Science.gov

Sample records for increased winter snowfall

  1. A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Briner, Jason P.; Ryan-Henry, John J.; Huang, Yongsong

    2016-05-01

    Precipitation is predicted to increase in the Arctic as temperature increases and sea ice retreats. Yet the mechanisms controlling precipitation in the Arctic are poorly understood and quantified only by the short, sparse instrumental record. We use hydrogen isotope ratios (δ2H) of lipid biomarkers in lake sediments from western Greenland to reconstruct precipitation seasonality and summer temperature during the past 8 kyr. Aquatic biomarker δ2H was 100‰ more negative from 6 to 4 ka than during the early and late Holocene, which we interpret to reflect increased winter snowfall. The middle Holocene also had high summer air temperature, decreased early winter sea ice in Baffin Bay and the Labrador Sea, and a strong, warm West Greenland Current. These results corroborate model predictions of winter snowfall increases caused by sea ice retreat and furthermore suggest that warm currents advecting more heat into the polar seas may enhance Arctic evaporation and snowfall.

  2. Impact of declining Arctic sea ice on winter snowfall.

    PubMed

    Liu, Jiping; Curry, Judith A; Wang, Huijun; Song, Mirong; Horton, Radley M

    2012-03-13

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters.

  3. Impact of increasing temperature on snowfall in Switzerland

    NASA Astrophysics Data System (ADS)

    Serquet, G.; Marty, C.; Rebetez, M.

    2012-04-01

    The exact impact of changing temperatures on snow amounts is extremely important for mountainous regions, not only for hydrological aspects but also for winter tourism and the leisure industry in winter ski resorts. However, the impact of increasing temperatures on snowfall amounts is difficult to measure because of the large natural variability of precipitation. In addition, the impact of increasing temperatures varies, depending on region and altitude. Moreover, the impact of the observed increasing trend in temperature on snowfall and snow cover has usually been investigated on a seasonal basis only. On a monthly basis, the relationship between this increase in temperature and snowfall is still largely unknown. Of particular concern are the autumn and spring months and variations with altitude. In order to isolate the impact of changing temperatures on snowfall from the impact of changes in the frequency and intensity of total precipitation, we analyzed the proportion of snowfall days compared to precipitation days for each month from November to April in Switzerland. Our analyses concern 52 meteorological stations located between 200 and 2700 m asl over a 48 year time span. Our results show clear decreasing trends in snowfall days relative to precipitation days for all months (November to April) during the study period 1961-2008. Moreover, the present conditions in December, January and February correspond to those measured in the 1960's in November and March. During the whole snow season, the snowfall ratios have been transferred in elevation by at least 300 m from 1961 to 2008. This means that with an expected temperature increase during the coming decades at least similar to the temperature rise of recent decades, we can assume an additional similar altitudinal transfer of the snowfall days relative to precipitation days ratios. The current situation in November and March could thus become the future situation in December, January and February. During the

  4. Winter Snowfall Turns an Emerald White

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ireland's climate is normally mild due to the nearby Gulf Stream, but the waning days of 2000 saw the Emerald Isle's green fields swathed in an uncommon blanket of white. The contrast between summer and winter is apparent in this pair of images of southwestern Ireland acquired by MISR's vertical-viewing (nadir) camera on August 23, 2000 (left) and December 29, 2000 (right). The corresponding Terra orbit numbers are 3628 and 5492, respectively.

    The year 2000 brought record-breaking weather to the British Isles. England and Wales experienced the wettest spring and autumn months since 1766. Despite being one of the warmest years in recent history, a cold snap arrived between Christmas and New Year's Day. According to the UK Meteorological Office, the 18 centimeters (7 inches) of snow recorded at Aldergrove, Northern Ireland, on December 27-28 was the deepest daily fall since 1930.

    Prominent geographical features visible in the MISR images include Galway Bay near the top left. Further south, the mouth of the River Shannon, the largest river in the British Isles, meets the Atlantic Ocean. In the lower portions of the images are the counties of Limerick, Kerry and Cork.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology

  5. 21st century projections of snowfall and winter severity across central-eastern North America

    NASA Astrophysics Data System (ADS)

    Notaro, M.; Lorenz, D. J.; Hoving, C.; Schummer, M.

    2014-12-01

    Statistically downscaled climate projections from nine global climate models (GCMs) are used to force a snow accumulation and ablation model (SNOW-17) across the central-eastern North American Landscape Conservation Cooperatives (LCCs) to develop high-resolution projections of snowfall, snow depth, and winter severity index (WSI) by the mid- and late 21st century. Here, we use projections of a cumulative WSI (CWSI) known to influence autumn-winter waterfowl migration to demonstrate the utility of SNOW-17 results. The application of statistically downscaled climate data and a snow model leads to a better representation of lake processes in the Great Lakes Basin, topographic effects in the Appalachian Mountains, and spatial patterns of climatological snowfall, compared to the original GCMs. Annual mean snowfall is simulated to decline across the region, particularly in early winter (December-January), leading to a delay in the mean onset of the snow season. Due to a warming-induced acceleration of snowmelt, the percentage loss in snow depth exceeds that of snowfall. Across the Plains and Prairie Potholes LCC and Upper Midwest and Great Lakes LCC, daily snowfall events are projected to become less common, but more intense. The greatest reductions in the number of days per year with a present snowpack are expected close to the historical position of the -5°C isotherm in DJFM, around 44°N. The CWSI is projected to decline substantially during December-January, leading to increased likelihood of delays in timing and intensity of autumn-winter waterfowl migrations.

  6. Increased future ice discharge from Antarctica owing to higher snowfall.

    PubMed

    Winkelmann, R; Levermann, A; Martin, M A; Frieler, K

    2012-12-13

    Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.

  7. Increased future ice discharge from Antarctica owing to higher snowfall.

    PubMed

    Winkelmann, R; Levermann, A; Martin, M A; Frieler, K

    2012-12-13

    Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet. PMID:23235878

  8. Evaluating winter snowfall event distribution in a mountain watershed using differential airborne laser scanning

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Bormann, K. J.; Hedrick, A. R.; Brandt, T.; Painter, T. H.

    2015-12-01

    Knowledge of the spatial distribution of snowfall in mountain catchments is critical for estimation and simulation of snow water resources. Measurements of precipitation are sparse, and extrapolation of measurements to surrounding terrain is challenging, particularly in areas with high relief and complex topography. The NASA Airborne Snow Observatory (ASO) offers a unique approach to quantifying snowfall distributions. The ASO is a combined airborne laser scanner (ALS) and hyperspectral imager designed to map snow depth, water equivalent, and albedo at high resolution in mountain basins. Over the past 3 winter seasons, the ASO has collected data on a nominally weekly basis over the full extent of the Tuolumne River Basin in the Sierra Nevada Mountains of California, offering an unprecedented opportunity to examine the spatial distribution of storm snowfall at high resolution in a mountain basin. Where snowfall events occurred between flights, the difference in ALS-derived elevations reveals the accumulation pattern. We demonstrate snow accumulation patterns for several snowfall events in 2013-15, and compare to other precipitation distribution products and methods.

  9. Winter snowfall and summer photosynthesis for the Great Basin Desert shrubs Artemisia tridentata and Purshia tridentata.

    NASA Astrophysics Data System (ADS)

    Loik, M. E.; Griffith, A. B.; Alpert, H.; Concilio, A. L.; Martinson, S. J.

    2011-12-01

    Snowfall provides the majority of soil water recharge in many western high-elevation North American ecosystems, but climate change may alter the magnitude and timing of snowfall and snow melt events thereby affecting ecosystem processes. Experiments were conducted to test hypotheses about multi-scale linkages of antecedent snow depth variation with soil water content and physiological performance of deeply-rooted shrubs in the western Great Basin Desert. Snow depth was manipulated using eight 50-year old snow fences near Mammoth Lakes, California, USA. Water potential and photosynthetic gas exchange were measured annually in early summer (1 - 2 mo following snowmelt), between 2004 and 2008 for Artemisia tridentata (Asteraceae) and Purshia tridentata (Rosaceae) on plots with increased ("+ snow"), decreased ("- snow") and ambient snow depth. Seasonal patterns were measured from May - September 2005, and four to five months after snowmelt in wet and dry years. Snow depth on +snow plots was about twice that of ambient-depth plots in most years. Depth was about 20% lower on -snow plots. Soil water content in May on +snow plots was roughly double that on ambient and 220% of that on -snow plots. Water potential patterns varied across daily, seasonal, and annual scales, but only on a few occasions was there a significant snow-depth effect. Stomatal conductance (gs) and CO2 assimilation (A) increased for several months after snowmelt in 2005, but there were only a few times when there was a snow depth effect. Photosynthetic gas exchange reflected inter-annual snow depth, but the magnitude of the variation was lower. There was a threshold response of A to October 1 - June 1 cumulative precipitation. For A. tridentata, A differed as a function of Snow Water Equivalents (SWE) across five years of measurements. Results suggest that plant water relations for these two deeply-rooted shrub species are resilient to variation in winter snow depth and subsequent spring soil water

  10. Reduced winter snowfall damages the structure and function of wintergreen ferns.

    PubMed

    Tessier, Jack T

    2014-05-20

    • Premise of the study: The full impact of climate change on ecosystems and the humans that depend on them is uncertain. Anthropogenic climate change is resulting in winters with less snow than is historically typical. This deficit may have an impact on wintergreen ferns whose fronds lie prostrate under the snowpack and are thereby protected from frost.• Methods: Frost damage and ecophysiological traits were quantified for three species of wintergreen fern (Dryopteris intermedia, Dryopteris marginalis, and Polystichum acrostichoides) near Delhi, NY following the winters of 2012 (which had very little snowfall) and 2013 (which had typical snowfall).• Key results: Dryopteris intermedia was the most common species and had the highest percentage of frost-damaged fronds and the highest percentage of its cover damaged in 2012. Frost damage was significantly less in 2013 for all species. Polystichum acrostichoides had the highest vernal photosynthetic rate in undamaged fronds, and all three species had a negative net photosynthetic rate in frost-damaged fronds. The wintergreen fern community lost 36.69 ± 2.80% of its productive surface area to frost damage in 2012. Dryopteris intermedia had the thinnest leaves and this trait may have made it the most susceptible to frost damage.• Conclusions: These results demonstrate that repeated winters of little snow may have a significant impact on the structure and functioning of the wintergreen fern community, and species will respond to a reduced snowpack on an individual basis.

  11. Baroclinic Waves and CO2 Snowfalls in Martian Winter Polar Atmosphere Simulated by a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Kuroda, T.; Medvedev, A. S.; Kasaba, Y.; Hartogh, P.

    2016-09-01

    The CO2 snowfalls in winter polar atmosphere have been simulated by a MGCM. Our results show that they are strongly modulated by the synoptic dynamical features such as baroclinic planetary waves, as well as by gravity waves in smaller scale.

  12. Projected changes in snowfall extremes and interannual variability of snowfall in the western United States

    NASA Astrophysics Data System (ADS)

    Lute, A. C.; Abatzoglou, J. T.; Hegewisch, K. C.

    2015-02-01

    Projected warming will have significant impacts on snowfall accumulation and melt, with implications for water availability and management in snow-dominated regions. Changes in snowfall extremes are confounded by projected increases in precipitation extremes. Downscaled climate projections from 20 global climate models were bias-corrected to montane Snowpack Telemetry stations across the western United States to assess mid-21st century changes in the mean and variability of annual snowfall water equivalent (SFE) and extreme snowfall events, defined by the 90th percentile of cumulative 3 day SFE amounts. Declines in annual SFE and number of snowfall days were projected for all stations. Changes in the magnitude of snowfall event quantiles were sensitive to historical winter temperature. At climatologically cooler locations, such as in the Rocky Mountains, changes in the magnitude of snowfall events mirrored changes in the distribution of precipitation events, with increases in extremes and less change in more moderate events. By contrast, declines in snowfall event magnitudes were found for all quantiles in warmer locations. Common to both warmer and colder sites was a relative increase in the magnitude of snowfall extremes compared to annual SFE and a larger fraction of annual SFE from snowfall extremes. The coefficient of variation of annual SFE increased up to 80% in warmer montane regions due to projected declines in snowfall days and the increased contribution of snowfall extremes to annual SFE. In addition to declines in mean annual SFE, more frequent low-snowfall years and less frequent high-snowfall years were projected for every station.

  13. Shrinking sea ice, increasing snowfall and thinning lake ice: a complex Arctic linkage explained

    NASA Astrophysics Data System (ADS)

    Brock, Ben W.

    2016-09-01

    The dramatic shrinkage of Arctic sea ice is one of the starkest symptoms of global warming, with potentially severe and far-reaching impacts on arctic marine and terrestrial ecology (Post et al 2013 Science 341 519-24) and northern hemisphere climate (Screen et al 2015 Environ. Res. Lett. 10 084006). In their recent article, Alexeev et al (2016 Environ. Res. Lett. 11 074022) highlight another, and unexpected, consequence of Arctic sea ice retreat: the thinning of lake ice in northern Alaska. This is attributed to early winter ‘ocean effect’ snowfall which insulates lake surfaces and inhibits the formation of deep lake ice. Lake ice thinning has important consequences for Arctic lake hydrology, biology and permafrost degradation.

  14. Organic Characteristics of High Sierra Nevada Snowfall during the Winter of 2014

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Andrews, E. D.; Aiken, G.; Butler, K. D.

    2015-12-01

    During the winter of 2014 snow samples were collected from Tuolumne Meadows in Yosemite National Park (elevation 2600 m) for the determination of the organic constituents. Samples were collected from the middle of the snowpack during January - April (referred to as "snowpack" samples), from three depths in a cross-sectional pit dug in mid April ("snow pit" samples) and from fresh snow collected during two snowstorms ("snowstorm" samples). Samples were frozen immediately after collection in sealed glass containers and thawed just prior to analysis. The DOC concentration of snowpack samples varied from 0.9 - 1.7 mg C/L; the DOC of snowstorm samples had much lower values (0.3 - 0.4 mg C/L). DOC concentrations of snow taken from the top third of the snow pit in mid-April was much higher (6.6 mg C/L), but this sample had large amounts of "debris"; the snow samples from the middle and bottom of the snow pit had concentrations similar to the snowpack samples. Snows were fractionated into hydrophobic, transphilic and hydrophilic acid fractions (HPOA, TPIA and HPIA, respectively); HPOA comprised between 30 and 44% of the total, TPIA ranged from 8-16% and HPIA ranged from 19-28%. Samples collected from the snow pit at the end of the winter always had lower percentages of TPIA and HPIA than those taken from the snowpack during the winter. All snow samples were also analyzed for low molecular weight organic acids (LMWOA) via ion chromatography, and all samples contained trace amounts of formate, acetate and oxalate, with acetate generally being predominant. A few of the samples showed evidence of trace amounts of propionate and butyrate, but no other organic acids could be positively identified. If it is assumed that the LMWOA fraction consisted of the three anions above (acetate, formate and oxalate), then the percentage of the HPIA which was LMWOA ranged from 5-15% with uniformly higher percentages occurring in the snowpack samples than in the snow pit samples taken at the

  15. Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region

    NASA Astrophysics Data System (ADS)

    Hartnett, Justin Joseph

    Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The

  16. Comparisons of Snowfall Measurements in Complex Terrain Made During the 2010 Winter Olympics in Vancouver

    NASA Astrophysics Data System (ADS)

    Boudala, Faisal S.; Isaac, George A.; Rasmussen, Roy; Cober, Stewart G.; Scott, Bill

    2014-01-01

    Solid precipitation (SP) intensity () using four automatic gauges, Pluvio, PARSIVEL (PArticle, SIze and VELocity), FD12P and POSS, and radar reflectivity factor () using the POSS and PARSIVEL were measured at a naturally sheltered station (VOA) located at high level (1,640 m) on the Whistler Mountain in British Colombia, Canada. The R s and other standard meteorological parameters were collected from March 2009, and from November 2009, to February 2010. The wind speed (ws) measured during this period ranged from 0 to 4.5 ms-1, with a mean value of 0.5 ms-1. The temperature varied from 4 to -17 °C. The SP amount reported by the PARSIVEL was higher than that reported by the Pluvio by more than a factor of 2, while the FD12P and POSS measured relatively smaller amounts, but much closer to that reported by the Pluvio and manual measurements. The dependence of R s from the PARSIVEL on wind speed was examined, but no significant dependence was found. The PARSIVEL's precipitation retrieval algorithm was modified and tested using three different snow density size relationships ( ρ s- D) reported in literature. It was found that after modification of the algorithm, the derived R s amounts using the raw data agreed reasonably well with the Pluvio. Statistical analysis shows that more than 95 % of data measured by POSS appears to correlates well with the reflectivity factors determined using the three ρ s- D relationships. The automated Pluvio accumulation and manually determined daily SP amount (SPm) measured during five winter months were compared. The mean ratio (MR) and the mean difference (MD), and the correlation coefficient ( r) calculated using the data collected using the two methods, were found to be 0.96, 0.4 and 0.6 respectively, indicating respectable agreement between these two methods, with only the Pluvio underestimating the amount by about 4 %.

  17. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.

    PubMed

    Bjorkman, Anne D; Elmendorf, Sarah C; Beamish, Alison L; Vellend, Mark; Henry, Gregory H R

    2015-12-01

    Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long-term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21-year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05-0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species - especially for early-flowering species - while spring temperature was significantly related to flowering time only for later-flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species' phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses

  18. Twenty-first century changes in snowfall climate in Northern Europe in ENSEMBLES regional climate models

    NASA Astrophysics Data System (ADS)

    Räisänen, Jouni

    2016-01-01

    Changes in snowfall in northern Europe (55-71°N, 5-35°E) are analysed from 12 regional model simulations of twenty-first century climate under the Special Report on Emissions Scenarios A1B scenario. As an ensemble mean, the models suggest a decrease in the winter total snowfall in nearly all of northern Europe. In the middle of the winter, however, snowfall generally increases in the coldest areas. The borderline between increasing and decreasing snowfall broadly coincides with the -11 °C isotherm in baseline (1980-2010) monthly mean temperature, although with variation between models and grid boxes. High extremes of daily snowfall remain nearly unchanged, except for decreases in the mildest areas, where snowfall as a whole becomes much less common. A smaller fraction of the snow in the simulated late twenty-first century climate falls on severely cold days and a larger fraction on days with near-zero temperatures. Not only do days with low temperatures become less common, but they also typically have more positive anomalies of sea level pressure and less snowfall for the same temperature than in the present-day climate.

  19. ATMS Snowfall Rate Product and Its Applications

    NASA Astrophysics Data System (ADS)

    Meng, H.; Kongoli, C.; Dong, J.; Wang, N. Y.; Ferraro, R. R.; Zavodsky, B.; Banghua Yan, B.

    2015-12-01

    A snowfall rate (SFR) algorithm has been developed for the Advanced Technology Microwave Sounder (ATMS) aboard S-NPP and future JPSS satellites. The product is based on the NOAA/NESDIS operational Microwave Humidity Sounder (MHS) SFR but with several key advancements. The algorithm has benefited from continuous development to improve accuracy and snowfall detection efficiency. The enhancements also expand the applicable temperature range for the algorithm and allow significantly more snowfall to be detected than the operational SFR. Another major improvement is the drastically reduced product latency by using Direct Broadcast (DB) data. The new developments have also been implemented in the MHS SFR to ensure product consistency across satellites. Currently, there are five satellites that carry either ATMS or MHS: S-NPP, NOAA-18/-19 and Metop-A/-B. The combined satellites deliver up to ten SFR estimates a day at any location over land in mid-latitudes. The product provides much needed winter precipitation estimates for applications such as weather forecasting and hydrology. Both ATMS and MHS SFR serve as input to a global precipitation analysis product, the NOAA/NCEP CMORPH-Snow. SFR is the sole satellite-based snowfall estimates in the blended product. In addition, ATMS and MHS SFR was assessed at several NWS Weather Forecast Offices (WFOs) and NESDIS/Satellite Analysis Branch (SAB) for its operational values in winter 2015. This is a joint effort among NASA/SPoRT, NOAA/NESDIS, University of Maryland/CICS, and the WFOs. The feedback from the assessment indicated that SFR provides useful information for snowfall forecast. It is especially valuable for areas with poor radar coverage and ground observations. The feedback also identified some limitations of the product such as inadequate detection of shallow snowfall. The algorithm developers will continue to improve product quality as well as developing SFR for new microwave sensors and over ocean in a project

  20. The influence of snowfall, temperature and social relationships on sleeping clusters of Japanese monkeys during winter in Shiga Heights.

    PubMed

    Wada, Kazuo; Tokida, Eishi; Ogawa, Hideshi

    2007-04-01

    We studied Japanese monkeys (Macaca fuscata) of the Shiga A(1) troop at their sleeping sites in Shiga Heights, Japan, for 41 nights during 3 winters. Monkeys chose their sleeping sites in Japanese cedars and in deciduous broad-leaved forests on non-snowing nights and in Japanese cedar forests on snowing nights. We counted 399 sleeping clusters in which 2 or more monkeys remained in physical contact through the night and 43 solitary sleeping monkeys, though monkeys did not maintain physical contact with others in the daytime. We found 397 clusters on tree branches and 2 clusters on rocks. The mean size of huddling clusters was 3.06+/-1.22 SD. The cluster size (3.17+/-1.26 SD) at lower ambient temperatures between -7 and -4 degrees C was larger than that at higher temperatures between -2 and 4 degrees C (cluster size 2.88+/-1.13 SD). Most clusters were composed of kin. Females kept close to related females in the daytime and huddled with them at night. The highest-ranking male mainly huddled with his kin and his familiar females. Other males kept farther apart from each other in the daytime, probably to avoid social conflicts. Through cold winter nights, however, such males reduced inter-individual distances and huddled with other males. Japanese monkeys appear to recognize three types of inter-individual distances: an intimate distance less than 1 m, a personal distance of 1-3 m and a social distance of 3-20 m; they change their inter-individual distances according to social and ecological circumstances.

  1. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  2. Trends of Future Heavy Snowfall and Accumulated Freezing Indexes in Japanese Snowy Cold Region

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Matsuzawa, M.

    2015-12-01

    To achieve sufficient, effective winter road maintenance, it is important that long-term snow and ice hazard mitigation plans be examined and formulated by taking into consideration the influence of climate change. In this study, we have developed a method of predicting more accurately the indexes of heavy snowfall events that occur over short periods of time and future projections of winter temperatures based on the relationship of observed data to the climate model predicted values. The indexes for heavy snowfall were the maximum 24-hour snowfall and the frequency of 10-cm or more snowfall within a maximum 6-hour period. Indexes for cold weather were the accumulated freezing index in winter and the number of days of freeze-thaw days. Subsequently, we have applied this methodology for Japanese snowy cold regions, in order to clarify the trends for near future and century-end future period changes. The results indicate that current measures to mitigate the effects of extremely heavy snowfall in inland areas of Hokkaido may require enhancement of operational procedures. In addition, the possibility of pavement and concrete damage in the colder regions is expected to increase due to the increment in the number of freeze-thaw days. Based upon the results of this study, we will identify the road management issues associated with climate change using the recent trends and predictions for the near future and century-end future climate periods.

  3. Contrasting responses of mean and extreme snowfall to climate change.

    PubMed

    O'Gorman, Paul A

    2014-08-28

    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as -9 °C, compared to -14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain-snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.

  4. Sunspots and Snowfall

    ERIC Educational Resources Information Center

    Starr, Richard R.

    1978-01-01

    Examination of the snowfall and total precipitation data for Rochester, New York, suggests a correlation with sunspot activity. Data from other locations tend to support the thesis, but the ability to predict yearly snowfall or total precipitation amounts from sunspot activity has yet to be developed. (Author/CP)

  5. Variations in northern hemisphere snowfall: An analysis of historical trends and the projected response to anthropogenic forcing in the twenty-first century

    NASA Astrophysics Data System (ADS)

    Krasting, John P.

    Snowfall is an important feature of the Earth's climate system that has the ability to influence both the natural world and human activity. This dissertation examines past and future changes in snowfall related to increasing concentrations of anthropogenic greenhouse gases. Snowfall observations for North America, derived snowfall products for the Northern Hemisphere, and simulations performed with 13 coupled atmosphere-ocean global climate models are analyzed. The analysis of the spatial pattern of simulated annual trends on a grid point basis from 1951 to 1999 indicates that a transition zone exists above 60° N latitude across the Northern Hemisphere that separates negative trends in annual snowfall in the mid-latitudes and positive trends at higher latitudes. Regional analysis of observed annual snowfall indicates that statistically significant trends are found in western North America, Japan, and southern Russia. A majority of the observed historical trends in annual snowfall elsewhere in the Northern Hemisphere, however, are not statistically significant and this result is consistent with model simulations. Projections of future snowfall indicate the presence of a similar transition zone between negative and positive snowfall trends that corresponds with the area between the -10 to -15°C isotherms of the multi-model mean temperature of the late twentieth century in each of the fall, winter, and spring seasons. Redistributions of snowfall throughout the entire snow season are likely -- even in locations where there is little change in annual snowfall. Changes in the fraction of precipitation falling as snow contribute to decreases in snowfall across most Northern Hemisphere regions, while changes in precipitation typically contribute to increases in snowfall. Snowfall events less than or equal to 5 cm are found to decrease in the future across most of the Northern Hemisphere, while snowfall events greater than or equal to 20 cm increase in some locations

  6. Snowfall Retrivals Using a Video Disdrometer

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Kucera, P. A.

    2004-12-01

    A video disdrometer has been recently developed at NASA/Wallops Flight Facility in an effort to improve surface precipitation measurements. One of the goals of the upcoming Global Precipitation Measurement (GPM) mission is to provide improved satellite-based measurements of snowfall in mid-latitudes. Also, with the planned dual-polarization upgrade of US National Weather Service weather radars, there is potential for significant improvements in radar-based estimates of snowfall. The video disdrometer, referred to as the Rain Imaging System (RIS), was deployed in Eastern North Dakota during the 2003-2004 winter season to measure size distributions, precipitation rate, and density estimates of snowfall. The RIS uses CCD grayscale video camera with a zoom lens to observe hydrometers in a sample volume located 2 meters from end of the lens and approximately 1.5 meters away from an independent light source. The design of the RIS may eliminate sampling errors from wind flow around the instrument. The RIS operated almost continuously in the adverse conditions often observed in the Northern Plains. Preliminary analysis of an extended winter snowstorm has shown encouraging results. The RIS was able to provide crystal habit information, variability of particle size distributions for the lifecycle of the storm, snowfall rates, and estimates of snow density. Comparisons with coincident snow core samples and measurements from the nearby NWS Forecast Office indicate the RIS provides reasonable snowfall measurements. WSR-88D radar observations over the RIS were used to generate a snowfall-reflectivity relationship from the storm. These results along with several other cases will be shown during the presentation.

  7. Incidence of plague associated with increased winter-spring precipitation in New Mexico.

    PubMed

    Parmenter, R R; Yadav, E P; Parmenter, C A; Ettestad, P; Gage, K L

    1999-11-01

    Plague occurs episodically in many parts of the world, and some outbreaks appear to be related to increased abundance of rodents and other mammals that serve as hosts for vector fleas. Climate dynamics may influence the abundance of both fleas and mammals, thereby having an indirect effect on human plague incidence. An understanding of the relationship between climate and plague could be useful in predicting periods of increased risk of plague transmission. In this study, we used correlation analyses of 215 human cases of plague in relation to precipitation records from 1948 to 1996 in areas of New Mexico with history of human plague cases (38 cities, towns, and villages). We conducted analyses using 3 spatial scales: global (El Niño-Southern Oscillation Indices [SOI]); regional (pooled state-wide precipitation averages); and local (precipitation data from weather stations near plague case sites). We found that human plague cases in New Mexico occurred more frequently following winter-spring periods (October to May) with above-average precipitation (mean plague years = 113% of normal rain/ snowfall), resulting in 60% more cases of plague in humans following wet versus dry winter-spring periods. However, we obtained significant results at local level only; regional state-wide precipitation averages and SOI values exhibited no significant correlations to incidence of human plague cases. These results are consistent with our hypothesis of a trophic cascade in which increased winter-spring precipitation enhances small mammal food resource productivity (plants and insects), leading to an increase in the abundance of plague hosts. In addition, moister climate conditions may act to promote flea survival and reproduction, also enhancing plague transmission. Finally, the result that the number of human plague cases in New Mexico was positively associated with higher than normal winter-spring precipitation at a local scale can be used by physicians and public health

  8. Sensitivity studies of the effect of increased aerosol concentrations and snow crystal shape on the snowfall rate in the Arctic

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-06-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content, and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. [2000] proposed that anthropogenically induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud owing to its higher cloud droplet number concentration. Instead, the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shutdown of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a tenfold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates.

  9. Increasing Sun Protection in Winter Outdoor Recreation

    PubMed Central

    Walkosz, Barbara J.; Buller, David B.; Andersen, Peter A.; Scott, Michael D.; Dignan, Mark B.; Cutter, Gary R.; Maloy, Julie A.

    2009-01-01

    Background Unprotected and excessive exposure to ultraviolet radiation (UVR) is the primary risk factor for skin cancer. Design A pair-matched, group-randomized, pre-test/post-test, quasi-experimental design, with ski resorts as the unit of randomization, tested the effectiveness of Go Sun Smart, a multi-channel skin cancer prevention program. Independent samples of guests were taken at baseline (2001) and follow-up (2002); data were analyzed in 2006. Setting and Participants A total of 6516 adult guests at 26 ski resorts in the western U.S. and Canada were recruited, consented, and interviewed on chairlifts. This study was nested within an occupational intervention for ski resort workers. Intervention Ski resorts were pair-matched and randomized to receive Go Sun Smart, which consisted of print, electronic, visual, and interpersonal skin cancer prevention messages. Main Outcome Measures Sun-protection behaviors, sunburning, recall of sun-protection messages, and the association of message exposure to sun protection. Results The difference in recall of all sun-protection messages, messages on signs and posters, and the Go Sun Smart logo was significant between the intervention and control resorts. Reported use of sun-protection practices was higher by guests at intervention ski areas using more (a higher dose of) Go Sun Smart materials. Intervention-group guests who recalled a sun-safety message were more likely to practice sun safety than intervention-group guests who did not recall a message and control-group guests. Conclusions While the mere implementation of Go Sun Smart did not produce sun-safety improvements, Go Sun Smart appeared to be effective for guests who encountered and remembered it. Many factors can work against message exposure. Signage seemed to produce the greatest increase in exposure to sun-safety messages. PMID:18471586

  10. NPP ATMS Snowfall Rate Product

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  11. Natural Variability during Snowfall: Observations of Snowflake Microstructure and Calculations of Corresponding Snowfall Scattering Properties

    NASA Astrophysics Data System (ADS)

    Gergely, M.; Garrett, T. J.

    2015-12-01

    Significant progress has been achieved in approximating snowflakes and ice-cloud particles by increasingly more realistic and detailed shape models and in calculating associated scattering properties crucial to snowfall remote sensing. The applied approximations of the snowflake microstructure applied for the scattering calculations, however, are still based on few available field measurement data, often integrated over many individual snow storms, and only include several microstructural properties that cannot fully capture the natural variability during snowfall, e.g. different degrees of riming or aggregate snowflakes formed from more than one distinct ice crystal habit. In this study, (i) the natural variability of key microstructural properties during snowfall is quantified for individual snow storms based on high-resolution multi-view snowflake imaging data collected with the Multi-Angle Snowflake Camera (MASC) at Alta ski area (Alta, UT), and (ii) the corresponding variability in snowflake scattering properties is calculated. In addition to snowflake size, orientation and aspect ratio, 'particle complexity' (specifying snowflake perimeter and brightness variations in the MASC snowflake images) is included in the presented approach, yielding a quantitative and objective measure of characteristic snowflake microstructure, including crystal habit and degree of riming, important for realistically modelling snowfall scattering properties. The aim is to present an analysis of the impact of the observed natural microstructural variability on the derived snowflake scattering properties and ultimately on the snowfall radar reflectivity integrated over the obtained variability of snowflake microstructure and scattering properties.

  12. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.

    PubMed

    Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D

    2015-10-01

    Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth

  13. A Snowfall Impact Scale Derived from Northeast Storm Snowfall Distributions.

    NASA Astrophysics Data System (ADS)

    Kocin, Paul J.; Uccellini, Louis W.

    2004-02-01

    A Northeast snowfall impact scale (NESIS) is presented to convey a measure of the impact of heavy snowfall in the Northeast urban corridor, a region that extends from southern Virginia to New England. The scale is derived from a synoptic climatology of 30 major snowstorms in the Northeast urban corridor and applied to the snowfall distribution of 70 snowstorms east of the Rocky Mountains. NESIS is similar in concept to other meteorological scales that are designed to simplify complex phenomena into an easily understood range of values. The Fujita scale for tornadoes and the Saffir Simpson scale for hurricanes measure the potential for destruction to property and loss of life by wind-related damage (and storm surge for Saffir Simpson) through use of a categorical ranking (0 or 1 5).

  14. Shift from Snowfall to Rainfall in the Canadian Rockies: Consequences for Snowpacks, Glacier Mass Balance and Streamflow in an Emerging Drought

    NASA Astrophysics Data System (ADS)

    Pomeroy, J. W.; Fang, X.; Pradhananga, D.; Schirmer, M.; Conway, J. P.; Helgason, W.; Whitfield, P. H.

    2015-12-01

    The winter and spring of 2014-15 brought abnormal warmth to much of Western Canada and a transition from snowfall to rainfall for many winter and spring precipitation events in the Canadian Rocky Mountains where snowfall normally dominates precipitation volumes in these seasons. Spring and summer remained abnormally warm and exceptionally dry. The impact of a warm winter and dry spring and summer resulted in substantial reduction in snowfall and a shift to earlier rainfall in the Canadian Rockies. As a result peak snow accumulation was from 1/3 to 1/2 of long term averages at upper middle elevations and low elevation valley snowpacks ablated shortly after forming in early December. Snowmelt occurred 2 to 6 weeks earlier than average, resulting in earlier than normal spring freshets and exposure of glacier firn and ice. June 1st snow accumulation was completely ablated or at record low values for most observation stations. The shift from winter and spring snowfall to rainfall and subsequent low summer rainfall resulted in the emergence of exceptionally wide-spread forest fires, rapid glacier melt, low streamflow and severe agricultural drought in Western Canada. By mid-July the seasonal snowpack had largely ablated, discharge rates in the Bow River at Calgary were 40% of average, many mountain streams had dried up and the Athabasca Glacier had experienced 3 m of ice melt. The Cold Regions Hydrological Model was used to simulate the impacts of the snowfall to rainfall transition on the snow redistribution, sublimation and melt processes, runoff and evapotranspiration that control the water balance of selected mountain environments in this period, employing Harder and Pomeroy's Psychrometric Energy Balance Method to estimate precipitation phase. The results help to diagnose how a "warm drought" impacts the hydrology and glaciology of cold regions environments and suggest the possible impacts of future warmer climates and increased rainfall fraction on this region.

  15. Decreased winter severity increases viability of a montane frog population

    PubMed Central

    McCaffery, Rebecca M.; Maxell, Bryce A.

    2010-01-01

    Many proximate causes of global amphibian declines have been well documented, but the role that climate change has played and will play in this crisis remains ambiguous for many species. Breeding phenology and disease outbreaks have been associated with warming temperatures, but, to date, few studies have evaluated effects of climate change on individual vital rates and subsequent population dynamics of amphibians. We evaluated relationships among local climate variables, annual survival and fecundity, and population growth rates from a 9-year demographic study of Columbia spotted frogs (Rana luteiventris) in the Bitterroot Mountains of Montana. We documented an increase in survival and breeding probability as severity of winter decreased. Therefore, a warming climate with less severe winters is likely to promote population viability in this montane frog population. More generally, amphibians and other ectotherms inhabiting alpine or boreal habitats at or near their thermal ecological limits may benefit from the milder winters provided by a warming climate as long as suitable habitats remain intact. A more thorough understanding of how climate change is expected to benefit or harm amphibian populations at different latitudes and elevations is essential for determining the best strategies to conserve viable populations and allow for gene flow and shifts in geographic range. PMID:20421473

  16. Decreased winter severity increases viability of a montane frog population.

    PubMed

    McCaffery, Rebecca M; Maxell, Bryce A

    2010-05-11

    Many proximate causes of global amphibian declines have been well documented, but the role that climate change has played and will play in this crisis remains ambiguous for many species. Breeding phenology and disease outbreaks have been associated with warming temperatures, but, to date, few studies have evaluated effects of climate change on individual vital rates and subsequent population dynamics of amphibians. We evaluated relationships among local climate variables, annual survival and fecundity, and population growth rates from a 9-year demographic study of Columbia spotted frogs (Rana luteiventris) in the Bitterroot Mountains of Montana. We documented an increase in survival and breeding probability as severity of winter decreased. Therefore, a warming climate with less severe winters is likely to promote population viability in this montane frog population. More generally, amphibians and other ectotherms inhabiting alpine or boreal habitats at or near their thermal ecological limits may benefit from the milder winters provided by a warming climate as long as suitable habitats remain intact. A more thorough understanding of how climate change is expected to benefit or harm amphibian populations at different latitudes and elevations is essential for determining the best strategies to conserve viable populations and allow for gene flow and shifts in geographic range.

  17. Increased body mass of ducks wintering in California's Central Valley

    USGS Publications Warehouse

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  18. An evaluation of the Wyoming gauge system for snowfall measurement

    USGS Publications Warehouse

    Yang, D.; Kane, D.L.; Hinzman, L.D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.Y.T.; Leavesley, G.H.; Emerson, D.G.; Hanson, C.L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind-induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this intercomparison experiment. The intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80-90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  19. Trends in snowfall versus rainfall in the western United States

    USGS Publications Warehouse

    Knowles, N.; Dettinger, M.D.; Cayan, D.R.

    2006-01-01

    The water resources of the western United States depend heavily on snowpack to store part of the wintertime precipitation into the drier summer months. A well-documented shift toward earlier runoff in recent decades has been attributed to 1) more precipitation falling as rain instead of snow and 2) earlier snowmelt. The present study addresses the former, documenting a regional trend toward smaller ratios of winter-total snowfall water equivalent (SFE) to winter-total precipitation (P) during the period 1949-2004. The trends toward reduce d SFE are a response to warming across the region, with the most significant reductions occurring where winter wet-day minimum temperatures, averaged over the study period, were warmer than -5??C. Most SFE reductions were associated with winter wet-day temperature increases between 0?? and +3??C over the study period. Warmings larger than this occurred mainly at sites where the mean temperatures were cool enough that the precipitation form was less susceptible to warming trends. The trends toward reduced SFE/P ratios w ere most pronounced in March regionwide and in January near the West Coast, corresponding, to widespread warming in these months. While mean temperatures in March were sufficiently high to allow the warming, trend to produce SFE/P declines across the study region, mean January temperatures were cooler. with the result that January SFE/P impacts were restricted to the lower elevations near the West Coast. Extending the analysis back to 1920 sho ws that although the trends presented here may be partially attributable to interdecadal climate variability associated with the Pacific decadal oscillation. they also appear to result from still longer-term climate shifts.

  20. Improving Radar Snowfall Measurements Using a Video Disdrometer

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Kucera, P. A.

    2005-05-01

    A video disdrometer has been recently developed at NASA/Wallops Flight Facility in an effort to improve surface precipitation measurements. The recent upgrade of the UND C-band weather radar to dual-polarimetric capabilities along with the development of the UND Glacial Ridge intensive atmospheric observation site has presented a valuable opportunity to attempt to improve radar estimates of snowfall. The video disdrometer, referred to as the Rain Imaging System (RIS), has been deployed at the Glacial Ridge site for most of the 2004-2005 winter season to measure size distributions, precipitation rate, and density estimates of snowfall. The RIS uses CCD grayscale video camera with a zoom lens to observe hydrometers in a sample volume located 2 meters from end of the lens and approximately 1.5 meters away from an independent light source. The design of the RIS may eliminate sampling errors from wind flow around the instrument. The RIS has proven its ability to operate continuously in the adverse conditions often observed in the Northern Plains. The RIS is able to provide crystal habit information, variability of particle size distributions for the lifecycle of the storm, snowfall rates, and estimates of snow density. This information, in conjunction with hand measurements of density and crystal habit, will be used to build a database for comparisons with polarimetric data from the UND radar. This database will serve as the basis for improving snowfall estimates using polarimetric radar observations. Preliminary results from several case studies will be presented.

  1. Response of Rates and Sources of Ecosystem CO2 Efflux to Increasing Levels of Winter Snow Depth in the High Arctic of Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Thomas, J. S.; Lupascu, M.; Xu, X.; Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    Arctic soils contain vast amounts of organic carbon (C) that range in age from modern to ancient. These soil C pools may be especially vulnerable to changes in conditions; especially increases in winter snowfall, as deeper snow will insulate soils in winter, and add moisture in summer. While, snowfall is increasing in many parts of the Arctic, how increases in winter precipitation affect C cycling in the High Arctic is largely unknown. In this project, we used a long-term snowpack manipulation to develop a better understanding of current and future soil C cycling under conditions of deep winter snow pack and the associated feedbacks to future atmospheric CO2 levels. We examined the effects of three levels of winter snowpack (ambient (0.25 m), ×2, ×4) on the timing, magnitude and sources of ecosystem CO2 efflux and soil microclimate in prostrate dwarf-shrub tundra on patterned ground in the High Arctic of NW Greenland. From June to August 2010 and 2011 we monitored ecosystem CO2 efflux and soil CO2 concentrations (LI-COR 800 & 840) together with soil temperature and moisture daily and the radiocarbon (14C) content of CO2 monthly. The 14C content of CO2 can be used to infer the dominant source of CO2 (plant vs. microbially-respired) as well as the age of microbially-respired CO2. Initial results indicate that during the 2010 sampling period (Jun 28 - Aug 16), daily CO2 emissions from vegetated areas were higher under ×4 ambient snowpack relative to ambient snowpack (84.9 vs. 53.1 mmol m-2 d-1), but lower under ×2 ambient snowpack (56.7 mmol m-2 d-1). CO2 emissions from bare areas increased with snowpack depth from ambient (8.6 mmol m-2 d-1) to ×2 ambient snowpack (16.5 mmol m-2 d-1) to x4 ambient snowpack (18.9 mmol m-2 d-1). Midsummer ecosystem CO2 emissions were dominated by modern C; additional 14C measurements are in progress. Our findings indicate that increases in snowpack may stimulate C loss from this high arctic ecosystem - probably facilitated by

  2. The North Atlantic Oscillation: Impact on Snowfall Conditions in the Northeastern U.S

    NASA Astrophysics Data System (ADS)

    Budikova, D.; Widen, H.; Coleman, J. S.

    2013-12-01

    The North Atlantic Oscillation (NAO) is one of the main components of atmospheric circulation variability within the middle and high latitudes of the Northern Hemisphere, particularly impacting winter weather patterns in northeastern United States. Previous research has indicated greater snowfall totals and higher frequency of snowfall days in the Northeast during a NAO negative phase due to repeated polar outbreaks; yet, the NAO positive phase has also been associated with extreme snowfall events in this region. This study examines the relationship between the NAO and winter (December - February) snowfall totals in northeastern U.S. between 1961 and 2010. Two case studies of recent winter events with differing NAO phases were evaluated to provide insight on how both NAO phases can produce significant snowfall in portions of the Northeast. The analysis revealed an inverse relationship between the NAO phase and seasonal snowfall, with positive (negative) NAO index years associated with lower (higher) average snowfall and snowfall days. Significantly greater snowfall during the NAO negative phase was mainly located along the East Coast as well as the interior southern half of the study region. A composite analysis of various tropospheric variables (e.g., 500-hPa heights) showed NAO negative years produced greater snowfall due to more extreme weather conditions affecting the Northeast, such as below normal sea level pressure, a deepened mid-tropospheric trough and weaker upper-level westerlies that permitted more frequent polar outbreaks. The intrusion of cold polar air into the interior U.S. generates more extreme temperature gradients and produces snowfall farther south than the NAO positive phase. In addition, the eastward displacement of the storms in the NAO negative phase along with the available moisture from the Atlantic Ocean creates more snowfall along the East Coast. These results correspond to the spatial distribution of snowfall that occurred during the

  3. Deeper winter snow reduces ecosystem C losses but increases the global warming potential of Arctic tussock tundra over the growing season.

    NASA Astrophysics Data System (ADS)

    Blanc-Betes, E.; Welker, J. M.; Gomez-Casanovas, N.; Gonzalez-Meler, M. A.

    2015-12-01

    Arctic winter precipitation is projected to increase globally over the next decades, spatial variability encompassing areas with increases and decreases in winter snow. Changes in winter precipitation strongly affect C dynamics in Arctic systems and may lead to major positive climate forcing feedbacks. However, impacts of predicted changes in snowfall and accumulation on the rate and form of C fluxes (CO2 and CH4) and associated forcing feedbacks from Arctic tundra remain uncertain. We investigated how changes in winter precipitation affect net ecosystem CO2 and CH4 fluxes and budgets of moist acidic tundra in an 18-yrs snow fence experiment over a complete growing season at Toolik Lake, AK. Arctic tundra under ambient winter precipitation (CTL) was a net source of CO2 and CH4, yielding net C losses over the growing season. Reduced snow (-15-30% snow depth; RS) switched the system to a net CO2 sink mostly by limiting SOC decomposition within colder soils. Snow additions progressively reduced net ecosystem CO2 losses compared to CTL, switching the system into a weaker net CO2 source with medium additions (+20-45% snow depth; MS) and into a small net CO2 sink with high additions (+70-100% snow depth; HS). Increasingly wetter soils with snow additions constrained the temperature sensitivity of aerobic decomposition and favored the anaerobic metabolism, buffering ecosystem CO2 losses despite substantial soil warming. Accordingly, Arctic tundra switched from a sustained CH4 sink at RS site to an increasingly stronger CH4 source with snow additions. Accounting for both CO2 and CH4, the RS site became a net C sink over the growing season, overall reducing the global warming potential (CO2 equiv.; GWP) of the system relative to CTL. Snow additions progressively reduced net C losses at the MS site compared to CTL and the system transitioned into a net C sink at HS plots, partly due to the slower metabolism of anaerobic decomposition. However, given the greater radiative

  4. Climatological characterization of wind and snowfall in Minnesota and assessing the impacts of living snow fences

    NASA Astrophysics Data System (ADS)

    Shulski, Martha Elizabeth Durr

    Blowing and drifting snow on roadways is a common occurrence in Minnesota due to the topographic, vegetative, and winter climate characteristics of this area. Through proper road design and the use of snow fences this problem can be alleviated, however snowfall and wind climatological information must first be analyzed. Archived climatological records for locations in Minnesota were recently compiled. Snowfall time series data show a statistically significant increase of 28cm in the annual total since 1890. The increase is shown to occur for November--December while February and March show a decrease. This increase is largely due to an increase in the frequency of snow events less than 10cm. Wind data from federal observing sites in Minnesota show a correlation to landscape variability, with a high frequency of higher wind speeds in western and southern Minnesota. A snow relocation factor needed to quantify seasonal snow transport was calculated and shows a strong dependence on the wind speed distribution. A case study of the 2000--01 winter season allowed for examination of snow storage and agricultural implications of three living snow fence designs in southern Minnesota (two 8-row strips of corn, twin-row honeysuckle, single-row honeysuckle/red cedar). For a winter with high seasonal snowfall and spring rainfall, results of snow storage and modeled seasonal snow transport show good agreement for the two corn row strips. However, snow storage totaled approximately 50% of the modeled snow transport for the honeysuckle fence designs, which appeared to reach storage capacity prior to the end of the snow season. A key factor is the absence of a bottom gap, which promotes leeward displacement of the downwind drift and prevents snow deposition on the fence. Soil temperature and frost depth data show a moderation in temperatures and a decrease in freezing depth with an increase in associated snowpack depth. Post-season soil moisture shows no significant variability with

  5. Temperature and snowfall trigger alpine vegetation green-up on the world's roof.

    PubMed

    Chen, Xiaoqiu; An, Shuai; Inouye, David W; Schwartz, Mark D

    2015-10-01

    Rapid temperature increase and its impacts on alpine ecosystems in the Qinghai-Tibetan Plateau, the world's highest and largest plateau, are a matter of global concern. Satellite observations have revealed distinctly different trend changes and contradicting temperature responses of vegetation green-up dates, leading to broad debate about the Plateau's spring phenology and its climatic attribution. Large uncertainties in remote-sensing estimates of phenology significantly limit efforts to predict the impacts of climate change on vegetation growth and carbon balance in the Qinghai-Tibetan Plateau, which are further exacerbated by a lack of detailed ground observation calibration. Here, we revealed the spatiotemporal variations and climate drivers of ground-based herbaceous plant green-up dates using 72 green-up datasets for 22 herbaceous plant species at 23 phenological stations, and corresponding daily mean air temperature and daily precipitation data from 19 climate stations across eastern and southern parts of the Qinghai-Tibetan Plateau from 1981 to 2011. Results show that neither the continuously advancing trend from 1982 to 2011, nor a turning point in the mid to late 1990s as reported by remote-sensing studies can be verified by most of the green-up time series, and no robust evidence for a warmer winter-induced later green-up dates can be detected. Thus, chilling requirements may not be an important driver influencing green-up responses to spring warming. Moreover, temperature-only control of green-up dates appears mainly at stations with relatively scarce preseason snowfall and lower elevation, while coupled temperature and precipitation controls of green-up dates occur mostly at stations with relatively abundant preseason snowfall and higher elevation. The diversified interactions between snowfall and temperature during late winter to early spring likely determine the spatiotemporal variations of green-up dates. Therefore, prediction of vegetation growth

  6. Synoptic climatological study on the decrease in heavy snowfall days in Hokuriku District of Central Japan after the latter half of 1980s

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Kan, Yuusuke

    2010-05-01

    Many reports point out that the total snowfall amount in winter in the Japan Sea side of the Japan Islands, such as Hokuriku District, decreased considerably after the latter half of 1980s, in coincidence with the Global Warming together with the interdecadal variation. As for around December, this seems to be partly because more precipitation in the winter monsoon situation is brought as rainfall (not as snowfall), due to the warmer temperature than before. On the other hand, contribution of the daily heavy snowfall events there would be also important for mid-winter when the air temperature is the lowest in a year. Thus the present study examined the contribution of the heavy snowfall events to the difference of the total snowfall amount before and after the middle of 1980s, based on the daily data at several operational surface observation stations of JMA in the Hokuriku District for 1971 - 2001. Then the related daily atmospheric fields were analyzed climatologically with use of the NCEP/NCAR re-analysis data with every 2.5 degrees latitude/longitude interval. In the former half of the analysis period, the larger total snowfall amount in January in the Hokuriku District, such as at Takada, was greatly contributed to by the heavy snowfall events with more than 30 cm/day (referred to as "heavy snowfall day", hereafter). The decrease in the total amount in the latter half of that period was due to that in the contribution of "heavy snowfall days". Furthermore, the "heavy snowfall days" tended to appear in the persistent snowfall episodes (including also the days with 10 cm/day), before around 1986. In short, the decrease in the total snowfall in the latter half period there seems to be reflected by the weakening of persistency of heavy snowfall episodes. As shown by Akiyama (1981a and b) in detail, there are several different synoptic situations in the winter monsoon situation for bringing heavy snowfall there (the "mountain snow type" and the "plateau snow type

  7. Redistribution of Snowfall across a Mountain Range by Artificial Seeding: A Case Study.

    PubMed

    Hobbs, P V; Radke, L F

    1973-09-14

    Clouds over the western slopes of the Cascade Mountains were artificially seeded to reduce the riming and fall speeds of snow crystals and to divert snowfall across the crest. Aircraft observations showed that the clouds were glaciated by the seeding. The crystal habits and the degrees of riming of snow crystals reaching the target area were modified. Snowfall rates decreased at the crest and simultaneously increased 20 kilometers east of the crest.

  8. Microbial response to increasing temperatures during winter in arable soils

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Potthoff, Martin; Joergensen, Rainer Georg

    2014-05-01

    Climate scenarios predict increasing temperatures and higher precipitation rates in late fall to early spring, both holding the potential to modify carbon and nutrient dynamics in soils by altering snow pack thickness and soil frost events. When soils are frozen, a small amount of unfrozen water allows microorganisms to remain active at temperatures down to -10 °C. We carried out a field experiment on the microbial use of maize straw. We compared soils of two different clay contents and used latitude as a proxy for climate. Microcosms with sieved soil were mixed with chopped maize leaf straw (C/N 17) at a rate of 1 mg C g-1 dry soil, un-amended microcosms served as control. Results indicated that C-mineralization rates were independent from clay content. However, the microbial use of maize derived nitrogen was only increased in the soil with 13% clay compared to 33% clay in the other soil. Microbial responses to climate changes can be expected to be very specific due to characteristics of the soil and/or the location.

  9. Variations of ice nuclei concentration induced by rain and snowfall within a local forested site in Japan

    NASA Astrophysics Data System (ADS)

    Hara, Kazutaka; Maki, Teruya; Kobayashi, Fumihisa; Kakikawa, Makiko; Wada, Masashi; Matsuki, Atsushi

    2016-02-01

    Biological ice nuclei (IN) such as certain species of bacteria and fungi are believed to have impacts on ice nucleation in mixed-phase clouds at temperatures warmer than -15 °C. Recent studies have indicated that rain is closely related to increases of biological IN in the near-surface atmosphere. However, variations of IN concentrations during rain and snowfall have not been compared. In the present study, field measurements of atmospheric IN were carried out under fine, cloudy, rain and snow at a local forested site in Japan. IN concentrations at -7 °C in spring were dramatically increased by rain, and concentrations associated with rain (0.86-2.2 m-3) were greater than 2.6 times higher than the mean concentration during fine weather (0.33 m-3). In winter, concentrations associated with rain (1.6 to >5.7 m-3) were also higher than those under cloudy sky (1.1 m-3), but increases were not observed during snowfall (0.21-0.4 m-3). Detectable IN concentrations associated with rain considerably decreased after heat treatment at 90 °C, indicating that IN increased during rain were likely biological substances such as heat-sensitive ice nucleation active proteins. Consequently, different types of precipitation may have varying effects on IN concentration associated with biological substances.

  10. An exceptionally heavy snowfall in Northeast china: large-scale circulation anomalies and hindcast of the NCAR WRF model

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Yu, Entao; Yang, Song

    2011-06-01

    In Northeast China (NEC), snowfalls usually occur during winter and early spring, from mid-October to late March, and strong snowfalls rarely occur in middle spring. During 12-13 April 2010, an exceptionally strong snowfall occurred in NEC, with 26.8 mm of accumulated water-equivalent snow over Harbin, the capital of the most eastern province in NEC. In this study, the major features of the snowfall and associated large-scale circulation and the predictability of the snowfall are analyzed using both observations and models. The Siberia High intensified and shifted southeastward from 10 days before the snowfall, resulting in intensifying the low-pressure system over NEC and strengthening the East Asian Trough during 12-13 April. Therefore, large convergence of water vapor and strong rising motion appeared over eastern NEC, resulting in heavy snowfall. Hindcast experiments were carried out using the NCAR Weather Research and Forecasting (WRF) model in a two-way nesting approach, forced by NCEP Global Forecast System data sets. Many observed features including the large-scale and regional circulation anomalies and snowfall amount can be reproduced reasonably well, suggesting the feasibility of the WRF model in forecasting extreme weather events over NEC. A quantitative analysis also shows that the nested NEC domain simulation is even better than mother domain simulation in simulating the snowfall amount and spatial distribution, and that both simulations are more skillful than the NCEP Global Forecast System output. The forecast result from the nested forecast system is very promising for an operational purpose.

  11. Polarization Lidar Liquid Cloud Detection Algorithm for Winter Mountain Storms

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Zhao, Hongjie

    1992-01-01

    We have collected an extensive polarization lidar dataset from elevated sites in the Tushar Mountains of Utah in support of winter storm cloud seeding research and experiments. Our truck-mounted ruby lidar collected zenith, dual-polarization lidar data through a roof window equipped with a wiper system to prevent snowfall accumulation. Lidar returns were collected at a rate of one shot every 1 to 5 min during declared storm periods over the 1985 and 1987 mid-Jan. to mid-Mar. Field seasons. The mid-barrier remote sensor field site was located at 2.57 km MSL. Of chief interest to weather modification efforts are the heights of supercooled liquid water (SLW) clouds, which must be known to assess their 'seedability' (i.e., temperature and height suitability for artificially increasing snowfall). We are currently re-examining out entire dataset to determine the climatological properties of SLW clouds in winter storms using an autonomous computer algorithm.

  12. Circulation patterns governing October snowfalls in southern Siberia

    NASA Astrophysics Data System (ADS)

    Bednorz, Ewa; Wibig, Joanna

    2015-12-01

    This study is focused on early fall season in southern Siberia (50-60 N) and is purposed as a contribution to the discussion on the climatic relevance of October Eurasian snow cover. Analysis is based on the daily snow depth data from 43 stations from years 1980-2012, available in the database of All-Russian Research Institute of Hydrometeorological Information—World Data Centre. The snow cover season in southern Siberia starts in early autumn and the number of days with snowfall varies from less than 5 days in the southernmost zone along the parallel 50 N to more than 25 days in the northeastern part of the analyzed area. October snowfall in southern Siberia is associated with occurrence of negative anomalies of sea level pressure (SLP), usually spreading right over the place of recorded intense snowfall or extending eastward from it. Negative anomalies of air temperature at the 850 hPa geopotential level (T850) occurring with increased cyclonic activity are also observed. Negative T850 anomalies are located west or northwest of the SLP depressions. Counterclockwise circulation around low-pressure systems transports cold Arctic air from the north or even colder Siberian polar air from the east, to the west, and northwest parts of cyclones, and induces negative anomalies of temperature. The pattern of T850 anomalies during heavy snowfalls in the eastern part of the southern Siberia is shifted counterclockwise in regard to SLP anomalies: the strongest negative T850 anomalies are located west or northwest of the SLP depressions.

  13. Experimental Studies on Amount of Snowfall by Crystal Growth in an Artificial Snowfall Device

    NASA Astrophysics Data System (ADS)

    Seki, Mitsuo; Umezawa, Kouichi; Abe, Osamu

    A series of experiments was conducted to estimate the amount of snowfall of dendrite-type crystals produced by an artificial snowfall device that uses the rotary ventilation mesh filter method. An expression is proposed in this paper for the amount of the snowfall. The amount of snowfall (Gs) can be expressed as Gs = ηs Vai ΔW , where ΔW is effective water content in the crystal growth, Vai is air mass flow and ηs is snowfall efficiency. The effective water content in the crystal growth (ΔW) is defined as the difference between the specific cloud water content and ice saturation vapor density. The rotary ventilation mesh filter method used in this work had a snowfall efficiency of about 90%. Even for a large amount of cloud water content, we observed only a very few super-cooled cloud droplets on snow crystals. Therefore, we can deduce that the cloud water content should contribute to crystal growth directly. We report here measurements of snowfall as a function of several input parameters and verify the validity of the proposed relationship.

  14. Multiyear Evidence from Ground-based Observations and Modeling of the Impact of Dust on Snowfall in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Creamean, J.; Ault, A. P.; Collins, D. B.; Cahill, J. F.; Fitzgerald, E.; White, A. B.; Neiman, P. J.; Wick, G. A.; Fan, J.; Leung, L.; Ralph, F. M.; Prather, K. A.

    2011-12-01

    Aerosols that have the ability to act as ice nuclei (IN) can impact cloud formation and alter the type, amount, and location of precipitation. IN such as dust and biological aerosols can lead to early initiation of the ice phase that enhances riming and thus precipitation. Depending on temperature conditions, this can lead to increased snowfall at the surface. Potential snowfall enhancement in mountainous regions such as California's Sierra Nevada has large implications on regional water supply, which in turn can affect agricultural and ecosystem productivity, the amount of renewable energy from hydropower, and many other water uses. However, the magnitude of the effect of IN on precipitation intensity, form, and patterns during intense winter storms in the Sierra Nevada is poorly understood. During three consecutive winters (2009-2011) of the CalWater field campaign, the chemical composition of precipitation residues were measured at Sugar Pine Dam, a remote rural site in the Sierra Nevada. Some precipitation events occurred during storms that were characterized by atmospheric river (AR) conditions, which are ideal for generating copious amounts of orographic precipitation. Large fractions of dust and biological aerosols were measured as residues in precipitation samples collected during storms with increased snowfall and lower surface temperatures. In most cases, higher fractions of dust were measured in samples during stronger ARs, while higher fractions of biological or water-insoluble organic residues were measured during weaker ARs throughout all three winters. During the winter storms of CalWater, we observed an increase over time in the fraction of dust and biological residues combined, from 20% in 2009 to 82% in 2011 of the total residues in all precipitation samples, in addition to a decrease in average surface temperature (from 4.8 to 2.3 °C), an increase in the total amount of precipitation (from 253 to 374 mm), and an increase in the frequency of

  15. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub.

    SciTech Connect

    Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent

    2004-01-10

    Kwit, C., D. J. Levey; C. H. Greenberg, S. F. Pearson, J.P. McCarty, and S. Sargent. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia. 139:30-34. Abstract: We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology.

  16. Winter Insulation By Snow Accumulation in a Subarctic Treeline Ecosystem Increases Summer Carbon Cycling Rates

    NASA Astrophysics Data System (ADS)

    Parker, T.; Subke, J. A.; Wookey, P. A.

    2014-12-01

    The effect of snow accumulation on soil carbon and nutrient cycling is attracting substantial attention from researchers. We know that deeper snow accumulation caused by high stature vegetation increases winter microbial activity and therefore carbon and nitrogen flux rates. However, until now the effect of snow accumulation, by buffering winter soil temperature, on subsequent summer soil processes, has scarcely been considered. We carried out an experiment at an alpine treeline in subarctic Sweden in which soil monoliths, contained within PVC collars, were transplanted between forest (deep winter snow) and tundra heath (shallow winter snow). We measured soil CO2efflux over two growing seasons and quantified soil microbial biomass after the second winter. We showed that respiration rates of transplanted forest soil were significantly reduced compared with control collars (remaining in the forest) as a consequence of colder, but more variable, winter temperatures. We hypothesised that microbial biomass would be reduced in transplanted forests soils but found there was no difference compared to control. We therefore further hypothesised that the similarly sized microbial pool in the control is assembled differently to the transplant. We believe that the warmer winters in forests foster more active consortia of decomposer microbes as a result of different abiotic selection pressures. Using an ecosystem scale experimental approach, we have identified a mechanism that influences summer carbon cycling rates based solely on the amount of snow that accumulates the previous winter. We conclude that modification of snow depth as a consequence of changes in vegetation structure is an important mechanism influencing soil C stocks in ecosystems where snow persists for a major fraction of the year.

  17. An assessment of the changing nature of the winter hydroclimate in eastern North America and its impacts on risk management

    NASA Astrophysics Data System (ADS)

    Moore, Kent

    2016-04-01

    The winter hydroclimate of eastern North America is characterized by a complex and spatially varying combination of snow and rain. Much of this complexity stems from the presence of Great Lakes that are a source of heat and moisture during the winter months. Lake effect snowfall can result in heavy snowfall in highly localized regions downstream of the lakes. In addition the average mean winter temperature in the region is close to freezing and so there is enhanced sensitivity as to the phase of the precipitation. The region has warmed by 1-2.5 oC during the winter over the past 30 years and so there is concern that the character of the winter hydroclimate may be changing. Here we use reanalysis fields as well as the results of AMIP model runs, with horizontal resolutions ranging from 100 km to 16 km, to investigate the changes that have occurred in the winter hydroclimate of the region. It is shown that a horizontal resolution below ~40 km is needed to resolve the observed spatial gradients in snowfall and rainfall in the region. Over the past 30 years, the mean and 95th percentile snowfall rates in the southern part of the region have decreased by as much as 20% with an increase of a similar magnitude in both these parameters in its northwest. There has also been an increase in the mean and 95th percentile rainfall rates across much the region that exceeds 100% in the vicinity of Lake Superior, the largest and most northern of the Great Lakes. These changes are attributed to the warming that the region has experienced and are expected to continue into the future. They have and will continue to impact a number of societal functions including winter road maintenance as well as influencing the management of property risks such as flooding.

  18. Snowfall and avalanche synchronization: beyond observational statistics

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Forclaz, Romain; Sovilla, Betty; Corripio, Javier; Perona, Paolo

    2015-04-01

    We present a methodology for quantifying the synchronization between snowfall and avalanches in relation to slope and terrain properties at the detachment zone. Focusing on a particular field situation (SLF study site, Vallée de la Sionne, Valais, Switzerland), we present a dataset consisting of 549 avalanche events and use a stochastic framework (Perona et al., Proceedings of the Royal Society A, 2012) for capturing the avalanche statistics with a minimal number of ingredients. Over the observation period (7 years), meteorological data was collected and pictures of the slope were taken every 30 minutes. For the avalanche events, slope, aspect, coordinates and altitude of the detachment zone are available from georeferenced images, and the timing of the events can be obtained from selecting the images before and after avalanche events. All model parameters can directly be computed from meteorological data (snow depth evolution), except for one parameter: the state-dependent avalanche release rate, which aggregates the influence of slope and terrain properties. From the timing distribution of the precipitation events and of the avalanche events, we calibrate the model and fix the value of the missing parameter by maximizing the likelihood of the field observations, conditional to the value of the model parameter. We carefully discuss confidence intervals for our parameter estimation. The calibrated model allows us to obtain statistical properties of the avalanches in our study site, beyond observational statistics. We compute the synchronization between snowfall and avalanches for low and high slopes, which in turn allows us to derive the return period of avalanche events (dependent and independent on the release depth). We obtain the critical event magnitude above which the return period of avalanche events with release depth h* is shorter than the return period of snowfall with equal deposited snow depth h*. Finally, using the concept of information entropy, we

  19. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  20. Effects of Snowfall on Drifting Snow and Wind Structure Near a Surface

    NASA Astrophysics Data System (ADS)

    Nemoto, Masaki; Sato, Takeshi; Kosugi, Kenji; Mochizuki, Shigeto

    2014-09-01

    Wind-tunnel and numerical experiments were performed to investigate the effects of snowfall on the wind profile and the development of drifting snow. Wind profiles and mass-flux profiles of drifting snow were measured with and without artificial snowfall over a snow surface within the tunnel. Wind and shear-stress profiles and the impact speeds of the snowflakes during snowfall were also investigated numerically. During snowfall, snowflakes transfer part of their horizontal momentum to the air, which increases the stress close to the snow surface; however, the resultant modifications of the wind profiles are small. Because snowflakes have large momentum, the decomposed snow crystals that result from their collision with a surface can form a saltation layer, even over a hard snow surface where entrainment of the grains from the surface does not occur. Additionally, during snowfall, the threshold friction velocity can be lower than the impact threshold because snowflake fragmentation facilitates snow drifting. The broken crystals contribute to the increase in the number of drifting snow grains, even below the impact threshold.

  1. Snowfall Rate Retrieval using NPP ATMS Passive Microwave Measurements

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua; Zhao, Limin

    2014-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2014). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The ATMS SFR product is validated against radar and gauge snowfall data and shows that the ATMS algorithm outperforms the AMSU/MHS SFR.

  2. Greater effect of increasing shrub height on winter versus summer soil temperature

    NASA Astrophysics Data System (ADS)

    Paradis, Mélissa; Lévesque, Esther; Boudreau, Stéphane

    2016-08-01

    Shrub expansion is increasingly observed in arctic and subarctic environments. The development of shrub structure may significantly impact the abiotic environment at the local scale. Our objective was to reconstruct the development of the vertical structure of Betula glandulosa Michx. and to evaluate its effects on winter and summer soil temperature and on snow depth. Stratified sampling of the shrub revealed that shrub biomass distribution followed a similar pattern in stands of contrasting heights. Woody biomass was maximal in the lower stratum and relatively stable in the intermediate strata, while the foliar biomass tracked the vertical development of the shrub structure. Dendrochronological analysis revealed that shrub stands are relatively young; most of the dominant stems started their development after 1990. Shrub height was positively associated with both the dominant stem age and its vertical growth rate. Temperature differences among sites were greater during winter (ca 10 °C) than during summer (ca 2 °C), while the sum of freezing degree-days varied from 680 °C to 2125 °C. Shrub height was the most plausible variable explaining snow depth, winter ground level temperature and the sum of freezing degree-days. However, woody biomass in the 30–40 cm strata best explained summer ground level temperature. Our results suggest that the development of a shrub structure will have far-reaching consequences on the abiotic environment of subarctic ecosystems.

  3. Greater effect of increasing shrub height on winter versus summer soil temperature

    NASA Astrophysics Data System (ADS)

    Paradis, Mélissa; Lévesque, Esther; Boudreau, Stéphane

    2016-08-01

    Shrub expansion is increasingly observed in arctic and subarctic environments. The development of shrub structure may significantly impact the abiotic environment at the local scale. Our objective was to reconstruct the development of the vertical structure of Betula glandulosa Michx. and to evaluate its effects on winter and summer soil temperature and on snow depth. Stratified sampling of the shrub revealed that shrub biomass distribution followed a similar pattern in stands of contrasting heights. Woody biomass was maximal in the lower stratum and relatively stable in the intermediate strata, while the foliar biomass tracked the vertical development of the shrub structure. Dendrochronological analysis revealed that shrub stands are relatively young; most of the dominant stems started their development after 1990. Shrub height was positively associated with both the dominant stem age and its vertical growth rate. Temperature differences among sites were greater during winter (ca 10 °C) than during summer (ca 2 °C), while the sum of freezing degree-days varied from 680 °C to 2125 °C. Shrub height was the most plausible variable explaining snow depth, winter ground level temperature and the sum of freezing degree-days. However, woody biomass in the 30-40 cm strata best explained summer ground level temperature. Our results suggest that the development of a shrub structure will have far-reaching consequences on the abiotic environment of subarctic ecosystems.

  4. Analysis of a snowfall event produced by mountains waves in Guadarrama Mountains (Spain)

    NASA Astrophysics Data System (ADS)

    Gascón, Estíbaliz; Sánchez, José Luis; Fernández-González, Sergio; Merino, Andrés; López, Laura; García-Ortega, Eduardo

    2014-05-01

    Heavy snowfall events are fairly uncommon precipitation processes in the Iberian Peninsula. When large amounts of snow accumulate in large cities with populations that are unaccustomed to or unprepared for heavy snow, these events have a major impact on their daily activities. On 16 January 2013, an extreme snowstorm occurred in Guadarrama Mountains (Madrid, Spain) during an experimental winter campaign as a part of the TECOAGUA Project. Strong northwesterly winds, high precipitation and temperatures close to 0°C were detected throughout the whole day. During this episode, it was possible to continuously take measurements of different variables involved in the development of the convection using a multichannel microwave radiometer (MMWR). The significant increase in the cloud thickness observed vertically by the MMWR and registered precipitation of 43 mm in 24 hours at the station of Navacerrada (Madrid) led us to consider that we were facing an episode of strong winter convection. Images from the Meteosat Second Generation (MSG) satellite suggested that the main source of the convection was the formation of mountain waves on the south face of the Guadarrama Mountains. The event was simulated in high resolution using the WRF mesoscale model, an analysis of which is based on the observational simulations and data. Finally, the continuous measurements obtained with the MMWR allowed us to monitor the vertical situation above the Guadarrama Mountains with temporal resolution of 2 minutes. This instrument has a clear advantage in monitoring short-term episodes of this kind in comparison to radiosondes, which usually produce data at 0000 and 1200 UTC. Acknowledgements This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22). The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2.

  5. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth

    NASA Astrophysics Data System (ADS)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin

    2016-06-01

    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  6. Riming in alpine snowfall during CLACE 2014: Polarimetric radar and in situ observations

    NASA Astrophysics Data System (ADS)

    Grazioli, Jacopo; Berne, Alexis

    2016-04-01

    Riming occurs when ice crystals or snowflakes encounter supercooled liquid water (SLW) droplets during their fall to the surface within a mixed-phase cloud. It is an efficient mechanism to convert cloud liquid droplets to precipitating ice particles, frequently seen in snowfall in the mid-latitude regions. This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during January and February 2014. The available observations include high-resolution polarimetric radar and in situ measurements of the ice-phase and liquid-phase components of clouds and precipitation. Radar-based hydrometeor classification suggests that riming is an important factor to favour an efficient growth of the precipitating mass and correlates with snow accumulation rates at ground level. The time steps during which rimed precipitation is dominant are analyzed in terms of temporal evolution and vertical structure. Snowfall identified as rimed often appears after a short time period during which the atmospheric conditions favour wind gusts and updrafts and supercooled liquid water (SLW) is available. When a turbulent atmospheric layer persists for several hours and ensures continuous SLW generation, riming can be sustained longer and large accumulations of snow at ground level can be generated. The microphysical interpretation and the meteorological situation associated with one such event are detailed in the presentation.

  7. Altered snowfall and soil disturbance influence the early life stage transitions and recruitment of a native and invasive grass in a cold desert.

    PubMed

    Gornish, Elise S; Aanderud, Zachary T; Sheley, Roger L; Rinella, Mathew J; Svejcar, Tony; Englund, Suzanne D; James, Jeremy J

    2015-02-01

    Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment, structuring plant populations and communities, especially in mid-latitude systems. These water-limited and frequently invaded environments experience tremendous variation in snowfall, and species in these systems must contend with harsh winter conditions and frequent disturbance. In this study, we examined the mechanisms driving the effects of snowpack depth and soil disturbance on the germination, emergence, and establishment of the native Pseudoroegnaria spicata and the invasive Bromus tectorum, two grass species that are widely distributed across the cold deserts of North America. The absence of snow in winter exposed seeds to an increased frequency and intensity of freeze-thaw cycles and greater fungal pathogen infection. A shallower snowpack promoted the formation of a frozen surface crust, reducing the emergence of both species (more so for P. spicata). Conversely, a deeper snowpack recharged the soil and improved seedling establishment of both species by creating higher and more stable levels of soil moisture availability following spring thaw. Across several snow treatments, experimental disturbance served to decrease the cumulative survival of both species. Furthermore, we observed that, regardless of snowpack treatment, most seed mortality (70-80%) occurred between seed germination and seedling emergence (November-March), suggesting that other wintertime factors or just winter conditions in general limited survival. Our results suggest that snowpack variation and legacy effects of the snowpack influence emergence and establishment but might not facilitate invasion of cold deserts.

  8. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation.

    PubMed

    Xue, Qingwu; Zhu, Zixi; Musick, Jack T; Stewart, B A; Dusek, Donald A

    2006-02-01

    Deficit irrigation in winter wheat has been practiced in the areas with limited irrigation water resources. The objectives of this study were to (i) understand the physiological basis for determinations of grain yield and water-use efficiency in grain yield (WUE) under deficit irrigation; and (ii) investigate the effect of deficit irrigation on dry matter accumulation and remobilization of pre-anthesis carbon reserves during grain filling. A field experiment was conducted in the Southern High Plains of the USA and winter wheat (cv. TAM 202) was grown on Pullman clay loam soil (fine mixed thermic Torretic Paleustoll). Treatments consisted of rain-fed, deficit irrigation from jointing to the middle of grain filling, and full irrigation. The physiological measurements included leaf water potential, net photosynthetic rate (Pn), stomatal conductance (Gs), and leaf area index. The rain-fed treatment had the lowest seasonal evapotranspiration (ET), biomass, grain yield, harvest index (HI) and WUE as a result of moderate to severe water stress from jointing to grain filling. Irrigation application increased seasonal ET, and ET increased as irrigation frequency increased. The seasonal ET increased 20% in one-irrigation treatments between jointing and anthesis, 32-46% in two-irrigation treatments, and 67% in three- and full irrigation treatments. Plant biomass, grain yield, HI and WUE increased as the result of increased ET. The increased yield under irrigation was mainly contributed by the increased number of spikes, and seeds per square meter and per spike. Among the irrigation treatments, grain yield increased significantly but the WUE increased slightly as irrigation frequency increased. The increased WUE under deficit irrigation was contributed by increased HI. Water stress during grain filling reduced Pn and Gs, and accelerated leaf senescence. However, the water stress during grain filling induced remobilization of pre-anthesis carbon reserves to grains, and the

  9. Increasing late winter-early spring fire activity in Northern Spain: climate change or human footprint?

    NASA Astrophysics Data System (ADS)

    Carracedo Martín, Virginia; García Codron, Juan Carlos; Rasilla Álvarez, Domingo

    2016-04-01

    Most of the fire activity across Spain concentrates during the summer months, but a secondary peak appears also during late winter and early spring (February and March). This peak represents a tiny fraction of the burned surface but in northern Spain becomes the main fire season, representing up to 60 % of the total burned surface. Moreover, the impact of this "unseasonal" fire regime is becoming more relevant; an analysis of the temporal evolution of the burned surface since 2005 shows that the suppression efforts of summer forest fires have apparently succeeded, while the opposite has occurred with late winter-early spring forest fires. For example, during March 2012 more than 22,000 ha were burned in the Spanish provinces of Asturias and Cantabria, while about 14,000 suffers the effects of fires in Northern Portugal. Anthropogenic factor (mostly linked to an extensive cattle farming in the mountains) are the main cause of such fire activity, but atmospheric factors also play a relevant role in the spread of this fires. Consequently, the main aim of this poster is to explore if the recent evolution of forest fires in the study area are consequence of an aggravation of the atmospheric conditions driving to more fire risk conditions, or other factor could also explain the increase in fire activity. Burned surface data obtained from official statistics since 1971 were compared with atmospheric data at two temporal scales: daily fire risk values calculated from synoptic records and long term drought indices (SPI and SPEI). The results show a long term increase in both daily fire risk and drought conditions, but this trend can be related to the background warming of the area, rather to an increase in the frequency and magnitude of the extreme fire weather events. Thus, we consider that the regional atmospheric evolution cannot explain by itself the recent increase in late winter-early spring fire activity. Additional anthropogenic factors, such as recent changes in

  10. [Distribution of PGEs contents and its factors in snowfall and snow cover over the arid region in Changji City].

    PubMed

    Liu, Yu-Yan; Liu, Hao-Feng; Zhang, Lan

    2013-02-01

    This paper was to select a small-medium sized City, Changji city, over the arid region, study the distribution of platinum group metals(PGEs) contents and influencing factors in snowfall and snow cover. Samples were analysed by ICP-MS. The results revealed that the annual contents of Rh, Pd and Pt in snowfall were on the average value of 0.43 ng.L-1 ranging from not detected to 2.24 ng.L-1 , 60.07 ng.L-1 ranging from 46.66 to 84.25 ng.L-1 and 4.54 ng.L-1 ranging from 3.02 ng.L-1 to 6.38 ng.L-1 respectively. The difference of PGEs levels was found in different occurrences of snowfall, tended to increase before snowfall due to the longer arid days. PGEs contents maybe influenced by the amount of snowfall, the less snowfall, the higher PGEs contents reflected. The annual levels of Rh, Pd and Pt in snow cover were in the range of 2.50-18.80 ng.L-1 (av. 6.65 ng.L-1), 46.83-199.20 ng.L-1 (av. 83.45 ng.L-1) ,4. 27-13.78 ng.L-1 (av. 8.17 ng.L-1) respectively. PGEs content in snow cover were far higher than that of snowfall, PGEs in snowfall were only obtained from atmospheric PGEs rinsed by single time of snowfall, while PGEs were not only from the accumulation of PGEs in frequent times of snowfall and the snow cover under the long time exposure, but also continuously accepted the PGEs from atmospheric dry deposition. PGEs content of snow cover in all sampling sites were demonstrated as follows: traffic area > residential-culture-education district > square of park > suburban farmland. the input way of PGEs in snow cover was found a remarkable difference with the amount of input within different function areas, which was the main reason caused that PGEs content of snow cover in each function area varied and had a certain regularity.

  11. Decadal increase of organic compounds in winter and spring atmospheric aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Kawamura, K.; Kobayashi, M.; Tachibana, E.; Lee, M.; Jung, J.

    2014-12-01

    A rapid economic growth in China and other East Asian countries may have changed molecular level organic composition of atmospheric aerosols in East Asia. Molecular level composition is required to better evaluate the roles of organic aersols on climate, air quality and public health. Diacids and oxoacids account for a significant fraction of atmospheric organic matter and their secondary sources are more important than their primary sources. Atmospheric aerosol samples (n = 698) were collected during 2001-2008 at Gosan site in Jeju Island, South Korea. They were analyzed for saturated (C2-C10), unsaturated aliphatic (C4-C5), multifunctional (C3-C7) and aromatic (C8) diacids and oxoacids (C2-C9). According to monthly average concentration, oxalic acid (C2) is the most abundant followed by malonic acid (C3) and succinic acid (C4) in the homologous series of saturated diacids (C2-C10) whereas glyoxylic acid (ωC2) is most abundant in the homologous series of oxoacids (C2-C9). The monthly median, 25th percentile and 75th percentile concentrations of saturated and multifunctional diacids and oxoacids showed the highest in spring (March-May). In contrast, those concentrations for unsaturated aliphatic and aromatic diacids were observed the highest in winter (December-February). The monthly median and percentile (25th and 75th) concentrations of all diacids and oxoacids showed the second peak in the autumn (September-November) while those concentrations were recorded lowest in summer (June-August). A steady increment or decrement was not found in the monthly median and percentile (25th and 75th) concentrations of diacids and oxoacids in any month. However, the curve fitting of those concentrations over the study period shows an incremental trend for major diacids and oxoacids in winter and spring. For example, the monthly median, 25th percentile and 75th percentile concentrations of all major diacids and oxoacids increased up to 3 times from 2001 to 2008 in winter and

  12. Winter weather and cardiovascular mortality in Minneapolis-St. Paul.

    PubMed

    Baker-Blocker, A

    1982-03-01

    A study of vital statistics data from five Minneapolis-St. Paul winters indicates cardiovascular mortality is influenced by winter temperatures and snow. Although air temperature was not statistically implicated in triggering cardiovascular mortality in four of the five study winters, during the winter of 1976-77, about 15 per cent of the variance in daily cardiovascular mortality could be attributed to fluctuations in the daily minimum air temperature. Snow influenced mortality on the day of occurrence as well as the two days following a snowfall. There appear to be some differences in the ability of winter weather to influence mortality from acute myocardial infarction (ICD 410) and old myocardial infarction (ICD 412). The variance in daily ICD 410 mortality attributable to the influence of snow is somewhat less than that in daily ICD 412 mortality. The greatest variance in daily ICD 412 mortality that could be ascribed to snow occurred during the winter of 1974-75, and was 13 per cent. It is likely that rain intermixed with snow may also trigger increased mortality from cardiovascular disease. A combination of rain and snow can produce dramatic increased in mortality from ICD 410. Study of mortality data from five winters indicates that snow is somewhat more important in triggering deaths from heart disease than is air temperature.

  13. Winter weather and cardiovascular mortality in Minneapolis-St. Paul.

    PubMed Central

    Baker-Blocker, A

    1982-01-01

    A study of vital statistics data from five Minneapolis-St. Paul winters indicates cardiovascular mortality is influenced by winter temperatures and snow. Although air temperature was not statistically implicated in triggering cardiovascular mortality in four of the five study winters, during the winter of 1976-77, about 15 per cent of the variance in daily cardiovascular mortality could be attributed to fluctuations in the daily minimum air temperature. Snow influenced mortality on the day of occurrence as well as the two days following a snowfall. There appear to be some differences in the ability of winter weather to influence mortality from acute myocardial infarction (ICD 410) and old myocardial infarction (ICD 412). The variance in daily ICD 410 mortality attributable to the influence of snow is somewhat less than that in daily ICD 412 mortality. The greatest variance in daily ICD 412 mortality that could be ascribed to snow occurred during the winter of 1974-75, and was 13 per cent. It is likely that rain intermixed with snow may also trigger increased mortality from cardiovascular disease. A combination of rain and snow can produce dramatic increased in mortality from ICD 410. Study of mortality data from five winters indicates that snow is somewhat more important in triggering deaths from heart disease than is air temperature. PMID:7058966

  14. Effects of small temperature increase and subchronic acid stress on juvenile rainbow trout during winter

    SciTech Connect

    D`Cruz, L.M.; Morgan, I.J.; Wood, C.M.

    1995-12-31

    Increasing water temperatures, as predicted by global warming are potentially problematic to freshwater fish, whose body temperature is set by their environment. In addition, fish living in softwater lakes face the detrimental effects of acid rain. To determine the cost of living in a warmer climate, two ninety day exposures were conducted during the winter in softwater. In the first exposure, fish were fed to satiation twice daily, while in the second exposure, fish were fed 1% of their wet body weight every four days. Monthly sampling was conducted to determine while body energy reserves: protein, lipids and carbohydrates, and changes in plasma Na and Cl concentrations. Oxygen consumption and nitrogen waste excretion rates were also measured. Fish exposed to acid and fed to satiation showed no ionoregulatory disturbances, an atypical result. Moreover, fish exposed to pH 5.2 had increased appetites, resulting in increased growth. In comparison, fish in the second exposure that were fed a limited ration and exposed to pH 5.2 had a greater mortality rate and lower plasma Na and Cl concentrations, with greater detrimental effects observed in fish exposed to +2 C above ambient. The findings suggest that NaCl present in commercial fish food may compensate for bronchial ion loss during acid exposure, as a result of a stimulation of appetite.

  15. Integrating snowfall limit forecasts to improve hydrological modeling

    NASA Astrophysics Data System (ADS)

    Tobin, C.; Rinaldo, A.; Schaefli, B.

    2012-04-01

    Flood forecasting in mountainous areas requires accurate partitioning between rain and snowfall; an incorrect snow/rainfall limit (on daily or sub-daily timescales) typically implies a significant over- (or under-)estimation of the source catchment areas contributing to runoff and infiltration. This study details the development of a snow/rainfall partitioning method which incorporates snowfall limit information from Limited Area Models (LAMs) to improve catchment-scale hydrological modeling. LAMs consider the vertical, humid, atmospheric structure including wet bulb temperature in their snowfall limit calculations. Such an approach is more physically-based than inferring snowfall limit estimates based on dry, ground temperature measurements, which is the standard procedure in most hydrological models. A case study involving complex topography in the Swiss Alps demonstrates the potential of the developed method with the integration of COSMO forecast re-analysis snowfall limit information. Such data and the new method are proven here to significantly improve runoff simulation, particularly in the spring when a large part of the catchment is close to saturation. Integrating LAM snowfall limits thereby provides good estimates of runoff contributing areas, with practical implications for operational hydrology in Alpine regions.

  16. Snowfall variability as seen by a weather radar

    NASA Astrophysics Data System (ADS)

    Berne, A.

    2014-12-01

    Snowfall is highly variable in space and time because of the interactions between (cold) cloud microphysics and turbulent atmospheric dynamics. In comnplex terrain, this variability is amplified but remains poorly understood mainly due to a lack of monitoring capabilities. This contribution deals with the characterization and the quantification of the variability of snowfall at small scales (up to 10 km) in the Swiss Alps as seen by a Doppler polarimetric weather radar.The focus is first on the comparison of the horizontal variability in snowfall close to the surface (as seen by a radar) and in the snow accumulation on the ground (derived from aerial laser scans). The results show that the latter is larger than the former, pointing towards small-scale topographically induced winds as the main factor controlling the variability of snow accumulation. Second, the average vertical structure of snowfall is investigated using the polarimetric radar variables collected in vertical scans in the atmosphere. The main features of the vertical structure are related to the dominant microphysical processes at work.These results are a (preliminray) step forward to better understand the variability of snowfall at small scales in complex terrain, and illustrate the need for additional effort to collect snowfall observations from a variety of sensors

  17. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    PubMed

    Tian, Yunlu; Zheng, Chengyan; Chen, Jin; Chen, Changqing; Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  18. Climatic Warming Increases Winter Wheat Yield but Reduces Grain Nitrogen Concentration in East China

    PubMed Central

    Deng, Aixing; Song, Zhenwei; Zhang, Baoming; Zhang, Weijian

    2014-01-01

    Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat. PMID:24736557

  19. Growth of the inner core by snowfall

    NASA Astrophysics Data System (ADS)

    Lasbleis, M.; Labrosse, S.; Hernlund, J. W.

    2012-12-01

    In past decades, seismic studies of the Earth's core have tremendously improved our knowledge of its structure. The solid inner core presents heterogeneity at all scales, including both regional and hemispherical variations in degree and possibly orientation of elastic anisotropy, small-scale scattering, and potential indications of internal layering. Seismic observations also reveal subtle changes in seismic velocity gradient at the bottom of the liquid outer core that has been interpreted as a stratified layer, depleted in light alloying elements. Gubbins et al. (GJI, 2008) proposed that such a layer could be at the liquidus throughout, however, the details of the process that gives rise to such a scenario and its dynamical evolution with time have not been elucidated. Here we propose a model of slurry (snowfall) inside the F-layer. We have formulated a binary alloy model for the nucleation, settling and chemical reaction of snow with surrounding fluid in which cooling and crystallization is driven at the top of a compositionally stratified F-layer. Our model reveals a simple dynamical feedback that could drive the system toward a state such that the entire stratified region is maintained at the liquidus. We find that diffusion is the dominant transport phenomenon inside the layer, between the freely convecting outer core and the inner core, for both temperature and composition. Owing to variations in heat flow with time imposed by mantle convection, the equilibrium between the geotherm and liquidus in the F-layer would be perturbed, and we derive time scales for enhanced melting or freezing of snow to return the layer to equilibrium.

  20. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  1. Increased winter soil temperature variability enhances nitrogen cycling and soil biotic activity in temperate heathland and grassland mesocosms

    NASA Astrophysics Data System (ADS)

    Schuerings, J.; Jentsch, A.; Hammerl, V.; Lenz, K.; Henry, H. A. L.; Malyshev, A. V.; Kreyling, J.

    2014-12-01

    Winter air temperatures are projected to increase in the temperate zone, whereas snow cover is projected to decrease, leading to increased soil temperature variability, and potentially to changes in nutrient cycling. Here, we experimentally evaluated the effects of increased winter soil temperature variability on selected aspects of the N-cycle in mesocosms containing different plant community compositions. The experiment was replicated at two sites, a colder mountainous upland site with high snow accumulation and a warmer and drier lowland site. Increased soil temperature variability enhanced soil biotic activity for both sites during winter, as indicated by 35% higher nitrogen (N) availability in the soil solution, 40% higher belowground decomposition and a 25% increase in the potential activity of the enzyme cellobiohydrolase. The mobilization of N differed between sites, and the 15N signal in leaves was reduced by 31% in response to winter warming pulses, but only at the cold site, with significant reductions occurring for three of four tested plant species at this site. Furthermore, there was a trend of increased N leaching in response to the recurrent winter warming pulses. Overall, projected winter climate change in the temperate zone, with less snow and more variable soil temperatures, appears important for shifts in ecosystem functioning (i.e. nutrient cycling). While the effects of warming pulses on plant N mobilization did not differ among sites, reduced plant 15N incorporation at the colder temperate site suggests that frost damage may reduce plant N uptake in a warmer world, with important implications for nitrogen cycling and nitrogen losses from ecosystems.

  2. Effect of reduced winter precipitation and increased temperature on watershed solute flux, 1988-2002, Northern Michigan

    USGS Publications Warehouse

    Stottlemyer, R.; Toczydlowski, D.

    2006-01-01

    Since 1987 we have studied weekly change in winter (December-April) precipitation, snowpack, snowmelt, soil water, and stream water solute flux in a small (176-ha) Northern Michigan watershed vegetated by 65-85 year-old northern hardwoods. Our primary study objective was to quantify the effect of change in winter temperature and precipitation on watershed hydrology and solute flux. During the study winter runoff was correlated with precipitation, and forest soils beneath the snowpack remained unfrozen. Winter air temperature and soil temperature beneath the snowpack increased while precipitation and snowmelt declined. Atmospheric inputs declined for H+, NO 3- , NH 4+ , dissolved inorganic nitrogen (DIN), and SO 42- . Replicated plot-level results, which could not be directly extrapolated to the watershed scale, showed 90% of atmospheric DIN input was retained in surface shallow (<15 cm deep) soils while SO 42- flux increased 70% and dissolved organic carbon (DOC) 30-fold. Most stream water base cation (C B), HCO 3- , and Cl- concentrations declined with increased stream water discharge, K+, NO 3- , and SO 42- remained unchanged, and DOC and dissolved organic nitrogen (DON) increased. Winter stream water solute outputs declined or were unchanged with time except for NO 3- and DOC which increased. DOC and DIN outputs were correlated with the percentage of winter runoff and stream discharge that occurred when subsurface flow at the plot-level was shallow (<25 cm beneath Oi). Study results suggest that the percentage of annual runoff occurring as shallow lateral subsurface flow may be a major factor regulating solute outputs and concentrations in snowmelt-dominated ecosystems. ?? Springer 2006.

  3. GCM response of northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide

    SciTech Connect

    Stephenson, D.B.; Held, I.M. )

    1993-10-01

    The response of the Geophysical Fluid Dynamics Laboratory (GFDL) coupled ocean-atmosphere R15, 9-level GCM to gradually increasing CO[sub 2] amounts is analyzed with emphasis on the changes in the stationary waves and storm tracks in the Northern Hemisphere wintertime troposphere. A large part of the change is described by an equivalent-barotropic stationary wave with a high over eastern Canada and a low over southern Alaska. Consistent with this, the Atlantic jet weakens near the North American coast. Perpetual winter runs of an R15, nine-level atmospheric GCM with sea surface temperature, sea ice thickness, and soil moisture values prescribed from the coupled GCM results are able to reproduce the coupled model's response qualitatively. Consistent with the weakened baroclinicity associated with the stationary wave change, the Atlantic storm track weakens with increasing CO[sub 2] concentrations while the Pacific storm track does not change in strength substantially. An R15, nine-level atmospheric model linearized about the zonal time-mean state is used to analyze the contributions to the stationary wave response. With mountains, diabatic heating, and transient forcings the linear model gives a stationary wave change in qualitative agreement with the change seen in the coupled and perpetual models. Transients and diabatic heating appear to be the major forcing terms, while changes in zonal-mean basic state and topographic forcing play only a small role. A substantial part of the diabatic response is due to changes in tropical latent heating. 25 refs., 36 figs.

  4. Characteristics of Heavy Snowfall and Snow Crystal Habits in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign in Korea

    NASA Astrophysics Data System (ADS)

    Seong, D. K.; Seok, S. W.; Eun, S. H.; Kim, B. G.; Reum, K. A.; Lee, K. M.; Jeon, H. R.; Byoung Choel, C.; Park, Y. S.

    2015-12-01

    Characteristics of heavy snowfall and snow crystal habits have been investigated in the campaign of Experiment on Snow Storms At Yeongdong (ESSAY) using radiosonde soundings, Global Navigation Satellite System (GNSS), and a digital camera with a magnifier for taking a photograph of snowfall crystals. The analysis period is mainly both winters of 2014 and 2015. The synoptic situations are similar to those of the previous studies such as the Low pressure system passing by the far South of the Korean peninsula along with the Siberian High extending to northern Japan, which eventually results in the northeasterly or easterly flows and the long-lasting snowfall episodes in the Yeongdong region. The snow crystal habits observed in the ESSAY campaign were mainly dendrite, consisting of 70% of the entire habits. The rimed habits were frequently captured when two-layered clouds were observed, probably through the process of freezing of super-cooled droplets on the ice particles. The homogeneous habit such as dendrite was shown in case of shallow clouds with its thickness of below 500 m whereas various habits were captured such as graupel, dendrites, rimed dendrites, aggregates of dendrites, plates, rimed plates, etc in the thick cloud with its thickness greater than 1.5 km. The dendrites appeared to be dominant in the condition of cloud top temperature specifically ranging -12~-16℃. Interestingly temporal evolutions of snow crystal habits were consistently shown for several snowfall events such as changes from rimed particles to dendrites(or aggregated dendrites). The association of snow crystal habits with temperature and super-saturation in the cloud will be in detail examined. However, better understandings of characteristics of snow crystal habits would contribute to preventing breakdown accidents such as a greenhouse destruction and collapse of a temporary building due to heavy snowfall, and traffic accidents due to snow-slippery road condition, providing a higher

  5. Elevated streamflows increase dam passage by juvenile coho salmon during winter: Implications of climate change in the Pacific Northwest

    USGS Publications Warehouse

    Kock, Tobias J.; Liedtke, Theresa L.; Rondorf, Dennis W.; Serl, John D.; Kohn, Mike; Bumbaco, Karin A.

    2012-01-01

    A 4-year evaluation was conducted to determine the proportion of juvenile coho salmon Oncorhynchus kisutch passing Cowlitz Falls Dam, on the Cowlitz River, Washington, during winter. River and reservoir populations of coho salmon parr were monitored using radiotelemetry to determine if streamflow increases resulted in increased downstream movement and dam passage. This was of interest because fish that pass downstream of Cowlitz Falls Dam become landlocked in Riffe Lake and are lost to the anadromous population. Higher proportions of reservoir-released fish (0.391-0.480) passed Cowlitz Falls Dam than did river-released fish (0.037-0.119). Event-time analyses demonstrated that streamflow increases were important predictors of dam passage rates during the study. The estimated effect of increasing streamflows on the risk of dam passage varied annually and ranged from 9% to 75% for every 28.3 m3/s increase in streamflow. These results have current management implications because they demonstrate the significance of dam passage by juvenile coho salmon during winter months when juvenile fish collection facilities are typically not operating. The results also have future management implications because climate change predictions suggest that peak streamflow timing for many watersheds in the Pacific Northwest will shift from late spring and early summer to winter. Increased occurrence of intense winter flood events is also expected. Our results demonstrate that juvenile coho salmon respond readily to streamflow increases and initiate downstream movements during winter months, which could result in increased passage at dams during these periods if climate change predictions are realized in the coming decades.

  6. Characteristics of Lightning within Electrified Snowfall Events using Total Lightning Measurements

    NASA Astrophysics Data System (ADS)

    Schultz, C. J.; Bruning, E. C.; Lang, T. J.; Kuhlman, K. M.

    2015-12-01

    Lightning within heavy snowfall indicates the presence of heavy snowfall rates. Most studies within the literature examine this phenomenon using ground based networks that are primarily designed for identifying cloud to ground flashes. Thus, very little study of the three dimensional structure of the lightning flashes within heavy snowfall has been accomplished. Herein, total lightning mapping arrays, interferometers and ground based networks like the National Lightning Detection Network (NLDN) are utilized to document the characteristics of these flashes, including flash size, polarity, flash initiation location and inferred charge structure. A total of six events are examined, resulting in a total of approximately 80 flashes. Both individual case studies and overall population statistics will be used to characterize flashes within this winter environment. Many of these flashes are found to initiate from tall objects like television and radio communication towers, and come to ground in multiple locations along their path, resulting in one LMA derived flash containing multiple NLDN identified flashes. Cloud-to-ground flashes of both polarities are noted within the 80 flash sample. In one case, 3 separate flashes which resulted in ground flashes of both polarities were observed coming out of the same overall charge structure. This structure exhibited a highly sloped nature in the LMA data from east to west, and both +IC and -IC components of flashes were observed by the NLDN in the same region where the flashes initiated. A decrease in flash size is noted with time in at least three of these events due to weaker updraft (compared to their summertime thunderstorm counter parts) and smaller available of supercooled liquid water as inferred through trends in radar observations. These limiting factors are hypothesized to result in slower charging rates, and smaller flash sizes with time. Several flashes also exhibit sloped structures that match reflectivity

  7. Snowfall induced severe pile-ups in southern Finland on 17 March 2005

    NASA Astrophysics Data System (ADS)

    Juga, I.; Hippi, M.

    2009-09-01

    Weather has a great impact on road traffic and several studies have shown that accident risk increases especially during wintry weather conditions. Heavy snowfall, rain or sleet on an icy road surface and formation of hoar frost can make the driving conditions hazardous. Poor visibility, caused by snowfall or dense fog can increase the accident risk significantly and severe pile-ups on highways are possible. The risk for accidents increases, when many drivers can't adjust their speed to the worsening driving conditions even though the hazard is visible. This study presents a severe pile-up case that occurred in southern Finland near Helsinki city on Thursday 17 March 2005. Before this occasion, cold and clear weather prevailed for many days and the driving conditions were mostly fair. On 17 March a low pressure was approaching southern Finland from west. Light snowfall reached the Helsinki metropolitan area early in the morning and it was followed by a band of dense snowfall. During the rush hours, just before 0800 h, pile-ups occurred on four separate highways near Helsinki city almost at the same time (within about ten minutes). In total, almost 300 cars were crashed, 3 persons died and more than 60 persons got injured. The occurrence of dense snowfall during the rush hours had a great impact on driving conditions. The drivers heading towards Helsinki from north or northeast drove at first in clear, dry conditions, with only local light snowfall. But the sudden worsening of weather (and visibility) was a surprise for many although warnings for poor driving conditions were issued the previous evening on radio and TV. In addition to this, automatic vehicle speed measurements showed that the mean speed that morning was only a few km/h lower than on a normal day. When studying the weather situation, it appeared that near the surface there was a thin layer of cold air (2 m temperature being -5…-8 degrees) and warmer air above it. In this kind of situation super

  8. Coupled Model Simulation of Snowfall Events Over the Black Hills

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong; Hjelmfelt, M. R.; Capehart, W. J.

    2000-01-01

    Although many long-term simulations of snow accumulation and oblation have been made using stand-alone land surface models and surface models coupled with GCMs, less research has focused on short-term event simulations. Actually, accurate event simulations of snow-related processes are the basis for successful long-term simulation. Three advantages of event simulations of snowfall and snow melting are availability of: (1) intensive observation data from field experiments for validation; (2) more physically-realistic precipitation schemes for use in atmospheric models to simulate snowfall; and (3) a more detailed analysis of the snow melting processes. In addition to the complexities of snow related processes themselves, terrain-induced effects on snowfall/snow melting make simulations of snow events more difficult. Climatological observations indicate that terrain features such as the Black Hills of South Dakota and Wyoming can exert important effects on snow accumulation and snow oblation processes. One of the primary effects is that the orography causes forced uplift of airflow and causes atmospheric waves to form both upwind and downwind of it. Airflow often splits around the obstacle, converging on the lee side. This convergence may lead to precipitation enhancement. It also provides an elevated heat and moisture source that enhances atmospheric instability. During the period of April 5-May 5, 1999, the Upper Missouri River Basin Pilot Project (UMRBPP) made intensive observations on precipitation events occurring in the Black Hills. Two moderate snowfall events were captured during the period. The resulting high temporal and spatial resolution data provides opportunities to investigate terrain effects on snowfall amount, distribution, and melting. Successful simulation of snowfall amount, distribution, and evolution using atmospheric models is important to subsequent modeling of snow melting using snow sub-models in land surface schemes. In this paper, a

  9. Snowfall Measurements at a Boreal Forest Site in Saskatchewan/Canada: Contribution to WMO Solid Precipitation Intercomparison Experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). As part of Canada's contribution to the WMO SPICE project, a test site has been set up in the southern Canadian Boreal forest to compare the DFIR and bush gauge and test other instruments. Snowfall and meteorological data have been collected over the past 2 winters. This presentation will summarize the results of recent data analyses, evaluate the performance of various gauges for snowfall observations in the northern regions, and discuss future perspectives regarding cold/mountain region precipitation research. The methods and results of this research will improve precipitation measurements and data quality over the cold and mountain regions, directly supporting the WMO SPICE and the MOUNTerrain projects.

  10. Characterization of snowfall via field observations and nearby atmospheric soundings

    NASA Astrophysics Data System (ADS)

    Francisco, D.; Hallett, J. N.

    2011-12-01

    Snowfall is characterized through precipitation rate and depth of water after melting in a standard cylindrical gauge. The rates of snowfall are related to microphysical and dynamical processes in weather systems and are further specified by choice of measurement time, a minimum related to the statistics of individual falling particles. Origins of snowflakes at the surface and their growth aloft are inferred from the individual size, shape, concentration and fall of individual particles and of aggregates. Data collected enhances understanding of mixed-phase cloud dynamics. An ice particle is definable as a single crystal, having long range order in the crystal lattice or as polycrystal particles having a multitude of individual single crystals held together though interlocking shapes as a snowflake. Identifying the number of individual ice crystals requires a degree of persistence and skill, is not readily automated, and is capable of providing key information on the origin and growth history of particles, not obtainable by other means. Composite snowflakes are collected on a black cloth, with a scale, and photographed. Individual ice crystals are identified, counted, and related to the snowfall rate leading to a calculation of the individual ice crystal number flux. The snowfall rate is characterized as a concentration and an inferred flux of individual nucleation events to be related to possible direct nucleation and secondary ice formation aloft; accumulation rate thru hotplate measurements. Atmospheric soundings produced by the NWS Reno station, about two miles from the observation site, aides in the nucleation event approximations.

  11. The Potential of Five Winter-grown Crops to Reduce Root-knot Nematode Damage and Increase Yield of Tomato

    PubMed Central

    López-Pérez, Jose Antonio; Roubtsova, Tatiana; de Cara García, Miguel

    2010-01-01

    Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C). PMID:22736848

  12. The impact of a windshield in a tipping bucket rain gauge on the reduction of losses in precipitation measurements during snowfall events

    NASA Astrophysics Data System (ADS)

    Buisan, Samuel T.; Collado, Jose Luis; Alastrue, Javier

    2016-04-01

    The amount of snow available controls the ecology and hydrological response of mountainous areas and cold regions and affects economic activities including winter tourism, hydropower generation, floods and water supply. An accurate measurement of snowfall accumulation amount is critical and source of error for a better evaluation and verification of numerical weather forecast, hydrological and climate models. It is well known that the undercatch of solid precipitation resulting from wind-induced updrafts at the gauge orifice is the main factor affecting the quality and accuracy of the amount of snowfall precipitation. This effect can be reduced by the use of different windshields. Overall, Tipping Bucket Rain Gauges (TPBRG) provide a large percentage of the precipitation amount measurements, in all climate regimes, estimated at about 80% of the total of observations by automatic instruments. In the frame of the WMO-SPICE project, we compared at the Formigal-Sarrios station (Spanish Pyrenees, 1800 m a.s.l.) the measured precipitation in two heated TPBRGs, one of them protected with a single alter windshield in order to reduce the wind bias. Results were contrasted with measured precipitation using the SPICE reference gauge (Pluvio2 OTT) in a Double Fence Intercomparison Reference (DFIR). Results reported that shielded reduces undercatch up to 40% when wind speed exceeds 6 m/s. The differences when compared with the reference gauge reached values higher than 70%. The inaccuracy of these measurements showed a significant impact in nowcasting operations and climatology in Spain, especially during some heavy snowfall episodes. Also, hydrological models showed a better agreement with the observed rivers flow when including the precipitation not accounted during these snowfall events. The conclusions of this experiment will be used to take decisions on the suitability of the installation of windshields in stations characterized by a large quantity of snowfalls during the

  13. Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000

    SciTech Connect

    Massie, Steven T.; Torres, O.; Smith, Steven J.

    2004-12-01

    Emission inventories indicate that the largest increases in SO{sub 2} emissions have occurred in Asia during the last 20 years. By inference, largest increases in aerosol, produced primarily by the conversion of SO{sub 2} to sulfate, should have occurred in Asia during the same time period. Decadal changes in regional aerosol optical depths are calculated by analyzing Total Ozone Mapping Spectrometer (TOMS) vertical aerosol optical depths (converted to 550 nm) from 1979 to 2000 on a 1{sup o} by 1{sup o} global grid. The anthropogenic component of the TOMS aerosol record is maximized by examining the seasonal cycles of desert dust and Boreal fire smoke, and identifying the months of the year for which the desert dust and Boreal fire smoke are least conspicuous. Gobi and Taklimakan desert dust in Asia is prevalent in the TOMS record during spring, and eastern Siberian smoke from Boreal forest fires is prevalent during summer. Aerosol trends are calculated on a regional basis during winter (November-February) to maximize the anthropogenic component of the aerosol record. Large increases in aerosol optical depths between 1979 and 2000 are present over the China coastal plain and the Ganges river basin in India. Aerosol increased by 17% per decade during winter over the China coastal plain, while SO{sub 2} emissions over the same geographical region increased by 33% per decade.

  14. Snowfall Characterization by Field Observation and Atmospheric Sounding

    NASA Astrophysics Data System (ADS)

    Francisco, Dianna M.

    The snowfall rate is related to microphysical and dynamical processes in weather systems and is further specified by choice of measurement time, related to the statistics of individual falling ice crystals. A snowflake is definable as a single ice crystal having long range order in the crystal lattice or as a polycrystalline having a multitude of individual single crystals, frozen together as graupel or held together though interlocking shapes as an aggregate snowflake. Snowflakes are collected on a black cloth, next to a scale, and photographed using a macro magnification. Snowflakes captured at the surface are characterized by their appearance from the habit, shape, size, symmetry, thickness, concentration, and fall of the individual ice crystals and of aggregates. Individual ice crystals are identified, counted, and related to the snowfall rate for a calculation of ice crystal number flux. The snowfall rate is characterized as a concentration and an inferred flux of individual nucleation events, to be related to possible direct nucleation and secondary ice formation (such as rime splintering) aloft. Identifying the number of ice crystals requires a degree of persistence and skill, is not readily automated, and is capable of providing key information on the growth history of ice crystals, not obtainable by other means. Surface data is collected through a surface weather station within one mile of the Observation Site. Atmospheric soundings produced by the National Weather Service, less than two miles distance from the Observation Site, aids in the approximation of the ice crystal's life history.

  15. CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China

    NASA Astrophysics Data System (ADS)

    Liu, Sheng; Xu, Hangmei; Ding, Jiuming; Chen, Han Y. H.; Wang, Jiashe; Xu, Zikun; Ruan, Honghua; Chen, Yuwei

    2016-07-01

    Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at heavy, moderate, and light levels, which yielded aboveground biomass inputs to the soil at 22.12 ± 0.73 (mean ± 1 s.e.m.), 10.40 ± 1.09, and 5.95 ± 0.73 Mg per hectare, respectively. We found that soil respiration rate and annual cumulative CO2 emissions were significantly higher in heavily damaged sites than moderately and lightly damaged sites. Soil temperature was the most important environmental factor affecting soil respiration rate across all studied stands. However, soil respiration sensitivity to temperature (Q10) decreased in heavily damaged sites. Microbial biomass carbon and its proportion to total SOC increased with damage intensity. Soil respiration rate was positively correlated to microbial biomass carbon and soil moisture. Our results indicated that the increase of soil respiration following canopy disturbance from winter storm resulted from increased microbial biomass carbon, soil moisture, and temperature.

  16. CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China.

    PubMed

    Liu, Sheng; Xu, Hangmei; Ding, Jiuming; Chen, Han Y H; Wang, Jiashe; Xu, Zikun; Ruan, Honghua; Chen, Yuwei

    2016-07-29

    Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at heavy, moderate, and light levels, which yielded aboveground biomass inputs to the soil at 22.12 ± 0.73 (mean ± 1 s.e.m.), 10.40 ± 1.09, and 5.95 ± 0.73 Mg per hectare, respectively. We found that soil respiration rate and annual cumulative CO2 emissions were significantly higher in heavily damaged sites than moderately and lightly damaged sites. Soil temperature was the most important environmental factor affecting soil respiration rate across all studied stands. However, soil respiration sensitivity to temperature (Q10) decreased in heavily damaged sites. Microbial biomass carbon and its proportion to total SOC increased with damage intensity. Soil respiration rate was positively correlated to microbial biomass carbon and soil moisture. Our results indicated that the increase of soil respiration following canopy disturbance from winter storm resulted from increased microbial biomass carbon, soil moisture, and temperature.

  17. CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China.

    PubMed

    Liu, Sheng; Xu, Hangmei; Ding, Jiuming; Chen, Han Y H; Wang, Jiashe; Xu, Zikun; Ruan, Honghua; Chen, Yuwei

    2016-01-01

    Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at heavy, moderate, and light levels, which yielded aboveground biomass inputs to the soil at 22.12 ± 0.73 (mean ± 1 s.e.m.), 10.40 ± 1.09, and 5.95 ± 0.73 Mg per hectare, respectively. We found that soil respiration rate and annual cumulative CO2 emissions were significantly higher in heavily damaged sites than moderately and lightly damaged sites. Soil temperature was the most important environmental factor affecting soil respiration rate across all studied stands. However, soil respiration sensitivity to temperature (Q10) decreased in heavily damaged sites. Microbial biomass carbon and its proportion to total SOC increased with damage intensity. Soil respiration rate was positively correlated to microbial biomass carbon and soil moisture. Our results indicated that the increase of soil respiration following canopy disturbance from winter storm resulted from increased microbial biomass carbon, soil moisture, and temperature. PMID:27468803

  18. CO2 Emission Increases with Damage Severity in Moso Bamboo Forests Following a Winter Storm in Southern China

    PubMed Central

    Liu, Sheng; Xu, Hangmei; Ding, Jiuming; Chen, Han Y. H.; Wang, Jiashe; Xu, Zikun; Ruan, Honghua; Chen, Yuwei

    2016-01-01

    Despite the prevalence of disturbances in forests, the effects of disturbances on soil carbon processes are not fully understood. We examined the influences of a winter storm on soil respiration and labile soil organic carbon (SOC) of a Moso Bamboo (Phyllostachys heterocycle) plantation in the Wuyi Mountains in Southern China from May 2008 to May 2009. We sampled stands that were damaged at heavy, moderate, and light levels, which yielded aboveground biomass inputs to the soil at 22.12 ± 0.73 (mean ± 1 s.e.m.), 10.40 ± 1.09, and 5.95 ± 0.73 Mg per hectare, respectively. We found that soil respiration rate and annual cumulative CO2 emissions were significantly higher in heavily damaged sites than moderately and lightly damaged sites. Soil temperature was the most important environmental factor affecting soil respiration rate across all studied stands. However, soil respiration sensitivity to temperature (Q10) decreased in heavily damaged sites. Microbial biomass carbon and its proportion to total SOC increased with damage intensity. Soil respiration rate was positively correlated to microbial biomass carbon and soil moisture. Our results indicated that the increase of soil respiration following canopy disturbance from winter storm resulted from increased microbial biomass carbon, soil moisture, and temperature. PMID:27468803

  19. Long-term continuous monitoring of mercury in the Russian arctic: winter increase of atmospheric mercury depletion events

    NASA Astrophysics Data System (ADS)

    Pankratov, Fidel; Mahura, Alexander; Popov, Valentin; Katz, Oleg

    2014-05-01

    Among pollutants mercury is a major environmental concern due to its ecological hazard. The mercury can reside in the atmosphere for a long time high, and it is a reason of its global propagation in the Northern Hemisphere and elevated mercury concentrations are reported in the Arctic environment. First time, in 1995, the effect of atmospheric mercury depletion in the troposphere was found at the Canadian station Alert. This phenomenon (called the Atmospheric Mercury Depletion Event - AMDE) is observed during April-June, when the Polar sunrise starts till the end of the snowmelt. The same effect was reported for other polar stations situated to the north of 60° N. Long-term continuous monitoring of gaseous elemental mercury in the surface air at the polar station Amderma (69,720N; 61,620E) using the analyzer Tekran 2537A has been conducted from Jun 2001 to date. Individual measurements were collected every thirty minutes. It has been shown, that during eleven years of observations the AMDEs were observed every year, from the end of March till early June. For the winter period (Dec-Feb) these events of the atmospheric mercury depletion were registered from 2010 to 2013, which had not been observed before. A large number of hours during the day, when the concentration of mercury was recorded at level of below 1 ng/m3, was registered during Dec-Feb. The sun declination above the horizon is negative, and solar activity is still not enough to trigger the photochemical reactions. The these last 3 years confirmed a tendency to displacement of AMDEs to the winter season, which leads to an additional factor entry of mercury in various biological objects, due to the additional deposition of various forms of mercury on the snowpack. At the same time, especially during the winter seasons, there is a substantial increase (up to 8 times) of AMDEs, compared with the previous years. In particular, in winter 2013 the maximum number of AMDs reached 31 cases. The explanation can be

  20. Evaluating the Performance of Single and Double Moment Microphysics Schemes During a Synoptic-Scale Snowfall Event

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2011-01-01

    Increases in computing resources have allowed for the utilization of high-resolution weather forecast models capable of resolving cloud microphysical and precipitation processes among varying numbers of hydrometeor categories. Several microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, ranging from single-moment predictions of precipitation content to double-moment predictions that include a prediction of particle number concentrations. Each scheme incorporates several assumptions related to the size distribution, shape, and fall speed relationships of ice crystals in order to simulate cold-cloud processes and resulting precipitation. Field campaign data offer a means of evaluating the assumptions present within each scheme. The Canadian CloudSat/CALIPSO Validation Project (C3VP) represented collaboration among the CloudSat, CALIPSO, and NASA Global Precipitation Measurement mission communities, to observe cold season precipitation processes relevant to forecast model evaluation and the eventual development of satellite retrievals of cloud properties and precipitation rates. During the C3VP campaign, widespread snowfall occurred on 22 January 2007, sampled by aircraft and surface instrumentation that provided particle size distributions, ice water content, and fall speed estimations along with traditional surface measurements of temperature and precipitation. In this study, four single-moment and two double-moment microphysics schemes were utilized to generate hypothetical WRF forecasts of the event, with C3VP data used in evaluation of their varying assumptions. Schemes that incorporate flexibility in size distribution parameters and density assumptions are shown to be preferable to fixed constants, and that a double-moment representation of the snow category may be beneficial when representing the effects of aggregation. These results may guide forecast centers in optimal configurations of their forecast models

  1. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction

    NASA Astrophysics Data System (ADS)

    Tissier, Mathilde L.; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-05-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species.

  2. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction.

    PubMed

    Tissier, Mathilde L; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-01-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species.

  3. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction.

    PubMed

    Tissier, Mathilde L; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-01-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species. PMID:27150008

  4. How maize monoculture and increasing winter rainfall have brought the hibernating European hamster to the verge of extinction

    PubMed Central

    Tissier, Mathilde L.; Handrich, Yves; Robin, Jean-Patrice; Weitten, Mathieu; Pevet, Paul; Kourkgy, Charlotte; Habold, Caroline

    2016-01-01

    Over the last decades, climate change and agricultural intensification have been identified as two major phenomena negatively affecting biodiversity. However, little is known about their effects on the life-history traits of hibernating species living in agro-ecosystems. The European hamster (Cricetus cricetus), once a common rodent on agricultural land, is now on the verge of extinction in France. Despite the implemented measures for its protection, populations are still in sharp decline but the reasons for it remain unclear. To investigate how environmental change has affected this hibernating rodent, we used a data set based on 1468 recordings of hamster body mass at emergence from hibernation from 1937 to 2014. We reveal the adverse effects of increasing winter rainfall and maize monoculture intensification on the body mass of wild hamsters. Given the links that exist between body mass, reproductive success and population dynamics in mammals, these results are of particular importance to understand the decline of this species. In view of the rates of maize monoculture intensification and the predicted increase in winter rainfall, it is of the utmost importance to improve land management in Western Europe to avoid the extinction of this species. PMID:27150008

  5. Simulations of historical and future trends in snowfall and groundwater recharge for basins draining to Long Island Sound

    USGS Publications Warehouse

    Bjerklie, David M.; Viger, Roland; Trombley, Thomas J.

    2011-01-01

    A regional watershed model was developed for watersheds contributing to Long Island Sound, including the Connecticut River basin. The study region covers approximately 40 900 km2, extending from a moderate coastal climate zone in the south to a mountainous northern New England climate zone dominated by snowmelt in the north. The input data indicate that precipitation and temperature have been increasing for the last 46 years (1961– 2006) across the region. Minimum temperature has increased more than maximum temperature over the same period (1961–2006). The model simulation indicates that there was an upward trend in groundwater recharge across most of the modeled region. However, trends in increasing precipitation and groundwater recharge are not significant at the 0.05 level if the drought of 1961–67 is removed from the time series. The trend in simulated snowfall is not significant across much of the region, although there is a significant downward trend in southeast Connecticut and in central Massachusetts. To simulate future trends, two input datasets, one assuming high carbon emissions and one assuming low carbon emissions, were developed from GCM forecasts. Under both of the carbon emission scenarios, simulations indicate that historical trends will continue, with increases in groundwater recharge over much of the region and substantial snowfall decreases across Massachusetts, Connecticut, southern Vermont, and southern New Hampshire. The increases in groundwater recharge and decreases in snowfall are most pronounced for the high emission scenario.

  6. Storage conditions affecting increase in falling number of soft red winter wheat grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by malting, by incubating wheat stalks,...

  7. Universal multifractal analysis of high-resolution snowfall data

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Berne, Alexis

    2016-04-01

    Universal multifractal analysis offers useful insights into the scaling properties of precipitation data. While much work has been done on the scaling properties of rainfall fields, less is known about the scaling properties of solid precipitation such as snowfall, especially at high resolution. We present results of a universal multifractal (UM) analysis of high-resolution solid precipitation data. The data were recorded using a 2D-video-disdrometer (2DVD) situated in the Swiss Alps. Analysis was performed on a one-hour period of snowfall, during which time the mean wind speed was zero, temperatures were low, and no hail was detected. The 2DVD recorded information on individual particles, from which we calculated snow mass. Three "cuts" of the spatio-temporal snowfall process were analysed using the UM framework. First, high-resolution timeseries of precipitation intensity at 100 ms temporal resolution were analysed. These results show two scaling regimes with a transition area between them. Second, we analysed reconstructed vertical columns of particle concentration and snow mass, assuming no horizontal wind and constant vertical velocity (equal to the one recorded on the ground). Strong scaling was observed in the particle concentration fields, with the influence of large (and therefore rare) snowflakes degrading the quality of the scaling observed for higher moments of the particle distribution. There was a clear difference between the measured fields and fields in which the vertical distribution of particles was made homogeneous, indicating that the measured snowfall fields contained non-homogeneous fields. Scaling behaviour was observed down to vertical scales of about 0.5 m, which is similar to published results using rain data. Finally, we used the UM framework to investigate the scaling properties of 2D maps of snow accumulation over a subset of the instrument collection area of 5.12 x 5.12 cm^2. As expected from the vertical column analysis, given that

  8. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground based weather radar network over Sweden

    NASA Astrophysics Data System (ADS)

    Norin, L.; Devasthale, A.; L'Ecuyer, T. S.; Wood, N. B.; Smalley, M.

    2015-08-01

    To be able to estimate snowfall accurately is important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain-gauges to estimate precipitation in this context. The Cloud Profiling Radar (CPR) onboard CloudSat is especially proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and ability to provide near-global vertical structure. The importance of having snowfall estimates from CloudSat/CPR further increases in the high latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. Here we intercompared snowfall estimates from two observing systems, CloudSat and Swerad, the Swedish national weather radar network. Swerad offers one of the best calibrated data sets of precipitation amount at very high latitudes that are anchored to rain-gauges and that can be exploited to evaluate usefulness of CloudSat/CPR snowfall estimates in the polar regions. In total 7.2×105 matchups of CloudSat and Swerad over Sweden were inter-compared covering all but summer months (October to May) from 2008 to 2010. The intercomparison shows encouraging agreement between these two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46-82 km), when the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station as Swerad's sensitivity decreases as a function of distance and Swerad also tends to overshoots low level precipitating systems further away from the station, leading to underestimation of snowfall rate and occasionally missing

  9. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden

    NASA Astrophysics Data System (ADS)

    Norin, L.; Devasthale, A.; L'Ecuyer, T. S.; Wood, N. B.; Smalley, M.

    2015-12-01

    Accurate snowfall estimates are important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain gauges to estimate precipitation in this context. In particular, the Cloud Profiling Radar (CPR) on board CloudSat is proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and its ability to provide near-global vertical structure. CloudSat snowfall estimates play a particularly important role in the high-latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. In this paper, snowfall estimates from two observing systems - Swerad, the Swedish national weather radar network, and CloudSat - are compared. Swerad offers a well-calibrated data set of precipitation rates with high spatial and temporal resolution, at very high latitudes. The measurements are anchored to rain gauges and provide valuable insights into the usefulness of CloudSat CPR's snowfall estimates in the polar regions. In total, 7.2 × 105 matchups of CloudSat and Swerad observations from 2008 through 2010 were intercompared, covering all but the summer months (June to September). The intercomparison shows encouraging agreement between the two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46-82 km), where the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station, as Swerad's sensitivity decreases as a function of distance. Swerad also tends to overshoot low-level precipitating systems further away from the station, leading to an

  10. Body mass loss during adaptation to short winter-like days increases food foraging, but not food hoarding.

    PubMed

    Teubner, Brett J W; Bartness, Timothy J

    2009-04-20

    Siberian hamsters markedly reduce their body/lipid mass ( approximately 20-45%) in short 'winter-like' days (SD). Decreases in body/lipid mass associated with food deprivation or lipectomy result in increases in foraging and food hoarding. When at their SD-induced body/lipid mass nadir, food hoarding is not increased despite their decreases in body/lipid mass, but hoarding was not tested during the dynamic period of body/lipid mass loss (first 5-6 weeks of SDs). Therefore, we tested for changes in foraging/hoarding during this initial period in Siberian hamsters housed in a simulated burrow with a wheel running-based foraging system and exposed to either long 'summer-like' days (LD) or SDs. Two foraging effort conditions were used: 10 Revolutions/Pellet (pellet delivered after running 10 revolutions) and a Free Wheel/Free Food condition (wheel available, food pellets non-contingently available). Regardless of the foraging condition, body mass was significantly reduced across 8 weeks of SDs ( approximately 15%). Foraging increased after 7 weeks in SDs, but food hoarding did not increase compared to LDs. Instead food hoarding significantly decreased in SDs at Weeks 2-5 compared with Week 0 values, with the 10 Revolutions/Pellet foraging group returning to LD levels thereafter and the Free Wheel/Free Food group remaining reduced from Weeks 2-7. Collectively, we found that SDs decreased body mass, increased foraging after 7 weeks, and increased food hoarding, but only after an initial decrease and not above that seen in LDs. These data suggest that SD-induced body/lipid mass losses do not engender similar behavioral responses as seen with food deprivation or lipectomy.

  11. Increase in body size is correlated to warmer winters in a passerine bird as inferred from time series data

    PubMed Central

    Björklund, Mats; Borras, Antoni; Cabrera, Josep; Senar, Juan Carlos

    2015-01-01

    Climate change is expected to affect natural populations in many ways. One way of getting an understanding of the effects of a changing climate is to analyze time series of natural populations. Therefore, we analyzed time series of 25 and 20 years, respectively, in two populations of the citril finch (Carduelis citrinella) to understand the background of a dramatic increase in wing length in this species over this period, ranging between 1.3 and 2.9 phenotypic standard deviations. We found that the increase in wing length is closely correlated to warmer winters and in one case to rain in relation to temperature in the summer. In order to understand the process of change, we implemented seven simulation models, ranging from two nonadaptive models (drift and sampling), and five adaptive models with selection and/or phenotypic plasticity involved and tested these models against the time series of males and females from the two population separately. The nonadaptive models were rejected in each case, but the results were mixed when it comes to the adaptive models. The difference in fit of the models was sometimes not significant indicating that the models were not different enough. In conclusion, the dramatic change in mean wing length can best be explained as an adaptive response to a changing climate. PMID:25628864

  12. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  13. The social impact of the snowfall of 8 March 2010 in Catalonia

    NASA Astrophysics Data System (ADS)

    Amaro, J.; Llasat, M. C.; Aran, M.

    2010-09-01

    The snowfall of 8 March 2010 affected almost all Catalonia, but especially the northeast where snow thickness was between 20 and 30 cm, locally with higher values up to 60 cm. Strong winds followed the event, exceeding 90 km/h in some places. As a result, infrastructures and public services, also private properties were damaged. Thousands of people were left stranded by the circulatory collapse, suspensions of railway service and by falling branches or trees on road infrastructures blocking accesses to residential areas. The regional government approved funds of 21.4 millions of Euros to mitigate the damage caused by this event, mainly invested in forest cleanup operations and in repairing road damage. The social impact of this event has been so high that 210 news have been published in a newspaper until 23 April, 190 of them during the month of March. From the study of the characteristics of this episode it can be stated that in the coast and pre-costal area, temperature at the same moment of precipitation was between 0ºC and 2ºC and humidity was high. In these zones, the type of precipitation was wet snow. It has to be considered that the combination of wet snow and wind can be a risk because of the ice-weight accumulated on objects (trees, electricity pylons...). As a consequence important damage happened in power network with significant collateral effects and more than 450,000 customers were affected by a power outage during some days. In this study we will compare the consequences of this event with others by means of information published in press. As a result, some set of consequences that are repeated regardless of the magnitude of the phenomenon will be identified. Finally, this event is also an example of the incision of social networks. This snowfall has been classified by mass media as the first "snowfall 2.0": 81600 entrances in Google, 132 Facebook groups and 750 videos made by amateurs in internet. From this study, we will present some reflexions

  14. Millipedes and earthworms increase the decomposition rate of 15N-labelled winter rape litter in an arable field.

    PubMed

    Martens, H; Alphei, J; Schaefer, M; Scheu, S

    2001-01-01

    Effects of millipedes and earthworms on the decomposition of 15N-labelled litter of winter oilseed rape were investigated in a microcosm field experiment over a period of 264 days on an oat field near Göttingen managed by integrated farming. A total of 32 microcosms were filled with defaunated soil. 15N-labelled rape litter was placed either on top of the soil or buried into the soil simulating mulching and ploughing, respectively. To the microcosms nine adult individuals of Blaniulus guttulatus (Diplopoda) and two of Aporrectodea caliginosa (Lumbricidae) were added separately or in combination. In general, the presence of the animals accelerated the decomposition rate of the litter material. The effects were most pronounced in the presence of Aporrectodea caliginosa. The total amount of nitrate, ammonium and the amount of 35N leached from the microcosms was increased in the presence of earthworms or of both earthworms and millipedes. Both species proved to be important members of the detritus food web of the agricultural system studied.

  15. Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections

    NASA Astrophysics Data System (ADS)

    Pons, M. R.; Herrera, S.; Gutiérrez, J. M.

    2016-06-01

    In a previous study Pons et al. (Clim Res 54(3):197-207, 2010. doi: 10.3354/cr01117g) reported a significant decreasing trend of snowfall occurrence in the Northern Iberian Peninsula since the mid 70s. The study was based on observations of annual snowfall frequency (measured as the annual number of snowfall days NSD) from a network of 33 stations ranging from 60 to 1350 m. In the present work we analyze the skill of Regional Climate Models (RCMs) to reproduce this trend for the period 1961-2000 (using both reanalysis- and historical GCM-driven boundary conditions) and the trend and the associated uncertainty of the regional future projections obtained under the A1B scenario for the first half of the twenty-first century. In particular, we consider the regional simulation dataset from the EU-funded ENSEMBLES project, consisting of thirteen state-of-the-art RCMs run at 25 km resolution over Europe. While ERA40 severely underestimates both the mean NSD and its observed trend (-2.2 days/decade), the corresponding RCM simulations driven by the reanalysis appropriately capture the interannual variability and trends of the observed NSD (trends ranging from -3.4 to -0.7, -2.1 days/decade for the ensemble mean). The results driven by the GCM historical runs are quite variable, with trends ranging from -8.5 to 0.2 days/decade (-1.5 days/decade for the ensemble mean), and the greatest uncertainty by far being associated with the particular GCM used. Finally, the trends for the future 2011-2050 A1B runs are more consistent and significant, ranging in this case from -3.7 to -0.5 days/decade (-2.0 days/decade for the ensemble mean), indicating a future significant decreasing trend. These trends are mainly determined by the increasing temperatures, as indicated by the interannual correlation between temperature and NSD (-0.63 in the observations), which is preserved in both ERA40- and GCM-driven simulations.

  16. Whale, Whale, Everywhere: Increasing Abundance of Western South Atlantic Humpback Whales (Megaptera novaeangliae) in Their Wintering Grounds

    PubMed Central

    Danilewicz, Daniel; Andriolo, Artur; Secchi, Eduardo R.; Zerbini, Alexandre N.

    2016-01-01

    The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563–25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595–24,500) and 19,429 (CV = 0.101, 95% CI = 15,958–23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated. PMID:27736958

  17. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress

    PubMed Central

    Shi, Yuhua; Cui, Zhengyong; Luo, Yongli; Zheng, Mengjing; Chen, Jin; Li, Yanxia; Yin, Yanping; Wang, Zhenlin

    2016-01-01

    Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar) and Jimai 20 (a control cultivar), were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA). The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA) between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05). Heat stress also decreased the zeatin riboside (ZR) content, but increased the gibberellin (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05) increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05), whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat. PMID:27203573

  18. Exploring Alternative Parameterizations for Snowfall with Validation from Satellite and Terrestrial Radars

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, Scott R.

    2009-01-01

    Increases in computational resources have allowed operational forecast centers to pursue experimental, high resolution simulations that resolve the microphysical characteristics of clouds and precipitation. These experiments are motivated by a desire to improve the representation of weather and climate, but will also benefit current and future satellite campaigns, which often use forecast model output to guide the retrieval process. The combination of reliable cloud microphysics and radar reflectivity may constrain radiative transfer models used in satellite simulators during future missions, including EarthCARE and the NASA Global Precipitation Measurement. Aircraft, surface and radar data from the Canadian CloudSat/CALIPSO Validation Project are used to check the validity of size distribution and density characteristics for snowfall simulated by the NASA Goddard six-class, single moment bulk water microphysics scheme, currently available within the Weather Research and Forecast (WRF) Model. Widespread snowfall developed across the region on January 22, 2007, forced by the passing of a mid latitude cyclone, and was observed by the dual-polarimetric, C-band radar King City, Ontario, as well as the NASA 94 GHz CloudSat Cloud Profiling Radar. Combined, these data sets provide key metrics for validating model output: estimates of size distribution parameters fit to the inverse-exponential equations prescribed within the model, bulk density and crystal habit characteristics sampled by the aircraft, and representation of size characteristics as inferred by the radar reflectivity at C- and W-band. Specified constants for distribution intercept and density differ significantly from observations throughout much of the cloud depth. Alternate parameterizations are explored, using column-integrated values of vapor excess to avoid problems encountered with temperature-based parameterizations in an environment where inversions and isothermal layers are present. Simulation of

  19. Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends

    PubMed Central

    Merino, Andrés; Fernández, Sergio; Hermida, Lucía; López, Laura; Sánchez, José Luis; García-Ortega, Eduardo; Gascón, Estíbaliz

    2014-01-01

    In recent decades, a decrease in snowfall attributed to the effects of global warming (among other causes) has become evident. However, it is reasonable to investigate meteorological causes for such decrease, by analyzing changes in synoptic scale patterns. On the Iberian Peninsula, the Castilla y León region in the northwest consists of a central plateau surrounded by mountain ranges. This creates snowfalls that are considered both an important water resource and a transportation risk. In this work, we develop a classification of synoptic situations that produced important snowfalls at observation stations in the major cities of Castilla y León from 1960 to 2011. We used principal component analysis (PCA) and cluster techniques to define four synoptic patterns conducive to snowfall in the region. Once we confirmed homogeneity of the series and serial correlation of the snowfallday records at the stations from 1960 to 2011, we carried out a Mann-Kendall test. The results show a negative trend at most stations, so there are a decreased number of snowfall days. Finally, variations in these meteorological variables were related to changes in the frequencies of snow events belonging to each synoptic pattern favorable for snowfall production at the observatory locations. PMID:25152912

  20. Snowfall in the northwest Iberian Peninsula: synoptic circulation patterns and their influence on snow day trends.

    PubMed

    Merino, Andrés; Fernández, Sergio; Hermida, Lucía; López, Laura; Sánchez, José Luis; García-Ortega, Eduardo; Gascón, Estíbaliz

    2014-01-01

    In recent decades, a decrease in snowfall attributed to the effects of global warming (among other causes) has become evident. However, it is reasonable to investigate meteorological causes for such decrease, by analyzing changes in synoptic scale patterns. On the Iberian Peninsula, the Castilla y León region in the northwest consists of a central plateau surrounded by mountain ranges. This creates snowfalls that are considered both an important water resource and a transportation risk. In this work, we develop a classification of synoptic situations that produced important snowfalls at observation stations in the major cities of Castilla y León from 1960 to 2011. We used principal component analysis (PCA) and cluster techniques to define four synoptic patterns conducive to snowfall in the region. Once we confirmed homogeneity of the series and serial correlation of the snowfallday records at the stations from 1960 to 2011, we carried out a Mann-Kendall test. The results show a negative trend at most stations, so there are a decreased number of snowfall days. Finally, variations in these meteorological variables were related to changes in the frequencies of snow events belonging to each synoptic pattern favorable for snowfall production at the observatory locations.

  1. THE INFLUENCE ON EMERGENCY VEHICLE CAUSED BY THE GUERRILLA HEAVY SNOWFALL AND CONSIDERATION ABOUT MEASURES

    NASA Astrophysics Data System (ADS)

    Takahashi, Masanori; Takayama, Jun-Ichi; Nakayama, Shoichiro

    In Nanao City, Ishikawa, it was a sudden snowfall (the following, "guerrilla heavy snowfall") in a short time in January, 2009, and a traffic jam occurred in the various places in city. Therefore, the snow removing was late, and the emergency transportation was late, too. So, Ishikawa Prefecture performed the review of the snow removing system with this guerrilla heavy snowfall as a lesson in the next year. As a result, in January, 2011, similar guerrilla heavy snowfall was generated, but the traffic jam in the city didn't occur that much, and the big hindrance didn't produce the delay of the emergency transportation either. Therefore, in this study, I analyzed the snowfall situation of the year before and after the snow removing system improvement, the traffic jam situation and snow removing dispatch data and compared the difference quantitatively. In addition, after guerrilla heavy snowfall, the study meeting the study meeting was held by prefecture, country, city, town and association of construction industry, and they built the area snow removing cooperation system, so I carried out an interview investigation about the real enforcement situation and progress.

  2. Modeling changes in extreme snowfall events in the Central Rocky Mountains Region with the Fully-Coupled WRF-Hydro Modeling System

    NASA Astrophysics Data System (ADS)

    gochis, David; rasmussen, Roy; Yu, Wei; Ikeda, Kyoko

    2014-05-01

    Modeling of extreme weather events often require very finely resolved treatment of atmospheric circulation structures in order to produce and localize large magnitudes of moisture fluxes that result in extreme precipitation. This is particularly true for cool season orographic precipitation processes where the representation of landform can significantly influence vertical velocity profiles and cloud moisture entrainment rates. In this work we report on recent progress in high resolution regional climate modeling of the Colorado Headwaters region using an updated version of the Weather Research and Forecasting (WRF) model and a hydrological extension package called WRF-Hydro. Previous work has shown that the WRF-Hydro modeling system forced by high resolution WRF model output can produce credible depictions of winter orographic precipitation and resultant monthly and annual river flows. Here we present results from a detailed study of an extreme springtime snowfall event that occurred along the Colorado Front Range in March of 2003. First an analysis of the simulated streamflows resulting from the melt out of that event are presented followed by an analysis of projected streamflows from the event where the atmospheric forcing in the WRF model is perturbed using the Psuedo-Global-Warming (PGW) perturbation methodology. Results from the impact of warming on total precipitation, snow-rain partitioning and surface hydrological fluxes (evapotranspiration and runoff) will be discussed in the context of how potential changes in temperature impact the amount of precipitation, the phase of precipitation (rain vs. snow) and the timing and amplitude of streamflow responses. It is shown that under the assumptions of the PGW method, intense precipitation rates increase during the event and, more importantly, that more precipitation falls as rain versus snow which significantly amplifies the runoff response from one where runoff is produced gradually to where runoff is more

  3. Sorting out non-sorted circles: Effects of winter climate change on the Collembola community of cryoturbated subarctic tundra

    NASA Astrophysics Data System (ADS)

    Krab, Eveline; Monteux, Sylvain; Becher, Marina; Blume-Werry, Gesche; Keuper, Frida; Klaminder, Jonatan; Kobayashi, Makoto; Lundin, Erik J.; Milbau, Ann; Roennefarth, Jonas; Teuber, Laurenz Michael; Weedon, James; Dorrepaal, Ellen

    2015-04-01

    Non-sorted circles (NSC) are a common type of cryoturbated (frost-disturbed) soil in the arctic and store large amounts of soil organic carbon (SOC) by the burial of organic matter. They appear as sparsely vegetated areas surrounded by denser tundra vegetation, creating patterned ground. Snowfall in the arctic is expected to increase, which will modify freezing intensity and freeze-thaw cycles in soils, thereby impacting on SOC dynamics. Vegetation, soil fauna and microorganisms, important drivers of carbon turnover, may benefit directly from the altered winter conditions and the resulting reduction in cryoturbation, but may also impact each other through trophic cascading. We investigated how Collembola, important decomposer soil fauna in high latitude ecosystems, are affected by increased winter insulation and vegetation cover. We subjected NSC in North-Swedish subarctic alpine tundra to two years of increased thermal insulation (snow fences or fiber cloth) in winter and spring, increasing soil temperatures and strongly reducing freeze-thaw frequency. From these NSC we sampled the Collembola community in: (i) the non-vegetated center, (ii) sparsely vegetated parts in the center and (iii) the vegetated domain surrounding NSC. To link changes in Collembola density and community composition to SOC dynamics, we included measurements of decomposer activity, dissolved organic carbon (DOC) and total extractable nitrogen (TN). We observed differences in Collembola density, community composition and soil fauna activity between the sampling points in the NSC. Specifically Collembola diversity increased with the presence of vegetation and density was higher in the vegetated outer domains. Increased winter insulation did not affect diversity but seemed to negatively affect density and decomposer activity in the vegetated outer domains. Interestingly, SOM distribution over NSC changed with snow addition (also to a lesser extent with fleece insulation) towards less SOM in the

  4. Evaluation of Ground Radar Snowfall Products Using SNOTEL Measurements over Mountainous Regions in Western United States

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Kirstetter, P.; Gourley, J. J.; Hong, Y.; Behrangi, A.

    2015-12-01

    Snow contributes to regional and global water budgets and is of critical importance to our society. Snow can also cause potentially hazardous weather, and rapidly-melting snowpack may cause flooding. For large-scale weather monitoring, snowfall observations from ground radar have become highly desirable. However, verification and refinement of these retrievals requires ground-validation datasets. This study conducts a comprehensive evaluation of NOAA/NSSL Multi-Radar/ Multi-Sensor (MRMS) snowfall products using the Snow Telemetry (SNOTEL) hourly and daily precipitation and Snow Water Equivalent (SWE) datasets. The statistical analysis reveals that the MRMS snowfall estimation has bias compared to SNOTEL in-situ measurements. The bias between MRMS and SNOTEL is studied by considering environmental variables, radar beam sampling characteristics (blockage, beam height and width) and snow density. We expect a step forward towards establishing a robust surface-based snowfall reference database in West Mountainous Region, which can be shared with the satellite snowfall and snowpack community.

  5. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  6. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar, LMA, and NLDN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard

    2013-01-01

    Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.

  7. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  8. Winter Albedo Characteristics at St. Paul, Minnesota.

    NASA Astrophysics Data System (ADS)

    Baker, Donald G.; Ruschy, David L.

    1989-03-01

    Mean and median daily albedos of the November-April period are presented for a nonforested station in the North Central region of the United States where frozen soil and persistent snow cover are common winter features. Three distinct albedo periods were found, the occurrence of which can be explained by comparison with associated daily records of air temperature and snow depth. These periods are: I) Introduction to Winter, 9-22 November, a transitional period in which snowfalls begin to occur but with insufficient frequency or duration to greatly alter the mean albedo from growing season values; II) the High Albedo Season, 23 November-17 March, that is characterized by mean and median albedos of 50% or higher and by a negatively skewed distribution of albedo values in contrast to periods I and III; and III) the transition period, Introduction to Spring, 18 March-12 April, where late season snowfalls of brief duration occur, but the mean albedo is lower than in period I because of the more common occurrence of moist surfaces due to snowmelt and rains.

  9. Winter Weeds.

    ERIC Educational Resources Information Center

    Lindberg, Lois

    1981-01-01

    Try to learn all you can about a plant in the winter. As the season changes, you can see what the dried seed pod is like in bloom. You are a convert if you notice a spectacular show of summer wildflowers and wonder what sort of winter weed will result. (Author/CM)

  10. Effect of storm trajectories on snowfall chemistry in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Ingersoll, G.P.; Tonnessen, K.A.; Campbell, D.H.; Glass, B.R.; Torizzo, A.O.

    2001-01-01

    Snowfall samples from snowstorms lasting 1 to 4 days were collected near the Bear Lake snow telemetry (SnoTel) site in Rocky Mountain National Park, Colorado (ROMO), during the 1998-99 snowfall season to determine if storms moving in from different directions affect the chemistry of precipitation in the park. Storm pathways to Bear Lake during snowfall events were estimated using the HYSPLIT4 backward-trajectory model developed by the National Oceanic and Atmospheric Administration. Deposition of acidic ions of nitrate and sulfate in snowfall during the study varied substantially (two- to threefold) depending on storm trajectory because air masses traversing the park originated from different surrounding areas, including some having large sources of emissions of nitrate and sulfate. Concentrations of nitrate and sulfate in samples were lowest when storms reached ROMO from north and east of the park and were elevated when air masses traveled from the west where a number of power plants are located. Concentrations were highest in storms reaching ROMO from the south, a region with urban areas including Metropolitan Denver.

  11. Integrating multiple temporal scales of snowfall, soil, and plant processes at the Great Basin Desert - Sierra Nevada ecotone

    NASA Astrophysics Data System (ADS)

    Loik, M. E.

    2012-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Many climate models envision changes in California's Sierra Nevada snow pack characteristics, which would severely impact the storage and release of water for one of the world's largest economies. Climate change threatens the sustainability of this water supply through altered snowfall timing, reduced snowpack depth, changes in snow water equivalents, earlier snowmelt, and highly-uncertain but plausible scenarios of rain-on-snow events. Climate model scenarios envision reduced snow pack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes, such as carbon storage? To address this question, experiments utilize large-scale, long-term snow fences to manipulate snow depth and melt timing at a desert-montane ecotone in eastern California, USA. A combination of instantaneous gas exchange and water potential measurements, plant community surveys, annual ring growth increments, in situ instrumentation, and long-term snow course data were used to couple physical and biological processes at daily, monthly, annual, and decadal scales. At this site, long-term April 1 snow pack depth averages 1344 mm (1928-2011) with a CV of 48%. Snow fences increased equilibrium drift snow depth by 200%. Soil moisture pulses were shorter in duration and lower in magnitude in low- than medium- or high-snowfall years. Evapotranspiration (ET) in this arid location accounted for about 37 mol m-2 d-1 of water loss from the snow pack between January 1 and May 1; sublimation was 10% of ET for the same period. Despite considerable interannual variation in snow depth and total precipitation, plant water potential stayed relatively constant over eight consecutive years, but photosynthesis was highly variable. Over the long-term, changes in snow depth and melt timing have impacted growth of only three

  12. Measuring Snowfall at Summit, Greenland Using a Bistatic X-Band Radar

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Shupe, M.

    2013-12-01

    With the current warming trend of the Earth's climate, the Greenland Ice Sheet (GIS) has been melting on its fringes and experiencing mass loss. However, the mass balance of the GIS as a whole is not well understood due to a deficiency of knowledge of the interior. Central to understanding this mass balance is precipitation, of which non-satellite derived observations over the central GIS are sparse. Here a conditional snowfall retrieval for the ground-based Precipitation Occurrence Sensor System (POSS), which is part of the Integrated Characterization of Energy, Clouds, Atmospheric state and Precipitation at Summit (ICECAPS) project in Greenland, is described. The conditional restraints for the POSS retrieval are based on qualitative ice particle habit information derived from relating periodic on-site ice crystal images to ranges of cloud base temperature derived from instantaneous lidar and interpolated radiosonde measurements. The snowfall from this habit-dependent retrieval is compared to various fixed-habit retrievals for the POSS, as well as other coinciding snowfall measurements taken at Summit by a vertical-pointing Ka-band cloud radar. Providing a broader perspective, this radar-based precipitation data is analyzed alongside weekly measurements from an accumulation forest, that includes a 10x10 grid of bamboo stakes that are used to measure the height change in the snow surface. In addition to snowfall, surface height changes include contributions from deposition, sublimation, melting, drifting, and compaction that must be accounted for. Using these three perspectives on snowfall, the annual cycle of precipitation at Summit, Greenland over the past three years is examined.

  13. Investigating the impact of spaceborne radar blind zone on surface snowfall statistics in polar regions

    NASA Astrophysics Data System (ADS)

    Maahn, Maximilian; Burgard, Clara; Crewell, Susanne; Gorodetskaya, Irina; Kneifel, Stefan; Lhermitte, Stef; Van Tricht, Kristof; van Lipzig, Nicole

    2016-04-01

    Currently, global statistics of snowfall are only available from the CloudSat satellite launched in 2006. However, measurements of CloudSat can be only obtained at an altitude of at least 1200 m above ground, because measurements below are contaminated by ground clutter. As a consequence, global estimates of snowfall at the surface have to be estimated from observations at 1200 m above ground. In the presented study, it is investigated how this blind zone impacts snowfall statistics obtained from CloudSat observations in polar regions. For this, 12-months datasets containing observations of a vertically pointing 24 GHz Micro Rain Radar (MRR) are analyzed for three sites: the Belgian Princess Elisabeth station in East-Antarctica, and for Ny-Ålesund as well as Longyearbyen in Svalbard, Norway. Statistical comparison of CloudSat and MRR observations shows that MRRs are suited to study snowfall when reflectivity exceeds -5 dBz. To study the vertical variability of snowfall, MRR radar reflectivity profiles are analyzed with respect to changes in frequency distribution, the number of observed snow events and total precipitation. Results show that the blind zone leads to reflectivity being underestimated by up to 1 dB, the number of events being altered by ±5% and the precipitation amount being underestimated by 9 to 11 percentage points. In order to account for future satellite missions which feature a smaller blind-zone, also the impact of a reduced blind zone of 600 m is analyzed. Even though reducing the blind zone to 600 m leads to better representation of mean reflectivity, it does not improve the bias in event numbers and total precipitation amount.

  14. Remote sensing analysis of a Mediterranean thundersnow and low-altitude heavy snowfall event

    NASA Astrophysics Data System (ADS)

    Bech, Joan; Pineda, Nicolau; Rigo, Tomeu; Aran, Montserrat

    2013-04-01

    On the 8 of March 2010 a heavy snowfall accompanied by lightning occurred over Catalonia (NE Spain), in the Western Mediterranean. Total lightning observations included 101 cloud-to-ground flashes and 169 intra-cloud flashes. Precipitation amounts in 24 h exceeded 100 mm and snow depths over low altitude terrain, where snow is rare, surpassed 30 cm. Snow accumulations collapsed the regional communication transport network and the border with France was closed several hours. Occurrence of wet snow combined with increasingly strong winds caused widespread damage over large forest areas estimated in more than 20 MEur and affected dramatically the high voltage power line distribution grid due to ice accretion, particularly in NE Catalonia where 33 high power electrical towers were knocked down. The meteorological framework at synoptic scale was dominated at low levels by a northern flow over Iberia due to a blocking high pressure system on the British Isles, and an upper level cold trough, which favoured a rapid cyclogenesis over the Mediterranean (9.2 hPa drop in 12 h). Weather radar observations indicated predominance of stratiform precipitation and some low-topped convection, with maximum reflectivities and tops mostly below 40 dBZ and 4 km respectively. The presence of mesoscale gravity waves, caused by wind-shear instability, is suggested as a triggering element for convection and subsequent lightning. Comparison of accumulated precipitation and lightning maps indicated clusters of lightning data unrelated to precipitation maxima. Further investigation of total lightning characteristics and co-located radar observations suggested a triggering effect by tall telecommunication towers inducing cloud-to-ground flashes and subsequent intra-cloud lightning.

  15. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  16. Why does Rhinopithecus bieti prefer the highest elevation range in winter? A test of the sunshine hypothesis.

    PubMed

    Quan, Rui-Chang; Ren, Guopeng; Behm, Jocelyn E; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo

    2011-01-01

    Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100-4400 m in winter although the yearly home range spanned from 3500-4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine

  17. Why Does Rhinopithecus bieti Prefer the Highest Elevation Range in Winter? A Test of the Sunshine Hypothesis

    PubMed Central

    Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo

    2011-01-01

    Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine

  18. Snowfall estimation from space-borne active and passive microwave observations

    NASA Astrophysics Data System (ADS)

    Grecu, M.

    2006-12-01

    In this study, an algorithm to estimate snowfall from passive and active microwave observations is formulated and analyzed using both simulated and real observations. A high resolution cloud resolving model (CRM) is used to simulate a snowfall event and space-borne radar and radiometer observations similar to those of the future Global Precipitation Mission (GPM) are synthesized from the CRM data. Then a combined radar- radiometer similar to that of Grecu et al. (2004) is applied to the synthetic data. It is found that in spite of dual-frequency radar and millimeter-wave radiometer observations, snow retrievals from GPM-like observations are subject to various uncertainties. Simple parameterizations are devised to minimize these uncertainties. The combined radar-radiometer, modified to account for differences between the instruments deployed in Wakasa Bay Experiment and the GPM instruments, is applied to real data from the Wakasa Bay Experiment. Results show the algorithm's feasibility.

  19. A Physical Model to Determine Snowfall over Land by Microwave Radiometry

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.

    2003-01-01

    Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.

  20. Rapid heat-flowing surveying of geothermal areas, utilizing individual snowfalls as calorimeters

    USGS Publications Warehouse

    White, Donald E.

    1969-01-01

    Local differences in rate of heat transfer in vapor and by conduction through the ground in hot spring areas are difficult and time-consuming to measure quantitatively. Individual heavy snowfalls provide a rapid low-cost means of measuring total heat flow from such ground. After a favorable snowfall (heavy, brief duration, little wind, air temperature near 0°C), contacts between snow-covered and snow-free ground are mapped on a suitable base. Each mapped contact, as time elapses after a specific snowfall, is a heat-flow contour representing a decreasing rate of flow. Calibration of each mapped contact or snow line is made possible by the fact that snow remains on insulated surfaces (such as the boardwalks of Yellowstone's thermal areas) long after it has melted on adjacent warm ground. Heat-flow contours mapped to date range from 450 to 5500 μcal/cm2 sec, or 300 to 3700 times the world average of conductive heat flow. The very high rates of heat flow (2000 to > 10,000 μcal/cm2 sec) are probably too high, and the lower heat flows determinable by the method (2 sec) may be too low. Values indicated by the method are, however, probably within a factor of 2 of the total conductive and convective heat flow. Thermal anomalies from infrared imagery are similar in shape to heat-flow contours of a test area near Old Faithful geyser. Snowfall calorimetry provides a rapid means for evaluating the imagery and computer-derived products of the infrared data in terms of heat flow.

  1. Strong fluctuation theory for scattering, attenuation, and transmission of microwaves through snowfall

    NASA Technical Reports Server (NTRS)

    Jin, Y.-Q.; Kong, J. A.

    1985-01-01

    The strong fluctuation theory is applied to the study of the atmospheric snowfall which is modeled as a layer of random discrete-scatterers medium. As functions of size distribution, fractional volume, and radius of scatterers, the relationship is illustrated between the reflectivity factor and precipitation rate, the attenuation of the centimeter and millimeter waves, and the line-of-sight transmission of coherent and incoherent wave components. The theoretical results are shown to match favorably with experimental data.

  2. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    NASA Astrophysics Data System (ADS)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  3. Nutrition for winter sports.

    PubMed

    Meyer, Nanna L; Manore, Melinda M; Helle, Christine

    2011-01-01

    Winter sports are played in cold conditions on ice or snow and often at moderate to high altitude. The most important nutritional challenges for winter sport athletes exposed to environmental extremes include increased energy expenditure, accelerated muscle and liver glycogen utilization, exacerbated fluid loss, and increased iron turnover. Winter sports, however, vary greatly regarding their nutritional requirements due to variable physiological and physique characteristics, energy and substrate demands, and environmental training and competition conditions. What most winter sport athletes have in common is a relatively lean physique and high-intensity training periods, thus they require greater energy and nutrient intakes, along with adequate food and fluid before, during, and after training. Event fuelling is most challenging for cross-country skiers competing in long events, ski jumpers aiming to reduce their body weight, and those winter sport athletes incurring repeated qualification rounds and heats. These athletes need to ensure carbohydrate availability throughout competition. Finally, winter sport athletes may benefit from dietary and sport supplements; however, attention should be paid to safety and efficacy if supplementation is considered.

  4. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y.

    2013-09-01

    Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modeling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimizes an altitude-based snowfall correction factor (Cfsnow). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution - University of Arizona automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash-Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002-2003), obtaining an optimized Cfsnow of 0.0007 m-1. For validation purposes, the optimized Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated vs. observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly-gauged basins, where elevation dependence of snowfall amount is strong.

  5. Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y.

    2014-02-01

    Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modelling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimises an altitude-based snowfall correction factor (Cfsnow). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution-University of Arizona (SCE-UA) automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash-Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002-2003), obtaining an optimised Cfsnow of 0.0007 m-1. For validation purposes, the optimised Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated versus observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly gauged basins, where elevation dependence of snowfall amount is

  6. Winter Workshop.

    ERIC Educational Resources Information Center

    Council of Outdoor Educators of Quebec, Montreal.

    Materials on 11 topics presented at a winter workshop for Quebec outdoor educators have been compiled into this booklet. Action story, instant replay, shoe factory, sound and action, and find an object to fit the description are described and recommended as group dynamic activities. Directions for five games (Superlative Selection; Data…

  7. Winter Wonderlands

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  8. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,…

  9. A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Weinman, J. A.; Olson, W. S.; Chang, D.-E.; Skofronick-Jackson, G.; Wang, J. R.

    2008-01-01

    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram

  10. Can anthropogenic aerosol concentrations effect the snowfall rate?

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Zhang, J.; Pi, J.

    2003-04-01

    The mesoscale model GESIMA is used to simulate microphysical properties of Arctic clouds and their effect on radiation. Different case studies during the FIRE.ACE/SHEBA project show that GESIMA is able to simulate the cloud boundaries, ice and liquid water content and effective radii in good agreement with observations. For two different aerosol scenarios, the simulation results show that the anthropogenic aerosol can alter microphysical properties of Arctic clouds, and consequently modify surface precipitation. Borys et al. (2000) proposed that anthropogenically-induced decreases in cloud droplet size inhibit the riming process. On the contrary, we find that the accretion of snow crystals with cloud droplets is increased in the polluted cloud due to its higher cloud droplet number concentration. Instead the autoconversion rate of cloud droplets and accretion of drizzle by snow decreases caused by the shut-down of the collision-coalescence process in the polluted cloud. The amount of precipitation reaching the surface as snow depends crucially on the crystal shape. If aggregates are assumed, then a 10-fold increase in aerosol concentration leads to an increase in accumulated snow by 40% after 7 hours of simulation whereas the snow amount decreases by 30% when planar crystals are assumed because of the larger accretion efficiency of snow crystals with cloud droplets in case of aggregates. We will also perform climate model simulations to estimate the importance of this effect globally.

  11. Synoptic variability of extreme snowfall in the St. Elias Mountains, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Andin, Caroline; Zdanowicz, Christian; Copland, Luke

    2015-04-01

    Glaciers in the Wrangell and St. Elias Mountains (Alaska and Yukon) are presently experiencing some of the highest regional wastage rates worldwide. While the effect of regional temperatures on glacier melt rates in this region has been investigated, comparatively little is known about how synoptic climate variations, for example in the position and strength of the Aleutian Low, modulate snow accumulation on these glaciers. Such information is needed to accurately forecast future wastage rates, glacier-water resource availability, and contributions to sea-level rise. Starting in 2000, automated weather stations (AWS) were established in the central St-Elias Mountains (Yukon) at altitudes ranging from 1190 to 5400 m asl, to collect climatological data in support of glaciological research. These data are the longest continuous year-round observations of surface climate ever obtained from this vast glaciated region. Here we present an analysis of snowfall events in the icefields of the St-Elias Mountains based on a decade-long series of AWS observations of snow accumulation. Specifically, we investigated the synoptic patterns and air mass trajectories associated with the largest snowfall events (> 25 cm/12 hours) that occurred between 2002 and 2012. Nearly 80% of these events occurred during the cold season (October-March), and in 74 % of cases the precipitating air masses originated from the North Pacific south of 50°N. Zonal air mass advection over Alaska, or from the Bering Sea or the Arctic Ocean, was comparatively rare (20%). Somewhat counter-intuitively, dominant surface winds in the St. Elias Mountains during high snowfall events were predominantly easterly, probably due to boundary-layer frictional drag and topographic funneling effects. Composite maps of sea-level pressure and 700 mb winds reveal that intense snowfall events between 2002 and 2012 were associated with synoptic situations characterized by a split, eastwardly-shifted or longitudinally

  12. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  13. Winter weather conditions and myocardial infarctions.

    PubMed

    Ohlson, C G; Bodin, L; Bryngelsson, I L; Helsing, M; Malmberg, L

    1991-03-01

    The daily number of cases of myocardial infarctions admitted to a hospital in middle Sweden over three winter seasons 1984-87 was correlated to the weather conditions on a day-to-day basis. The study encompassed 634 days and all cases younger than 70 years, living within the catchment area, in all 382 subjects. Information on temperature, wind force, precipitation and atmospheric pressure was obtained from the Swedish Institute of Meteorology and Hydrology. A low number of myocardial infarctions was seen on Saturdays and Sundays with a mild wind chill factor and on days with moderate snowfall and high atmospheric pressure. A high number was observed for workdays, especially Mondays, as day of diagnosis. Heterogeneity of the study population and a misclassification of the time relationships between dates of diagnosis and weather changes may have caused an underestimation of the impact of weather conditions. However, weather conditions do not seem to be a major triggering factor of myocardial infarctions in Sweden.

  14. Summer C Fixation of Salix arctic is Altered by Prior Winter Snow Regimes: Photosynthetic Responses to Long-Term Snow Increases in the High Arctic of NW Greenland

    NASA Astrophysics Data System (ADS)

    Leffler, A.; Welker, J. M.; Sullivan, P. F.; Maseyk, K. S.

    2012-12-01

    Climate models and snow measurements on Greenland show increased precipitation in addition to warming in the High Arctic. Because polar semi-deserts may be water limited, additional snow and snow melt water, may alleviate mid-summer drought and promote additional carbon fixation. We investigated the long-term (10 years of experimental snow increases) consequences of additional winter snow as it effects subsequent summer gas exchange of Salix arctica in a polar semi-desert tundra ecosystem in NW Greenland (76.6N, 68.6W). In 2011, measurements of gas exchange physiology were conducted along a transect from high to ambient snow accumulation in mid-July. In 2012, gas exchange was measured in high and ambient snow zones between late June and early August. In 2012, the seasonal patterns of δ18O of xylem water and soil water between 5 and 20 cm below the soil surface was measured to determine if snow accumulation influences the water sources and depth of water used by S. arctica. In 2011, photosynthesis in the deep snow zones was lower than in the ambient snow zone; similar results were observed for leaf N content. Carbon isotope composition (δ13C) of S. arctica leaves did not differ between deep and ambient snow zones suggesting a similar season-long relationship between photosynthesis and stomatal conductance in both locations. In 2012, there was a trend towards higher photosynthesis at the height of the growing season in the deep snow zones. Light response curves in 2012 suggest higher maximum photosynthesis in the deep snow zones compared to the ambient zones. Regardless of prior winter snow accumulation, S. arctica appears to derive nearly all its xylem water from the top 5 cm of the soil. There is little evidence that differences in photosynthetic physiology result directly from increased soil moisture associated with high snow, rather the effect appears more complex. Much of the increased snow accumulation will run-off of these systems when the soils are still

  15. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line

  16. Application of Snowfall and Wind Statistics to Snow Transport Modeling for Snowdrift Control in Minnesota.

    NASA Astrophysics Data System (ADS)

    Shulski, Martha D.; Seeley, Mark W.

    2004-11-01

    Models were utilized to determine the snow accumulation season (SAS) and to quantify windblown snow for the purpose of snowdrift control for locations in Minnesota. The models require mean monthly temperature, snowfall, density of snow, and wind frequency distribution statistics. Temperature and precipitation data were obtained from local cooperative observing sites, and wind data came from Automated Surface Observing System (ASOS)/Automated Weather Observing System (AWOS) sites in the region. The temperature-based algorithm used to define the SAS reveals a geographic variability in the starting and ending dates of the season, which is determined by latitude and elevation. Mean seasonal snowfall shows a geographic distribution that is affected by topography and proximity to Lake Superior. Mean snowfall density also exhibits variability, with lower-density snow events displaced to higher-latitude positions. Seasonal wind frequencies show a strong bimodal distribution with peaks from the northwest and southeast vector direction, with an exception for locations in close proximity to the Lake Superior shoreline. In addition, for western and south-central Minnesota there is a considerably higher frequency of wind speeds above the mean snow transport threshold of 7 m s-1. As such, this area is more conducive to higher potential snow transport totals. Snow relocation coefficients in this area are in the range of 0.4 0.9, and, according to the empirical models used in this analysis, this range implies that actual snow transport is 40% 90% of the total potential in south-central and western areas of the state.


  17. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    PubMed

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation. PMID:24805239

  18. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat.

    PubMed

    Bintanja, R; Selten, F M

    2014-05-22

    Precipitation changes projected for the end of the twenty-first century show an increase of more than 50 per cent in the Arctic regions. This marked increase, which is among the highest globally, has previously been attributed primarily to enhanced poleward moisture transport from lower latitudes. Here we use state-of-the-art global climate models to show that the projected increases in Arctic precipitation over the twenty-first century, which peak in late autumn and winter, are instead due mainly to strongly intensified local surface evaporation (maximum in winter), and only to a lesser degree due to enhanced moisture inflow from lower latitudes (maximum in late summer and autumn). Moreover, we show that the enhanced surface evaporation results mainly from retreating winter sea ice, signalling an amplified Arctic hydrological cycle. This demonstrates that increases in Arctic precipitation are firmly linked to Arctic warming and sea-ice decline. As a result, the Arctic mean precipitation sensitivity (4.5 per cent increase per degree of temperature warming) is much larger than the global value (1.6 to 1.9 per cent per kelvin). The associated seasonally varying increase in Arctic precipitation is likely to increase river discharge and snowfall over ice sheets (thereby affecting global sea level), and could even affect global climate through freshening of the Arctic Ocean and subsequent modulations of the Atlantic meridional overturning circulation.

  19. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  20. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  1. Do we have to correct winter precipitation for nowcast applications?

    NASA Astrophysics Data System (ADS)

    Helfricht, Kay; Koch, Roland; Olefs, Marc

    2016-04-01

    In mountain regions like the Alps, a significant fraction of the annual precipitation falls as snow. There is an increasing demand for high-quality analysis, nowcast and short-range forecasts of snowfall. Operational services, such as traffic maintenance, real-time flood-warning systems of hydrological services and avalanche warning products, but also hydropower companies and ski resorts need reliable information on precipitation, snow depth and the corresponding snow water equivalent. However, producing accurate precipitation maps in complex terrain using only remote sensing techniques and uncorrected rain gauge data is a difficult task. In cold and windy conditions, conventional rain gauge measurements are prone to large errors when snow passes the rain gauge and sublimation occurs at heated devices. Empirical correction formulas are given by the WMO to compensate the potential undercatch (Goodison, 2008). The project pluSnow aims to combine snow depth measurements and precipitation data to minimize the error of gauge undercatch on the basis of snow depth data from 63 automatic weather stations (TAWES), operated by the Austrian Central Institute for Meteorology and Geodynamics (ZAMG). These TAWES are equipped with SHM30 laser sensors to measure snow depth with high accuracy and temporal resolution of 0.01 m and 10 minutes, respectively. The pluSnow project will contribute to existing research efforts around the globe which focus on improving the precision of solid precipitation measurements. Here we present a first study based on the original TAWES data between 2006 and 2015. The fraction of solid precipitation to total winter precipitation between November and April (NDJFMA) and the potential undercatch of measured precipitation following Goodison (2008) for all TAWES sorted by altitude are analysed. Examples of the TAWES data in the original high temporal resolution of 10 min are given. The two main parameters used for the correction of precipitation

  2. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with the TEB model

    NASA Astrophysics Data System (ADS)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2016-02-01

    Snowfall forecasts help winter maintenance of road networks, ensure better coordination between services, cost control, and a reduction in environmental impacts caused by an inappropriate use of de-icers. In order to determine the possible accumulation of snow on pavements, forecasting the road surface temperature (RST) is mandatory. Weather outstations are used along these networks to identify changes in pavement status, and to make forecasts by analyzing the data they provide. Physical numerical models provide such forecasts, and require an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with two approaches to evaluate traffic incidence on RST. Experiments were then conducted to measure the effect of traffic on RST increase with respect to non-circulated areas. These field data were then used for comparison with the forecast provided by this traffic-implemented TEB version.

  3. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with TEB model

    NASA Astrophysics Data System (ADS)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2015-06-01

    A forecast of the snowfall helps winter coordination operating services, reducing the cost of the maintenance actions, and the environmental impacts caused by an inappropriate use of de-icing. In order to determine the possible accumulation of snow on pavement, the forecast of the road surface temperature (RST) is mandatory. Physical numerical models provide such forecast, and do need an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with all the energy interactions, with two approaches to evaluate the traffic incidence on RST. Experiments were then conducted to measure the traffic effect on RST increase with respect to non circulated areas. These field data were then used for comparison with forecast provided by this traffic-implemented TEB version.

  4. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  5. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  6. Use of Multiple-Angle Snow Camera (MASC) Observations as a Constraint on Radar-Based Retrievals of Snowfall Rate

    NASA Astrophysics Data System (ADS)

    Cooper, S.; Garrett, T. J.; Wood, N.; L'Ecuyer, T. S.

    2015-12-01

    We use a combination of Ka-band Zenith Radar (KaZR) and Multiple-Angle Snow Camera (MASC) observations at the ARM North Slope Alaska Climate Facility Site at Barrow to quantify snowfall. The optimal-estimation framework is used to combine information from the KaZR and MASC into a common retrieval scheme, where retrieved estimates of snowfall are compared to observations at a nearby NWS measurement site for evaluation. Modified from the operational CloudSat algorithm, the retrieval scheme returns estimates of the vertical profile of exponential PSD slope parameter with a constant number density. These values, in turn, can be used to calculate surface snowrate (liquid equivalent) given knowledge of snowflake microphysical properties and fallspeeds. We exploit scattering models for a variety of ice crystal shapes including aggregates developed specifically from observations of snowfall properties at high-latitudes, as well as more pristine crystal shapes involving sector plates, bullet rosettes, and hexagonal columns. As expected, initial retrievals suggest large differences (300% for some events) in estimated snowfall accumulations given the use of the different ice crystal assumptions. The complex problem of how we can more quantitatively link MASC snowflake images to specific radar scattering properties is an ongoing line of research. Here, however, we do quantify the use of MASC observations of fallspeed and PSD parameters as constraint on our optimal-estimation retrieval approach. In terms of fallspeed, we find differences in estimated snowfall of nearly 50% arising from the use of MASC observed fallspeeds relative to those derived from traditional fallspeed parameterizations. In terms of snowflake PSD, we find differences of nearly 25% arising from the use of MASC observed slope parameters relative to those derived from field campaign observations of high-altitude snow events. Of course, these different sources of error conspire to make the estimate of snowfall

  7. Large-Scale Antecedent Conditions Associated with 2014-2015 Winter Onset over North America and mid-Winter Storminess Along the North Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.; Benjamin, M.; Winters, A. C.

    2015-12-01

    Winter 2014-2015 was marked by the coldest November weather in 35 years east of the Rockies and record-breaking snowstorms and cold from the eastern Great Lakes to Atlantic Canada in January and February 2015. Record-breaking warmth prevailed across the Intermountain West and Rockies beneath a persistent upper-level ridge. Winter began with a series of arctic air mass surges that culminated in an epic lake-effect snowstorm occurred over western New York before Thanksgiving and was followed by a series of snow and ice storms that disrupted Thanksgiving holiday travel widely. Winter briefly abated in part of December, but returned with a vengeance between mid-January and mid-February 2015 when multiple extreme weather events that featured record-breaking monthly and seasonal snowfalls and record-breaking daily minimum temperatures were observed. This presentation will show how: (1) the recurvature and extratropical transition (ET) of Supertyphoon (STY) Nuri in the western Pacific in early November 2014, and its subsequent explosive reintensification as an extratropical cyclone (EC), disrupted the North Pacific jet stream and downstream Northern Hemisphere (NH) circulation, produced high-latitude ridging and the formation of an omega block over western North America, triggered downstream baroclinic development and the formation of a deep trough over eastern North America, and ushered in winter 2014-2015, (2) the ET/EC of STY Nuri increased subsequent week two predictability over the North Pacific and North America in association with diabatically influenced high-latitude ridge building, and (3) the amplification of the large-scale NH flow pattern beginning in January 2015 resulted in the formation of persistent high-amplitude ridges over northeastern Russia, Alaska, western North America, and the North Atlantic while deep troughs formed over the eastern North Pacific and eastern North America. This persistent amplified flow pattern supported the occurrence of frequent

  8. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.

    PubMed

    Hughes, Nicole M; Burkey, Kent O; Cavender-Bares, Jeannine; Smith, William K

    2012-03-01

    Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacity for energy dissipation. Seasonal xanthophyll pigment content, chlorophyll fluorescence, leaf nitrogen, and low molecular weight antioxidants (LMWA) of five winter-red and five winter-green angiosperm evergreen species were compared. Our results showed no difference in seasonal xanthophyll pigment content (V+A+Z g(-1) leaf dry mass) or LMWA between winter-red and winter-green species, indicating red-leafed species are not deficient in their capacity for non-photochemical energy dissipation via these mechanisms. Winter-red and winter-green species also did not differ in percentage leaf nitrogen, corroborating previous studies showing no difference in seasonal photosynthesis under saturating irradiance. Consistent with a photoprotective function of anthocyanin, winter-red species had significantly lower xanthophyll content per unit chlorophyll and less sustained photoinhibition than winter-green species (i.e. higher pre-dawn F(v)/F(m) and a lower proportion of de-epoxidized xanthophylls retained overnight). Red-leafed species also maintained a higher maximum quantum yield efficiency of PSII at midday (F'(v)/F'(m)) during winter, and showed characteristics of shade acclimation (positive correlation between anthocyanin and chlorophyll content, and negative correlation with chlorophyll a/b). These results suggest that the capacity for photon energy dissipation (photochemical and non-photochemical) is not limited in red-leafed species, and that anthocyanins more likely function as an alternative photoprotective strategy to increased VAZ/Chl during winter.

  9. Effects of volcanic eruption and global warming on snowfall patterns in the Pacific Northwest: Survey of climate data from 36 stations

    SciTech Connect

    Chatelain, E.E.

    1996-09-01

    Patterns in short term annual snowfall totals and long term glacial mass-balance of glaciers in the Pacific Northwest are affected by episodic global volcanic eruptions and the cyclic appearances of the El Nino oceanic current. A comprehensive analysis of climatic data such as snowfall, snow depth, maximum and minimum temperatures, and total precipitation was undertaken for 18 stations in Oregon and Washington between 1948-1995, and for snow-water data from 18 other stations from 1980-1995. These data were also compared to demonstrate regional variations within a given year. Snowfall maxima and Temperature minima recorded in this period closely followed major volcanic events, whereas Snowfall minima and Temperature maxima recorded in the same period coincided with periodic El Nino patterns. Snowfall totals in El Nino years were uniformly sparse region wide, whereas snowfall patterns in other years displayed some regional variation. Of special interest is the cross-correlation of snow-water and snowfall depth/totals data for the period 1980-1995, which records the patterns before and after the eruptions of Mt. Pinatubo (1991-92).

  10. Worrying about weird winters.

    PubMed

    Sinclair, Brent

    2014-01-01

    Winter is a key determinant of biological processes in temperate, alpine, and polar environments. Winters are changing, yet we currently lack the knowledge to adequately predict the impacts of climate change on winter biology, or to link winter conditions to the growing-season performance of most organisms. PMID:27580991

  11. Experimental Increases in Snow Alter Physical, Chemical and Feedback Processes in the High Arctic.

    NASA Astrophysics Data System (ADS)

    Rogers, M.; Welker, J.; Arens, S.; Hagedorn, B.; Sletten, R.; Persson, K.

    2006-12-01

    Winter conditions are changing throughout the Arctic. There are observed increases in snowfall across portions of Greenland while the margins of the Greenland Ice Sheet are thinning. However, these changes and the consequences of altered surface dynamics on High Arctic terrestrial ecosystems and their potential feedbacks are unclear. Increases in snow may cause warmer soils in winter, greater rates of winter C losses, increases in winter N mineralization, shorter growing seasons and reduced net C gain in summer due to either reduced gross photosynthesis or increases in ecosystem respiration. In this study, we have constructed replicated snow fences in polar desert and semi-desert (prostrate dwarf shrub) ecosystems in NW Greenland. Our measurements were taken at the deep (1.0 m snow depth) and intermediate (0.35 m snow depth) points along the drift to address these questions: a) how do increases in snow depth alter the surface and subsurface physical and chemical processes of these ecosystems?, and b) to what extent do increases in snow depth alter net CO2 exchange, gross ecosystem photosynthesis and ecosystem respiration? After three years of treatment we have found that in winter, deep snow results in warmer soil temperatures and in the subsequent summer, areas with deep winter snow have colder soil temperatures. This effect is most pronounced immediately following snowmelt and temperatures slowly return to ambient conditions near the end of summer. Deeper snow results in higher soil water contents in early summer but by mid-July soil water contents are the same, regardless of previous winter snow conditions. Net ecosystem CO2 exchange rates are consistently negative (C source to the atmosphere) through most of the growing season and vary in their magnitude by snow depth and ecosystem type. Areas with the deepest snow during winter consistently have the largest losses of CO2 to the atmosphere. The middle snow depth treatment showed lower rates of respiration than

  12. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.

    PubMed

    Corsi, Steven R; De Cicco, Laura A; Lutz, Michelle A; Hirsch, Robert M

    2015-03-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006-2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period. PMID:25514764

  13. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons.

    PubMed

    Corsi, Steven R; De Cicco, Laura A; Lutz, Michelle A; Hirsch, Robert M

    2015-03-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006-2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.

  14. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons

    USGS Publications Warehouse

    Corsi, Steven R.; DeCicco, Laura A.; Lutz, Michelle A.; Hirsch, Robert M.

    2014-01-01

    Chloride concentrations in northern U.S. included in this study have increased substantially over time with average concentrations approximately doubling from 1990 to 2011, outpacing the rate of urbanization in the northern U.S. Historical data were examined for 30 monitoring sites on 19 streams that had chloride concentration and flow records of 18 to 49 years. Chloride concentrations in most studied streams increased in all seasons (13 of 19 in all seasons; 16 of 19 during winter); maximum concentrations occurred during winter. Increasing concentrations during non-deicing periods suggest that chloride was stored in hydrologic reservoirs, such as the shallow groundwater system, during the winter and slowly released in baseflow throughout the year. Streamflow dependency was also observed with chloride concentrations increasing as streamflow decreased, a result of dilution during rainfall- and snowmelt-induced high-flow periods. The influence of chloride on aquatic life increased with time; 29% of sites studied exceeded the concentration for the USEPA chronic water quality criteria of 230 mg/L by an average of more than 100 individual days per year during 2006–2011. The rapid rate of chloride concentration increase in these streams is likely due to a combination of possible increased road salt application rates, increased baseline concentrations, and greater snowfall in the Midwestern U.S. during the latter portion of the study period.

  15. Introducing winter canola to the winter wheat-fallow region of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growers in the low-rainfall, winter wheat-fallow region of the Pacific Northwest are in need of an alternative crop to diversify their markets, manage pests, and increase wheat yields. Winter canola may be a viable crop option for growers in the region. However, agronomic research for winter canol...

  16. Snowfall measurements using a combination of high spectral resolution lidar and radar observations

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2009-04-01

    Aerodynamic flow around gauges and the horizontal transport of windblown snow along the surface produce errors in snowfall measurements. Comparisons between various snow gauges with and without wind shields show as much as as a factor of two difference between measurements(Yang et al., 1999). These problems are particularly significant in the high Arctic where snowfall amount are very low and blowing snow is frequent. This paper describes a lidar-radar based technique to measure the downward flux of snow at an altitude of ~100m. When particles are small compared to the wavelength, radar reflectivity is proportional to the number of snowflakes times the square of the mass of the average snowflake. For particles large compared to the wavelength, the lidar extinction cross section is equal to two times the number of snowflakes times the projected average area of the snowflakes. Donovan and Lammeren(2001) show that the ratio of radar to lidar cross sections can be used to define an effective-diameter-prime, which is proportional to the fourth root of the average mass-squared over the average projected area of the snowflakes. If one assumes a crystal shape this can be converted into an effective-diameter which is the average mass over the average area of the flakes. Multiplying the lidar measured projected area times the effective-diameter yields the mass of the particles. The product of this mass and the radar measured vertical velocity then provides the vertical flux of water. In past work we have tested this measurement approach with data acquired in the high Arctic at Eureka, Canada(80 N,90W). Measurements from the University of Wisconsin High Spectral Resolution Lidar and the NOAA 35 GHz cloud radar were used to compute the time-integrated flux of water at 100 m above the surface. This result was compared with Nipper gauge measurements of snowfall acquired as part of the Eureka weather station record. Best agreement was achieved when the crystals where assumed to

  17. Lessons from the unusual impacts of an abnormal winter in the USA

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.; Changnon, David

    2005-09-01

    Economic impacts from the near record warm and snow-free winter of 2001 2 in the United States were assessed to ascertain their dimensions and relevance to issues like climate prediction and climate change. Unusual impacts resulted and embraced numerous sectors (heating/energy use, construction, tourism, insurance, government, and retail sales). Many outcomes were gains/benefits totalling 19.6 billion, with losses of 8.2 billion. Some economists identified the sizable positive impacts as a factor in the nation's recovery from an on-going recession stemming from the terrorist attacks on 11 September 2001. Understanding the impacts of such a winter reveals how climate predictions of such conditions could have great utility in minimising the losses and maximising the gains. The results also have relevance to the global warming issue since most climate models project future average winter temperature and snowfall conditions in the United States to be similar to those experienced in 2001 2.

  18. 2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea

    NASA Astrophysics Data System (ADS)

    Shim, T.; Kim, B.; Kim, S.

    2012-12-01

    In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of

  19. A Winter Survival Unit.

    ERIC Educational Resources Information Center

    Phillips, Ronald E.

    1979-01-01

    The article is a condensation of materials from the winter survival unit of a Canadian snow ecology course. The unit covers: cold physiology, frostbite, snowblindness, hypothermia, winter campout, and survival strategies. (SB)

  20. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  1. Atmospheric Thickness Variability During Air Mass Conditions and Winter Snow Events at Albany, NY: 2002-2012

    NASA Astrophysics Data System (ADS)

    Dubbs, A. M.; Swift, S.; Godek, M. L.

    2014-12-01

    A winter weather parameter that is underutilized in the prediction of Northeast snowfall events is critical thickness. Knowledge of atmospheric thickness values during snowfall can benefit the accuracy of winter forecasts, especially if thickness layer ranges at times without precipitation are known. This investigation aims to better understand atmospheric thickness variations in the 1000-500, 1000-700, and 1000-850 hPa layers at Albany, New York during snowfall with differing air mass conditions. Since snow can occur alongside a variety of air mass environments, distinctions in layer thickness between air mass types and critical levels will be examined. Pairing air mass information with an improved understanding of thicknesses may allow forecasters to determine normal snowfall conditions of the atmosphere and decipher when anomalous conditions are occurring alongside heavier snows. Daily geopotential height data are examined alongside Spatial Synoptic Classification weather types over the past decade. Air mass frequencies are computed and baseline thicknesses are established for non-snow days, days with snow and liquid precipitation, and days with only snowfall. Thicknesses are compared to those computed for seven air mass types and differences layers are examined for continuity. For the three air masses identified as prevalent during heavy snow, light-to-heavy and early-to-late season snowfall categories are established and thickness variations are evaluated against non-snow days for significant differences. Results indicate that the differences in layer thicknesses are comparable for all precipitation and non-snow days but around 40 geopotential meters less for pure-snow days. For air masses present during snow, layer thicknesses can vary by over 100 gpm with type. Isolating polar varieties, approximately 50 gpm thickness differences are found in pure-snow days. Comparable differences are detected between the moderate and polar types and the continuity between

  2. Comparing Physics Scheme Performance for a Lake Effect Snowfall Event in Northern Lower Michigan

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Arnott, Justin M.

    2012-01-01

    High resolution forecast models, such as those used to predict severe convective storms, can also be applied to predictions of lake effect snowfall. A high resolution WRF model forecast model is provided to support operations at NWS WFO Gaylord, Michigan, using a 12 ]km and 4 ]km nested configuration. This is comparable to the simulations performed by other NWS WFOs adjacent to the Great Lakes, including offices in the NWS Eastern Region who participate in regional ensemble efforts. Ensemble efforts require diversity in initial conditions and physics configurations to emulate the plausible range of events in order to ascertain the likelihood of different forecast scenarios. In addition to providing probabilistic guidance, individual members can be evaluated to determine whether they appear to be biased in some way, or to better understand how certain physics configurations may impact the resulting forecast. On January 20 ]21, 2011, a lake effect snow event occurred in Northern Lower Michigan, with cooperative observing and CoCoRaHS stations reporting new snow accumulations between 2 and 8 inches and liquid equivalents of 0.1 ]0.25 h. The event of January 21, 2011 was particularly well observed, with numerous surface reports available. It was also well represented by the WRF configuration operated at NWS Gaylord. Given that the default configuration produced a reasonable prediction, it is used here to evaluate the impacts of other physics configurations on the resulting prediction of the primary lake effect band and resulting QPF. Emphasis here is on differences in planetary boundary layer and cloud microphysics parameterizations, given their likely role in determining the evolution of shallow convection and precipitation processes. Results from an ensemble of seven microphysics schemes and three planetary boundary layer schemes are presented to demonstrate variability in forecast evolution, with results used in an attempt to improve the forecasts in the 2011 ]2012

  3. Comparing Aircraft Observations of Snowfall to Forecasts Using Single or Two Moment Bulk Water Microphysics Schemes

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.

    2010-01-01

    High resolution weather forecast models with explicit prediction of hydrometeor type, size distribution, and fall speed may be useful in the development of precipitation retrievals, by providing representative characteristics of frozen hydrometeors. Several single or double-moment microphysics schemes are currently available within the Weather Research and Forecasting (WRF) model, allowing for the prediction of up to three ice species. Each scheme incorporates different assumptions regarding the characteristics of their ice classes, particularly in terms of size distribution, density, and fall speed. In addition to the prediction of hydrometeor content, these schemes must accurately represent the vertical profile of water vapor to account for possible attenuation, along with the size distribution, density, and shape characteristics of ice crystals that are relevant to microwave scattering. An evaluation of a particular scheme requires the availability of field campaign measurements. The Canadian CloudSat/CALIPSO Validation Project (C3VP) obtained measurements of ice crystal shapes, size distributions, fall speeds, and precipitation during several intensive observation periods. In this study, C3VP observations obtained during the 22 January 2007 synoptic-scale snowfall event are compared against WRF model output, based upon forecasts using four single-moment and two double-moment schemes available as of version 3.1. Schemes are compared against aircraft observations by examining differences in size distribution, density, and content. In addition to direct measurements from aircraft probes, simulated precipitation can also be converted to equivalent, remotely sensed characteristics through the use of the NASA Goddard Satellite Data Simulator Unit. Outputs from high resolution forecasts are compared against radar and satellite observations emphasizing differences in assumed crystal shape and size distribution characteristics.

  4. Model and observational analysis of the Northeast's regional winter climate and its relationship to the PNA pattern

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    A study was performed of the winter climate in the Northeast United States and its relationship to the large-scale circulation. Temperature, radiation, precipitation, and circulation features of the La Nina winter of 1998--1999 were analyzed through observations, NCEP-NCAR Reanalysis, and model simulations by SUNYA regional climate model (RCM). The relationship between the Pacific North American (PNA) pattern and regional winter climate of the Northeast was also investigated. Ten Decembers during the 1980s and 1990s were simulated, five with the most positive and five with the most negative PNA index. RCM reproduced the key climate features of the Northeast during the winter of 1998--1999. The model's circulation closely agreed with the reanalysis, particularly in the mid- and upper-troposphere, and with surface wind observations. Spatial and temporal patterns of temperature and precipitation agreed well with observations, despite a cold bias in the boundary layer (2--3°C) and dry bias in precipitation. The use of six-hourly, rather than twelve-hourly, reanalysis boundary conditions improved the diurnal cycle and increased the success at capturing fast-moving systems, such as fronts, and reproducing hourly weather variations. The relationship of the PNA pattern, and other teleconnection patterns, to the Northeast winter climate was investigated. Positive PNA pattern was associated with a stronger, southeastward shifted jet and colder, drier conditions in the Northeast, while mild surface southerlies were more frequent with negative PNA pattern. In the positive PNA simulations, there was a large air-water thermal gradient over the Great Lakes, enhancing evaporation and fluxes of sensible and latent heat. Precipitation and clouds during positive PNA pattern were less abundant across the domain, although lake-effect maxima were well defined. The PDO (Pacific Decadal Oscillation), PNA, and ENSO (El Nino/Southern Oscillation) teleconnections significantly influenced

  5. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar LMA, and NWN Measurements

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Bruning, Eric C.; Carey, Lawrence D.; Blakeslee, Richard J.

    2013-01-01

    Tall structures play and important role in development of winter time lightning flashes.To what extent still needs to be assessed. Tower initiated flashes typically occur as banded structures pass near/overhead. Hi resolution RHI s from polarimetric radar show that the lightning has a tendency to propagate through layered structures within these snowstorms.

  6. Evaluation of DFIR and Bush Gauge Snowfall Measurements at Boreal Forest Sites in Saskatchewan/Canada and Valdai/Russia

    NASA Astrophysics Data System (ADS)

    Yang, D.; Smith, C.

    2013-12-01

    Snowfall is important to cold region climate and hydrology including Canada. Large uncertainties and biases exist in gauge-measured precipitation datasets and products. These uncertainties affect important decision-making, water resources assessments, climate change analyses, and calibrations of remote sensing algorithms and land surface models. Efforts have been made at both the national and international levels to quantity the errors/biases in precipitation measurements, such as the WMO Solid Precipitation Intercomparison Experiment (WMO-SPICE). Both the DFIR (double fence intercomparison reference) and the bush shielded gauge have been used in the past as a reference measurement for solid precipitation and they both have been selected as the references for the current SPICE project. Previous analyses of the DFIR vs. the bush (manual Tretyakov) gauge data collected at the Valdai station in Russia suggest DFIR undercatch of snowfall by up to 10% for high wind conditions. A regression relationship between the 2 systems was derived and used for the last WMO gauge intercomparison. Given the importance of the DFIR as the reference for the WMO SPICE project, it is necessary to re-examine and update the DFIR and bush gauge relationship. As part of Canada's contribution to the WMO SPICE project, a test site has been set up by EC/ASTD/WSDT in the southern Canadian Boreal forest to compare the DFIR and bush gauges. This site, called the Caribou Creek, has been installed within a modified young Jack Pine forest stand - north of Prince Albert in Saskatchewan. This study compiles and analyzes recent DFIR and bush gauge data from both the Valdai and Caribou Creek sites. This presentation summarizes the results of data analyses, and evaluates the performance of both references for snowfall observations in the northern regions. The methods and results of this research will directly support the WMO SPICE project and contribute to cold region hydrology and climate change research.

  7. Changes in natural development of shores caused by artificial disturbance, increased cyclonic activity and related warmer winters in the Sillamäe case study area (Estonia, Gulf of Finland, Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Tõnisson, Hannes; Kont, Are; Rivis, Reimo; Orviku, Kaarel; Suursaar, Ülo; Jaagus, Jaak

    2010-05-01

    Prior to the founding of the town of Sillamäe in 1946 when a waste depository facility was constructed across the sediment path moving along the shore on Cape Päite, the shores nearby were one litho dynamic system with good natural balance. The shores there today are no longer in a state of dynamic equilibrium. This study analyzes how construction along the shore, increased cyclonic activity and related warmer winters has affected Sillamae's shores and how the shores are likely to evolve in the future. One of the aims is to detect the share of each factor to the the total changes on the shores of that specific location and compare the results with the previous studies carried out in more opened shores in west Estonian Archipelago. For purposes of this study, we undertook field observations to measure changes in the rate of erosion and accumulation of shore sediment. Waste depository is conserved and its shores are well protected by now. Sillamäe harbor has been established at the same place. Our analysis of shore processes and our direct observations indicate that the shores east of the harbor are still strongly influenced by the sea and far from dynamical equilibrium. Over the last few decades, the average date by which the Gulf of Finland has gradually shifted from December to January, and the average date by which such ice begins to break-up has shifted earlier. As a result, the period during which wave action is free to impact the coast is longer. Such greater lack of ice cover is exposing the shores to more stormy winter months. Accordingly, as a result of increasing cyclonic activity the development of the shores in Sillamäe has accelerated and the areas affected by erosion are widening.

  8. Winter leaf reddening in 'evergreen' species.

    PubMed

    Hughes, Nicole M

    2011-05-01

    Leaf reddening during autumn in senescing, deciduous tree species has received widespread attention from the public and in the scientific literature, whereas leaf reddening in evergreen species during winter remains largely ignored. Winter reddening can be observed in evergreen herbs, shrubs, vines and trees in Mediterranean, temperate, alpine, and arctic regions, and can persist for several months before dissipating with springtime warming. Yet, little is known about the functional significance of this colour change, or why it occurs in some species but not others. Here, the biochemistry, physiology and ecology associated with winter leaf reddening are reviewed, with special focus on its possible adaptive function. Photoprotection is currently the favoured hypothesis for winter reddening, but alternative explanations have scarcely been explored. Intraspecific reddening generally increases with sunlight incidence, and may also accompany photosynthetic inferiority in photosynthetically 'weak' (e.g. low-nitrogen) individuals. Red leaves tend to show symptoms of shade acclimation relative to green, consistent with a photoprotective function. However, winter-red and winter-green species often cohabitate the same high-light environments, and exhibit similar photosynthetic capacities. The factors dictating interspecific winter leaf colouration therefore remain unclear. Additional outstanding questions and future directions are also highlighted, and possible alternative functions of winter reddening discussed.

  9. Winter temperature variations over the middle and lower reaches of the Yangtze River since 1736 AD

    NASA Astrophysics Data System (ADS)

    Hao, Z.-X.; Zheng, J.-Y.; Ge, Q.-S.; Wang, W.-C.

    2012-06-01

    We present statistically reconstructed mean annual winter (December-February) temperatures from the middle and lower reaches of the Yangtze River (24° N-34° N, 108° E-123° E within mainland China) extending back to 1736. The reconstructions are based on information regarding snowfall days from historical documents of the Yu-Xue-Fen-Cun archive recorded during the Qing Dynasty (1644-1911). This information is calibrated with regional winter temperature series spanning the period from 1951 to 2007. The gap from 1912 to 1950 is filled using early instrumental observations. With the reference period of 1951-2007, the 18th century was 0.76 °C colder, and the 19th century was 1.18 °C colder. However, since the 20th century, the climate has been in a warming phase, particularly in the last 30 yr, and the mean temperature from 1981 to 2007 was 0.25 °C higher than that of the reference period of 1951-2007, representing the highest temperatures of the past 300 yr. Uncertainty existed for the period prior to 1900, and possible causes of this uncertainty, such as physical processes involved in the interaction between temperature and snowfall days and changing of observers, are discussed herein.

  10. Winter Art Education Project

    ERIC Educational Resources Information Center

    Jokela, Timo

    2007-01-01

    The purpose of this article is to describe how the Department of Art Education at the University of Lapland in Finland has developed winter art as a method of environmental and community-based art education. I will focus on the Snow Show Winter Art Education Project, a training project funded by the European Union and the State Provincial Office…

  11. Winter and Summer Views of the Salt Lake Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera. Salt Lake City, situated near the southeastern shore of the Great Salt Lake, is host to the 2002 Winter Olympic Games, which open Friday, February 8. Venues for five of the scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained in these images. Some of the outdoor events take place at Ogden, situated north of Salt Lake City and at Park City, located to the east. Salt Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere enhances the moisture content of winter storms. These factors, in combination with natural cloud seeding by salt crystals from the lake, are believed to result in greater snowfall in neighboring areas compared to more distant locales. In addition to the obvious difference in snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The distinctly different coloration between the northern and southern arms of the Great Salt Lake is the result of a rock-filled causeway built in 1953 to support a permanent railroad. The causeway has resulted in decreased circulation between the two arms and higher salinity on the northern side. The southern part of the lake includes the large Antelope Island, and at full resolution a bridge connecting it to the mainland can be discerned. These images are natural color views acquired on February 8, 2001 and June 16, 2001, respectively. Each image represents an area of about 220 kilometers x 285 kilometers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team.

  12. Declining Sea Ice Extent Links Early Winter Climate to Changing Arctic Lakes

    NASA Astrophysics Data System (ADS)

    Alexeev, V. A.; Arp, C. D.; Jones, B. M.; Cai, L.

    2015-12-01

    Lakes on the Alaskan North Slope regulate surface energy balance and interactions with permafrost as well as providing important habitat. Winter lake ice regimes (floating-ice or bedfast-ice conditions) determine whether lakes develop and maintain taliks and can support overwintering fish habitat. Lake ice thickness is a key variable determining whether a lake has a bedfast or floating-ice regime. Recent observations suggest a trend towards more lakes with floating-ice conditions due to thinner ice growth, but the broader scale associated climate conditions driving these regime shift are less certain. This study finds that the changing arctic summer/fall sea ice conditions might be affecting lake ice thickness on the North Slope. Late ocean freeze-up near the Alaskan coast leads to warmer weather and more snowfall in the early winter. Warmer early winters and thicker snowpack result in thinner lake ice the following winter thus potentially developing more ice-floating lakes before the start of the summer. Experiments with a regional atmospheric model WRF for two years with very different sea ice conditions indicate that the extent of open water next to the North Slope is a crucial factor for developing thicker snowpack, also warmer air temperature in early winter.

  13. The Winter Is Past.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Teacher, writer, and naturalist Phyllis S. Busch takes the reader on an early evening woodland walk in March, describing the many changes in plants and animals that are perceptible by sight, smell, and sound as nature awakens from winter. (NEC)

  14. High-Latitude Martian Impact Paleolakes: The Possible Contribution of Snowfall and Ancient Glaciers in the Lacustrine Activity Associated to Argyre and Hellas

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    2000-01-01

    Hellas and Argyre show impact crater paleolakes, which morphologies could have been associated to glacial and sub-glacial processes, implying the existence of snowfall and ancient glaciers. Some of them show as well a hydrothermal contribution related to the presence of volcanic centers. Additional information is contained in original extended abstract.

  15. Altered snowfall and soil disturbance influence the early life stage transitions and recruitment of a native and invasive grass in a cold desert

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change effects on plants are expected to be primarily mediated through early life stage transitions. Snowfall variability, in particular, may have profound impacts on seedling recruitment; structuring plant populations and communities, especially in mid-latitude systems. These water-limi...

  16. A New Standard Installation Method of the Offline Seismic Observation Station in Heavy Snowfall Area of Tohoku Region

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Nakayama, T.; Hori, S.; Sato, T.; Chiba, Y.; Okada, T.; Matsuzawa, T.

    2015-12-01

    Soon after the 2011 Tohoku earthquake, seismic activity of Tohoku region, NE Japan is induced in the inland area of Akita prefecture and the border area between Fukushima and Yamagata prefectures. We plan to install a total of 80 offline seismic observation stations in these areas for studying the effect of megathrust earthquake on the activities of inland earthquakes. In our project, maintenance will be held twice-a-year for 4 years from 2015 by using 2.0Hz short-period 3-component seismometer, KVS-300 and ultra-low-power data logger, EDR-X7000 (DC12V 0.08W power supply). We installed seismometer on the rock surface or the slope of the natural ground at the possible sites confirmed with low noise level to obtain distinct seismic waveform data. We report an improvement in installation method of the offline seismic observation station in the heavy snowfall area of Tohoku region based on the retrieved data. In the conventional method, seismometer was installed in the hand-dug hole of a slope in case it is not waterproof. Data logger and battery were installed in the box container on the ground surface, and then, GPS antenna was installed on the pole fixed by stepladder. There are risks of the inclination of seismometer and the damage of equipment in heavy snowfall area. In the new method, seismometer is installed in the robust concrete box on the buried basement consists of precast concrete mass to keep its horizontality. Data logger, battery, and GPS antenna are installed on a high place by using a single pole with anchor bolt and a pole mount cabinet to enhance their safety. As a result, total costs of installation are kept down because most of the equipment is reusable. Furthermore, an environmental burden of waste products is reduced.

  17. A coupled atmosphere-river flow simulation in California during the 1994-1995 winter

    SciTech Connect

    Kim, J.; Miller, N.L.

    1995-09-28

    Calculation of river flow is important for managing reservoirs and flood forecasting. In the western United States, a complex terrain which is characterized by steep slopes and narrow valleys often cause a substantial rise of river levels in a short period during heavy precipitation events. Since flood control is one of the major tasks of reservoir operation, inaccurate predictions of precipitation and river flow may cause flooding or waste of water resources. Accurate calculations of river flow need accurate liquid water input to the river system at scales of individual watersheds. Precipitation and snowmelt are the most important natural source of water for a river. Reservoir operations significantly affect river flow in the western United States. Factors such as instantaneous soil water content, vegetation cover, terrain slope and ground water table structure are also crucial for river flow calculation. There are two types of precipitation: rain and snowfall. River flow quickly responds to rainfall while snowfall does not directly affect river flow until it melts afterwards. Therefore, these two types of precipitation must be separately provided to the river flow model for correct calculation of river flows. A large portion of snowfall is accumulated at high terrain during winter months in the western United States. Accumulation of snow causes the river flow to respond to instantaneous precipitation with a certain amount of time lag. During warm springs, large amounts of snowmelt can even cause local flooding. Hence, accurate estimation of snowmelt is another important step for calculating river flows. River flows are affected many different atmospheric and land surface processes. Therefore, a well-designed numerical modeling system which includes atmospheric-surface-hydrologic processes and is coupled to large-scale atmospheric data is an important tool for predicting and diagnosing local river flows and water resources.

  18. Winter QPF Sensitivities to Snow Parameterizations and Comparisons to NASA CloudSat Observations

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Haynes, John M.; Jedlovec, Gary J.; Lapenta, William M.

    2009-01-01

    Steady increases in computing power have allowed for numerical weather prediction models to be initialized and run at high spatial resolution, permitting a transition from larger scale parameterizations of the effects of clouds and precipitation to the simulation of specific microphysical processes and hydrometeor size distributions. Although still relatively coarse in comparison to true cloud resolving models, these high resolution forecasts (on the order of 4 km or less) have demonstrated value in the prediction of severe storm mode and evolution and are being explored for use in winter weather events . Several single-moment bulk water microphysics schemes are available within the latest release of the Weather Research and Forecast (WRF) model suite, including the NASA Goddard Cumulus Ensemble, which incorporate some assumptions in the size distribution of a small number of hydrometeor classes in order to predict their evolution, advection and precipitation within the forecast domain. Although many of these schemes produce similar forecasts of events on the synoptic scale, there are often significant details regarding precipitation and cloud cover, as well as the distribution of water mass among the constituent hydrometeor classes. Unfortunately, validating data for cloud resolving model simulations are sparse. Field campaigns require in-cloud measurements of hydrometeors from aircraft in coordination with extensive and coincident ground based measurements. Radar remote sensing is utilized to detect the spatial coverage and structure of precipitation. Here, two radar systems characterize the structure of winter precipitation for comparison to equivalent features within a forecast model: a 3 GHz, Weather Surveillance Radar-1988 Doppler (WSR-88D) based in Omaha, Nebraska, and the 94 GHz NASA CloudSat Cloud Profiling Radar, a spaceborne instrument and member of the afternoon or "A-Train" of polar orbiting satellites tasked with cataloguing global cloud

  19. Synoptic climatological study on precipitation in the Hokuriku District of Central Japan associated with the cold air outbreak in early winter (With Comparison to that in midwinter for the 1983/1984 winter)

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Nishimura, Nanako; Haga, Yuichi

    2014-05-01

    In midwinter, heavy snowfall events are often brought in the Japan Sea side of the Japan Islands by the organized convective snowfall systems in the cold air outbreak situations. However, although the air temperature around the Japan Islands is still rather higher from November to early December ("early winter"), the "wintertime pressure pattern" often appears due to the considerable development of the Siberian high already in that season. Since the seasonal cycle in East Asia shows great variety with many rapid seasonal transitions influenced by the Asian monsoon system, detailed comparison of the daily precipitation climatology and the relating atmospheric processes in the cold air outbreak situations between early winter and midwinter would give us an interesting information for comprehending the overall aspects of such seasonal cycle there. Thus the present study firstly examined the daily precipitation climatology mainly at Takada, as an example for Hokuriku District, during the early to mid- winter of 1970/71 to 2009/10. Then the detailed analyses were made for the 1983/1984 winter (one of the coldest winters during that period) based on the operational meteorological data by JMA, including the ocean buoy data in the southern part of the Japan Sea for evaluating the sensible and the latent heat fluxes from the sea (referred to as SH and LH, respectively). The total precipitation at Takada in early winter was as large as in midwinter, although it was brought mainly not as snow but as rain. Such large climatological value was mainly reflected by the precipitation in the "wintertime pressure pattern" with large contribution of the days with more than 30 mm/day. Interestingly, mean daily precipitation in the "wintertime pressure pattern" in early winter was greater than in midwinter. It is noted that such features were generally found even in the latter half of the analysis period when the warmer winter years appeared more frequently than in the former half

  20. Trends in snowfall versus rainfall in the Western United States--Revisited

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Knowles, N.; Cayan, D. R.

    2015-12-01

    Knowles et al. (J. Climate, 2006) documented long-term (1949-2004) trends in precipitation form, with a smaller fraction of precipitation falling, in recent decades, on days with reported snow compared to days when no snow was reported (and when precipitation was presumably rain). This precipitation-amount-corrected trend was found at three-quarters of 261 cooperative weather stations across the region. The trends correlated with corresponding trends towards warmer winter air temperatures at the weather stations involved. An update of those analyses through the more recent period indicates that the overall swing towards less precipitation fraction occurring on snowy days has continued through the intervening years, with 21st Century rain/snow fractions remaining significantly higher than historical norms at most stations. The same data have also been used to develop site-specific statistical relations between precipitation form (snowy-day precipitation vs purely rainy day) and air temperatures by logistical regressions at over 200 stations across the West, to determine whether the general temperature trends mentioned above have, in fact, been large enough to explain the trending precipitation forms. That is, were the warming trends detected across the West large enough to actually raise temperatures above the local snow-rain thresholds at most stations? The regression relations show that the temperature at which half of the wet days have been snowy historically varies, from station to station, across a range from -2ºC to +4ºC. Thus at some stations winter storm temperatures would have to rise above about -2ºC to markedly impact precipitation forms, while at other stations, temperature had to rise above +4ºC. Nonetheless, observed temperature trends since 1950 have been sufficient to explain the observed regional precipitation-form trends. The fitted precipitation form-temperature relations also provide a basis for estimating precipitation forms in hydrological

  1. Winter mortality and its causes.

    PubMed

    Keatinge, W R

    2002-11-01

    In the 1970s scientific research focussed for the first time on dramatic rises in mortality every winter, and on smaller rises in unusually hot weather. Following the recent decline in influenza epidemics, approximately half of excess winter deaths are due to coronary thrombosis. These peak about two days after the peak of a cold spell. Approximately half the remaining winter deaths are caused by respiratory disease, and these peak about 12 days after peak cold. The rapid coronary deaths are due mainly to haemoconcentration resulting from fluid shifts during cold exposure; some later coronary deaths are secondary to respiratory disease. Heat related deaths often result from haemoconcentration resulting from loss of salt and water in sweat. With the possible exception of some tropical countries, global warming can be expected to reduce cold related deaths more than it increases the rarer heat related deaths, but statistics on populations in different climates suggest that, given time, people will adjust to global warming with little change in either mortality. Some measures may be needed to control insect borne diseases during global warming, but current indications are that cold will remain the main environmental cause of illness and death. Air pollution in cities may also still be causing some deaths, but these are hard to differentiate from the more numerous deaths due to associated cold weather, and clear identification of pollution deaths may need more extensive data than is currently available.

  2. Winter depression and diabetes.

    PubMed

    Ernst, Christine R

    2012-12-01

    Depression is a common and often harmful disorder, which is frequently associated with the winter season. Research has shown a link between type 2 diabetes mellitus and depression. Furthermore, diabetics with depression have a higher rate of adverse outcomes. Little has been published regarding the seasonality of depression in diabetics. The case report described in this article concerns a 65-year-old woman with type 2 diabetes and a history of winter depression. Current evidence-based management options are reviewed. PMID:23089656

  3. Winter Refuge for Aedes aegypti and Ae. albopictus Mosquitoes in Hanoi during Winter

    PubMed Central

    Tsunoda, Takashi; Cuong, Tran Chi; Dong, Tran Duc; Yen, Nguyen Thi; Le, Nguyen Hoang; Phong, Tran Vu; Minakawa, Noboru

    2014-01-01

    Dengue occurs throughout the year in Hanoi, Vietnam, despite winter low temperatures <10°C. During July 2010 to March 2012, we surveyed monthly for Aedes larvae and pupae in 120 houses in 8 Hanoi districts. Aedes albopictus preferred discarded containers in summer and pupal density drastically decreased in winter. Aedes aegypti preferred concrete tanks and this preference increased in winter. Even in winter, the lowest water temperature found in concrete tanks was >14°C, exceeding the developmental zero point of Ae. aegypti. Although jars, drums and concrete tanks were the dominant containers previously (1994–97) in Hanoi, currently the percentage of residences with concrete tanks was still high while jars and drums were quite low. Our study showed that concrete tanks with broken lids allowing mosquitoes access were important winter refuge for Ae. aegypti. We also indicate a concern about concrete tanks serving as foci for Ae. aegypti to expand their distribution in cooler regions. PMID:24752230

  4. Mammals in Winter.

    ERIC Educational Resources Information Center

    Wapner, Suzanne

    1985-01-01

    Mammals that tolerate the winter cold and stay active all year exploit the harsh northern climate to their advantage. By simple experiments and observation you can better understand their adaptations which include furry bodies, snowshoe feet, extra blubber, light coloration, and strategically distributed food caches. (JHZ)

  5. The News. Winter 2007

    ERIC Educational Resources Information Center

    Giles, Ray, Ed.

    2007-01-01

    This Winter 2007 quarterly newsletter from the Community College League of California includes: (1) Incumbents: Some Win, Some Lose in November Trustee Elections; (2) Voters Approve $2 Billion in Bonds; (3) Photos from the "Together We Can" conference; (4) Report, Media Criticize Transfer, Completion Rates and Colleges; (5) District Leader…

  6. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is…

  7. Winter Playscape Dreaming

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2006-01-01

    Winter, like all seasons, adds a new sense of mystery and discovery to the world of young children. It is the time when they can study snowflakes, find icicles, or observe the birds that share their yards. This article presents ideas and suggestions on how to plan a playscape. A playscape is a man-made seasonal playground for young children. It…

  8. Winter Here and Now.

    ERIC Educational Resources Information Center

    Finlay, Joy

    This book contains a wide variety of winter-oriented ideas and activities that can be adapted to all elementary grade levels and can also be integrated into existing mathematics, science, social studies, and/or art programs. The activities aim to help students develop the skills of observation, appreciation, and problem solving as well as…

  9. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  10. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  11. A potential vorticity-based index for the East Asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Huang, Wenyu; Wang, Bin; Wright, Jonathon S.

    2016-08-01

    A novel dynamically based index that reflects the strength of the regional potential vorticity (PV) intrusion on the 300 K isentropic surface is proposed as a reliable measure of East Asian winter monsoon (EAWM) intensity. The index captures essential aspects of the EAWM, including its climatic influences on East Asia, its continuous weakening trend since the 1980s, and its close relationships with the Siberian high, Arctic Oscillation, and El Niño. The use of a potential vorticity framework enables the definition of a new metric called continuous PV intrusion duration (CPVID), which can be used to monitor and explain wintertime weather extremes like the extreme snowfall event that occurred in south China during January 2008. The CPVID of March is comparable to that of December, indicating that data from this month should be included in estimates of the strength of the EAWM.

  12. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not

  13. Deciduous Plant Twigs in Winter

    ERIC Educational Resources Information Center

    Clark, Eloise

    1977-01-01

    Describing, via illustration and narrative, the winter twigs found in the U.S., this article presents a sophisticated discussion of: beech, white ash, aspen, sycamore, red oak, butternut, and other winter twigs. (JC)

  14. Winter Wilderness Travel and Camping.

    ERIC Educational Resources Information Center

    Gilchrest, Norman

    Knowledge and skill are needed for safe and enjoyable travel and camping in the wilderness in winter. The beauty of snow and ice, reduced human use, and higher tolerance of animals toward humans make the wilderness attractive during winter. The uniqueness of winter travel presents several challenges that are not present in other seasons. Safety is…

  15. Winter and Summer Views of the Salt Lake Region

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera. Salt Lake City, situated near the southeastern shore of the Great Salt Lake, is host to the 2002 Winter Olympic Games, which open Friday, February 8. Venues for five of the scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained in these images. Some of the outdoor events take place at Ogden, situated north of Salt Lake City and at Park City, located to the east.

    Salt Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake and the overlying atmosphere enhances the moisture content of winter storms. These factors, in combination with natural cloud seeding by salt crystals from the lake, are believed to result in greater snowfall in neighboring areas compared to more distant locales.

    In addition to the obvious difference in snow cover between the winter and summer views, water color changes in parts of the Great Salt Lake are apparent in these images. The distinctly different coloration between the northern and southern arms of the Great Salt Lake is the result of a rock-filled causeway built in 1953 to support a permanent railroad. The causeway has resulted in decreased circulation between the two arms and higher salinity on the northern side. The southern part of the lake includes the large Antelope Island, and at full resolution a bridge connecting it to the mainland can be discerned.

    These images are natural color views acquired on February 8, 2001 and June 16, 2001, during Terra orbits 6093 and 7957, respectively. Each image represents an area of about 220 kilometers x 285 kilometers.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth

  16. The History of Winter: A Professional Development "Teacher as Scientist" Experiential Learning Field Experience.

    NASA Astrophysics Data System (ADS)

    Gabrys, R. E.

    2007-12-01

    ) Program, the Global Snowflake Network (GSN) launched in the winter of 2006 engages an international audience including both formal and informal education groups. The goal is to provide an interactive online data resource in science and education for the characterization of snowfall and related weather systems. The Global Snowflake Network has been accepted as an education outreach proposal for the International Polar Year. Collaborations with other agencies and universities also with IPY-accepted proposals are now underway. HOW and the GSN are endorsed by the NASA Goddard Education Office and many of the Goddard Snow and Ice Team scientists. Together these programs offer a unique, sustainable, and proven outreach for the Cryosphere research program. Snowflakes are like frozen data points, their shape is a record of atmospheric conditions at the time of their formation. The shapes of snowflakes vary over the winter season, with the source of a weather system and over the course of a given snowfall. The objective of the Global Snowflake Network (GSN) is to create a global ground team of teachers, students, families, and researchers worldwide to identify snowflake types during the progress of snowfalls. The result is a unique and scientifically valid resource useful to meteorology and scientific modeling of Earth's Hydrosphere. The Global Snowflake Network (GSN), simultaneously a science program and an education program is presented as a simple, scientifically valid project that has the potential to spread the IPY message and produce a lasting resource to further scientific understanding of Earth's hydrology through the study of snow.

  17. [Impact of temperature increment before the over-wintering period on growth and development and grain yield of winter wheat].

    PubMed

    Li, Xiang-dong; Zhang, De-qi; Wang, Han-fang; Shao, Yun-hui; Fang, Bao-ting; Lyu, Feng-rong; Yue, Jun-qin; Ma, Fu-ju

    2015-03-01

    The effect of temperature increment before the over-wintering period on winter wheat development and grain yield was evaluated in an artificial climate chamber (TPG 1260, Australia) from 2010 to 2011. Winter wheat cultivar 'Zhengmai 7698' was used in this study. Three temperature increment treatments were involved in this study, i.e., temperature increment last 40, 50 and 60 days, respectively, before the over-wintering period. Control was not treated by temperature increment. The results showed that temperature increment before the over-wintering period had no significant effect on earlier phase spike differentiation. But an apparent effect on later phase spike differentiation was observed. High temperature effect on spike differentiation disappeared when the difference of effective accumulated temperature between the temperature increment treatment and the control was lower than 25 °C. However, the foliar age at the jointing stage was enhanced more than 0.8, heading and physiological ripening were advanced 1 day each, when the effective accumulated temperature before the over-wintering period increased 60 °C. Higher effective accumulated temperature before the over-wintering period accelerated winter wheat growth and development, which resulted in a short spike differentiation period. Winter wheat was easy to suffer freeze damage, which lead to floret abortion and spikelet death in spring under this situation. Meanwhile, higher effective accumulated temperature before the over-wintering period also reduced, photosynthetic capacity of flag leaf, shortened the grain filling period, and led to wheat grain yield reduction.

  18. Do High-elevation Lakes Record Variations in Snowfall and Atmospheric Rivers in the Sierra Nevada of California?

    NASA Astrophysics Data System (ADS)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.

    2014-12-01

    Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.

  19. Winter Frost and Fog

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog.

    Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  20. The Influence of El Niño and La Niña on Winter Climate Conditions at 138 Ski Resorts in Western North America

    NASA Astrophysics Data System (ADS)

    Pidwirny, M. J.; Mei Turney, A.

    2014-12-01

    This research examines the effect El Niño and La Niña have on the climate conditions of 138 ski resorts in western North America. Using ClimateWNA, monthly values for snowfall and degree days < 0°C (a measure of winter season coldness) were generated for the mid-slope elevation of the resorts for the primary ski season months of December, January, February, and March. From this data, composite values were computed by summing the four months analyzed for each of the two variables, with the December value coming from the previous year. Regression analysis was used to see if a relationship exists between the two climate variables and a summed composite of the monthly Southern Oscillation Index (SOI) for the same four months. Correlation coefficients were determined by regressing the observations for the time period 1935 to 2012. The correlation coefficients were then mapped using ARCGIS to display possible spatial patterns across the study area. Different map symbols were used to identify whether the correlation coefficient was positive or negative, and whether it fell within four levels of statistical significance: P ≥ 0.01, P < 0.01, P < 0.001, and P < 0.0001. Correlation coefficients with probability values equal to P ≥ 0.01 were considered not significant on the map. For the variable degree days < 0°C, resorts located in British Columbia, Alberta, Washington, and coastal south Oregon generally had warmer than usual winters during El Niño events and colder winters when SOI values suggested the occurrence of La Niña. A single resort, Ski Apache in New Mexico showed the opposite trend. Snowfall was found to be higher during La Niña events and lower with El Niño events for a number of resorts above 42° N latitude. Further, the strength of these correlations generally decreased with distance from the coast. Resorts in New Mexico and Arizona generally had more snowfall with El Niño and less snowfall with La Niña.

  1. Impacts of a changing winter precipitation regime on the Great Snowforest of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Knudsvig, H.; Dery, S. J.; Coxson, D.

    2012-12-01

    Rising air temperatures have profoundly impacted British Columbia (BC) mountain ecosystems, including its Interior Wetbelt. This region supports the sole Interior Temperate Rainforest (ITR), or perhaps more appropriately "snowforest", of North America. This snowforest encompasses about 30,500 km2 and contains Western redcedar (Thuja plicata) and western hemlock (Tsuga heteropylla) in excess of 1500 years old. This region is projected to be one of the more vulnerable biogeoclimatic zones in BC due to forest operations and climate change. Loss of snow as a storage medium has the potential to negatively affect the forest. A decrease in snow water equivalent (SWE) has the potential to decrease soil moisture values; impacts of decreased water availability in this region have the possibility to affect soil moisture storage, vegetative species composition, flora and fauna interdependence, and pathogen outbreaks. Given the projected climate change in high latitude and altitude areas, this project analyzes the contemporary and potential future climate of BC's Interior Wetbelt and explores the possible environmental and ecohydrological impacts of climate change on the snowforest. Models project an increase in air temperature and precipitation but a decrease in snowfall in this region. Analyses of the snow depth, SWE, and temperature from the Upper Fraser River Basin automated snow pillow sites of the BC River Forecast Centre (RFC) were conducted; snow depth, SWE, and temperature were also measured at the field site via automated weather stations and bi-monthly snow surveys. Surveys recorded depth and SWE after observed peak accumulation and continued until snowpack was depleted in 80% of the field site. To determine the influence of precipitation on the soil moisture levels in the ITR, soil moisture and water table levels were measured for the 2011-12 water year in addition to meteorological conditions; snow, spring water, and near surface ground water samples were collected

  2. Variation In Winter Hardiness Among Safflower Accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fall planted safflower (Carthamus tinctorius L.) would provide management alternatives in crop rotations and potentially increase yield. Our objective was to relate several fall growth factors to winter survival in a diverse set of 11 safflower accessions grown at Central Ferry and Pullman WA, USA....

  3. The Winter Olympics--On Ice.

    ERIC Educational Resources Information Center

    Hoover, Barbara G.

    1998-01-01

    Describes several science activities designed around the upcoming Winter Olympics ice skating events which demonstrate the scientific principles behind the sport. Students learn that increasing the pressure on ice will lead to the ice melting, the principle involved in the spinning swing, and the technology of skates and skating outfits. (PVD)

  4. Spirit's Winter Work Site

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  5. Yield and yield components of winter-type safflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Safflower (Carthamus tinctorius L.) is a minor yet widely grown oil seed crop adapted to semi-arid regions. The nascent development of winter adapted safflower, allowing fall planting,could substantially increase seed production over spring planting. In this study four winter type safflower accessi...

  6. Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes.

    NASA Astrophysics Data System (ADS)

    Assel, Raymond A.; Janowiak, John E.; Young, Sharolyn; Boyce, Daron

    1996-01-01

    The Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963-93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers.Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures

  7. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  8. Snow line analysis in the Romanian Carpathians under the influence of winter warming

    NASA Astrophysics Data System (ADS)

    Micu, Dana; Cosmin Sandric, Ionut

    2013-04-01

    The Romanian Carpathians are subject to winter warming as statistically proved by station measurements over a 47 year period (1961-2007). Herein, the snow season is considered to last from the 1st of November to the 30th of April, when snowpack usually reaches the highest stability and thickness. This paper investigates the signals of winter temperature and precipitation change at 17 mountain station located above 1,000 m, as being considered the main triggering factors of large fluctuations in snow amount and duration in these mountains. Fewer snowfalls were recorded all over the Romanian Carpathians after the mid 80s and over large mountain areas (including the alpine ones) the frequency of positive temperature extremes became higher (e.g. winter heat waves). Late Fall snowfalls and snowpack onsets (mainly in mid elevation areas, located below 1,700 m) and particularly the shifts towards early Spring snowmelts (at all the sites) were statistically proved to explain the decline of snow cover duration across the Carpathians. However, the sensitivity of snow cover duration to recent winter warming is still blurred in the high elevation areas (above 2,000 m). The trends in winter climate variability observed in the Romanian Carpathians beyond 1,000 m altitude are fairly comparable to those estimated in other European mountain ranges from observational data (e.g. the Swiss Alps, the French Alps and the Tatra Mts.). In relation to the climate change signals derived from observational data provided by low density mountain meteorological network (of about 3.3 stations per km2 in the areas above 1,000 m), the paper analysis the spatial probability and evolution trends of snow line in each winter season across the Romanian Carpathians, based on Landsat satellite data (MSS, TM and ETM+), with sufficiently high spatial (30 to 60 m) and temporal resolutions (850 images), over the 1973-2011 period. The Landsat coverage was considered suitable enough to enable an objective

  9. Winter fuels report

    SciTech Connect

    Not Available

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  10. Winter Clouds Over Mie

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 March 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image shows late winter clouds over the 104 km (65 mi) diameter crater, Mie. Cellular clouds occur in the lower martian atmosphere, surrounding Mie Crater. Their cloudtops are at an altitude that is below the crater rim. Higher than the crater rim occurs a series of lee wave clouds, indicating air circulation moving from west/northwest (left) toward the east/southeast (right). Mie Crater is located in Utopia Planitia, not too far from the Viking 2 landing site, near 48.5 N, 220.4 W. Sunlight illuminates this January 2004 scene from the lower left.

  11. Winter Survival: A Consumer's Guide to Winter Preparedness.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet discusses a variety of topics to help consumers prepare for winter. Tips for the home include: winterizing the home, dealing with a loss of heat or power failure, and what you need to have on hand. Another section gives driving tips and what to do in a storm. Health factors include suggestions for keeping warm, signs and treatment for…

  12. Winter Climate Limits Subantarctic Low Forest Growth and Establishment

    PubMed Central

    Harsch, Melanie A.; McGlone, Matt S.; Wilmshurst, Janet M.

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52°S, 169°E) is oceanic (Conrad Index of Continentality  = −5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6°C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  13. Winter climate limits subantarctic low forest growth and establishment.

    PubMed

    Harsch, Melanie A; McGlone, Matt S; Wilmshurst, Janet M

    2014-01-01

    Campbell Island, an isolated island 600 km south of New Zealand mainland (52 °S, 169 °E) is oceanic (Conrad Index of Continentality  =  -5) with small differences between mean summer and winter temperatures. Previous work established the unexpected result that a mean annual climate warming of c. 0.6 °C since the 1940's has not led to upward movement of the forest limit. Here we explore the relative importance of summer and winter climatic conditions on growth and age-class structure of the treeline forming species, Dracophyllum longifolium and Dracophyllum scoparium over the second half of the 20th century. The relationship between climate and growth and establishment were evaluated using standard dendroecological methods and local climate data from a meteorological station on the island. Growth and establishment were correlated against climate variables and further evaluated within hierarchical regression models to take into account the effect of plot level variables. Winter climatic conditions exerted a greater effect on growth and establishment than summer climatic conditions. Establishment is maximized under warm (mean winter temperatures >7 °C), dry winters (total winter precipitation <400 mm). Growth, on the other hand, is adversely affected by wide winter temperature ranges and increased rainfall. The contrasting effect of winter warmth on growth and establishment suggests that winter temperature affects growth and establishment through differing mechanisms. We propose that milder winters enhance survival of seedlings and, therefore, recruitment, but increases metabolic stress on established plants, resulting in lower growth rates. Future winter warming may therefore have complex effects on plant growth and establishment globally. PMID:24691026

  14. Phenological and ecological consequences of changes in winter snowpack in the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Inouye, D. W.; McKinney, A. M.

    2012-12-01

    The date the snowpack disappears in spring is an important seasonal event at high altitudes because it determines the beginning of the growing season, which in turn influences the phenology of plant growth and flowering, and thus the availability of these resources for animal consumers. At our study site at 2,900m in the Colorado Rocky Mountains, the Rocky Mountain Biological Laboratory, snowmelt now averages two weeks earlier than in 1975. Earlier snowmelt results from a combination of lower snowfall (38 cm less since 1975), dust storms (increasing in frequency, which reduces the snowpack albedo), and warmer spring temperatures (April minimum temperature has increased 3.1°C since 1973; 2012 April mean temperature was 3.4°C above the 38-year mean). There is also a trend of increasing annual precipitation falling as rain instead of snow. We have monitored flowering phenology and abundance for about 100 species of plants in permanent plots since 1973, and use this record to look at how the change in timing of snowmelt has affected flowering. There is significant variation among years in flowering phenology (e.g., about six weeks difference between 2011 and 2012), with a mid-season decline in flowering abundance becoming apparent as the growing season starts earlier. The date of the last hard frost has not been changing in concert with the earlier growing season, with the consequence that many species now have flower buds developed that are then damaged or killed by frost. In 2012, snowmelt date was 23 April, and frost events on 27 May (-11.7°C) and 11 June (-5.6°C) did significant damage to vegetation of some species and to flower buds of many species. For example, flower abundance of the aspen sunflower Helianthella quinquenervis was 0.002% of 2011's flowering. In the absence of seed production, the demography of some plant species is likely being affected. Some animal species are also being affected by the changes in length and temperature of winter. New

  15. Waterbirds foods in winter-managed ricefields in Mississippi

    USGS Publications Warehouse

    Manley, S.W.; Kaminski, R.M.; Reinecke, K.J.; Gerard, P.D.

    2004-01-01

    Ricefields are important foraging habitats for waterfowl and other waterbirds in primary North American wintering regions. We conducted a large-scale experiment to test effects of post-harvest ricefield treatment, winter water management, and temporal factors on availabilities of rice, moist-soil plant seeds, aquatic invertebrates, and green forage in the Mississippi Alluvial Valley (MAV), Mississippi, USA, fall-winter 1995-1997. Our results revealed that a large decrease in rice grain occurred between harvest and early winter (79-99%), which, if generally true throughout the MAV, would have critical implications on foraging carrying capacity of ricefields for migrating and wintering waterbirds. During the remainder of winter, food resources generally were similar among treatment combinations. An exception was biomass of aquatic invertebrates, which demonstrated potential to increase by late winter in ricefields that remained flooded. We offer revised calculations of foraging carrying capacity for waterfowl in MAV ricefields and recommend continuing research and management designed to increase availability of residual rice and aquatic invertebrates in winter.

  16. Ocean-Atmosphere Environments of Antarctic-Region Cold-Air Mesocyclones: Evaluation of Reanalyses for Contrasting Adjacent 10-Day Periods ("Macro-Weather") in Winter.

    NASA Astrophysics Data System (ADS)

    Carleton, A. M.; Auger, J.; Birkel, S. D.; Maasch, K. A.; Mayewski, P. A.; Claud, C.

    2015-12-01

    Mesoscale cyclones in cold-air outbreaks (mesocyclones) feature in the weather and climate of the Antarctic (e.g., Ross Sea) and sub-antarctic (Drake Passage). They adversely impact field operations, and influence snowfall, the ice-sheet mass balance, and sea-air energy fluxes. Although individual mesocyclones are poorly represented on reanalyses, these datasets robustly depict the upper-ocean and troposphere environments in which multiple mesocyclones typically form. A spatial metric of mesocyclone activity—the Meso-Cyclogenesis Potential (MCP)—used ERA-40 anomaly fields of: sea surface temperature (SST) minus marine air temperature (MAT), near-surface winds, 500 hPa air temperature, and the sea-ice edge location. MCP maps composited by teleconnection phases for 1979-2001, broadly correspond to short-period satellite "climatologies" of mesocyclones. Here, we assess 3 reanalysis datasets (CFSR, ERA-I and MERRA) for their reliably to depict MCP patterns on weekly to sub-monthly periods marked by strong regional shifts in mesocyclone activity (frequencies, track densities) occurring during a La Niña winter: June 21-30, 1999 (SE Indian Ocean) and September 1-10, 1999 (Ross Sea sector). All reanalyses depict the marked variations in upper ocean and atmosphere variables between adjacent 10-day periods. Slight differences may owe to model resolution or internal components (land surface, coupled ocean models), and/or how the observations are assimilated. For June 21-30, positive SST-MAT, southerly winds, proximity to the ice edge, and negative T500, accompany increased meso-cyclogenesis. However, for September 1-10, surface forcing does not explain frequent comma cloud "polar lows" north-east of the Ross Sea. Inclusion of the upper-level diffluence (e.g., from Z300 field) in the MCP metric, better depicts the observed mesocyclone activity. MCP patterns on these "macro-weather" time scales appear relatively insensitive to the choice of reanalysis.

  17. Lessons learned from the snow emergency management of winter season 2008-2009 in Piemonte

    NASA Astrophysics Data System (ADS)

    Bovo, Dr.; Pelosini, Dr.; Cordola, Dr.

    2009-09-01

    The winter season 2008-2009 has been characterized by heavy snowfalls over the whole Piemonte, in the Western Alps region. The snowfalls have been exceptional because of their earliness, persistence and intensity. The impact on the regional environment and territory has been relevant, also from the economical point of view, as well as the effort of the people involved in the forecasting, prevention and fighting actions. The environmental induced effects have been shown until late spring. The main critical situations have been arisen from the snowfalls earliness in season, the several snow precipitation events over the plains, the big amount of snow accumulation on the ground, as well as the anomaly with respect to the last 30 years climatic trend of snow conditions in Piemonte. The damage costs to the public property caused by the snowfalls have been estimated by the Regione Piemonte to be 470 million euros, giving evidence of the real emergency dimension of the event, never occurred during the last 20 years. The technical support from the Regional Agency for Environmental Protection of Regione Piemonte (Arpa Piemonte) to the emergency management allowed to analyse and highlight the direct and induced effects of the heavy snowfalls, outlining risk scenarios characterized by different space and time scales. The risk scenarios deployment provided a prompt recommendation list, both for the emergency management and for the natural phenomena evolution surveillance planning to assure the people and property safety. The risk scenarios related to the snow emergency are different according to the geographical and anthropic territory aspects. In the mountains, several natural avalanche releases, characterized frequently by a large size, may affect villages, but they may also interrupt the main and secondary roads both down in the valleys and small villages road access, requiring a long time for the complete and safe snow removal and road re-opening. The avalanches often

  18. Impact of warm winters on microbial growth

    NASA Astrophysics Data System (ADS)

    Birgander, Johanna; Rousk, Johannes; Axel Olsson, Pål

    2014-05-01

    Growth of soil bacteria has an asymmetrical response to higher temperature with a gradual increase with increasing temperatures until an optimum after which a steep decline occurs. In laboratory studies it has been shown that by exposing a soil bacterial community to a temperature above the community's optimum temperature for two months, the bacterial community grows warm-adapted, and the optimum temperature of bacterial growth shifts towards higher temperatures. This result suggests a change in the intrinsic temperature dependence of bacterial growth, as temperature influenced the bacterial growth even though all other factors were kept constant. An intrinsic temperature dependence could be explained by either a change in the bacterial community composition, exchanging less tolerant bacteria towards more tolerant ones, or it could be due to adaptation within the bacteria present. No matter what the shift in temperature tolerance is due to, the shift could have ecosystem scale implications, as winters in northern Europe are getting warmer. To address the question of how microbes and plants are affected by warmer winters, a winter-warming experiment was established in a South Swedish grassland. Results suggest a positive response in microbial growth rate in plots where winter soil temperatures were around 6 °C above ambient. Both bacterial and fungal growth (leucine incorporation, and acetate into ergosterol incorporation, respectively) appeared stimulated, and there are two candidate explanations for these results. Either (i) warming directly influence microbial communities by modulating their temperature adaptation, or (ii) warming indirectly affected the microbial communities via temperature induced changes in bacterial growth conditions. The first explanation is in accordance with what has been shown in laboratory conditions (explained above), where the differences in the intrinsic temperature relationships were examined. To test this explanation the

  19. Winter fuels report

    SciTech Connect

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  20. Winter fuels report

    SciTech Connect

    Not Available

    1995-01-27

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysis, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  1. Surgical Risks Associated with Winter Sport Tourism

    PubMed Central

    Sanchez, Stéphane; Payet, Cécile; Lifante, Jean-Christophe; Polazzi, Stéphanie; Chollet, François; Carty, Matthew J; Duclos, Antoine

    2015-01-01

    Background Mass tourism during winter in mountain areas may cause significant clustering of body injuries leading to increasing emergency admissions at hospital. We aimed at assessing if surgical safety and efficiency was maintained in this particular context. Methods We selected all emergency admissions of open surgery performed in French hospitals between 2010 and 2012. After identifying mountain areas with increasing volume of surgical stays during winter, we considered seasonal variations in surgical outcomes using a difference-in-differences study design. We computed multilevel regressions to evaluate whether significant increase in emergency cases had an effect on surgical mortality, complications and length of stay. Clustering effect of patients within hospitals was integrated in analysis and surgical outcomes were adjusted for both patient and hospital characteristics. Results A total of 381 hospitals had 559,052 inpatient stays related to emergency open surgery over 3 years. Compared to other geographical areas, a significant peak of activity was noted during winter in mountainous hospitals (Alps, Pyrenees, Vosges), ranging 6-77% volume increase. Peak was mainly explained by tourists’ influx (+124.5%, 4,351/3,496) and increased need for orthopaedic procedures (+36.8%, 4,731/12,873). After controlling for potential confounders, patients did not experience increased risk for postoperative death (ratio of OR 1.01, 95%CI 0.89-1.14, p = 0.891), thromboembolism (0.95, 0.77-1.17, p = 0.621) or sepsis (0.98, 0.85-1.12, p = 0.748). Length of stay was unaltered (1.00, 0.99-1.02, p = 0.716). Conclusion Surgical outcomes are not compromised during winter in French mountain areas despite a substantial influx of major emergencies. PMID:25970625

  2. Variation in winter metabolic reduction between sympatric amphibians.

    PubMed

    Podhajský, Luděk; Gvoždík, Lumír

    2016-11-01

    Distribution and abundance of temperate ectotherms is determined, in part, by the depletion of their limited caloric reserves during wintering. The magnitude of winter energy drain depends on the species-specific capacity to seasonally modify the minimal maintenance costs. We examined seasonal variation of minimum oxygen consumption between two newt species, Ichthyosaura alpestris and Lissotriton vulgaris. Oxygen consumption was measured in both species during their active season (daily temperature range=12-22°C) and wintering period (4°C) at 4°C and 8°C. The seasonal reduction in metabolic rates differed between species and experimental temperatures. Wintering newts reduced their metabolic rates at 4°C and 8°C in I. alpestris, but only at 8°C in L. vulgaris. Both species reduced the thermal sensitivity of oxygen consumption during wintering. Theoretical calculations of winter depletion of caloric reserves under various thermal conditions revealed that seasonal metabolic reduction is more effective in I. alpestris than in L. vulgaris, and its effectiveness will increase with the proportion of warmer days during wintering period. The variation in winter metabolic reduction between sympatric newt species potentially contributes to their distribution patterns and population dynamics under climate change. PMID:27418441

  3. Winter Anomaly 1982/83 in Comparison with Earlier Winters (1960-82)

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    The winter anomaly in the winter of 1982/83 is compared with the winter anomalies of earlier winters (1960-82) from the point of view of amplitude and timing of the winter anomaly, and geomagnetic and dynamic activity influences. Some evidence of a negative influence of sudden stratospheric warnings on the winter anomaly is given.

  4. Winter thunderstorms in central Europe in the past and the present

    NASA Astrophysics Data System (ADS)

    Munzar, Jan; Franc, Marek

    Thunderstorms in the territories of the Czech Republic and neighbouring countries are almost exclusively the only phenomena occurring in the warm season. In the cold half of the year, from October to March, an average incidence of thunderstorms is only 2%, with the least occurrence being recorded in January. Yet, winter thunderstorms are dangerous particularly for air traffic because during them, the cloud base is rapidly falling down and visibility is suddenly worsening due to heavy snowfall. Notwithstanding these facts, the issue of their occurrence in the central European space has been paid little attention so far. Long years of study into historical weather extremes in the territory of the Czech Republic revealed over 10 chronicle entries on the occurrence of winter thunderstorms in the period between November and February from the 16th to the beginning of the 20th centuries. The irregular phenomenon was even devoted three occasional prints in central Europe in the second half of the 16th century, two of which were issued in Germany. Fires caused by winter thunderstorms were no sporadic cases. The occurrence of thunderstorms in winter was apparently associated with the passage of pronounced cold fronts. This can be documented on cases from the end of December 1555 when heavy thunderstorms and consequent fires were recorded within a short period of time in Holland, Germany and in Czech lands. It is assumed that the situation in 1627 was similar when a winter thunderstorm was recorded in Prague and in Holešov, southeastern Moravia on 28 December. In February 1581, a thunderstorm in Prague became one of three unusual events publicized by the local occasional newspaper. The beginning of modern studies into winter thunderstorms dates back to the 1960s with the use of lightning flash counters and later also with the use of systems for large-scale lightning flash detection and localization. However, more comprehensive meteorological and climatological assessments of

  5. Nutritional condition of Pacific Black Brant wintering at the extremes of their range

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2006-01-01

    Endogenous stores of energy allow birds to survive periods of severe weather and food shortage during winter. We documented changes in lipid, protein, moisture, and ash in body tissues of adult female Pacific Black Brant (Branta bernicla nigricans) and modeled the energetic costs of wintering. Birds were collected at the extremes of their winter range, in Alaska and Baja California, Mexico. Body lipids decreased over winter for birds in Alaska but increased for those in Baja California. Conversely, body protein increased over winter for Brant in Alaska and remained stable for birds in Baja California. Lipid stores likely fuel migration for Brant wintering in Baja California and ensure winter survival for those in Alaska. Increases in body protein may support earlier reproduction for Brant in Alaska. Predicted energy demands were similar between sites during late winter but avenues of expenditure were different. Birds in Baja California spent more energy on lipid synthesis while those in Alaska incurred higher thermoregulatory costs. Estimated daily intake rates of eelgrass were similar between sites in early winter; however, feeding time was more constrained in Alaska because of high tides and short photoperiods. Despite differences in energetic costs and foraging time, Brant wintering at both sites appeared to be in good condition. We suggest that wintering in Alaska may be more advantageous than long-distance migration if winter survival is similar between sites and constraints on foraging time do not impair body condition. ?? The Cooper Ornithological Society 2006.

  6. Factors Contributing to Extremely Wet Winters in California

    NASA Astrophysics Data System (ADS)

    Jong, B. T.; Ting, M.; Seager, R.

    2015-12-01

    As California continues to battle the severe drought conditions, it becomes increasingly important to understand the atmospheric and oceanic conditions that may possible break this ongoing drought. Is a strong El Niño, such as the 2015/16 event, enough to break the drought? We examine in this study the possible factors that lead to extremely wet winters (the wettest 15%) in both Northern and Southern CA. The relationships between CA winter precipitation and sea surface temperature conditions in the Pacific, as well as atmospheric circulation are determined by using observational and reanalysis data from 1901 to 2010. One of the key features of the atmospheric circulation is the location of the low pressure anomaly, whether caused by El Niño or other factors. If the anomaly locates right off the US west coast, CA tends to be wet, and vice versa. Furthermore, the duration of the circulation anomaly seems to be crucial. During wet El Niño winters, the peak of the circulation anomaly is in the late winter, whereas, during non-wet El Niño winters, the peak of the anomaly is in the early winter. Thus, an El Niño that can last to late winter is more likely to cause an extremely wet winter in the state. The intensity of El Niño is another critical factor. In the wettest tercile late winter, a strong El Niño can bring about 200% of climatological precipitation to CA, while a weak El Niño can bring only less than 150% of climatology. In combination, only a strong El Niño that can last to late winter may make extremely wet winters very likely in CA. To explore the other factors, composites of circulation anomaly during wet & non-El Niño winters were also analyzed. The results show that a zonally propagating wave train, originating from western North Pacific, contributes to low pressure center and wet winter conditions in the state. Thus, coastal low pressure anomaly is a consistent feature for an extremely wet winters in California, but the origin of forcing can

  7. Learners in Action, Winter 2005

    ERIC Educational Resources Information Center

    Movement for Canadian Literacy, 2005

    2005-01-01

    This Winter 2005 issue of "Learners in Action" contains the following: (1) Proud Dad Turns Family Life Around (Nick Prince); (2) Learners Make a Great Impression at Conference; (3) The Story behind the Story; and (4) Learner Resources.

  8. The Challenge of Winter Backpacking.

    ERIC Educational Resources Information Center

    Cavanaugh, Michael; Mapes, Alan

    1981-01-01

    Tips and techniques for safe and enjoyable winter backpacking are offered. Topics covered include cross county skis, snowshoes, clothing, footwear, shelter, sleeping bags, food, hypothermia prevention, as well as general rules and requirements. (CO)

  9. Lemming winter habitat choice: a snow-fencing experiment.

    PubMed

    Reid, Donald G; Bilodeau, Frédéric; Krebs, Charles J; Gauthier, Gilles; Kenney, Alice J; Gilbert, B Scott; Leung, Maria C-Y; Duchesne, David; Hofer, Elizabeth

    2012-04-01

    The insulative value of early and deep winter snow is thought to enhance winter reproduction and survival by arctic lemmings (Lemmus and Dicrostonyx spp). This leads to the general hypothesis that landscapes with persistently low lemming population densities, or low amplitude population fluctuations, have a low proportion of the land base with deep snow. We experimentally tested a component of this hypothesis, that snow depth influences habitat choice, at three Canadian Arctic sites: Bylot Island, Nunavut; Herschel Island, Yukon; Komakuk Beach, Yukon. We used snow fencing to enhance snow depth on 9-ha tundra habitats, and measured the intensity of winter use of these and control areas by counting rodent winter nests in spring. At all three sites, the density of winter nests increased in treated areas compared to control areas after the treatment, and remained higher on treated areas during the treatment. The treatment was relaxed at one site, and winter nest density returned to pre-treatment levels. The rodents' proportional use of treated areas compared to adjacent control areas increased and remained higher during the treatment. At two of three sites, lemmings and voles showed significant attraction to the areas of deepest snow accumulation closest to the fences. The strength of the treatment effect appeared to depend on how quickly the ground level temperature regime became stable in autumn, coincident with snow depths near the hiemal threshold. Our results provide strong support for the hypothesis that snow depth is a primary determinant of winter habitat choice by tundra lemmings and voles.

  10. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    NASA Astrophysics Data System (ADS)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  11. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.

    PubMed

    Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis

    2014-06-24

    To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

  12. Descriptions of two new and one newly recorded enchytraeid species (Clitellata, Enchytraeidae) from the Ozegahara Mire, a heavy snowfall highmoor in Central Japan.

    PubMed

    Torii, Takaaki

    2015-01-01

    Three species of semi-aquatic freshwater Enchytraeidae of the genera Mesenchytraeus Eisen, 1878, Chamaedrilus Friend, 1913 and Globulidrilus Christensen & Dózsa-Farkas, 2012 are described from stream, wet soil or snow habitats in the Ozegahara Mire, an extensive high moor in heavy snowfall area in central Japan. Among Mesenchytraeus speies, Mesenchytraeus nivalis sp. nov. is distinguished by not having enlarged chaetae and spermathecal diverticula, vas deferens with atrial glands 3 or 4 in number and club-shaped, spermathecal ental duct short, with sperm bundles in the sperm sack. Chamaedrilus ozensis sp. nov. closely resembles C. floridae, but the length of the sperm funnel and character of the coelomocytes are different. Globulidrilus helgei Christensen & Dózsa-Farkas, 2012 is recorded for the first time from Japan. PMID:26623738

  13. [Ecological benefits of planting winter rapeseed in western China].

    PubMed

    Wang, Xue-fang; Sun, Wan-cang; Li, Fang; Kang, Yan-li; Pu, Yuan-yuan; Liu, Hong-xia; Zeng, Chao-wu; Fan, Chong-xiu

    2009-03-01

    To evaluate the ecological benefits of popularizing winter rapeseed planting in western China, a wind tunnel simulation test was conducted with four kinds of farmland surface, i.e., winter rapeseed, winter wheat, wheat stubble, and bare field just after spring sowing, collected from west Gansu in April. The results showed that winter rapeseed surface had a roughness of 4.08 cm and a threshold wind velocity as high as 14 m x s(-1), being more effective in blown sand control than the other three surfaces. Under the same experimental conditions, the wind erosion modulus and sand transportation rate of winter rapeseed surface were only 4.1% and 485% of those of the bare field just after spring sowing, and the losses of soil organic matter, alkali-hydrolyzed N, available P and K, catalase, urease, alkaline phosphatase, invertase, and microbes of winter rapeseed surface due to wind erosion were only 1.4%, 5.1%, 1.6%, 2.7%, 9.7%, 3.6%, 6.3%, 6.7% and 1.5% of those of the bare field, respectively. It was suggested that popularizing winter rapeseed planting in west China could control wind erosion, retain soil water and nutrients, increase multicropping index, and improve economic benefits of farmland. In addition, it could benefit the regional desertification control and ecological environment improvement.

  14. Accumulation of hydroxycinnamic acid amides in winter wheat under snow.

    PubMed

    Jin, Shigeki; Yoshida, Midori; Nakajima, Takashi; Murai, Akio

    2003-06-01

    It was found that the content of antifungal compounds p-coumaroylagmatine [1-(trans-4'-hydroxycinnamoylamino)-4-guanidinobutane] and p-coumaroyl-3-hydroxyagmatine [1-(trans-4'-hydroxycinnamoylamino)-3-hydroxy-4-guanidinobutane] in the crown of winter wheat (Triticum aestivum L. cv Chihokukomugi) significantly increased under snow cover. This finding suggests that the accumulation of these hydroxycinnamic acid amides was caused by winter stress and related to protecting the plant against snow mold under snow cover.

  15. Disturbance to wintering western snowy plovers

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2001-01-01

    In order to better understand the nature of disturbances to wintering snowy plovers, I observed snowy plovers and activities that might disturb them at a beach near Devereux Slough in Santa Barbara, California, USA. Disturbance (activity that caused plovers to move or fly) to wintering populations of threatened western snowy plovers was 16 times higher at a public beach than at protected beaches. Wintering plovers reacted to disturbance at half the distance (∼40 m) as has been reported for breeding snowy plovers (∼80 m). Humans, dogs, crows and other birds were the main sources of disturbance on the public beach, and each snowy plover was disturbed, on average, once every 27 weekend min and once every 43 weekday min. Dogs off leash were a disproportionate source of disturbance. Plovers were more likely to fly from dogs, horses and crows than from humans and other shorebirds. Plovers were less abundant near trail heads. Over short time scales, plovers did not acclimate to or successfully find refuge from disturbance. Feeding rates declined with increased human activity. I used data from these observations to parameterize a model that predicted rates of disturbance given various management actions. The model found that prohibiting dogs and a 30 m buffer zone surrounding a 400 m stretch of beach provided the most protection for plovers for the least amount of impact to beach recreation.

  16. Temporal trends of perfluoroalkyl substances (PFAS) in eggs of coastal and offshore birds: Increasing PFAS levels associated with offshore bird species breeding on the Pacific coast of Canada and wintering near Asia.

    PubMed

    Miller, Aroha; Elliott, John E; Elliott, Kyle H; Lee, Sandi; Cyr, Francois

    2015-08-01

    Perfluoroalkyl substances (PFAS) such as perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) have become virtually ubiquitous throughout the environment, and, based on laboratory studies, have known toxicological consequences. Various national and international voluntary phase-outs and restrictions on these compounds have been implemented over the last 10 to 15 years. In the present study, we examine trends (1990/1991-2010/2011) in aquatic birds (ancient murrelet, Synthliboramphus antiquus [2009 only]; Leach's storm-petrels, Oceanodroma leucorhoa; rhinoceros auklets, Cerorhinca monocerata; double-crested cormorants, Phalacrocorax auritus; and great blue herons, Ardea herodias). The PFCA, PFSA, and stable isotope (δ(15) N and δ(13) C) data collected from these species from the Pacific coast of Canada, ranging over 20 to 30 years, were used to investigate temporal changes in PFAS coupled to dietary changes. Perfluorooctane sulfonic acid (PFOS), the dominant PFSA compound in all 4 species, increased and subsequently decreased in auklet and cormorant eggs in line with the manufacturing phase-out of PFOS and perfluorooctanoic acid (PFOA), but concentrations continuously increased in petrel eggs and remained largely unchanged in heron eggs. Dominant PFCA compounds varied between the offshore and coastal species, with increases seen in the offshore species and little or variable changes seen in the coastal species. Little temporal change was seen in stable isotope values, indicating that diet alone is not driving observed PFAS concentrations. PMID:25989421

  17. Temporal trends of perfluoroalkyl substances (PFAS) in eggs of coastal and offshore birds: Increasing PFAS levels associated with offshore bird species breeding on the Pacific coast of Canada and wintering near Asia.

    PubMed

    Miller, Aroha; Elliott, John E; Elliott, Kyle H; Lee, Sandi; Cyr, Francois

    2015-08-01

    Perfluoroalkyl substances (PFAS) such as perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) have become virtually ubiquitous throughout the environment, and, based on laboratory studies, have known toxicological consequences. Various national and international voluntary phase-outs and restrictions on these compounds have been implemented over the last 10 to 15 years. In the present study, we examine trends (1990/1991-2010/2011) in aquatic birds (ancient murrelet, Synthliboramphus antiquus [2009 only]; Leach's storm-petrels, Oceanodroma leucorhoa; rhinoceros auklets, Cerorhinca monocerata; double-crested cormorants, Phalacrocorax auritus; and great blue herons, Ardea herodias). The PFCA, PFSA, and stable isotope (δ(15) N and δ(13) C) data collected from these species from the Pacific coast of Canada, ranging over 20 to 30 years, were used to investigate temporal changes in PFAS coupled to dietary changes. Perfluorooctane sulfonic acid (PFOS), the dominant PFSA compound in all 4 species, increased and subsequently decreased in auklet and cormorant eggs in line with the manufacturing phase-out of PFOS and perfluorooctanoic acid (PFOA), but concentrations continuously increased in petrel eggs and remained largely unchanged in heron eggs. Dominant PFCA compounds varied between the offshore and coastal species, with increases seen in the offshore species and little or variable changes seen in the coastal species. Little temporal change was seen in stable isotope values, indicating that diet alone is not driving observed PFAS concentrations.

  18. Nuclear winter attracts additional scrutiny

    SciTech Connect

    Smith, R.J.

    1984-07-06

    Prodded by the Natural Resources Defense Council, Congress has asked the Pentagon to provide what amounts to an environmental impact statement on the potential for nuclear weapons explosions to create enough soot and dust to cause a nuclear winter. The request has implications for arms control and civil defense as well as for weapons procurement and deployment. Little attention was given to the atmospheric and climatic effects of nuclear war until the nuclear winter concept was introduced in October of 1983. Only the Navy and the DOE took steps to follow up until pressure was put on Congress and the Pentagon for further study. Pentagon criticism of the nuclear winter presentation argues that the scenario assumptions that cities will be targeted and that a conflict will involve 5000-6500 megatons are incorrect.

  19. Winter Outdoor Education Activities: Snowshoes and Exploring the Winter Environment.

    ERIC Educational Resources Information Center

    Matthews, Bruce E.; And Others

    Designed as a resource base upon which elementary school educators can build outdoor learning experiences, this resource packet contains a basic, multidisciplinary snowshoeing lesson plan, pre- and post-trip suggestions, and suggestions for further winter outdoor study on snowshoes. Specifically, there are narratives and illustrations addressed at…

  20. Demographic effects of extreme winter weather in the barn owl.

    PubMed

    Altwegg, Res; Roulin, Alexandre; Kestenholz, Matthias; Jenni, Lukas

    2006-08-01

    Extreme weather events can lead to immediate catastrophic mortality. Due to their rare occurrence, however, the long-term impacts of such events for ecological processes are unclear. We examined the effect of extreme winters on barn owl (Tyto alba) survival and reproduction in Switzerland over a 68-year period (approximately 20 generations). This long-term data set allowed us to compare events that occurred only once in several decades to more frequent events. Winter harshness explained 17 and 49% of the variance in juvenile and adult survival, respectively, and the two harshest winters were associated with major population crashes caused by simultaneous low juvenile and adult survival. These two winters increased the correlation between juvenile and adult survival from 0.63 to 0.69. Overall, survival decreased non-linearly with increasing winter harshness in adults, and linearly in juveniles. In contrast, brood size was not related to the harshness of the preceding winter. Our results thus reveal complex interactions between climate and demography. The relationship between weather and survival observed during regular years is likely to underestimate the importance of climate variation for population dynamics. PMID:16645855

  1. Distribution patterns during winter and fidelity to wintering areas of American black ducks

    USGS Publications Warehouse

    Diefenbach, D.R.; Nichols, J.D.; Hines, J.E.

    1988-01-01

    The distribution patterns during winter of American black ducks were compared among age-sex classes using band recivery data. In addition, fidelity to wintering areas was compared between sexes and between coastal and inland wintering sites.

  2. Winter planning. Quantity surveying.

    PubMed

    Davison, A; Bowhay, S

    1999-09-30

    During Christmas and new year 1999-2000 there will be eight bank holiday or weekend days. Emergency admissions are likely to be high during this period. A mathematical model can be used to calculate how many beds will need to be empty on Christmas day in order to cope with an increase in emergency admissions afterwards. In this study of a 781-bed acute hospital, a minimum of 209 beds--equivalent to seven wards--will need to be empty on Christmas day. This model is derived from information on the patient administration system and could be used by all hospitals to plan care.

  3. Learning through a Winter's Tale

    ERIC Educational Resources Information Center

    Vidotto, Kristie

    2010-01-01

    In this article, the author shares her experience during the final semester of Year 11 Theatre Studies when she performed a monologue about Hermione from "The Winter's Tale". This experience was extremely significant to her because it nearly made her lose faith in one of the most important parts of her life, drama. She believes this experience,…

  4. Reducing winter injury in blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the combination of primocane training and cane positioning techniques using a rotatable cross-arm (RCA) trellis system and covering plants in winter to protect buds and canes from freezing temperatures in ‘Apache’, ‘Boysenberry’, ‘Siskiyou’, and ‘Triple Crown’ blackberry. After tying p...

  5. A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques

    USGS Publications Warehouse

    Nelson, S.J.; Johnson, K.B.; Weathers, K.C.; Loftin, C.S.; Fernandez, I.J.; Kahl, J.S.; Krabbenhoft, D.P.

    2008-01-01

    Atmospheric mercury (Hg) is delivered to ecosystems via rain, snow, cloud/fog, and dry deposition. The importance of snow, especially snow that has passed through the forest canopy (throughfall), in delivering Hg to terrestrial ecosystems has received little attention in the literature. The snowpack is a dynamic system that links atmospheric deposition and ecosystem cycling through deposition and emission of deposited Hg. To examine the magnitude of Hg delivery via snowfall, and to illuminate processes affecting Hg flux to catchments during winter (cold season), Hg in snow in no-canopy areas and under forest canopies measured with four collection methods were compared: (1) Hg in wet precipitation as measured by the Mercury Deposition Network (MDN) for the site in Acadia National Park, Maine, USA, (2) event throughfall (collected after snowfall cessation for accumulations of >8 cm), (3) season-long throughfall collected using the same apparatus for event sampling but deployed for the entire cold season, and (4) snowpack sampling. Estimates (mean ?? SE) of Hg deposition using these methods during the 91-day cold season in 2004-2005 at conifer sites showed that season-long throughfall Hg flux (1.80 ??g/m2) < snowpack Hg (2.38 ?? 0.68 ??g/m2) < event throughfall flux (5.63 ?? 0.38 ??g/m2). Mercury deposition at the MDN site (0.91 ??g/m2) was similar to that measured at other no-canopy sites in the area using the other methods, but was 3.4 times less than was measured under conifer canopies using the event sampling regime. This indicates that snow accumulated under the forest canopy received Hg from the overstory or exhibited less re-emission of Hg deposited in snow relative to open areas. The soil surface of field-scale plots were sprayed with a natural rain water sample that contained an Hg tracer (202Hg) just prior to the first snowfall to explore whether some snowpack Hg might be explained from soil emissions. The appearance of the 202Hg tracer in the snowpack (0

  6. Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last two decades (1994-2013)

    NASA Astrophysics Data System (ADS)

    Salerno, F.; Guyennon, N.; Thakuri, S.; Viviano, G.; Romano, E.; Vuillermoz, E.; Cristofanelli, P.; Stocchi, P.; Agrillo, G.; Ma, Y.; Tartari, G.

    2014-12-01

    Studies on recent climate trends from the Himalayan range are limited, and even completely absent at high elevation. This contribution specifically explores the southern slopes of Mt. Everest (central Himalaya), analyzing the minimum, maximum, and mean temperature and precipitation time series reconstructed from seven stations located between 2660 and 5600m a.s.l. over the last twenty years (1994-2013). We complete this analysis with data from all the existing ground weather stations located on both sides of the mountain range (Koshi Basin) over the same period. Overall we observe that the main and more significant increase in temperature is concentrated outside of the monsoon period. At higher elevations minimum temperature (0.072 ± 0.011 °C a-1, p < 0.001) increased far more than maximum temperature (0.009 ± 0.012 °C a-1, p > 0.1), while mean temperature increased by 0.044 ± 0.008 °C a-1, p < 0.05. Moreover, we note a substantial precipitation weakening (9.3 ± 1.8mm a-1, p < 0.01 during the monsoon season). The annual rate of decrease at higher elevation is similar to the one at lower altitudes on the southern side of the Koshi Basin, but here the drier conditions of this remote environment make the fractional loss much more consistent (47% during the monsoon period). This study contributes to change the perspective on which climatic driver (temperature vs. precipitation) led mainly the glacier responses in the last twenty years. The main implications are the following: (1) the negative mass balances of glaciers observed in this region can be more ascribed to less accumulation due to weaker precipitation than to an increase of melting processes. (2) The melting processes have only been favored during winter and spring months and close to the glaciers terminus. (3) A decreasing of the probability of snowfall has significantly interested only the glaciers ablation zones (10%, p < 0.05), but the magnitude of this phenomenon is decidedly lower than the

  7. [Effects of irrigation time on the growth and water- and fertilizer use efficiencies of winter wheat].

    PubMed

    Dang, Jian-You; Pei, Xue-Xia; Wang, Jiao-Ai; Zhang, Jing; Cao, Yong; Zhang, Ding-Yi

    2012-10-01

    A field experiment was conducted to study the effects of irrigation time before wintering (November 10th, November 25th, and December 10th) and in spring (March 5th, re-greening stage; and April 5th, jointing stage) on the growth, dry matter translocation, water use efficiency (WUE), and fertilizer use efficiency (FUE) of winter wheat after returning corn straw into soil. The irrigation time before wintering mainly affected the wheat population size before wintering and at jointing stage, whereas the irrigation time in spring mainly affected the spike number, grain yield, dry matter translocation, WUE, and FUE. The effects of irrigation time before wintering to the yield formation of winter wheat were closely related to the irrigation time in spring. When the irrigation time in spring was at re-greening stage, the earlier the irrigation time before wintering, the larger the spike number and the higher the grain yield; when the irrigation time in spring was at jointing stage, the delay of the irrigation time before wintering made the spike number and grain yield decreased after an initial increase, the kernel number per plant increased, while the 1000-kernel mass was less affected. The WUE, nutrition uptake, and FUE all decreased with the delay of the irrigation time before wintering, but increased with the delay of the irrigation time in spring. Therefore, under the conditions of returning corn straw into soil and sowing when the soil had enough moisture, to properly advance the irrigation time before wintering could make the soil more compacted, promote the tillering and increase the population size before winter, and in combining the increased irrigation at jointing stage, could control the invalid tillering in early spring, increase the spiking rate, obtain stable kernel mass, and thus, increase the WUE and FUE, realizing water-saving and high efficiency for winter wheat cultivation.

  8. Confounded winter and spring phenoclimatology on large herbivore ranges

    USGS Publications Warehouse

    Christianson, David; Klaver, Robert W.; Middleton, Arthur; Kauffman, Matthew

    2013-01-01

    Annual variation in winter severity and growing season vegetation dynamics appear to influence the demography of temperate herbivores but parsing winter from spring effects requires independent metrics of environmental conditions specific to each season. We tested for independence in annual variation amongst four common metrics used to describe winter severity and early growing season vegetation dynamics across the entire spatial distribution of elk (Cervus elaphus) in Wyoming from 1989 to 2006. Winter conditions and early growing season dynamics were correlated in a specific way. Winters with snow cover that ended early tended to be followed by early, but slow, rises in the normalized difference vegetation index (NDVI), while long winters with extended periods of snow cover were often followed by late and rapid rises in NDVI. Across the 35 elk ranges, 0.4–86.8 % of the variation in the rate of increase in NDVI’s in spring was explained by the date snow cover disappeared from SNOTEL stations. Because phenoclimatological metrics are correlated across seasons and shifting due to climate change, identifying environmental constraints on herbivore fitness, particularly migratory species, is more difficult than previously recognized.

  9. Wintering ecology of adult North American ospreys

    USGS Publications Warehouse

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  10. Winter movement dynamics of Black Brant

    USGS Publications Warehouse

    Lindberg, Mark S.; Ward, David H.; Tibbitts, T. Lee; Roser, John

    2007-01-01

    Although North American geese are managed based on their breeding distributions, the dynamics of those breeding populations may be affected by events that occur during the winter. Birth rates of capital breeding geese may be influenced by wintering conditions, mortality may be influenced by timing of migration and wintering distribution, and immigration and emigration among breeding populations may depend on winter movement and timing of pair formation. We examined factors affecting movements of black brant (Branta bernicla nigricans) among their primary wintering sites in Mexico and southern California, USA, (Mar 1998-Mar 2000) using capture-recapture models. Although brant exhibited high probability (>0.85) of monthly and annual fidelity to the wintering sites we sampled, we observed movements among all wintering sites. Movement probabilities both within and among winters were negatively related to distance between sites. We observed a higher probability both of southward movement between winters (Mar to Dec) and northward movement between months within winters. Between-winter movements were probably most strongly affected by spatial and temporal variation in habitat quality as we saw movement patterns consistent with contrasting environmental conditions (e.g., La Niña and El Niño southern oscillation cycles). Month-to-month movements were related to migration patterns and may also have been affected by differences in habitat conditions among sites. Patterns of winter movements indicate that a network of wintering sites may be necessary for effective conservation of brant.

  11. Snow distribution, soil temperature and late winter CO2 efflux from soils at the Arctic treeline in northwest Alaska

    NASA Astrophysics Data System (ADS)

    Sullivan, P.

    2009-12-01

    The Arctic treeline is advancing in many areas and changes in ecosystem-atmosphere energy and CO2 exchange are anticipated. Differences in surface energy exchange between arctic tundra and treeline forests are well known and a positive feedback between treeline advance and regional warming is expected. Differences in CO2 exchange across the Arctic treeline are less well known and contrasting conclusions have been drawn from studies that used different approaches. Measurements of CO2 exchange in tundra and an adjacent treeline forest showed the forest was a greater carbon (C) sink during the growing season in northern Canada. There is reason to expect forests may lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of CO2 efflux. In this study, I tested the hypotheses that treeline forests maintain a deeper snowpack, have warmer soils and lose more C during the winter than adjacent tundra at the Arctic treeline in northwest Alaska. Estimates of CO2 efflux through the snowpack were made at five forest and two treeline sites in late winter when soil temperatures were near their annual minima in three consecutive winters. Snow depth, soil temperature and CO2 efflux were greater in the forest than at the treeline, particularly in years with greater snowfall. A simple modeling exercise showed differences in winter C loss between the treeline and forest could be sufficient to offset greater C gain by the forest during the summer.

  12. GOES Satellite Movie of 2014 Winter Storms

    NASA Video Gallery

    This new animation of NOAA's GOES-East satellite imagery shows the movement of winter storms from January 1 to March 24 making for a snowier-than-normal winter along the U.S. East coast and Midwest...

  13. 36 CFR 1002.19 - Winter activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open...

  14. 36 CFR 1002.19 - Winter activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open...

  15. 36 CFR 1002.19 - Winter activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding, innertubing, tobogganing and similar winter sports are prohibited on Presidio Trust roads and in parking areas open...

  16. Time-variability of Polar Winter Snow Clouds on Mars

    NASA Astrophysics Data System (ADS)

    Hayne, P. O.; Kass, D. M.; Kleinboehl, A.; Schofield, J. T.; McCleese, D. J.

    2015-12-01

    Carbon dioxide snow clouds are known to occur in the polar regions on Mars during the long polar night. Earlier studies have shown that a substantial fraction (up to ~20%) of the seasonal ice caps of Mars can be deposited as CO2 snowfall. The presence of optically thick clouds can also strongly influence the polar energy balance, by scattering thermal radiation emitted by the surface and lower atmosphere. Furthermore, snow deposition is likely to affect the surface morphology and subsequent evolution of the seasonal caps. Therefore, both the spatial distribution and time variability of polar snow clouds are important for understanding their influence on the Martian CO2cycle and climate. However, previous investigations have suffered from relatively coarse time resolution (typically days), coarse or incomplete spatial coverage, or both. Here we report results of a dedicated campaign by the Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter, to observe polar CO2 clouds with an unprecedented time-resolution within the same spatial region. By scanning the MCS field of view, we acquired observations directly over the north pole for every ~2hr orbit over the course of several days. This was repeated during two separate periods in northern winter. The 2 hr sampling frequency enables the detailed study of cloud evolution. These observations were also compared to a cloud-free, control region just off the pole, which was sampled in the same way. Results from this experiment show that the north polar CO2 clouds are dynamic, and appear to follow a consistent pattern: Beginning with a relatively clear atmosphere, the cloud rapidly grows to ~25 - 30 km altitude in < 2 hr. Then, the altitude of the cloud tops diminishes slowly, reaching near the surface after ~6 - 10 hr. We interpret this slow decay as the precipitation of snow particles, which constrains their size to be ~10 - 100 μm. Also pervasive in this season are water ice clouds, which may provide

  17. Winter cover crops influence Amaranthus palmeri establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  18. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.

    PubMed

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.

  19. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster

    PubMed Central

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607

  20. Characterization of an unexpected snowfall event in Iqaluit, Nunavut, and surrounding area during the Storm Studies in the Arctic field project

    NASA Astrophysics Data System (ADS)

    Fargey, S.; Henson, W.; Hanesiak, J.; Goodson, R.

    2014-05-01

    Small accumulation precipitation events are critical for the high-latitude hydrological cycle. They contribute to more than 50% of total accumulation in the area and occur at a greater frequency than high-accumulation events. Despite their importance, the processes controlling them have not been investigated in sufficient detail. This study characterizes an unexpected high-latitude snowfall event at Iqaluit, Nunavut, and surrounding area during the Storm Studies in the Arctic field project. High-resolution data collected, from both ground based and airborne Doppler radar, along with upper air and surface observations, provided the basis for analysis of the conditions that led to the event and offer some insight as to why it was not well forecast by the Canadian operational model. Several factors worked in concert to produce this event. Low-level convection and upslope processes were important in cloud and precipitation generation over the orography upstream. When combined with additional lift from the passing of a weak trough, cloud and precipitation production were enhanced, allowing these features to penetrate over the terrain and resulted in precipitation at Iqaluit. Analysis of the global environmental multiscale limited area model (2.5 km resolution) suggests that upstream convection and upslope processes were affected by model errors. As a consequence, precipitation onset was delayed, and the total accumulation was 50% lower than the observations. Results indicate that the complexity of precipitation events in the region represents a significant challenge for predicting and modeling and understanding their role in the region's hydrological cycle.

  1. The impact of winter heating on air pollution in China.

    PubMed

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004-2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating.

  2. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  3. Winter climate change: a critical factor for temperate vegetation performance.

    PubMed

    Kreyling, Juergen

    2010-07-01

    Winter ecological processes are important drivers of vegetation and ecosystem functioning in temperate ecosystems. There, winter conditions are subject to rapid climate change. The potential loss of a longer-lasting snow cover with implications to other plant-related climate parameters and overwintering strategies make the temperate zone particularly vulnerable to winter climate change. A formalized literature search in the ISI Web of Science shows that plant related research on the effects of winter climate change is generally underrepresented. Temperate regions in particular are rarely studied in this respect, although the few existing studies imply strong effects of winter climate change on species ranges, species compositions, phenology, or frost injury. The generally positive effect of warming on plant survival and production may be counteracted by effects such as an increased frost injury of roots and shoots, an increased insect pest risk, or a disrupted synchrony between plants and pollinators. Based on the literature study, gaps in current knowledge are discussed. Understanding the relative effects of interacting climate parameters, as well as a stronger consideration of shortterm events and variability of climatic conditions is urgent. With respect to plant response, it would be particularly worthwhile to account for hidden players such as pathogens, pollinators, herbivores, or fungal partners in mycorrhization.

  4. Physiological responses of Yellowstone bison to winter nutritional deprivation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian

    1994-01-01

    Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.

  5. Winter climate change: a critical factor for temperate vegetation performance.

    PubMed

    Kreyling, Juergen

    2010-07-01

    Winter ecological processes are important drivers of vegetation and ecosystem functioning in temperate ecosystems. There, winter conditions are subject to rapid climate change. The potential loss of a longer-lasting snow cover with implications to other plant-related climate parameters and overwintering strategies make the temperate zone particularly vulnerable to winter climate change. A formalized literature search in the ISI Web of Science shows that plant related research on the effects of winter climate change is generally underrepresented. Temperate regions in particular are rarely studied in this respect, although the few existing studies imply strong effects of winter climate change on species ranges, species compositions, phenology, or frost injury. The generally positive effect of warming on plant survival and production may be counteracted by effects such as an increased frost injury of roots and shoots, an increased insect pest risk, or a disrupted synchrony between plants and pollinators. Based on the literature study, gaps in current knowledge are discussed. Understanding the relative effects of interacting climate parameters, as well as a stronger consideration of shortterm events and variability of climatic conditions is urgent. With respect to plant response, it would be particularly worthwhile to account for hidden players such as pathogens, pollinators, herbivores, or fungal partners in mycorrhization. PMID:20715613

  6. Scenario-based risk analysis of winter snowstorms in the German lowlands

    NASA Astrophysics Data System (ADS)

    von Wulffen, Anja

    2014-05-01

    The northern German lowlands are not especially known for a high frequency of snowfall events. Nevertheless under certain synoptic conditions Lake-Effect-like phenomena caused by the proximity especially of the Baltic Sea can lead to significantly reinforced snowfall intensities that are often accompanied by rather high wind speeds. This makes for infrequent but potentially disastrous snowstorms in a region less accustomed to snow impacts. One possible consequence of an infrastructure failure cascade resulting from severe and longer-lasting snowstorms is a regional disruption of the food supply chain. In the context of "just-in-time"-logistics and the accompanying decrease of storage capabilities, this poses a significant threat to the population's food security. Within the project NeuENV ("New strategies to ensure sufficient food supply in case of crisis in Germany") a snowstorm in the German lowlands involving widespread disruptions of the transportation infrastructure as well as power failures is therefore used as one model for future food supply chain disruptions. In order to obtain a reliable evaluation of the supply chain and crisis management resilience, a detailed snowstorm scenario is being developed. For this purpose, a database of impact reports of past snowstorm events is assembled and analysed to obtain a comprehensive overview of potential infrastructure impairments and failures. Examples of events analysed in this context include the winter 1978/79 with its disastrous snow drifts that commonly attained heights of 3m to 5m leading to a transportation infrastructure collapse across a wide area, the wet snow event in November 2005 in the Münsterland region that caused power failures for up to 250.000 homes, and more recent snowstorms such as Daisy in January 2010. A catalogue of thresholds for relevant parameters indicating when significant failures can be expected is then compiled through a comparison of impact reports with the detailed meteorological

  7. Glycogen, not dehydration or lipids, limits winter survival of side-blotched lizards (Uta stansburiana).

    PubMed

    Zani, Peter A; Irwin, Jason T; Rollyson, Mary E; Counihan, Jessica L; Healas, Sara D; Lloyd, Emily K; Kojanis, Lee C; Fried, Bernard; Sherma, Joseph

    2012-09-01

    Climate change is causing winters to become milder (less cold and shorter). Recent studies of overwintering ectotherms have suggested that warmer winters increase metabolism and decrease winter survival and subsequent fecundity. Energetic constraints (insufficient energy stores) have been hypothesized as the cause of winter mortality but have not been tested explicitly. Thus, alternative sources of mortality, such as winter dehydration, cannot be ruled out. By employing an experimental design that compared the energetics and water content of lizards that died naturally during laboratory winter with those that survived up to the same point but were then sacrificed, we attempt to distinguish among multiple possible causes of mortality. We test the hypothesis that mortality is caused by insufficient energy stores in the liver, abdominal fat bodies, tail or carcass or through excessive water loss. We found that lizards that died naturally had marginally greater mass loss, lower water content, and less liver glycogen remaining than living animals sampled at the same time. Periodically moistening air during winter reduced water loss, but this did not affect survival, calling into question dehydration as a cause of death. Rather, our results implicate energy limitations in the form of liver glycogen, but not lipids, as the primary cause of mortality in overwintering lizards. When viewed through a lens of changing climates, our results suggest that if milder winters increase the metabolic rate of overwintering ectotherms, individuals may experience greater energetic demands. Increased energy use during winter may subsequently limit individual survival and possibly even impact population persistence. PMID:22875774

  8. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, D.H.; Dau, C.P.; Lee, T.; Sedinger, J.S.; Anderson, B.A.; Hines, J.E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  9. Effects of Wintering Environment and Parasite–Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions

    PubMed Central

    Currie, Robert W.

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was

  10. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions.

    PubMed

    Desai, Suresh D; Currie, Robert W

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was

  11. Effects of Wintering Environment and Parasite-Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions.

    PubMed

    Desai, Suresh D; Currie, Robert W

    2016-01-01

    Extreme winter losses of honey bee colonies are a major threat to beekeeping but the combinations of factors underlying colony loss remain debatable. We monitored colonies in two environments (colonies wintered indoors or outdoors) and characterized the effects of two parasitic mites, seven viruses, and Nosema on honey bee colony mortality and population loss over winter. Samples were collected from two locations within hives in fall, mid-winter and spring of 2009/2010. Although fall parasite and pathogen loads were similar in outdoor and indoor-wintered colonies, the outdoor-wintered colonies had greater relative reductions in bee population score over winter. Seasonal patterns in deformed wing virus (DWV), black queen cell virus (BQCV), and Nosema level also differed with the wintering environment. DWV and Nosema levels decreased over winter for indoor-wintered colonies but BQCV did not. Both BQCV and Nosema concentration increased over winter in outdoor-wintered colonies. The mean abundance of Varroa decreased and concentration of Sacbrood virus (SBV), Kashmir bee virus (KBV), and Chronic bee paralysis virus (CBPV) increased over winter but seasonal patterns were not affected by wintering method. For most viruses, either entrance or brood area samples were reasonable predictors of colony virus load but there were significant season*sample location interactions for Nosema and BQCV, indicating that care must be taken when selecting samples from a single location. For Nosema spp., the fall entrance samples were better predictors of future infestation levels than were fall brood area samples. For indoor-wintered colonies, Israeli acute paralysis virus IAPV concentration was negatively correlated with spring population size. For outdoor-wintered hives, spring Varroa abundance and DWV concentration were positively correlated with bee loss and negatively correlated with spring population size. Multivariate analyses for fall collected samples indicated higher DWV was

  12. Communicating Certainty About Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment

  13. Condensation during Titan's Polar Winter

    NASA Astrophysics Data System (ADS)

    de Kok, Remco; Irwin, P. G.; Teanby, N. A.; Fletcher, L. N.; Howett, C. J.; Calcutt, S. B.; Bowles, N. E.; Taylor, F. W.

    2007-10-01

    Titan is currently experiencing winter in its northern hemisphere and the lower atmosphere of its north polar region has been in prolonged darkness since the solstice in October 2002. As a result, the north polar region is currently characterised by cold stratospheric temperatures and there is enrichment of trace gases due to downward atmospheric motion (e.g. Teanby et al., Icarus 181 pp. 243-255, 2006). These conditions make the polar winter very suitable for cloud formation in the stratosphere. A simple transport and condensation model has been made to explore condensation processes in Titan's northern stratosphere. In the model, the atmosphere is advected downwards and clouds are formed as the saturation pressure of various gases is reached. Upper limits of the gases C4N2 and propionitrile (C2H5CN) were determined from Cassini Composite Infrared Spectrometer data to assess scenarios of chemical disequilibrium where the gas phase is far less abundant than the solid phase. The upper limit for C4N2 is 9e-9, which discounts the massive C4N2 build-up in the polar winter proposed by Samuelson et al. (PSS 45, pp. 941-948, 1997) to explain the observed C4N2 cloud at the Voyager epoch. The propionitrile upper limit is 8e-9, which is several orders of magnitude less than needed to create the condensate feature at 220 cm-1 of Khanna (Icarus 177, pp. 116-121) and de Kok et al. (Icarus, in press), assuming it is propionitrile ice, under the steady-state conditions explored by the aformentioned model. HCN ice seems to play an important role in the formation of a massive polar cloud (Haze B in de Kok et al., Icarus, in press), because of the unavailability of sufficient condensable gas other than HCN (and possibly HC3N) to produce the condensate features seen in far-infrared spectra at 220 cm-1.

  14. Winter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indices

    NASA Astrophysics Data System (ADS)

    Hong, Ja-Young; Ahn, Joong-Bae; Jhun, Jong-Ghap

    2016-03-01

    The changes in the winter climatology and variability of the East Asian winter monsoon (EAWM) for the late 21st century (2070-2099) under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected in terms of EAWM indices (EAWMIs). Firstly, the capability of the climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5) in simulating the boreal winter climatology and the interannual variability of the EAWM for the late 20th century (1971-2000) is examined. Nine of twenty-three climate models are selected based on the pattern correlations with observation and a multi-model ensemble is applied to the nine model data. Three of twelve EAWMIs that show the most significant temporal correlations between the observation and CMIP5 surface air temperatures are utilized. The ensemble CMIP5 is capable of reproducing the overall features of the EAWM in spite of some biases in the region. The negative correlations between the EAWMIs and boreal winter temperature are well reproduced and 3-5 years of the major interannual variation observed in this region are also well simulated according to power spectral analyses of the simulated indices. The fields regressed onto the indices that resemble the composite strong winter monsoon pattern are simulated more or less weakly in CMIP5 compared to the observation. However, the regressed fields of sea level pressure, surface air temperature, 500-hPa geopotential height, and 300-hPa zonal wind are well established with pattern correlations above 0.83 between CMIP5 and observation data. The differences between RCPs and Historical indicate strong warming, which increases with latitude, ranging from 1 to 5 °C under RCP4.5 and from 3 to 7 °C under RCP8.5 in the East Asian region. The anomalous southerly winds generally become stronger, implying weaker EAWMs in both scenarios. These features are also identified with fields regressed onto the indices in RCPs. The future projections reveal

  15. Seasonal Forecasts for Northern Hemisphere Winter 2015/16

    NASA Astrophysics Data System (ADS)

    Ineson, Sarah; Scaife, Adam; Comer, Ruth; Dunstone, Nick; Fereday, David; Folland, Chris; Gordon, Margaret; Karpechko, Alexey; Knight, Jeff; MacLachlan, Craig; Smith, Doug; Walker, Brent

    2016-04-01

    The northern winter of 2015/16 gave rise to the strongest El Niño event since 1997/8. Central and eastern Pacific sea surface temperature anomalies exceeded three degrees and closely resembled the strong El Niño in winter of 1982/3. A second feature of this winter was a strong westerly phase of the Quasi-Biennial Oscillation and very strong winds in the stratospheric polar night jet. At the surface, intense extratropical circulation anomalies occurred in both the North Pacific and North Atlantic that were consistent with known teleconnections to the observed phases of ENSO and the QBO. The North Atlantic Oscillation was very positive in the early winter period (Nov-Dec) and was more blocked in the late winter. Initialised climate predictions were able to capture these signals at seasonal lead times. This case study adds to the evidence that north Atlantic circulation exhibits predictability on seasonal timescales, and in this case we show that even aspects of the detailed pattern and sub-seasonal evolution were predicted, providing warning of increased risk of extreme events such as the intense rainfall which caused extreme flooding in the UK in December.

  16. Daily movements of female mallards wintering in Southwestern Louisiana

    USGS Publications Warehouse

    Link, P.T.; Afton, A.D.; Cox, R.R.; Davis, B.E.

    2011-01-01

    Understanding daily movements of waterfowl is crucial to management of winter habitats, especially along the Gulf Coast where hunting pressure is high. Radio-telemetry was used to investigate movements of female Mallards (Anas platyrchychos) wintering in southwestern Louisiana. Movement distances were analyzed from 2,455 paired locations (diurnal and nocturnal) of 126 Mallards during winters 2004-2005 and 2005-2006 to assess effects of winter, female age, areas closed (Lacassine National Wildlife Refuge [LAC], Cameron Prairie National Wildlife Refuge [CAM], Amoco Pool [AMOCO] or open to hunting [OPEN]), and habitat type, including all interactions. Movement distances from the various land management categories were not consistent by age, date, or by winter. Flight distances from LAC increased with date, whereas those from CAM and OPEN did not vary significantly by date. Female Mallards moved short distances between diurnal and nocturnal sites (ranging from 3.1 to 15.0 km by land management category), suggesting that they are able to meet their daily energy requirements within a smaller area than Northern Pintails (Anas acuta, hereafter Pintails), and thus minimize transit energy costs.

  17. Winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Moore, R. D.

    2012-12-01

    Stream temperature is a principal determinant of aquatic ecosystem composition and productivity. There are increasing concerns that changes in land cover and climatic conditions could produce changes in stream thermal regimes that would be deleterious to existing aquatic communities. Most stream temperature research has focused on summer periods and few studies have examined winter periods despite the growing recognition of its biological importance. The winter thermal regimes of Pacific Northwest headwater streams, which provide vital winter habitat for salmonids and their food sources, may be particularly sensitive to changes in climate because they can remain ice-free throughout the year and are often located in rain-on-snow zones. This study examined winter stream temperature patterns and controls in small headwater catchments within the rain-on-snow zone at the Malcolm Knapp Research Forest, near Vancouver, British Columbia, Canada. Two working hypotheses were addressed by this study: (1) winter stream temperatures are primarily controlled by advective fluxes associated with runoff processes and (2) stream temperatures should be depressed during rain-on-snow events, compared to rain on bare ground, due to the cooling effect of rain passing through the snowpack prior to infiltrating the soil or being delivered to the stream as saturation-excess overland flow. These hypotheses were tested statistically using historical stream temperature data and modelled snowpack dynamics for a forested headwater catchment. When snow was not present, daily stream temperature during winter rain events tended to increase with increasing air temperature. However, when snow was present, stream temperature was capped at about 5 °C, regardless of air temperature. This historical analysis was complemented with detailed field data collected during the winter of 2011-2012 from an ongoing field study in a partially logged catchment. Stream temperature response to a large rain

  18. Winter fuels report. Week ending, October 21, 1994

    SciTech Connect

    Zitomer, M.; Griffith, A.; Zyren, J.

    1994-10-01

    Demand for distillate fuel oil is expected to show a slight decline this winter (October 1, 1994-March 31, 1995) from last, according to the Energy Information Administration`s (EIA) 4th Quarter 1994 Short-Term Energy Outlook (STEO) Mid-World Oil Price Case forecast. EIA projects winter demand to decline one percent to 3.3 million barrels per day, assuming normal weather conditions. The effects of expected moderate growth in the economy and industrial production will likely be offset by much warmer temperatures than those a year ago. EIA projects prices for both residential heating oil and diesel fuel to be moderately higher than prices last winter. Increases are likely, primarily because crude oil prices are expected to be higher than they were a year earlier (Table FE5).

  19. Night eating syndrome and winter seasonal affective disorder.

    PubMed

    Friedman, Serge; Even, Christian; Thuile, Jacques; Rouillon, Frédéric; Guelfi, Julien-Daniel

    2006-07-01

    Night eating syndrome (NES) and winter seasonal affective disorder (SAD) share some features such as snacking for high-carbohydrate/high-fat food with increased weight, emotional distress, circadian disturbances, good response to serotoninergic antidepressants (SSRIs) and bright-light therapy. This study assessed the prevalence and socio-demographical and clinical correlates of the NES in a sample of 62 consecutive depressed outpatients with winter seasonal features (DSM-IV criteria). Depression was assessed with the 29 item-HDRS and Sigh-SAD version and with the 7-item depression subscale of the Hospital Anxiety and Depression scale. The prevalence of NES was low (4.8%). Patients suffering from NES were significantly older with a greater duration of the illness. NES was not related to depression and to Body Mass Index. NES and winter SAD are not overlapping disorders.

  20. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2016-05-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  1. KPI Graduate Executive Summary Report, Summer 2000-Winter 2001.

    ERIC Educational Resources Information Center

    Sheridan Coll. (Ontario).

    Summarizes findings from the Key Performance Indicator Satisfaction Survey administered by Sheridan College in the summer 2000, fall 2000, and winter 2001 terms. This survey was administered in compliance with the Ontario government's efforts to increase the accountability of the Colleges of Applied Arts and Technology through the measurement of…

  2. 77 FR 7000 - Fisheries of the Northeastern United States; Northeast Multispecies Fishery; Gulf of Maine Winter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... for all stocks, including GOM winter flounder, were based upon the most recent scientific information... best scientific information available. In their letter, the Council suggested NMFS consider... increases in GOM winter flounder catch limits based on the most recent and best available...

  3. Winter warming from large volcanic eruptions

    SciTech Connect

    Robock, A.; Mao, J.

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  4. International scientists on nuclear winter

    SciTech Connect

    Malone, T.F.

    1985-12-01

    A report by the International Council of Scientific Unions (ICSU) leads new support to the warning of extreme climatic disruptions that would follow a nuclear war. The two-volume report does not deal explicitly with public policy questions, but focuses on scientific knowledge of physical effects and biological responses. The author reviews studies made since the warning of a nuclear winter began in 1982, and evaluates the new report. He finds the message of the report to be a clear warning that a major nuclear war would threaten the entire world. He hopes it will be a catalyst to world opinion in the same way that the public responded to the incident of radioactive fallout striking a Japanese fishing vessel in 1954.

  5. Forest tree seedlings may suffer from predicted future winters

    NASA Astrophysics Data System (ADS)

    Domisch, Timo; Repo, Tapani; Martz, Françoise; Rautio, Pasi

    2016-04-01

    Future climate scenarios predict increased precipitation and air temperatures, particularly at high latitudes, and especially so during winter, spring and autumn. However, soil temperatures are more difficult to predict, since they depend strongly on the insulating snow cover. Warm periods during winter can lead to thaw-freeze cycles and flooding, which again can result in the formation of ice layers, affecting soil properties, soil gas concentrations and the survival of tree seedlings. We conducted two laboratory experiments of 20 weeks duration each, simulating winter, spring and early summer, and imposed Scots pine (Pinus sylvestris L.) or downy birch (Betula pubescens Ehrh.) seedlings to four different winter scenarios: (1) ambient snow cover, (2) compressed snow and ice encasement, (3) frozen flood and (4) no snow. We estimated the stress that the seedlings experienced by means of gas exchange, chlorophyll fluorescence and determining above- and belowground biomass and carbohydrate contents, as well as measuring soil oxygen and carbon dioxide concentrations. The seedlings in the snow and compressed snow treatments survived until the end of the experiments, although only those covered with an ambient snow cover showed normal height growth and typical carbohydrate contents. The seedlings in the other treatments showed symptoms of dieback already during early spring and had almost completely died at the end of the experiment. Our results suggest the crucial significance of the protective snow cover, and that a missing soil cover or soil hypoxia and anoxia during winter can be lethal for seedlings, and that respiratory losses and winter desiccation of aboveground organs can further lead to the death of tree seedlings.

  6. Travel distance and mass gain in wintering blackbirds.

    PubMed

    Cresswell

    1999-11-01

    Birds that range over a large area will have a greater mass-dependent risk of predation than more sedentary birds. Birds that travel more may then reduce winter mass gain to compensate for the increased predation risk that greater travelling entails. I tested whether European blackbirds, Turdus merula, that travelled more in winter had a lower mass than more sedentary birds, independently of any confounding effects of food supply on both ranging behaviour and mass gain. I measured change in winter mass and amount of food eaten in conjunction with the distance that blackbirds travelled to a randomly sited mobile feeder. Blackbirds that travelled shorter distances (per trip and in total) and less often to the feeder had the highest mass midwinter relative to their spring mass. Blackbirds with a higher mean mass midwinter also travelled, on average, shorter distances to the feeder. The distance an individual blackbird travelled to the feeder at any one time was probably independent of the state of its daily energy reserves (how much of its daily total mass gain it had achieved at that point). The relationship between distance travelled and mass was probably independent of food supply because distances actually increased at the end of the winter and the amount of food eaten per individual changed little. More mobile blackbirds were therefore likely to have compensated for any increases in predation risk associated with their greater ranges by decreasing winter mass gain, but will have had an increased risk of starvation because of their lower mass. Copyright 1999 The Association for the Study of Animal Behaviour.

  7. Incidence of mass movement processes after an historical episode of heavy snowfall in the Asturian Massif (Northern Spain)

    NASA Astrophysics Data System (ADS)

    Garcia-Hernandez, Cristina; Ruiz-Fernández, Jesús; Gallinar, David

    2015-04-01

    as landslides, 5 as rockfalls, 4 as mixed typology of rockfalls with a big amount of mud, and 2 as debris flow. One person died as a consecuence of a rockfall. Thirty out of thirty six events anthropic intervention is proved. It acted as a prior conditioning where the previous topography has been modified (in 29 cases), either as a direct triggering mechanism at least in one landslide episode. The sequence analysis of the events shows that their number and frequency increases with episodes of snow melting during the snowstorm breaks, announcing the highest instabilities on 10th and 11th of March, coinciding with a rainfall peak. However the connection with the rainfall episode seems weak compared with the one than can be settled with the rise of temperatures and the resulting melting intensification. It caused the progressive water saturation of surface formations, that reached a maximum during the second break, triggering 20 events during the 11th of March 1888.

  8. Abrupt Decline in the Arctic Winter Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2007-01-01

    Maximum ice extents in the Arctic in 2005 and 2006 have been observed to be significantly lower (by about 6%) than the average of those of previous years starting in 1979. Since the winter maxima had been relatively stable with the trend being only about -1.5% per decade (compared to about -10% per decade for the perennial ice area), this is a significant development since signals from greenhouse warming are expected to be most prominent in winter. Negative ice anomalies are shown to be dominant in 2005 and 2006 especially in the Arctic basin and correlated with winds and surface temperature anomalies during the same period. Progressively increasing winter temperatures in the central Arctic starting in 1997 is observed with significantly higher rates of increase in 2005 and 2006. The Atlantic Oscillation (AO) indices correlate weakly with the sea ice and surface temperature anomaly data but may explain the recent shift in the perennial ice cover towards the western region. Results suggest that the trend in winter ice is finally in the process of catching up with that of the summer ice cover.

  9. 33 CFR 100.109 - Winter Harbor Lobster Boat Race, Winter Harbor, ME.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Winter Harbor Lobster Boat Race, Winter Harbor, ME. 100.109 Section 100.109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lobster Boat Race, Winter Harbor, ME. (a) Regulated area. The regulated area includes all waters of...

  10. Shifting covariability of North American summer monsoon precipitation with antecedent winter precipitation

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.

    2006-01-01

    Previous research has suggested that a general inverse relation exists between winter precipitation in the southwestern United states (US) and summer monsoon precipitation. In addition, it has been suggested that this inverse relation between winter precipitation and the magnitude of the southwestern US monsoon breaks down under certain climatic conditions that override the regional winter/monsoon precipitation relations. Results from this new study indicate that the winter/monsoon precipitation relations do not break down, but rather shift location through time. The strength of winter/monsoon precipitation relations, as indexed by 20-year moving correlations between winter precipitation and monsoon precipitation, decreased in Arizona after about 1970, but increased in New Mexico. The changes in these correlations appear to be related to an eastward shift in the location of monsoon precipitation in the southwestern US. This eastward shift in monsoon precipitation and the changes in correlations with winter precipitation also appear to be related to an eastward shift in July/August atmospheric circulation over the southwestern US that resulted in increased monsoon precipitation in New Mexico. Results also indicate that decreases in sea-surface temperatures (SSTs) in the central North Pacific Ocean also may be associated with th changes in correlations between winter and monsoon precipitation. Copyright ?? 2006 Royal Meteorological Society.

  11. Stem rust resistance in 'Jagger' winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Jagger" has been utilized widely as a parent to develop hard red winter wheat varieties throughout the U.S. southern Great Plains. Jagger has resistance to stem rust pathogen race TTTTF, which is virulent to many winter wheat cultivars, yet the genetic basis of this resistance remains unknown. Mark...

  12. The Winter Environment. Environmental Education Curriculum.

    ERIC Educational Resources Information Center

    Topeka Public Schools, KS.

    Winter seems to hold more mysteries than any other season. It changes the behavior of wildlife and also brings about drastic changes in plant life. This unit, designed around the following two ideas: (1) to develop an appreciation and understanding of the winter season and (2) to understand how plants and wildlife are affected by the winter…

  13. Animals in Winter. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    de Sairigne, Catherine

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume introduces the habits of a variety of animals during the winter. Topics include: (1) surviving during winter, including concepts such as migration, hibernation, and skin color change; (2) changing…

  14. Nuclear Winter: Scientists in the Political Arena

    NASA Astrophysics Data System (ADS)

    Badash, Lawrence

    2001-03-01

    The nuclear winter phenomenon is used to illustrate the many paths by which scientific advice reaches decision makers in the United States government. Because the Reagan administration was hostile to the strategic policy that the scientific discovery seemed to demand, the leading proponent of nuclear winter, Carl Sagan, used his formidable talent for popularization to reach a larger audience.

  15. 36 CFR 1002.19 - Winter activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Winter activities. 1002.19 Section 1002.19 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding,...

  16. 36 CFR 1002.19 - Winter activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Winter activities. 1002.19 Section 1002.19 Parks, Forests, and Public Property PRESIDIO TRUST RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 1002.19 Winter activities. (a) Skiing, snowshoeing, ice skating, sledding,...

  17. Does cold winter weather produce depressive symptoms?

    NASA Astrophysics Data System (ADS)

    Garvey, Michael J.; Goodes, Mike; Furlong, Candy; Tollefson, Gary D.

    1988-06-01

    To examine whether harsh winter weather is associated with depressive symptoms, 45 healthy subjects from Minnesota were compared to 42 subjects from California near the end of the winter season. No differences in the prevalence of depressive symptoms were found between the two groups.

  18. 36 CFR 2.19 - Winter activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Winter activities. 2.19 Section 2.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing,...

  19. 36 CFR 2.19 - Winter activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Winter activities. 2.19 Section 2.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing,...

  20. 36 CFR 2.19 - Winter activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Winter activities. 2.19 Section 2.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing,...

  1. 36 CFR 2.19 - Winter activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Winter activities. 2.19 Section 2.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing,...

  2. 36 CFR 2.19 - Winter activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Winter activities. 2.19 Section 2.19 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.19 Winter activities. (a) Skiing, snowshoeing,...

  3. Short winters threaten temperate fish populations

    PubMed Central

    Farmer, Troy M.; Marschall, Elizabeth A.; Dabrowski, Konrad; Ludsin, Stuart A.

    2015-01-01

    Although climate warming is expected to benefit temperate ectotherms by lengthening the summer growing season, declines in reproductive success following short, warm winters may counter such positive effects. Here we present long-term (1973–2010) field patterns for Lake Erie yellow perch, Perca flavescens, which show that failed annual recruitment events followed short, warm winters. Subsequent laboratory experimentation and field investigations revealed how reduced reproductive success following short, warm winters underlie these observed field patterns. Following short winters, females spawn at warmer temperatures and produce smaller eggs that both hatch at lower rates and produce smaller larvae than females exposed to long winters. Our research suggests that continued climate warming can lead to unanticipated, negative effects on temperate fish populations. PMID:26173734

  4. Mass dynamics of wintering Pacific Black Brant: Body, adipose tissue, organ, and muscle masses vary with location

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2007-01-01

    We compared body size and mass of the whole body, organs, adipose tissue, and muscles of adult Pacific Black Brant (Branta bernicla nigricans (Lawrence, 1846)) collected concurrently in Alaska and Baja California during the fall, winter, and spring of 2002-2003. Head and tarsal lengths of males were similar between sites and slightly larger for females in Alaska than in Baja California. Brant appear to operate under similar physiological bounds, but patterns of nutrient allocation differ between sites. Birds wintering in Alaska lost similar amounts of adipose tissue during early winter as birds in Baja California gained during late winter before migration. Masses of the body, adipose tissue, and flight muscles during mid-winter were similar between sites. Seasonal adipose tissue deposition may, therefore, equally favor winter residency or long-distance migration. Gonad and liver masses increased in late winter for birds in Alaska but not for those in Baja California, suggesting birds wintering in Baja may delay reproductive development in favor of allocating reserves needed for migration. Phenotypic flexibility allows Brant to use widely divergent wintering sites. The wintering location of Brant likely depends more upon changes in environmental conditions and food availability, than upon physiological differences between the two wintering populations. ?? 2007 NRC.

  5. A Pan-arctic Survey about the Meaning of Winter Respiration in Northern High Latitudes

    NASA Astrophysics Data System (ADS)

    Selbmann, A. K.; Natali, S.

    2015-12-01

    The arctic is warming at twice the rate of the rest of the planet, with the greatest warming occurring during the winter months. Despite the cold temperatures during the winter, microbial activity continues and leads to a release of soil carbon during a criticial period when plant uptake has ceased. Due to the warming climate, huge pools of carbon stored in permafrost soils are expected to be released to the atmosphere. To identify the annual carbon balance of arctic ecosystems and potential impacts caused by a rise in temperatures, understanding the magnitude of winter respiration is essential. In order to refine current and future estimates of carbon loss from permafrost ecosystems, we conducted a pan-arctic synthesis of winter respiration from northern high latitude regions. We examined differences in cumulative winter respiration among permafrost zones, biomes, ecosystem types, and effects of measurement method on winter respiration estimates. We also examined effect of air temperature and precipitation (Worldclim database) on rates of winter respiration. The database contained 169 measurement points from 46 study sites located throughout the permafrost zones. We found that 21.6 % of annual respiration is happening during non-growing season, which can shift ecosystems from annual sinks during the growing season to net sources of carbon on an annual basis. Across studies, the average carbon loss during the winter was 66 g CO2-C. There was a strong relationship between mean annual air temperature and winter respiration, and lower respiration in continuous compared to discontinuous permafrost zones and northern areas without permafrost. The present results clarify the contribution of winter respiration to annual carbon balance and show the sensitivity of carbon release to rising temperatures in northern high latitudes. These results suggest that permafrost degradation and increased temperature will lead to a higher release of carbon from the Arctic in wintertime

  6. Periphyton dynamics in a subalpine mountain stream during winter

    USGS Publications Warehouse

    Gustina, G.W.; Hoffmann, J.P.

    2000-01-01

    We conducted two experiments to determine the activity of and factors which control periphyton during winter in Stevensville Brook, Vermont. The first experiment during winter/spring 1994 examined the effect of a 300 to 450% difference in light and doubling of flow (low and high light, slow and fast flow) on periphyton chlorophyll a (chl a) and ash-free dry mass (AFDM) from stream rocks and artificial substrata. A second experiment was performed to determine whether periphyton was nitrogen or phosphorus limited. In addition, stream water was sampled during fall/winter 1994/95 for nitrate (NO3), ammonia (NH4), soluble reactive phosphorus (SRP), and total phosphorus (TP) to determine the availability of nutrients in Stevensville Brook. Increases of up to 250% for AFDM and 600% for chl a during the first study indicated robust activity throughout the winter despite low temperatures and light. Flow had a negative effect and sampling date was found to have a significant effect on periphyton biomass (chl a and AFDM) while light was found to influence increases in AFDM on clay tiles only. Water analyses showed that SRP was less than 0.001 mg L-1, NH4 and TP were low and often undetectable, and NO3 remained at about 0.20 mg L-1. Results from the nutrient enrichment experiment showed a significant response of chl a to P but not N and no response of AFDM to enrichment with either N or P. In Stevensville Brook during winter, the algal community, as represented by the chl a concentration, is predominantly controlled by phosphorus concentrations and is influenced to a lesser extent by flow; the periphyton community as a whole, represented by AFDM, is controlled mostly by stream flow and light.

  7. Nitrate sequestration by corticolous macrolichens during winter precipitation events.

    PubMed

    Levia, Delphis F

    2002-05-01

    Nitrogen is an essential nutrient in the biogeochemistry of forested ecosystems. The influence of canopy lichens on the winter biogeochemistry of nitrate in broadleaved deciduous forests is examined and it is hypothesized that nitrate sequestration will not differ between winter precipitation events. Rejection of this hypothesis would mean that meteorological conditions of winter precipitation events have a detectable influence on nitrate sequestration by canopy lichens and nitrate input to the forest floor. Canopy lichens of the genus Parmelia were found to influence winter nitrate stemflow inputs to forest soils differentially. Epiphytic lichens on an individual Carya glabra Mill. (pignut hickory) canopy tree, centrally located within the stand of an open deciduous forest, actively sequestered nitrate leached from the tree's woody frame, lowering aqueous stemflow inputs at the tree base. The quantities of nitrate sequestered by corticolous lichens during the 2 February 1999 mixed-precipitation event were significantly greater than those during all other precipitation events examined. Greater rates of nitrate uptake during the 2 February 1999 event may be attributed to (1) its intermediate rain intensity, which would have soaked the lichen thalli in a nutrient-rich bath, and (2) an air temperature range between -2 degrees C and 8 degrees C that would have increased viscosity and surface tension of stemflow drainage, thereby decreasing stemflow velocity and increasing the contact time of stemflow water on the lichen thalli. Other precipitation events were either too cold to promote metabolic activity by canopy lichens or too warm and intense for an optimal contact time of stemflow with lichen thalli, resulting in lower quantities of nitrate sequestered. Meteorological conditions of winter precipitation events have been documented to influence sequestration of nitrate by corticolous lichens and decrease aqueous stemflow inputs to the forest floor of broadleaved

  8. Shifting mirrors: adaptive changes in retinal reflections to winter darkness in Arctic reindeer.

    PubMed

    Stokkan, Karl-Arne; Folkow, Lars; Dukes, Juliet; Neveu, Magella; Hogg, Chris; Siefken, Sandra; Dakin, Steven C; Jeffery, Glen

    2013-12-22

    Arctic reindeer experience extreme changes in environmental light from continuous summer daylight to continuous winter darkness. Here, we show that they may have a unique mechanism to cope with winter darkness by changing the wavelength reflection from their tapetum lucidum (TL). In summer, it is golden with most light reflected back directly through the retina, whereas in winter it is deep blue with less light reflected out of the eye. The blue reflection in winter is associated with significantly increased retinal sensitivity compared with summer animals. The wavelength of reflection depends on TL collagen spacing, with reduced spacing resulting in shorter wavelengths, which we confirmed in summer and winter animals. Winter animals have significantly increased intra-ocular pressure, probably produced by permanent pupil dilation blocking ocular drainage. This may explain the collagen compression. The resulting shift to a blue reflection may scatter light through photoreceptors rather than directly reflecting it, resulting in elevated retinal sensitivity via increased photon capture. This is, to our knowledge, the first description of a retinal structural adaptation to seasonal changes in environmental light. Increased sensitivity occurs at the cost of reduced acuity, but may be an important adaptation in reindeer to detect moving predators in the dark Arctic winter.

  9. a Climatology of Extreme Minimum Winter Temperatures in Ohio

    NASA Astrophysics Data System (ADS)

    Edgell, Dennis Joe

    The Extreme Minimum Winter Temperature (EMWT) is the coldest temperature recorded each winter at a given weather station. This variable is a measure of winter temperature stress. Extreme cold influences the geographic distribution of plants, and is a prime control for the production of some valuable fruit crops grown in Ohio. EMWT values are often used to map plant hardiness zones, however the magnitude of EMWT and the date that it occurs has varied widely from year to year. Climatic variables rarely remain constant over time, and the plant hardiness zones could shift significantly if the climate changes and there is a trend towards warmer EMWTs. Plants that have their present geographic ranges limited by cold winter temperatures could increase their spatial extent. Furthermore, EMWT has impacts on human health and has applications for architecture. EMWTs at eighty-nine weather stations in Ohio were analyzed. Summary statistics and return period intervals for critical EMWTs are tabulated and mapped. Return period maps may be more useful for environmental planning than plant hardiness zone maps based on average EMWT, especially in a variable climate. Graphical methods, curve fitting and a probability model for the mean were utilized to examine the long term trend. The EMWT has not warmed during the known climatic record of this variable in Ohio. This study demonstrates the need for more applied climatological studies based on the observed climate record, not obscured by the assumptions of the global warming paradigm.

  10. Changes in winter warming events in the Nordic Arctic Region

    NASA Astrophysics Data System (ADS)

    Vikhamar-Schuler, Dagrun; Isaksen, Ketil; Haugen, Jan Erik; Bjerke, Jarle Werner; Tømmervik, Hans

    2015-04-01

    In recent years winter warming events are frequently reported from Arctic areas. Extraordinarily warm weather episodes, occasionally combined with intense rainfall, cause severe ecological disturbance and great challenges for Arctic infrastructure. For example, the formation of ground ice due to winter rain or melting prevents reindeer from grazing, leads to vegetation browning, and impacts soil temperatures. The infrastructure may be affected by avalanches and floods resulting from intense snowmelt. The aim of our analysis is to study changes in warm spells during winter in the Nordic Arctic Region, here defined as the regions in Norway, Sweden and Finland north of the Arctic circle (66.5°N), including the Arctic islands Svalbard and Jan Mayen. Within this study area we have selected the longest available high quality observation series with daily temperature and precipitation. For studying future climate we use available regionally downscaled scenarios. We analyse three time periods: 1) the past 50-100 years, 2) the present (last 15 years, 2000-2014) and 3) the future (next 50-100 years). We define an extended winter season (October-April) and further divide it into three subseasons: 1) Early winter (October and November), 2) Mid-winter (December, January and February) and 3) Late-winter (March and April). We identify warm spells using two different classification criteria: a) days with temperature above 0°C (the melting temperature); and b) days with temperature in excess of the 90th percentile of the 1985-2014 temperature for each subseason. Both wet and dry warm spells are analysed. We compare the results for the mainland stations (maritime and inland stations) with the Arctic islands. All stations have very high frequency of warm weather events in the period 1930-1940s and for the last 15 years (2000-2014). For the most recent period the largest increase in number of warm spells are observed at the northernmost stations. We also find a continuation of this

  11. EPS Workshop on Nuclear Winters

    NASA Astrophysics Data System (ADS)

    Parkinson, D. H.

    1988-01-01

    This workshop was held in Geneva in October 1986 and was attended by invited delegates from both East (14) and West (13), members of the ACPS (5) and the President. Relevant disciplines as well as Physics were represented which lead to comprehensive discussions. The factors which have a bearing on the probabilities of a nuclear winter were reviewed using the SCOPE-ENUWAR studies as a basis. These covered the nature of a possible nuclear war; the quantities of dust and smoke thrown into the atmosphere, its particle size, height and lifetime; the resulting effects on sunlight and temperature; and the consequences for vegetation and animal life both terrestrial and marine. There are many uncertainties in such analyses. Much more work is needed on many facets. The more important were highlighted as further topics for East-West collaboration. Never the less it was concluded that:- Climatic effects involving temperature falls of only three or four degrees below normal combined with a large fall in light intensity during the growing season of cereal crops would have disastrous consequences.

  12. The impacts of surface ozone pollution on winter wheat productivity in China--An econometric approach.

    PubMed

    Yi, Fujin; Jiang, Fei; Zhong, Funing; Zhou, Xun; Ding, Aijun

    2016-01-01

    The impact of surface ozone pollution on winter wheat yield is empirically estimated by considering socio-economic and weather determinants. This research is the first to use an economic framework to estimate the ozone impact, and a unique county-level panel is employed to examine the impact of the increasing surface ozone concentration on the productivity of winter wheat in China. In general, the increment of surface ozone concentration during the ozone-sensitive period of winter wheat is determined to be harmful to its yield, and a conservative reduction of ozone pollution could significantly increase China's wheat supply.

  13. Use of habitats by female norther pintails wintering in southwestern Louisiana

    USGS Publications Warehouse

    Cox, R.R.; Afton, A.D.

    1997-01-01

    The breeding population of norther pintails (Anas acuta) in 1996 was 39% below the long-term average. Because winter habitat quality may influence subsequent breeding population size in pintails, identification of habitats used by wintering pintails and factors influencing use of habitats may be important for managing for population increase. We examined variation in diel use of habitats by radiotagged female pintails (n = 272) in southwestern Louisiana in relation to age (imm and ad), winter (1991-92 and 1992-93), and time period within winters (pre-hunting season, first hunting season, time between split hunting seasons, second hunting season, and post-hunting season). Diurnal use of refuges was significantly greater during hunting seasons than during immediately preceding or succeeding nonhunting seasons. Consequently, we reject Tamissier's (1976) hypothesis that high diurnal use of refuges by pintails in southwestern Louisiana occurs later in winters. Time-period differences in diurnal and nocturnal use of habitats (large permanent pools, marsh, rice, fallow [idle], and other agriculture [primarily soybeans]) were not consistent between winters. Diel use of refuges or habitats did not differ in relation to female age. Females used fallow and ice agriculture extensively, particularly at night, and these habitats collectively accounted for 68-93% of nocturnal use. Differential use of habitats between winters was related to annual differences in relative abundance of rice and fallow agriculture. Proximity of refuges to agricultural areas should be an important management consideration for wintering pintails and other waterfowl.

  14. Monitoring the global-scale winter anomaly of total electron contents using GPS data

    NASA Astrophysics Data System (ADS)

    Huo, X. L.; Yuan, Y. B.; Ou, J. K.; Zhang, K. F.; Bailey, G. J.

    2009-08-01

    The winter anomaly phenomenon of Total Electron Contents (TEC) at latitudes 15°-60°N and 15°S-60°S is presented using GPS carrier-phase data obtained from GPS stations during 2002. The correlation between the [O/N2] ratio estimated using the NRLMSISE-00 atmospheric model and the TEC winter anomaly is also investigated. The numerical results show that the TEC winter anomaly in different regions of the world tends to be dominated by different factors. In North America, the TEC winter anomaly is strongly affected by the magnetospheric processes in high latitudes and the [O/N2] ratio. In the Euro-Africa and Russia-Asia regions, the TEC winter anomaly depends mainly on the [O/N2] ratio at the latitude band of 30°-60°N, and the extent of the TEC winter anomaly gradually decreases from 60°N to 30°N. The extent of the TEC winter anomaly increases at the latitude band of 15°-30°N due to the influence of the meridional neutral wind and the seasonal changes of the subsolar point. However, the TEC winter anomaly was not observed in southern hemisphere in 2002. The TEC equinoctial asymmetries in the northern and southern hemisphere are also presented using GPS TEC values collected in March and September 2002.

  15. Snowpack chemistry at selected sites in Colorado and New Mexico during winter 1999-2000

    USGS Publications Warehouse

    Ingersoll, George P.

    2000-01-01

    Snowpacks at two high-elevation (> 3,000 m) sampling sites near McPhee and Sanchez Reservoirs in southern Colorado were selected to collect representative samples of atmospheric deposition to the surrounding watersheds during winter 1999-2000. In February 2000, annual snowpacks at two sites were sampled to determine concentrations of nitrate and sulfate; concentrations of the trace elements arsenic, mercury, and selenium; and the sulfur isotope ratios that result from atmospheric deposition to the area. Snowpack chemistry data at the two sites sampled in 1999-2000 are compared to 1993-99 averages at 10 other snow-sampling sites in Colorado and New Mexico that generally are downwind of the Four Corners area of the southwestern United States. Although concentrations of ammonium and nitrate in the 1999-2000 snowpacks were fairly typical compared to averages established at nearby sites in southern Colorado and northern New Mexico, chloride and sulfate concentrations were below the 1993-99 average, while arsenic, mercury, and selenium in snow were much below the 1993-99 average. However, very similar sulfur-isotope ratios (that are not a function of precipitation amounts) deposited in snowpacks at the nearby sites indicate the snowpack chemistries at the new sampling locations near McPhee and Sanchez reservoirs were affected by similar sources of sulfate. Representative samples of coal burned during the 1999-2000 snowfall season at three power plants near Four Corners also were analyzed for sulfur content and trace elements. Results from separate, independent laboratories show similar concentrations and provide an initial baseline that will be used for general comparisons of coal chemistry to snowpack chemistry.

  16. The influence of tropical forcing on extreme winter precipitation in the western Himalaya

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Hoell, Andrew; Norris, Jesse; Kiladis, George N.; Tahir, Adnan A.

    2016-04-01

    Within the Karakoram and western Himalaya (KH), snowfall from winter westerly disturbances (WD) maintains the region's snowpack and glaciers, which melt seasonally to sustain water resources for downstream populations. WD activity and subsequent precipitation are influenced by global atmospheric variability and tropical-extratropical interactions. On interannual time-scales, El Niño related changes in tropical diabatic heating induce a Rossby wave response over southwest Asia that is linked with enhanced dynamical forcing of WD and available moisture. Consequently, extreme orographic precipitation events are more frequent during El Niño than La Niña or neutral conditions. A similar spatial pattern of tropical diabatic heating is produced by the MJO at intraseasonal scales. In comparison to El Niño, the Rossby wave response to MJO activity is less spatially uniform over southwest Asia and varies on shorter time-scales. This study finds that the MJO's relationship with WD and KH precipitation is more complex than that of ENSO. Phases of the MJO propagation cycle that favor the dynamical enhancement of WD simultaneously suppress available moisture over southwest Asia, and vice versa. As a result, extreme precipitation events in the KH occur with similar frequency in most phases of the MJO, however, there is a transition in the relative importance of dynamical forcing and moisture in WD to orographic precipitation in the KH as the MJO evolves. These findings give insight into the dynamics and predictability of extreme precipitation events in the KH through their relationship with global atmospheric variability, and are an important consideration in evaluating Asia's water resources.

  17. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2013-11-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991-2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha-1, but it decreased to 4.6-10.1 kg ha-1 with winter cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha-1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those

  18. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  19. The History of Winter and the Global Snowflake Network, Engaging Teachers and Students in Science Field Research in Snow and Ice

    NASA Astrophysics Data System (ADS)

    Bender, K. J.; Wasilewski, P. J.; Gabrys, R. E.

    2006-05-01

    A weeklong Professional development/"Teacher as scientist" Cryosphere science training camp held annually in February in Lake Placid, NY, the History of Winter program (HOW) has been serving teachers in the NASA Goddard Space Flight Center service area since 2000. Currently, HOW participants include university faculty interested in enhancing their pre-service science education programs, in-service teachers and pre-service education students. HOW utilizes a stratified professional development approach to science content mastery and delivery while involving participants in scientific field research. Each year program components and resources are added to HOW to provide continued, sustainable interest in the program and to support participants as they continue their HOW experience. An offshoot of the HOW Program, the Global Snowflake Network (GSN) launched in the winter of 2006 engages an international audience including both formal and informal education groups. The goal is to provide an interactive online data resource in science and education for the characterization of snowfall and related weather systems. The Global Snowflake Network has been accepted as an education outreach proposal for the International Polar Year. Collaborations with other agencies and universities also with IPY-accepted proposals are now underway. HOW and the GSN are endorsed by the NASA Goddard Education Office and many of the Goddard Snow and Ice scientists. Together these programs offer a unique, sustainable, and proven outreach for the Cryosphere research program.

  20. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    PubMed

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.

  1. Climate change in our backyards: the reshuffling of North America's winter bird communities.

    PubMed

    Princé, Karine; Zuckerberg, Benjamin

    2015-02-01

    Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index--the Community Temperature Index (CTI)--which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America. PMID:25322929

  2. Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream

    USGS Publications Warehouse

    French, William E.; Vondracek, Bruce C.; Ferrington, Leonard C.; Finlay, Jacques C.; Dieterman, Douglas J.

    2014-01-01

    Winter can be a stressful period for stream-dwelling salmonid populations, often resulting in reduced growth and survival. Stream water temperatures have been identified as a primary mechanism driving reductions in fitness during winter. However, groundwater inputs can moderate water temperature and may reduce winter severity. Additionally, seasonal reductions in prey availability may contribute to decreased growth and survival, although few studies have examined food webs supporting salmonids under winter conditions. This study employed diet, stable isotope, and mark-recapture techniques to examine winter (November through March) feeding, growth, and condition of brown troutSalmo trutta in a groundwater-dominated stream (Badger Creek, Minnesota, USA). Growth was greater for fish ≤ 150 mm (mean = 4.1 mg g−1 day−1) than for those 151–276 mm (mean = 1.0 mg g−1 day−1) during the winter season. Overall condition from early winter to late winter did not vary for fish ≤150 mm (mean relative weight (Wr) = 89.5) and increased for those 151–276 mm (mean Wr = 85.8 early and 89.4 late). Although composition varied both temporally and by individual, brown trout diets were dominated by aquatic invertebrates, primarily Amphipods, Dipterans, and Trichopterans. Stable isotope analysis supported the observations of the dominant prey taxa in stomach contents and indicated the winter food web was supported by a combination of allochthonous inputs and aquatic macrophytes. Brown trout in Badger Creek likely benefited from the thermal regime and increased prey abundance present in this groundwater-dominated stream during winter.

  3. Winter ecology of the Arunachal macaque Macaca munzala in Pangchen Valley, western Arunachal Pradesh, northeastern India.

    PubMed

    Mendiratta, Uttara; Kumar, Ajith; Mishra, Charudutt; Sinha, Anindya

    2009-11-01

    The newly described Arunachal macaque Macaca munzala occurs largely in sub-tropical to temperate environments at elevations of c. 1,800-3,000 m in Arunachal Pradesh, northeastern India. We studied its over-wintering strategy by comparing the diet, ranging, and behavior of a troop of 24 individuals during winter and spring (December 2005 to May 2006) through instantaneous scan sampling (3,002 records, 448 scans, 112 hr of observation). We also monitored the phenology of food plants. The macaques spent more time (41-66%) feeding in the winter than in spring (33-51%), whereas time spent moving and resting was greater in spring. The diet composed largely of plants, with animal matter being eaten rarely. The number of plant species in the diet increased from 18 to 25 whereas food types rose from 18 to 36 from winter to spring, respectively. Although only two species formed 75% of the winter diet, seven species comprised this proportion in spring. Availability of fruits and young leaves increased in spring; the troop moved more and utilized a larger part of its range during this time. Seasonal changes in behavior could be explained by the scarcity of food and the costs of thermoregulation in winter. Our study suggests that the Arunachal macaque inhabits a highly seasonal environment and has an over-wintering strategy that includes subsisting on a high-fiber diet by increasing the time spent feeding, and minimizing energy expenditure by reducing the time spent moving.

  4. Explaining unusual winter lightning in Japan

    NASA Astrophysics Data System (ADS)

    Shindo, Takatoshi; Ishii, Masaru; Williams, Earle

    2011-11-01

    Third International Symposium on Winter Lightning; Sapporo, Japan, 15-16 June 2011 Japan's meteorological setting in winter is unusual: It is an island in a relatively warm sea frequently overswept by colder air from Siberia. This sets up appreciable atmospheric instability in the fringe of the land adjacent to the Sea of Japan. Heavy snowstorms overlap the edge of the island and produce extraordinarily energetic lightning flashes that initiate from points on the ground (known as ground-to-cloud (GC) strokes) and wreak havoc on power lines and, more recently, wind turbines. These troublesome and costly conditions set the stage for the third in a series of conferences on winter lightning.

  5. Nutrient content of some winter grouse foods

    USGS Publications Warehouse

    Treichler, R.R.; Stow, R.W.; Nelson, A.L.

    1946-01-01

    Seventeen preferred grouse foods were collected during the late winter and analyzed for nutrient content. The results include moisture, crude protein, ether extract, crude fiber, nitrogenfree extract, ash, calcium, phosphorus, and gross energy content expressed both on moisture free and fresh bases.....The preferred winter foods of grouse are characterized by a high content of dry substance and of nitrogen-free extract......On the basis of nutrient content, the foods examined are well qualified as sources of energy and other essential nutrients required for maintenance of grouse during the winter season.

  6. An analysis of US propane markets, winter 1996-1997

    SciTech Connect

    1997-06-01

    In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

  7. Selenium accumulation in sea ducks wintering at Lake Ontario.

    PubMed

    Schummer, Michael L; Badzinski, Shannon S; Petrie, Scott A; Chen, Yu-Wei; Belzile, Nelson

    2010-04-01

    Numbers of wintering sea ducks, including buffleheads (Bucephala albeola; BUFF), common goldeneyes (Bucephala clangula; COGO), and long-tailed ducks (Clangula hyemalis; LTDU), increased substantially at Lake Ontario after Dreissenid mussels (Dreissena bugensis and D. polymorpha) colonized the Great Lakes. Invertebrates, including Dreissenid mussels, are major diving duck prey items that can transfer some trace elements, such as selenium (Se) to higher trophic levels. Se can be problematic for waterfowl and it often has been detected at elevated levels in organisms using the Great Lakes. There are, however, few data on hepatic Se concentrations in sea ducks, particularly during the winter at Lake Ontario. In this study, we evaluated interspecific differences and temporal trends in hepatic Se concentrations among BUFF (n = 77), COGO (n = 77), and LTDU (n = 79) wintering at Lake Ontario. All three species accumulated Se throughout winter, but COGO did so at a higher rate than did BUFF and LTDU. Overall, Se concentrations were higher in LTDU [mean = 22.7; 95% CI = 20.8-24.8 microg/g dry weight (dw)] than in BUFF ([mean = 12.3; 95% CI = 11.6-13.1 microg/g dw) and COGO ([mean = 12.0; 95% CI = 10.7-3.5 microg/g dw) throughout the winter. Se concentrations were deemed elevated (>33 microg/g dw) in 0%, 5%, and 19% of BUFF, COGO, and LTDU, respectively. Presently there are no data on Se toxicity end points for these species, so it is unclear how acquiring concentrations of these magnitudes affect their short- and long-term health or reproduction. PMID:19653029

  8. Herbivory on shoalgrass by wintering redheads in Texas

    USGS Publications Warehouse

    Mitchell, C.A.; Custer, T.W.; Zwank, P.J.

    1994-01-01

    An estimated 80% of redheads (Aythya americana) winter on the Laguna Madre of south Texas and Mexico and feed almost exclusively on shoalgrass (Halodule wrightii) rhizomes. Shoalgrass abundance has decreased by 60% over the past 30 years, and because the effects of shoalgrass loss on wintering redheads are unknown, we initiated a study to define habitat selection criteria and document the effect of wintering redheads on shoalgrass in the lower Laguna Madre, Texas. Redheads consumed an average of 75% of shoalgrass rhizome biomass at collection sites each winter. When rhizome biomass was grazed to a mean biomass of ltoreq 0.18 g dry mass/core (approximately 10 g dry mass/ml), shoalgrass did not recover to its previous level the following growing season. Thirty-three percent of the sites (10) were grazed below 0.18 g dry mass/core during both years of the study, while 64% (19) were grazed below 0.18 g during 1 or the other of the 2 winters. Ramet number was positively correlated (P lt 0.001, r-2 = 0.54) with rhizome biomass; however, this relationship was influenced by grazing intensity. Heavy grazing reduced the amount of rhizome attached to each ramet compared with ungrazed ramets. Grazing had no effect on root biomass (P = 0.388), rhizome moisture content (P = 0.553), or soil magnesium, phosphorous, and potassium (P = 0.102, 0.499, 0.162, respectively). Redhead presence increased (P = 0.042) soil nitrogen levels. Foraging areas selected by redheads within the lower Laguna Madre had lower (P = 0.026) salinities (24 ppt) than areas not selected (35 ppt). Redheads did not select foraging areas in relation to crude protein levels in rhizomes. Shoalgrass habitat in the Laguna Madre should be protected from further losses and enhanced where possible.

  9. The urban heat island in winter at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hinkel, Kenneth M.; Nelson, Frederick E.; Klene, Anna E.; Bell, Julianne H.

    2003-12-01

    The village of Barrow, Alaska, is the northernmost settlement in the USA and the largest native community in the Arctic. The population has grown from about 300 residents in 1900 to more than 4600 in 2000. In recent decades, a general increase of mean annual and mean winter air temperature has been recorded near the centre of the village, and a concurrent trend of progressively earlier snowmelt in the village has been documented. Satellite observations and data from a nearby climate observatory indicate a corresponding but much weaker snowmelt trend in the surrounding regions of relatively undisturbed tundra. Because the region is underlain by ice-rich permafrost, there is concern that early snowmelt will increase the thickness of the thawed layer in summer and threaten the structural stability of roads, buildings, and pipelines. Here, we demonstrate the existence of a strong urban heat island (UHI) during winter. Data loggers (54) were installed in the 150 km2 study area to monitor hourly air and soil temperature, and daily spatial averages were calculated using the six or seven warmest and coldest sites. During winter (December 2001-March 2002), the urban area averaged 2.2 °C warmer than the hinterland. The strength of the UHI increased as the wind velocity decreased, reaching an average value of 3.2 °C under calm (<2 m s-1) conditions and maximum single-day magnitude of 6 °C. UHI magnitude generally increased with decreasing air temperature in winter, reflecting the input of anthropogenic heat to maintain interior building temperatures. On a daily basis, the UHI reached its peak intensity in the late evening and early morning. There was a strong positive relation between monthly UHI magnitude and natural gas production/use. Integrated over the period September-May, there was a 9% reduction in accumulated freezing degree days in the urban area. The evidence suggests that urbanization has contributed to early snowmelt in the village.

  10. Physical characteristics of Eurasian winter temperature variability

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Yul; Son, Seok-Woo

    2016-04-01

    Despite the on-going global warming, recent winters in Eurasian mid-latitudes were much colder than average. In an attempt to better understand the physical characteristics for cold Eurasian winters, major sources of variability in surface air temperature (SAT) are investigated based on cyclostationary EOF analysis. The two leading modes of SAT variability represent the effect of Arctic amplification (AA) and the Arctic oscillation (AO), respectively. These two modes are distinct in terms of the physical characteristics, including surface energy fluxes and tropospheric circulations, and result in significantly different winter SAT patterns over the Eurasian continent. The AA-related SAT anomalies are dipolar with warm Arctic, centered at the Barents–Kara Seas, and cold East Asia. In contrast, the negative AO-related SAT anomalies are characterized by widespread cold anomalies in Northern Eurasia. Relative importance of the AA and the negative AO contributions to cold Eurasian winters is sensitive to the region of interest.

  11. How to Find Insects Weathering the Winter.

    ERIC Educational Resources Information Center

    Brody, Jane

    1979-01-01

    Discusses how and where to find insects and other invertebrates in winter, as well as how to collect samples in order to watch those animals reappear in spring. Includes crickets, honey bees, mosquitoes, house flies, and butterflies and moths. (MA)

  12. Near cessation of Eighteen Degree Water renewal in the western North Atlantic in the warm winter of 2011-2012

    NASA Astrophysics Data System (ADS)

    Billheimer, Sam; Talley, Lynne D.

    2013-12-01

    The winter of 2011-2012 was a particularly weak season for the renewal of "Eighteen Degree Water" (EDW), the Subtropical Mode Water of the western North Atlantic, as demonstrated by Argo and repeat hydrography. Weak, late winter buoyancy forcing produced shallower than usual winter mixed layers throughout the subtropical gyre, failing to thoroughly ventilate the underlying mode water, and can likely be attributed to the coinciding high, positive phase of the North Atlantic Oscillation (NAO). The only region where EDW was renewed was in the far northeastern Sargasso Sea where it is understood that the Gulf Stream plays a central role in formation; no EDW formed over the large regions of the gyre where deep winter mixed layers driven by surface buoyancy loss normally create EDW. The present investigation evaluates 2011-2012 winter buoyancy content anomalies, surface buoyancy fluxes, and advection of buoyancy via the Gulf Stream and compares them with the previous seven winters that exhibited more vigorous EDW formation. The weak 2011-2012 formation did not result from increased Gulf Stream heat advection, and was also not driven by preconditioning as the buoyancy content of the region prior to the onset of winter forcing was not unusually high. Rather, the weak formation resulted from climatologically weak surface cooling late in winter. The winter of 2007-2008 also experienced particularly weak EDW formation under similar conditions, including a high NAO and weak late winter surface cooling.

  13. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  14. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    PubMed

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  15. ENSO and winter storms in California

    USGS Publications Warehouse

    Cayan, D.R.; Bromirski, Peter

    2003-01-01

    The frequency and intensity of North Pacific winter storms that penetrate the California coast drives the winds, sea level, precipitation and streamflow that are crucial influences on coastal processes. There is considerable variability of these storm characteristics, in large part owing to the El Nino/Southern Oscillation (ENSO} phenomenon. There is a great contrast of the storm characteristics during the El Nino phase vs. the La Nina phase, with the largest scale, southerly extensive winter storms generated during El Nino.

  16. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as "key areas." These forty-three areas constitute a network of areas that hold sites that likely are important to wintering North American herons. Within each area, we identify specific sites that are potentially important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  17. Winter Water Properties and the Chukchi Polynya

    NASA Astrophysics Data System (ADS)

    Ladd, C.; Mordy, C. W.; Salo, S. A.; Stabeno, P. J.

    2016-08-01

    Water properties from moored measurements (2010-2015) near Icy Cape on the eastern Chukchi shelf have been examined in relation to satellite observations of ice cover. Atlantic Water (AW), with temperature >-1°C and salinity >33.6, has been observed to upwell from deeper than 200 m in the Arctic Basin onto the Chukchi Shelf via Barrow Canyon. Most previous observations of AW on the Chukchi shelf have been in or near Barrow Canyon; observations of AW farther onto the shelf are rare. Despite mooring location on the shelf ˜225 km from the head of Barrow Canyon, five AW events have been observed at mooring C1 (70.8°N, 163.2°W) in 4 years of data. All but one of the events occurred under openings in the sea-ice cover (either a polynya or the ice edge). No events were observed during the winter of 2011/2012, a year with little polynya activity in the region. In addition to changes in temperature and salinity, the AW events are typically associated with southwestward winds and currents, changes in sea-ice cover, and increased nutrient concentrations in the bottom water. Estimates of heat content associated with the AW events suggest that the Chukchi Polynya can often be classified as a hybrid sensible heat/wind-driven polynya.

  18. Breeding sites and winter site fidelity of Piping Plovers wintering in The Bahamas, a previously unknown major wintering area

    USGS Publications Warehouse

    Gratto-Trevor, Cheri; Haig, Susan M.; Miller, Mark P.; Mullins, Thomas D.; Maddock, Sidney; Roche, Erin A.; Moore, Predensa

    2016-01-01

    Most of the known wintering areas of Piping Plovers (Charadrius melodus) are along the Atlantic and Gulf coasts of the United States and into Mexico, and in the Caribbean. However, 1066 threatened/endangered Piping Plovers were recently found wintering in The Bahamas, an area not previously known to be important for the species. Although representing about 27% of the birds counted during the 2011 International Piping Plover Winter Census, the location of their breeding site(s) was unknown. Thus, our objectives were to determine the location(s) of their breeding site(s) using molecular markers and by tracking banded individuals, identify spring and fall staging sites, and examine site fidelity and survival. We captured and color-banded 57 birds in January and February 2010 in The Bahamas. Blood samples were also collected for genetic evaluation of the likely subspecies wintering in The Bahamas. Band re-sightings and DNA analysis revealed that at least 95% of the Piping Plovers wintering in The Bahamas originated on the Atlantic coast of the United States and Canada. Re-sightings of birds banded in The Bahamas spanned the breeding distribution of the species along the Atlantic coast from Newfoundland to North Carolina. Site fidelity to breeding and wintering sites was high (88–100%). Spring and fall staging sites were located along the Atlantic coast of the United States, with marked birds concentrating in the Carolinas. Our estimate of true survival for the marked birds was 0.71 (95% CI: 0.61–0.80). Our results indicate that more than one third of the Piping Plover population that breeds along the Atlantic coast winters in The Bahamas. By determining the importance of The Bahamas to the Atlantic subspecies of Piping Plovers, future conservation efforts for these populations can be better focused on where they are most needed.

  19. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  20. Changing number of Canada geese wintering in different regions of the Atlantic Flyway

    USGS Publications Warehouse

    Hestbeck, J.B.

    1998-01-01

    During the past 40 years, profound changes have occurred in the number of Canada geese (Branta canadensis) wintering in different regions of the Atlantic Flyway. To explain the declining number of wintering geese in the Chesapeake and Carolina regions and the increasing number in the mid-Atlantic region from 1984 to 1989, I tested several hypotheses concerning regional differences in production, survival, and movement. The observation of migratory geese neckbanded in northern Quebec and throughout the winter grounds, and the lack of a regional difference in the proportion of young in the harvest, indicated that regional differences in production on the breeding grounds was unlikely to explain the observed changes in mid-winter number. Average annual survival rates were highest for geese in the Chesapeake and lowest for geese in the mid-Atlantic indicating that differential survival between regions did not cause the large changes in mid-winter numbers between regions. Geese were more likely to move to, and remain in, the Chesapeake than any other region. Estimated movement patterns did not match observed changes in mid-winter counts. Consequently, the observed changes in number of wintering geese from 1984 to 1989 could not be explained by my analyses of differential production, survival, or movement. The survival and movement analyses, however, were based largely on data from migratory, northern breeding geese. In the aerial Midwinter Waterfowl Survey, migratory, northern-breeding geese cannot be distinguished from local, southern-breeding geese. The changes in mid-winter numbers may result from declining numbers of migratory, northern-breeding geese wintering in the Chesapeake and Carolinas and increasing numbers of local, southem-breeding geese remaining in the mid-Atlantic.

  1. Thermodynamic modelling predicts energetic bottleneck for seabirds wintering in the northwest Atlantic.

    PubMed

    Fort, Jérôme; Porter, Warren P; Grémillet, David

    2009-08-01

    Studying the energetics of marine top predators such as seabirds is essential to understand processes underlying adult winter survival and its impact on population dynamics. Winter survival is believed to be the single most important life-history trait in long-lived species but its determinants are largely unknown. Seabirds are inaccessible during this season, so conventional metabolic studies are extremely challenging and new approaches are needed. This paper describes and uses a state-of-the-art mechanistic model, Niche Mapper, to predict energy expenditure and food requirements of the two main seabird species wintering in the northwest Atlantic. We found that energy demand increased throughout the winter phase in both species. Across this period, mean estimated daily energy requirements were 1306 kJ day(-1) for Brünnich's guillemots (Uria lomvia) and 430 kJ day(-1) for little auks (Alle alle) wintering off Greenland and Newfoundland. Mean estimated daily food requirements were 547 g wet food day(-1) for Brünnich's guillemots, and 289 g wet food day(-1) for little auks. For both species and both wintering sites, our model predicts a sharp increase in energy expenditure between November and December, primarily driven by climatic factors such as air temperature and wind speed. These findings strongly suggest the existence of an energetic bottleneck for North Atlantic seabirds towards the end of the year, a challenging energetic phase which might explain recurrent events of winter mass-mortality, so called 'seabird winter wrecks'. Our study therefore emphasizes the relevance of thermodynamics/biophysical modelling for investigating the energy balance of wintering marine top predators and its interplay with survival and population dynamics in the context of global change. PMID:19617442

  2. Evidence of a change in water chemistry in Canada's subarctic associated with enhanced winter streamflow

    NASA Astrophysics Data System (ADS)

    Spence, C.; Kokelj, S. V.; Kokelj, S. A.; McCluskie, M.; Hedstrom, N.

    2015-01-01

    winter streamflow is a characteristic of a nival/pluvial regime that has emerged in parts of the subarctic Canadian Shield because of increasingly common late summer rains. This phenomenon is part of a widespread trend toward higher winter streamflow in watersheds across the circumpolar north. There may be implications for biogeochemical systems as streamflow regimes undergo these types of changes associated with climate warming. Streamflow and geochemical fluxes were observed over 2 years with different winter flow conditions in a subarctic Canadian Shield catchment. Results show that higher wintertime loads of carbon and solutes associated with enhanced winter streamflow were in association with an expansion of contributing areas to run off over what would have existed during typical winter recession. Furthermore, the wet fall conditions that lead to enhanced winter streamflow require water tables close to the topographic surface in highly conductive organic soil layers, which is a similar to the condition during the spring melt. Fall rainfall-runoff leaves an ample volume of water in the lakes that are ubiquitous in this landscape. This water maintains winter streamflow during a time when it traditionally would have ceased. A slowing of biological activity under lake ice increases net mineralization and nitrification rates. This convergence of nitrogen cycling and winter streamflow produced a disproportionate flux of inorganic nitrogen from the study catchment. A conceptual model of how enhanced winter streamflow changes water chemistry in a lake-dominated shield landscape is proposed and may be used as a benchmark to guide hypotheses of process interactions, change in other landscapes, or across scales.

  3. Winter Cover Crops and Nitrous Oxide Emissions in Early Spring

    NASA Astrophysics Data System (ADS)

    Morris, C. K.; Walter, M. T.; Reiss, E. R.

    2015-12-01

    Winter cover crops mixtures can be used to manage greenhouse gas (GHG) emissions during critical periods such as spring thaw. Legumes are added to cover crops mixtures to increase crop productivity, but it is unknown if this effect decreases N2O emissions. In this project we investigate the relationship between biodiversity, productivity and GHG fluxes in cover crops varieties typically grown for soil heath in agricultural systems. Surface GHG emissions were measured with closed chambers beginning during snowmelt events and continuing until crops were tilled into the soil in early summer. We found that nitrous oxide emissions were reduced in cover cropped plots during the early spring thaw period when compared to bare soil. GHG emission reductions in agriculture can be achieved with proper selection of winter hardy cover crops.

  4. Do wintering Harlequin Ducks forage nocturnally at high latitudes?

    USGS Publications Warehouse

    Rizzolo, D.J.; Esler, Daniel; Roby, D.D.; Jarvis, R.L.

    2005-01-01

    We monitored radio-tagged Harlequin Ducks (Histrionicus histrionicus) to determine whether nocturnal feeding was part of their foraging strategy during winter in south-central Alaska. Despite attributes of our study site (low ambient temperatures, harsh weather, short day length) and study species (small body size, high daytime foraging rates) that would be expected to favor nocturnal foraging, we found no evidence of nocturnal dive-feeding. Signals from eight radio-tagged Harlequin Ducks never exhibited signal loss due to diving during a total of 780 minutes of nocturnal monitoring. In contrast, the same eight birds exhibited signal loss during 62 ± 7% (SE) of 5-minute diurnal monitoring periods (total of 365 minutes of monitoring). Our results suggest that Harlequin Ducks in south-central Alaska face a stringent time constraint on daytime foraging during midwinter. Harlequin Ducks wintering at high latitudes, therefore, may be particularly sensitive to factors that increase foraging requirements or decrease foraging efficiency.

  5. Red spruce decline---Winter injury and air pollutants

    SciTech Connect

    Roberts, T.M. )

    1989-10-01

    There has been a widespread decline in growth of red spruce (Picea rubens Sarg.) since 1960 in the eastern United States. There is evidence that this decline is at least partly attributable to age- and density-related growth patterns, particularly at lower elevations. Mortality has been severe at high elevation sites where similar episodes have occasionally occurred in the last 100 years. At these sites, periods of low growth preceding 1960 were related to periods with warm late summers and cold early winters. Since 1960, this relationship no longer holds, although there is an association with unusual deviations from mean temperatures. There are field reports that one of the main causes of reduced growth and mortality is apical dieback induced by severe winter conditions. Preliminary observations suggest that high elevation red spruce may not be sufficiently hardened to tolerate low autumn temperatures. However, appearance of injury in the spring, association of injury with wind exposure and correlation of provenance susceptibility with cuticular transpiration rates, including the importance of desiccation injury. Sensitivity to both types of winter injury may be increased by air pollutants (particularly ozone and less probably, acid mist or excess nitrogen deposition). Nutrient deficiency (particularly magnesium and to a lesser extent potassium) may also increase cold sensitivity. The nature and extent of these interactions are being actively researched for red spruce. 48 refs.

  6. Natural and augmented snowfall growth processes and their interactions with the natural and modified aerosol. Final report, 1 March 1989-30 AprIL 1990

    SciTech Connect

    Warburton, J.

    1991-07-01

    The second annual report describes the activities performed under seven separate tasks. These are the same tasks as outlined in the original proposal for the three-year program of research. These tasks dealt with the development of a trace chemical method of assessing the effects of seeding in a snow producing environment and the use of the stable isotopes of water for assessing the regions of ice-phase water capture in the cloud systems from which precipitation fell in the study regions. They also dealt with the theoretical aspects of these trace chemical programs of study and with the roles which trace impurities can play in affecting the growth characteristics of ice particles in supercooled clouds and of the shapes and number fluxes of ice crystals which occur under both natural and artificially seeded conditions. These tasks also included studies of the supercooled liquid water and ice contents of winter storms over the central Sierra Nevada, both spatially and temporally through the use of ground-based remote sensing radar and microwave radiometers. Some work was also conducted on the further development of new aircraft instrumentation for measuring atmospheric motions and the microphysical composition of winter orographic clouds.

  7. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters.

    PubMed

    Grzymski, Joseph J; Riesenfeld, Christian S; Williams, Timothy J; Dussaq, Alex M; Ducklow, Hugh; Erickson, Matthew; Cavicchioli, Ricardo; Murray, Alison E

    2012-10-01

    Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global 'dark ocean' mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content. PMID:22534611

  8. A metagenomic assessment of winter and summer bacterioplankton from Antarctica Peninsula coastal surface waters

    PubMed Central

    Grzymski, Joseph J; Riesenfeld, Christian S; Williams, Timothy J; Dussaq, Alex M; Ducklow, Hugh; Erickson, Matthew; Cavicchioli, Ricardo; Murray, Alison E

    2012-01-01

    Antarctic surface oceans are well-studied during summer when irradiance levels are high, sea ice is melting and primary productivity is at a maximum. Coincident with this timing, the bacterioplankton respond with significant increases in secondary productivity. Little is known about bacterioplankton in winter when darkness and sea-ice cover inhibit photoautotrophic primary production. We report here an environmental genomic and small subunit ribosomal RNA (SSU rRNA) analysis of winter and summer Antarctic Peninsula coastal seawater bacterioplankton. Intense inter-seasonal differences were reflected through shifts in community composition and functional capacities encoded in winter and summer environmental genomes with significantly higher phylogenetic and functional diversity in winter. In general, inferred metabolisms of summer bacterioplankton were characterized by chemoheterotrophy, photoheterotrophy and aerobic anoxygenic photosynthesis while the winter community included the capacity for bacterial and archaeal chemolithoautotrophy. Chemolithoautotrophic pathways were dominant in winter and were similar to those recently reported in global ‘dark ocean' mesopelagic waters. If chemolithoautotrophy is widespread in the Southern Ocean in winter, this process may be a previously unaccounted carbon sink and may help account for the unexplained anomalies in surface inorganic nitrogen content. PMID:22534611

  9. Connection between autumn Sea Surface Temperature and winter precipitation in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-González, Sergio; Pereira, Susana C.; Castro, Amaya; Rocha, Alfredo; Fraile, Roberto

    2014-10-01

    The oceanic influence on winter precipitation in the Iberian Peninsula has been evidenced in numerous scientific papers. Large-scale forecasting models generally use variables such as Sea Surface Temperature (SST), soil moisture and ice cover, but they are not very accurate yet. Using observational data, this paper analyzes the influence of North Atlantic and Mediterranean SST on winter precipitation in the Iberian Peninsula between October 1951 and September 2011. First, trends of both data sets have been calculated to study their behavior during the past six decades, showing an overall increase of SST and a substantial decrease in winter precipitation in the Iberian Peninsula, except in eastern and south-eastern regions. Then, connection patterns between autumn Sea Surface Temperature Anomalies and winter precipitation have been studied to identify ocean regions that may be used as potential predictors of winter precipitation. After applying a Principal Component Analysis to cluster the information provided by the 1431 measuring points of a SST grid with a small number of variables, the Principal Components extracted were introduced into a Multiple Linear Regression algorithm in order to obtain an estimation of winter precipitation in each river basin. The validation process has shown that the algorithm explains nearly 50% of inter-annual variability of winter precipitation in the basins of the Iberian Peninsula with a strongly oceanic influence; this percentage is somewhat lower in the Mediterranean regions.

  10. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives.

    PubMed

    Grüebler, Martin U; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  11. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  12. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  13. Large stratospheric sudden warming in Antarctic late winter and shallow ozone hole in 1988

    SciTech Connect

    Kanzawa, Hiroshi; Kawaguchi, Sadao )

    1990-01-01

    There occurred a large stratospheric sudden warming in the southern hemisphere in late winter of 1988 which competes in suddenness and size with major mid-winter warmings in the northern hemisphere. Associated with the dynamical phenomenon of the sudden warming, total ozone increased over the eastern hemispheric part of Antarctica. The sudden warming as well as other warmings which followed it made the 1988 Antarctic ozone hole shallow in depth and small in area.

  14. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  15. Ecosystem Greenhouse Gas Fluxes Respond Directly to Weather Not Climate: A Case Study on the Relationship of Global Atmospheric Circulation, Foehn Frequency, and Winter Weather to Northern Alps Regional Grassland Phenology and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Mauder, M.; Schmid, H. P. E.

    2014-12-01

    The impact of climate change on regional ecosystem structure and biogeochemical cycling has two important aspects that require better elaboration to improve projections of these effects. The first is that ecosystems don't respond directly to climate, but indirectly via frequency and occurrence of weather systems, which are driven by climatic shifts in global circulation and radiative processes. The second is that many responses of ecosystems to these weather patterns and extremes are lagged in time. Here, we examine these aspects for northern Alpine grasslands. Long-term eddy covariance flux tower and phenology observations in Austria and Germany and biophysical models reveal a strong influence of winter air temperature, snowfall, and snowmelt frequency on winter grass mortality and spring grassland carbon uptake. Further, the mode of climate variability that drives winter air temperature and snow depth patterns is primarily the frequency of strong regional southerly Foehn flow that promotes warm, dry conditions in winter. Finally, we demonstrate that much of the interannual variance in Foehn frequency and southerly flow is driven by statistics and climatic trends of 500 hPa pressure patterns in Greenland, part of the Arctic Oscillation. However, a few years, including the unusually warm and dry winter of 2013-2014 appear to have secondary, possibly local thermotopographic circulation factors that promoted its weather conditions regionally, which also included primarily cool and wet conditions in northern Europe and the southern Alps. These findings demonstrate that the regional response of ecosystems to climate change is modulated by how large-scale circulation patterns influence local meteorology and topographic flows both during and outside the growing season and provides a framework for future assessment and climate model improvements of linkages of climate change, weather patterns, and ecosystem responses.

  16. Prairie Winter Play Patterns: (b) Winter and Play. Research Project 10.

    ERIC Educational Resources Information Center

    Thomsen, Charles H.; Borowiecka, Alexandra

    This guidebook provides an empirically-based set of planning and design guidelines for the construction of winter play facilities for Canadian youth residing in locations where outdoor play in winter is curtailed for approximately 4 months of the year. Information used in developing the guidelines was derived from field observations, a literature…

  17. Soil aggregates and their associated carbon and nitrogen content in winter annual pastures using different tillage management options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, winter annual pastures are established on grazing areas that are steeply sloping and not regarded as suitable for row-crop production. Using conventional (CT) tillage methods to prepare these fragile lands for winter annual pastures leads to increased erosion and rapid soil degradatio...

  18. Winter distribution of willow flycatcher subspecies

    USGS Publications Warehouse

    Paxton, E.H.; Unitt, P.; Sogge, M.K.; Whitfield, M.; Keim, P.

    2011-01-01

    Documenting how different regions across a species' breeding and nonbreeding range are linked via migratory movements is the first step in understanding how events in one region can influence events in others and is critical to identifying conservation threats throughout a migratory animal's annual cycle. We combined two studies that evaluated migratory connectivity in the Willow Flycatcher (Empidonax traillii), one using mitochondrial DNA sequences from 172 flycatchers sampled throughout their winter range, and another which examined morphological characteristics of 68 museum specimens collected in the winter range. Our results indicate that the four subspecies occupy distinct but overlapping regions of the winter range. Connectivity between specific breeding and winter grounds appears to be moderate to strong, with distributions that suggest migration patterns of both the chain and leap-frog types connecting the breeding and nonbreeding grounds. The Pacific lowlands of Costa Rica appear to be a key winter location for the endangered Southwestern Willow Flycatcher (E. t. extimus), although other countries in Central America may also be important for the subspecies. ?? The Cooper Ornithological Society 2011.

  19. Nuclear winter: the implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1987-01-01

    It is generally believed possible for some range of heavy nuclear attacks directed against cities that significant but not lethal climate alteration will ensue for at least a few weeks. Three-dimensional global circulation models being developed and used at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and the National Center for Atmospheric Research for a reasonable attack size seem to be converging on a temperature depression of the order of 10 to 15/degree/C, averaged over all land areas of the temperate region of the northern hemisphere. Temperature depressions as large as 25/degree/C are predicted in the interiors of continents for attacks in the summertime. Winter wars produce temperature depressions of only a few degrees. The authors have drawn the following implications for civil defense of the possibility of nuclear winter: (1) Neither cold nor drought is likely to be a direct threat to human survival. (2) The principal threat of nuclear winter is to agriculture. (3) Nuclear winter does not present an entirely new threat from nuclear war to the United States or the Soviet Union. (4) The consequences of nuclear winter would fall more heavily on the Soviet Union.

  20. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as 'key areas.' These forty-three areas constitute a network of areas that hold sites that likely are important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  1. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: Implications for winter dry deposition

    USGS Publications Warehouse

    Clow, D.W.; Ingersoll, G.P.; Mast, M.A.; Turk, J.T.; Campbell, D.H.

    2002-01-01

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO42- or NO3- (p>0.1). Small, but statistically significant differences (p???0.03) were indicated for all other solutes analyzed. Differences were largest for Ca2+ concentrations, which on average were 2.3??eql-1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9??eql-1 and a maximum of 12??eql-1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO42- and NO3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO42- and NO3- across the Rocky Mountain region.

  2. Dynamic interactions of snow and plants in the boreal forest, winter 2011-2012 revealed by time-lapse photography and LiDAR

    NASA Astrophysics Data System (ADS)

    Filhol, S. V.; Sturm, M.

    2012-12-01

    The winter blanket of snow in the boreal forest is anything but still. In winter 2011-2012 we followed the evolution of a snowpack on a boreal forest plot (0.5 ha) from first snowfall to the beginning of the melt in springtime. We used multiple methods such as time-lapse ground-based LiDAR (Light Detection and Ranging), time-lapse photography, imagery from a suspended cableway, snow-depth sensors, and frequent manual snow-pits. The experimental site is located near Fairbanks, Alaska, a typical boreal forest underlain by permafrost with sparse black spruce, larch, willow, and dwarf birch. We observed snowpack properties to be greatly affected by the vegetation substrate. Interactions between snow and plants are mainly dependent on falling snow properties (rate, wetness), plant heights and stiffness, plant canopy structure (leaves, number of branches, density), succession of weather events (wind before or after snow, thaw events) and pre-existing snow depth. Time-lapse imagery shows interception of snow by trees and shrubs controlled by air-temperature and wind events. LiDAR and snow pit measurements show one class of flexible shrubs (i.e. dwarf birch) bending under load, while a second class (willows) were far stiffer and resisted bending. Where dwarf birch branches were dense, it prevented snow from reaching the ground, leaving a significant air space under the snowpack. This vertical air gap can be as high as 10% of the total snow depth by the end of winter. Improving our understanding of the dynamic relationships between plants and snow is a fundamental key for studying boreal snow physics and snow ecology.

  3. Impact of the winter North Atlantic Oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO

    NASA Astrophysics Data System (ADS)

    Tachibana, Yoshihiro; Oshika, Miki; Nakamura, Tetsu

    2015-04-01

    This study tested the hypothesis that Asian weather and climate in a given winter can be predicted 1 year in advance. On the basis of a 51-year statistical analysis of reanalysis data, we propose for the first time that the positive phase of the Western Pacific (WP) pattern in the winter is linked to the negative phase of the North Atlantic Oscillation (NAO) in the previous winter, and vice versa. We show that there are two possible mechanisms responsible for this interannual remote linkage. One is an Arctic mechanism. Extensive Arctic sea ice in the summer after a negative NAO acts as a bridge to the positive phase of the WP in the next winter. The negative (positive) phase of the winter NAO changes oceanic currents in the North Atlantic and weakens (strengthens) oceanic heat transport into the Arctic. This weakened (strengthened) heat transport also slows down (speeds up) the reduction of sea ice in the spring. A condition of more (less) ice than normal then persists until the season of ice freezing in autumn. In winter, all of the Arctic Ocean is covered by sea ice, regardless of the autumn ice area. Less (more) ice production during the freezing season reduces (increases) the heat released from the ocean to the atmosphere in the Arctic. An anomalously small (large) heat flux excites stationary Rossby wave propagation, which induces warm (cold) advection to Japan. The other mechanism involves the tropics. An El Niño occurrence after a negative winter NAO acts as another bridge to the positive phase of the WP in the following winter. The timescale of the Arctic route is nearly decadal, whereas that of the tropical route is about 3-5 years. The tropical mechanism indicates that the NAO remotely excites an El Niño in the second half of the following year. A process perhaps responsible for the El Niño occurrence was investigated statistically. A negative NAO in the winter increases Eurasian snow cover. This anomalous snow cover then intensifies the cold air

  4. [Epidemiology of winter sport injuries].

    PubMed

    Heim, D; Weymann, A; Loeliger, U; Matter, P

    1993-01-01

    The region Davos/Klosters is a big wintersport area in Switzerland, where more than 5 million kilometers of vertical drop are skied per year. Over the last 20 years 28,777 patients with wintersport accidents have been treated in the 100-bed hospital of Davos, 85% of these patients have sustained their accident while skiing. An analysis of these datas show an increase of ski accidents as well as an increase of the distance skied. Especially an increase in snowboard accidents is noted over the last few years with a preponderance of lesions of the upper extremity. Injuries of the head, the trunk and simple skin lacerations remain stable over that period. Injuries of the upper extremity are increasing, whereas lower extremity lesions are slightly decreasing. There is a significant decrease of fractures of the leg, while at the same time an important increase of knee injuries is noted. Young patients below 20 years and those between 31 and 40 years of age sustained less accidents over the last 20 years, while the rest of the alpine skiers remain more or less stable in their accident incidence.

  5. Winter survival of Eurasian woodcock Scolopax rusticola in central Italy

    USGS Publications Warehouse

    Aradis, A.; Miller, M.W.; Landucci, G.; Ruda, P.; Taddei, S.; Spina, F.

    2008-01-01

    The Eurasian woodcock Scolopax rusticola is a popular game bird in much of Europe. However, little is known about its population dynamics. We estimated winter survival of woodcock in a protected area with no hunting in central Italy. We radio-tagged 68 woodcocks with battery-powered radio-transmitters during 2001-2005. Woodcocks were captured in fields at night from November through February and fitted with radios. Birds were classified on capture as juveniles or adults using plumage characteristics. Woodcocks were relocated daily through March of each year or until they died, disappeared from the study area, or until their radio failed. We constructed a set of eight competing models of daily survival for the period 1 December - 28 February. Estimates of survival were obtained using the program SURVIV and Akaike's Information Criteria. The best model suggested daily survival was a constant 0.9985 (95% CI = 0.9972-0.9998), corresponding to a survival rate of 0.88 (SE = 0.05) for the 90-day winter study period. Our estimate of juvenile survival is higher than previously reported, and may reflect the protected status of the study area. Our estimates of winter survival may be helpful in managing harvested woodcock populations as well as in conserving populations in an increasingly urbanised environment. ?? Wildlife Biology (2008).

  6. [Avian diversity in Wuhu City in summer and winter].

    PubMed

    Li, Yongmin; Wu, Xiaobing

    2006-02-01

    From May 2004 to February 2005, an investigation was made on the avian communities in four typical habitats, i.e., village and farmland, urban woodlot, floodplain, and riverine wetland in Wuhu City, with the related diversity indices analyzed. A total of 117 species belonging to 15 orders and 31 families was recorded. The avian species and G-F index in village and farmland, urban woodlot, and floodplain were higher in summer than in winter, while the species number, Shannon-Wiener index and Pielou index in riverine wetland were significantly higher in winter than in summer. The avian species and G-F index in urban woodlot were the highest, and the Shannon-Wiener index and Pielou index in floodplain were higher than those in other three habitats. The highest density was observed in village and farmland in summer and in urban woodlot in winter, being 31.1140 and 42.9160 ind x hm(-2), respectively. The avian species, density, Shannon-Wiener index and G-F index in riverine wetland were the lowest. Avian diversity could be enhanced by increasing spatial heterogeneity and reducing human disturbance.

  7. Winter climate change effects on soil C and N cycles in urban grasslands.

    PubMed

    Durán, Jorge; Rodríguez, Alexandra; Morse, Jennifer L; Groffman, Peter M

    2013-09-01

    Despite growing recognition of the role that cities have in global biogeochemical cycles, urban systems are among the least understood of all ecosystems. Urban grasslands are expanding rapidly along with urbanization, which is expected to increase at unprecedented rates in upcoming decades. The large and increasing area of urban grasslands and their impact on water and air quality justify the need for a better understanding of their biogeochemical cycles. There is also great uncertainty about the effect that climate change, especially changes in winter snow cover, will have on nutrient cycles in urban grasslands. We aimed to evaluate how reduced snow accumulation directly affects winter soil frost dynamics, and indirectly greenhouse gas fluxes and the processing of carbon (C) and nitrogen (N) during the subsequent growing season in northern urban grasslands. Both artificial and natural snow reduction increased winter soil frost, affecting winter microbial C and N processing, accelerating C and N cycles and increasing soil : atmosphere greenhouse gas exchange during the subsequent growing season. With lower snow accumulations that are predicted with climate change, we found decreases in N retention in these ecosystems, and increases in N2 O and CO2 flux to the atmosphere, significantly increasing the global warming potential of urban grasslands. Our results suggest that the environmental impacts of these rapidly expanding ecosystems are likely to increase as climate change brings milder winters and more extensive soil frost.

  8. Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy.

    PubMed

    Grabek, Katharine R; Karimpour-Fard, Anis; Epperson, L Elaine; Hindle, Allyson; Hunter, Lawrence E; Martin, Sandra L

    2011-11-21

    The hibernator's heart functions continuously and avoids damage across the wide temperature range of winter heterothermy. To define the molecular basis of this phenotype, we quantified proteomic changes in the 13-lined ground squirrel heart among eight distinct physiological states encompassing the hibernator's year. Unsupervised clustering revealed a prominent seasonal separation between the summer homeotherms and winter heterotherms, whereas within-season state separation was limited. Further, animals torpid in the fall were intermediate to summer and winter, consistent with the transitional nature of this phase. A seasonal analysis revealed that the relative abundances of protein spots were mainly winter-increased. The winter-elevated proteins were involved in fatty acid catabolism and protein folding, whereas the winter-depleted proteins included those that degrade branched-chain amino acids. To identify further state-dependent changes, protein spots were re-evaluated with respect to specific physiological state, confirming the predominance of seasonal differences. Additionally, chaperone and heat shock proteins increased in winter, including HSPA4, HSPB6, and HSP90AB1, which have known roles in protecting against ischemia-reperfusion injury and apoptosis. The most significant and greatest fold change observed was a disappearance of phospho-cofilin 2 at low body temperature, likely a strategy to preserve ATP. The robust summer-to-winter seasonal proteomic shift implies that a winter-protected state is orchestrated before prolonged torpor ensues. Additionally, the general preservation of the proteome during winter hibernation and an increase of stress response proteins, together with dephosphorylation of cofilin 2, highlight the importance of ATP-conserving mechanisms for winter cardioprotection. PMID:21914784

  9. BOREAS HYD-5 Winter Surface Flux Data

    NASA Technical Reports Server (NTRS)

    Harding, Richard; Hall, Forrest G. (Editor); Huemmrich, Karl Fred (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS HYD-5 team collected tower flux, surface meteorological, and surface temperature data on a frozen lake (Namekus Lake) and in a mature jack pine forest in the Beartrap Creek watershed. Both sites were located in the BOREAS SSA. The objective of this study was to characterize the winter energy and water vapor fluxes, as well as related properties (such as snow density, depth, temperature, and melt) for forested and nonforested areas of the boreal forest. Data were collected on Namekus Lake in the winters of 1994 and 1996, and at Beartrap Creek in the winter of 1994 only. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  10. Risk management model of winter navigation operations.

    PubMed

    Valdez Banda, Osiris A; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-07-15

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish-Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible.

  11. Nuclear winter: the continuing debate. Student essay

    SciTech Connect

    Nida, A.V.

    1987-03-23

    This essay examines the debate over the climatic consequences of global nuclear war as related in the so-called Nuclear Winter hypothesis. This review examines the major components of the theory and traces development of the scientific knowledge leading to a second phase of the controversy two years after the first hypothesis. The conclusions of the essay are that the original nuclear winter findings have been altered by later scientific study and, therefore, the political conclusions drawn by Carl Sagan in 1983 can no longer be supported by theory or facts. Continued use of the Crutzen-Birks (Ambio, 1982) and TTAPS (Science, December 1983) studies worst-case evidence from NCAR (Foreign Affairs, Summer 86) represents selective science. Arguing for strategic policy changes based on nuclear winter risks constitutes anti-nuclear rhetoric and not scientific reasoning.

  12. Monitoring Canadian bird populations with winter counts

    USGS Publications Warehouse

    Dunn, E.H.; Sauer, J.R.; Dunn, E.H.; Cadman, M.D.; Falls, J.B.

    1997-01-01

    Two winter bird surveys in Canada have range-wide population monitoring potential: Christmas Bird Counts (CBCs) and Project FeederWatch (PFW). CBC trends are shown to be correlated to Breeding Bird Survey (BBS) trends, whether or not part of the winter range lies outside the CBC coverage area. Some species are poorly covered by this survey (e.g. seabirds, nocturnal species, and Neotropical migrants). Only eight Canadian breeding species that are not sampled by the BBS have their winter range well-covered by the CBC, but the CBC should be valuable as an independent source of trend data for many more species, including northern nesters with only marginal BBS coverage. More work is needed to show whether PFW trends match BBS trends; even if they do, PFW covers relatively few species, and most are monitored already by the BBS and/or CBC

  13. Risk management model of winter navigation operations.

    PubMed

    Valdez Banda, Osiris A; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-07-15

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish-Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. PMID:27207023

  14. Evaluations on the potential productivity of winter wheat based on agro-ecological zone in the world

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, Q.; Du, X.; Zhao, L.; Lu, Y.; Li, D.; Liu, J.

    2015-04-01

    Wheat is the most widely grown crop globally and an essential source of calories in human diets. Maintaining and increasing global wheat production is therefore strongly linked to food security. In this paper, the evaluation model of winter wheat potential productivity was proposed based on agro-ecological zone and the historical winter wheat yield data in recent 30 years (1983-2011) obtained from FAO. And the potential productions of winter wheat in the world were investigated. The results showed that the realistic potential productivity of winter wheat in Western Europe was highest and it was more than 7500 kg/hm2. The realistic potential productivity of winter wheat in North China Plain were also higher, which was about 6000 kg/hm2. However, the realistic potential productivity of winter wheat in the United States which is the main winter wheat producing country were not high, only about 3000 kg/hm2. In addition to these regions which were the main winter wheat producing areas, the realistic potential productivity in other regions of the world were very low and mainly less than 1500 kg/hm2, like in southwest region of Russia. The gaps between potential productivity and realistic productivity of winter wheat in Kazakhstan and India were biggest, and the percentages of the gap in realistic productivity of winter wheat in Kazakhstan and India were more than 40%. In Russia, the gap between potential productivity and realistic productivity of winter wheat was lowest and the percentage of the gap in realistic productivity of winter wheat in Russia was only 10%.

  15. Winter energetics of female Indiana bats Myotis sodalis.

    PubMed

    Day, Katie M; Tomasi, Thomas E

    2014-01-01

    Understanding physiological limits and environmental optima is critical to developing protection strategies for endangered and threatened species. One theory to explain the decline in endangered Indiana bat Myotis sodalis populations involves increasing cave temperatures in winter hibernacula. Altered cave temperatures can raise metabolism and cause more arousals in torpid bats, both of which use more fat reserves. In addition, fluctuations in cave temperatures may cause additional arousals. Our objectives were to quantify the effect of temperature and fluctuations thereof on torpid metabolism and arousal frequency in this species. Female Indiana bats (n=36) were collected from caves just before hibernation, maintained in an environmental chamber that simulated hibernacula conditions, and had skin temperature recorded every 30 min throughout the winter. One environmental chamber containing bats (n=12) was sequentially set at 8°, 6°, and 4°C over the winter. The second chamber containing bats (n=12) experienced the same mean temperatures, but temperature fluctuated ±2°C on a regular basis. Torpor bouts were longest at 4°C and were not affected by temperature fluctuations. However, the temperature fluctuations appeared to cause longer arousals. Other bats (n=12) were individually placed in metabolic chambers to calculate oxygen consumption during torpor and during arousals. Torpid metabolism was affected by temperature; at 9°C, it was higher than at 7° or 5°C. Metabolism during arousals was not different among temperature treatments, but rates were almost 200 times higher than torpid metabolic rates. We calculated a winter energy budget and, from the energetic perspective, determined an optimum hibernation temperature (3°-6°C) for female Indiana bats. These findings suggest that hibernacula that provide these conditions deserve extra protection, although other factors in addition to energetics may play a role in temperature preferences. PMID:24457921

  16. Links between solar wind variations, the global electric circuit, and winter cyclone vorticity, and possibly to cold winters in Europe

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.

    2011-12-01

    There are a number of inputs to the atmosphere and the climate system that are modulated by solar activity that have their only common feature the modulation of the ionosphere-earth current density (Jz) in the global electric circuit, and to which it has now been shown there are small atmospheric responses in winter storm vorticity, surface pressure, and cloud cover. Similar responses are found to internal atmospheric inputs that modulate Jz. An inductive mechanism for initial storm electrification is described that responds to Jz and provides space charge for aerosol particles and droplets throughout the updraft region. The charge on droplets and aerosol particles, by the process of charge modulation of aerosol scavenging (CMAS), increases condensation nuclei concentrations and shifts their distributions to smaller average sizes. This produces smaller and more numerous droplets, and as shown by Rosenfeld et al (2008), delays initial precipitation and increases ice production and the vigor of the storm updraft. For baroclinic storms the additional latent heat release and updraft velocity increases storm vorticity. The result depends on both aerosol characteristics and the Jz variation. The cumulative effect of winter storm intensification, for example in the Icelandic Low cyclogenesis region, responding to Jz changes, is to increase blocking in the Atlantic Ocean. Such blocking reduces the flow of relatively warm moist ocean air onto Europe, while increasing the incidence of outbreaks of cold, dry, Arctic air. The possibility is examined that increases in cosmic ray flux and in Jz, at times of decadal and longer minima in solar activity, contributes to the changes in atmospheric circulation and the resulting unusually severe winters in the UK and Europe such as have occurred during extended solar minima in the late 17th century and early 21st century.

  17. Focus. No. 7, Winter, 1971.

    ERIC Educational Resources Information Center

    National Center for Health Services Research and Development (DHEW/PHS), Rockville, MD.

    One of a series of periodical reports from the Center, the document summarizes the research and development program of the Center's third year. The research program is directed at creating and testing the essential components of comprehensive community health care delivery systems that will increase the supply of services where they are most…

  18. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan.

    PubMed

    Tanaka, Chizuru; Nakano, Takashi; Yamazaki, Jun-Ya; Maruta, Emiko

    2015-01-01

    Photosynthetic characteristics of two broadleaved evergreen trees, Quercus myrsinaefolia and Machilus thunbergii, were compared in autumn and winter. The irradiance was similar in both seasons, but the air temperature was lower in winter. Under the winter conditions, net photosynthesis under natural sunlight (Anet) in both species dropped to 4 μmol CO2 m(-2) s(-1), and the quantum yield of photosystem II (PSII) photochemistry in dark-adapted leaves (Fv/Fm) also dropped to 0.60. In both species the maximum carboxylation rates of Rubisco (V(cmax)) decreased, and the amount of Rubisco increased in winter. A decline in chlorophyll (Chl) concentration and an increase in the Chl a/b ratio in winter resulted in a reduction in the size of the light-harvesting antennae. From measurements of Chl a fluorescence parameters, both the relative fraction and the energy flux rates of thermal dissipation through other non-photochemical processes were markedly elevated in winter. The results indicate that the photosynthetic apparatus in broadleaved evergreen species in warm temperate regions responds to winter through regulatory mechanisms involving the downregulation of light-harvesting and photosynthesis coupled with increased photoprotective thermal energy dissipation to minimize photodamage in winter. These mechanisms aid a quick restart of photosynthesis without the development of new leaves in the following spring. PMID:25500451

  19. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan.

    PubMed

    Tanaka, Chizuru; Nakano, Takashi; Yamazaki, Jun-Ya; Maruta, Emiko

    2015-01-01

    Photosynthetic characteristics of two broadleaved evergreen trees, Quercus myrsinaefolia and Machilus thunbergii, were compared in autumn and winter. The irradiance was similar in both seasons, but the air temperature was lower in winter. Under the winter conditions, net photosynthesis under natural sunlight (Anet) in both species dropped to 4 μmol CO2 m(-2) s(-1), and the quantum yield of photosystem II (PSII) photochemistry in dark-adapted leaves (Fv/Fm) also dropped to 0.60. In both species the maximum carboxylation rates of Rubisco (V(cmax)) decreased, and the amount of Rubisco increased in winter. A decline in chlorophyll (Chl) concentration and an increase in the Chl a/b ratio in winter resulted in a reduction in the size of the light-harvesting antennae. From measurements of Chl a fluorescence parameters, both the relative fraction and the energy flux rates of thermal dissipation through other non-photochemical processes were markedly elevated in winter. The results indicate that the photosynthetic apparatus in broadleaved evergreen species in warm temperate regions responds to winter through regulatory mechanisms involving the downregulation of light-harvesting and photosynthesis coupled with increased photoprotective thermal energy dissipation to minimize photodamage in winter. These mechanisms aid a quick restart of photosynthesis without the development of new leaves in the following spring.

  20. Nuclear winter: The evidence and the risks

    SciTech Connect

    Greene, O.

    1985-01-01

    Global concern over nuclear extinction, centered on the holocaust itself, now has turned to the more terrifying consequences of a post-war nuclear winter: ''the long-term effects - destruction of the environment, spread of epidemic diseases, contamination by radioactivity, and ... collapse of agriculture-(that) would spread famine and death to every country.'' Nuclear Winter, the latest in a series of studies by a number of different groups is clinical, analytical, systematic, and detailed. Two physicists and biologist analyze the effects on the climate, plants, animals, and living systems; the human costs; the policy implications.

  1. Implanting radio transmitters in wintering canvasbacks

    USGS Publications Warehouse

    Olsen, G.H.; Dein, F.J.; Haramis, G.M.; Jorde, D.G.

    1992-01-01

    To conduct telemetry studies of wintering canvasbacks (Aythya valisineria) on Chesapeake Bay [Maryland, USA], we needed to devise a suitable method of radio transmitter attachment. We describe as aseptic, intraabdominal surgical technique, using the inhalation anesthetic isoflurane, to implant 20-g radio transmitters in free-ranging canvasbacks. We evaluated the technique over 3 winters (1987-89), when an annual average of 83 female canvasbacks received implant surgery during a 9-day period in mid-December. Of 253 ducks, 248 (98%) were implanted successfully, and 200 (80.65) completed the 70-day study until early March. No mortality or abnormal behavior from surgery was identified post-release.

  2. Field Investigations of Winter Transmission of Eastern Equine Encephalitis Virus in Florida

    PubMed Central

    Bingham, Andrea M.; Burkett-Cadena, Nathan D.; Hassan, Hassan K.; McClure, Christopher J. W.; Unnasch, Thomas R.

    2014-01-01

    Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida. PMID:25070997

  3. Field investigations of winter transmission of eastern equine encephalitis virus in Florida.

    PubMed

    Bingham, Andrea M; Burkett-Cadena, Nathan D; Hassan, Hassan K; McClure, Christopher J W; Unnasch, Thomas R

    2014-10-01

    Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida.

  4. [Population trends and behavioral observations of wintering common cranes (Grus grus) in Yancheng Nature Reserve].

    PubMed

    Li, Zhong-Qiu; Wang, Zhi; Ge, Chen

    2013-10-01

    To understand the population status and behavioural features of wintering common cranes in the Yancheng Nature Reserve, two transects were established and population trends were monitored every month over five recent winters from 2008 to 2013. Wintering behaviours were also observed in order to explore the possible effects of family size and age on time budgets. Results indicated that the populations were stable with a range of 303 to 707 individuals. Negative effects of coastal developments were not found on the wintering population of common cranes, which might be related to their diets and preference for artificial wetland habitats. We found a significant effect of age on time budgets, with juveniles spending more time feeding and less time alerting, which might be related to the needs of body development and skill learning. Family size did not affect the time budgets of the cranes, which indicated that adults did not increase vigilance investment even when raising a larger family. PMID:24115655

  5. Lesser scaup winter foraging and nutrient reserve acquisition in east-central Florida

    USGS Publications Warehouse

    Herring, G.; Collazo, J.A.

    2006-01-01

    Lesser scaup (Aythya affinis) populations have been declining since the late 1970s. One of the explanations to account for this decline, the spring-condition hypothesis (SCH), is based on the premise that scaup are limited by their ability to acquire or maintain nutrient reserves during migration to the breeding grounds, leading to an impairment of their reproductive potential. Available evidence suggests that endogenous reserves required for reproduction are obtained at a later stage of migration or after arrival at the breeding grounds, not wintering sites. However, only one study has addressed body-condition levels on a southern wintering site in the last decade, with results limited to the wintering grounds on the Mississippi Flyway. We documented foraging behavior, nutrient levels, and body mass of lesser scaup in east-central Florida, USA, where 62% of the Atlantic Flyway population overwinters, during the winters of 2002 and 2003. Diurnal foraging did not increase seasonally. Nocturnal foraging increased seasonally by 76% or 43 minutes per night in females and by 478% or 1.9 hours per night in males. Measures of body condition did not change seasonally during 2002 for either sex. Between early and later winter in 2003 corrected body mass (CBM) and lipid reserves of male scaup increased 77 g and 39 g, respectively. Our results suggest that lesser scaup maintain or may slightly improve their physiological condition in east-central Florida during winter. Lower body mass and differences in nutrient levels in east-central Florida, compared to a wintering site in Louisiana, likely stem from geographic variation and lower thermal requirements associated with the warmer Florida environment. Lesser scaup depart Florida with sufficient reserves to initiate spring migration, but they maximize nutrient reserves used during reproduction elsewhere during migration or on the breeding grounds. These results suggest that maintaining the ecological integrity of this wintering

  6. Interdecadal and Interannual Variability of Winter Precipitation in Southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Fraedrich, K.; Zhu, X.; Sielmann, F.

    2013-12-01

    Interdecadal variability of observed winter (DJF) precipitation in Southeast China (1961 to 2010) is characterized by the first EOF of the three-monthly Standardized Precipitation Index (SPI) subjected to a 9-year running mean, while the differences from the original describe the interannual fluctuations. For interdecadal time scales the dominating spatial modes represent monopole features over Southeast China involving the Arctic Oscillation (AO) and the sea surface temperature (SST) anomalies over western Pacific. Dynamic composite analysis (based on NCEP/NCAR and ERA-40 reanalyzes) reveals the following results: (i) Interdecadal SPI-variations show a trend from a dryer state in the 1970s via an increase during the 1980s towards stabilization of wetter conditions commencing with the 1990s. (ii) In mid-to-high latitudes the weakened southward flow of polar airmasses induces low-level warming over Eurasia due to stronger Arctic Oscillation (AO) by warmer zonal temperature advection. This indicates that the precipitation increase in Southeast is attributed circulation anomalies over mid-to-high latitudes which are related to AO. (iii) The abnormal moisture flux along the southwestern boundary of the abnormal anticyclone over south Japan (and its anomalous south-easterlies) is modulated by the sea surface temperature (SST) anomalies over Western Pacific; a positive (negative) SST anomaly will strengthen (weaken) the warm and moist air flow, leading to abundant (less) precipitation in Southeast China. This demonstrates the collaborative effect of AO and SST anomalies in determining the nonlinear trend observed in winter precipitation over Southeast China. For interannual time scales the dominating spatial pattern also represents monopole patterns. Composite analysis (with resampling test) of the associated circulation anomalies reveals the following results: (i) The wet (dry) winter is a result of the strengthened (weakened) northward warm moist air over east coast of

  7. Winter weather versus group thermoregulation: what determines survival in hibernating mammals?

    PubMed

    Patil, V P; Morrison, S F; Karels, T J; Hik, D S

    2013-09-01

    For socially hibernating mammals, the effectiveness of huddling as a means of energy conservation should increase with group size. However, group size has only been linked to increased survival in a few hibernating species, and the relative importance of social structure versus winter conditions during hibernation remains uncertain. We studied the influence of winter weather conditions, social group composition, age-structure, and other environmental factors and individual attributes on the overwinter survival of hoary marmots (Marmota caligata) in the Yukon Territory, Canada. Juvenile hoary marmot survival was negatively correlated with the mean winter (November to May) Pacific Decadal Oscillation (PDO) index. Survival in older age-classes was negatively correlated with PDO lagged by 1 year. Social group size and structure were weakly correlated with survival in comparison to PDO. The relationship between winter PDO and survival was most likely due to the importance of snowpack as insulation during hibernation. The apparent response of hoary marmots to changing winter conditions contrasted sharply with those of other marmot species and other mammalian alpine herbivores. In conclusion, the severity of winter weather may constrain the effectiveness of group thermoregulation in socially hibernating mammals. PMID:23456241

  8. Rapid climate driven shifts in wintering distributions of three common waterbird species.

    PubMed

    Lehikoinen, Aleksi; Jaatinen, Kim; Vähätalo, Anssi V; Clausen, Preben; Crowe, Olivia; Deceuninck, Bernard; Hearn, Richard; Holt, Chas A; Hornman, Menno; Keller, Verena; Nilsson, Leif; Langendoen, Tom; Tománková, Irena; Wahl, Johannes; Fox, Anthony D

    2013-07-01

    Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change. Here, we demonstrate strong north-eastwards shifts in the centres of gravity of the entire wintering range of three common waterbird species along the North-West Europe flyway during the past three decades. These shifts correlate with an increase of 3.8 °C in early winter temperature in the north-eastern part of the wintering areas, where bird abundance increased exponentially, corresponding with decreases in abundance at the south-western margin of the wintering ranges. This confirms the need to re-evaluate conservation site safeguard networks and associated biodiversity monitoring along the flyway, as new important wintering areas are established further north and east, and highlights the general urgency of conservation planning in a changing world. Range shifts in wintering waterbirds may also affect hunting pressure, which may alter bag sizes and lead to population-level consequences. PMID:23509023

  9. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.

    PubMed

    Arambourou, Hélène; Stoks, Robby

    2015-10-01

    Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. PMID:26261878

  10. Distribution of alewives in southeastern Lake Ontario in autumn and winter: a clue to winter mortalities

    USGS Publications Warehouse

    Bergstedt, Roger A.; O'Gorman, Robert

    1989-01-01

    Alewives Alosa pseudoharengus in the Great Lakes are thought to avoid extreme cold in winter by moving to deep water where the temperature is usually highest because of inverse thermal stratification. Information collected in Lake Ontario during autumn and winter 1981–1984 with an echo sounder and bottom and midwater trawls indicated that many alewives remained at depths above 110 m, regardless of water temperature. Alewives in the Great Lakes that did not descend to greater depths would be exposed to potentially lethal temperatures during cold winters.inters.

  11. Mate loss in winter and mallard reproduction

    USGS Publications Warehouse

    Lercel, Barbara A.; Kaminski, Richard M.; Cox, Robert R.

    1999-01-01

    Mallards (Anas platyrhynchos) frequently pair during winter, and duck hunting seasons have been extended until the end of January in several southern states in the Mississippi Flyway. Therefore, we simulated dissolution of pair bonds from natural or hunting mortality by removing mates of wild-strain, captive, yearling female mallards in late January 1996 and early February 1997 to test if mate loss in winter would affect subsequent pair formation and reproductive performance. Most (97%) widowed females paired again. Nesting and incubation frequencies, nest-initiation date, days between first and second nests, and egg mass did not differ (P > 0.126) between widowed and control (i.e., no mate loss experienced) females in 1996 and 1997. In 1997, widowed females laid 1.91 fewer eggs in first nests (P = 0.014) and 3.75 fewer viable eggs in second nests (P = 0.056). Computer simulations with a mallard productivity model (incorporating default parameters [i.e., average environmental conditions]) indicated that the observed decreased clutch size of first nests, fewer viable eggs in second nests, and these factors combined had potential to decrease recruitment rates of yearling female mallards 9%, 12%, and 20%. Our results indicate that winter mate loss could reduce reproductive performance by yearling female mallards in some years. We suggest caution regarding extending duck hunting seasons in winter without concurrent evaluations of harvest and demographics of mallard and other duck populations.

  12. Winter in Northern Europe (WINE) Project

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1982-01-01

    The scientific aims, work plan, and organization of the Middle Atmosphere Program winter in northern Europe (MAP/WINE) are described. Proposed contributions to the MAP/WINE program from various countries are enumerated. Specific atmospheric parameters to be examined are listed along with the corresponding measurement technique.

  13. Winter Video Series Coming in January | Poster

    Cancer.gov

    The Scientific Library’s annual Summer Video Series was so successful that it will be offering a new Winter Video Series beginning in January. For this inaugural event, the staff is showing the eight-part series from National Geographic titled “American Genius.” 

  14. Winter Secrets: An Instant Lesson Plan.

    ERIC Educational Resources Information Center

    Collyer, Cam

    1997-01-01

    Outdoor lesson plan aims to stimulate student interest in animals' adaptations to winter and the various signs and clues to animal behavior. Includes questions for class discussion, tips for guiding the hike, and instructions for two games that illustrate the predator-prey relationship. Notes curriculum connections to the East York (Ontario) Board…

  15. Nuclear winter - Physics and physical mechanisms

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.

    1991-01-01

    The basic physics of the environmental perturbations caused by multiple nuclear detonations is explored, summarizing current knowledge of the possible physical, chemical, and biological impacts of nuclear war. Emphasis is given to the impact of the bomb-generated smoke (soot) particles. General classes of models that have been used to simulate nuclear winter are examined, using specific models as examples.

  16. Appalachia's Winter Secret: Downhill on the Mountains.

    ERIC Educational Resources Information Center

    Johnson, Randy

    1991-01-01

    Describes ski-industry and winter-tourism growth in Appalachia. Sketches ski-resort developments in Maryland, Pennsylvania, North Carolina, and West Virginia. Describes economic threats to industry, its economic impact on Appalachian states and region, resorts' general qualities, and ski industry's promotional efforts. (TES)

  17. Music Activities for Lemonade in Winter

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2014-01-01

    "Lemonade in Winter: A Book About Two Kids Counting Money" is a children's book about math; however, when sharing it in the music classroom, street cries and clapping games emerge. Jenkins' and Karas' book provides a springboard to lessons addressing several music elements, including form, tempo, and rhythm, as well as…

  18. Registration of ‘Atlantic’ winter barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Atlantic’ (Reg. No. CV-354, PI 665041), a six-row, hulled winter barley (Hordeum vulgare L.) tested as VA06B-19 by the Virginia Agricultural Experiment Station, was released in March 2011. Atlantic was derived from the cross VA97B-176/VA92-44-279 using a modified bulk-breeding method. It was evalua...

  19. Impact of change in winter strategy of one parasitoid species on the diversity and function of a guild of parasitoids.

    PubMed

    Andrade, Thiago Oliveira; Krespi, Liliane; Bonnardot, Valérie; van Baaren, Joan; Outreman, Yannick

    2016-03-01

    The rise of temperatures may enable species to increase their activities during winter periods and to occupy new areas. In winter, resource density is low for most species and an increased number of active consumers during this season may produce heightened competitive pressure. In Western France, the aphid parasitoid species Aphidius avenae Haliday has been known to adopt a winter diapausing strategy adjacent to newly sown cereal crops, until recent reports of active winter populations in cereal crops. We investigate how the addition of this species to the winter guild of parasitoids may change the structure of the aphid-parasitoid food web and the host-exploitation strategies of previously occurring parasitoids. We showed that in winter, Aphidius avenae was mostly associated with two aphid species, Sitobion avenae Fabricius and Metopolophium dirhodum Walker, while the generalist species Aphidius rhopalosiphi was restricted to the aphid species Rhopalosiphum padi L. in the presence of Aphidius avenae. Due to this new competition, winter food webs present a higher degree of compartmentalization and lower proportional similarity index values than spring ones. Parasitoid and aphid abundances responded significantly to changes in daily high temperatures, suggesting that the host-parasitoid community structure can be partly predicted by climate. This study demonstrates how a change in the winter strategy of one species of a guild can modify complex interspecific relationships in host-parasitoid systems.

  20. Nuclear Winter: Implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1988-05-01

    ''Nuclear Winter'' is the term given to the cooling hypothesized to occur in the Northern Hemisphere following a nuclear war as the result of the injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the paper was published in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. Three-dimensional global circulation models have resulted in reduced estimates of cooling---15 to 25/degree/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought is likely to be a direct threat to human survival for populations with the wherewithal to survive normal January temperatures. The principal threat from nuclear winter is to food production, and this could present problems to third parties who are without food reserves. Loss of a crop year is neither a new nor an unexpected threat from nuclear war to the United States and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the United States due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year.

  1. Nuclear Winter: The implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1987-01-01

    ''Nuclear Winter'' is the term given to hypothesized cooling in the northern hemisphere following a nuclear war due to injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the original paper in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. The widespread use of 3-dimensional global circulation models have resulted in reduced estimates of cooling; 15 to 25/sup 0/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought are likely to be direct threats to human survival for populations with the wherewithal to survive normal January temperatures; The principal threat from nuclear winter is to food production, and could present problems to third parties without food reserves; and Loss of a crop year is neither a new nor unexpected threat from nuclear war to the US and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the US due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year. 6 refs.

  2. The long winter model of Martian biology - A speculation.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1971-01-01

    A temporal microenvironment model is proposed for Martian biology that is based on an estimated mean thickness of nearly 1 km of frost in the Martian north polar cap summer remnant. If vaporized, this frost could yield not only 1 kg per sq cm of atmosphere, but also higher global temperatures through the greenhouse effect and a greatly increased likelihood of liquid water. Vaporization of such cap remnants may occur twice each equinoctial precession, and Martian organisms may now be in cryptobiotic repose awaiting the end of the long precessional winter. The Viking biology experiments might test this hypothesis.

  3. [Effects of ozone stress upon winter wheat photosynthesis, lipid peroxidation and antioxidant systems].

    PubMed

    Zheng, You-fei; Hu, Cheng-da; Wu, Rong-jun; Liu, Rui-na; Zhao, Ze; Zhang, Jin-en

    2010-07-01

    Stress effects of surface increased ozone concentration on winter wheat photosynthesis, lipid peroxidation and antioxidant systems in varied growth stages (jointing stage, booting stage, blooming stage and grain filling stage) were studied, the winter wheat was exposed to open top chambers (OTCs) in an open field conditions to three levels ozone concentrations (CK, 100 nmol x mol(-1), 150 nmol x mol(-1)). The results revealed that within 150 nmol x mol(-1) ozone concentration, as the ozone concentration and time increased,total chlorophyll content,chlorophyll a and b contents of winter wheat leaves were general declined,but compared to CK, the total chlorophyll and chlorophyll a content of T1 treatment groups were a little higher at booting and blooming stage; the conductance of stomatal was affected, the activation of unit leaf area decreased, intercellular CO2 concentration and stomatal limitation value showed a fluctuation change tendency. At the same time, a self-protective mechanism of winter wheat were launched. Concrete expression of SOD activity first increased rapidly and then gradually decreased, the activity of POD showed a decrease firstly and then rapidly increased. From the jointing stage to the blooming stage and from the grain filling stage one to grain filling stage two, the activity of CAT rapidly increased first and then comparatively decreased, but the content of MDA kept steadily rising. The carotenoid content increased first and then decreased, heat dissipation of unit leaf area increased. These results indicate that antioxidant enzymes can not completely eliminate excessive reactive oxygen species in vivo of winter wheat, then lead to accumulation of reactive oxygen species, further exacerbate the lipid peroxidation, that result in the increase of membrane permeability, degradation of chlorophyll, reduction of net photosynthetic rate, imposing on the winter wheat leaves senescence process. PMID:20825039

  4. Winter growth, development, and emergence of Diamesa mendotae (Diptera: Chironomidae) in Minnesota streams.

    PubMed

    Bouchard, R W; Ferrington, L C

    2009-02-01

    Diamesa mendotae Muttkowski is commonly observed emerging during winter at low air temperatures from Minnesota streams, but little is known about the winter dynamics of this and other winter-emerging aquatic insects. Biweekly collections of surface-floating pupal exuviae indicated that this species emerged from October through May, when water temperatures were less than approximately 10 degrees C. Emergence occurred continuously through winter, with a lull during January and February. Development of larvae from in situ growth enclosures supported emergence data and indicated that the reduction and halt of emergence in the spring was related to increasing water temperatures (> 10 degrees C), which were unsuitable for the growth or survival of the larvae. Development continued through January when water temperatures were at their lowest for the study stream and therefore did not explain the mid-winter lull in emergence. Growth rates of D. mendotae were not greater than other chironomid taxa at similar temperatures, indicating that lower critical thermal limits for growth allow this species to dominate ground-water influenced streams during the winter in Minnesota. The results of this study show that D. mendotae is well suited for growth and development at low temperatures and provides an assessment of important factors that regulate this species at low water and air temperatures.

  5. Northern pintail body condition during wet and dry winters in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, M.R.

    1986-01-01

    Body weights and carcass composition of male and female adult northern pintails (Anas acuta) were investigated in the Sacramento Valley, California, from August to March 1979-82. Pintails were lightweight, lean, and had reduced breast, leg, and heart muscles during August-September. Ducks steadily gained weight after arrival; and body, carcass (body wt minus feathers and gastrointestinal content), fat protein, and muscle weights peaked in October-November. Fat-free dry weight remained high but variable the rest of the winter, whereas body and carcass weight and fat content declined to lows in December or January, then increased again in February or March. Gizzard weights declined from early fall to March. Males were always heavier than females, but females were fatter (percentage) than males during mid-winter. Mid-winter body weight, carcass fat, and protein content were significantly (P < 0.01) lower in the dry winter of 1980-81 than in 2 wet winters (1979-80 and 1981-82). Changes in pintail body weight and composition during winter are probably adaptations to mild climate, predictable food supplies, and requirements for pair formation and molt.

  6. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands.

    PubMed

    Beumer, Victor; van Wirdum, Geert; Beltman, Boudewijn; Griffioen, Jasper; Grootjans, Ab P; Verhoeven, Jos T A

    2008-08-25

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species.

  7. Geochemistry and flooding as determining factors of plant species composition in Dutch winter-flooded riverine grasslands.

    PubMed

    Beumer, Victor; van Wirdum, Geert; Beltman, Boudewijn; Griffioen, Jasper; Grootjans, Ab P; Verhoeven, Jos T A

    2008-08-25

    Dutch water policy aims for more frequent, controlled flooding of river valley floodplains to avoid unwanted flooding elsewhere; in anticipation of increased flooding risks resulting from climate changes. Controlled flooding usually takes place in winter in parts of the valleys which had not been subject to flooding in the last decades. It may thus affect existing nature with its conservation values. The goal of this study was to clarify the geochemical and hydrological factors determining plant species composition of winter-flooded river valley grasslands. A correlative study was carried out in 43 sites in 13 Dutch river valley floodplains, with measurements of flooding regime, vegetation composition, soil nutrients and soil pH status. With the use of canonical correspondence analysis (CCA) the plant species composition was investigated in relation to the geochemical variables and the winter winter-flooding regime. We found that the distributions of target species and non-target species were clearly correlated with geochemical characteristics and flooding regime. Clustering of sites within the CCA plots has led us to distinguish between four types of winter flooding in our areas: floodplains with (a) accumulating rain water, (b) low groundwater levels flooded with river water, (c) discharging groundwater and (d) high groundwater levels flooded with river water. Our major conclusions are (1) the winter groundwater level of winter-flooded grasslands was important for evaluating the effects of winter flooding on the geochemistry and plant species composition, and (2) winter winter-flooding effects were largely determined by the nature of the flooding. A high frequency of flooding particularly favoured a small set of common plant species. In areas with groundwater seepage, winter flooding may provide geochemical conditions suitable for diverse vegetation types with rare species. Rainwater flooded sites appeared less suitable for most target species. PMID:18514261

  8. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees

    PubMed Central

    Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.

    2011-01-01

    Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649

  9. Winter Ecology of the Western Burrowing Owl (Athene cunicularia hypugaea) in Southern Texas 1999-2004

    USGS Publications Warehouse

    Woodin, Marc C.; Skoruppa, Mary K.; Hickman, Graham C.

    2007-01-01

    This study examines the winter ecology of the western burrowing owl (Athene cunicularia hypugaea) in five Texas counties surrounding Corpus Christi, in southern Texas. There is a substantial gap in information on the owl's life cycle during migration and non-breeding winter months; almost all previous research on western burrowing owls has been conducted during the breeding season. The western burrowing owl currently is federally threatened in Mexico, federally endangered in Canada, and in the United States is considered a National Bird of Conservation Concern by the U.S. Fish and Wildlife Service. Topics investigated included status, effectiveness of public outreach, roost sites and use of culverts and artificial burrows, roost site fidelity, diet, contaminant burdens, body mass, and ectoparasites. Early ornithological reports and a museum egg set revealed that burrowing owls once bred in southern Texas and were common in winter; however, since the 1950's they have been reported in relatively low numbers and only during winter. In this study, public outreach increased western burrowing owl detections by 68 percent. Owls selected winter roost sites with small-diameter openings, including culverts less than or equal to 16 centimeters and artificial burrows of 15 centimeters, probably because the small diameters deterred mammalian predators. Owls showed strong roost site fidelity; 15 banded birds stayed at the same roost sites within a winter, and 8 returned to the same site the following winter. The winter diet was over 90 percent insects, with crickets the primary prey. Analyses of invertebrate prey and regurgitated pellets showed that residues of all but 3 of 28 carbamate and organophosphate pesticides were detected at least once, but all were below known lethal concentrations. Mean body mass of western burrowing owls was 168 grams and was highest in midwinter. Feather lice were detected in low numbers on a few owls, but no fleas or other ectoparasites were found.

  10. Simulating the influences of various fire regimes on caribou winter habitat.

    PubMed

    Rupp, T Scott; Olson, Mark; Adams, Layne G; Dale, Bruce W; Joly, Kyle; Henkelman, Jonathan; Collins, William B; Starfield, Anthony M

    2006-10-01

    Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.

  11. The response of a Kansas winter bird community to weather, photoperiod, and year

    USGS Publications Warehouse

    Stapanian, M.A.; Smith, C.C.; Finck, E.J.

    1999-01-01

    We conducted a bird census along the same route nearly each week for 14 winters (194 censuses), and compared the mean number of species per station and the total number of species recorded on the census with the length of photoperiod and weather variables. We found significant differences among winters for both indicators of species richness. This result is consistent with previous studies in which abundance of food was measured in the same general area. Both indicators of species richness were negatively associated with the number of days after 1 November. This result is consistent with the hypothesis that wintering species dependent on nonrenewed food resources lose individuals to mortality or emigration. Further, there was a positive relationship between photoperiod and both indicators of species richness. This result is consistent with the hypothesis that the detection of individuals in the early morning hours increases with the amount of daylight they have available for foraging and social behaviors. Wind speed and temperature had negative and positive relationships, respectively, to species richness. The number of species per station was greatest on days when the ground was covered with dew and least on days when snow depth was more than 15 cm. When the 'winters' were divided into four 30-day 'quarters', most of the 61 species were recorded with equal frequency in each quarter. Eight species were detected less frequently at the end of winter than in the beginning. Four species exhibited the reverse pattern. Two species were recorded more frequently at the beginning and at the end of the winter than during the middle. Temperature, wind, photoperiod, successive winter day, year, and species-specific evolutionary history all affect winter bird species richness.

  12. Simulating the influences of various fire regimes on caribou winter habitat

    USGS Publications Warehouse

    Rupp, T.S.; Olson, M.; Adams, L.G.; Dale, B.W.; Joly, Kyle; Henkelman, J.; Collins, W.B.; Starfield, A.M.

    2006-01-01

    Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics. ?? 2006 by the Ecological Society of America.

  13. Does day length affect winter bird distribution? Testing the role of an elusive variable.

    PubMed

    Carrascal, Luis M; Santos, Tomás; Tellería, José L

    2012-01-01

    Differences in day length may act as a critical factor in bird biology by introducing time constraints in energy acquisition during winter. Thus, differences in day length might operate as a main determinant of bird abundance along latitudinal gradients. This work examines the influence of day length on the abundance of wintering crested tits (Lophophanes cristatus) in 26 localities of Spanish juniper (Juniperus thurifera) dwarf woodlands (average height of 5 m) located along a latitudinal gradient in the Spanish highlands, while controlling for the influence of food availability, minimum night temperature, habitat structure and landscape characteristics. Top regression models in the AIC framework explained 56% of variance in bird numbers. All models incorporated day length as the variable with the highest magnitude effect. Food availability also played an important role, although only the crop of ripe juniper fruits, but not arthropods, positively affected crested tit abundance. Differences in vegetation structure across localities had also a strong positive effect (average tree height and juniper tree density). Geographical variation in night temperature had no influence on crested tit distribution, despite the low winter temperatures reached in these dwarf forests. This paper demonstrates for the first time that winter bird abundance increases with day length after controlling for the effect of other environmental variables. Winter average difference in day length was only 10.5 minutes per day along the 1°47' latitudinal interval (190 km) included in this study. This amount of time, which reaches 13.5 h accumulated throughout the winter season, appears to be large enough to affect the long-term energy budget of small passerines during winter and to shape the distribution of winter bird abundance under restrictive environmental conditions.

  14. Does Day Length Affect Winter Bird Distribution? Testing the Role of an Elusive Variable

    PubMed Central

    Carrascal, Luis M.; Santos, Tomás; Tellería, José L.

    2012-01-01

    Differences in day length may act as a critical factor in bird biology by introducing time constraints in energy acquisition during winter. Thus, differences in day length might operate as a main determinant of bird abundance along latitudinal gradients. This work examines the influence of day length on the abundance of wintering crested tits (Lophophanes cristatus) in 26 localities of Spanish juniper (Juniperus thurifera) dwarf woodlands (average height of 5 m) located along a latitudinal gradient in the Spanish highlands, while controlling for the influence of food availability, minimum night temperature, habitat structure and landscape characteristics. Top regression models in the AIC framework explained 56% of variance in bird numbers. All models incorporated day length as the variable with the highest magnitude effect. Food availability also played an important role, although only the crop of ripe juniper fruits, but not arthropods, positively affected crested tit abundance. Differences in vegetation structure across localities had also a strong positive effect (average tree height and juniper tree density). Geographical variation in night temperature had no influence on crested tit distribution, despite the low winter temperatures reached in these dwarf forests. This paper demonstrates for the first time that winter bird abundance increases with day length after controlling for the effect of other environmental variables. Winter average difference in day length was only 10.5 minutes per day along the 1°47′ latitudinal interval (190 km) included in this study. This amount of time, which reaches 13.5 h accumulated throughout the winter season, appears to be large enough to affect the long-term energy budget of small passerines during winter and to shape the distribution of winter bird abundance under restrictive environmental conditions. PMID:22393442

  15. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.

    PubMed

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif

    2014-04-01

    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region. PMID:24318957

  16. Sustainability of winter tourism in a changing climate over Kashmir Himalaya.

    PubMed

    Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif

    2014-04-01

    Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.

  17. Pinatubo eruption winter climate effects: Model versus observations

    NASA Technical Reports Server (NTRS)

    Graf, HANS-F.; Kirchner, Ingo; Schult, Ingrid; Robock, Alan

    1992-01-01

    Large volcanic eruptions, in addition to the well-known effect of producing global cooling for a year or two, have been observed to produce shorter-term responses in the climate system involving non-linear dynamical processes. In this paper, we use the ECHAM2 general circulation model forced with stratospheric aerosols to test some of these ideas. Run in a perpetual-January mode, with tropical stratospheric heating from the volcanic aerosols typical of the 1982 El Chichon eruption or the 1991 Pinatubo eruption, we find a dynamical response with an increased polar night jet in the Northern Hemisphere (NH) and stronger zonal winds which extended down into the troposphere. The Azores High shifts northward with increased tropospheric westerlies at 60N and increased easterlies at 30N. Surface temperatures are higher both in northern Eurasia and North America, in agreement with observations for the NH winters or 1982-83 and 1991-92 as well as the winters following the other 10 largest volcanic eruptions since 1883.

  18. Projecting Future Change in Growing Degree Days of Winter Wheat

    NASA Astrophysics Data System (ADS)

    Ruiz Castillo, N.; Gaitan Ospina, C. F.; Mcpherson, R. A.

    2015-12-01

    Southwest Oklahoma is one of the most productive regions in the Great Plains where winter wheat is produced. To assess the effect of climate change on the growing degree days (GDD) available for winter wheat production, we selected from the CMIP5 archive, two of the best performing Global Climate Models (GCMs) for the region (MIROC5 and CCSM4) to project the future change in GDD under the Representative Concentration Pathway (RCP) 8.5 —a "business as usual" future trajectory for greenhouse gas concentrations. Two quantile mapping downscaling methods were applied to both GCMs to obtain local scale projections. The downscaled outputs were applied to a GDD formula to show the GDD changes between the historical period (1961-2004) and the future period (2006-2098) in terms of mean differences. The results show that at the end of the 2098 growing season, the increase in GDD is expected to be between -2.0 and 6. Depending on the GCM used, Southwest Oklahoma is expected to see an increase in future GDD under the CCSM4 GCM and a mix of increase, no change and decrease under the MIROC5 GCM.

  19. Theoretical models of adaptive energy management in small wintering birds.

    PubMed

    Brodin, Anders

    2007-10-29

    Many small passerines are resident in forests with very cold winters. Considering their size and the adverse conditions, this is a remarkable feat that requires optimal energy management in several respects, for example regulation of body fat reserves, food hoarding and night-time hypothermia. Besides their beneficial effect on survival, these behaviours also entail various costs. The scenario is complex with many potentially important factors, and this has made 'the little bird in winter' a popular topic for theoretic modellers. Many predictions could have been made intuitively, but models have been especially important when many factors interact. Predictions that hardly could have been made without models include: (i) the minimum mortality occurs at the fat level where the marginal values of starvation risk and predation risk are equal; (ii) starvation risk may also decrease when food requirement increases; (iii) mortality from starvation may correlate positively with fat reserves; (iv) the existence of food stores can increase fitness substantially even if the food is not eaten; (v) environmental changes may induce increases or decreases in the level of reserves depending on whether changes are temporary or permanent; and (vi) hoarding can also evolve under seemingly group-selectionistic conditions.

  20. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  1. Measurement of evapotranspiration in a winter wheat field

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Liu, Changming; Shen, Yanjun; Kondoh, A.; Tang, Changyuan; Tanaka, T.; Shimada, J.

    2002-10-01

    Daily evapotranspiration from a winter wheat field on the North China Plain measured by large-scale weighing lysimeter was linearly related to that measured by the Bowen ratio energy balance (BREB) technique. Soil evaporation averaged about 23·6% of evapotranspiration from the post-winter dormancy revival stage to the grain ripening stage in 1999. On clear days during winter dormancy, about half of the net radiation flux Rn was used to warm soil. During the revival stage, conductive heat flux G also used most of the incoming Rn, but the ratio of latent heat flux E to Rn increased. During the stem-extension stage, E was about 50% of Rn; thereafter, E/Rincreased continually, but

  2. Attribution of UK Winter Floods to Anthropogenic Forcing

    NASA Astrophysics Data System (ADS)

    Schaller, N.; Alison, K.; Sparrow, S. N.; Otto, F. E. L.; Massey, N.; Vautard, R.; Yiou, P.; van Oldenborgh, G. J.; van Haren, R.; Lamb, R.; Huntingford, C.; Crooks, S.; Legg, T.; Weisheimer, A.; Bowery, A.; Miller, J.; Jones, R.; Stott, P.; Allen, M. R.

    2014-12-01

    Many regions of southern UK experienced severe flooding during the 2013/2014 winter. Simultaneously, large areas in the USA and Canada were struck by prolonged cold weather. At the time, the media and public asked whether the general rainy conditions over northern Europe and the cold weather over North America were caused by climate change. Providing an answer to this question is not trivial, but recent studies show that probabilistic event attribution is feasible. Using the citizen science project weather@home, we ran over 40'000 perturbed initial condition simulations of the 2013/2014 winter. These simulations fall into two categories: one set aims at simulating the world with climate change using observed sea surface temperatures while the second set is run with sea surface temperatures corresponding to a world that might have been without climate change. The relevant modelled variables are then downscaled by a hydrological model to obtain river flows. First results show that anthropogenic climate change led to a small but significant increase in the fractional attributable risk for 30-days peak flows for the river Thames. A single number can summarize the final result from probabilistic attribution studies indicating, for example, an increase, decrease or no change to the risk of the event occurring. However, communicating this to the public, media and other scientists remains challenging. The assumptions made in the chain of models used need to be explained. In addition, extreme events, like the UK floods of the 2013/2014 winter, are usually caused by a range of factors. While heavy precipitation events can be caused by dynamic and/or thermodynamic processes, floods occur only partly as a response to heavy precipitation. Depending on the catchment, they can be largely due to soil properties and conditions of the previous months. Probabilistic attribution studies are multidisciplinary and therefore all aspects need to be communicated properly.

  3. Seeding date affects fall growth of winter canola (Brassica napus L. ‘Baldur’) and its performance as a winter cover crop in central Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, interest has increased in finding non-grass cover crop species that could be planted after soybean (Glycine max (L) Merr.) and before corn (Zea mays L.) in Iowa crop rotations. In this study, we investigate the use of winter canola (Brassica napus L.) as an alternative cover crop fo...

  4. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    PubMed

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  5. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine.

    PubMed

    Cortés, Pablo Andrés; Petit, Magali; Lewden, Agnès; Milbergue, Myriam; Vézina, François

    2015-03-01

    Resident passerines inhabiting high latitude environments are faced with strong seasonal changes in thermal conditions and energy availability. Summit metabolic rate (maximal metabolic rate elicited by shivering during cold exposure: M(sum)) and basal metabolic rate (BMR) vary in parallel among seasons and increase in winter due to cold acclimatization, and these adjustments are thought to be critical for survival. Wintering individuals expressing consistently higher M(sum) and BMR could therefore be seen as better performers with higher chances of winter survival than those exhibiting lower metabolic performance. In this study, we calculated repeatability to evaluate temporal consistency of body mass, BMR and M(sum) within and across three consecutives winters in black-capped chickadees (Poecile atricapillus). We found that body mass was significantly repeatable both within and across winters (R 0.51-0.90). BMR (R 0.29-0.47) was only repeatable within winter while M(sum) was repeatable both among (R 0.33-0.49) and within winters (R 0.33-0.49) with the magnitude and significance of repeatability in both variables depending on the year and whether they were corrected for body mass or body size. The patterns of repeatability observed among years also differed between the two variables. Our findings suggest that the relative ranking of individuals in winter metabolic performance is affected by local ecological conditions and can change within relatively short periods of time. PMID:25690265

  6. Effects of winter atmospheric circulation on temporal and spatial variability in annual streamflow in the western United States

    USGS Publications Warehouse

    McCabe, G.J.

    1996-01-01

    Winter mean 700-hectoPascal (hPa) height anomalies, representing the average atmospheric circulation during the snow season, are compared with annual streamflow measured at 140 streamgauges in the western United States. Correlation and anomaly pattern analyses are used to identify relationships between winter mean atmospheric circulation and temporal and spatial variability in annual streamflow. Results indicate that variability in winter mean 700-Hpa height anomalies accounts for a statistically significant portion of the temporal variability in annual streamflow in the western United States. In general, above-average annual streamflow is associated with negative winter mean 700-Hpa height anomalies over the eastern North Pacific Ocean and/or the western United States. The anomalies produce an anomalous flow of moist air from the eastern North Pacific Ocean into the western United States that increases winter precipitation and snowpack accumulations, and subsequently streamflow. Winter mean 700-hPa height anomalies also account for statistically significant differences in spatial distributions of annual streamflow. As part of this study, winter mean atmospheric circulation patterns for the 40 years analysed were classified into five winter mean 700-hPa height anomaly patterns. These patterns are related to statistically significant and physically meaningful differences in spatial distributions of annual streamflow.

  7. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine.

    PubMed

    Cortés, Pablo Andrés; Petit, Magali; Lewden, Agnès; Milbergue, Myriam; Vézina, François

    2015-03-01

    Resident passerines inhabiting high latitude environments are faced with strong seasonal changes in thermal conditions and energy availability. Summit metabolic rate (maximal metabolic rate elicited by shivering during cold exposure: M(sum)) and basal metabolic rate (BMR) vary in parallel among seasons and increase in winter due to cold acclimatization, and these adjustments are thought to be critical for survival. Wintering individuals expressing consistently higher M(sum) and BMR could therefore be seen as better performers with higher chances of winter survival than those exhibiting lower metabolic performance. In this study, we calculated repeatability to evaluate temporal consistency of body mass, BMR and M(sum) within and across three consecutives winters in black-capped chickadees (Poecile atricapillus). We found that body mass was significantly repeatable both within and across winters (R 0.51-0.90). BMR (R 0.29-0.47) was only repeatable within winter while M(sum) was repeatable both among (R 0.33-0.49) and within winters (R 0.33-0.49) with the magnitude and significance of repeatability in both variables depending on the year and whether they were corrected for body mass or body size. The patterns of repeatability observed among years also differed between the two variables. Our findings suggest that the relative ranking of individuals in winter metabolic performance is affected by local ecological conditions and can change within relatively short periods of time.

  8. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  9. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    PubMed

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. PMID:23504931

  10. Is winter worse for stressed fish? The consequences of exogenous cortisol manipulation on over-winter survival and condition of juvenile largemouth bass.

    PubMed

    Binder, Thomas R; O'Connor, Constance M; McConnachie, Sarah H; Wilson, Samantha M; Nannini, Michael A; Wahl, David H; Cooke, Steven J

    2015-09-01

    Over-winter mortality is an important selective force for warm-water fish (e.g., centrarchids) that live in temperate habitats. Inherent challenges faced by fish during winter may be compounded by additional stressors that activate the hypothalamic-pituitary-interrenal axis, either before or during winter, leading to negative sub-lethal impacts on fish health and condition, and possibly reducing chance of survival. We used experimental cortisol manipulation to test the hypothesis that juvenile largemouth bass (Micropterus salmoides) exposed to semi-chronic elevation in cortisol prior to winter would experience higher levels of over-winter mortality, physiological alterations and impaired immune status relative to control and sham-treated bass. Over-winter survival in experimental ponds was high, averaging 83%, and did not differ among treatment groups. Over the study period, bass exhibited an average increase in mass of 19.4%, as well as a slight increase in Fulton's condition factor, but neither measure differed among groups. Hepatosomatic index in cortisol-treated bass was 23% lower than in control fish, suggesting lower energy status, but white muscle lipid content was similar across all groups. Lastly, there was no difference in spleen somatic index or parasite load among treatment groups, indicating no long-term immune impairment related to our cortisol manipulation. The current study adds to a growing body of literature on glucocorticoid manipulations where field-based findings are not consistent with laboratory-based conceptual understanding of multiple stressors. This suggests that field conditions may provide fish with opportunities to mitigate negative effects of some stressors. PMID:26006297

  11. Is winter worse for stressed fish? The consequences of exogenous cortisol manipulation on over-winter survival and condition of juvenile largemouth bass.

    PubMed

    Binder, Thomas R; O'Connor, Constance M; McConnachie, Sarah H; Wilson, Samantha M; Nannini, Michael A; Wahl, David H; Cooke, Steven J

    2015-09-01

    Over-winter mortality is an important selective force for warm-water fish (e.g., centrarchids) that live in temperate habitats. Inherent challenges faced by fish during winter may be compounded by additional stressors that activate the hypothalamic-pituitary-interrenal axis, either before or during winter, leading to negative sub-lethal impacts on fish health and condition, and possibly reducing chance of survival. We used experimental cortisol manipulation to test the hypothesis that juvenile largemouth bass (Micropterus salmoides) exposed to semi-chronic elevation in cortisol prior to winter would experience higher levels of over-winter mortality, physiological alterations and impaired immune status relative to control and sham-treated bass. Over-winter survival in experimental ponds was high, averaging 83%, and did not differ among treatment groups. Over the study period, bass exhibited an average increase in mass of 19.4%, as well as a slight increase in Fulton's condition factor, but neither measure differed among groups. Hepatosomatic index in cortisol-treated bass was 23% lower than in control fish, suggesting lower energy status, but white muscle lipid content was similar across all groups. Lastly, there was no difference in spleen somatic index or parasite load among treatment groups, indicating no long-term immune impairment related to our cortisol manipulation. The current study adds to a growing body of literature on glucocorticoid manipulations where field-based findings are not consistent with laboratory-based conceptual understanding of multiple stressors. This suggests that field conditions may provide fish with opportunities to mitigate negative effects of some stressors.

  12. Costs of leaf reinforcement in response to winter cold in evergreen species.

    PubMed

    González-Zurdo, Patricia; Escudero, Alfonso; Babiano, Josefa; García-Ciudad, Antonia; Mediavilla, Sonia

    2016-03-01

    The competitive equilibrium between deciduous and evergreen plant species to a large extent depends on the intensity of the reduction in carbon gain undergone by evergreen leaves, associated with the leaf traits that confer resistance to stressful conditions during the unfavourable part of the year. This study explores the effects of winter harshness on the resistance traits of evergreen leaves. Leaf mass per unit area (LMA), leaf thickness and the concentrations of fibre, nitrogen (N), phosphorus (P), soluble protein, chlorophyll and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined in three evergreen and two deciduous species along a winter temperature gradient. In the evergreen species, LMA, thickness, and P and structural carbohydrate concentrations increased with the decrease in winter temperatures. Nitrogen and lignin concentrations did not show definite patterns in this regard. Chlorophyll, soluble proteins and Rubisco decreased with the increase in winter harshness. Our results suggest that an increase in LMA and in the concentration of structural carbohydrates would be a requirement for the leaves to cope with low winter temperatures. The evergreen habit would be associated with higher costs at cooler sites, because the cold resistance traits imply additional maintenance costs and reduced N allocation to the photosynthetic machinery, associated with structural reinforcement at colder sites.

  13. Sharp View of Gullies in Southern Winter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    20 November 2006 Crisp details in a suite of mid-latitude gullies on a crater wall are captured in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view obtained in southern winter on 12 October 2006. During southern winter, shadows are more pronounced and the atmosphere is typically quite clear. These gullies, which may have formed in relatively recent martian history by erosion caused by flowing, liquid water, are located in a crater on the east rim of Newton Crater near 40.4oS, 155.3oW. Sunlight illuminates the scene from the upper left. The picture covers an area about 3 km (1.9 mi) wide; the crater rim is on the right side of the image, the crater floor is on the left. North is toward the top/upper left.

  14. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  15. 33 CFR 401.92 - Wintering and lying-up.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Wintering and lying-up. 401.92... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.92 Wintering and lying-up. No vessel shall winter within the Seaway or lie-up within the Seaway during the navigation...

  16. 33 CFR 401.92 - Wintering and laying-up.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Wintering and laying-up. 401.92... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.92 Wintering and laying-up. No vessel shall winter within the Seaway or lay-up within the Seaway during the navigation...

  17. 33 CFR 401.92 - Wintering and lying-up.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Wintering and lying-up. 401.92... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.92 Wintering and lying-up. No vessel shall winter within the Seaway or lie-up within the Seaway during the navigation...

  18. 33 CFR 401.92 - Wintering and lying-up.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Wintering and lying-up. 401.92... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.92 Wintering and lying-up. No vessel shall winter within the Seaway or lie-up within the Seaway during the navigation...

  19. 33 CFR 401.92 - Wintering and laying-up.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Wintering and laying-up. 401.92... OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations General § 401.92 Wintering and laying-up. No vessel shall winter within the Seaway or lay-up within the Seaway during the navigation...

  20. Sources and contributions of wood smoke during winter in London

    NASA Astrophysics Data System (ADS)

    Crilley, Leigh; Bloss, William; Yin, Jianxin; Beddows, David; Harrison, Roy; Zotter, Peter; Prevot, Andre; Green, David

    2014-05-01

    Determining the contribution of wood smoke in large urban centres such as London is becoming increasingly important with the changing nature of domestic heating partly due to the installation of biomass burning heaters to meet renewable energy targets imposed by the EU and also a rise in so-called recreational burning for aesthetic reasons (Fuller et al., 2013). Recent work in large urban centres (London, Paris and Berlin) has demonstrated an increase in the contribution of wood smoke to ambient particles during winter that can at times exceed traffic emissions. In Europe, biomass burning has been identified as a major cause of exceedances of European air quality limits during winter (Fuller et al., 2013). In light of the changing nature of emissions in urban areas there is a need for on-going measurements to assess the impact of biomass burning in cities like London. Therefore we aimed to determine quantitatively the contribution of biomass burning in London and surrounding rural areas. We also aimed to determine whether local emissions or regional sources were the main source of biomass burning in London. Sources of wood smoke during winter in London were investigated at an urban background site (North Kensington) and two surrounding rural sites (Harwell and Detling) by analysing selected wood smoke chemical tracers. Concentrations of levoglucosan, elemental carbon (EC), organic carbon (OC) and K+ were generally well correlated, indicating a similar source of these species at the three sites. Based on the conversion factor for levoglucosan, mean wood smoke mass at Detling, North Kensington and Harwell was 0.78, 0.87 and 1.0 µg m-3, respectively. At all the sites, biomass burning was found to be a source of OC and EC, with the largest source of OC and EC found to be secondary organic aerosols and traffic emissions, respectively. Peaks in levoglucosan concentrations at the sites were observed to coincide with low ambient temperature, suggesting domestic heating as

  1. Characteristics of foraging sites and protein status in wintering muskoxen: Insights from isotopes of nitrogen

    USGS Publications Warehouse

    Gustine, D.D.; Barboza, P.S.; Lawler, J.P.; Arthur, S.M.; Shults, B.S.; Persons, K.; Adams, L.G.

    2011-01-01

    Identifying links between nutritional condition of individuals and population trajectories greatly enhances our understanding of the ecology, conservation, and management of wildlife. For northern ungulates, the potential impacts of a changing climate to populations are predicted to be nutritionally mediated through an increase in the severity and variance in winter conditions. Foraging conditions and the availability of body protein as a store for reproduction in late winter may constrain productivity in northern ungulates, yet the link between characteristics of wintering habitats and protein status has not been established for a wild ungulate. We used a non-invasive proxy of protein status derived from isotopes of N in excreta to evaluate the influence of winter habitats on the protein status of muskoxen in three populations in Alaska (2005-2008). Multiple regression and an information-theoretic approach were used to compare models that evaluated the influence of population, year, and characteristics of foraging sites (components of diet and physiography) on protein status for groups of muskoxen. The observed variance in protein status among groups of muskoxen across populations and years was partially explained (45%) by local foraging conditions that affected forage availability. Protein status improved for groups of muskoxen as the amount of graminoids in the diet increased (-0.430 ?? 0.31, ???? 95% CI) and elevation of foraging sites decreased (0.824 ?? 0.67). Resources available for reproduction in muskoxen are highly dependent upon demographic, environmental, and physiographic constraints that affect forage availability in winter. Due to their very sedentary nature in winter, muskoxen are highly susceptible to localized foraging conditions; therefore, the spatial variance in resource availability may exert a strong effect on productivity. Consequently, there is a clear need to account for climate-topography effects in winter at multiple scales when

  2. Feeding ecology of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, D.G.; Krapu, G.L.; Crawford, R.D.

    1983-01-01

    Food use by mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska was determined from mid-December to early March 1978-80. Mallards foraged in river channels, irrigation drainage canals, and agricultural areas. Plant matter formed 97% of the diet (dry weight) and diets did not vary between sexes (P > 0.05). Waste corn was the principal food consumed and formed 46 and 62% of the diets of males and females, respectively. Milo, common duckweed (Lemna minor), smartweed (Polygonum spp.), and barnyardgrass (Echinochloa muricata) composed most of the remaining plant matter ingested. Mallards fed intensively in riparian wetland habitat to obtain invertebrates, but few were consumed because of limited abundance. Dietary protein was lower than reported among mallards wintering in Louisiana. Field feeding occurred primarily in grazed corn stubble and cattle feedlots. The distances traveled to feed, and the duration and timing of feeding varied with snow cover and season phenology. Competition for food was markedly higher during the cold winter of 1979 when heavy snow cover was present.

  3. An NOy Algorithm for Arctic Winter 2000

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.; Jost, H.; Greenblatt, J. B.; Podolske, J. R.; Gao, R. S.; Popp, P. J.; Toon, G. C.; Webster, C. R.; Herman, R. L.; Hurst, D. F.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    NOy, total reactive nitrogen, and the long-lived tracer N2O, nitrous oxide, were measured by both in situ and remote sensing instruments during the Arctic winter 1999-2000 SAGE III Ozone Loss and Validation Experiment (SOLVE). The correlation function NOy:N2O observed before the winter Arctic vortex forms, which is known as NOy(sup), is an important reference relationship for conditions in the evolving vortex. NOy(sup) can, with suitable care, be used to quantify vortex denitrification by sedimentation of polar stratospheric cloud particles when NOy data is taken throughout the winter. Observed NOy values less than the reference value can be interpreted in terms of semi-permanent removal of active nitrogen by condensation and sedimentation processes. In this paper we present a segmented function representing NOy(sup) applicable over the full range of altitudes sampled during SOLVE. We also assess the range of application of this function and some of its limitations.

  4. Winter protein requirements of bobwhite quail

    USGS Publications Warehouse

    Nestler, R.B.; Bailey, W.W.; Llewellyn, L.M.; Rensberger, M.J.

    1944-01-01

    Three experiments involving 714 bobwhite quail were conducted at the Patuxent Research Refuge, Bowie, Maryland, during the winters of 1939-1941 to determine the protein requirement of quail maintained throug'h the winter.....Considering survival, live weights, feed consumption, and subsequent reproduction by the birds, the-9 to 13 per cent levels of crude dietary protein gave as good results as higher levels eggs, which in all cases was over 90 per and in some respects were better.....On the basis of these studies, it is recommended that the winter maintenance diet for bobwhite quail contain . about 11 to 12 per cent of crude protein. The following diet (parts by weight) conforms to these specifications and should be satisfactory:...Ground yellow corn 85.6....Dehvdrated alfalfa leaf meal 5 .O.....Soybean oil meal 7.0.....Special steamed bonemeal 1.2....Salt (or Salt Mixture II,see text) 1.0...Vitamin A and D feeding oil, fortified 0.2.

  5. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  6. Changes in hematological profiles during winter field operations

    SciTech Connect

    Lopez, A.; Reed, L.; D'Alesandro, M. )

    1991-03-11

    The authors have previously shown that there are changes in hematological profiles during experimental cold acclimation. They now report on hematological changes in 9 military volunteers during a 12 week winter field operation and show results similar to those observed during experimental cold acclimation. Blood was collected before and after completion of winter field operations and analyzed in a paired fashion. Hematocrit (HCT) and erythrocyte counts (RBC) were decreased; mean corpuscular hemoglobin concentration (MCHC) and plasma volume (PV), which was calculated from hemoglobin (Hb) concentration and HCT, were increased. In addition, the reticulocyte count was increased from 1.37 {plus minus} 0.10% to 2.62 {plus minus} 0.24% after completion of field operations. There was a statistically significant inverse correlation between HCT and reticulocyte count, indicating the need for an enhanced rate of red cell production. Hemoglobin concentration, leukocyte count, and mean corpuscular volume were unchanged. The RBC population, to remain at steady state during periods of chronic cold exposure, shows alterations in the number of circulating cells, Hb concentration per cell and possibly cell turnover.

  7. Assessing solar energy and water use efficiencies in winter wheat

    SciTech Connect

    Asrar, G.; Hipps, L.E.; Kanemasu, E.T.

    1982-09-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  8. Assessing solar energy and water use efficiencies in winter wheat

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Hipps, L. E.; Kanemasu, E. T.

    1982-01-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  9. Evolution of microwave limb sounder ozone and the polar vortex during winter

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Zurek, R. W.

    1995-01-01

    The evolution of polar ozone observed by the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) is described for the northern hemisphere (NH) winters of 1991/1992, 1992/1993, and 1993/1994 and the southern hemisphere (SH) winters of 1992 and 1993. Imterannual and interhemispheric variability in polar ozone evolution are closely related to differences in the polar vortex and to the frequency, duration and strength of stratospheric sudden warmings. Ozone in the midstratospheric vortices increases during the winter, with largest increases associated with stratospheric warmings and a much larger increase in the NH than in the SH. A smaller NH increase was observed in 1993/1994, when the middle stratospheric vortex was stronger. During strong stratospheric warmings in the NH, the upper stratospheric vortex may be so much eroded that it presents little barrier to poleward transport; in contrast, the SH vortex remains strong throughout the stratosphere during wintertime warmings, and ozone increases only below the mixing ratio peak, due to enhanced diabatic descent. Ozone mixing ratios decrease rapidly in the lower stratosphere in both SH late winters, as expected from chemical destruction due to enhanced reactive chlorine. The interplay between dynamics and chemistry is more complex in the NH lower stratosphere and interannual variability is greater. Evidence has previously been shown for chemical ozone destruction in the 1991/1992 and 1992/1993 winters. We show here evidence suggesting some chemical destruction in late February and early March 1994. In the NH late winter lower stratosphere the pattern of high-ozone values (typical of the vortex) seen in mid-latitudes is related to the strength of the lower-stratospheric vortex, with the largest areal extent of high ozone outside the vortex in 1994, when the lower stratospheric vortex is relatively weak, and the least extent in 1993 when the lower stratospheric vortex is strongest.

  10. Effects of winter road grooming on bison in YNP

    USGS Publications Warehouse

    Bjornlie, Daniel D; Garrott, R.A.

    2001-01-01

    The effects of winter recreation—specifically snowmobiling—on wildlife in Yellowstone National Park (YNP) have become high-profile management issues. The road grooming needed to support oversnow travel in YNP is also being examined for its effects on bison (Bison bison) ecology. Data were collected from November 1997 through May 1998 and from December 1998 through May 1999 on the effects of road grooming on bison in Madison–Gibbon–Firehole (MGF) area of YNP Peak bison numbers occurred during late March—early April and were strongly correlated with the snow water equivalent measurements in the Hayden Valley area (1997–1998: r* = 0.62, p:0.001: 1998–1999: r2 = 0.64, P-0.001). Data from an infrared trail monitor on the Mary Mountain trail between the Hayden and Firehole valleys suggest that this trail is the sole corridor for major bison distributional shifts between these locations. Of the 28,293 observations of individual bison made during the study, 8% were traveling and 69% were foraging. These percentages were nearly identical during the period of winter road grooming (7% and 68%, respectively). During this period, 77% of bison foraging activity and 12% of bison traveling activity involved displacing snow. Most travel took place off roads (P<0.001), Bison utilized geothermal features, a network of trails they established, and river and stream banks for travel. Bison road use was negatively correlated with road grooming, with peak use in April and lowest use during the road-grooming period. Bison in the MGF area of YNF neither seek out nor avoid groomed roads. The minimal use of roads compared to off-road areas, the short distances traveled on the roads, the decreased use of roads during the over snow vehicle (OSV) season, and the increased costs of negative interactions with OSVs suggest that grooming roads during winter does not have a major influence on bison ecology.

  11. Recurring Cold Winters over the Gulf Stream and Implications for Northern Hemisphere Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Strey, S. T.

    2015-12-01

    As polar amplification of climate warming continues, the potential for increased blocking patterns in the Northern Hemisphere jet stream in conjunction with Arctic climate change exists. During such blocking events the Gulf Stream may be exposed to repeated Cold Air Outbreak (CAO) events, especially during winter. Hypothesizing, based upon basic physical and thermodynamic properties of seawater, one would expect increased CAO events to lead alteration of key characteristics of the Gulf Stream. As the Gulf Stream is a well-known participant in the Atlantic meridional overturning circulation (AMOC), and the Gulf Stream feeds the North Atlantic Current into the Arctic Ocean, interesting consequences to alterations of this local system into the large-scale general climate circulation are expected. This study uses CESM's POP to examine 30 years of CAO intensive winters alongside 30 years of repeated winter warm events to quantify potential subsequent changes in the AMOC and North Atlantic Arctic Ocean inflow.

  12. Winter temperature affects the prevalence of ticks in an Arctic seabird.

    PubMed

    Descamps, Sébastien

    2013-01-01

    The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich's guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5) and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.

  13. Migration And wintering areas Of Glaucous-winged Gulls From south-central Alaska

    USGS Publications Warehouse

    Hatch, Scott A.; Gill, V.A.; Mulcahy, Daniel M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucous-winged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter.

  14. Migration and wintering areas of glaucous-winged Gulls from south-central Alaska

    USGS Publications Warehouse

    Hatch, Shyla A.; Gill, V.A.; Mulcahy, D.M.

    2011-01-01

    We used satellite telemetry to investigate the migration patterns and wintering areas of Glaucouswinged Gulls (Larus glaucescens) from Middleton Island, Alaska, where this species' population increased tenfold from the 1970s to the 1990s. Fall migration spanned 11 weeks, including numerous stopovers en route, apparently for feeding. Spring migration from wintering sites to Middleton Island was shorter (4 weeks) and more direct. One juvenile spent several months in southern Prince William Sound. An adult spent several months near Craig, southeast Alaska, while three others overwintered in southern British Columbia. For all four wintering adults use of refuse-disposal sites was evident or strongly suggested. Commensalism with humans may have contributed to the increase on Middleton, but a strong case can also be made for a competing explanation-regional recruitment of gulls to high-quality nesting habitat in Alaska created after the earthquake of 1964. An analysis of band returns reveals broad overlap in the wintering grounds of gulls from different Alaska colonies and of gulls banded on the west coast from British Columbia to California. The seasonal movement of many gulls from Alaska is decidedly migratory, whereas gulls from British Columbia, Washington, and Oregon disperse locally in winter. ?? The Cooper Ornithological Society 2011.

  15. Effects of weather on habitat selection and behavior of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, D.G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.

    1984-01-01

    Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.

  16. [Effects of sprinkler irrigation amount on winter wheat growth, water consumption, and water use efficiency].

    PubMed

    Yu, Li-Peng; Huang, Guan-Hua; Liu, Hai-Jun; Wang, Xiang-Ping; Wang, Ming-Qiang

    2010-08-01

    In 2006-2008, a field experiment was conducted at the Tongzhou Experimental Base for Water-Saving Irrigation Research, Chinese Academy of Sciences, Beijing, aimed to study the effects of sprinkler irrigation amount on the growth, grain yield, water consumption, and water use efficiency of winter wheat. Different treatments were installed, with the irrigation amounts expressed by the multiples of the evaporation (E) from a standard 20-cm diameter pan placed above winter wheat canopy. The grain yield was the highest in treatment 0.75 E in 2006-2007 and in treatment 0.625 E in 2007-2008. In treatments with irrigation amount less than 0.25 E, winter wheat growth was subjected to water stress, and the yield loss was larger than 25%. The water consumption of winter wheat in the two growth seasons was in the range of 219-486 mm, and increased with increasing irrigation amount. The relationships between the grain yield and the water consumption and water use efficiency could be described by quadratic function. Sprinkler irrigation with an amount of 0.50-0.75 E was recommended for the winter wheat growth after its turning green stage in Beijing area. PMID:21043112