging, we found no evidence of nocturnal dive-feeding. Signals from eight radio-tagged Harlequin Ducks never exhibited signal loss due to diving during a total of 780 minutes of nocturnal monitoring. In contrast, the same eight birds exhibited signal loss during 62 ± 7% (SE) of 5-minute diurnal monitoring periods (total of 365 minutes of monitoring). Our results suggest that Harlequin Ducks in south-central Alaska face a stringent time constraint on daytime foraging during midwinter. Harlequin Ducks wintering at high latitudes, therefore, may be particularly sensitive to factors that increase foraging requirements or decrease foraging efficiency.

  20. Winter Cover Crops and Nitrous Oxide Emissions in Early Spring

    NASA Astrophysics Data System (ADS)

    Morris, C. K.; Walter, M. T.; Reiss, E. R.

    2015-12-01

    Winter cover crops mixtures can be used to manage greenhouse gas (GHG) emissions during critical periods such as spring thaw. Legumes are added to cover crops mixtures to increase crop productivity, but it is unknown if this effect decreases N2O emissions. In this project we investigate the relationship between biodiversity, productivity and GHG fluxes in cover crops varieties typically grown for soil heath in agricultural systems. Surface GHG emissions were measured with closed chambers beginning during snowmelt events and continuing until crops were tilled into the soil in early summer. We found that nitrous oxide emissions were reduced in cover cropped plots during the early spring thaw period when compared to bare soil. GHG emission reductions in agriculture can be achieved with proper selection of winter hardy cover crops.

  1. The effect of winter drought on evaporation from a high-elevation wetland

    NASA Astrophysics Data System (ADS)

    Blanken, Peter D.

    2014-07-01

    The surface energy balance of a high-elevation groundwater-fed wetland (High Creek Fen) in central Colorado was measured from 9 June 2000 through 18 January 2005. In agreement with observations and predictions for decreased winter snow cover in the region, the low snow cover in 2001-2002 allowed for an examination of the impact of winter drought on the wetland. During years with an average snowpack, summer evaporation far exceeded precipitation. Despite near-normal summer precipitation following a winter drought, the summertime surface energy balance was affected with decreased latent heat fluxes and increased sensible heat fluxes. The leaf area index and the fraction of photosynthetic radiation absorbed were reduced following the winter drought. A shift in the primary controls on evaporation occurred as the surface's response to vapor pressure deficits and soil moisture increased following the winter drought. The earlier snowmelt coupled with earlier increase in soil temperature and moisture following winter drought did not increase evaporation, since vegetation was not yet developed, and evaporation from soil water was low during the early spring period.

  2. Relations between winter 700-mb height anomalies and mass balance of South Cascade Glacier, Washington

    SciTech Connect

    McCabe, G.J.; Fountain, A.G.

    1995-12-31

    The yearly net mass balance of South Cascade Glacier, Washington, decreased during the mid-1970`s. Results show that the decrease is primarily caused by a significant decrease in the winter mass balance. The decrease in winter mass balance is caused, in part, by changes in winter mean atmospheric circulation that began during the mid-1970`s. Since the mid-1970`s, there has been an increase in winter mean atmospheric pressure over western Canada and the northern western contiguous US and a decrease in winter mean atmospheric pressure in the eastern North Pacific Ocean centered near the Aleutian islands. These changes in atmospheric circulation indicate a decrease in the movement of storms and moisture from the Pacific Ocean into the western contiguous US. In addition, the increase in atmospheric pressure over western Canada and the northern western contiguous US indicates an increase in subsidence, which results in a warming and drying of the air that further reduces precipitation and also increases the ratio of rain to snow during the cold season. These factors contribute to below-average winter mass balances.

  3. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    PubMed Central

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  4. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  5. Connection between autumn Sea Surface Temperature and winter precipitation in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Pereira, Susana C.; Castro, Amaya; Rocha, Alfredo; Fraile, Roberto

    2014-10-01

    The oceanic influence on winter precipitation in the Iberian Peninsula has been evidenced in numerous scientific papers. Large-scale forecasting models generally use variables such as Sea Surface Temperature (SST), soil moisture and ice cover, but they are not very accurate yet. Using observational data, this paper analyzes the influence of North Atlantic and Mediterranean SST on winter precipitation in the Iberian Peninsula between October 1951 and September 2011. First, trends of both data sets have been calculated to study their behavior during the past six decades, showing an overall increase of SST and a substantial decrease in winter precipitation in the Iberian Peninsula, except in eastern and south-eastern regions. Then, connection patterns between autumn Sea Surface Temperature Anomalies and winter precipitation have been studied to identify ocean regions that may be used as potential predictors of winter precipitation. After applying a Principal Component Analysis to cluster the information provided by the 1431 measuring points of a SST grid with a small number of variables, the Principal Components extracted were introduced into a Multiple Linear Regression algorithm in order to obtain an estimation of winter precipitation in each river basin. The validation process has shown that the algorithm explains nearly 50% of inter-annual variability of winter precipitation in the basins of the Iberian Peninsula with a strongly oceanic influence; this percentage is somewhat lower in the Mediterranean regions.

  6. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives.

    PubMed

    Grüebler, Martin U; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  7. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  8. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  9. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  10. Prairie Winter Play Patterns: (b) Winter and Play. Research Project 10.

    ERIC Educational Resources Information Center

    Thomsen, Charles H.; Borowiecka, Alexandra

    This guidebook provides an empirically-based set of planning and design guidelines for the construction of winter play facilities for Canadian youth residing in locations where outdoor play in winter is curtailed for approximately 4 months of the year. Information used in developing the guidelines was derived from field observations, a literature…

  11. Winter distribution of willow flycatcher subspecies

    USGS Publications Warehouse

    Paxton, E.H.; Unitt, P.; Sogge, M.K.; Whitfield, M.; Keim, P.

    2011-01-01

    Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies. ?? The Cooper Ornithological Society 2011.

  12. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as 'key areas.' These forty-three areas constitute a network of areas that hold sites that likely are important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  13. Comparison of selection methods for the development of white-seeded lines from red x white soft winter wheat crosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in breeding soft white winter (SWW) wheat (Triticum aestivum L.) cultivars in areas that have traditionally grown only soft red winter (SRW) wheat has increased in recent years. To efficiently generate and develop white wheat segregates from red wheat breeding programs, certain breeding de...

  14. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: Implications for winter dry deposition

    USGS Publications Warehouse

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    2002-01-01

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO42- or NO3- (p>0.1). Small, but statistically significant differences (p???0.03) were indicated for all other solutes analyzed. Differences were largest for Ca2+ concentrations, which on average were 2.3??eql-1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9??eql-1 and a maximum of 12??eql-1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO42- and NO3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO42- and NO3- across the Rocky Mountain region.

  15. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    NASA Astrophysics Data System (ADS)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-12-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993-2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993-2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7-18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to increase

  16. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    USGS Publications Warehouse

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  17. Ecosystem Greenhouse Gas Fluxes Respond Directly to Weather Not Climate: A Case Study on the Relationship of Global Atmospheric Circulation, Foehn Frequency, and Winter Weather to Northern Alps Regional Grassland Phenology and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Mauder, M.; Schmid, H. P. E.

    2014-12-01

    The impact of climate change on regional ecosystem structure and biogeochemical cycling has two important aspects that require better elaboration to improve projections of these effects. The first is that ecosystems don't respond directly to climate, but indirectly via frequency and occurrence of weather systems, which are driven by climatic shifts in global circulation and radiative processes. The second is that many responses of ecosystems to these weather patterns and extremes are lagged in time. Here, we examine these aspects for northern Alpine grasslands. Long-term eddy covariance flux tower and phenology observations in Austria and Germany and biophysical models reveal a strong influence of winter air temperature, snowfall, and snowmelt frequency on winter grass mortality and spring grassland carbon uptake. Further, the mode of climate variability that drives winter air temperature and snow depth patterns is primarily the frequency of strong regional southerly Foehn flow that promotes warm, dry conditions in winter. Finally, we demonstrate that much of the interannual variance in Foehn frequency and southerly flow is driven by statistics and climatic trends of 500 hPa pressure patterns in Greenland, part of the Arctic Oscillation. However, a few years, including the unusually warm and dry winter of 2013-2014 appear to have secondary, possibly local thermotopographic circulation factors that promoted its weather conditions regionally, which also included primarily cool and wet conditions in northern Europe and the southern Alps. These findings demonstrate that the regional response of ecosystems to climate change is modulated by how large-scale circulation patterns influence local meteorology and topographic flows both during and outside the growing season and provides a framework for future assessment and climate model improvements of linkages of climate change, weather patterns, and ecosystem responses.

  18. Thermal balance of cattle grazing winter range: model application.

    PubMed

    Keren, E N; Olson, B E

    2006-05-01

    Beef cattle grazing semiarid foothill rangeland of the Northern Rockies during winter may be exposed to cold temperatures and high winds while grazing pastures with low nutritional value. Cattle can physiologically and behaviorally respond to the changing environment to lower their metabolic requirements and reduce the effects of cold exposure. Requirements of grazing cattle may be overpredicted with models developed in controlled settings that do not account for energy-conserving behaviors. We refined a simple thermal balance equation to model heat exchange of free-ranging cattle. We accounted for the complex interactions between animal behavior and the changing natural environment by applying the insulation characteristics of the cattle's tissue and coat to a simple geometric shape of an asymmetric ellipsoid at different orientations to the sun and wind. We compared the model predictions with heat production measured in 3 studies, and in all cases the model predictions were similar to those reported. Model simulations indicate behaviors, such as lying and orientation to the sun, mitigated the effects of extreme weather. For many combinations of winter weather variables, metabolic requirements increased only slightly due to cold exposure of mature beef cattle in a near-maintenance state. The results indicate that solar radiation contributes strongly to the thermal balance of a cow. Thus, previous models that do not account for the irradiative environment may overestimate metabolic requirements of cattle acclimated to grazing winter range.

  19. [Spatial distribution characteristics of NMHCs during winter haze in Beijing].

    PubMed

    Duan, Jing-Chun; Peng, Yan-Chun; Tan, Ji-Hua; Hao, Ji-Ming; Chai, Fa-He

    2013-12-01

    NMHCs and NOx samples were simultaneously collected and analyzed in six urban and suburban representative sampling sites (Sihuan, Tian'anmen, Pinguoyuan, Fatou, Beijing Airport and Miyun) during a typical haze period in winter 2005, Beijing. The concentrations of NMHCs during the sampling period in descending order were: Sihuan (1101.29 microg x m(-3)) > Fatou (692.40 microg x m(-3)) >Tian'anmen (653.28 microg x m(-3)) >Pinguoyuan (370.27 microg x m(-3)) > Beijing Airport (350.36 microg x m(-3)) > Miyun (199.97 microg x m(-3)). Atmospheric benzene pollution in Beijing was rather serious. The ratio of NMHCs/NOx ranged from 2.1 to 6.3, indicating that the peak ozone concentrations in urban Beijing were controlled by VOCs during the sampling period. Analysis of propylene equivalent concentration and ozone formation potential showed that the NMHCs reactivity descended in the order of Sihuan > Fatou > Tian'anmen > Pinguoyuan > Beijing Airport > Miyun. B/T values (0.52 to 0.76) indicated that besides motor vehicle emission, coal combustion and other emission sources were also the sources of NHMCs in Beijing in winter. The spatial variations of isoprene in Beijing indicated that the contribution of anthropogenic sources to isoprene increased and the emissions by biogenic sources decreased in winter. The spatial variations of propane and butane indicated that LPG emissions existed in the urban region of Beijing.

  20. Winter survival of Eurasian woodcock Scolopax rusticola in central Italy

    USGS Publications Warehouse

    Aradis, A.; Miller, M.W.; Landucci, G.; Ruda, P.; Taddei, S.; Spina, F.

    2008-01-01

    The Eurasian woodcock Scolopax rusticola is a popular game bird in much of Europe. However, little is known about its population dynamics. We estimated winter survival of woodcock in a protected area with no hunting in central Italy. We radio-tagged 68 woodcocks with battery-powered radio-transmitters during 2001-2005. Woodcocks were captured in fields at night from November through February and fitted with radios. Birds were classified on capture as juveniles or adults using plumage characteristics. Woodcocks were relocated daily through March of each year or until they died, disappeared from the study area, or until their radio failed. We constructed a set of eight competing models of daily survival for the period 1 December - 28 February. Estimates of survival were obtained using the program SURVIV and Akaike's Information Criteria. The best model suggested daily survival was a constant 0.9985 (95% CI = 0.9972-0.9998), corresponding to a survival rate of 0.88 (SE = 0.05) for the 90-day winter study period. Our estimate of juvenile survival is higher than previously reported, and may reflect the protected status of the study area. Our estimates of winter survival may be helpful in managing harvested woodcock populations as well as in conserving populations in an increasingly urbanised environment. ?? Wildlife Biology (2008).

  1. Evaluations on the potential productivity of winter wheat based on agro-ecological zone in the world

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, Q.; Du, X.; Zhao, L.; Lu, Y.; Li, D.; Liu, J.

    2015-04-01

    Wheat is the most widely grown crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. In this paper, the evaluation model of winter wheat potential productivity was proposed based on agro-ecological zone and the historical winter wheat yield data in recent 30 years (1983-2011) obtained from FAO. And the potential productions of winter wheat in the world were investigated. The results showed that the realistic potential productivity of winter wheat in Western Europe was highest and it was more than 7500 kg/hm2. The realistic potential productivity of winter wheat in North China Plain were also higher, which was about 6000 kg/hm2. However, the realistic potential productivity of winter wheat in the United States which is the main winter wheat producing country were not high, only about 3000 kg/hm2. In addition to these regions which were the main winter wheat producing areas, the realistic potential productivity in other regions of the world were very low and mainly less than 1500 kg/hm2, like in southwest region of Russia. The gaps between potential productivity and realistic productivity of winter wheat in Kazakhstan and India were biggest, and the percentages of the gap in realistic productivity of winter wheat in Kazakhstan and India were more than 40%. In Russia, the gap between potential productivity and realistic productivity of winter wheat was lowest and the percentage of the gap in realistic productivity of winter wheat in Russia was only 10%.

  2. Winter climate change effects on soil C and N cycles in urban grasslands.

    PubMed

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M

    2013-09-01

    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost.

  3. BOREAS HYD-5 Winter Surface Flux Data

    NASA Technical Reports Server (NTRS)

    Harding, Richard; Hall, Forrest G. (Editor); Huemmrich, Karl Fred (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-5 team collected tower flux, surface meteorological, and surface temperature data on a frozen lake (Namekus Lake) and in a mature jack pine forest in the Beartrap Creek watershed. Both sites were located in the BOREAS SSA. The objective of this study was to characterize the winter energy and water vapor fluxes, as well as related properties (such as snow density, depth, temperature, and melt) for forested and nonforested areas of the boreal forest. Data were collected on Namekus Lake in the winters of 1994 and 1996, and at Beartrap Creek in the winter of 1994 only. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Risk management model of winter navigation operations.

    PubMed

    Valdez Banda, Osiris A; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-07-15

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish-Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible.

  5. Nuclear winter: the continuing debate. Student essay

    SciTech Connect

    Nida, A.V.

    1987-03-23

    This essay examines the debate over the climatic consequences of global nuclear war as related in the so-called Nuclear Winter hypothesis. This review examines the major components of the theory and traces development of the scientific knowledge leading to a second phase of the controversy two years after the first hypothesis. The conclusions of the essay are that the original nuclear winter findings have been altered by later scientific study and, therefore, the political conclusions drawn by Carl Sagan in 1983 can no longer be supported by theory or facts. Continued use of the Crutzen-Birks (Ambio, 1982) and TTAPS (Science, December 1983) studies worst-case evidence from NCAR (Foreign Affairs, Summer 86) represents selective science. Arguing for strategic policy changes based on nuclear winter risks constitutes anti-nuclear rhetoric and not scientific reasoning.

  6. Dynamic interactions of snow and plants in the boreal forest, winter 2011-2012 revealed by time-lapse photography and LiDAR

    NASA Astrophysics Data System (ADS)

    Filhol, S. V.; Sturm, M.

    2012-12-01

    The winter blanket of snow in the boreal forest is anything but still. In winter 2011-2012 we followed the evolution of a snowpack on a boreal forest plot (0.5 ha) from first snowfall to the beginning of the melt in springtime. We used multiple methods such as time-lapse ground-based LiDAR (Light Detection and Ranging), time-lapse photography, imagery from a suspended cableway, snow-depth sensors, and frequent manual snow-pits. The experimental site is located near Fairbanks, Alaska, a typical boreal forest underlain by permafrost with sparse black spruce, larch, willow, and dwarf birch. We observed snowpack properties to be greatly affected by the vegetation substrate. Interactions between snow and plants are mainly dependent on falling snow properties (rate, wetness), plant heights and stiffness, plant canopy structure (leaves, number of branches, density), succession of weather events (wind before or after snow, thaw events) and pre-existing snow depth. Time-lapse imagery shows interception of snow by trees and shrubs controlled by air-temperature and wind events. LiDAR and snow pit measurements show one class of flexible shrubs (i.e. dwarf birch) bending under load, while a second class (willows) were far stiffer and resisted bending. Where dwarf birch branches were dense, it prevented snow from reaching the ground, leaving a significant air space under the snowpack. This vertical air gap can be as high as 10% of the total snow depth by the end of winter. Improving our understanding of the dynamic relationships between plants and snow is a fundamental key for studying boreal snow physics and snow ecology.

  7. Links between solar wind variations, the global electric circuit, and winter cyclone vorticity, and possibly to cold winters in Europe

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.

    2011-12-01

    There are a number of inputs to the atmosphere and the climate system that are modulated by solar activity that have their only common feature the modulation of the ionosphere-earth current density (Jz) in the global electric circuit, and to which it has now been shown there are small atmospheric responses in winter storm vorticity, surface pressure, and cloud cover. Similar responses are found to internal atmospheric inputs that modulate Jz. An inductive mechanism for initial storm electrification is described that responds to Jz and provides space charge for aerosol particles and droplets throughout the updraft region. The charge on droplets and aerosol particles, by the process of charge modulation of aerosol scavenging (CMAS), increases condensation nuclei concentrations and shifts their distributions to smaller average sizes. This produces smaller and more numerous droplets, and as shown by Rosenfeld et al (2008), delays initial precipitation and increases ice production and the vigor of the storm updraft. For baroclinic storms the additional latent heat release and updraft velocity increases storm vorticity. The result depends on both aerosol characteristics and the Jz variation. The cumulative effect of winter storm intensification, for example in the Icelandic Low cyclogenesis region, responding to Jz changes, is to increase blocking in the Atlantic Ocean. Such blocking reduces the flow of relatively warm moist ocean air onto Europe, while increasing the incidence of outbreaks of cold, dry, Arctic air. The possibility is examined that increases in cosmic ray flux and in Jz, at times of decadal and longer minima in solar activity, contributes to the changes in atmospheric circulation and the resulting unusually severe winters in the UK and Europe such as have occurred during extended solar minima in the late 17th century and early 21st century.

  8. Nuclear winter: The evidence and the risks

    SciTech Connect

    Greene, O.

    1985-01-01

    Global concern over nuclear extinction, centered on the holocaust itself, now has turned to the more terrifying consequences of a post-war nuclear winter: ''the long-term effects - destruction of the environment, spread of epidemic diseases, contamination by radioactivity, and ... collapse of agriculture-(that) would spread famine and death to every country.'' Nuclear Winter, the latest in a series of studies by a number of different groups is clinical, analytical, systematic, and detailed. Two physicists and biologist analyze the effects on the climate, plants, animals, and living systems; the human costs; the policy implications.

  9. Implanting radio transmitters in wintering canvasbacks

    USGS Publications Warehouse

    Olsen, G.H.; Dein, F.J.; Haramis, G.M.; Jorde, D.G.

    1992-01-01

    To conduct telemetry studies of wintering canvasbacks (Aythya valisineria) on Chesapeake Bay [Maryland, USA], we needed to devise a suitable method of radio transmitter attachment. We describe as aseptic, intraabdominal surgical technique, using the inhalation anesthetic isoflurane, to implant 20-g radio transmitters in free-ranging canvasbacks. We evaluated the technique over 3 winters (1987-89), when an annual average of 83 female canvasbacks received implant surgery during a 9-day period in mid-December. Of 253 ducks, 248 (98%) were implanted successfully, and 200 (80.65) completed the 70-day study until early March. No mortality or abnormal behavior from surgery was identified post-release.

  10. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan.

    PubMed

    Tanaka, Chizuru; Nakano, Takashi; Yamazaki, Jun-Ya; Maruta, Emiko

    2015-01-01

    Photosynthetic characteristics of two broadleaved evergreen trees, Quercus myrsinaefolia and Machilus thunbergii, were compared in autumn and winter. The irradiance was similar in both seasons, but the air temperature was lower in winter. Under the winter conditions, net photosynthesis under natural sunlight (Anet) in both species dropped to 4 μmol CO2 m(-2) s(-1), and the quantum yield of photosystem II (PSII) photochemistry in dark-adapted leaves (Fv/Fm) also dropped to 0.60. In both species the maximum carboxylation rates of Rubisco (V(cmax)) decreased, and the amount of Rubisco increased in winter. A decline in chlorophyll (Chl) concentration and an increase in the Chl a/b ratio in winter resulted in a reduction in the size of the light-harvesting antennae. From measurements of Chl a fluorescence parameters, both the relative fraction and the energy flux rates of thermal dissipation through other non-photochemical processes were markedly elevated in winter. The results indicate that the photosynthetic apparatus in broadleaved evergreen species in warm temperate regions responds to winter through regulatory mechanisms involving the downregulation of light-harvesting and photosynthesis coupled with increased photoprotective thermal energy dissipation to minimize photodamage in winter. These mechanisms aid a quick restart of photosynthesis without the development of new leaves in the following spring.

  11. Field investigations of winter transmission of eastern equine encephalitis virus in Florida.

    PubMed

    Bingham, Andrea M; Burkett-Cadena, Nathan D; Hassan, Hassan K; McClure, Christopher J W; Unnasch, Thomas R

    2014-10-01

    Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida.

  12. Field Investigations of Winter Transmission of Eastern Equine Encephalitis Virus in Florida

    PubMed Central

    Bingham, Andrea M.; Burkett-Cadena, Nathan D.; Hassan, Hassan K.; McClure, Christopher J. W.; Unnasch, Thomas R.

    2014-01-01

    Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida. PMID:25070997

  13. Interdecadal and Interannual Variability of Winter Precipitation in Southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fraedrich, K.; Zhu, X.; Sielmann, F.

    2013-12-01

    Interdecadal variability of observed winter (DJF) precipitation in Southeast China (1961 to 2010) is characterized by the first EOF of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean, while the differences from the original describe the interannual fluctuations. For interdecadal time scales the dominating spatial modes represent monopole features over Southeast China involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies over western Pacific. Dynamic composite analysis (based on NCEP/NCAR and ERA-40 reanalyzes) reveals the following results: (i) Interdecadal SPI-variations show a trend from a dryer state in the 1970s via an increase during the 1980s towards stabilization of wetter conditions commencing with the 1990s. (ii) In mid-to-high latitudes the weakened southward flow of polar airmasses induces low-level warming over Eurasia due to stronger Arctic Oscillation (AO) by warmer zonal temperature advection. This indicates that the precipitation increase in Southeast is attributed circulation anomalies over mid-to-high latitudes which are related to AO. (iii) The abnormal moisture flux along the southwestern boundary of the abnormal anticyclone over south Japan (and its anomalous south-easterlies) is modulated by the sea surface temperature (SST) anomalies over Western Pacific; a positive (negative) SST anomaly will strengthen (weaken) the warm and moist air flow, leading to abundant (less) precipitation in Southeast China. This demonstrates the collaborative effect of AO and SST anomalies in determining the nonlinear trend observed in winter precipitation over Southeast China. For interannual time scales the dominating spatial pattern also represents monopole patterns. Composite analysis (with resampling test) of the associated circulation anomalies reveals the following results: (i) The wet (dry) winter is a result of the strengthened (weakened) northward warm moist air over east coast of

  14. [Effects of straw mulching and irrigation on solar energy utilization efficiency of winter wheat farmland].

    PubMed

    Li, Quanqi; Chen, Yuhai; Wu, Wei; Yu, Shunzhang; Zhou, Xunbo; Dong, Qingyu; Yu, Songlie

    2006-02-01

    The study showed that straw mulching decreased the basic seedlings and tillers of winter wheat and the leaf area index (LAI) at earlier growth stage, but increased the LAI at latter growth stage. Straw mulching and irrigation reduced the transmittance and reflectance of PAR, resulting in the increase of PAR capture ratio mainly at the height of 40-60 cm. The solar energy utilization ratio of grain was decreased by straw mulching, while that of stem and leaf was increased. The total solar energy utilization efficiency of winter wheat could also be increased by straw mulching.

  15. How does downward planetary wave coupling affect polar stratospheric ozone in the Arctic winter stratosphere?

    NASA Astrophysics Data System (ADS)

    Lubis, Sandro W.; Silverman, Vered; Matthes, Katja; Harnik, Nili; Omrani, Nour-Eddine; Wahl, Sebastian

    2017-02-01

    It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry-climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.

  16. Distribution of alewives in southeastern Lake Ontario in autumn and winter: a clue to winter mortalities

    USGS Publications Warehouse

    Bergstedt, Roger A.; O'Gorman, Robert

    1989-01-01

    Alewives Alosa pseudoharengus in the Great Lakes are thought to avoid extreme cold in winter by moving to deep water where the temperature is usually highest because of inverse thermal stratification. Information collected in Lake Ontario during autumn and winter 1981–1984 with an echo sounder and bottom and midwater trawls indicated that many alewives remained at depths above 110 m, regardless of water temperature. Alewives in the Great Lakes that did not descend to greater depths would be exposed to potentially lethal temperatures during cold winters.inters.

  17. Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter.

    PubMed

    Adams, W W; Demmig-Adams, B; Rosenstiel, T N; Ebbert, V

    2001-01-01

    Two very distinctive responses of photosynthesis to winter conditions have been identified. Mesophytic species that continue to exhibit growth during the winter typically exhibit higher maximal rates of photosynthesis during the winter or when grown at lower temperatures compared to individuals examined during the summer or when grown at warmer temperatures. In contrast, sclerophytic evergreen species growing in sun-exposed sites typically exhibit lower maximal rates of photosynthesis in the winter compared to the summer. On the other hand, shaded individuals of those same sclerophytic evergreen species exhibit similar or higher maximal rates of photosynthesis in the winter compared to the summer. Employment of the xanthophyll cycle in photoprotective energy dissipation exhibits similar characteristics in the two groups of plants (mesophytes and shade leaves of sclerophytic evergreens) that exhibit upregulation of photosynthesis during the winter. In both, zeaxanthin + antheraxanthin (Z + A) are retained and PS II remains primed for energy dissipation only on nights with subfreezing temperatures, and this becomes rapidly reversed upon exposure to increased temperatures. In contrast, Z + A are retained and PS II remains primed for energy dissipation over prolonged periods during the winter in sun leaves of sclerophytic evergreen species, and requires days of warming to become fully reversed. The rapid disengagement of this energy dissipation process in the mesophytes and shade sclerophytes apparently permits a rapid return to efficient photosynthesis and increased activity on warmer days during the winter. This may be associated with a decreasing opportunity for photosynthesis in source leaves relative to the demand for photosynthesis in the plant's sinks. In contrast, the sun-exposed sclerophytes - with a relatively high source to sink ratio - maintain PS II in a state primed for high levels of energy dissipation activity throughout much of the winter. Independent

  18. Mate loss in winter and mallard reproduction

    USGS Publications Warehouse

    Lercel, Barbara A.; Kaminski, Richard M.; Cox, Robert R.

    1999-01-01

    Mallards (Anas platyrhynchos) frequently pair during winter, and duck hunting seasons have been extended until the end of January in several southern states in the Mississippi Flyway. Therefore, we simulated dissolution of pair bonds from natural or hunting mortality by removing mates of wild-strain, captive, yearling female mallards in late January 1996 and early February 1997 to test if mate loss in winter would affect subsequent pair formation and reproductive performance. Most (97%) widowed females paired again. Nesting and incubation frequencies, nest-initiation date, days between first and second nests, and egg mass did not differ (P > 0.126) between widowed and control (i.e., no mate loss experienced) females in 1996 and 1997. In 1997, widowed females laid 1.91 fewer eggs in first nests (P = 0.014) and 3.75 fewer viable eggs in second nests (P = 0.056). Computer simulations with a mallard productivity model (incorporating default parameters [i.e., average environmental conditions]) indicated that the observed decreased clutch size of first nests, fewer viable eggs in second nests, and these factors combined had potential to decrease recruitment rates of yearling female mallards 9%, 12%, and 20%. Our results indicate that winter mate loss could reduce reproductive performance by yearling female mallards in some years. We suggest caution regarding extending duck hunting seasons in winter without concurrent evaluations of harvest and demographics of mallard and other duck populations.

  19. Winter Video Series Coming in January | Poster

    Cancer.gov

    The Scientific Library’s annual Summer Video Series was so successful that it will be offering a new Winter Video Series beginning in January. For this inaugural event, the staff is showing the eight-part series from National Geographic titled “American Genius.” 

  20. Cryopreservation of Salix sp. dormant winter buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cryopreservation, using dormant winter buds (DB) as source plant materials is economically advantageous over tissue culture options (TC). Processing DB does not require aseptic conditions and elaborate cryopreservation procedures. However, the DB approach is only feasible for cryopreserving a sel...

  1. Nuclear winter - Physics and physical mechanisms

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.

    1991-01-01

    The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.

  2. Dressing Baby for A Safe Winter Drive

    MedlinePlus

    ... of MedlinePlus, the National Library of Medicine, the National Institutes of Health, or the U.S. Department of Health and Human Services. More Health News on: Child Safety Motor Vehicle Safety Winter Weather Emergencies Recent Health News Related MedlinePlus Health Topics ...

  3. Clouds in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Anderson, Bruce; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Water vapor in the winter arctic tropopause region is important because, after the tropical tropopause region, the winter arctic tropopause has the coldest temperatures in the tropospheric northern hemisphere. This suggests the potential for cloud formation that can remove water vapor from a part of the atmosphere where radiatively active gases (such as water) exert a disproportionate influence on the earth's radiation budget. Previous work by the same authors has shown that this cloud formation extends into the stratosphere, with 20% of the parcels having ozone values of 300-350 ppbv experiencing ice saturation in any given 10 day period period during the late winter. In fact, temperatures are cold enough that 5-10% of the parcels experience saturation even if the water content is below the prevailing stratospheric value of 5 ppmv. This work describes a case study of clouds observed by aircraft near the winter arctic tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE). This provided a unique opportunity to examine dehydration processes in this region since in situ water, tracer, cloud particle, and meteorological data were all available simultaneously. During this period, temperatures were cold enough at the tropopause to produce saturation mixing ratios of 3-4 ppmv. Thus, clouds were actually observed within the stratosphere. Back trajectories indicate that the air in these clouds came from lower latitudes and altitudes. The study describes the nature of the clouds, the history of the air, and the possible implications for the upper tropospheric water budget.

  4. Winter Secrets: An Instant Lesson Plan.

    ERIC Educational Resources Information Center

    Collyer, Cam

    1997-01-01

    Outdoor lesson plan aims to stimulate student interest in animals' adaptations to winter and the various signs and clues to animal behavior. Includes questions for class discussion, tips for guiding the hike, and instructions for two games that illustrate the predator-prey relationship. Notes curriculum connections to the East York (Ontario) Board…

  5. Outing Activities and Winter Sports Guide.

    ERIC Educational Resources Information Center

    Knierim, Helen, Ed.; Hobson, Barbara B., Ed.

    This guide contains articles on outdoor recreational activities and official winter sports rules for girls and women. The articles on outdoor activities include the techniques, teaching, and organization of camping, canoeing, competitive cycling, and riflery. Four pages of references on nature and outdoor activities are presented along with two…

  6. Drag coefficients for winter Antarctic pack ice

    NASA Technical Reports Server (NTRS)

    Wamser, Christian; Martinson, Douglas G.

    1993-01-01

    Air-ice and ice-water drag coefficients referenced to 10-m-height winds for winter Antarctic pack ice based on measurements made from R/V Polarstern during the Winter Weddell Sea Project, 1986 (WWSP-86), and from R/V Akademik Fedorov during the Winter Weddell Gyre Study, 1989 (WWGS-89), are presented. The optimal values of the air-ice drag coefficients, made from turbulent flux measurements, are (1.79 +/- 0.06) x 10 exp -3 for WWSP-86 and (1.45 +/- 0.09) x 10 exp -3 for WWGS-89. A single ice-water drag coefficient for both WWSP-86 and WWGS-89, estimated from periods of ice drift throught to represent free-drift conditions, is (1.13 +/- 0.26) x 10 exp -3, and the ice-water turning angle is 18 +/- 18 deg. It is suggested that for a typical Antarctic winter pack ice cover, the ice cover reduces the momentum flux from the atmosphere to the ocean by about 33 percent.

  7. Winterization strategies for bulk storage of pickles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are commercially fermented and stored in bulk in outdoor open top fiberglass tanks. During winter, snow and ice accumulates around and on top of tanks influencing heat transfer in an unpredictable manner, often compromising the fruit quality. This study evaluates the performance of inexpen...

  8. Music Activities for Lemonade in Winter

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2014-01-01

    "Lemonade in Winter: A Book About Two Kids Counting Money" is a children's book about math; however, when sharing it in the music classroom, street cries and clapping games emerge. Jenkins' and Karas' book provides a springboard to lessons addressing several music elements, including form, tempo, and rhythm, as well as…

  9. Winter in Northern Europe (WINE) Project

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1982-01-01

    The scientific aims, work plan, and organization of the Middle Atmosphere Program winter in northern Europe (MAP/WINE) are described. Proposed contributions to the MAP/WINE program from various countries are enumerated. Specific atmospheric parameters to be examined are listed along with the corresponding measurement technique.

  10. Registration of ‘Atlantic’ winter barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Atlantic’ (Reg. No. CV-354, PI 665041), a six-row, hulled winter barley (Hordeum vulgare L.) tested as VA06B-19 by the Virginia Agricultural Experiment Station, was released in March 2011. Atlantic was derived from the cross VA97B-176/VA92-44-279 using a modified bulk-breeding method. It was evalua...

  11. Registration of 'Eve' winter hulless barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Eve’ (Reg. No. CV- PI 659067 ), a six-row winter hulless barley (Hordeum vulgare L.) developed and tested as VA01H-68 by the Virginia Agricultural Experiment Station was released in May 2007. Eve was derived from the cross SC860974 / VA94-42-13. Eve is widely adapted and provides producers with ...

  12. European Society for Clinical Virology - winter meeting.

    PubMed

    Westh, Henrik

    2004-02-01

    The European Society for Clinical Virology annual winter meeting mainly appeals to clinical virologists interested in human disease. Basic and clinical data were presented, highlighting a number of interesting findings. This report briefly describes options in HIV antiviral treatment, and focuses on fusion inhibitors, a new anti-HIV class of drugs. Recent improvements in experimental DNA vaccines are also presented.

  13. Overview of Spirit's Mars Winter Campaign

    NASA Astrophysics Data System (ADS)

    Arvidson, R.

    2006-12-01

    On sol 805 (April 2006) the Mars Exploration Rover Spirit reached its Low Ridge winter campaign site within Gusev Crater's Columbia Hills. The site, with its 11.5 degree tilt to the north, was chosen to maximize the probability that the rover would receive enough solar energy to be able to continue operations through the martian winter (southern winter solstice occurred in August 2006) and be able to drive away to explore additional terrains during the ensuing spring. Winter campaign experiments were designed to monitor atmospheric and surface (i.e., aeolian) dynamics and to survey the surrounding rocks and soils using the Pancam multispectral (0.44 to 1 micrometer) and Mini-TES hyperspectral (5 to 29 micrometers) capabilities. This included the collection of a Pancam 360 degree 13 filter McMurdo Panorama of the surface and rover deck over a period of several months. Further, a number of long-duration observations were conducted using the Alpha Particle X-Ray and Moessbauer Spectrometers on rock and soil targets within the work volume of the Instrument Deployment Device. Operations associated with the campaign will be updated during the presentation, and selected scientific highlights will be summarized and placed in an overall context for understanding the evolution of Mars and the role of water.

  14. Appalachia's Winter Secret: Downhill on the Mountains.

    ERIC Educational Resources Information Center

    Johnson, Randy

    1991-01-01

    Describes ski-industry and winter-tourism growth in Appalachia. Sketches ski-resort developments in Maryland, Pennsylvania, North Carolina, and West Virginia. Describes economic threats to industry, its economic impact on Appalachian states and region, resorts' general qualities, and ski industry's promotional efforts. (TES)

  15. Nuclear Winter: The implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1987-01-01

    ''Nuclear Winter'' is the term given to hypothesized cooling in the northern hemisphere following a nuclear war due to injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the original paper in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. The widespread use of 3-dimensional global circulation models have resulted in reduced estimates of cooling; 15 to 25/sup 0/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought are likely to be direct threats to human survival for populations with the wherewithal to survive normal January temperatures; The principal threat from nuclear winter is to food production, and could present problems to third parties without food reserves; and Loss of a crop year is neither a new nor unexpected threat from nuclear war to the US and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the US due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year. 6 refs.

  16. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  17. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands.

    PubMed

    Beumer, Victor; van Wirdum, Geert; Beltman, Boudewijn; Griffioen, Jasper; Grootjans, Ab P; Verhoeven, Jos T A

    2008-08-25

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species.

  18. Northern pintail body condition during wet and dry winters in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, M.R.

    1986-01-01

    Body weights and carcass composition of male and female adult northern pintails (Anas acuta) were investigated in the Sacramento Valley, California, from August to March 1979-82. Pintails were lightweight, lean, and had reduced breast, leg, and heart muscles during August-September. Ducks steadily gained weight after arrival; and body, carcass (body wt minus feathers and gastrointestinal content), fat protein, and muscle weights peaked in October-November. Fat-free dry weight remained high but variable the rest of the winter, whereas body and carcass weight and fat content declined to lows in December or January, then increased again in February or March. Gizzard weights declined from early fall to March. Males were always heavier than females, but females were fatter (percentage) than males during mid-winter. Mid-winter body weight, carcass fat, and protein content were significantly (P < 0.01) lower in the dry winter of 1980-81 than in 2 wet winters (1979-80 and 1981-82). Changes in pintail body weight and composition during winter are probably adaptations to mild climate, predictable food supplies, and requirements for pair formation and molt.

  19. Winter feeding activity of the common starfish (Asterias rubens L.): The role of temperature and shading

    NASA Astrophysics Data System (ADS)

    Agüera, Antonio; Trommelen, Michel; Burrows, Frances; Jansen, Jeroen M.; Schellekens, Tim; Smaal, Aad

    2012-08-01

    In the Wadden Sea common starfish is an important predator of mussel beds which in turn are relevant ecological and economic resource. To improve the management of mussel seedbeds, knowledge is required on over winter predation, a factor affecting mussel survival. The aim of this study was to assess the importance of A. rubens feeding activity during winter and how it relates with changes in temperature. Feeding activity of starfish was monitored during a full winter. The potential impact of temperature change on starfish-mussel seed interactions during winter was analysed. The factor shading was included, as changes in light intensity appear to be a primary governing factor for the timing of feeding activity. The results showed that temperature limits feeding rate and feeding activity of starfish during winter. However, starfish feeding rate exhibited very high sensitivity to temperature changes. Light intensity affected both feeding rate and feeding activity. It is concluded that starfish may not be an important factor destabilising seedbeds during a mean winter, but its importance may grow along with the increasing temperature due to climate change.

  20. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.

    PubMed

    Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J

    2016-06-01

    Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species.

  1. Simulating the influences of various fire regimes on caribou winter habitat

    USGS Publications Warehouse

    Rupp, T.S.; Olson, M.; Adams, L.G.; Dale, B.W.; Joly, Kyle; Henkelman, J.; Collins, W.B.; Starfield, A.M.

    2006-01-01

    Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics. ?? 2006 by the Ecological Society of America.

  2. The Importance of Winter for Controlling the Growing Season Net Ecosystem Exchange (NEE) of Boreal Forests

    NASA Astrophysics Data System (ADS)

    Oquist, M. G.; Peichl, M.; Ottosson Lofvenius, M.; Nilsson, M. B.

    2014-12-01

    It is becoming increasingly apparent that the winter season of high latitudes can be important for controlling a range of ecological and biogeochemical properties of northern ecosystems. Here we evaluate the importance of winter conditions on the carbon exchange between boreal forest systems and the atmosphere during the following growing season in order to elucidate any influence of inter-seasonal "memory" effects on carbon exchange properties of boreal forest ecosystems. The study is based on 5 years of continuous eddy covariance measurements at two ca 50 year old Norway spruce stands situated in mid- and northern Sweden, respectively (a total of 10 site years). The growing season net ecosystem exchange (NEE) ranged from -530 to -60 g C m-2 (negative values indicates carbon sinks). Environmental conditions during the growing season (e.g. temperature, radiation, length) only weakly explained the year-to-year variability in NEE. In contrast, up to 75% of the variation could be explained by the severity of the preceding winter (defined as the lowest observed average weekly air temperature) using an exponential response function. After warm winters the carbon sink properties were high as compared to those observed after cold winters. The winter conditions markedly affected the systems potential for carbon uptake in early summer. This presentation will address the potential mechanisms underpinning the observed correlations linking growing season carbon exchange to the conditions of the preceding winter. The influence of winter on the partitioned carbon fluxes of ecosystem respiration and gross primary productivity, respectively, will also be addressed. The results strongly indicate that controls on boreal forest carbon exchange can transcend across seasons. Understanding these mechanisms are integral for understanding the environmental drivers of atmospheric carbon exchange, allowing for accurate predictions of boreal forest NEE under both present and future climates.

  3. Winter ecology of the western burrowing owl (Athene cunicularia hypugaea) in southern Texas 1999-2004

    USGS Publications Warehouse

    Woodin, Marc C.; Skoruppa, Mary K.; Hickman, Graham C.

    2007-01-01

    This study examines the winter ecology of the western burrowing owl (Athene cunicularia hypugaea) in five Texas counties surrounding Corpus Christi, in southern Texas. There is a substantial gap in information on the owl's life cycle during migration and non-breeding winter months; almost all previous research on western burrowing owls has been conducted during the breeding season. The western burrowing owl currently is federally threatened in Mexico, federally endangered in Canada, and in the United States is considered a National Bird of Conservation Concern by the U.S. Fish and Wildlife Service. Topics investigated included status, effectiveness of public outreach, roost sites and use of culverts and artificial burrows, roost site fidelity, diet, contaminant burdens, body mass, and ectoparasites. Early ornithological reports and a museum egg set revealed that burrowing owls once bred in southern Texas and were common in winter; however, since the 1950's they have been reported in relatively low numbers and only during winter. In this study, public outreach increased western burrowing owl detections by 68 percent. Owls selected winter roost sites with small-diameter openings, including culverts less than or equal to 16 centimeters and artificial burrows of 15 centimeters, probably because the small diameters deterred mammalian predators. Owls showed strong roost site fidelity; 15 banded birds stayed at the same roost sites within a winter, and 8 returned to the same site the following winter. The winter diet was over 90 percent insects, with crickets the primary prey. Analyses of invertebrate prey and regurgitated pellets showed that residues of all but 3 of 28 carbamate and organophosphate pesticides were detected at least once, but all were below known lethal concentrations. Mean body mass of western burrowing owls was 168 grams and was highest in midwinter. Feather lice were detected in low numbers on a few owls, but no fleas or other ectoparasites were found.

  4. Does Day Length Affect Winter Bird Distribution? Testing the Role of an Elusive Variable

    PubMed Central

    Carrascal, Luis M.; Santos, Tomás; Tellería, José L.

    2012-01-01

    Differences in day length may act as a critical factor in bird biology by introducing time constraints in energy acquisition during winter. Thus, differences in day length might operate as a main determinant of bird abundance along latitudinal gradients. This work examines the influence of day length on the abundance of wintering crested tits (Lophophanes cristatus) in 26 localities of Spanish juniper (Juniperus thurifera) dwarf woodlands (average height of 5 m) located along a latitudinal gradient in the Spanish highlands, while controlling for the influence of food availability, minimum night temperature, habitat structure and landscape characteristics. Top regression models in the AIC framework explained 56% of variance in bird numbers. All models incorporated day length as the variable with the highest magnitude effect. Food availability also played an important role, although only the crop of ripe juniper fruits, but not arthropods, positively affected crested tit abundance. Differences in vegetation structure across localities had also a strong positive effect (average tree height and juniper tree density). Geographical variation in night temperature had no influence on crested tit distribution, despite the low winter temperatures reached in these dwarf forests. This paper demonstrates for the first time that winter bird abundance increases with day length after controlling for the effect of other environmental variables. Winter average difference in day length was only 10.5 minutes per day along the 1°47′ latitudinal interval (190 km) included in this study. This amount of time, which reaches 13.5 h accumulated throughout the winter season, appears to be large enough to affect the long-term energy budget of small passerines during winter and to shape the distribution of winter bird abundance under restrictive environmental conditions. PMID:22393442

  5. The response of a Kansas winter bird community to weather, photoperiod, and year

    USGS Publications Warehouse

    Stapanian, M.A.; Smith, C.C.; Finck, E.J.

    1999-01-01

    We conducted a bird census along the same route nearly each week for 14 winters (194 censuses), and compared the mean number of species per station and the total number of species recorded on the census with the length of photoperiod and weather variables. We found significant differences among winters for both indicators of species richness. This result is consistent with previous studies in which abundance of food was measured in the same general area. Both indicators of species richness were negatively associated with the number of days after 1 November. This result is consistent with the hypothesis that wintering species dependent on nonrenewed food resources lose individuals to mortality or emigration. Further, there was a positive relationship between photoperiod and both indicators of species richness. This result is consistent with the hypothesis that the detection of individuals in the early morning hours increases with the amount of daylight they have available for foraging and social behaviors. Wind speed and temperature had negative and positive relationships, respectively, to species richness. The number of species per station was greatest on days when the ground was covered with dew and least on days when snow depth was more than 15 cm. When the 'winters' were divided into four 30-day 'quarters', most of the 61 species were recorded with equal frequency in each quarter. Eight species were detected less frequently at the end of winter than in the beginning. Four species exhibited the reverse pattern. Two species were recorded more frequently at the beginning and at the end of the winter than during the middle. Temperature, wind, photoperiod, successive winter day, year, and species-specific evolutionary history all affect winter bird species richness.

  6. How individual Montagu's Harriers cope with Moreau's Paradox during the Sahelian winter.

    PubMed

    Schlaich, Almut Ellinor; Klaassen, Raymond H G; Bouten, Willem; Bretagnolle, Vincent; Koks, Ben Johannes; Villers, Alexandre; Both, Christiaan

    2016-11-01

    Hundreds of millions of Afro-Palaearctic migrants winter in the Sahel, a semi-arid belt south of the Sahara desert, where they experience deteriorating ecological conditions during their overwintering stay and have to prepare for spring migration when conditions are worst. This well-known phenomenon was first described by R.E. Moreau and is known ever since as Moreau's Paradox. However, empirical evidence of the deteriorating seasonal ecological conditions is limited and little is known on how birds respond. Montagu's Harriers Circus pygargus spend 6 months of the year in their wintering areas in the Sahel. Within the wintering season, birds move gradually to the south, visiting several distinct sites to which they are site-faithful in consecutive years. At the last wintering site, birds find themselves at the southern edge of the Sahelian zone and have no other options than facing deteriorating conditions. We tracked 36 Montagu's Harriers with GPS trackers to study their habitat use and behaviour during winter and collected data on the abundance of their main prey, grasshoppers, in Senegal. Since grasshopper abundance was positively related to vegetation greenness (measured as normalized difference vegetation index, NDVI), we used NDVI values as a proxy for prey abundance in areas where no field data were collected. Prey abundance (grasshopper counts and vegetation greenness) at wintering sites of Montagu's Harriers decreased during the wintering period. Montagu's Harriers responded to decreasing food availability by increasing their flight time during the second half of the winter. Individuals increased flight time more in areas with stronger declines in NDVI values, suggesting that lower food abundance required more intense foraging to achieve energy requirements. The apparent consequence was that Montagu's Harriers departed later in spring when their final wintering site had lower NDVI values and presumably lower food abundance and consequently arrived later

  7. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.

    PubMed

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif

    2014-04-01

    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

  8. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  9. Projecting Future Change in Growing Degree Days of Winter Wheat

    NASA Astrophysics Data System (ADS)

    Ruiz Castillo, N.; Gaitan Ospina, C. F.; Mcpherson, R. A.

    2015-12-01

    Southwest Oklahoma is one of the most productive regions in the Great Plains where winter wheat is produced. To assess the effect of climate change on the growing degree days (GDD) available for winter wheat production, we selected from the CMIP5 archive, two of the best performing Global Climate Models (GCMs) for the region (MIROC5 and CCSM4) to project the future change in GDD under the Representative Concentration Pathway (RCP) 8.5 —a "business as usual" future trajectory for greenhouse gas concentrations. Two quantile mapping downscaling methods were applied to both GCMs to obtain local scale projections. The downscaled outputs were applied to a GDD formula to show the GDD changes between the historical period (1961-2004) and the future period (2006-2098) in terms of mean differences. The results show that at the end of the 2098 growing season, the increase in GDD is expected to be between -2.0 and 6. Depending on the GCM used, Southwest Oklahoma is expected to see an increase in future GDD under the CCSM4 GCM and a mix of increase, no change and decrease under the MIROC5 GCM.

  10. Pinatubo eruption winter climate effects: Model versus observations

    NASA Technical Reports Server (NTRS)

    Graf, HANS-F.; Kirchner, Ingo; Schult, Ingrid; Robock, Alan

    1992-01-01

    Large volcanic eruptions, in addition to the well-known effect of producing global cooling for a year or two, have been observed to produce shorter-term responses in the climate system involving non-linear dynamical processes. In this paper, we use the ECHAM2 general circulation model forced with stratospheric aerosols to test some of these ideas. Run in a perpetual-January mode, with tropical stratospheric heating from the volcanic aerosols typical of the 1982 El Chichon eruption or the 1991 Pinatubo eruption, we find a dynamical response with an increased polar night jet in the Northern Hemisphere (NH) and stronger zonal winds which extended down into the troposphere. The Azores High shifts northward with increased tropospheric westerlies at 60N and increased easterlies at 30N. Surface temperatures are higher both in northern Eurasia and North America, in agreement with observations for the NH winters or 1982-83 and 1991-92 as well as the winters following the other 10 largest volcanic eruptions since 1883.

  11. Recent amplification of the North American winter temperature dipole

    PubMed Central

    Swain, Daniel L.; Mankin, Justin S.; Horton, Daniel E.; Thomas, Leif N.; Rajaratnam, Bala; Diffenbaugh, Noah S.

    2016-01-01

    Abstract During the winters of 2013–2014 and 2014–2015, anomalously warm temperatures in western North America and anomalously cool temperatures in eastern North America resulted in substantial human and environmental impacts. Motivated by the impacts of these concurrent temperature extremes and the intrinsic atmospheric linkage between weather conditions in the western and eastern United States, we investigate the occurrence of concurrent “warm‐West/cool‐East” surface temperature anomalies, which we call the “North American winter temperature dipole.” We find that, historically, warm‐West/cool‐East dipole conditions have been associated with anomalous mid‐tropospheric ridging over western North America and downstream troughing over eastern North America. We also find that the occurrence and severity of warm‐West/cool‐East events have increased significantly between 1980 and 2015, driven largely by an increase in the frequency with which high‐amplitude “ridge‐trough” wave patterns result in simultaneous severe temperature conditions in both the West and East. Using a large single‐model ensemble of climate simulations, we show that the observed positive trend in the warm‐West/cool‐East events is attributable to historical anthropogenic emissions including greenhouse gases, but that the co‐occurrence of extreme western warmth and eastern cold will likely decrease in the future as winter temperatures warm dramatically across the continent, thereby reducing the occurrence of severely cold conditions in the East. Although our analysis is focused on one particular region, our analysis framework is generally transferable to the physical conditions shaping different types of extreme events around the globe. PMID:27840780

  12. Recent amplification of the North American winter temperature dipole

    NASA Astrophysics Data System (ADS)

    Singh, Deepti; Swain, Daniel L.; Mankin, Justin S.; Horton, Daniel E.; Thomas, Leif N.; Rajaratnam, Bala; Diffenbaugh, Noah S.

    2016-09-01

    During the winters of 2013-2014 and 2014-2015, anomalously warm temperatures in western North America and anomalously cool temperatures in eastern North America resulted in substantial human and environmental impacts. Motivated by the impacts of these concurrent temperature extremes and the intrinsic atmospheric linkage between weather conditions in the western and eastern United States, we investigate the occurrence of concurrent "warm-West/cool-East" surface temperature anomalies, which we call the "North American winter temperature dipole." We find that, historically, warm-West/cool-East dipole conditions have been associated with anomalous mid-tropospheric ridging over western North America and downstream troughing over eastern North America. We also find that the occurrence and severity of warm-West/cool-East events have increased significantly between 1980 and 2015, driven largely by an increase in the frequency with which high-amplitude "ridge-trough" wave patterns result in simultaneous severe temperature conditions in both the West and East. Using a large single-model ensemble of climate simulations, we show that the observed positive trend in the warm-West/cool-East events is attributable to historical anthropogenic emissions including greenhouse gases, but that the co-occurrence of extreme western warmth and eastern cold will likely decrease in the future as winter temperatures warm dramatically across the continent, thereby reducing the occurrence of severely cold conditions in the East. Although our analysis is focused on one particular region, our analysis framework is generally transferable to the physical conditions shaping different types of extreme events around the globe.

  13. Seeding date affects fall growth of winter canola (Brassica napus L. ‘Baldur’) and its performance as a winter cover crop in central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, interest has increased in finding non-grass cover crop species that could be planted after soybean (Glycine max (L) Merr.) and before corn (Zea mays L.) in Iowa crop rotations. In this study, we investigate the use of winter canola (Brassica napus L.) as an alternative cover crop fo...

  14. Early 2016 Winter Storm Melts Arctic Sea Ice

    NASA Video Gallery

    Arctic sea ice grows during the winter months, reaching its largest extent sometime in March. When something disrupts the cold, dry, winter Arctic atmosphere, sea ice can feel the effects, and thes...

  15. Scientific Library to Hold Annual Winter Video Series | Poster

    Cancer.gov

    The Scientific Library is getting ready for its Annual Winter Video Series. Beginning on Monday, January 9 and concluding on Friday, February 17, the Winter Video Series will consist of two different PBS programs, each with three episodes.

  16. Effects of winter atmospheric circulation on temporal and spatial variability in annual streamflow in the western United States

    USGS Publications Warehouse

    McCabe, G.J.

    1996-01-01

    Winter mean 700-hectoPascal (hPa) height anomalies, representing the average atmospheric circulation during the snow season, are compared with annual streamflow measured at 140 streamgauges in the western United States. Correlation and anomaly pattern analyses are used to identify relationships between winter mean atmospheric circulation and temporal and spatial variability in annual streamflow. Results indicate that variability in winter mean 700-Hpa height anomalies accounts for a statistically significant portion of the temporal variability in annual streamflow in the western United States. In general, above-average annual streamflow is associated with negative winter mean 700-Hpa height anomalies over the eastern North Pacific Ocean and/or the western United States. The anomalies produce an anomalous flow of moist air from the eastern North Pacific Ocean into the western United States that increases winter precipitation and snowpack accumulations, and subsequently streamflow. Winter mean 700-hPa height anomalies also account for statistically significant differences in spatial distributions of annual streamflow. As part of this study, winter mean atmospheric circulation patterns for the 40 years analysed were classified into five winter mean 700-hPa height anomaly patterns. These patterns are related to statistically significant and physically meaningful differences in spatial distributions of annual streamflow.

  17. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine.

    PubMed

    Cortés, Pablo Andrés; Petit, Magali; Lewden, Agnès; Milbergue, Myriam; Vézina, François

    2015-03-01

    Resident passerines inhabiting high latitude environments are faced with strong seasonal changes in thermal conditions and energy availability. Summit metabolic rate (maximal metabolic rate elicited by shivering during cold exposure: M(sum)) and basal metabolic rate (BMR) vary in parallel among seasons and increase in winter due to cold acclimatization, and these adjustments are thought to be critical for survival. Wintering individuals expressing consistently higher M(sum) and BMR could therefore be seen as better performers with higher chances of winter survival than those exhibiting lower metabolic performance. In this study, we calculated repeatability to evaluate temporal consistency of body mass, BMR and M(sum) within and across three consecutives winters in black-capped chickadees (Poecile atricapillus). We found that body mass was significantly repeatable both within and across winters (R 0.51-0.90). BMR (R 0.29-0.47) was only repeatable within winter while M(sum) was repeatable both among (R 0.33-0.49) and within winters (R 0.33-0.49) with the magnitude and significance of repeatability in both variables depending on the year and whether they were corrected for body mass or body size. The patterns of repeatability observed among years also differed between the two variables. Our findings suggest that the relative ranking of individuals in winter metabolic performance is affected by local ecological conditions and can change within relatively short periods of time.

  18. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    PubMed

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  19. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  20. Is winter worse for stressed fish? The consequences of exogenous cortisol manipulation on over-winter survival and condition of juvenile largemouth bass.

    PubMed

    Binder, Thomas R; O'Connor, Constance M; McConnachie, Sarah H; Wilson, Samantha M; Nannini, Michael A; Wahl, David H; Cooke, Steven J

    2015-09-01

    Over-winter mortality is an important selective force for warm-water fish (e.g., centrarchids) that live in temperate habitats. Inherent challenges faced by fish during winter may be compounded by additional stressors that activate the hypothalamic-pituitary-interrenal axis, either before or during winter, leading to negative sub-lethal impacts on fish health and condition, and possibly reducing chance of survival. We used experimental cortisol manipulation to test the hypothesis that juvenile largemouth bass (Micropterus salmoides) exposed to semi-chronic elevation in cortisol prior to winter would experience higher levels of over-winter mortality, physiological alterations and impaired immune status relative to control and sham-treated bass. Over-winter survival in experimental ponds was high, averaging 83%, and did not differ among treatment groups. Over the study period, bass exhibited an average increase in mass of 19.4%, as well as a slight increase in Fulton's condition factor, but neither measure differed among groups. Hepatosomatic index in cortisol-treated bass was 23% lower than in control fish, suggesting lower energy status, but white muscle lipid content was similar across all groups. Lastly, there was no difference in spleen somatic index or parasite load among treatment groups, indicating no long-term immune impairment related to our cortisol manipulation. The current study adds to a growing body of literature on glucocorticoid manipulations where field-based findings are not consistent with laboratory-based conceptual understanding of multiple stressors. This suggests that field conditions may provide fish with opportunities to mitigate negative effects of some stressors.

  1. Costs of leaf reinforcement in response to winter cold in evergreen species.

    PubMed

    González-Zurdo, Patricia; Escudero, Alfonso; Babiano, Josefa; García-Ciudad, Antonia; Mediavilla, Sonia

    2016-03-01

    The competitive equilibrium between deciduous and evergreen plant species to a large extent depends on the intensity of the reduction in carbon gain undergone by evergreen leaves, associated with the leaf traits that confer resistance to stressful conditions during the unfavourable part of the year. This study explores the effects of winter harshness on the resistance traits of evergreen leaves. Leaf mass per unit area (LMA), leaf thickness and the concentrations of fibre, nitrogen (N), phosphorus (P), soluble protein, chlorophyll and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined in three evergreen and two deciduous species along a winter temperature gradient. In the evergreen species, LMA, thickness, and P and structural carbohydrate concentrations increased with the decrease in winter temperatures. Nitrogen and lignin concentrations did not show definite patterns in this regard. Chlorophyll, soluble proteins and Rubisco decreased with the increase in winter harshness. Our results suggest that an increase in LMA and in the concentration of structural carbohydrates would be a requirement for the leaves to cope with low winter temperatures. The evergreen habit would be associated with higher costs at cooler sites, because the cold resistance traits imply additional maintenance costs and reduced N allocation to the photosynthetic machinery, associated with structural reinforcement at colder sites.

  2. Costs of leaf reinforcement in response to winter cold in evergreen species

    PubMed Central

    González-Zurdo, Patricia; Escudero, Alfonso; Babiano, Josefa; García-Ciudad, Antonia; Mediavilla, Sonia

    2016-01-01

    The competitive equilibrium between deciduous and evergreen plant species to a large extent depends on the intensity of the reduction in carbon gain undergone by evergreen leaves, associated with the leaf traits that confer resistance to stressful conditions during the unfavourable part of the year. This study explores the effects of winter harshness on the resistance traits of evergreen leaves. Leaf mass per unit area (LMA), leaf thickness and the concentrations of fibre, nitrogen (N), phosphorus (P), soluble protein, chlorophyll and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined in three evergreen and two deciduous species along a winter temperature gradient. In the evergreen species, LMA, thickness, and P and structural carbohydrate concentrations increased with the decrease in winter temperatures. Nitrogen and lignin concentrations did not show definite patterns in this regard. Chlorophyll, soluble proteins and Rubisco decreased with the increase in winter harshness. Our results suggest that an increase in LMA and in the concentration of structural carbohydrates would be a requirement for the leaves to cope with low winter temperatures. The evergreen habit would be associated with higher costs at cooler sites, because the cold resistance traits imply additional maintenance costs and reduced N allocation to the photosynthetic machinery, associated with structural reinforcement at colder sites. PMID:26764268

  3. Vernalization and epigenetics: how plants remember winter.

    PubMed

    Sung, Sibum; Amasino, Richard M

    2004-02-01

    One of the remarkable aspects of the promotion of flowering by vernalization is that plants have evolved the ability to measure a complete winter season of cold and to 'remember' this prior cold exposure in the spring. Recent work in Arabidopsis demonstrates the molecular basis of this memory of winter: vernalization causes changes in the chromatin structure of a flowering repressor gene, FLOWERING LOCUS C (FLC), that switch this gene into a repressed state that is mitotically stable. A key component of the vernalization pathway, VERNALIZATION INSENSITIVE3 (VIN3), which is a PHD-domain-containing protein, is induced only after a prolonged period of cold. VIN3 is involved in initiating the modification of FLC chromatin structure. The stable silencing of FLC also requires the DNA-binding protein VERNALIZATION1 (VRN1) and the polycomb-group protein VRN2.

  4. Tillage requirements for vegetables following winter annual grazing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Alabama, over 400,000 ac of winter annuals are grazed prior to planting summer row crops. Previous research indicates that cattle grazed on ryegrass (Lolium multiflorum L.) pastures over the winter months in Alabama can be profitable, but winter grazing creates excessive compaction, which advers...

  5. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  6. Livable Winter Cities--Leisure Attitudes and Activities.

    ERIC Educational Resources Information Center

    Neal, Larry; Coles, Roger, Ed.

    1989-01-01

    The nine articles included in this feature emphasize how leisure, recreation, health and physical activities make winter cities more livable. Specific topics include techniques for teaching about cold weather safety and cold related injuries, Arctic Winter Games, and results of a study on winter recreation in large North American communities. (IAH)

  7. 46 CFR 42.30-10 - Southern Winter Seasonal Zone.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... BY SEA Zones, Areas, and Seasonal Periods § 42.30-10 Southern Winter Seasonal Zone. (a) The northern boundary of the Southern Winter Seasonal Zone is the rhumb line from the east coast of the American...) Valparaiso is to be considered as being on the boundary line of the Summer and the Winter Seasonal Zones....

  8. 46 CFR 42.30-10 - Southern Winter Seasonal Zone.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... BY SEA Zones, Areas, and Seasonal Periods § 42.30-10 Southern Winter Seasonal Zone. (a) The northern boundary of the Southern Winter Seasonal Zone is the rhumb line from the east coast of the American...) Valparaiso is to be considered as being on the boundary line of the Summer and the Winter Seasonal Zones....

  9. Sources and contributions of wood smoke during winter in London

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh; Bloss, William; Yin, Jianxin; Beddows, David; Harrison, Roy; Zotter, Peter; Prevot, Andre; Green, David

    2014-05-01

    Determining the contribution of wood smoke in large urban centres such as London is becoming increasingly important with the changing nature of domestic heating partly due to the installation of biomass burning heaters to meet renewable energy targets imposed by the EU and also a rise in so-called recreational burning for aesthetic reasons (Fuller et al., 2013). Recent work in large urban centres (London, Paris and Berlin) has demonstrated an increase in the contribution of wood smoke to ambient particles during winter that can at times exceed traffic emissions. In Europe, biomass burning has been identified as a major cause of exceedances of European air quality limits during winter (Fuller et al., 2013). In light of the changing nature of emissions in urban areas there is a need for on-going measurements to assess the impact of biomass burning in cities like London. Therefore we aimed to determine quantitatively the contribution of biomass burning in London and surrounding rural areas. We also aimed to determine whether local emissions or regional sources were the main source of biomass burning in London. Sources of wood smoke during winter in London were investigated at an urban background site (North Kensington) and two surrounding rural sites (Harwell and Detling) by analysing selected wood smoke chemical tracers. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated, indicating a similar source of these species at the three sites. Based on the conversion factor for levoglucosan, mean wood smoke mass at Detling, North Kensington and Harwell was 0.78, 0.87 and 1.0 µg m-3, respectively. At all the sites, biomass burning was found to be a source of OC and EC, with the largest source of OC and EC found to be secondary organic aerosols and traffic emissions, respectively. Peaks in levoglucosan concentrations at the sites were observed to coincide with low ambient temperature, suggesting domestic heating as

  10. Characteristics of foraging sites and protein status in wintering muskoxen: Insights from isotopes of nitrogen

    USGS Publications Warehouse

    Gustine, D.D.; Barboza, P.S.; Lawler, J.P.; Arthur, S.M.; Shults, B.S.; Persons, K.; Adams, L.G.

    2011-01-01

    Identifying links between nutritional condition of individuals and population trajectories greatly enhances our understanding of the ecology, conservation, and management of wildlife. For northern ungulates, the potential impacts of a changing climate to populations are predicted to be nutritionally mediated through an increase in the severity and variance in winter conditions. Foraging conditions and the availability of body protein as a store for reproduction in late winter may constrain productivity in northern ungulates, yet the link between characteristics of wintering habitats and protein status has not been established for a wild ungulate. We used a non-invasive proxy of protein status derived from isotopes of N in excreta to evaluate the influence of winter habitats on the protein status of muskoxen in three populations in Alaska (2005-2008). Multiple regression and an information-theoretic approach were used to compare models that evaluated the influence of population, year, and characteristics of foraging sites (components of diet and physiography) on protein status for groups of muskoxen. The observed variance in protein status among groups of muskoxen across populations and years was partially explained (45%) by local foraging conditions that affected forage availability. Protein status improved for groups of muskoxen as the amount of graminoids in the diet increased (-0.430 ?? 0.31, ???? 95% CI) and elevation of foraging sites decreased (0.824 ?? 0.67). Resources available for reproduction in muskoxen are highly dependent upon demographic, environmental, and physiographic constraints that affect forage availability in winter. Due to their very sedentary nature in winter, muskoxen are highly susceptible to localized foraging conditions; therefore, the spatial variance in resource availability may exert a strong effect on productivity. Consequently, there is a clear need to account for climate-topography effects in winter at multiple scales when

  11. Aggressiveness Changes in Populations of Didymella pinodes over Winter and Spring Pea Cropping Seasons

    PubMed Central

    Laloi, G.; Montarry, J.; Guibert, M.; Andrivon, D.; Michot, D.

    2016-01-01

    ABSTRACT Ascochyta blight, caused by the necrotrophic ascomycete Didymella pinodes, is responsible for severe losses in winter and spring pea crops. Despite different climatic conditions, epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting gene flow either between the two crops or from reservoir sources during the cropping season. This should lead to similar pathogenicity characteristics in isolates sampled from the two crops. However, these hypotheses have never been formally tested. We therefore sampled a total of 520 D. pinodes strains throughout a growing season from winter and spring pea plots (WP and SP, respectively) and from winter and spring trap plants (TWP and TSP). Amplified fragment length polymorphism (AFLP) markers revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. These results support the idea that alloinoculum contributes to the carryover of epidemics between winter and spring crops and that the most aggressive isolates are selected as an epidemic progresses. IMPORTANCE Ascochyta blight, caused by Didymella pinodes, is responsible for severe losses in pea crops. While previous studies have shown that ascochyta blight epidemics on winter and spring crops are due to a single population of D. pinodes, suggesting that isolates from the two crops present similar pathogenicity characteristics, that hypothesis have never been tested. Genetic analysis of subpopulations sampled throughout a growing season from winter and spring pea plots revealed high genetic diversity within subpopulations, whereas pathogenicity tests showed that mean aggressiveness increases over the course of an epidemic. PMID:27208102

  12. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  13. Feeding ecology of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, D.G.; Krapu, G.L.; Crawford, R.D.

    1983-01-01

    Food use by mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska was determined from mid-December to early March 1978-80. Mallards foraged in river channels, irrigation drainage canals, and agricultural areas. Plant matter formed 97% of the diet (dry weight) and diets did not vary between sexes (P > 0.05). Waste corn was the principal food consumed and formed 46 and 62% of the diets of males and females, respectively. Milo, common duckweed (Lemna minor), smartweed (Polygonum spp.), and barnyardgrass (Echinochloa muricata) composed most of the remaining plant matter ingested. Mallards fed intensively in riparian wetland habitat to obtain invertebrates, but few were consumed because of limited abundance. Dietary protein was lower than reported among mallards wintering in Louisiana. Field feeding occurred primarily in grazed corn stubble and cattle feedlots. The distances traveled to feed, and the duration and timing of feeding varied with snow cover and season phenology. Competition for food was markedly higher during the cold winter of 1979 when heavy snow cover was present.

  14. Winter protein requirements of bobwhite quail

    USGS Publications Warehouse

    Nestler, R.B.; Bailey, W.W.; Llewellyn, L.M.; Rensberger, M.J.

    1944-01-01

    Three experiments involving 714 bobwhite quail were conducted at the Patuxent Research Refuge, Bowie, Maryland, during the winters of 1939-1941 to determine the protein requirement of quail maintained throug'h the winter.....Considering survival, live weights, feed consumption, and subsequent reproduction by the birds, the-9 to 13 per cent levels of crude dietary protein gave as good results as higher levels eggs, which in all cases was over 90 per and in some respects were better.....On the basis of these studies, it is recommended that the winter maintenance diet for bobwhite quail contain . about 11 to 12 per cent of crude protein. The following diet (parts by weight) conforms to these specifications and should be satisfactory:...Ground yellow corn 85.6....Dehvdrated alfalfa leaf meal 5 .O.....Soybean oil meal 7.0.....Special steamed bonemeal 1.2....Salt (or Salt Mixture II,see text) 1.0...Vitamin A and D feeding oil, fortified 0.2.

  15. Changes in hematological profiles during winter field operations

    SciTech Connect

    Lopez, A.; Reed, L.; D'Alesandro, M. )

    1991-03-11

    The authors have previously shown that there are changes in hematological profiles during experimental cold acclimation. They now report on hematological changes in 9 military volunteers during a 12 week winter field operation and show results similar to those observed during experimental cold acclimation. Blood was collected before and after completion of winter field operations and analyzed in a paired fashion. Hematocrit (HCT) and erythrocyte counts (RBC) were decreased; mean corpuscular hemoglobin concentration (MCHC) and plasma volume (PV), which was calculated from hemoglobin (Hb) concentration and HCT, were increased. In addition, the reticulocyte count was increased from 1.37 {plus minus} 0.10% to 2.62 {plus minus} 0.24% after completion of field operations. There was a statistically significant inverse correlation between HCT and reticulocyte count, indicating the need for an enhanced rate of red cell production. Hemoglobin concentration, leukocyte count, and mean corpuscular volume were unchanged. The RBC population, to remain at steady state during periods of chronic cold exposure, shows alterations in the number of circulating cells, Hb concentration per cell and possibly cell turnover.

  16. Impact of future warming on winter chilling in Australia

    NASA Astrophysics Data System (ADS)

    Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E. W. R.

    2013-05-01

    Increases in temperature as a result of anthropogenically generated greenhouse gas (GHG) emissions are likely to impact key aspects of horticultural production. The potential effect of higher temperatures on fruit and nut trees' ability to break winter dormancy, which requires exposure to winter chilling temperatures, was considered. Three chill models (the 0-7.2°C, Modified Utah, and Dynamic models) were used to investigate changes in chill accumulation at 13 sites across Australia according to localised temperature change related to 1, 2 and 3°C increases in global average temperatures. This methodology avoids reliance on outcomes of future GHG emission pathways, which vary and are likely to change. Regional impacts and rates of decline in chilling differ among the chill models, with the 0-7.2°C model indicating the greatest reduction and the Dynamic model the slowest rate of decline. Elevated and high latitude eastern Australian sites were the least affected while the three more maritime, less elevated Western Australian locations were shown to bear the greatest impact from future warming.

  17. Impact of future warming on winter chilling in Australia.

    PubMed

    Darbyshire, Rebecca; Webb, Leanne; Goodwin, Ian; Barlow, E W R

    2013-05-01

    Increases in temperature as a result of anthropogenically generated greenhouse gas (GHG) emissions are likely to impact key aspects of horticultural production. The potential effect of higher temperatures on fruit and nut trees' ability to break winter dormancy, which requires exposure to winter chilling temperatures, was considered. Three chill models (the 0-7.2°C, Modified Utah, and Dynamic models) were used to investigate changes in chill accumulation at 13 sites across Australia according to localised temperature change related to 1, 2 and 3°C increases in global average temperatures. This methodology avoids reliance on outcomes of future GHG emission pathways, which vary and are likely to change. Regional impacts and rates of decline in chilling differ among the chill models, with the 0-7.2°C model indicating the greatest reduction and the Dynamic model the slowest rate of decline. Elevated and high latitude eastern Australian sites were the least affected while the three more maritime, less elevated Western Australian locations were shown to bear the greatest impact from future warming.

  18. Assessing solar energy and water use efficiencies in winter wheat

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Hipps, L. E.; Kanemasu, E. T.

    1982-01-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  19. Decadal modulation of East China winter precipitation by ENSO

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Hui; Lu, Er; Kumar, Arun

    2016-11-01

    The decadal modulation of East China winter precipitation by the El Niño-Southern Oscillation (ENSO) is examined using both observational data and coupled global climate model simulations. The co-variability between 68-year (1948-2015) observed East China precipitation and tropical Pacific sea surface temperature (SST) is quantified by the singular value decomposition (SVD) method. The first SVD mode relates Southeast China winter pluvial (drought) to the tropical Pacific El Niño (La Niña) SST. A comparison between two 480-year model simulations with and without ENSO suggests that ENSO can modulate both the intensity and frequency of East China winter precipitation. In the presence of ENSO, maximum precipitation anomalies over Southeast China can be increased by 50% and largely on the interannual timescale (3-6 years). It is also demonstrated that there is an asymmetry in the precipitation and circulation responses to warm and cold phases of ENSO. The responses are sensitive to the intensity of SST anomalies during El Niño, but less sensitive to SSTs during La Niña. This sensitivity, together with the decadal variations of ENSO, helps understand the observed decadal changes in the strength of the association between wintertime tropical Pacific SST and East China precipitation. The association is relatively weak during 1948-1977 when La Niña occurred more frequently, but strong during 1978-1999 when El Niño occurred more frequently. In the last 16 years (2000-2015) the association is weakest, likely due to the weakened variability of tropical Pacific SST since 2000.

  20. Effects of winter road grooming on bison in YNP

    USGS Publications Warehouse

    Bjornlie, Daniel D; Garrott, R.A.

    2001-01-01

    The effects of winter recreation—specifically snowmobiling—on wildlife in Yellowstone National Park (YNP) have become high-profile management issues. The road grooming needed to support oversnow travel in YNP is also being examined for its effects on bison (Bison bison) ecology. Data were collected from November 1997 through May 1998 and from December 1998 through May 1999 on the effects of road grooming on bison in Madison–Gibbon–Firehole (MGF) area of YNP Peak bison numbers occurred during late March—early April and were strongly correlated with the snow water equivalent measurements in the Hayden Valley area (1997–1998: r* = 0.62, p:0.001: 1998–1999: r2 = 0.64, P-0.001). Data from an infrared trail monitor on the Mary Mountain trail between the Hayden and Firehole valleys suggest that this trail is the sole corridor for major bison distributional shifts between these locations. Of the 28,293 observations of individual bison made during the study, 8% were traveling and 69% were foraging. These percentages were nearly identical during the period of winter road grooming (7% and 68%, respectively). During this period, 77% of bison foraging activity and 12% of bison traveling activity involved displacing snow. Most travel took place off roads (P<0.001), Bison utilized geothermal features, a network of trails they established, and river and stream banks for travel. Bison road use was negatively correlated with road grooming, with peak use in April and lowest use during the road-grooming period. Bison in the MGF area of YNF neither seek out nor avoid groomed roads. The minimal use of roads compared to off-road areas, the short distances traveled on the roads, the decreased use of roads during the over snow vehicle (OSV) season, and the increased costs of negative interactions with OSVs suggest that grooming roads during winter does not have a major influence on bison ecology.

  1. Winter temperature affects the prevalence of ticks in an Arctic seabird.

    PubMed

    Descamps, Sébastien

    2013-01-01

    The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich's guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5) and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.

  2. Migration And wintering areas Of Glaucous-winged Gulls From south-central Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Gill, V.A.; Mulcahy, Daniel M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucous-winged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter.

  3. Migration and wintering areas of glaucous-winged Gulls from south-central Alaska

    USGS Publications Warehouse

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucouswinged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter. ?? The Cooper Ornithological Society 2011.

  4. Effects of weather on habitat selection and behavior of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, D.G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.

    1984-01-01

    Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.

  5. Condition of Euphausia crystallorophias off East Antarctica in winter in comparison to other seasons

    NASA Astrophysics Data System (ADS)

    Nicol, S.; Virtue, P.; King, R.; Davenport, S. R.; McGaffin, A. F.; Nichols, P.

    2004-08-01

    Antarctic coastal krill ( Euphausia crystallorophias) were collected in Austral winter (July/August) 1999 in the Mertz Glacier polynya off the coast of East Antarctica and were compared to krill collected off East Antarctica during summer in 1996 and 2001 and spring 1999. A range of experiments and measurements were conducted to assess their relative condition in winter and summer. Krill collected in winter had pale yellow-green digestive glands, indicating some recent feeding activity. The size of the digestive glands was small relative to those of krill caught in summer. This indicates that feeding had been occurring at low levels during the collection period. Growth rates, measured using the instantaneous growth rate methodology, were close to zero in winter (range -5% to 7% per moult). This was an indication that some food had been available during the period of the moult cycle. Growth rates in spring ranged from -0.5% to +8.7% per moult and from 4% to 12% per moult in the summer. The mean length of the winter moult cycle (68 days) was considerably greater than the measured intermoult period in summer and spring (24-33 days). Lipid levels were low in winter, less than 5% of body weight, compared to summer levels of ˜15% (dry weight). Winter krill were richer in wax esters and poorer in polar lipids than specimens collected in summer. Krill in winter were lacking in C16 PUFA that are markers of the phytoplankton diet common in summer krill. Krill caught in the winter had significantly higher levels of 20:1 and 22:1 fatty acids (2.3%) and alcohols (8.1%) than krill sampled in summer (0.2%, 0%), indicating a shift to a carnivorous diet. Results from this study suggest that E. crystallorophias respond to low food abundance during the winter through metabolic and physiological processes. These processes were reflected in a decrease in growth rate and a significant increase in the intermoult period. The process of lipid utilisation and switching to a carnivorous

  6. Forage kochia (Kochia Prostrata) increases nutritional value, carrying capacity, and livestock performance on semiarid rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extending the grazing season into the fall and winter increases the sustainability of livestock production by reducing winter feed costs. However, without exception, stockpiled range grasses do not meet nutritional requirements for ruminant livestock. This study compared fall/winter grazing of tra...

  7. Association of wintering raptors with Conservation Reserve Enhancement Program grasslands in Pennsylvania

    USGS Publications Warehouse

    Wilson, A.; Brittingham, M.; Grove, G.

    2010-01-01

    Conservation grasslands can provide valuable habitat resource for breeding songbirds, but their value for wintering raptors has received little attention. We hypothesized that increased availability of grassland habitat through the Conservation Reserve Enhancement Program (CREP) has resulted in an increase or redistribution in numbers of four species of raptors in Pennsylvania since 2001. We tested this by analyzing winter raptor counts from volunteer surveys, conducted from 2001 to 2008, for Red-tailed Hawks (Buteo jamaicensis), Rough-legged Hawks (Buteo lagopus), Northern Harriers (Circus cyaneus), and American Kestrels (Falco sparverius). During that period, numbers of wintering Northern Harriers increased by more than 20% per year. Log-linear Poisson regression models show that all four species increased in the region of Pennsylvania that had the most and longest-established conservation grasslands. At the county scale (N= 67), Bayesian spatial models showed that spatial and temporal population trends of all four species were positively correlated with the amount of conservation grassland. This relationship was particularly strong for Northern Harriers, with numbers predicted to increase by 35.7% per year for each additional 1% of farmland enrolled in CREP. Our results suggest that conservation grasslands are likely the primary cause of the increase in numbers of wintering Northern Harriers in Pennsylvania since 2001. ?? 2010 The Authors. Journal of Field Ornithology ?? 2010 Association of Field Ornithologists.

  8. Evaluation of an aerial survey to estimate abundance of wintering ducks in Mississippi

    USGS Publications Warehouse

    Pearse, A.T.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards {Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (I??), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (N??) for 14 surveys during winters 2002-2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40-48% among all surveys and contributed 48-61% of the estimated variance of N??. However, mean-squared errors were consistently less for N?? than I??. Estimates of N?? met our goals for precision (CV ??? 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.

  9. Evaluation of an aerial survey to estimate abundance of wintering ducks in Mississippi

    USGS Publications Warehouse

    Pearse, A.T.; Dinsmore, S.J.; Kaminski, R.M.; Reinecke, K.J.

    2008-01-01

    Researchers have successfully designed aerial surveys that provided precise estimates of wintering populations of ducks over large physiographic regions, yet few conservation agencies have adopted these probability-based sampling designs for their surveys. We designed and evaluated an aerial survey to estimate abundance of wintering mallards {Anas platyrhynchos), dabbling ducks (tribe Anatini) other than mallards, diving ducks (tribes Aythini, Mergini, and Oxyurini), and total ducks in western Mississippi, USA. We used design-based sampling of fixed width transects to estimate population indices (I?), and we used model-based methods to correct population indices for visibility bias and estimate population abundance (N?) for 14 surveys during winters 2002-2004. Correcting for bias increased estimates of mallards, other dabbling ducks, and diving ducks by an average of 40-48% among all surveys and contributed 48-61% of the estimated variance of N?. However, mean-squared errors were consistently less for N? than I?. Estimates of N? met our goals for precision (CV < 15%) in 7 of 14 surveys for mallards, 5 surveys for other dabbling ducks, no surveys for diving ducks, and 10 surveys for total ducks. Generally, we estimated more mallards and other dabbling ducks in mid- and late winter (Jan-Feb) than early winter (Nov-Dec) and determined that population indices from the late 1980s were nearly 3 times greater than those from our study. We developed a method to display relative densities of ducks spatially as an additional application of survey data. Our study advanced methods of estimating abundance of wintering waterfowl, and we recommend this design for continued monitoring of wintering ducks in western Mississippi and similar physiographic regions.

  10. El Niño-Southern Oscillation Impacts on Winter Vegetable Production in Florida*.

    NASA Astrophysics Data System (ADS)

    Hansen, James W.; Jones, James W.; Kiker, Clyde F.; Hodges, Alan W.

    1999-01-01

    Florida's mild winters allow the state to play a vital role in supplying fresh vegetables for U.S. consumers. Producers also benefit from premium prices when low temperatures prevent production in most of the country. This study characterizes the influence of the El Niño-Southern Oscillation (ENSO) on the Florida vegetable industry using statistical analysis of the response of historical crop (yield, prices, production, and value) and weather variables (freeze hazard, temperatures, rainfall, and solar radiation) to ENSO phase and its interaction with location and time of year. Annual mean yields showed little evidence of response to ENSO phase and its interaction with location. ENSO phase and season interacted to influence quarterly yields, prices, production, and value. Yields (tomato, bell pepper, sweet corn, and snap bean) were lower and prices (bell pepper and snap bean) were higher in El Niño than in neutral or La Niña winters. Production and value of tomatoes were higher in La Niña winters. The yield response can be explained by increased rainfall, reduced daily maximum temperatures, and reduced solar radiation in El Niño winters. Yield and production of winter vegetables appeared to be less responsive to ENSO phase after 1980; for tomato and bell pepper, this may be due to improvements in production technology that mitigate problems associated with excess rainfall. Winter yield and price responses to El Niño events have important implications for both producers and consumers of winter vegetables, and suggest opportunities for further research.

  11. Combined effect of the Arctic Oscillation and the Western Pacific pattern on East Asia winter temperature

    NASA Astrophysics Data System (ADS)

    Park, Hye-Jin; Ahn, Joong-Bae

    2016-05-01

    The combined effect of the Arctic Oscillation (AO) and Western Pacific (WP) teleconnection pattern on the temperature variation during the winter in the northern hemisphere and East Asia over the last 56 years (1958/1959-2013/2014) was investigated using NCEP/NCAR reanalysis data. The study results revealed that the effect of the AO on winter temperature in East Asia could be changed depending on the phase of the WP pattern in the North Pacific. The negative relationship between the temperature of East Asia (25-45°N, 110-145°E) and the AO increased when the AO and WP were in-phase with each other. Hence, when winter negative (positive) AO was accompanied by negative (positive) WP, negative (positive) temperature anomalies were dominant across the entire East Asia region. Conversely, when the AO and WP were out-of-phase, the winter temperature anomaly in East Asia did not show distinct changes. Furthermore, from the perspective of stationary planetary waves, the zonal wavenumber-2 patterns of sea level pressure and geopotential height at 500 hPa related to the East Asian winter monsoon (EAWM) circulation strengthened when the AO and WP were in-phase but were not significant for the out-of-phase condition. An index considering the effect of both AO and WP on East Asia winter temperature was proposed. The correlation between the index and the East Asia winter temperature was statistically significant at the 99 % confidence level. The index was correlated with synoptic characteristics of the EAWM, including the Siberian High, East Asian trough, East Asian jet stream and surface air temperature.

  12. Foraging behavior of redheads (Aythya americana) wintering in Texas and Louisiana

    USGS Publications Warehouse

    Woodin, M.C.; Michot, T.C.

    2006-01-01

    Redheads, Aythya americana, concentrate in large numbers annually in traditional wintering areas along the western and northern rim of the Gulf of Mexico. Two of these areas are the Laguna Madre of Texas and Chandeleur Sound of Louisiana. We collected data on 54,340 activities from 103 redhead flocks in Texas and 51,650 activities from 57 redhead flocks in Louisiana. Males and females fed similarly, differing neither in levels of feeding (percent of all birds in flock that were feeding) (p>0.90) nor in percentages of birds feeding by diving, tipping, dipping, or gleaning from the surface (p>0.10). The foraging level of redheads in the upper Laguna Madre region was relatively constant throughout two winters. Foraging of redheads in early winter in Louisiana was significantly greater than redhead foraging in the upper Laguna Madre, but by late winter, foraging by redheads in Louisiana had declined to the same level as that shown by redheads foraging in the upper Laguna Madre. The overall foraging level of redheads from Chandeleur Sound was greater (41%) than that of redheads in the upper Laguna Madre (26%), yet it was quite similar to the 46% foraging level reported for redheads from the lower Laguna Madre. Redheads in the upper Laguna Madre region of Texas fed more by diving than did those in the Chandeleur Sound and the lower Laguna Madre. Diving increased in frequency in late winter. Greater reliance by redheads on diving in January and February indicates that the birds altered their foraging to feed in deeper water, suggesting that the large concentrations of redheads staging at this time for spring migration may have displaced some birds to alternative foraging sites. Our results imply that the most likely period for food resources to become limiting for wintering redheads is when they are staging in late winter. ?? Springer 2006.

  13. Winter and early spring CO2 efflux from tundra communities of northern Alaska

    USGS Publications Warehouse

    Fahnestock, J.T.; Jones, M.H.; Brooks, P.D.; Walker, D.A.; Welker, J.M.

    1998-01-01

    Carbon dioxide concentrations through snow were measured in different arctic tundra communities on the North Slope of Alaska during winter and early spring of 1996. Subnivean CO2 concentrations were always higher than atmospheric CO2. A steady state diffusion model was used to generate conservative estimates of CO2 flux to the atmosphere. The magnitude of CO2 efflux differed with tundra community type, and rates of carbon release increased from March to May. Winter CO2 efflux was highest in riparian and snow bed communities and lowest in dry heath, upland tussock, and wet sedge communities. Snow generally accrues earlier in winter and is deeper in riparian and snow bed communities compared with other tundra communities, which are typically windswept and do not accumulate much snow during the winter. These results support the hypothesis that early and deep snow accumulation may insulate microbial populations from very cold temperatures, allowing sites with earlier snow cover to sustain higher levels of activity throughout winter compared to communities that have later developing snow cover. Extrapolating our estimates of CO2 efflux to the entire snow-covered season indicates that total carbon flux during winter in the Arctic is 13-109 kg CO2-C ha-1, depending on the vegetation community type. Wintertime CO2 flux is a potentially important, yet largely overlooked, part of the annual carbon cycle of tundra, and carbon release during winter should be accounted for in estimates of annual carbon balance in arctic ecosystems. Copyright 1998 by the American Geophysical Union.

  14. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species.

    PubMed

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species (Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  15. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    NASA Astrophysics Data System (ADS)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  16. Winter Eurasian Climate Variability: Role of Cyclone and Anticyclone Activity

    NASA Astrophysics Data System (ADS)

    Lu, C.; Zhang, X.; Guan, Z.

    2012-12-01

    This study investigates variability of extratropical Eurasian cyclone and anticyclone activity by using a modified automated cyclone and anticyclone identification and tracking algorithm. The cyclone and anticyclone activities are quantified by their regionally integrated intensity (CI and ACI) during 1978/79-2011/2012 winter seasons. We found that the time evolutions of the CI and ACI exhibit a general negative correlation of -0.7 between them at a significant level of 99.99%. This anticyclone (cyclone) variability contributes to the substantially large-scale sea level pressure variability over extratropical Eurasian continent, and explains the interannual fluctuation of surface air temperature over mid latitude Eurasia as well as the adjacent continents. The ACI swings from one phase to another, also producing large changes in snow cover extend, snow equivalent water as well as frequency of extreme cold events over the Eurasian continent. The strengthening of anticyclone intensity is preceded by retreated of the October sea-ice extent over Barents-Kara Sea, which associates tightly with an increasing stability at lower troposphere around the Ural Mountains and induces strengthening Eurasian anticyclones activity in the subsequent winter.

  17. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Hipskino, R. Stephen (Technical Monitor)

    2001-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999-2000 winter season. Aircraft based water vapor, carbon monoxide, and ozone measurements are analyzed so as to establish how deeply tropospheric air mixes into the arctic lower-most stratosphere, and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to- stratosphere exchange extends into the arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases idly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of about 5 ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20\\% of the parcels which have ozone values of 300-350ppbv experiencing ice saturation in a given 10 day period. Third, during early Spring temperatures at the tropopause are cold enough so that 5-10\\% of parcels experience relative humidities above 100\\%, even if the water content is as low as 5 ppmv. The implication is that during, this period the arctic tropopause can play an important role in maintaining a very dry upper troposphere during early Spring.

  18. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  19. Climate and smoke: an appraisal of nuclear winter.

    PubMed

    Turco, R P; Toon, O B; Ackerman, T P; Pollack, J B; Sagan, C

    1990-01-12

    The latest understanding of nuclear winter is reviewed. Considerable progress has been made in quantifying the production and injection of soot by large-scale fires, the regional and global atmospheric dispersion of the soot, and the resulting physical, environmental, and climatic perturbations. New information has been obtained from laboratory studies, field experiments, and numerical modeling on a variety of scales (plume, mesoscale, and global). For the most likely soot injections from a full-scale nuclear exchange, three-dimensional climate simulations yield midsummer land temperature decreases that average 10 degrees to 20 degrees C in northern mid-latitudes, with local cooling as large as 35 degrees C, and subfreezing summer temperatures in some regions. Anomalous atmospheric circulations caused by solar heating of soot is found to stabilize the upper atmosphere against overturning, thus increasing the soot lifetime, and to accelerate interhemispheric transport, leading to persistent effects in the Southern Hemisphere. Serious new environmental problems associated with soot injection have been identified, including disruption of monsoon precipitation and severe depletion of the stratospheric ozone layer in the Northern Hemisphere. The basic physics of nuclear winter has been reaffirmed through several authoritative international technical assessments and numerous individual scientific investigations. Remaining areas of uncertainty and research priorities are discussed in view of the latest findings.

  20. Environmental contaminants in redheads wintering in coastal Louisiana and Texas

    USGS Publications Warehouse

    Michot, T.C.; Custer, T.W.; Nault, A.J.; Mitchell, C.A.

    1994-01-01

    Whole body and liver analyses indicated that wintering redheads (Aythya americana; n = 70) in coastal Louisiana (one site) and Texas (two sites) were relatively free of contamination with common trace elements, organochlorines, and hydrocarbons. Most trace elements, including As, Cr, Hg, Mg, Mn, Ni, Pb, Se, Sr, and Zn, were within background concentrations in livers; levels of B, Cd, Cu, and Fe were elevated in some specimens. Only one organochlorine, DDE, was detected in redhead carcasses, but its concentration was below reported toxic levels in waterfowl. Body burdens of aliphatic and aromatic hydrocarbons were generally low, but levels of pristane, total hydrocarbons, and the ratios of phytane:n-octadecane and pristane:n-heptadecane were indicative of possible chronic exposure to petroleum. Based on brain cholinesterase assays, redheads were not recently exposed to organophosphorous or carbamate pesticides. Of 30 elements or compounds test