Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
Opposite effects of capacity load and resolution load on distractor processing.
Zhang, Weiwei; Luck, Steven J
2015-02-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.
Opposite Effects of Capacity Load and Resolution Load on Distractor Processing
Zhang, Weiwei; Luck, Steven J.
2014-01-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573
Concurrent working memory load can facilitate selective attention: evidence for specialized load.
Park, Soojin; Kim, Min-Shik; Chun, Marvin M
2007-10-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA
The effects of load carriage on joint work at different running velocities.
Liew, Bernard X W; Morris, Susan; Netto, Kevin
2016-10-03
Running with load carriage has become increasingly prevalent in sport, as well as many field-based occupations. However, the "sources" of mechanical work during load carriage running are not yet completely understood. The purpose of this study was to determine the influence of load magnitudes on the mechanical joint work during running, across different velocities. Thirty-one participants performed overground running at three load magnitudes (0%, 10%, 20% body weight), and at three velocities (3, 4, 5m/s). Three dimensional motion capture was performed, with synchronised force plate data captured. Inverse dynamics was used to quantify joint work in the stance phase of running. Joint work was normalized to a unit proportion of body weight and leg length (one dimensionless work unit=532.45J). Load significantly increased total joint work and total positive work and this effect was greater at faster velocities. Load carriage increased ankle positive work (β coefficient=rate of 6.95×10 -4 unit work per 1% BW carried), and knee positive (β=1.12×10 -3 unit) and negative work (β=-2.47×10 -4 unit), and hip negative work (β=-7.79×10 -4 unit). Load carriage reduced hip positive work and this effect was smaller at faster velocities. Inter-joint redistribution did not contribute significantly to altered mechanical work within the spectrum of load and velocity investigated. Hence, the ankle joint contributed to the greatest extent in work production, whilst that of the knee contributed to the greatest extent to work absorption when running with load. Copyright © 2016 Elsevier Ltd. All rights reserved.
Concurrent Working Memory Load Can Facilitate Selective Attention: Evidence for Specialized Load
ERIC Educational Resources Information Center
Park, Soojin; Kim, Min-Shik; Chun, Marvin M.
2007-01-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding, see record 2004-17825-003). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not.…
Ropponen, Annina; Svedberg, Pia; Koskenvuo, Markku; Silventoinen, Karri; Kaprio, Jaakko
2014-06-01
Physical work loading and psychological stress commonly co-occur in working life, hence potentially having an interrelationship that may affect work incapacity. This prospective cohort study aimed to investigate the effect of stability and change in physical work loading and stress on the risk of disability pension (DP) due to musculoskeletal diagnoses (MSD), while accounting for familial confounding in these associations. Data on 12,455 twins born before 1958 were surveyed of their physical work loading and psychological stress of daily activities in 1975 and 1981. The follow-up data was collected from pension registers until 2004. Cox proportional hazards regression models were used. During the follow up, 893 participants were granted DP due to MSD. Stable high (hazard ratio, HR, 2.21), but also increased physical work loading (HR 2.05) and high psychological stress (HR 2.22) were associated with increased risk for DP, and had significant interaction (p=0.032). The associations were confirmed when accounting for several confounding factors. Stable high but also increased physical work loading and psychological stress of daily activities between two timepoints with 6 years apart confirms their predictive role for an increased risk of DP. Both physical work loading and psychological stress seem to be independent from various confounding factors hence suggesting direct effect on risk for DP providing potential for occupational health care to early identification of persons at risk. © 2014 the Nordic Societies of Public Health.
Weight and See: Loading Working Memory Improves Incidental Identification of Irrelevant Faces
Carmel, David; Fairnie, Jake; Lavie, Nilli
2012-01-01
Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie’s load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified. PMID:22912623
ERIC Educational Resources Information Center
de Fockert, Jan W.; Bremner, Andrew J.
2011-01-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus…
Impact of work boots and load carriage on the gait of oil rig workers.
Tian, Miao; Park, Huiju; Koo, Heekwang; Xu, Qinwen; Li, Jun
2017-03-01
Effects of work boots and load carriage (6.4 kg and 12.8 kg) on gait pattern were investigated. The protective work boots were examined by comparison with running shoes through human performance tests with 15 male participants. The loads were carried symmetrically and asymmetrically on the shoulder and hand. Statistical data analysis showed a prolonged stance phase and decreased double support for work boots. A significantly increased ground reaction force was found in work boot conditions as the weight of loads increases. This study demonstrates that inflexible and heavy work boots restrict foot movement and require greater torque at the ankle to propel the body forward, which may increase physical strain and the risk of musculoskeletal injuries. Development of improved fixation methods for work boots, increased use of flexible protective layers and further study of anthropometry of human foot morphology for improved safety and work efficiency of industry workers are suggested.
de Fockert, Jan W; Bremner, Andrew J
2011-12-01
An unexpected stimulus often remains unnoticed if attention is focused elsewhere. This inattentional blindness has been shown to be increased under conditions of high memory load. Here we show that increasing working memory load can also have the opposite effect of reducing inattentional blindness (i.e., improving stimulus detection) if stimulus detection is competing for attention with a concurrent visual task. Participants were required to judge which of two lines was the longer while holding in working memory either one digit (low load) or six digits (high load). An unexpected visual stimulus was presented once alongside the line judgment task. Detection of the unexpected stimulus was significantly improved under conditions of higher working memory load. This improvement in performance prompts the striking conclusion that an effect of cognitive load is to increase attentional spread, thereby enhancing our ability to detect perceptual stimuli to which we would normally be inattentionally blind under less taxing cognitive conditions. We discuss the implications of these findings for our understanding of the relationship between working memory and selective attention. Copyright © 2011 Elsevier B.V. All rights reserved.
Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A
2015-09-01
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
MacNamara, Annmarie; Ferri, Jamie; Hajcak, Greg
2011-09-01
Emotion regulation decreases the processing of arousing stimuli, as indexed by the late positive potential (LPP), an electrocortical component that varies in amplitude with emotional arousal. Emotion regulation increases activity in the prefrontal areas associated with cognitive control, including the dosolateral prefrontal cortex (DLPFC). The present study manipulated working memory load, known to activate the DLPFC, and recorded the LPP elicited by aversive and neutral IAPS pictures presented during the retention interval. The LPP was larger on low-load compared to high-load trials, and on trials with aversive compared to neutral pictures. These LPP data suggest that emotional content and working memory load have opposing effects on attention to distracting stimuli. State anxiety was associated with reduced modulation of the LPP by working memory load. Results are discussed in terms of competition for attention between emotion and cognition and suggest a relationship between DLPFC activation and the allocation of attentional resources to distracting visual stimuli-a relationship that may be disrupted with increasing anxiety.
Effects of load on the guidance of visual attention from working memory.
Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping
2011-12-08
An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.
Load matters: neural correlates of verbal working memory in children with autism spectrum disorder.
Vogan, Vanessa M; Francis, Kaitlyn E; Morgan, Benjamin R; Smith, Mary Lou; Taylor, Margot J
2018-06-01
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterised by diminished social reciprocity and communication skills and the presence of stereotyped and restricted behaviours. Executive functioning deficits, such as working memory, are associated with core ASD symptoms. Working memory allows for temporary storage and manipulation of information and relies heavily on frontal-parietal networks of the brain. There are few reports on the neural correlates of working memory in youth with ASD. The current study identified the neural systems underlying verbal working memory capacity in youth with and without ASD using functional magnetic resonance imaging (fMRI). Fifty-seven youth, 27 with ASD and 30 sex- and age-matched typically developing (TD) controls (9-16 years), completed a one-back letter matching task (LMT) with four levels of difficulty (i.e. cognitive load) while fMRI data were recorded. Linear trend analyses were conducted to examine brain regions that were recruited as a function of increasing cognitive load. We found similar behavioural performance on the LMT in terms of reaction times, but in the two higher load conditions, the ASD youth had lower accuracy than the TD group. Neural patterns of activations differed significantly between TD and ASD groups. In TD youth, areas classically used for working memory, including the lateral and medial frontal, as well as superior parietal brain regions, increased in activation with increasing task difficulty, while areas related to the default mode network (DMN) showed decreasing activation (i.e., deactivation). The youth with ASD did not appear to use this opposing cognitive processing system; they showed little recruitment of frontal and parietal regions across the load but did show similar modulation of the DMN. In a working memory task, where the load was manipulated without changing executive demands, TD youth showed increasing recruitment with increasing load of the classic fronto-parietal brain areas and decreasing involvement in default mode regions. In contrast, although they modulated the default mode network, youth with ASD did not show the modulation of increasing brain activation with increasing load, suggesting that they may be unable to manage increasing verbal information. Impaired verbal working memory in ASD would interfere with the youths' success academically and socially. Thus, determining the nature of atypical neural processing could help establish or monitor working memory interventions for ASD.
Stress and Performance: Effects of Subjective Work Load and Time Urgency.
ERIC Educational Resources Information Center
Friend, Kenneth E.
1982-01-01
Measured subjective work load, time urgency, and other stress/motivation variables for management personnel taking a demanding problem-solving exam. Data suggest increases in psychological stresses like subjectively high work load and time urgency uniformly impair performance across the whole range of these variables. (Author)
Vermeij, Anouk; van Beek, Arenda H E A; Reijs, Babette L R; Claassen, Jurgen A H R; Kessels, Roy P C
2014-01-01
Older adults show more bilateral prefrontal activation during cognitive performance than younger adults, who typically show unilateral activation. This over-recruitment has been interpreted as compensation for declining structure and function of the brain. Here we examined how the relationship between behavioral performance and prefrontal activation is modulated by different levels of working-memory load. Eighteen healthy older adults (70.8 ± 5.0 years; MMSE 29.3 ± 0.9) performed a spatial working-memory task (n-back). Oxygenated ([O2Hb]) and deoxygenated ([HHb]) hemoglobin concentration changes were registered by two functional Near-Infrared Spectroscopy (fNIRS) channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition. [O2Hb] increased with rising working-memory load in both fNIRS channels. Based on the performance in the high working-memory load condition, the group was divided into low and high performers. A significant interaction effect of performance level and hemisphere on [O2Hb] increase was found, indicating that high performers were better able to keep the right prefrontal cortex engaged under high cognitive demand. Furthermore, in the low performers group, individuals with a larger decline in task performance from the control to the high working-memory load condition had a larger bilateral increase of [O2Hb]. The high performers did not show a correlation between performance decline and working-memory load related prefrontal activation changes. Thus, additional bilateral prefrontal activation in low performers did not necessarily result in better cognitive performance. Our study showed that bilateral prefrontal activation may not always be successfully compensatory. Individual behavioral performance should be taken into account to be able to distinguish successful and unsuccessful compensation or declined neural efficiency.
Attar, Nada; Schneps, Matthew H; Pomplun, Marc
2016-10-01
An observer's pupil dilates and constricts in response to variables such as ambient and focal luminance, cognitive effort, the emotional stimulus content, and working memory load. The pupil's memory load response is of particular interest, as it might be used for estimating observers' memory load while they are performing a complex task, without adding an interruptive and confounding memory test to the protocol. One important task in which working memory's involvement is still being debated is visual search, and indeed a previous experiment by Porter, Troscianko, and Gilchrist (Quarterly Journal of Experimental Psychology, 60, 211-229, 2007) analyzed observers' pupil sizes during search to study this issue. These authors found that pupil size increased over the course of the search, and they attributed this finding to accumulating working memory load. However, since the pupil response is slow and does not depend on memory load alone, this conclusion is rather speculative. In the present study, we estimated working memory load in visual search during the presentation of intermittent fixation screens, thought to induce a low, stable level of arousal and cognitive effort. Using standard visual search and control tasks, we showed that this paradigm reduces the influence of non-memory-related factors on pupil size. Furthermore, we found an early increase in working memory load to be associated with more efficient search, indicating a significant role of working memory in the search process.
Cognitive load during route selection increases reliance on spatial heuristics.
Brunyé, Tad T; Martis, Shaina B; Taylor, Holly A
2018-05-01
Planning routes from maps involves perceiving the symbolic environment, identifying alternate routes and applying explicit strategies and implicit heuristics to select an option. Two implicit heuristics have received considerable attention, the southern route preference and initial segment strategy. This study tested a prediction from decision-making theory that increasing cognitive load during route planning will increase reliance on these heuristics. In two experiments, participants planned routes while under conditions of minimal (0-back) or high (2-back) working memory load. In Experiment 1, we examined how memory load impacts the southern route heuristic. In Experiment 2, we examined how memory load impacts the initial segment heuristic. Results replicated earlier results demonstrating a southern route preference (Experiment 1) and initial segment strategy (Experiment 2) and further demonstrated that evidence for heuristic reliance is more likely under conditions of concurrent working memory load. Furthermore, the extent to which participants maintained efficient route selection latencies in the 2-back condition predicted the magnitude of this effect. Together, results demonstrate that working memory load increases the application of heuristics during spatial decision making, particularly when participants attempt to maintain quick decisions while managing concurrent task demands.
Evidence for social working memory from a parametric functional MRI study.
Meyer, Meghan L; Spunt, Robert P; Berkman, Elliot T; Taylor, Shelley E; Lieberman, Matthew D
2012-02-07
Keeping track of various amounts of social cognitive information, including people's mental states, traits, and relationships, is fundamental to navigating social interactions. However, to date, no research has examined which brain regions support variable amounts of social information processing ("social load"). We developed a social working memory paradigm to examine the brain networks sensitive to social load. Two networks showed linear increases in activation as a function of increasing social load: the medial frontoparietal regions implicated in social cognition and the lateral frontoparietal system implicated in nonsocial forms of working memory. Of these networks, only load-dependent medial frontoparietal activity was associated with individual differences in social cognitive ability (trait perspective-taking). Although past studies of nonsocial load have uniformly found medial frontoparietal activity decreases with increasing task demands, the current study demonstrates these regions do support increasing mental effort when such effort engages social cognition. Implications for the etiology of clinical disorders that implicate social functioning and potential interventions are discussed.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.
Liew, Bernard; Netto, Kevin; Morris, Susan
2017-10-01
Optimal tuning of leg stiffness has been associated with better running economy. Running with a load is energetically expensive, which could have a significant impact on athletic performance where backpack carriage is involved. The purpose of this study was to investigate the impact of load magnitude and velocity on leg stiffness. We also explored the relationship between leg stiffness and running joint work. Thirty-one healthy participants ran overground at 3 velocities (3.0, 4.0, 5.0 m·s -1 ), whilst carrying 3 load magnitudes (0%, 10%, 20% weight). Leg stiffness was derived using the direct kinetic-kinematic method. Joint work data was previously reported in a separate study. Linear models were used to establish relationships between leg stiffness and load magnitude, velocity, and joint work. Our results found that leg stiffness did not increase with load magnitude. Increased leg stiffness was associated with reduced total joint work at 3.0 m·s -1 , but not at faster velocities. The association between leg stiffness and joint work at slower velocities could be due to an optimal covariation between skeletal and muscular components of leg stiffness, and limb attack angle. When running at a relatively comfortable velocity, greater leg stiffness may reflect a more energy efficient running pattern.
The ergonomics of vertical turret lathe operation.
Pratt, F M; Corlett, E N
1970-12-01
A study of the work load of 14 vertical turret lathe operators engaged on different work tasks in two factories is reported. For eight of these workers continuous heart rate recordings were made throughout the day. It was shown that in four cases improved technology was unlikely to lead to higher output and certain aspects of posture and equipment manipulation were major contributors to the limitations on increased output. The role of the work-rest schedule in increasing work loads was also demonstrated. Improvements in technology and methods to reduce the extent of certain work loads to enable heavy work to be done in shorter periods followed by light work or rest periods are given as means to modify and improve the output of these machines. Finally, the direction for the development of a predictive model for man-machine matching is introduced.
Akyürek, Elkan G; Leszczyński, Marcin; Schubö, Anna
2010-11-01
An increase in concurrent working memory load has been shown to amplify the attentional blink. The present study investigated the temporal locus of this phenomenon, by using a dual rapid serial visual presentation paradigm that enabled the measurement of lateralized event-related potentials. The P3 component was shown to be affected by both working memory load and the lag between the target stimuli, consistent with current models of temporal attention and a functional explanation of the P3 in terms of memory consolidation. P3 amplitude was reduced for short target lags and high memory loads. The P2 component was affected by lag only, and not memory load. Importantly, the N2pc component was modulated also by both lag and memory load. The results showed that early attentional processing (as marked by the N2pc) was suppressed by increased involvement of working memory, a phenomenon not well predicted by many current theories of temporal attention. Copyright © 2010 Society for Psychophysiological Research.
Load Theory of Selective Attention and Cognitive Control
ERIC Educational Resources Information Center
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W.; Viding, Essi
2004-01-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings…
Browndyke, Jeffrey N; Berger, Miles; Smith, Patrick J; Harshbarger, Todd B; Monge, Zachary A; Panchal, Viral; Bisanar, Tiffany L; Glower, Donald D; Alexander, John H; Cabeza, Roberto; Welsh-Bohmer, Kathleen; Newman, Mark F; Mathew, Joseph P
2018-02-01
Older adults often display postoperative cognitive decline (POCD) after surgery, yet it is unclear to what extent functional connectivity (FC) alterations may underlie these deficits. We examined for postoperative voxel-wise FC changes in response to increased working memory load demands in cardiac surgery patients and nonsurgical controls. Older cardiac surgery patients (n = 25) completed a verbal N-back working memory task during MRI scanning and cognitive testing before and 6 weeks after surgery; nonsurgical controls with cardiac disease (n = 26) underwent these assessments at identical time intervals. We measured postoperative changes in degree centrality, the number of edges attached to a brain node, and local coherence, the temporal homogeneity of regional functional correlations, using voxel-wise graph theory-based FC metrics. Group × time differences were evaluated in these FC metrics associated with increased N-back working memory load (2-back > 1-back), using a two-stage partitioned variance, mixed ANCOVA. Cardiac surgery patients demonstrated postoperative working memory load-related degree centrality increases in the left dorsal posterior cingulate cortex (dPCC; p < .001, cluster p-FWE < .05). The dPCC also showed a postoperative increase in working memory load-associated local coherence (p < .001, cluster p-FWE < .05). dPCC degree centrality and local coherence increases were inversely associated with global cognitive change in surgery patients (p < .01), but not in controls. Cardiac surgery patients showed postoperative increases in working memory load-associated degree centrality and local coherence of the dPCC that were inversely associated with postoperative global cognitive outcomes and independent of perioperative cerebrovascular damage. © 2017 Wiley Periodicals, Inc.
Pérez, R; Recabarren, S E; Mora, G; Jara, C; Quijada, G; Hetz, E
1992-04-01
In order to establish the relationship between draught force and cardiorespiratory responses to exercise heart rate (HR), respiratory rate (RR), arterial and venous blood gases, pH, hemoglobin concentration and temperature were measured in five draught horses during rest, immediately after exercise and 30 min post-exercise under field conditions. A wagon equipped with an odometer and a hydraulic dynamometer was used for measuring distance and draught force. The wagon was loaded with 946 kg for the low load, 1,979 kg for the medium load and 2,994 kg for the high load, and drawn for a distance of 1,500 m. Draught force and load weight were linearly related. The response of the draught horse to low and medium load exercise was characterized by a moderate increase in HR, RR and temperature with no significant changes in arterial blood gases and pH. An increase in HR, RR and temperature was observed, whereas no changes in arterial PO2 and increases in venous PO2 were noticed after high load exercise. Slight increase in venous lactic acid concentration as a result of high load exercise was observed, suggesting that some anaerobic work was performed. However this was insufficient to produce changes in blood pH. The increase in metabolic requirements during the three levels of draught exercise was associated with increases in arterial hemoglobin concentration and oxygen content of blood.
Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R
2016-05-18
Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures of the motor affordance while working memory load was varied. We observed a typical motor affordance signature when working memory load was low; however, it was abolished when load was high. Further, there was increased intracortical inhibition in primary motor cortex under high working memory load. This suggests that being in a state of high cognitive load "sets" the motor system to be imperturbable to distracting motor influences. This makes a novel link between working memory load and the balance of excitatory/inhibitory activity in the motor cortex and potentially has implications for disorders of impulsivity. Copyright © 2016 the authors 0270-6474/16/365544-12$15.00/0.
Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes
NASA Astrophysics Data System (ADS)
Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.
2017-12-01
In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.
Eye-related pain induced by visually demanding computer work.
Thorud, Hanne-Mari Schiøtz; Helland, Magne; Aarås, Arne; Kvikstad, Tor Martin; Lindberg, Lars Göran; Horgen, Gunnar
2012-04-01
Eye strain during visually demanding computer work may include glare and increased squinting. The latter may be related to elevated tension in the orbicularis oculi muscle and development of muscle pain. The aim of the study was to investigate the development of discomfort symptoms in relation to muscle activity and muscle blood flow in the orbicularis oculi muscle during computer work with visual strain. A group of healthy young adults with normal vision was randomly selected. Eye-related symptoms were recorded during a 2-h working session on a laptop. The participants were exposed to visual stressors such as glare and small font. Muscle load and blood flow were measured by electromyography and photoplethysmography, respectively. During 2 h of visually demanding computer work, there was a significant increase in the following symptoms: eye-related pain and tiredness, blurred vision, itchiness, gritty eyes, photophobia, dry eyes, and tearing eyes. Muscle load in orbicularis oculi was significantly increased above baseline and stable at 1 to 1.5% maximal voluntary contraction during the working sessions. Orbicularis oculi muscle blood flow increased significantly during the first part of the working sessions before returning to baseline. There were significant positive correlations between eye-related tiredness and orbicularis oculi muscle load and eye-related pain and muscle blood flow. Subjects who developed eye-related pain showed elevated orbicularis oculi muscle blood flow during computer work, but no differences in muscle load, compared with subjects with minimal pain symptoms. Eyestrain during visually demanding computer work is related to the orbicularis oculi muscle. Muscle pain development during demanding, low-force exercise is associated with increased muscle blood flow, possible secondary to different muscle activity pattern, and/or increased mental stress level in subjects experiencing pain compared with subjects with minimal pain.
Role of the adrenocortical reaction to physical load in increase in the working capacity of the body
NASA Technical Reports Server (NTRS)
Viru, A. A.
1977-01-01
The maximal duration of swimming by rats with a load of 3% of their body weight increased after 5 weeks of training. This time did not increase in animals receiving dexamethasone in the process of training. The blood corticosterone level of these rats with the maximal load increased less than that of animals trained without administration of dexamethasone.
Rethinking the Connection between Working Memory and Language Impairment
ERIC Educational Resources Information Center
Archibald, Lisa M. D.; Harder Griebeling, Katherine
2016-01-01
Background: Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. Aims: To examine the processing function of working memory in children with low language (LL) by employing tasks imposing…
Mechanical Properties Experimental Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The vehicle refurbished tire test system was constructed, got load-deformation, load-stiffness, and load-compression ratio property laws of engineering vehicle refurbished tire under the working condition of static state and ground contact, and built radial direction loading deformation mathematics model of 26.5R25 engineering vehicle refurbished tire. The test results show that radial-direction and side-direction deformation value is a little less than that of the new tire. The radial-direction stiffness and compression ratio of engineering vehicle refurbished tire were greatly influenced by radial-direction load and air inflation pressure. When load was certain, radial-direction stiffness would increase with air inflation pressure increasing. When air inflation pressure was certain, compression ratio of engineering vehicle refurbished tire would enlarge with radial-direction load increasing, which was a little less than that of the new and the same type tire. Aging degree of old car-case would exert a great influence on deformation property of engineering vehicle refurbished tire, thus engineering vehicle refurbished tires are suitable to the working condition of low tire pressure and less load.
Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.
Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin
2016-01-15
Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.
The contribution of working memory to divided attention.
Santangelo, Valerio; Macaluso, Emiliano
2013-01-01
Previous studies have indicated that increasing working memory (WM) load can affect the attentional selection of signals originating from one object/location. Here we assessed whether WM load affects also the selection of multiple objects/locations (divided attention). Participants monitored either two object-categories (vs. one category; object-based divided attention) or two locations (vs. one location; space-based divided attention) while maintaining in WM either a variable number of objects (object-based WM load) or locations (space-based WM load). Behavioural results showed that WM load affected attentional performance irrespective of divided or focused attention. However, fMRI results showed that the activity associated with object-based divided attention increased linearly with increasing object-based WM load in the left and right intraparietal sulcus (IPS); while, in the same areas, activity associated with space-based divided attention was not affected by any type of WM load. These findings support the hypothesis that WM contributes to the maintenance of resource-demanding attentional sets in a domain-specific manner. Moreover, the dissociable impact of WM load on performance and brain activity suggests that increased IPS activation reflects a recruitment of additional, domain-specific processing resources that enable dual-task performance under conditions of high WM load and high attentional demand. Copyright © 2011 Wiley Periodicals, Inc.
Neuromuscular control of lumbar instability following static work of various loads.
Le, Brook; Davidson, Bradley; Solomonow, Deborah; Zhou, Bing He; Lu, Yun; Patel, Vikas; Solomonow, Moshe
2009-01-01
Neuromuscular control of lumbar stability following exposure to prolonged static work, under low and high loads, was assessed in the in vivo feline model. Six sessions of 10 min work at 20N with 10 min between rest was compared to a group subjected to the same protocol but carrying high loads of 60N. Displacement and tension developed in the spine at the instant the multifidus muscles applied stabilizing contractions, and their amplitudes were obtained from their electromyogram (EMG). Significant (P < 0.001) laxity developed in the various viscoelastic tissues of the lumbar spine that did not recover during and up to 7 h of rest postwork. Simultaneously, there was a significant (P < 0.001) decrease in muscular activity in the 3-4 h immediately postwork under low load but only during the first hour in the high load group. After that period the musculature compensated for the laxity of the viscoelastic tissues by a significant (P < 0.001) increase in activity in the high-load group and a nonsignificant increase in the low group. It was concluded that during 1-3 h immediately poststatic work a significant decrease in the stabilizing function of viscoelastic tissues together with a significant decrease in muscular activity is present, and they render the spine unstable and exposed to high risk of injury. Performance of prolonged static work under low loads, while not harmful during the work, cannot be designated as a "no-risk" condition, as it may result in injury postwork.
Superior Intraparietal Sulcus Controls the Variability of Visual Working Memory Precision.
Galeano Weber, Elena M; Peters, Benjamin; Hahn, Tim; Bledowski, Christoph; Fiebach, Christian J
2016-05-18
Limitations of working memory (WM) capacity depend strongly on the cognitive resources that are available for maintaining WM contents in an activated state. Increasing the number of items to be maintained in WM was shown to reduce the precision of WM and to increase the variability of WM precision over time. Although WM precision was recently associated with neural codes particularly in early sensory cortex, we have so far no understanding of the neural bases underlying the variability of WM precision, and how WM precision is preserved under high load. To fill this gap, we combined human fMRI with computational modeling of behavioral performance in a delayed color-estimation WM task. Behavioral results replicate a reduction of WM precision and an increase of precision variability under high loads (5 > 3 > 1 colors). Load-dependent BOLD signals in primary visual cortex (V1) and superior intraparietal sulcus (IPS), measured during the WM task at 2-4 s after sample onset, were modulated by individual differences in load-related changes in the variability of WM precision. Although stronger load-related BOLD increase in superior IPS was related to lower increases in precision variability, thus stabilizing WM performance, the reverse was observed for V1. Finally, the detrimental effect of load on behavioral precision and precision variability was accompanied by a load-related decline in the accuracy of decoding the memory stimuli (colors) from left superior IPS. We suggest that the superior IPS may contribute to stabilizing visual WM performance by reducing the variability of memory precision in the face of higher load. This study investigates the neural bases of capacity limitations in visual working memory by combining fMRI with cognitive modeling of behavioral performance, in human participants. It provides evidence that the superior intraparietal sulcus (IPS) is a critical brain region that influences the variability of visual working memory precision between and within individuals (Fougnie et al., 2012; van den Berg et al., 2012) under increased memory load, possibly in cooperation with perceptual systems of the occipital cortex. These findings substantially extend our understanding of the nature of capacity limitations in visual working memory and their neural bases. Our work underlines the importance of integrating cognitive modeling with univariate and multivariate methods in fMRI research, thus improving our knowledge of brain-behavior relationships. Copyright © 2016 the authors 0270-6474/16/365623-13$15.00/0.
Load Balancing Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Olga Tkachyshyn
2014-12-01
The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one atmore » the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.« less
Rethinking the connection between working memory and language impairment.
Archibald, Lisa M D; Harder Griebeling, Katherine
2016-05-01
Working memory deficits have been found for children with specific language impairment (SLI) on tasks imposing increasing short-term memory load with or without additional, consistent (and simple) processing load. To examine the processing function of working memory in children with low language (LL) by employing tasks imposing increasing processing loads with constant storage demands individually adjusted based on each participant's short-term memory capacity. School-age groups with LL (n = 17) and typical language with either average (n = 28) or above-average nonverbal intelligence (n = 15) completed complex working memory-span tasks varying processing load while keeping storage demands constant, varying storage demands while keeping processing load constant, simple storage-span tasks, and measures of language and nonverbal intelligence. Teachers completed questionnaires about cognition and learning. Significantly lower scores were found for the LL than either matched group on storage-based tasks, but no group differences were found on the tasks varying processing load. Teachers' ratings of oral expression and mathematics abilities discriminated those who did or did not complete the most challenging cognitive tasks. The results implicate a deficit in the phonological storage but not in the central executive component of working memory for children with LL. Teacher ratings may reveal personality traits related to perseverance of effort in cognitive research. © 2015 Royal College of Speech and Language Therapists.
[Correlation of mental fatigue due to work load and professional qualifications of physicians].
Wichrowski, A; Dudek, B
1988-01-01
The results presented in the paper refer to the relationship between physicians' professional qualifications and mental fatigue. It was that professional qualifications determining man's capabilities affect the level and structure of mental fatigue caused by work. Furthermore, it was assumed that this workload is multidimensional, and so its following five dimensions were singled out: mental difficulties, monotony, risk and responsibility, moral conflicts and dilemmas. The level of qualifications was measured by the length of employment and specialization and scientific degrees. The studies involved 10% of randomly selected physicians from all over Poland. The obtained results indicate that with increasing length of employment the workload due to moral dilemmas, risk and responsibility and mental difficulties, gets reduced; on the other hand, the load resulting from work monotony is increased. Also the specialization degree affects the workload caused by the risk, responsibility and moral dilemmas. Noticeable here is the trend towards a reduction in the workload with increasing specialization degrees. Instead, the higher the scientific degree the higher the sense of load due to risk and responsibility with simultaneous decrease in the load due to work monotony.
Faber, G S; Kingma, I; Kuijer, P P F M; van der Molen, H F; Hoozemans, M J M; Frings-Dresen, M H W; van Dieën, J H
2009-09-01
The goal of this study was to compare the effects of the task variables block mass, working height and one- vs. two-handed block handling on low back and shoulder loading during masonry work. In a mock-up of a masonry work site, nine masonry workers performed one- and two-handed block-lifting and block-placing tasks at varying heights (ranging from floor to shoulder level) with blocks of varying mass (ranging from 6 to 16 kg). Kinematics and ground reaction forces were measured and used in a 3-D linked segment model to calculate low back and shoulder loading. Increasing lifting height appeared to be the most effective way to reduce low back loading. However, working at shoulder level resulted in relatively high shoulder loading. Therefore, it was recommended to organise masonry work in such a way that blocks are handled with the hands at about iliac crest height as much as possible.
Increasing the resource of high load compression springs
NASA Astrophysics Data System (ADS)
Zemlyanushnova, N. Y.; Zemlyanushnov, N. A.
2017-10-01
Valve springs of VAZ automobiles’ engines are manufactured by using a new method. The decrease of dispersion of operating load in experimental springs compared to serial ones has been proved. The springs have passed a stress cycling test. With the new method having been used, it has been proved that the resource of high load springs working at high loading speed with coils collision has increased up to 60%.
The Effect of Visual Perceptual Load on Auditory Awareness in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Tillmann, Julian; Olguin, Andrea; Tuomainen, Jyrki; Swettenham, John
2015-01-01
Recent work on visual selective attention has shown that individuals with Autism Spectrum Disorder (ASD) demonstrate an increased perceptual capacity. The current study examined whether increasing visual perceptual load also has less of an effect on auditory awareness in children with ASD. Participants performed either a high- or low load version…
Jakobsen, Markus Due; Sundstrup, Emil; Persson, Roger; Andersen, Christoffer H; Andersen, Lars L
2014-02-01
To investigate associations between perceived exertion and objectively assessed muscular and cardiovascular load during a full working day among workers with manual lifting tasks. A total of 159 men and 41 women from 14 workplaces with manual lifting tasks participated. Participants reported perceived exertion (BORG-CR10) at midday and after work. Surface electromyography of the thigh, lower back and neck muscles were normalized to isometric voluntary contractions (MVC) to express relative muscle load during the day. Cardiovascular load was measured with electrocardiography and calculated as the average percentage of the heart rate reserve capacity (((heart rate during work - resting heart rate) / (maximum heart rate - resting heart rate)) * 100) during the day. Using linear regression, significant but weak associations (β < 0.23) were observed between perceived exertion and (1) high muscle activity (>60% of MVC) of the neck muscles and (2) inactivity (<1% of MVC) of the thigh muscles and (3) cardiovascular load, respectively. Using logistic regression, perceived exertion ≥4 (high exertion), referencing <4 (low-to-moderate exertion), was related to high activity of the trapezius muscle [OR 18 (95% CI 2-143)], i.e., the odds for experiencing high exertion during work increased 18-fold for each percentage increase in time above 60% MVC. During a full working day among blue-collar workers with lifting tasks, high neck muscle activity increases the odds for experiencing high perceived physical exertion. Perceived exertion of at least 4 on the BORG CR10 scale appears to be a good indicator that high muscular loading occurs.
Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W.
2017-01-01
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver’s cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous ‘n’ speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing. PMID:28424602
Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W
2017-01-01
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver's cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous 'n' speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing.
Fridberg, Daniel J; Gerst, Kyle R; Finn, Peter R
2013-12-01
Substance dependence and antisocial psychopathology, such as a history of childhood conduct disorder (HCCD), are associated with impulsive or disadvantageous decision making and reduced working memory capacity (WMC). Reducing WMC via a working memory load increases disadvantageous decision making in healthy adults, but no previous studies have examined this effect in young adults with substance dependence and HCCD. Young adults with substance dependence (SubDep; n=158, 71 female), substance dependence and HCCD (SubDep+HCCD; n=72, 24 female), and control participants (n=152, 84 female) completed a test of decision making (the Iowa Gambling Task; IGT) with or without a concurrent working memory load intended to tax WMC. Outcomes were (i) net advantageous decisions on the IGT, and (ii) preferences for infrequent- versus frequent-punishment decks. SubDep+HCCD men made fewer advantageous decisions on the IGT than control men without a load, but there were no group differences among women in that condition. Load was associated with fewer advantageous decisions for SubDep+HCCD women and control men, but not for men or women in the other groups. Participants showed greater preference for infrequent-punishment, advantageous decks under load as well. There are gender differences in the effects of substance dependence, HCCD, and working memory load on decision making on the IGT. Decision making by control men and SubDep+HCCD women suffered the most under load. Load increases preferences for less-frequent punishments, similar to a delay discounting effect. Future research should clarify the cognitive and neural mechanisms underlying these effects. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling
Ma, Liangsuo; Steinberg, Joel L.; Hasan, Khader M.; Narayana, Ponnada A.; Kramer, Larry A.; Moeller, F. Gerard
2011-01-01
Previous neuroimaging studies have shown that working memory load has marked effects on regional neural activation. However, the mechanism through which working memory load modulates brain connectivity is still unclear. In this study, this issue was addressed using dynamic causal modeling (DCM) based on functional magnetic resonance imaging (fMRI) data. Eighteen normal healthy subjects were scanned while they performed a working memory task with variable memory load, as parameterized by two levels of memory delay and three levels of digit load (number of digits presented in each visual stimulus). Eight regions of interest, i.e., bilateral middle frontal gyrus (MFG), anterior cingulate cortex (ACC), inferior frontal cortex (IFC), and posterior parietal cortex (PPC), were chosen for DCM analyses. Analysis of the behavioral data during the fMRI scan revealed that accuracy decreased as digit load increased. Bayesian inference on model structure indicated that a bilinear DCM in which memory delay was the driving input to bilateral PPC and in which digit load modulated several parieto-frontal connections was the optimal model. Analysis of model parameters showed that higher digit load enhanced connection from L PPC to L IFC, and lower digit load inhibited connection from R PPC to L ACC. These findings suggest that working memory load modulates brain connectivity in a parieto-frontal network, and may reflect altered neuronal processes, e.g., information processing or error monitoring, with the change in working memory load. PMID:21692148
Shelton, Annie L; Cornish, Kim M; Godler, David E; Clough, Meaghan; Kraan, Claudine; Bui, Minh; Fielding, Joanne
2015-04-01
Fragile X mental retardation 1 (FMR1) premutation carriers (PM-carriers) are characterised as having mid-sized expansions of between 55 and 200 CGG repeats in the 5' untranslated region of the FMR1 gene. While there is evidence of executive dysfunction in PM-carriers, few studies have explicitly explored working memory capabilities in female PM-carriers. 14 female PM-carriers and 13 age- and IQ-matched healthy controls completed an ocular motor n-back working memory paradigm. This task examined working memory ability and the effect of measured increases in cognitive load. Female PM-carriers were found to have attenuated working memory capabilities. Increasing the cognitive load did not elicit the expected reciprocal increase in the task errors for female PM-carriers, as it did in controls. However female PM-carriers took longer to respond than controls, regardless of the cognitive load. Further, FMR1 mRNA levels were found to significantly predict PM-carrier response time. Although preliminary, these findings provide further evidence of executive dysfunction, specifically disruption to working memory processes, which were found to be associated with increases in FMR1 mRNA expression in female PM-carriers. With future validation, ocular motor paradigms such as the n-back paradigm will be critical to the development of behavioural biomarkers for identification of PM-carrier cognitive-affective phenotypes. Copyright © 2015 Elsevier B.V. All rights reserved.
The impact of cognitive load on delayed recall.
Camos, Valérie; Portrat, Sophie
2015-08-01
Recent studies have suggested that long-term retention of items studied in a working memory span task depends on the refreshing of memory items-more specifically, on the number of refreshing opportunities. However, it was previously shown that refreshing depends on the cognitive load of the concurrent task introduced in the working memory span task. Thus, cognitive load should determine the long-term retention of items assessed in a delayed-recall test if such retention relies on refreshing. In two experiments, while the amount of refreshing opportunities remained constant, we varied the cognitive load of the concurrent task by either introducing tasks differing in their attentional demands or varying the pace of the concurrent task. To verify that this effect was related to refreshing and not to any maintenance mechanism, we also manipulated the availability of subvocal rehearsal. Replicating previous results, increasing cognitive load reduced immediate recall. This increase also had a detrimental effect on delayed recall. Conversely, the addition of concurrent articulation reduced immediate but not delayed recall. This study shows that both working and episodic memory traces depend on the cognitive load of the concurrent task, whereas the use of rehearsal affects only working memory performance. These findings add further evidence of the dissociation between subvocal rehearsal and attentional refreshing.
The irrelevant speech effect and working memory load.
Gisselgård, Jens; Petersson, Karl Magnus; Ingvar, Martin
2004-07-01
Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation. Copyright 2004 Elsevier Inc.
Morikawa, Yuko; Kitaoka-Higashiguchi, Kazuyo; Tanimoto, Chie; Hayashi, Midori; Oketani, Reiko; Miura, Katsuyuki; Nishijo, Muneko; Nakagawa, Hideaki
2005-09-01
The present study investigated the effects of job stress on cellular immune function, such as NK cell activity and NK cell subsets. The participants were 61 female nurses aged 23-59, who worked in a public psychiatric hospital in Ishikawa, Japan. Each subject completed the Nursing Job Stressor Scale (NJSS) and their NK cell activity and lymphocyte surface antigens (CD16+56+) were evaluated as immune system parameters. The NJSS has seven subscales: conflict with other nursing staff, nursing role conflict, conflict with physicians or autonomy, conflict with death or dying, quantitative work load, qualitative work load and conflict with patients. Factors influencing NK cell activity, and the proportion and cell counts of CD16+56+ lymphocytes were evaluated. Increase in quantitative work load significantly decreased NK cell activity. Conversely, no linear relationship was observed between qualitative work load and immunological variables, with the highest percentage of CD16+56+ lymphocytes observed among participants in the medium work load group. The other five NJSS subscales did not relate to immune parameters. In conclusion, the results suggest that perceived job strains, particularly quantitative work load, decreased NK cell function.
Charroud, Céline; Steffener, Jason; Le Bars, Emmanuelle; Deverdun, Jérémy; Bonafe, Alain; Abdennour, Meriem; Portet, Florence; Molino, François; Stern, Yaakov; Ritchie, Karen; Menjot de Champfleur, Nicolas; Akbaraly, Tasnime N
2015-11-01
Changes in working memory are sensitive indicators of both normal and pathological brain aging and associated disability. The present study aims to further understanding of working memory in normal aging using a large cohort of healthy elderly in order to examine three separate phases of information processing in relation to changes in task load activation. Using covariance analysis, increasing and decreasing neural activation was observed on fMRI in response to a delayed item recognition task in 337 cognitively healthy elderly persons as part of the CRESCENDO (Cognitive REServe and Clinical ENDOphenotypes) study. During three phases of the task (stimulation, retention, probe), increased activation was observed with increasing task load in bilateral regions of the prefrontal cortex, parietal lobule, cingulate gyrus, insula and in deep gray matter nuclei, suggesting an involvement of central executive and salience networks. Decreased activation associated with increasing task load was observed during the stimulation phase, in bilateral temporal cortex, parietal lobule, cingulate gyrus and prefrontal cortex. This spatial distribution of decreased activation is suggestive of the default mode network. These findings support the hypothesis of an increased activation in salience and central executive networks and a decreased activation in default mode network concomitant to increasing task load. Copyright © 2015 Elsevier Inc. All rights reserved.
Kaila-Kangas, Leena; Arokoski, Jari; Impivaara, Olli; Viikari-Juntura, Eira; Leino-Arjas, Päivi; Luukkonen, Ritva; Heliövaara, Markku
2011-10-01
We reviewed work histories of manual handling of loads >20 kg in relation to hip osteoarthritis by age, exposure and work participation. A nationally representative sample of 3110 Finnish men and 3446 women aged 30-97 was recruited. Diagnosis of hip osteoarthritis was based on standardised clinical examination by trained physicians. Previous exposure to physically loading work was evaluated through interviews. Logistic regression was used to estimate associations between work factors and hip osteoarthritis. 1.9% of men and 2.1% of women had hip osteoarthritis. Almost half the men and a quarter of the women had recurrently handled heavy loads at work. Subjects who had manually handled loads >20 kg had a 1.8-fold increased risk of hip osteoarthritis compared to non-exposed references, when age, body mass index, traumatic fractures and smoking were accounted for. Results were similar for men (OR 2.0; 95% CI 1.0 to 4.0) and women (1.8; 1.1 to 2.8). In a sub-analysis of subjects with hip replacement, the OR was 1.7 (1.0 to 2.9). Risk increased first after 12 years' exposure: among men it was 2.2 (0.8 to 5.9) for 13-24 years' exposure, and 2.3 (1.2 to 4.3) for >24 years' exposure. Among women it was 3.8 (1.7 to 8.1) for 13-24 years' exposure. Work participation among men aged <60 years with hip osteoarthritis was 20% lower compared with subjects without osteoarthritis. A work history of manual handling of loads >20 kg showed a strong association with hip osteoarthritis in all age groups except the youngest.
Effect of reactor loading on atomic oxygen concentration as measured by NO chemiluminescence
NASA Technical Reports Server (NTRS)
Lerner, N. R.
1989-01-01
It has previously been observed that the etch rate of polyethylene samples in the afterglow of an RF discharge in oxygen increases with reactor loading. This enhancement of the etch rate is attributed to reactive gas phase products of the polymer etching. In the present work, emission spectroscopy is employed to examine the species present in the gas phase during etching of polyethylene. In particular, the concentration of atomic oxygen downstream from the polyethylene samples is studied as a function of the reactor loading. It is found that the concentration of atomic oxygen increases as the reactor loading is increased. The increase of etch rate with increased reactor loading is attributed to the increase of atomic oxygen concentration in the vicinity of the sample.
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2008-07-01
The maintenance of visual stimuli across a delay interval in working memory tasks is thought to involve reverberant neural communication between the prefrontal cortex and posterior visual association areas. Recent studies suggest that the hippocampus might also contribute to this retention process, presumably via reciprocal interactions with visual regions. To characterize the nature of these interactions, we performed functional connectivity analysis on an event-related functional magnetic resonance imaging data set in which participants performed a delayed face recognition task. As the number of faces that participants were required to remember was parametrically increased, the right inferior frontal gyrus (IFG) showed a linearly decreasing degree of functional connectivity with the fusiform face area (FFA) during the delay period. In contrast, the hippocampus linearly increased its delay period connectivity with both the FFA and the IFG as the mnemonic load increased. Moreover, the degree to which participants' FFA showed a load-dependent increase in its connectivity with the hippocampus predicted the degree to which its connectivity with the IFG decreased with load. Thus, these neural circuits may dynamically trade off to accommodate the particular mnemonic demands of the task, with IFG-FFA interactions mediating maintenance at lower loads and hippocampal interactions supporting retention at higher loads.
Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C
2011-10-01
Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.
Different effects of executive and visuospatial working memory on visual consciousness.
De Loof, Esther; Poppe, Louise; Cleeremans, Axel; Gevers, Wim; Van Opstal, Filip
2015-11-01
Consciousness and working memory are two widely studied cognitive phenomena. Although they have been closely tied on a theoretical and neural level, empirical work that investigates their relation is largely lacking. In this study, the relationship between visual consciousness and different working memory components is investigated by using a dual-task paradigm. More specifically, while participants were performing a visual detection task to measure their visual awareness threshold, they had to concurrently perform either an executive or visuospatial working memory task. We hypothesized that visual consciousness would be hindered depending on the type and the size of the load in working memory. Results showed that maintaining visuospatial content in working memory hinders visual awareness, irrespective of the amount of information maintained. By contrast, the detection threshold was progressively affected under increasing executive load. Interestingly, increasing executive load had a generic effect on detection speed, calling into question whether its obstructing effect is specific to the visual awareness threshold. Together, these results indicate that visual consciousness depends differently on executive and visuospatial working memory.
Simon, Sharon S.; Tusch, Erich S.; Holcomb, Phillip J.; Daffner, Kirk R.
2016-01-01
The classic account of the load theory (LT) of attention suggests that increasing cognitive load leads to greater processing of task-irrelevant stimuli due to competition for limited executive resource that reduces the ability to actively maintain current processing priorities. Studies testing this hypothesis have yielded widely divergent outcomes. The inconsistent results may, in part, be related to variability in executive capacity (EC) and task difficulty across subjects in different studies. Here, we used a cross-modal paradigm to investigate whether augmented working memory (WM) load leads to increased early distracter processing, and controlled for the potential confounders of EC and task difficulty. Twenty-three young subjects were engaged in a primary visual WM task, under high and low load conditions, while instructed to ignore irrelevant auditory stimuli. Demands of the high load condition were individually titrated to make task difficulty comparable across subjects with differing EC. Event-related potentials (ERPs) were used to measure neural activity in response to stimuli presented in both the task relevant modality (visual) and task-irrelevant modality (auditory). Behavioral results indicate that the load manipulation and titration procedure of the primary visual task were successful. ERPs demonstrated that in response to visual target stimuli, there was a load-related increase in the posterior slow wave, an index of sustained attention and effort. Importantly, under high load, there was a decrease of the auditory N1 in response to distracters, a marker of early auditory processing. These results suggest that increased WM load is associated with enhanced attentional engagement and protection from distraction in a cross-modal setting, even after controlling for task difficulty and EC. Our findings challenge the classic LT and offer support for alternative models. PMID:27536226
Simon, Sharon S; Tusch, Erich S; Holcomb, Phillip J; Daffner, Kirk R
2016-01-01
The classic account of the load theory (LT) of attention suggests that increasing cognitive load leads to greater processing of task-irrelevant stimuli due to competition for limited executive resource that reduces the ability to actively maintain current processing priorities. Studies testing this hypothesis have yielded widely divergent outcomes. The inconsistent results may, in part, be related to variability in executive capacity (EC) and task difficulty across subjects in different studies. Here, we used a cross-modal paradigm to investigate whether augmented working memory (WM) load leads to increased early distracter processing, and controlled for the potential confounders of EC and task difficulty. Twenty-three young subjects were engaged in a primary visual WM task, under high and low load conditions, while instructed to ignore irrelevant auditory stimuli. Demands of the high load condition were individually titrated to make task difficulty comparable across subjects with differing EC. Event-related potentials (ERPs) were used to measure neural activity in response to stimuli presented in both the task relevant modality (visual) and task-irrelevant modality (auditory). Behavioral results indicate that the load manipulation and titration procedure of the primary visual task were successful. ERPs demonstrated that in response to visual target stimuli, there was a load-related increase in the posterior slow wave, an index of sustained attention and effort. Importantly, under high load, there was a decrease of the auditory N1 in response to distracters, a marker of early auditory processing. These results suggest that increased WM load is associated with enhanced attentional engagement and protection from distraction in a cross-modal setting, even after controlling for task difficulty and EC. Our findings challenge the classic LT and offer support for alternative models.
Principles for classification of work load for women
NASA Technical Reports Server (NTRS)
Navakatikyan, A. O.; Okhrimenko, A. P.; Karakashyan, A. N.; Buzunov, V. A.
1980-01-01
In an attempt to develop guidelines for classification by degree of intensity of various kinds of physical work performed by women, the effects of different work loads on women as compared to men were studied under industrial and experimental conditions, including response of the cardiovascular and respiratory systems to specified physical exercises of increasing intensity. Physiological criteria for assessing female labor in terms of intensity are proposed.
Asymmetric Spatial Processing Under Cognitive Load.
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
NASA Technical Reports Server (NTRS)
Wood, Nathan A.
2005-01-01
Planetary Surface Robot Work Crews (RWC) represent a new class of construction robots for future deployment in planetary exploration. Rovers currently being used for the RWC platform lack the load carrying capabilities required in regular work. Two new rovers, dubbed CrewBots, being designed in JPL's Planetary Robotics Lab specifically for RWC applications greatly increase the load carrying capabilities of the platform. A major component of the rover design was the design of the rocker type suspension, which increases rover mobility. The design of the suspension for the Crewbots departed from the design of recent rovers. While many previous rovers have used internal bevel gear differentials, the increased load requirements of the Crewbots calls for a more robust system. The solution presented is the use of an external modified three-bar, slider-linkage, rocker-style suspension that increases the moment arm of the differential. The final product is a suspension system capable of supporting the extreme loading cases the RWC platform presents, without consuming a large portion of the Crewbots' internal space.
Paulus, Martin P.; Tapert, Susan F.; Pulido, Carmen; Schuckit, Marc A.
2008-01-01
Background A low level of response to alcohol is a major risk factor for the development of alcohol dependence, but neural correlates of this marker are unclear. Method Ten healthy volunteers were classified by median split on level of response to alcohol and underwent 2 sessions of functional magnetic resonance imaging following ingestion of a moderate dose of alcohol and a placebo. The blood oxygen level–dependent activation to an event-related visual working memory test was examined. Results The subjects exhibited longer response latencies and more errors as a function of increasing working memory load and showed a load-dependent increase in activation in dorsolateral prefrontal cortex, posterior parietal cortex, and visual cortex. Alcohol did not affect performance (errors or response latency), but attenuated the working memory load–dependent activation in the dorsolateral prefrontal cortex. During the placebo condition, individuals with a low level of response to alcohol showed greater activation in dorsolateral prefrontal cortex and posterior parietal cortex than those with a high level of response to alcohol. During the alcohol condition, groups showed similar attenuation of load-dependent brain activation in these regions. Conclusion Low-level responders relative to high-level responders exhibited an increased working memory load–dependent activation in dorsolateral prefrontal cortex and posterior parietal cortex when not exposed to alcohol. This increase in brain response was attenuated in low-level responders after ingesting a moderate dose of alcohol. PMID:16899039
Spangler, Derek P; Friedman, Bruce H
2017-01-01
Anxiety impairs both inhibition of distraction and attentional focus. It is unclear whether these impairments are reduced or exacerbated when loading working memory with non-affective information. Cardiac vagal control has been related to top-down regulation of anxiety; therefore, vagal control may reflect load-related inhibition of distraction under anxiety. The present study examined whether: (1) the enhancing and impairing effects of load on inhibition exist together in a non-linear function, (2) there is a similar association between inhibition and concurrent vagal control under anxiety. During anxiogenic threat-of-noise, 116 subjects maintained a digit series of varying lengths (0, 2, 4, and 6 digits) while completing a visual flanker task. The task was broken into four blocks, with a baseline period preceding each. Electrocardiography was acquired throughout to quantify vagal control as high-frequency heart rate variability (HRV). There were significant quadratic relations of working memory load to flanker performance and to HRV, but no associations between HRV and performance. Results indicate that low load was associated with relatively better inhibition and increased HRV. These findings suggest that attentional performance under anxiety depends on the availability of working memory resources, which might be reflected by vagal control. These results have implications for treating anxiety disorders, in which regulation of anxiety can be optimized for attentional focus.
Spangler, Derek P.; Friedman, Bruce H.
2017-01-01
Anxiety impairs both inhibition of distraction and attentional focus. It is unclear whether these impairments are reduced or exacerbated when loading working memory with non-affective information. Cardiac vagal control has been related to top–down regulation of anxiety; therefore, vagal control may reflect load-related inhibition of distraction under anxiety. The present study examined whether: (1) the enhancing and impairing effects of load on inhibition exist together in a non-linear function, (2) there is a similar association between inhibition and concurrent vagal control under anxiety. During anxiogenic threat-of-noise, 116 subjects maintained a digit series of varying lengths (0, 2, 4, and 6 digits) while completing a visual flanker task. The task was broken into four blocks, with a baseline period preceding each. Electrocardiography was acquired throughout to quantify vagal control as high-frequency heart rate variability (HRV). There were significant quadratic relations of working memory load to flanker performance and to HRV, but no associations between HRV and performance. Results indicate that low load was associated with relatively better inhibition and increased HRV. These findings suggest that attentional performance under anxiety depends on the availability of working memory resources, which might be reflected by vagal control. These results have implications for treating anxiety disorders, in which regulation of anxiety can be optimized for attentional focus. PMID:28217091
Lee, Min Chul; Okamoto, Masahiro; Liu, Yu Fan; Inoue, Koshiro; Matsui, Takashi; Nogami, Haruo; Soya, Hideaki
2012-10-15
Although voluntary running has beneficial effects on hippocampal cognitive functions if done abundantly, it is still uncertain whether resistance running would be the same. For this purpose, voluntary resistance wheel running (RWR) with a load is a suitable model, since it allows increased work levels and resultant muscular adaptation in fast-twitch muscle. Here, we examined whether RWR would have potential effects on hippocampal cognitive functions with enhanced hippocampal brain-derived neurotrophic factor (BDNF), as does wheel running without a load (WR). Ten-week-old male Wistar rats were assigned randomly to sedentary (Sed), WR, and RWR (to a maximum load of 30% of body weight) groups for 4 wk. We found that in RWR, work levels increased with load, but running distance decreased by about half, which elicited muscular adaptation for fast-twitch plantaris muscle without causing any negative stress effects. Both RWR and WR led to improved spatial learning and memory as well as gene expressions of hippocampal BDNF signaling-related molecules. RWR increased hippocampal BDNF, tyrosine-related kinase B (TrkB), and cAMP response element-binding (CREB) protein levels, whereas WR increased only BDNF. With both exercise groups, there were correlations between spatial memory and BDNF protein (r = 0.41), p-CREB protein (r = 0.44), and work levels (r = 0.77). These results suggest that RWR plays a beneficial role in hippocampus-related cognitive functions associated with hippocampal BDNF signaling, even with short distances, and that work levels rather than running distance are more determinant of exercise-induced beneficial effects in wheel running with and without a load.
To hear or not to hear: Voice processing under visual load.
Zäske, Romi; Perlich, Marie-Christin; Schweinberger, Stefan R
2016-07-01
Adaptation to female voices causes subsequent voices to be perceived as more male, and vice versa. This contrastive aftereffect disappears under spatial inattention to adaptors, suggesting that voices are not encoded automatically. According to Lavie, Hirst, de Fockert, and Viding (2004), the processing of task-irrelevant stimuli during selective attention depends on perceptual resources and working memory. Possibly due to their social significance, faces may be an exceptional domain: That is, task-irrelevant faces can escape perceptual load effects. Here we tested voice processing, to study whether voice gender aftereffects (VGAEs) depend on low or high perceptual (Exp. 1) or working memory (Exp. 2) load in a relevant visual task. Participants adapted to irrelevant voices while either searching digit displays for a target (Exp. 1) or recognizing studied digits (Exp. 2). We found that the VGAE was unaffected by perceptual load, indicating that task-irrelevant voices, like faces, can also escape perceptual-load effects. Intriguingly, the VGAE was increased under high memory load. Therefore, visual working memory load, but not general perceptual load, determines the processing of task-irrelevant voices.
Bollmann, Steffen; Ghisleni, Carmen; Poil, Simon-Shlomo; Martin, Ernst; Ball, Juliane; Eich-Höchli, Dominique; Klaver, Peter; O'Gorman, Ruth L; Michels, Lars; Brandeis, Daniel
2017-06-01
Attention-deficit/hyperactivity disorder (ADHD) has been associated with spatial working memory as well as frontostriatal core deficits. However, it is still unclear how the link between these frontostriatal deficits and working memory function in ADHD differs in children and adults. This study examined spatial working memory in adults and children with ADHD, focussing on identifying regions demonstrating age-invariant or age-dependent abnormalities. We used functional magnetic resonance imaging to examine a group of 26 children and 35 adults to study load manipulated spatial working memory in patients and controls. In comparison to healthy controls, patients demonstrated reduced positive parietal and frontostriatal load effects, i.e., less increase in brain activity from low to high load, despite similar task performance. In addition, younger patients showed negative load effects, i.e., a decrease in brain activity from low to high load, in medial prefrontal regions. Load effect differences between ADHD and controls that differed between age groups were found predominantly in prefrontal regions. Age-invariant load effect differences occurred predominantly in frontostriatal regions. The age-dependent deviations support the role of prefrontal maturation and compensation in ADHD, while the age-invariant alterations observed in frontostriatal regions provide further evidence that these regions reflect a core pathophysiology in ADHD.
NASA Astrophysics Data System (ADS)
Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton
1998-01-01
Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.
NASA Astrophysics Data System (ADS)
Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton
1997-12-01
Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.
Klemen, Jane; Büchel, Christian; Bühler, Mira; Menz, Mareike M; Rose, Michael
2010-03-01
Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.
Zhang, Fei-ruo; Wang, Sheng; He, Li-hua; Zhang, Ying; Wu, Shan-shan; Li, Jing-yun; Hu, Guang-yi; Ye, Kang-ping
2011-03-01
To study neck and shoulder work-related muscle fatigue of female sewing machine operators. 18 health female sewing machine operators without musculoskeletal disorders work in Beijing garment industry factory as volunteers in participate of this study. The maximal voluntary contraction (MVC) and 20% MVC of bilateral upper trapezium and cervical erectors spinae was tested before sewing operations, then the whole 20 time windows (1 time window = 10 min) sewing machine operations was monitored and the surface electromyography (sEMG) signals simultaneously was recorded after monitoring the 20%MVC was tested. Use amplitude analysis method to reduction recorded EMG signals. During work, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezium (LUT) and right upper trapezium (RUT) respectively was 6.78 ± 1.05, 6.94 ± 1.12, 5.68 ± 2.56 and 6.47 ± 3.22, work load of right is higher than the left; static load analysis indicated the value of RMS(20%MVC) before work was higher than that value after work, the increase of right CES and UT RMS(20%MVC) was more; the largest 20%MVE of bilateral CES occurred at 20th time window, and that of bilateral UT happened at 16th. The work load of female sewing machine operators is sustained "static" load, and work load of right neck-shoulder is higher than left, right neck-shoulder muscle is more fatigable and much serious once fatigued.
MacNamara, Annmarie; Jackson, T Bryan; Fitzgerald, Jacklynn M; Hajcak, Greg; Phan, K Luan
2018-04-22
Internalizing disorders such as anxiety may be characterized by an imbalance between bottom-up (stimulus-driven) and top-down (goal-directed) attention. The late positive potential (LPP) can be used to assess these processes when task-irrelevant negative and neutral pictures are presented within a working memory paradigm. Prior work using this paradigm has found that working memory load reduces the picture-elicited LPP across participants; however, anxious individuals showed a reduced effect of working memory load on the LPP, suggesting increased distractibility. The current study assessed transdiagnostic associations between specific symptom dimensions of anxiety, the LPP, and behavior in a clinically representative, heterogeneous group of 76 treatment-seeking patients with internalizing disorders, who performed a working memory task interspersed with negative and neutral pictures. As expected, negative pictures enhanced the LPP, and working memory load reduced the LPP. Participants with higher social anxiety showed increased LPPs to negative stimuli during early and late portions of picture presentation. Panic symptoms were associated with reduced LPPs to negative pictures compared with neutral pictures as well as a reduced effect of working memory load on the LPP during the late time window. Reduced positive affect was associated with greater behavioral interference from negative pictures. Hypervigilance for negative stimuli was uniquely explained by social anxiety symptoms, whereas panic symptoms were associated with the opposing effect-blunted processing/avoidance of these stimuli. Panic symptoms were uniquely associated with reduced top-down control. Results reveal distinct associations between neural reactivity and anxiety symptom dimensions that transcend traditional diagnostic boundaries. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Bauer, Eva; Sammer, Gebhard; Toepper, Max
2015-01-01
Age-related working memory decline is associated with functional cerebral changes within prefrontal cortex (PFC). Kind and meaning of these changes are heavily discussed since they depend on performance level and task load. Hence, we investigated the effects of age, performance level, and load on spatial working memory retrieval-related brain activation in different subregions of the PFC. 19 younger (Y) and 21 older (O) adults who were further subdivided into high performers (HP) and low performers (LP) performed a modified version of the Corsi Block-Tapping test during fMRI. Brain data was analyzed by a 4 (groups: YHP, OHP, YLP, and OLP) × 3 (load levels: loads 4, 5, and 6) ANOVA. Results revealed significant group × load interaction effects within rostral dorsolateral and ventrolateral PFC. YHP showed a flexible neural upregulation with increasing load, whereas YLP reached a resource ceiling at a moderate load level. OHP showed a similar (though less intense) pattern as YHP and may have compensated age-effects at high task load. OLP showed neural inefficiency at low and no upregulation at higher load. Our findings highlight the relevance of age and performance level for load-dependent activation within rostral PFC. Results are discussed in the context of the compensation-related utilization of neural circuits hypothesis (CRUNCH) and functional PFC organization.
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures. PMID:29311875
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures.
Asymmetric Spatial Processing Under Cognitive Load
Naert, Lien; Bonato, Mario; Fias, Wim
2018-01-01
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed. PMID:29740371
Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E
2016-01-01
Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will not emerge from candidate gene studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of height and load weight on shoulder muscle work during overhead lifting task.
Blache, Y; Desmoulins, L; Allard, P; Plamondon, A; Begon, M
2015-01-01
Few musculoskeletal models are available to assess shoulder deeper muscle demand during overhead lifting tasks. Our objective was to implement a musculoskeletal model to assess the effect of lifting height and load on shoulder muscle work. A musculoskeletal model scaled from 15 male subjects was used to calculate shoulder muscle work during six lifting tasks. Boxes containing three different loads (6, 12 and 18 kg) were lifted by the subjects from the waist to shoulder or eye level. After optimisation of the maximal isometric force of the model's muscles, the bio-fidelity of the model was improved by 19%. The latter was able to reproduce the subjects' lifting movements. Mechanical work of the rotator cuff muscles, upper trapezius and anterior deltoid was increased with lifting load and height augmentation. In conclusion, the use of a musculoskeletal model validated by electromyography enabled to evaluate the muscle demand of deep muscles during lifting tasks.
Moriya, Jun; Sugiura, Yoshinori
2012-01-01
Although many cognitive models in anxiety propose that an impaired top-down control enhances the processing of task-irrelevant stimuli, few studies have paid attention to task-irrelevant stimuli under a cognitive load task. In the present study, we investigated the effects of the working memory load on attention to task-irrelevant stimuli in trait social anxiety. The results showed that as trait social anxiety increased, participants were unable to disengage from task-irrelevant stimuli identical to the memory cue under low and high working memory loads. Impaired attentional disengagement was positively correlated with trait social anxiety. This impaired attentional disengagement was related to trait social anxiety, but not state anxiety. Our findings suggest that socially anxious people have difficulty in disengaging attention from a task-irrelevant memory cue owing to an impaired top-down control under a working memory load. PMID:23071765
ERIC Educational Resources Information Center
Franco-Watkins, Ana M.; Pashler, Harold; Rickard, Timothy C.
2006-01-01
Previous research by J. M. Hinson, T. L. Jameson, and P. Whitney (2003) demonstrated that a secondary task in a delayed discounting paradigm increased subjects' preference for the immediate reward. J. M. Hinson et al. interpreted their findings as evidence that working memory load results in greater impulsivity. The present authors conducted a…
Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study.
Rahko, Jukka S; Vuontela, Virve A; Carlson, Synnöve; Nikkinen, Juha; Hurtig, Tuula M; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K; Remes, Jukka J; Jansson-Verkasalo, Eira M; Aronen, Eeva T; Pauls, David L; Ebeling, Hanna E; Tervonen, Osmo; Moilanen, Irma K; Kiviniemi, Vesa J
2016-06-01
The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.
NASA Astrophysics Data System (ADS)
Novak, Charles W.
1982-02-01
In this, the International Year of the Disabled, attention is directed among other areas toward rehabilitation and sports participation of wheelchair users. As an application of movement analysis in medicine and rehabilitation and as an application of sports research using biomechanics, this investigation was performed to compare the results of two methods of gathering data on the stress of wheelchair propelling at equivalent work loads and to account for differences in physiological responses with a mechanical analysis of wheelchair propelling. Physiological data collected were heart rate, systolic blood pressure, and rate-pressure product. A biomechanical cinematography analysis was used to determine external work in wheelchair propelling and to determine the extent to which modifications in segment actionsoccurred during increasing magnitude of work. A cycle ergometer was adjusted to replicate external work loads performed during wheelchair propelling. A t-test of equivalent external work loads indicated that heart rate was not different between the two exercise modes at the .05 level of significance. The t-test did indicate a significant difference in systolic blood pressure and rate-pressure product at the .05 level of significance. The biomechanical analysis of wheelchair propelling established that an increase in external work was accomplished by a decrease in the range of motion and an increase in the speed of movement. During cycle ergometry the range and speed of movement remained the same while resistance was increased. Results of the study established that while heart rate for equivalent external work loads was the same for wheelchair propelling and arm cranking cycle ergometry, systolic blood pressure and rate-pressure product were not the same. The suggestion was that some means of propelling a wheelchair other than that which is con-sidered "standard" might be considered which produces less stressful responses in wheelchair users.
Analysis of Load Stress for Asphalt Pavement of Lean Concrete Base
NASA Astrophysics Data System (ADS)
Lijun, Suo; Xinwu, Wang
The study revealed that whether it is early distresses in asphalt pavement or not depends largely on working performance of base. In the field of asphalt pavement, it is widely accepted that lean concrete base, compared with the general semi-rigid base, has better working performance, such as high strength and good eroding resistance. Problem of early distresses in asphalt pavement, which caused by more traffic loadings, can be settled effectively when lean concrete is used in asphalt pavement. Traffic loading is important parameter used in the analysis of the new pavement design. However, few studies have done extensive and intensive research on the load stress for asphalt pavement of lean concrete base. Because of that, it is necessary to study the load stress for the asphalt pavement. In the paper, first of all, three-dimension finite element model of the asphalt pavement is created for the aim of doing mechanical analysis for the asphalt pavement. And then, the two main objectives of this study are investigated. One is analysis for load stress of lean concrete base, and the other is analysis for load stress of asphalt surface. The results show that load stress of lean concrete base decreases, decrease and increase with increase of base's thickness, surface's thickness and ratio of base's modulus to foundation's modulus respectively. So far as the asphalt surface is concerned, maximum shearing stress, which is caused by load, is evident in asphalt surface which is located in transverse contraction joint of lean concrete base of asphalt pavement. Maximum shearing stress decrease, decrease, decrease and increase respectively with increase of the surface's modulus, the surface's thickness, base's thickness and ratio of base's modulus to foundation's modulus.
Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo
2016-01-01
As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764
Patinvoh, Regina J; Kalantar Mehrjerdi, Adib; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J
2017-01-01
In this work, a plug flow reactor was developed for continuous dry digestion processes and its efficiency was investigated using untreated manure bedded with straw at 22% total solids content. This newly developed reactor worked successfully for 230days at increasing organic loading rates of 2.8, 4.2 and 6gVS/L/d and retention times of 60, 40 and 28days, respectively. Organic loading rates up to 4.2gVS/L/d gave a better process stability, with methane yields up to 0.163LCH 4 /gVS added /d which is 56% of the theoretical yield. Further increase of organic loading rate to 6gVS/L/d caused process instability with lower volatile solid removal efficiency and cellulose degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
MacNamara, Annmarie; Proudfit, Greg Hajcak
2014-08-01
Generalized anxiety disorder (GAD) may be characterized by emotion regulation deficits attributable to an imbalance between top-down (i.e., goal-driven) and bottom-up (i.e., stimulus-driven) attention. In prior work, these attentional processes were examined by presenting unpleasant and neutral pictures within a working memory paradigm. The late positive potential (LPP) measured attention toward task-irrelevant pictures. Results from this prior work showed that working memory load reduced the LPP across participants; however, this effect was attenuated for individuals with greater self-reported state anxiety, suggesting reduced top-down control. In the current study, the same paradigm was used with 106 medication-free female participants-71 with GAD and 35 without GAD. Unpleasant pictures elicited larger LPPs, and working memory load reduced the picture-elicited LPP. Compared with healthy controls, participants with GAD showed large LPPs to unpleasant pictures presented under high working memory load. Self-reported symptoms of anhedonic depression were related to a reduced effect of working memory load on the LPP elicited by neutral pictures. These results indicate that individuals with GAD show less flexible modulation of attention when confronted with unpleasant stimuli. Furthermore, among those with GAD, anhedonic depression may broaden attentional deficits to neutral distracters. (c) 2014 APA, all rights reserved.
Kausto, Johanna; Miranda, Helena; Pehkonen, Irmeli; Heliövaara, Markku; Viikari-Juntura, Eira; Solovieva, Svetlana
2011-10-01
There is growing evidence that physical and psychosocial exposures at work increase the risk of musculoskeletal disorders. The aim of this study was to describe the distribution and co-occurrence of these risk factors in the working population. We used data from the Health 2000 survey carried out in Finland in 2000-2001. The sample of our study consisted of 2,491 men and 2,613 women who had been actively working during the year preceding the survey. Logistic regression and exploratory factor analysis were used to analyze the co-occurrence of the work-related risk factors. Exposure to high physical work load and several co-occurring work load factors was more prevalent among men than women. In women, as opposed to men, the highest exposure to most physical work load factors was found in their later work life. Gender and age showed weak associations with psychosocial work load factors. Low socioeconomic position, in both genders, was related to an increased risk of being exposed to several co-occurring physical or psychosocial factors. Physical exposures most frequently co-occurred with high job demands and low job control in men. Among women, physical exposures were found to co-occur with high job demands, low job control and job insecurity. This study provides novel information on the occupational exposures in general working population. It appears that co-occurrence of physical and psychosocial exposures should be considered in research and prevention of musculoskeletal disorders. In addition, a broader set of occupational factors, e.g., work organization, are suggested to be included in future studies to cover all the relevant determinants.
Performance simulation of a plasma magnetohydrodynamic power generator
NASA Astrophysics Data System (ADS)
Huang, Hulin; Li, Linyong; Zhu, Guiping
2018-05-01
The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.
Greater Working Memory Load Results in Greater Medial Temporal Activity at Retrieval
Quiroz, Yakeel T.; Hasselmo, Michael E.; Stern, Chantal E.
2009-01-01
Most functional magnetic resonance imaging (fMRI) studies examining working memory (WM) load have focused on the prefrontal cortex (PFC) and have demonstrated increased prefrontal activity with increased load. Here we examined WM load effects in the medial temporal lobe (MTL) using an fMRI Sternberg task with novel complex visual scenes. Trials consisted of 3 sequential events: 1) sample presentation (encoding), 2) delay period (maintenance), and 3) probe period (retrieval). During sample encoding, subjects saw either 2 or 4 pictures consecutively. During retrieval, subjects indicated whether the probe picture matched one of the sample pictures. Results revealed that activity in the left anterior hippocampal formation, bilateral retrosplenial area, and left amygdala was greater at retrieval for trials with larger memory load, whereas activity in the PFC was greater at encoding for trials with larger memory load. There was no load effect during the delay. When encoding, maintenance, and retrieval periods were compared with fixation, activity was present in the hippocampal body/tail and fusiform gyrus bilaterally during encoding and retrieval, but not maintenance. Bilateral dorsolateral prefrontal activity was present during maintenance, but not during encoding or retrieval. The results support models of WM predicting that activity in the MTL should be modulated by WM load. PMID:19224975
Abu-Akel, A; Reniers, R L E P; Wood, S J
2016-09-01
Patients with schizophrenia show impairments in working-memory and visual-spatial processing, but little is known about the dynamic interplay between the two. To provide insight into this important question, we examined the effect of positive and negative symptom expressions in healthy adults on perceptual processing while concurrently performing a working-memory task that requires the allocations of various degrees of cognitive resources. The effect of positive and negative symptom expressions in healthy adults (N = 91) on perceptual processing was examined in a dual-task paradigm of visual-spatial working memory (VSWM) under three conditions of cognitive load: a baseline condition (with no concurrent working-memory demand), a low VSWM load condition, and a high VSWM load condition. Participants overall performed more efficiently (i.e., faster) with increasing cognitive load. This facilitation in performance was unrelated to symptom expressions. However, participants with high-negative, low-positive symptom expressions were less accurate in the low VSWM condition compared to the baseline and the high VSWM load conditions. Attenuated, subclinical expressions of psychosis affect cognitive performance that is impaired in schizophrenia. The "resource limitations hypothesis" may explain the performance of the participants with high-negative symptom expressions. The dual-task of visual-spatial processing and working memory may be beneficial to assessing the cognitive phenotype of individuals with high risk for schizophrenia spectrum disorders.
Gunn, Rachel L; Gerst, Kyle R; Lake, Allison J; Finn, Peter R
2018-02-01
Executive working memory capacity (eWMC) is central to adaptive decision-making. Research has revealed reduced eWMC and higher rates of impulsive decision making in individuals with alcohol use disorders (AUDs: DSM-IV Alcohol Dependence of Alcohol Abuse) and antisocial psychopathology (AP). Recent work has shown that placing a load on working memory (WM) further increases impulsive decision making on the delay discounting (DD) task in those with AUDs and AP. The current study examined the effects of an attention refocusing manipulation to offset the effects of this WM-load on DD rates in control subjects, those with AUDs without AP, and AUDs with AP (AUD-AP). Results revealed that 1) the AUD-AP group had higher DD rates (i.e., more impulsive decision-making) than the AUD group, followed by controls, and 2) attention refocusing after a load is placed on WM was associated with lower DD rates compared to the load without refocusing in both AUD groups, but not controls. Results suggest that refocusing attention after a cognitive load may be an effective cognitive strategy for reducing the impulsivity-enhancing effects of cognitive load on decision making in individuals with AUDs and AP. Copyright © 2017 Elsevier Inc. All rights reserved.
Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought
ERIC Educational Resources Information Center
de Jong, Ton
2010-01-01
Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems…
Huang, Anna S.; Klein, Daniel N.; Leung, Hoi-Chung
2015-01-01
Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9–12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. PMID:26562059
Huang, Anna S; Klein, Daniel N; Leung, Hoi-Chung
2016-02-01
Spatial working memory is a central cognitive process that matures through adolescence in conjunction with major changes in brain function and anatomy. Here we focused on late childhood and early adolescence to more closely examine the neural correlates of performance variability during this important transition period. Using a modified spatial 1-back task with two memory load conditions in an fMRI study, we examined the relationship between load-dependent neural responses and task performance in a sample of 39 youth aged 9-12 years. Our data revealed that between-subject differences in task performance was predicted by load-dependent deactivation in default network regions, including the ventral anterior cingulate cortex (vACC) and posterior cingulate cortex (PCC). Although load-dependent increases in activation in prefrontal and posterior parietal regions were only weakly correlated with performance, increased prefrontal-parietal coupling was associated with better performance. Furthermore, behavioral measures of executive function from as early as age 3 predicted current load-dependent deactivation in vACC and PCC. These findings suggest that both task positive and task negative brain activation during spatial working memory contributed to successful task performance in late childhood/early adolescence. This may serve as a good model for studying executive control deficits in developmental disorders. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Opposing effects of perceptual versus working memory load on emotional distraction.
Tavares, Tamara P; Logie, Kyle; Mitchell, Derek G V
2016-10-01
Throughout our day-to-day activities, we are subjected to numerous stimuli that compete for our attention; consequently, we must prioritize stimuli for further processing and influence over behaviour. Previous research has demonstrated that the extent to which task-irrelevant distractors are processed is mediated by the nature of the cognitive task, and the level of processing load. Importantly though, the interaction between cognitive task, processing load, and emotional distractor processing remains unclear. This is a particularly important question given the unique ways that emotion interacts with attention, and the fact that some other forms of processing load have been shown to reduce emotional distractor encoding. In the present study, participants were presented with emotional distractors during a perceptual and working memory task, under varying levels of load. In Experiment 1, we showed that the impact of emotional distractors on behaviour was reduced under conditions of high relative to low perceptual load. However, in sharp contrast, high working memory load was associated with increased emotional distraction. Importantly, these results were replicated in Experiment 2. Overall, the impact of processing load on emotional distraction varies according to the cognitive function being performed. These results raise the intriguing possibility that working memory operations deplete some of the cognitive resources needed to control the impact of emotion on behaviour. The findings, therefore, may have important implications for clinical populations featuring cognitive dysfunction and emotional dysregulation.
Commercial porters of eastern Nepal: health status, physical work capacity, and energy expenditure.
Malville, N J; Byrnes, W C; Lim, H A; Basnyat, R
2001-01-01
The purpose of the study was to compare full-time hill porters in eastern Nepal with part-time casual porters engaged primarily in subsistence farming. The 50 porters selected for this study in Kenja (elevation 1,664 m) were young adult males of Tibeto-Nepali origin. Following standardized interviews, anthropometry, and routine physical examinations, the porters were tested in a field laboratory for physiological parameters associated with aerobic performance. Exercise testing, using a step test and indirect calorimetry, included a submaximal assessment of economy and a maximal-effort graded exercise test. Energy expenditure was measured in the field during actual tumpline load carriage. No statistically significant differences were found between full-time and part-time porters with respect to age, anthropometric characteristics, health, nutritional status, or aerobic power. Mean VO2 peak was 2.38 +/- 0.27 L/min (47.1 +/- 5.3 ml/kg/min). Load-carrying economy did not differ significantly between porter groups. The relationship between VO2 and load was linear over the range of 10-30 kg with a slope of 9 +/- 4 ml O2/min per kg of load. During the field test of actual work performance, porters expended, on average, 348 +/- 68 kcal/hr in carrying loads on the level and 408 +/- 60 kcal/hr in carrying loads uphill. Most porters stopped every 2 min, on average, to rest their loads briefly on T-headed resting sticks (tokmas). The technique of self-paced, intermittent exercise together with the modest increase in energy demands for carrying increasingly heavier loads allows these individuals to regulate work intensity and carry extremely heavy loads without creating persistent medical problems.
Chany, Anne-Marie; Parakkat, Julia; Yang, Gang; Burr, Deborah L; Marras, William S
2006-01-01
Psychosocial stressors have been associated with low back pain reporting. However, response to psychosocial risk factors may be dependent on the individual's personality type that, in turn, can affect muscle recruitment and spine loading. This study explores how personality might be associated with spine loading during repetitive lifting performed throughout an entire work shift. Assess spine loading as a function of an individual's personality type during repetitive, long-term exposure to a materials handling tasks. Laboratory experiment where experienced and inexperienced participants performed repetitive, asymmetric lifts at various load and lift frequency levels throughout a series of 8-hour exposure periods. Spine loads were monitored throughout the work period. Twelve novice and 12 experienced materials handlers who were asymptomatic for back pain. Spine compression, anterior-posterior (A/P) shear, and lateral shear at the L5-S1 level. Participants were categorized into personality types based upon the Myers-Briggs personality type indicator. An electromyography-assisted biomechanical model was used to assess spine compression, A/P shear, and lateral shear throughout the exposure period. The results indicate that intuitors had higher shear spinal loading regardless of moment exposure, lift frequency, and time through the work period, compared with the sensor personality type. In addition, higher spine compressive and shear forces occurred in the perceiver personality compared with the judgers' personality trait, regardless of moment and, often, lift frequency. Novice lifters typically experienced greater spine loading. The results suggest that when there exists a personality-job environment mismatch, spinal loading increases via an increase in antagonistic co-contraction. The trends suggest that inherent personality characteristics may play a role in one's motor control strategies when performing a repetitive lifting task.
Interaction of threat and verbal working memory in adolescents.
Patel, Nilam; Vytal, Katherine; Pavletic, Nevia; Stoodley, Catherine; Pine, Daniel S; Grillon, Christian; Ernst, Monique
2016-04-01
Threat induces a state of sustained anxiety that can disrupt cognitive processing, and, reciprocally, cognitive processing can modulate an anxiety response to threat. These effects depend on the level of cognitive engagement, which itself varies as a function of task difficulty. In adults, we recently showed that induced anxiety impaired working memory accuracy at low and medium but not high load. Conversely, increasing the task load reduced the physiological correlates of anxiety (anxiety-potentiated startle). The present work examines such threat-cognition interactions as a function of age. We expected threat to more strongly impact working memory in younger individuals by virtue of putatively restricted cognitive resources and weaker emotion regulation. This was tested by examining the influence of age on the interaction of anxiety and working memory in 25 adolescents (10 to 17 years) and 25 adults (22 to 46 years). Working memory load was manipulated using a verbal n-back task. Anxiety was induced using the threat of an aversive loud scream and measured via eyeblink startle. Findings revealed that, in both age groups, accuracy was lower during threat than safe conditions at low and medium but not high load, and reaction times were faster during threat than safe conditions at high load but did not differ at other loads. Additionally, anxiety-potentiated startle was greater during low and medium than high load. Thus, the interactions of anxiety with working memory appear similar in adolescents and adults. Whether these similarities reflect common neural mechanisms would need to be assessed using functional neuroimaging. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Working memory and spatial judgments: Cognitive load increases the central tendency bias.
Allred, Sarah R; Crawford, L Elizabeth; Duffy, Sean; Smith, John
2016-12-01
Previous work demonstrates that memory for simple stimuli can be biased by information about the distribution of which the stimulus is a member. Specifically, people underestimate values greater than the distribution's average and overestimate values smaller than the average. This is referred to as the central tendency bias. This bias has been explained as an optimal use of both noisy sensory information and category information. In largely separate literature, cognitive load (CL) experiments attempt to manipulate the available working memory of participants in order to observe the effect on choice or judgments. In two experiments, we demonstrate that participants under high cognitive load exhibit a stronger central tendency bias than when under a low cognitive load. Although not anticipated at the outset, we also find that judgments exhibit an anchoring bias not described previously.
Working spectacles for sorting mail.
Hemphälä, Hillevi; Dahlqvist, Camilla; Nordander, Catarina; Gao, Chuansi; Kuklane, Kalev; Nylén, Per; Hansson, Gert-Åke
2014-01-01
Sorting mail into racks for postmen is visually demanding work. This can result in backward inclination of their heads, especially more pronounced for those who use progressive addition lenses. To evaluate the effects of customized working spectacles on the physical workload of postmen. Twelve male postmen sorted mail on two occasions: once using their private progressive spectacles and once using customized sorting spectacles with inverted progressive lenses. Postures and movements of the head, upper back, neck, and upper arms were measured by inclinometry. The muscular load of the trapezius was measured by surface electromyography. With the customized sorting spectacles, both the backward inclination of the head and backward flexion of the neck were reduced (3°), as well as the muscular load of the right upper trapezius, compared to sorting with private spectacles. However, with the sorting spectacles, there was a tendency for increased neck forward flexion, and increased sorting time. The reduction in work load may reduce the risk for developing work-related musculoskeletal disorders due to the positive reduction of the backward inclination of the head. But the tendency for increased neck forward flexion may reduce the positive effects. However, the magnitude of the possible reduction is difficult to predict, especially since quantitative data on exposure-response relationships are unknown. Alternative working spectacles with inverted near progressive lenses ought to be evaluated. They should still result in a positive reduced backward inclination of the head and may not cause any increased forward flexion.
Konstantinou, Nikos; Beal, Eleanor; King, Jean-Remi; Lavie, Nilli
2014-10-01
We establish a new dissociation between the roles of working memory (WM) cognitive control and visual maintenance in selective attention as measured by the efficiency of distractor rejection. The extent to which focused selective attention can prevent distraction has been shown to critically depend on the level and type of load involved in the task. High perceptual load that consumes perceptual capacity leads to reduced distractor processing, whereas high WM load that reduces WM ability to exert priority-based executive cognitive control over the task results in increased distractor processing (e.g., Lavie, Trends in Cognitive Sciences, 9(2), 75-82, 2005). WM also serves to maintain task-relevant visual representations, and such visual maintenance is known to recruit the same sensory cortices as those involved in perception (e.g., Pasternak & Greenlee, Nature Reviews Neuroscience, 6(2), 97-107, 2005). These findings led us to hypothesize that loading WM with visual maintenance would reduce visual capacity involved in perception, thus resulting in reduced distractor processing-similar to perceptual load and opposite to WM cognitive control load. Distractor processing was assessed in a response competition task, presented during the memory interval (or during encoding; Experiment 1a) of a WM task. Loading visual maintenance or encoding by increased set size for a memory sample of shapes, colors, and locations led to reduced distractor response competition effects. In contrast, loading WM cognitive control with verbal rehearsal of a random letter set led to increased distractor effects. These findings confirm load theory predictions and provide a novel functional distinction between the roles of WM maintenance and cognitive control in selective attention.
Cortical oscillations and entrainment in speech processing during working memory load.
Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten
2018-02-02
Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
McNulty, P A; Cresswell, A G
2004-06-01
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.
NASA Technical Reports Server (NTRS)
Smith, M. E.; Gevins, A.; Brown, H.; Karnik, A.; Du, R.
2001-01-01
Electroencephalographic (EEG) recordings were made while 16 participants performed versions of a personal-computer-based flight simulation task of low, moderate, or high difficulty. As task difficulty increased, frontal midline theta EEG activity increased and alpha band activity decreased. A participant-specific function that combined multiple EEG features to create a single load index was derived from a sample of each participant's data and then applied to new test data from that participant. Index values were computed for every 4 s of task data. Across participants, mean task load index values increased systematically with increasing task difficulty and differed significantly between the different task versions. Actual or potential applications of this research include the use of multivariate EEG-based methods to monitor task loading during naturalistic computer-based work.
Klaver, Peter; Talsma, Durk
2013-11-01
We recorded ERPs to investigate whether the visual memory load can bias visual selective attention. Participants memorized one or four letters and then responded to memory-matching letters presented in a relevant color while ignoring distractor letters or letters in an irrelevant color. Stimuli in the relevant color elicited larger frontal selection positivities (FSP) and occipital selection negativities (OSN) compared to irrelevant color stimuli. Only distractors elicited a larger FSP in the high than in the low memory load task. Memory load prolonged the OSN for all letters. Response mapping complexity was also modulated but did not affect the FSP and OSN. Together, the FSP data suggest that high memory load increased distractability. The OSN data suggest that memory load sustained attention to letters in a relevant color until working memory processing was completed, independently of whether the letters were in working memory or not. Copyright © 2013 Society for Psychophysiological Research.
Effect of dynamic load on water flow boiling CHF in rectangular channels
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Song, Baoyin; Li, Gang; Cao, Xi
2018-06-01
Experimental investigation into flow boiling critical heat flux (CHF) characteristics in narrow rectangular channels was performed under rotating state using distilled water as working fluids. The effects of mass velocity, inlet temperature and heating orientation on CHF under dynamic load were analyzed and discussed in this paper. The results show that the dynamic load obviously influences the CHF through enhancing two-phase mixing up and bubble separating. The greater the dynamic load, the higher the CHF values. The CHF values increase with the increase of mass velocity and inlet subcooling in the experimental range. The magnitude of CHF increase with the dynamic load for bottom heating is greater than that for up heating. The present study and its newly correlation may provide some technical supports in designing the airborne vapor cycle system.
Josephson, M; Pernold, G; Ahlberg-Hultén, G; Härenstam, A; Theorell, T; Vingård, E; Waldenström, M; Hjelm, E W
1999-01-01
This study investigated whether there is a relationship between high physical work load and adverse psychosocial work factors, and whether this relationship is different for women and men. Separate analyses for female registered nurses and assistant nurses were made because these are common occupations involving high physical and psychological demands. This study was part of the MUSIC-Norrtälje study, a population study with the overall aim of identifying risk factors for musculoskeletal disorders. The respondents, 1423 gainfully employed men and women, were randomly selected from the study population. The exposure assessments referred to a typical workday during the previous 12 months. Physical exposure was investigated by interview, psychosocial work factors by interview and questionnaire. For the women, but not the men, mainly routine work and a job strain situation, according to the model of Karasek and Theorell, increased the probability of having a high physical work load, assessed as a time-weighted average of energy expenditure in multiples of the resting metabolic rate. Results indicated that in female-dominated occupations, high physical work load might also imply adverse psychosocial conditions. A higher frequency of high physical work load and job strain was observed among assistant nurses compared with registered nurses. Covariance between physical and psychosocial demands makes it difficult to determine the relative influence of each in health problems. Results of the present study imply that this is a larger problem in studies of women than men.
NASA Astrophysics Data System (ADS)
Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed
2017-10-01
The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.
Eye Gaze and Aging: Selective and Combined Effects of Working Memory and Inhibitory Control.
Crawford, Trevor J; Smith, Eleanor S; Berry, Donna M
2017-01-01
Eye-tracking is increasingly studied as a cognitive and biological marker for the early signs of neuropsychological and psychiatric disorders. However, in order to make further progress, a more comprehensive understanding of the age-related effects on eye-tracking is essential. The antisaccade task requires participants to make saccadic eye movements away from a prepotent stimulus. Speculation on the cause of the observed age-related differences in the antisaccade task largely centers around two sources of cognitive dysfunction: inhibitory control (IC) and working memory (WM). The IC account views cognitive slowing and task errors as a direct result of the decline of inhibitory cognitive mechanisms. An alternative theory considers that a deterioration of WM is the cause of these age-related effects on behavior. The current study assessed IC and WM processes underpinning saccadic eye movements in young and older participants. This was achieved with three experimental conditions that systematically varied the extent to which WM and IC were taxed in the antisaccade task: a memory-guided task was used to explore the effect of increasing the WM load; a Go/No-Go task was used to explore the effect of increasing the inhibitory load; a 'standard' antisaccade task retained the standard WM and inhibitory loads. Saccadic eye movements were also examined in a control condition: the standard prosaccade task where the load of WM and IC were minimal or absent. Saccade latencies, error rates and the spatial accuracy of saccades of older participants were compared to the same measures in healthy young controls across the conditions. The results revealed that aging is associated with changes in both IC and WM. Increasing the inhibitory load was associated with increased reaction times in the older group, while the increased WM load and the inhibitory load contributed to an increase in the antisaccade errors. These results reveal that aging is associated with changes in both IC and WM.
Simulation of load traffic and steeped speed control of conveyor
NASA Astrophysics Data System (ADS)
Reutov, A. A.
2017-10-01
The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
Kessels, Roy P C; Meulenbroek, Olga; Fernández, Guillén; Olde Rikkert, Marcel G M
2010-09-01
Mild Cognitive Impairment (MCI) is characterized by episodic memory deficits, while aspects of working memory may also be implicated, but studies into this latter domain are scarce and results are inconclusive. Using a computerized search paradigm, this study compares 25 young adults, 25 typically aging older adults and 15 amnestic MCI patients as to their working-memory capacities for object-location information and potential differential effects of memory load and additional context cues. An age-related deficit in visuospatial working-memory maintenance was found that became more pronounced with increasing task demands. The MCI group additionally showed reduced maintenance of bound information, i.e., object-location associations, again especially at elevated memory load. No effects of contextual cueing were found. The current findings indicate that working memory should be considered when screening patients for suspected MCI and monitoring its progression.
Słota, Krzysztof; Słota, Zbigniew; Kułagowska, Ewa
Statistics shows that almost half of Polish extraction in underground mines takes place at workstations where temperature exceeds 28°C. The number of employees working in such conditions is gradually increasing, therefore, the problem of safety and health protection is still growing. In the present study we assessed the heat load of employees at different workstations in the mining industry, taking into account current thermal conditions and work costs. The evaluation of energy cost of work was carried out in 6 coal mines. A total of 221 miners employed at different workstations were assessed. Individual groups of miners were characterized and thermal safety of the miners was assessed relying on thermal discomfort index. The results of this study indicate considerable differences in the durations of analyzed work processes at individual workstations. The highest average energy cost was noted during the work performed in the forehead. The lowest value was found in the auxiliary staff. The calculated index of discomfort clearly indicated numerous situations in which the admissible range of thermal load exceeded the parameters of thermal load safe for human health. It should be noted that the values of average labor cost fall within the upper, albeit admissible, limits of thermal load. The results of the study indicate that in some cases work in mining is performed in conditions of thermal discomfort. Due to high variability and complexity of work conditions it becomes necessary to verify the workers' load at different workstations, which largely depends on the environmental conditions and work organization, as well as on the performance of workers themselves. Med Pr 2016;67(4):477-498. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Cockpit displayed traffic information and distributed management in air traffic control
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.
1980-01-01
A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.
Study on load test of 100m cross-reinforced deck type concrete box arch bridge
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Cheng, Ying Jie
2018-06-01
Found in the routine quality inspection of highway bridge that many vertical fractures on the main beam (10mT beam) of the steel reinforced concrete arch bridge near the hydropower station. In order to grasp the bearing capacity of this bridge under working conditions with cracks, the static load and dynamic load test of box arch bridge are carried out. The Midas civil theory is calculated by using the special plate trailer - 300 as the calculation load, and the deflection and stress of the critical section are tested by the equivalent cloth load in the test vehicle. The pulsation test, obstacles and no obstacle driving test were carried out. Experimental results show that the bridge under the condition of the test loads is in safe condition, main bearing component of the strength and stiffness meet the design requirements, the crack width does not increase, in the process of loading bridge overall work performance is good.
2018-01-01
The objective was to better understand how a series compliance alters contraction kinetics and power output of muscle to enhance the work done on a load. A mathematical model was created in which a gravitational point load was connected via a linear spring to a muscle (based on the contractile properties of the sartorius of leopard frogs, Rana pipiens). The model explored the effects of load mass, tendon compliance, and delay between onset of contraction and release of the load (catch) on lift height and power output as measures of performance. Series compliance resulted in increased lift height over a relatively narrow range of compliances, and the effect was quite modest without an imposed catch mechanism unless the load was unrealistically small. Peak power of the muscle-tendon complex could be augmented up to four times that produced with a muscle alone, however, lift height was not predicted by peak power. Rather, lift height was improved as a result of the compliance synchronizing the time courses of muscle force and shortening velocity, in particular by stabilizing shortening velocity such that muscle power was sustained rather than rising and immediately falling. With a catch mechanism, enhanced performance resulted largely from energy storage in the compliance during the period of catch, rather than increased time for muscle activation before movement commenced. However, series compliance introduced a trade-off between work done before versus after release of the catch. Thus, the ability of tendons to enhance locomotor performance (i.e. increase the work done by muscle) appears dependent not only on their established role in storing energy and increasing power, but also on their ability to modulate the kinetics of muscle contraction such that power is sustained over more of the contraction, and maximizing the balance of work done before versus after release of a catch. PMID:29370246
Examining the Displacement of Energy during Formation of Shear Bands
NASA Astrophysics Data System (ADS)
Hernandez, M.; Hilley, G. E.
2011-12-01
M.X. Hernandez, G. Hilley Department of Geological and Environmental Sciences, Stanford University, Stanford, CA This study has originated from an experimental (sandbox) setting that we have previously used to document the link between the kinematics and dynamics of deforming sand in the verge of frictional failure. Our initial experimental setting included a load control system that allowed us to track the changes in load, that when applied to the sand, deform and generate individual shear bands or localized faults. Over the course of earlier experiments, three cameras located at different positions outside the sandbox monitored the movement throughout the run. This current stage of analysis includes using computer programs such as QuickTime to create image sequences of the shear band formation, and Microsoft Excel to visually graph and plot each data sequence. This allows us to investigate the correlation between changes in work measured within our experiments, the construction of topography, slip along shear bands, and the creation of new shear bands. We observed that the measured load generally increased during the experiment to maintain a constant displacement rate as the sand wedge thickened and modeled topography increased. Superposed on this trend were periodic drops in load that appeared temporally coincident with the formation of shear bands in the sand. Using the time series of the loads applied during the experiment, changes in the position of the backstop over time, and the loads measured before, during, and after the time of each shear band formation, we are examining the fraction of the apples work that is absorbed by friction and shear band formation, and what fraction of the apples work is expended in increasing the potential energy of the thickening sand wedge. Our results indicate that before the formation of a continuous shear band, the rate of work done on the sand by the experimental apparatus decreases. This may suggest that once formed, work done against friction in the sand is significantly less than that expended in forming shear bands and thickening the sand wedge.
NASA Astrophysics Data System (ADS)
Husnan, M. A.; Ismail, H.; Shuib, R. K.
2018-02-01
Recently, the interest of polymer industry researchers have grown rapidly on the use of specific techniques which can reduce cost and utilize rubber waste into the processing form. The increasing of cognizance in environmental matters and the desire to sustain the resources had fortified the practice of recycling waste materials. In this work, the effect of carbon black loading on curing characteristics and mechanical properties of virgin acrylonitrile butadiene rubber/recycled acrylonitrile butadiene rubber (NBRv/NBRr) blends were studied. Cure time (t90), scorch time (tS2) and swelling percentage decreased but minimum torque (ML) and maximum torque (MH) increased with increasing carbon black (CB) loading in the blends. Increasing CB loading also increased tensile strength, tensile modulus (M100), hardness and compression set but decreased elongation at break (Eb) of NBRv/NBRr blends.
Effects of intelligibility on working memory demand for speech perception.
Francis, Alexander L; Nusbaum, Howard C
2009-08-01
Understanding low-intelligibility speech is effortful. In three experiments, we examined the effects of intelligibility on working memory (WM) demands imposed by perception of synthetic speech. In all three experiments, a primary speeded word recognition task was paired with a secondary WM-load task designed to vary the availability of WM capacity during speech perception. Speech intelligibility was varied either by training listeners to use available acoustic cues in a more diagnostic manner (as in Experiment 1) or by providing listeners with more informative acoustic cues (i.e., better speech quality, as in Experiments 2 and 3). In the first experiment, training significantly improved intelligibility and recognition speed; increasing WM load significantly slowed recognition. A significant interaction between training and load indicated that the benefit of training on recognition speed was observed only under low memory load. In subsequent experiments, listeners received no training; intelligibility was manipulated by changing synthesizers. Improving intelligibility without training improved recognition accuracy, and increasing memory load still decreased it, but more intelligible speech did not produce more efficient use of available WM capacity. This suggests that perceptual learning modifies the way available capacity is used, perhaps by increasing the use of more phonetically informative features and/or by decreasing use of less informative ones.
Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys.
Oemisch, Mariann; Johnston, Kevin; Paré, Martin
2016-10-01
Working memory is a limited-capacity cognitive process that retains relevant information temporarily to guide thoughts and behavior. A large body of work has suggested that catecholamines exert a major modulatory influence on cognition, but there is only equivocal evidence of a direct influence on working memory ability, which would be reflected in a dependence on working memory load. Here we tested the contribution of catecholamines to working memory by administering a wide range of acute oral doses of the dopamine and norepinephrine reuptake inhibitor methylphenidate (MPH, 0.1-9 mg/kg) to three female macaque monkeys (Macaca mulatta), whose working memory ability was measured from their performance in a visual sequential comparison task. This task allows the systematic manipulation of working memory load, and we therefore tested the specific hypothesis that MPH modulates performance in a manner that depends on both dose and memory load. We found no evidence of a dose- or memory load-dependent effect of MPH on performance. In contrast, significant effects on measures of motivation were observed. These findings suggest that an acute increase in catecholamines does not seem to affect the retention of visual information per se. As such, these results help delimit the effects of MPH on cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beyond perceptual load and dilution: a review of the role of working memory in selective attention
de Fockert, Jan W.
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139
Beyond perceptual load and dilution: a review of the role of working memory in selective attention.
de Fockert, Jan W
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.
Vergauwe, Evie; Hartstra, Egbert; Barrouillet, Pierre; Brass, Marcel
2015-07-15
Working memory is often defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. In line with the time-based resource-sharing model of working memory (TBRS; Barrouillet and Camos, 2015; Barrouillet et al., 2004), there is accumulating evidence that, when memory items have to be maintained while performing a concurrent activity, memory performance depends on the cognitive load of this activity, independently of the domain involved. The present study used fMRI to identify regions in the brain that are sensitive to variations in cognitive load in a domain-general way. More precisely, we aimed at identifying brain areas that activate during maintenance of memory items as a direct function of the cognitive load induced by both verbal and spatial concurrent tasks. Results show that the right IFJ and bilateral SPL/IPS are the only areas showing an increased involvement as cognitive load increases and do so in a domain general manner. When correlating the fMRI signal with the approximated cognitive load as defined by the TBRS model, it was shown that the main focus of the cognitive load-related activation is located in the right IFJ. The present findings indicate that the IFJ makes domain-general contributions to time-based resource-sharing in working memory and allowed us to generate the novel hypothesis by which the IFJ might be the neural basis for the process of rapid switching. We argue that the IFJ might be a crucial part of a central attentional bottleneck in the brain because of its inability to upload more than one task rule at once. Copyright © 2015 Elsevier Inc. All rights reserved.
Angular default mode network connectivity across working memory load.
Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A
2017-01-01
Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Attention and Visuospatial Working Memory Share the Same Processing Resources
Feng, Jing; Pratt, Jay; Spence, Ian
2012-01-01
Attention and visuospatial working memory (VWM) share very similar characteristics; both have the same upper bound of about four items in capacity and they recruit overlapping brain regions. We examined whether both attention and VWM share the same processing resources using a novel dual-task costs approach based on a load-varying dual-task technique. With sufficiently large loads on attention and VWM, considerable interference between the two processes was observed. A further load increase on either process produced reciprocal increases in interference on both processes, indicating that attention and VWM share common resources. More critically, comparison among four experiments on the reciprocal interference effects, as measured by the dual-task costs, demonstrates no significant contribution from additional processing other than the shared processes. These results support the notion that attention and VWM share the same processing resources. PMID:22529826
The influence of time on task on mind wandering and visual working memory.
Krimsky, Marissa; Forster, Daniel E; Llabre, Maria M; Jha, Amishi P
2017-12-01
Working memory relies on executive resources for successful task performance, with higher demands necessitating greater resource engagement. In addition to mnemonic demands, prior studies suggest that internal sources of distraction, such as mind wandering (i.e., having off-task thoughts) and greater time on task, may tax executive resources. Herein, the consequences of mnemonic demand, mind wandering, and time on task were investigated during a visual working memory task. Participants (N=143) completed a delayed-recognition visual working memory task, with mnemonic load for visual objects manipulated across trials (1 item=low load; 2 items=high load) and subjective mind wandering assessed intermittently throughout the experiment using a self-report Likert-type scale (1=on-task, 6=off-task). Task performance (correct/incorrect response) and self-reported mind wandering data were evaluated by hierarchical linear modeling to track trial-by-trial fluctuations. Performance declined with greater time on task, and the rate of decline was steeper for high vs low load trials. Self-reported mind wandering increased over time, and significantly varied asa function of both load and time on task. Participants reported greater mind wandering at the beginning of the experiment for low vs. high load trials; however, with greater time on task, more mind wandering was reported during high vs. low load trials. These results suggest that the availability of executive resources in support of working memory maintenance processes fluctuates in a demand-sensitive manner with time on task, and may be commandeered by mind wandering. Copyright © 2017 Elsevier B.V. All rights reserved.
Doan, Jon B; Copeland, Jennifer L; Brown, Lesley A; Newman, Jeff T; Hudson, D Shane
2014-01-01
Bridge employment (scheduled paid work after retirement age) may promote successful aging and continued health, as work can be an important component of daily physical activity. Appropriate work demands for older adults are neither well-established nor well-applied, however, and excessive loading or increased perceptions of discomfort may negate the health benefits of work activity. This study examined work status and musculoskeletal discomfort (MSD) amongst older Albertans. 1044 Albertans aged 55 years and older participating in an organized 'Games' received a research package. Enclosed in the package were an introductory letter, a return envelope, and modified versions of validated questionnaires examining leisure and work activities, activity frequency, and perceptions of musculoskeletal health. 228 respondents were classified into one of three employment trajectory groups: fully retired, fully employed, or bridge employed. Groups differed in age, and both employed groups more frequently reported MSDs in all body areas. Bridge employed reported increased 'occasional' frequency of musculoskeletal injury risk factors, while both groups reported similar overall ratings of work-related exertion. The increased MSDs reported by bridge employed adults may be the result of irregularity of work activity and soft tissue loading. Detailed examination of work demands and musculoskeletal injuries amongst bridge employed adults could help define safer levels for less regular work activity.
Influence of Solvent on the Drug-Loading Process of Amphiphilic Nanogel Star Polymers.
Carr, Amber C; Piunova, Victoria A; Maarof, Hasmerya; Rice, Julia E; Swope, William C
2018-05-31
We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process. Our work suggests that nanoparticle conformational structure is highly sensitive to the choice of solvent, providing avenues for further study as well as predictions for both computational and experimental explorations of the drug-loading process. Our findings suggest that when used in the drug-loading process, dichloromethane, tetrahydrofuran, and toluene allow for a more extensive and increased drug-loading into the interior of nanogel star polymers of the composition studied here. In contrast, methanol is more likely to support shallow or surface loading and, consequently, faster drug release rates. Finally, diethyl ether should not work in a formulation process since none of the regions of the nanogel star polymer appear to be sufficiently solvated by it.
do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles
2016-11-10
Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ross, Veerle; Jongen, Ellen M M; Wang, Weixin; Brijs, Tom; Brijs, Kris; Ruiter, Robert A C; Wets, Geert
2014-01-01
Distracted driving has received increasing attention in the literature due to potential adverse safety outcomes. An often posed solution to alleviate distraction while driving is hands-free technology. Interference by distraction can occur however at the sensory input (e.g., visual) level, but also at the cognitive level where hands-free technology induces working memory (WM) load. Active maintenance of goal-directed behavior in the presence of distraction depends on WM capacity (i.e., Lavie's Load theory) which implies that people with higher WM capacity are less susceptible to distractor interference. This study investigated the interaction between verbal WM load and WM capacity on driving performance to determine whether individuals with higher WM capacity were less affected by verbal WM load, leading to a smaller deterioration of driving performance. Driving performance of 46 young novice drivers (17-25 years-old) was measured with the lane change task (LCT). Participants drove without and with verbal WM load of increasing complexity (auditory-verbal response N-back task). Both visuospatial and verbal WM capacity were investigated. Dependent measures were mean deviation in the lane change path (MDEV), lane change initiation (LCI) and percentage of correct lane changes (PCL). Driving experience was included as a covariate. Performance on each dependent measure deteriorated with increasing verbal WM load. Meanwhile, higher WM capacity related to better LCT performance. Finally, for LCI and PCL, participants with higher verbal WM capacity were influenced less by verbal WM load. These findings entail that completely eliminating distraction is necessary to minimize crash risks among young novice drivers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pratt, Nikki; Willoughby, Adrian; Swick, Diane
2011-01-01
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict.
Pratt, Nikki; Willoughby, Adrian; Swick, Diane
2011-01-01
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict. PMID:21716633
Flight directors for STOl aircraft
NASA Technical Reports Server (NTRS)
Rabin, U. H.
1983-01-01
Flight director logic for flight path and airspeed control of a powered-lift STOL aircraft in the approach, transition, and landing configurations are developed. The methods for flight director design are investigated. The first method is based on the Optimal Control Model (OCM) of the pilot. The second method, proposed here, uses a fixed dynamic model of the pilot in a state space formulation similar to that of the OCM, and includes a pilot work-load metric. Several design examples are presented with various aircraft, sensor, and control configurations. These examples show the strong impact of throttle effectiveness on the performance and pilot work-load associated with manual control of powered-lift aircraft during approach. Improved performed and reduced pilot work-load can be achieved by using direct-lift-control to increase throttle effectiveness.
Clarke, Patrick J F; Branson, Sonya; Chen, Nigel T M; Van Bockstaele, Bram; Salemink, Elske; MacLeod, Colin; Notebaert, Lies
2017-12-01
Attention bias modification (ABM) procedures have shown promise as a therapeutic intervention, however current ABM procedures have proven inconsistent in their ability to reliably achieve the requisite change in attentional bias needed to produce emotional benefits. This highlights the need to better understand the precise task conditions that facilitate the intended change in attention bias in order to realise the therapeutic potential of ABM procedures. Based on the observation that change in attentional bias occurs largely outside conscious awareness, the aim of the current study was to determine if an ABM procedure delivered under conditions likely to preclude explicit awareness of the experimental contingency, via the addition of a working memory load, would contribute to greater change in attentional bias. Bias change was assessed among 122 participants in response to one of four ABM tasks given by the two experimental factors of ABM training procedure delivered either with or without working memory load, and training direction of either attend-negative or avoid-negative. Findings revealed that avoid-negative ABM procedure under working memory load resulted in significantly greater reductions in attentional bias compared to the equivalent no-load condition. The current findings will require replication with clinical samples to determine the utility of the current task for achieving emotional benefits. These present findings are consistent with the position that the addition of a working memory load may facilitate change in attentional bias in response to an ABM training procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.
No Negative Priming without Cognitive Control
ERIC Educational Resources Information Center
de Fockert, Jan W.; Mizon, Guy A.; D'Ubaldo, Mariangela
2010-01-01
There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also…
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
Energy cost and mechanical work of walking during load carriage in soldiers.
Grenier, Jordane G; Peyrot, Nicolas; Castells, Josiane; Oullion, Roger; Messonnier, Laurent; Morin, Jean-Benoit
2012-06-01
In the military context, soldiers carry equipments of total mass often exceeding 30%-40% of their body mass (BM) and complexly distributed around their body (backpack, weapons, electronics, protections, etc.), which represents severe load carrying conditions. This study aimed to better understand the effects of load carriage on walking energetics and mechanics during military-type walking. Ten male infantrymen recently retired from the French Foreign Legion performed 3-min walking trials at a constant speed of 4 km·h(-1) on an instrumented treadmill, during which walking pattern spatiotemporal parameters, energy cost (C(W)), external mechanical work (W(ext)), and the work done by one leg against the other during the double-contact period (W(int,dc)) were specifically assessed. Three conditions were tested: (i) light sportswear (SP, reference condition considered as unloaded), (ii) battle equipment (BT, ∼22 kg, ∼27% of subjects' BM, corresponding to a military intermediate load), and (iii) road march equipment (RM, ∼38 kg, ∼46% of subjects' BM, corresponding to a military high load). Repeated-measures ANOVA showed that military equipment carriage significantly (i) altered the spatiotemporal pattern of walking (all P < 0.01), (ii) increased absolute gross and net CW (P < 0.0001), and (iii) increased both absolute and mass-relative W(ext) (P < 0.01) and W(int,dc) (P < 0.0001) but did not alter the inverted pendulum recovery or locomotor efficiency. Military equipments carriage induced significant changes in walking mechanics and energetics, but these effects appeared not greater than those reported with loads carried around the waist and close to the center of mass. This result was not expected because the latter has been hypothesized to be the optimal method of load carriage from a metabolic standpoint.
Work-related psychosocial stress and the risk of type 2 diabetes in later life.
Pan, K-Y; Xu, W; Mangialasche, F; Fratiglioni, L; Wang, H-X
2017-06-01
Although work-related psychosocial stress and type 2 diabetes mellitus (T2DM) have been investigated, the association between lifelong work stress and T2DM in later life remains unclear. This study examined whether high work stress increased the risk of T2DM risk in later life, accounting also for other sources of stress outside work, such as burden from household chores. From the population-based prospective study SNAC-K, 2719 diabetes-free participants aged ≥60 years were identified and followed up for 6 years. T2DM was ascertained by glycated haemoglobin level, self-report, hypoglycaemic medication use and clinical records. Levels of job control and demands over the whole working life were assessed by a validated matrix. Household chores load was assessed by hours spent on such chores. Multivariate logistic regression models were used to estimate the association between job strain and T2DM. During the 6-year follow-up, 154 incident cases of T2DM were identified. High job strain was associated with T2DM occurrence amongst the 60-year-old cohort (OR = 3.14, 95% CI: 1.27-7.77), and only amongst women (OR = 6.18, 95% CI: 1.22-31.26), but not in men. When taking into account household chores load, a more pronounced risk of T2DM was associated with high job strain in combination with heavy household chores load in women aged 60 years at baseline (OR = 9.45, 95% CI: 1.17-76.53). Work-related psychosocial stress may increase the risk of T2DM only amongst women in their early 60s. The risk can be amplified by high household chores load. © 2017 The Association for the Publication of the Journal of Internal Medicine.
Deliberation's blindsight: how cognitive load can improve judgments.
Hoffmann, Janina A; von Helversen, Bettina; Rieskamp, Jörg
2013-06-01
Multitasking poses a major challenge in modern work environments by putting the worker under cognitive load. Performance decrements often occur when people are under high cognitive load because they switch to less demanding--and often less accurate--cognitive strategies. Although cognitive load disturbs performance over a wide range of tasks, it may also carry benefits. In the experiments reported here, we showed that judgment performance can increase under cognitive load. Participants solved a multiple-cue judgment task in which high performance could be achieved by using a similarity-based judgment strategy but not by using a more demanding rule-based judgment strategy. Accordingly, cognitive load induced a shift to a similarity-based judgment strategy, which consequently led to more accurate judgments. By contrast, shifting to a similarity-based strategy harmed judgments in a task best solved by using a rule-based strategy. These results show how important it is to consider the cognitive strategies people rely on to understand how people perform in demanding work environments.
Tsvetanov, Kamen A; Arvanitis, Theodoros N; Humphreys, Glyn W
2012-01-01
Effects of the identity and load of items in working memory (WM) on visual attention were examined. With a short interval between the WM item and a subsequent search task, there were effects of both load (slowed overall reaction times, RTs, in a WM condition relative to a mere repetition baseline) and identity (search RTs were affected by re-presentation of the item in WM in the search display). As the time to encode the initial display increased, the effects of load decreased while the effect of identity remained. The data indicate that the identity of stimuli in WM can affect the subsequent deployment of attention even when time is allowed for consolidation of the stimuli in WM, and that the WM effects are not causally related to the presence of cognitive load. The results are consistent with the identity of stimuli in WM modulating attention post the memory consolidation stage.
Compensation for Adolescents' School Mental Load by Physical Activity on Weekend Days.
Kudláček, Michal; Frömel, Karel; Jakubec, Lukáš; Groffik, Dorota
2016-03-09
Increasing mental load and inadequate stress management significantly affect the efficiency, success and safety of the educational/working process in adolescents. The objective of this study is to determine the extent that adolescents compensate for their school mental load by physical activity (PA) on weekend days and, thus, to contribute to the objective measurement of mental load in natural working conditions. A cross-sectional study was conducted between September 2013 and April 2014. A set of different methods was employed-self-administered questionnaire (IPAQ-long questionnaire), objective measurements-pedometers, and accelerometers (ActiTrainers). They was distributed to 548 students from 17 high schools. Participants' mental load was assessed based on the difference between PA intensity and/or physical inactivity and heart rate range. The participants with the highest mental load during school lessons do not compensate for this load by PA on weekend days. Adolescents need to be encouraged to be aware of their subjective mental load and to intentionally compensate for this load by PA on weekend days. It is necessary to support the process of adopting habits by sufficient physical literacy of students, as well as teachers, and by changes in the school program.
[Heart rate and energy expenditure during extravehicular activity in different time of day].
Stepanova, S I; Katuntsev, V P; Osipov, Iu Iu; Galichiĭ, V A
2013-01-01
The article discusses the comparative heart rate (HR) characteristics associated with day and night extravehicular activities (EVA). HR was commonly higher in the night but not in the daytime. Presumably, the reason is psychological and physiological challenges of the night work on the background of natural performance decrement. These circumstances could lead to elevation of psychic tension and, consequently, increase of heartbeats to a greater extent as compared with daytime EVA. According to the correlation analysis data, the pattern of HR relation to physical loads evaluated by energy expenditure in the daytime was other than at night, i.e. it was positive unlike the nighttime correlation. We cannot exclude it that in the daytime increase in cardiac output (CO) in response to physical work was largely due to increase in HR, whereas it was stroke volume that dominated during night work; at least, it could support CO fully in the periods of low loading.
29 CFR 1919.77 - Safe working load increase.
Code of Federal Regulations, 2010 CFR
2010-07-01
... or original design limitations unless such increase meets with the manufacturer's approval. Where the manufacturer's services are not available, or where the equipment is of foreign manufacture, engineering design...
NASA Astrophysics Data System (ADS)
Sliva, Yekaterina
The purpose of this study was to introduce an instructional technique for teaching complex tasks in physics, test its effectiveness and efficiency, and understand cognitive processes taking place in learners' minds while they are exposed to this technique. The study was based primarily on cognitive load theory (CLT). CLT determines the amount of total cognitive load imposed on a learner by a learning task as combined intrinsic (invested in comprehending task complexity) and extraneous (wasteful) cognitive load. Working memory resources associated with intrinsic cognitive load are defined as germane resources caused by element interactivity that lead to learning, in contrast to extraneous working memory resources that are devoted to dealing with extraneous cognitive load. However, the amount of learner's working memory resources actually devoted to a task depends on how well the learner is engaged in the learning environment. Since total cognitive load has to stay within limits of working memory capacity, both extraneous and intrinsic cognitive load need to be reduced. In order for effective learning to occur, the use of germane cognitive resources should be maximized. In this study, the use of germane resources was maximized for two experimental groups by providing a learning environment that combined problem-solving procedure with prompts to self-explain with and without completion problems. The study tested three hypotheses and answered two research questions. The first hypothesis predicting that experimental treatments would reduce total cognitive load was not supported. The second hypothesis predicting that experimental treatments would increase performance was supported for the self-explanation group only. The third hypothesis that tested efficiency measure as adopted from Paas and van Merrienboer (1993) was not supported. As for the research question of whether the quality of self-explanations would change with time for the two experimental conditions, it was determined that time had a positive effect on such quality. The research question that investigated learners' attitudes towards the instructions revealed that experimental groups understood the main idea behind the suggested technique and positively reacted to it. The results of the study support the conclusions that (a) prompting learners to self-explain while independently solving problems can increase performance, especially on far transfer questions; (b) better performance is achieved in combination with increased mental effort; (c) self-explanations do not increase time on task; and (d) quality of self-explanations can be improved with time. Results based on the analyses of learners' attitudes further support that learners in the experimental groups understood the main idea behind the suggested techniques and positively reacted to them. The study also raised concern about application of efficiency formula for instructional conditions that increase both performance and mental effort in CLT. As a result, an alternative model was suggested to explain the relationship between performance and mental effort based on Yerkes-Dodson law (1908). Keywords: instructional design, cognitive load, complex tasks, problem-solving, self-explanation.
Byrd, Dana L.; Reuther, Erin T.; McNamara, Joseph P. H.; DeLucca, Teri L.; Berg, William K.
2015-01-01
The current study examines similarity or disparity of a frontally mediated physiological response of mental effort among multiple executive functioning tasks between children and adults. Task performance and phasic heart rate variability (HRV) were recorded in children (6 to 10 years old) and adults in an examination of age differences in executive functioning skills during periods of increased demand. Executive load levels were varied by increasing the difficulty levels of three executive functioning tasks: inhibition (IN), working memory (WM), and planning/problem solving (PL). Behavioral performance decreased in all tasks with increased executive demand in both children and adults. Adults’ phasic high frequency HRV was suppressed during the management of increased IN and WM load. Children’s phasic HRV was suppressed during the management of moderate WM load. HRV was not suppressed during either children’s or adults’ increasing load during the PL task. High frequency phasic HRV may be most sensitive to executive function tasks that have a time-response pressure, and simply requiring performance on a self-paced task requiring frontal lobe activation may not be enough to generate HRV responsitivity to increasing demand. PMID:25798113
Ryberg, Karen R.
2017-01-01
Attribution of the causes of trends in nutrient loading is often limited to correlation, qualitative reasoning, or references to the work of others. This paper represents efforts to improve causal attribution of water-quality changes. The Red River of the North basin provides a regional test case because of international interest in the reduction of total phosphorus loads and the availability of long-term total phosphorus data and ancillary geospatial data with the potential to explain changes in water quality over time. The objectives of the study are to investigate structural equation modeling methods for application to water-quality problems and to test causal hypotheses related to the drivers of total phosphorus loads over the period 1970 to 2012. Multiple working hypotheses that explain total phosphorus loads and methods for estimating missing ancillary data were developed, and water-quality related challenges to structural equation modeling (including skewed data and scaling issues) were addressed. The model indicates that increased precipitation in season 1 (November–February) or season 2 (March–June) would increase total phosphorus loads in the basin. The effect of agricultural practices on total phosphorus loads was significant, although the effect is about one-third of the effect of season 1 precipitation. The structural equation model representing loads at six sites in the basin shows that climate and agricultural practices explain almost 60% of the annual total phosphorus load in the Red River of the North basin. The modeling process and the unexplained variance highlight the need for better ancillary long-term data for causal assessments.
Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J
2017-06-01
Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of situation of rural women in the Lublin Region from the aspect of loading with work.
Pawlak, Halina; Maniak, Barbara; Petkowicz, Beata; Kuna-Broniowska, Izabela; Petkowicz, Jacek; Buczaj, Agnieszka
2013-01-01
The objective of the study was recognition of rural women's opinions concerning the degree of heaviness of work activities performed and obtaining the answer to the question: What is the actual level of loading rural women with work? The basic research instrument was a questionnaire form. A representative group of women aged 40-50 were selected for the study because this group had the most complete family structure. The study was conducted among rural women living in the commune of Zwierzyniec. Family size and multi-generationality were analyzed, as well as family members' assistance in household and field activities. The type of work performed was analyzed with consideration of the duration of work and body position while performing this work. Self-reported degree of loading with work on a farm was analyzed, and effective energy expenditure calculated for individual work activities performed by women, based on which the actual degree of loading with work was determined. The respondents generally perceived their loading with work as low. They considered household jobs as not loading with or not exerting any effect on their fatigue and state of health. A very weak statistical relationship was observed between the duration of loading with household jobs and the perceived degree of loading with this work. The Kołmogorov-Smirnov test showed that the evaluations expressed by women concerning the degree of loading with household chores did not depend on time devoted to these work activities. The majority of women similarly evaluated work load, irrespective of the actual degree of loading. Work activities performed in a household were classified according to work load as heavy, medium-heavy and mediocre. Subjective evaluations of work load by rural women considerably differed from the assessment performed using the work time schedule method.
Jipp, Meike
2016-02-01
I explored whether different cognitive abilities (information-processing ability, working-memory capacity) are needed for expertise development when different types of automation (information vs. decision automation) are employed. It is well documented that expertise development and the employment of automation lead to improved performance. Here, it is argued that a learner's ability to reason about an activity may be hindered by the employment of information automation. Additional feedback needs to be processed, thus increasing the load on working memory and decelerating expertise development. By contrast, the employment of decision automation may stimulate reasoning, increase the initial load on information-processing ability, and accelerate expertise development. Authors of past research have not investigated the interrelations between automation assistance, individual differences, and expertise development. Sixty-one naive learners controlled simulated air traffic with two types of automation: information automation and decision automation. Their performance was captured across 16 trials. Well-established tests were used to assess information-processing ability and working-memory capacity. As expected, learners' performance benefited from expertise development and decision automation. Furthermore, individual differences moderated the effect of the type of automation on expertise development: The employment of only information automation increased the load on working memory during later expertise development. The employment of decision automation initially increased the need to process information. These findings highlight the importance of considering individual differences and expertise development when investigating human-automation interaction. The results are relevant for selecting automation configurations for expertise development. © 2015, Human Factors and Ergonomics Society.
NASA Astrophysics Data System (ADS)
Triantis, Dimos; Stavrakas, Ilias; Hloupis, George; Ninos, Konstantinos; Vallianatos, Filippos
2013-04-01
The detection of Acoustic Emissions (AE) and Electrical Signals (ES) has been proved as a valuable experimental method to characterize the mechanical status of marble specimens when subjected to mechanical stress. In this work, marble specimens with dimensions 10cm x 4cm x 4cm where subjected to sequential loading cycles. The maximum stress of each loading was near the vicinity of fracture and was maintained for a relatively long time (th=200s). Concurrently to the mechanical tests, AE and ES were recorded. Specifically, two AE sensors and five ES sensors were installed on the surface of the specimens and the detected emissions were stored on a PC. The recordings show that AE and ES provide information regarding the damage spreading and location in the bulk of the specimen. Specifically, when the mechanical stress was maintained constant at the high stress value during each loading cycle the cumulative number of the AE hits become gradually less reaching a minimum after the first three loading cycles, indicating the existence of the Kaiser effect. During the eighth loading cycle the AE hits show a significant increase that became maximum at the ninth cycle before where failure occured. A similar behavior was observed for the cumulative energy. A b-value analysis was conducted following both Aki's and Gutenberg-Richter relations on the amplitudes of the AE hits. The b-values were found to increase during the three first loading cycles while consequently they were practically constant until reaching the two final loading cycles where they became gradually lower. The ES significantly increases during the stress increase of each cycle and gradually restores at a background level when the applied stress is maintained constant near the vicinity of fracture. It was observed that the background restoration level becomes gradually higher during the first four loading cycles. Consequently, during the next three loading cycles the background level is maintained practically constant. During the two final loading cycles the background restoration level significantly increases indicating the upcoming fracture. Acknowledgments. This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC".
Effects of Age and Working Memory Load on Syntactic Processing: An Event-Related Potential Study.
Alatorre-Cruz, Graciela C; Silva-Pereyra, Juan; Fernández, Thalía; Rodríguez-Camacho, Mario A; Castro-Chavira, Susana A; Sanchez-Lopez, Javier
2018-01-01
Cognitive changes in aging include working memory (WM) decline, which may hamper language comprehension. An increase in WM demands in older adults would probably provoke a poorer sentence processing performance in this age group. A way to increase the WM load is to separate two lexical units in an agreement relation (i.e., adjective and noun), in a given sentence. To test this hypothesis, event-related potentials (ERPs) were collected from Spanish speakers (30 older adults, mean age = 66.06 years old; and 30 young adults, mean age = 25.7 years old) who read sentences to detect grammatical errors. The sentences varied with regard to (1) the gender agreement of the noun and adjective, where the gender of the adjective either agreed or disagreed with the noun, and (2) the WM load (i.e., the number of words between the noun and adjective in the sentence). No significant behavioral differences between groups were observed in the accuracy of the response, but older adults showed longer reaction times regardless of WM load condition. Compared with young participants, older adults showed a different pattern of ERP components characterized by smaller amplitudes of LAN, P600a, and P600b effects when the WM load was increased. A smaller LAN effect probably reflects greater difficulties in processing the morpho-syntactic features of the sentence, while smaller P600a and P600b effects could be related to difficulties in recovering and mapping all sentence constituents. We concluded that the ERP pattern in older adults showed subtle problems in syntactic processing when the WM load was increased, which was not sufficient to affect response accuracy but was only observed to result in a longer reaction time.
Pullout Performances of Grouted Rockbolt Systems with Bond Defects
NASA Astrophysics Data System (ADS)
Xu, Chang; Li, Zihan; Wang, Shanyong; Wang, Shuren; Fu, Lei; Tang, Chunan
2018-03-01
This paper presents a numerical study on the pullout behaviour of fully grouted rockbolts with bond defects. The cohesive zone model (CZM) is adopted to model the bond-slip behaviour between the rockbolt and grout material. Tensile tests were also conducted to validate the numerical model. The results indicate that the defect length can obviously influence the load and stress distributions along the rockbolt as well as the load-displacement response of the grouted system. Moreover, a plateau in the stress distribution forms due to the bond defect. The linear limit and peak load of the load-displacement response decrease as the defect length increases. A bond defect located closer to the loaded end leads to a longer nonlinear stage in the load-displacement response. However, the peak loads measured from the specimens made with various defect locations are almost approximately the same. The peak load for a specimen with the defects equally spaced along the bolt is higher than that for a specimen with defects concentrated in a certain zone, even with the same total defect length. Therefore, the dispersed pattern of bond defects would be much safer than the concentrated pattern. For the specimen with dispersed defects, the peak load increases with an increase in the defect spacing, even if the total defect length is the same. The peak load for a grouted rockbolt system with defects increases with an increases in the bolt diameter. This work leads to a better understanding of the load transfer mechanism for grouted rockbolt systems with bond defects, and paves the way towards developing a general evaluation method for damaged rockbolt grouted systems.
Buchvold, Hogne Vikanes; Pallesen, Ståle; Øyane, Nicolas M F; Bjorvatn, Bjørn
2015-11-12
Shift work is associated with negative health effects. Increased prevalence of several cardiovascular risk factors among shift workers/night workers compared with day workers have been shown resulting in increased risk of cardiovascular events among shift workers and night workers. Previous studies have taken a dichotomous approach to the comparison between day and night workers. The present study uses a continuous approach and provides such a new perspective to the negative effects of night work load as a possible risk factor for undesirable health effects. This cross sectional study (The SUrvey of Shift work, Sleep and Health (SUSSH)) uses data collected from December 2008 to March 2009. The study population consists of Norwegian nurses. The study collected information about demographic and lifestyle factors: Body Mass Index (BMI), smoking habits, alcohol consumption, caffeine consumption and exercise habits. The lifestyle parameters were evaluated using multiple hierarchical regression and binary logistic regression. Number of night shifts worked last year (NNL) was used as operationalization of night work load. Adjustment for possible confounders were made. Obesity was defined as BMI > 30. Alcohol Consumption was evaluated using the short form of the Alcohol Use Disorders Identification Test Consumption (AUDIT-C). Data were analyzed using SPSS version 22. We had data from 2059 nurses. NNL was significantly and positively associated with BMI, both when evaluated against BMI as a continuous parameter (Beta = .055, p < .05), and against obesity (OR = 1.01, 95 % CI = 1.00-1.01). The AUDIT-C score was significantly and positively associated with hours worked per week (OR = 1.03, 95 % CI = 1.01-1.05). We found a positive significant association between night work load and BMI. This suggests that workers with a heavy night work load might need special attention and frequent health checks due to higher risk of undesirable health effects.
Actoprotective effect of ginseng: improving mental and physical performance
Oliynyk, Sergiy; Oh, Seikwan
2013-01-01
Actoprotectors are preparations that increase the mental performance and enhance body stability against physical loads without increasing oxygen consumption. Actoprotectors are regarded as a subclass of adaptogens that hold a significant capacity to increase physical performance. The focus of this article is studying adaptogen herbs of genus Panax (P. ginseng in particular) and their capabilities as actoprotectors. Some animal experiments and human studies about actoprotective properties of genus Panax attest that P. ginseng (administered as an extract) significantly increased the physical and intellectual work capacities, and the data provided suggests that ginseng is a natural source of actoprotectors. Preparations of ginseng can be regarded as potential actoprotectors which give way to further research of its influence on physical and mental work capacity, endurance and restoration after exhaustive physical loads while compared with reference actoprotectors. PMID:23717168
Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.
Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N
2016-12-08
The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Jamison, David, IV
Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.
Load theory of selective attention and cognitive control.
Lavie, Nilli; Hirst, Aleksandra; de Fockert, Jan W; Viding, Essi
2004-09-01
A load theory of attention in which distractor rejection depends on the level and type of load involved in current processing was tested. A series of experiments demonstrates that whereas high perceptual load reduces distractor interference, working memory load or dual-task coordination load increases distractor interference. These findings suggest 2 selective attention mechanisms: a perceptual selection mechanism serving to reduce distractor perception in situations of high perceptual load that exhaust perceptual capacity in processing relevant stimuli and a cognitive control mechanism that reduces interference from perceived distractors as long as cognitive control functions are available to maintain current priorities (low cognitive load). This theory resolves the long-standing early versus late selection debate and clarifies the role of cognitive control in selective attention. ((c) 2004 APA, all rights reserved)
Baker, Brendon M.; Shah, Roshan P.; Huang, Alice H.
2011-01-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications. PMID:21247342
Baker, Brendon M; Shah, Roshan P; Huang, Alice H; Mauck, Robert L
2011-05-01
Fibrocartilaginous tissues such as the meniscus serve critical load-bearing roles, relying on arrays of collagen fibers to resist tensile loads experienced with normal activity. As these structures are frequently injured and possess limited healing capacity, there exists great demand for tissue-engineered replacements. Toward recreating the structural features of these anisotropic tissues in vitro, we employ scaffolds composed of co-aligned nanofibers that direct mesenchymal stem cell (MSC) orientation and the formation of organized extracellular matrix (ECM). Concomitant with ECM synthesis, the mechanical properties of constructs increase with free-swelling culture, but ultimately failed to achieve equivalence with meniscal fibrocartilage. As mechanical forces are essential to the development and maintenance of musculoskeletal tissues, this work examined the effect of cyclic tensile loading on MSC-laden nanofibrous constructs. We hypothesized that loading would modulate the transcriptional behavior of MSCs, spur the deposition of ECM, and lead to enhancements in construct mechanical properties compared to free-swelling controls. Fiber-aligned scaffolds were seeded with MSCs and dynamically loaded daily in tension or maintained as nonloaded controls for 4 weeks. With mechanical stimulation, fibrous gene expression increased, collagen deposition increased, and the tensile modulus increased by 16% relative to controls. These results show that dynamic tensile loading enhances the maturation of MSC-laden aligned nanofibrous constructs, suggesting that recapitulation of the structural and mechanical environment of load-bearing tissues results in increases in functional properties that can be exploited for tissue engineering applications.
Kouvonen, Anne; Mänty, Minna; Lallukka, Tea; Pietiläinen, Olli; Lahelma, Eero; Rahkonen, Ossi
2017-07-12
To investigate whether changes in psychosocial and physical working conditions are associated with subsequent psychotropic medication in ageing employees. Data were from the Helsinki Health Study, a cohort study of Finnish municipal employees, aged 40-60 years at phase 1 (2000-2002). Changes in psychosocial and physical working conditions were measured between phase 1 and phase 2 (2007). Survey data were longitudinally linked to data on prescribed, reimbursed psychotropic medication purchases (Anatomical Therapeutic Chemical) obtained from the registers of the Social Insurance Institution of Finland between the phase 2 survey and December 2013 (N=3587; 80% women). Outcomes were any psychotropic medication; antidepressants (N06A); anxiolytics (N05B); and sedatives and hypnotics (N05C). Cox regression analyses were performed. During the follow-up, 28% of the participants were prescribed psychotropic medication. Repeated exposures to low job control, high job demands and high physical work load were associated with an increased risk of subsequent antidepressant and anxiolytic medication. Increased and repeated exposure to high physical work load, increased job control and repeated high job demands were associated with subsequent sedative and hypnotic medication. Age and sex-adjusted HR varied from 1.18 to 1.66. Improvement in job control was associated with a lower risk of anxiolytic, but with a higher risk of sedatives and hypnotic medication. Decreased physical work load was associated with a lower risk of antidepressant and anxiolytic medications. Improvement in working conditions could lower the risk of mental ill-health indicated by psychotropic medication. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lidar-Enhanced Wind Turbine Control: Past, Present, and Future: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholbrock, Andrew; Fleming, Paul; Wright, Alan
2016-07-01
This paper will look at the development of lidar-enhanced controls and how they have been used for turbine load reduction with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wakemore » impacts in a wind farm.« less
Metzak, Paul D.; Riley, Jennifer D.; Wang, Liang; Whitman, Jennifer C.; Ngan, Elton T. C.; Woodward, Todd S.
2012-01-01
Working memory (WM) is one of the most impaired cognitive processes in schizophrenia. Functional magnetic resonance imaging (fMRI) studies in this area have typically found a reduction in information processing efficiency but have focused on the dorsolateral prefrontal cortex. In the current study using the Sternberg Item Recognition Test, we consider networks of regions supporting WM and measure the activation of functionally connected neural networks over different WM load conditions. We used constrained principal component analysis with a finite impulse response basis set to compare the estimated hemodynamic response associated with different WM load condition for 15 healthy control subjects and 15 schizophrenia patients. Three components emerged, reflecting activated (task-positive) and deactivated (task-negative or default-mode) neural networks. Two of the components (with both task-positive and task-negative aspects) were load dependent, were involved in encoding and delay phases (one exclusively encoding and the other both encoding and delay), and both showed evidence for decreased efficiency in patients. The results suggest that WM capacity is reached sooner for schizophrenia patients as the overt levels of WM load increase, to the point that further increases in overt memory load do not increase fMRI activation, and lead to performance impairments. These results are consistent with an account holding that patients show reduced efficiency in task-positive and task-negative networks during WM and also partially support the shifted inverted-U-shaped curve theory of the relationship between WM load and fMRI activation in schizophrenia. PMID:21224491
Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.
Zhao, Xiaojie; Li, Xiaoyun; Yao, Li
2017-01-01
Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.
Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L
2018-06-12
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Bédard, Anne-Claude V; Newcorn, Jeffrey H; Clerkin, Suzanne M; Krone, Beth; Fan, Jin; Halperin, Jeffrey M; Schulz, Kurt P
2014-09-01
Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Working memory maintenance is sufficient to reduce state anxiety.
Balderston, Nicholas L; Quispe-Escudero, David; Hale, Elizabeth; Davis, Andrew; O'Connell, Katherine; Ernst, Monique; Grillon, Christian
2016-11-01
According to the attentional control theory (ACT) proposed by Eysenck and colleagues, anxiety interferes with cognitive processing by prioritizing bottom-up attentional processes over top-down attentional processes, leading to competition for access to limited resources in working memory, particularly the central executive (Eysenck, Derakshan, Santos, & Calvo, ). However, previous research using the n-back working memory task suggests that working memory load also reduces state anxiety. Assuming that similar mechanisms underlie the effect of anxiety on cognition, and the effect of cognition on anxiety, one possible implication of the ACT would suggest that the reduction of state anxiety with increasing working memory load is driven by activation of central executive attentional control processes. We tested this hypothesis using the Sternberg working memory paradigm, where maintenance processes can be isolated from central executive processes (Altamura et al., ; Sternberg, ). Consistent with the n-back results, subjects showed decreased state anxiety during the maintenance period of high-load trials relative to low-load trials, suggesting that maintenance processes alone are sufficient to achieve this state anxiety reduction. Given that the Sternberg task does not require central executive engagement, these results are not consistent with an implication of the ACT where the cognition/anxiety relationship and anxiety/cognition relationship are mediated by similar central executive mechanisms. Instead, we propose an extension of the ACT such that engaging working memory maintenance suppresses state anxiety in a load-dependent manner. Furthermore, we hypothesize that the efficacy of this effect may moderate the effect of trait anxiety on cognition. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan
2014-02-01
Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.
Stimulus Load and Oscillatory Activity in Higher Cortex
Kornblith, Simon; Buschman, Timothy J.; Miller, Earl K.
2016-01-01
Exploring and exploiting a rich visual environment requires perceiving, attending, and remembering multiple objects simultaneously. Recent studies have suggested that this mental “juggling” of multiple objects may depend on oscillatory neural dynamics. We recorded local field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal cortex while monkeys maintained variable numbers of visual stimuli in working memory. Behavior suggested independent processing of stimuli in each hemifield. During stimulus presentation, higher-frequency power (50–100 Hz) increased with the number of stimuli (load) in the contralateral hemifield, whereas lower-frequency power (8–50 Hz) decreased with the total number of stimuli in both hemifields. During the memory delay, lower-frequency power increased with contralateral load. Load effects on higher frequencies during stimulus encoding and lower frequencies during the memory delay were stronger when neural activity also signaled the location of the stimuli. Like power, higher-frequency synchrony increased with load, but beta synchrony (16–30 Hz) showed the opposite effect, increasing when power decreased (stimulus presentation) and decreasing when power increased (memory delay). Our results suggest roles for lower-frequency oscillations in top-down processing and higher-frequency oscillations in bottom-up processing. PMID:26286916
van Ewijk, Hanneke; Weeda, Wouter D; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, Jaap
2015-08-30
Impaired visuospatial working memory (VSWM) is suggested to be a core neurocognitive deficit in attention-deficit/hyperactivity disorder (ADHD), yet the underlying neural activation patterns are poorly understood. Furthermore, it is unclear to what extent age and gender effects may play a role in VSWM-related brain abnormalities in ADHD. Functional magnetic resonance imaging (fMRI) data were collected from 109 individuals with ADHD (60% male) and 103 controls (53% male), aged 8-25 years, during a spatial span working memory task. VSWM-related brain activation was found in a widespread network, which was more widespread compared with N-back tasks used in the previous literature. Higher brain activation was associated with higher age and male gender. In comparison with controls, individuals with ADHD showed greater activation in the left inferior frontal gyrus (IFG) and the lateral frontal pole during memory load increase, effects explained by reduced activation on the low memory load in the IFG pars triangularis and increased activation during high load in the IFG pars opercularis. Age and gender effects did not differ between controls and individuals with ADHD. Results indicate that individuals with ADHD have difficulty in efficiently and sufficiently recruiting left inferior frontal brain regions with increasing task difficulty. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Short vs. Long: Cognitive Load, Retention and Changing Class Structures
ERIC Educational Resources Information Center
Sheridan, Brandon; Smith, Ben; Pleggenkuhle-Miles, Erin
2017-01-01
University class structure is changing. To accommodate working students, programmes are increasing their offerings of long night classes--some lasting as long as six hours. While these long classes may be more convenient for students, they have unintended consequences as a result of cognitive load. Using a panel of 124 students (372 observations)…
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams
NASA Astrophysics Data System (ADS)
Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen
2018-05-01
This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Effects of physical and mental stressors on muscle pain.
Westgaard, R H
1999-01-01
Physical and mental stressors as risk factors for pain development are discussed. These multifaceted stressor terms are narrowed down so that physical stressors are represented by muscle activity recorded by electromyography (EMG), while mental stress is considered synonymous with psychosocial stress in vocational studies; in experimental studies cognitive stress is used as a model. Pain in the shoulder and neck are focused and related to EMG recordings of activity in the trapezius muscle. Major challenges in this field include proper risk assessment at low physical work loads and criteria for evaluating stress as a risk factor. A 3-factor conceptual model is presented in which the independent dimensions physical work load, mental stress, and individual sensitivity determine the risk of shoulder and neck complaints. It is pointed out that a predominant reduction in physical work load for many jobs and an increasing interaction between work conditions and the general life situation of workers pose particular challenges for risk assessment.
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.
Golob, Edward J; Winston, Jenna; Mock, Jeffrey R
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.
Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients
Golob, Edward J.; Winston, Jenna; Mock, Jeffrey R.
2017-01-01
Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory. PMID:29218024
Attention is required for maintenance of feature binding in visual working memory
Heider, Maike; Husain, Masud
2013-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory—but not necessarily other aspects of working memory. PMID:24266343
Attention is required for maintenance of feature binding in visual working memory.
Zokaei, Nahid; Heider, Maike; Husain, Masud
2014-01-01
Working memory and attention are intimately connected. However, understanding the relationship between the two is challenging. Currently, there is an important controversy about whether objects in working memory are maintained automatically or require resources that are also deployed for visual or auditory attention. Here we investigated the effects of loading attention resources on precision of visual working memory, specifically on correct maintenance of feature-bound objects, using a dual-task paradigm. Participants were presented with a memory array and were asked to remember either direction of motion of random dot kinematograms of different colour, or orientation of coloured bars. During the maintenance period, they performed a secondary visual or auditory task, with varying levels of load. Following a retention period, they adjusted a coloured probe to match either the motion direction or orientation of stimuli with the same colour in the memory array. This allowed us to examine the effects of an attention-demanding task performed during maintenance on precision of recall on the concurrent working memory task. Systematic increase in attention load during maintenance resulted in a significant decrease in overall working memory performance. Changes in overall performance were specifically accompanied by an increase in feature misbinding errors: erroneous reporting of nontarget motion or orientation. Thus in trials where attention resources were taxed, participants were more likely to respond with nontarget values rather than simply making random responses. Our findings suggest that resources used during attention-demanding visual or auditory tasks also contribute to maintaining feature-bound representations in visual working memory-but not necessarily other aspects of working memory.
Central load reduces peripheral processing: Evidence from incidental memory of background speech.
Halin, Niklas; Marsh, John E; Sörqvist, Patrik
2015-12-01
Is there a trade-off between central (working memory) load and peripheral (perceptual) processing? To address this question, participants were requested to undertake an n-back task in one of two levels of central/cognitive load (i.e., 1-back or 2-back) in the presence of a to-be-ignored story presented via headphones. Participants were told to ignore the background story, but they were given a surprise memory test of what had been said in the background story, immediately after the n-back task was completed. Memory was poorer in the high central load (2-back) condition in comparison with the low central load (1-back) condition. Hence, when people compensate for higher central load, by increasing attentional engagement, peripheral processing is constrained. Moreover, participants with high working memory capacity (WMC) - with a superior ability for attentional engagement - remembered less of the background story, but only in the low central load condition. Taken together, peripheral processing - as indexed by incidental memory of background speech - is constrained when task engagement is high. © 2015 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
NASA Astrophysics Data System (ADS)
Gupta, Atma Ram; Kumar, Ashwani
2017-12-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
The ERP research about the influence of the music of Chopin on working memory
NASA Astrophysics Data System (ADS)
Sun, C. A.; Wei, Hong-tao; Yue, Li-juan
2011-10-01
This study is to examine the effect of the music of Chopin on working memory and the electrical activity of the brain in different conditions by using event-related potentials (ERPs), adopting n-back experimental paradigm and to study the neuromechanism. Thirty adults performed behavioral experiments with three conditions of music and two levels of n-back task. Fourteen normal adults performed ERP experiments with the same program as the behavioral experiment and the EEG were recorded. Chopin music improved people's working memory and pilot music improved most effectively.P3 peak amplitude decreased as working memory load increased. Especially in high load task, P3 peak amplitude decreased gradually in pilot music, background music and free music condition.
Monks, Paul J; Thompson, Jill M; Bullmore, Edward T; Suckling, John; Brammer, Michael J; Williams, Steve C R; Simmons, Andrew; Giles, Nicola; Lloyd, Adrian J; Harrison, C Louise; Seal, Marc; Murray, Robin M; Ferrier, I Nicol; Young, Allan H; Curtis, Vivienne A
2004-12-01
Even when euthymic bipolar disorder patients can have persistent deficits in working memory, but the neural basis of this deficit remains unclear. We undertook an functional magnetic resonance imaging investigation of euthymic bipolar disorder patients performing two working memory paradigms; the two-back and Sternberg tasks, selected to examine the central executive and the phonological loop respectively. We hypothesized that neuronal dysfunction would be specific to the network underlying the executive rather than the phonological loop component of working memory. Twelve right-handed euthymic bipolar I males receiving lithium carbonate monotherapy were matched with 12 controls. The two-back task comprised a single working memory load contrasted with baseline vigilance condition. The Sternberg paradigm used a parametric design incorporating variable working memory load with fixed delay between presentation of an array of items to be remembered and a target item. Functional activation data were acquired during performance of the tasks and were analysed to produce brain activation maps representing significant group differences in activation (ANOVA). Load-response curves were derived from the Sternberg task data set. There were no significant between-group differences (t-test) in performance of the two-back task, or in 2 x 5 group by memory load ANOVA for the performance data from Sternberg task. In the two-back task, compared with controls bipolar disorder patients showed reductions in bilateral frontal, temporal and parietal activation, and increased activations with the left precentral, right medial frontal and left supramarginal gyri. No between-group differences were observed in the Sternberg task at any working memory load. Our findings support the notion that, in euthymic bipolar disorder, failure to engage fronto-executive function underpins the core neuropsychological deficits. Blackwell Munksgaard, 2004
NASA Astrophysics Data System (ADS)
Jiang, Wenqian; Zeng, Bo; Yang, Zhou; Li, Gang
2018-01-01
In the non-invasive load monitoring mode, the load decomposition can reflect the running state of each load, which will help the user reduce unnecessary energy costs. With the demand side management measures of time of using price, a resident load influence analysis method for time of using price (TOU) based on non-intrusive load monitoring data are proposed in the paper. Relying on the current signal of the resident load classification, the user equipment type, and different time series of self-elasticity and cross-elasticity of the situation could be obtained. Through the actual household load data test with the impact of TOU, part of the equipment will be transferred to the working hours, and users in the peak price of electricity has been reduced, and in the electricity at the time of the increase Electrical equipment, with a certain regularity.
Energetics of surface confined ferritin during iron loading.
Federici, Stefania; Padovani, Francesco; Poli, Maura; Rodriguez, Fernando Carmona; Arosio, Paolo; Depero, Laura E; Bergese, Paolo
2016-09-01
We report on the first quantitative picture on how iron loading inside ferritin molecules occurs when they are self-assembled onto solid surfaces. Recombinant human ferritin H-chain with ferroxidase activity was adsorbed onto microcantilever beams to form a stable close-packed thin film. The obtained nanomechanical system was used to track in real time the energetics of inter-ferritin surface interactions during incubation with Fe(II) for iron loading. We observed that iron loading is accompanied by increasing attractive in-plane inter-ferritin interactions able to perform a maximum surface work of 6.0±1.5mJ/m(2), corresponding to a surface energy variation per ferritin of about 40kbT. Unique to this protein surface transformation, part of the surface work is exerted by the attractive electrostatic forces arising among the new born nanosized iron cores inside the ferritin shells. The remaining work comes from subtle action of steric, bridging and depletion forces. These findings are of fundamental interest and add important information for the rational development of ferritin nanotechnology. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanisms of anterior-posterior stability of the knee joint under load-bearing.
Reynolds, Ryan J; Walker, Peter S; Buza, John
2017-05-24
The anterior-posterior (AP) stability of the knee is an important aspect of functional performance. Studies have shown that the stability increases when compressive loads are applied, as indicated by reduced laxity, but the mechanism has not been fully explained. A test rig was designed which applied combinations of AP shear and compressive forces, and measured the AP displacements relative to the neutral position. Five knees were evaluated at compressive loads of 0, 250, 500, and 750N, with the knee at 15° flexion. At each load, three cycles of shear force at ±100N were applied. For the intact knee under load, the posterior tibial displacement was close to zero, due to the upward slope of the anterior medial tibial surface. The soft tissues were then resected in sequence to determine their role in AP laxity. After anterior cruciate ligament (ACL) resection, the anterior tibial displacement increased significantly even under load, highlighting its importance in stability. Meniscal resection further increased displacement but also the vertical displacement increased, implying the meniscus was providing a buffering effect. The PCL had no effect on any of the displacements under load. Plowing cartilage deformation and surface friction were negligible. This work highlighted the particular importance of the upward slope of the anterior medial tibial surface and the ACL to AP knee stability under load. The results are relevant to the design of total knees which reproduce anatomic knee stability behavior. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell
2010-01-01
While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.
ERIC Educational Resources Information Center
Dow, Gayle T.
2015-01-01
Previous work has shown that the presence of examples may lead to cryptomnesia, or inadvertent plagiarism, on creative tasks. Various experiential and environmental attributes may magnify this finding. For instance, novices, with limited knowledge, may be more prone to inadvertently plagiarize examples, and increases in cognitive load may result…
Load-sensitive impairment of working memory for biological motion in schizophrenia.
Lee, Hannah; Kim, Jejoong
2017-01-01
Impaired working memory (WM) is a core cognitive deficit in schizophrenia. Nevertheless, past studies have reported that patients may also benefit from increasing salience of memory stimuli. Such efficient encoding largely depends upon precise perception. Thus an investigation on the relationship between perceptual processing and WM would be worthwhile. Here, we used biological motion (BM), a socially relevant stimulus that schizophrenics have difficulty discriminating from similar meaningless motions, in a delayed-response task. Non-BM stimuli and static polygons were also used for comparison. In each trial, one of the three types of stimuli was presented followed by two probes, with a short delay in between. Participants were asked to indicate whether one of them was identical to the memory item or both were novel. The number of memory items was one or two. Healthy controls were more accurate in recognizing BM than non-BM regardless of memory loads. Patients with schizophrenia exhibited similar accuracy patterns to those of controls in the Load 1 condition only. These results suggest that information contained in BM could facilitate WM encoding in general, but the effect is vulnerable to the increase of cognitive load in schizophrenia, implying inefficient encoding driven by imprecise perception.
Nakamura, H; Iwamoto, M; Ogata, T; Washida, K; Sekine, K; Takase, M; Park, B J; Morikawa, T; Miyazaki, Y
2008-01-01
This study examined the influence of milk casein-derived peptides on cerebral activity after mental stress loading. In a crossover study, 16 male students were given a drink containing peptides (peptide group), or water (control group) before stress loading. The oxyhaemoglobin (HbO(2)) concentration in the prefrontal area of the brain and work efficiency were measured as indicators of cerebral activity and differences in these parameters were examined according to type A or type B personality. Type A behaviour was defined as: aggression-hostility, hard-driving-time-urgency and speed-power, whereas type B behaviour did not have these characteristics. Peptide intake resulted in a significant increase in both HbO(2) concentration and work efficiency, whilst a similar increase was not seen in the control group. When divided into type A or type B personality, the changes in HbO(2) concentration for the control group differed significantly in the right prefrontal area. Moreover, in type A subjects the HbO(2) concentration in the right prefrontal area following intake was significantly different between the peptide and control groups.
Crewther, Blair T; Cronin, John; Keogh, Justin W L
2008-11-01
This study examined the effect of volume, technique, and load upon single-repetition and total-repetition kinematics and kinetics during three loading schemes. Eleven recreationally trained males each performed a power (8 sets of 6 repetitions at 45% of one-repetition maximum [1RM], 3-minute rest periods, explosive and ballistic movements), hypertrophy (10 sets of 10 repetitions at 75% 1RM, 2-minute rest periods, controlled movements), and maximal strength (6 sets of 4 repetitions at 88% 1RM, 4-minute rest periods, explosive intent) scheme involving squats. Examination of repetition data showed that load intensity (% 1RM) generally had a direct effect on forces, contraction times, impulses, and work (i.e., increasing with load), whereas power varied across loads (p < 0.001). However, total-repetition forces, contraction times, impulses, work, and power were all greater in the hypertrophy scheme (p < 0.001), because of the greater number of repetitions performed (volume) as well as lifting technique. No differences in total forces were found between the equal-volume power and maximal strength schemes, but the former did produce greater total contraction times, work, and power (p < 0.001), which may also be attributed to repetition and technique differences. Total impulses were the only variable greater in the maximal strength scheme (p < 0.001). Thus, the interaction of load, volume, and technique plays an important role in determining the mechanical responses (stimuli) afforded by these workouts. These findings may explain disparities cited within research, regarding the effectiveness of different loading strategies for hypertrophy, maximal strength, and power adaptation.
Kantor, Rose S; Huddy, Robert J; Iyer, Ramsunder; Thomas, Brian C; Brown, Christopher T; Anantharaman, Karthik; Tringe, Susannah; Hettich, Robert L; Harrison, Susan T L; Banfield, Jillian F
2017-03-07
Remediation of industrial wastewater is important for preventing environmental contamination and enabling water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and one rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.
Variation in work tasks in relation to pinch grip strength among middle-aged female dentists.
Ding, Hebo; Leino-Arjas, Päivi; Murtomaa, Heikki; Takala, Esa-Pekka; Solovieva, Svetlana
2013-11-01
We aimed to investigate the relationship of task variation during dental work history with pinch grip strength among dentists. We measured pinch grip strength among 295 female Finnish dentists aged 45-63 years. Variation in dental work tasks during work history was empirically defined by cluster analysis. Three clusters of task variation emerged: low (most work time in restoration treatment/endodontics), moderate (about 50% in the former and 50% in prosthodontics/periodontics/surgery), and high (variable tasks including administrative duties). Hand radiographs were examined for the presence of OA in the wrist and each joint of the 1-3rd fingers. Information on hand-loading leisure-time activities, and joint pain was obtained by questionnaire. Glove size was used as a proxy for hand size. BMI (kg/m2) was based on measured weight and self-reported height. Dentists with low variation of work task history had an increased risk of low pinch grip strength in the right hand (OR 2.3, 95% CI 1.2-4.3), but not in the left (1.13, 0.62-2.08), compared to dentists with high task variation, independent of age, hand size, hand-loading leisure-time activities, BMI and symptomatic hand OA. The dentists with the most hand-loading tasks were at an increased risk of low pinch grip strength, independent of e.g. symptomatic hand OA. It is advisable among dentists to perform as diverse work tasks as possible to reduce the risk of decreased pinch grip strength. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck
2015-03-30
Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes. Copyright © 2014 Elsevier B.V. All rights reserved.
Harnessing the wandering mind: the role of perceptual load.
Forster, Sophie; Lavie, Nilli
2009-06-01
Perceptual load is a key determinant of distraction by task-irrelevant stimuli (e.g., Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82). Here we establish the role of perceptual load in determining an internal form of distraction by task-unrelated thoughts (TUTs or "mind-wandering"). Four experiments demonstrated reduced frequency of TUTs with high compared to low perceptual load in a visual-search task. Alternative accounts in terms of increased demands on responses, verbal working memory or motivation were ruled out and clear effects of load were found for unintentional TUTs. Individual differences in load effects on internal (TUTs) and external (response-competition) distractors were correlated. These results suggest that exhausting attentional capacity in task-relevant processing under high perceptual load can reduce processing of task-irrelevant information from external and internal sources alike.
7 CFR 1710.209 - Approval requirements for load forecast work plans.
Code of Federal Regulations, 2010 CFR
2010-01-01
... cooperate in the preparation of and submittal of the load forecast work plan of their power supply borrower. (b) An approved load forecast work plan establishes the process for the preparation and maintenance... approved load forecast work plan must outline the coordination and preparation requirements for both the...
NASA Astrophysics Data System (ADS)
Stepanova, D. L.; Nikulin, P. A.
2017-01-01
Nowadays, there are many types of reducers based on work of gear trains, which transfer torque. The most popular reducers are with such type of gearing as an involute gear, a worm drive and an eccentrically cycloid gear. A new type of the reducer will be represented in this work. It is a wave reducer with the modified profile of the tooth close to the profile of the tooth of Novikov gearing. So such reducers can be widely used in drives of difficult technical mechanisms, for example, in mechatronics, robotics and in drives of exact positioning. In addition, the distribution of loading in gearing of teeth of a reducer was analyzed in this paper. It proves that the modified profile of the tooth allows distributing loading to several teeth in gearing. As a result, an admissible loading ability of a reducer becomes higher. The aim of the research is to define a possibility to reduce overall dimensions of a reducer without changing the gear ratio or to increase the gear ratio without changing overall dimensions. So, the result of this work will be used in further research.
Response of reinforced concrete and corrugated steel pipes to surface load
NASA Astrophysics Data System (ADS)
Lay, Geoff R.
Full-scale simulated live load tests were conducted in a controlled laboratory setting using a single-axle frame on 600-mm-inner-diameter reinforced concrete pipe (RCP) and corrugated steel pipe (CSP) when buried in dense, well-graded sand and gravel. Measurements of the RCP at nominal and working forces and beyond are reported for 0.3, 0.6 and 0.9 m of soil cover above the pipe crown. The RCP experienced no cracking when buried at 0.3 m under nominal and working CL-625 and CL-800 single-axle design loads. At these loads, the vertical contraction of the pipe diameter was less than 0.08 and 0.10 mm and the largest tensile strains in the pipe were 75 and 100 muepsilon (50-60% of the cracking strain), respectively. A 0.15 (+/-0.05)-mm-wide axial crack developed at the inner crown in the presence of a 6 kNm/m circumferential bending moment (70% of the theoretical ultimate moment capacity) at the fully factored CL-625 load. This crack did not propagate or widen from 3 series of cyclic load-unload tests. At 1300 kN of applied load the change in pipe diameter was less than 3.5 mm. Increasing soil cover from 0.3 to 0.6 to 0.9 m reduced the circumferential crown bending moment from 6.0 to 3.9 to 2.1 kNm/m, respectively, at 400 kN of axle load. A 1.6- and a 2.8-mm-thick CSP were also subjected to axle loading. No yielding or limit states occurred in the 1.6-mm-thick CSP when buried 0.9-m-deep. However, at 0.6 m of cover a 300 kN axle load caused local yielding at the pipe crown. Increasing soil cover from 0.6 to 0.9 m decreased the vertical diameter change from -3.0 to -1.2 mm and the crown bending moment from 0.7 to 0.2 kNm/m (75% and 20% of the yield moment), respectively, at a 250 kN axle load. Deflections of the thicker CSP were less than the thinner pipe below the CL-625 single-axle load, however further increases in applied load produced a greater response in the thicker pipe, likely due to a haunch support issue. Shallow axle loading produced a greater 3-dimensional response and a larger bending effect in both CSPs.
Thangaraj, Suja; Govindan, Nagarajan
2018-01-01
The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.
On the role of working memory in spatial contextual cueing.
Travis, Susan L; Mattingley, Jason B; Dux, Paul E
2013-01-01
The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.
Stroop proactive control and task conflict are modulated by concurrent working memory load.
Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai; Davelaar, Eddy J; Usher, Marius
2015-06-01
Performance on the Stroop task reflects two types of conflict-informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model's prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.
Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential.
Ai, Bao-quan; Liu, Liang-gang
2007-10-01
Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
Stuy on Fatigue Life of Aluminum Alloy Considering Fretting
NASA Astrophysics Data System (ADS)
Yang, Maosheng; Zhao, Hongqiang; Wang, Yunxiang; Chen, Xiaofei; Fan, Jiali
2018-01-01
To study the influence of fretting on Aluminum Alloy, a global finite element model considering fretting was performed using the commercial code ABAQUS. With which a new model for predicting fretting fatigue life has been presented based on friction work. The rationality and effectiveness of the model were validated according to the contrast of experiment life and predicting life. At last influence factor on fretting fatigue life of aerial aluminum alloy was investigated with the model. The results revealed that fretting fatigue life decreased monotonously with the increasing of normal load and then became constant at higher pressures. At low normal load, fretting fatigue life was found to increase with increase in the pad radius. At high normal load, however, the fretting fatigue life remained almost unchanged with changes in the fretting pad radius. The bulk stress amplitude had the dominant effect on fretting fatigue life. The fretting fatigue life diminished as the bulk stress amplitude increased.
NASA Astrophysics Data System (ADS)
Winter, L.; Morgenstern, R.; Hockauf, K.; Lampke, T.
2016-03-01
In this work the mean stress influence on the high cycle fatigue behavior of the plasma electrolytic oxidized (PEO) 6082 aluminum alloy (AlSi1MgMn) is investigated. The present study is focused on the fatigue life time and the susceptibility of fatigue-induced cracking of the oxide coating and their dependence on the applied mean stress. Systematic work is done comparing conditions with and without PEO treatment, which have been tested using three different load ratios. For the uncoated substrate the cycles to failure show a significant dependence on the mean stress, which is typical for aluminum alloys. With increased load ratio and therefore increased mean stress, the fatigue strength decreases. The investigation confirms the well-known effect of PEO treatment on the fatigue life: The fatigue strength is significantly reduced by the PEO process, compared to the uncoated substrate. However, also the mean stress sensitivity of the fatigue performance is reduced. The fatigue limit is not influenced by an increasing mean stress for the PEO treated conditions. This effect is firstly shown in these findings and no explanation for this effect can be found in literature. Supposedly the internal compressive stresses and the micro-cracks in the oxide film have a direct influence on the crack initiation and growth from the oxide film through the interface and in the substrate. Contrary to these findings, the susceptibility of fatigue-induced cracking of the oxide coating is influenced by the load ratio. At tension-tension loading a large number of cracks, which grow partially just in the aluminum substrate, are present. With decreasing load ratio to alternating tension-compression stresses, the crack number and length increases and shattering of the oxide film is more pronounced due to the additional effective compressive part of the load cycle.
Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes
NASA Astrophysics Data System (ADS)
Lyall, M. Eric
Past efforts to reduce the airfoil count in low pressure turbines have produced high lift profiles with unacceptably high endwall loss. The purpose of the current work is to suggest alternative approaches for reducing endwall losses. The effects of the fluid mechanics and high lift profile geometry are considered. Mixing effects of the mean flow and turbulence fields are decoupled to show that mean flow shear in the endwall wake is negligible compared to turbulent shear, indicating that turbulence dissipation is the primary cause of total pressure loss. The mean endwall flow field does influence total pressure loss by causing excessive wake growth and perhaps outright separation on the suction surface. For equivalent stagger angles, a front-loaded high lift profile will produce less endwall loss than one aft-loaded, primarily by suppressing suction surface flow separation. Increasing the stagger setting, however, increases the endwall loss due to the static pressure field generating a stronger blockage relative to the incoming endwall boundary layer flow and causing a larger mass of fluid to become entrained in the horseshoe vortex. In short, front-loading the pressure distribution suppresses suction surface separation whereas limiting the stagger angle suppresses inlet boundary layer separation. Results of this work suggest that a front-loaded low stagger profile be used at the endwall to reduce the endwall loss.
Effects of repeated bending load at room temperature for composite Nb3Sn wires
NASA Astrophysics Data System (ADS)
Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune
2003-09-01
In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.
Wolff, Nicole; Chmielewski, Witold X; Beste, Christian; Roessner, Veit
2017-03-16
Autism spectrum disorder (ASD) is associated with repetitive and stereotyped behaviour, suggesting that cognitive flexibility may be deficient in ASD. A central, yet not examined aspect to understand possible deficits in flexible behaviour in ASD relates (i) to the role of working memory and (ii) to neurophysiological mechanisms underlying behavioural modulations. We analysed behavioural and neurophysiological (EEG) correlates of cognitive flexibility using a task-switching paradigm with and without working memory load in adolescents with ASD and typically developing controls (TD). Adolescents with ASD versus TD show similar performance in task switching with no memory load, indicating that 'pure' cognitive flexibility is not in deficit in adolescent ASD. However performance during task repetition decreases with increasing memory load. Neurophysiological data reflect the pattern of behavioural effects, showing modulations in P2 and P3 event-related potentials. Working memory demands affect repetitive behaviour while processes of cognitive flexibility are unaffected. Effects emerge due to deficits in preparatory attentional processes and deficits in task rule activation, organisation and implementation of task sets when repetitive behaviour is concerned. It may be speculated that the habitual response mode in ASD (i.e. repetitive behaviour) is particularly vulnerable to additional demands on executive control processes.
Al Hares, Ghaith; Eschweiler, Jörg; Radermacher, Klaus
2015-06-01
The development of detailed and specific knowledge on the biomechanical behavior of loaded knee structures has received increased attention in recent years. Stress magnetic resonance imaging techniques have been introduced in previous work to study knee kinematics under load conditions. Previous studies captured the knee movement either in atypical loading supine positions, or in upright positions with help of inclined supporting backrests being insufficient for movement capture under full-body weight-bearing conditions. In this work, we used a combined magnetic resonance imaging approach for measurement and assessment in knee kinematics under full-body weight-bearing in single legged stance. The proposed method is based on registration of high-resolution static magnetic resonance imaging data acquired in supine position with low-resolution data, quasi-static upright-magnetic resonance imaging data acquired in loaded positions for different degrees of knee flexion. The proposed method was applied for the measurement of tibiofemoral kinematics in 10 healthy volunteers. The combined magnetic resonance imaging approach allows the non-invasive measurement of knee kinematics in single legged stance and under physiological loading conditions. We believe that this method can provide enhanced understanding of the loaded knee kinematics. © IMechE 2015.
Mapping HIV community viral load: space, power and the government of bodies
Gagnon, Marilou; Guta, Adrian
2012-01-01
HIV plasma viral load testing has become more than just a clinical tool to monitor treatment response at the individual level. Increasingly, individual HIV plasma viral load testing is being reported to public health agencies and is used to inform epidemiological surveillance and monitor the presence of the virus collectively using techniques to measure ‘community viral load’. This article seeks to formulate a critique and propose a novel way of theorizing community viral load. Based on the salient work of Michel Foucault, especially the governmentality literature, this article critically examines the use of community viral load as a new strategy of government. Drawing also on the work of Miller and Rose, this article explores the deployment of ‘community’ through the re-configuration of space, the problematization of viral concentrations in specific microlocales, and the government (in the Foucauldian sense) of specific bodies which are seen as ‘risky’, dangerous and therefore, in need of attention. It also examines community viral load as a necessary precondition — forming the ‘conditions of possibility’ — for the recent shift to high impact prevention tactics that are being scaled up across North America. PMID:23060688
NASA Technical Reports Server (NTRS)
Bigelow, Glen
2008-01-01
The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of these alloys during repeated actuation were investigated. Finally, the effect of quaternary alloying on the thermal stability of NiTiPdX alloys is determined via thermal cycling of the materials to increasing temperatures under load. It was found that solid solution additions of platinum and gold resulted in about a 30 C increase in upper use temperature compared to the baseline NiTiPd alloy, providing an added measure of over-temperature protection.
The contractile adaption to preload depends on the amount of afterload
Schotola, Hanna; Sossalla, Samuel T.; Renner, André; Gummert, Jan; Danner, Bernhard C.; Schott, Peter
2017-01-01
Abstract Aims The Frank–Starling mechanism (rapid response (RR)) and the secondary slow response (SR) are known to contribute to increases contractile performance. The contractility of the heart muscle is influenced by pre‐load and after‐load. Because of the effect of pre‐load vs. after‐load on these mechanisms in not completely understood, we studied the effect in isolated muscle strips. Methods and results Progressive stretch lead to an increase in shortening/force development under isotonic (only pre‐load) and isometric conditions (pre‐ and after‐load). Muscle length with maximal function was reached earlier under isotonic (L max‐isotonic) compared with isometric conditions (L max‐isometric) in nonfailing rabbit, in human atrial and in failing ventricular muscles. Also, SR after stretch from slack to L max‐isotonic was comparable under isotonic and isometric conditions (human: isotonic 10 ± 4%, isometric 10 ± 4%). Moreover, a switch from isotonic to isometric conditions at L max‐isometric showed no SR proving independence of after‐load. To further analyse the degree of SR on the total contractile performance at higher pre‐load muscles were stretched from slack to 98% L max‐isometric under isotonic conditions. Thereby, the SR was 60 ± 9% in rabbit and 51 ± 14% in human muscle strips. Conclusions This work shows that the acute contractile response largely depends on the degree and type of mechanical load. Increased filling of the heart elevates pre‐load and prolongs the isotonic part of contraction. The reduction in shortening at higher levels of pre‐load is thereby partially compensated by the pre‐load‐induced SR. After‐load shifts the contractile curve to a better ‘myofilament function’ by probably influencing thin fibers and calcium sensitivity, but has no effect on the SR. PMID:29154423
Koshino, Hideya
2017-01-01
Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load. Copyright © 2016 Elsevier B.V. All rights reserved.
Wolf, Robert Christian; Walter, Henrik; Vasic, Nenad
2010-01-01
Using a parametric version of a modified item-recognition paradigm with three different load levels and by means of event-related functional magnetic resonance imaging, this study tested the hypothesis that cerebral activation associated with intratrial proactive interference (PI) during working memory retrieval is influenced by increased context processing. We found activation of left BA 45 during interference trials across all levels of cognitive processing, and left lateralized activation of the dorsolateral prefrontal cortex (DLPFC, BA 9/46) and the frontopolar cortex (FPC, BA 10) with increasing contextual load. Compared with high susceptibility to PI, low susceptibility was associated with activation of the left DLPFC. These results suggest that an intratrial PI effect can be modulated by increasing context processing of a transiently relevant stimulus set. Moreover, PI resolution associated with increasing context load involves multiple prefrontal regions including the ventro- and dorsolateral prefrontal cortex as well as frontopolar brain areas. Furthermore, low susceptibility to PI might be influenced by increased executive control exerted by the DLPFC.
Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui
2015-12-15
Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less
DeWitt, Elizabeth S.; Black, Katherine J.; Thiagarajan, Ravi R.; DiNardo, James A.; Colan, Steven D.; McGowan, Francis X.
2016-01-01
Inotropic medications are routinely used to increase cardiac output and arterial blood pressure during critical illness. However, few comparative data exist between these medications, particularly independent of their effects on venous capacitance and systemic vascular resistance. We hypothesized that an isolated working heart model that maintained constant left atrial pressure and aortic blood pressure could identify load-independent differences between inotropic medications. In an isolated heart preparation, the aorta and left atrium of Sprague Dawley rats were cannulated and placed in working mode with fixed left atrial and aortic pressure. Hearts were then exposed to common doses of a catecholamine (dopamine, epinephrine, norepinephrine, or dobutamine), milrinone, or triiodothyronine (n = 10 per dose per combination). Cardiac output, contractility (dP/dtmax), diastolic performance (dP/dtmin and tau), stroke work, heart rate, and myocardial oxygen consumption were compared during each 10-min infusion to an immediately preceding baseline. Of the catecholamines, dobutamine increased cardiac output, contractility, and diastolic performance more than clinically equivalent doses of norepinephrine (second most potent), dopamine, or epinephrine (P < 0.001). The use of triiodothyronine and milrinone was not associated with significant changes in cardiac output, contractility or diastolic function, either alone or added to a baseline catecholamine infusion. Myocardial oxygen consumption was closely related to dP/dtmax (r2 = 0.72), dP/dtmin (r2 = 0.70), and stroke work (r2 = 0.53). In uninjured, isolated working rodent hearts under constant ventricular loading conditions, dobutamine increased contractility and cardiac output more than clinically equivalent doses of norepinephrine, dopamine, and epinephrine; milrinone and triiodothyronine did not have significant effects on contractility. PMID:27150829
Najmi, Sadia; Amir, Nader; Frosio, Kristen E.; Ayers, Catherine
2014-01-01
Poor regulation of emotions may involve impaired attention control. In the current paper, we report the results of two studies examining the interaction of anxiety, attention control, and cognitive load. In Study I, using a performance-based task to assess attention control, we examined whether anxiety is associated with impaired attention control, and whether these effects are influenced by working memory load. In Study II we examined these effects in patients with a diagnosis of Generalized Anxiety Disorder (GAD) compared to non-anxious control (NAC) participants. Results of Study I showed that high anxiety was associated with increased attention control, that is decreased interference from distractors, but only under high cognitive load. These results were replicated in Study II such that individuals with GAD showed increased attention control relative to NACs, but only under high cognitive load. These results help clarify previous predictions regarding the effect of anxiety on attention control. PMID:25355423
Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart
2013-01-01
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Safari, Hamed; Samandari, Mohammad Mahdi; Geramipanah, Farideh
2015-06-01
Implants in posterior regions of the jaw require short dental implants with long crown heights, leading to increased crown-to-implant ratios and mechanical stress. This can lead to fracture and screw loosening. The purpose of this study was to investigate the dynamic nature and behavior of prosthetic components and preimplant bone and evaluate the effect of increased crown height space (CHS) and crown-to-implant ratio on stress concentrations under external oblique forces. The severely resorbed bone of a posterior mandible site was modeled with Mimics and Catia software. A second mandibular premolar tooth was modeled with CHS values of 8.8, 11.2, 13.6, and 16 mm. A Straumann implant (4.1×8 mm), a directly attached crown, and an abutment screw were modeled with geometric data and designed by using SolidWorks software. Abaqus software was used for the dynamic simulation of screw tightening and the application of an external load to the buccal cusp at a 75.8-degree angle with the occlusal plane. The distribution of screw load and member load at each step was compared, and the stress values were calculated within the dental implant complex and surrounding bone. During tightening, the magnitude and distribution of the preload and clamp load were uniform and equal at the cross section of all CHSs. Under an external load, the screw load decreased and member load increased. An increase in the CHS caused the corresponding distribution to become more nonuniform and increased the maximum compressive and tensile stresses in the preimplant bone. Additionally, the von Mises stress decreased at the abutment screw and increased at the abutment and fixture. Under nonaxial forces, increased CHS does not influence the decrease in screw load or increase in member load. However, it contributes to screw loosening and fatigue fracture by skewing the stress distribution to the transverse section of the implant. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Behavioral and fMRI evidence of the differing cognitive load of domain-specific assessments.
Howard, S J; Burianová, H; Ehrich, J; Kervin, L; Calleia, A; Barkus, E; Carmody, J; Humphry, S
2015-06-25
Standards-referenced educational reform has increased the prevalence of standardized testing; however, whether these tests accurately measure students' competencies has been questioned. This may be due to domain-specific assessments placing a differing domain-general cognitive load on test-takers. To investigate this possibility, functional magnetic resonance imaging (fMRI) was used to identify and quantify the neural correlates of performance on current, international standardized methods of spelling assessment. Out-of-scanner testing was used to further examine differences in assessment results. Results provide converging evidence that: (a) the spelling assessments differed in the cognitive load placed on test-takers; (b) performance decreased with increasing cognitive load of the assessment; and (c) brain regions associated with working memory were more highly activated during performance of assessments that were higher in cognitive load. These findings suggest that assessment design should optimize the cognitive load placed on test-takers, to ensure students' results are an accurate reflection of their true levels of competency. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Model of load balancing using reliable algorithm with multi-agent system
NASA Astrophysics Data System (ADS)
Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.
2017-04-01
Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.
Operational load estimation of a smart wind turbine rotor blade
NASA Astrophysics Data System (ADS)
White, Jonathan R.; Adams, Douglas E.; Rumsey, Mark A.
2009-03-01
Rising energy prices and carbon emission standards are driving a fundamental shift from fossil fuels to alternative sources of energy such as biofuel, solar, wind, clean coal and nuclear. In 2008, the U.S. installed 8,358 MW of new wind capacity increasing the total installed wind power by 50% to 25,170 MW. A key technology to improve the efficiency of wind turbines is smart rotor blades that can monitor the physical loads being applied by the wind and then adapt the airfoil for increased energy capture. For extreme wind and gust events, the airfoil could be changed to reduce the loads to prevent excessive fatigue or catastrophic failure. Knowledge of the actual loading to the turbine is also useful for maintenance planning and design improvements. In this work, an array of uniaxial and triaxial accelerometers was integrally manufactured into a 9m smart rotor blade. DC type accelerometers were utilized in order to estimate the loading and deflection from both quasi-steady-state and dynamic events. A method is presented that designs an estimator of the rotor blade static deflection and loading and then optimizes the placement of the sensor(s). Example results show that the method can identify the optimal location for the sensor for both simple example cases and realistic complex loading. The optimal location of a single sensor shifts towards the tip as the curvature of the blade deflection increases with increasingly complex wind loading. The framework developed is practical for the expansion of sensor optimization in more complex blade models and for higher numbers of sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, J.; Lacava, W.; Austin, J.
2015-02-01
This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential designparameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.
The three-dimensional simulation analysis of dynamic response on perforated strings
NASA Astrophysics Data System (ADS)
Li, M. F.; Liu, H. F.; Dou, Y. H.; Cao, L. H.; Liu, Y. X.
2018-06-01
It analyzes the dynamic response and stresses of perforating tubular string to detonating impact load in oil-gas well in ANSYS, obtains the response of vibration displacement, velocity and acceleration of perforating tubularstring caused by detonating impact load, finds the influence of the length and wall thickness of perforating tubular string to working stresses. The result shows that:when the detonating impact load exerts the perforating tubular string with compressive and tensile axial force alternatively;the vibration displacement, velocity and acceleration of perfora-ting tubular string change periodically at same cycle;the closer to the perforating gun, the larger the amplitude of vi-bration velocity and acceleration;the closer to the packer the smaller the vibration displacement, the larger the work-ing equivalent stress of perforating tubular string;the longer or the thicker the perforating tubular string, the smaller the working equivalent stress and the higher the strength safety. Therefore, it uses the damping tube between packer and perforating gun as well as thick walled tubing to increase the strength safety of perforating tubular string.
The impact of luminance on tonic and phasic pupillary responses to sustained cognitive load.
Peysakhovich, Vsevolod; Vachon, François; Dehais, Frédéric
2017-02-01
Pupillary reactions independent of light conditions have been linked to cognition for a long time. However, the light conditions can impact the cognitive pupillary reaction. Previous studies underlined the impact of luminance on pupillary reaction, but it is still unclear how luminance modulates the sustained and transient components of pupillary reaction - tonic pupil diameter and phasic pupil response. In the present study, we investigated the impact of the luminance on these two components under sustained cognitive load. Fourteen participants performed a novel working memory task combining mathematical computations with a classic n-back task. We studied both tonic pupil diameter and phasic pupil response under low (1-back) and high (2-back) working memory load and two luminance levels (gray and white). We found that the impact of working memory load on the tonic pupil diameter was modulated by the level of luminance, the increase in tonic pupil diameter with the load being larger under lower luminance. In contrast, the smaller phasic pupil response found under high load remained unaffected by luminance. These results showed that luminance impacts the cognitive pupillary reaction - tonic pupil diameter (phasic pupil response) being modulated under sustained (respectively, transient) cognitive load. These findings also support the relationship between the locus-coeruleus system, presumably functioning in two firing modes - tonic and phasic - and the pupil diameter. We suggest that the tonic pupil diameter tracks the tonic activity of the locus-coeruleus while phasic pupil response reflects its phasic activity. Besides, the designed novel cognitive paradigm allows the simultaneous manipulation of sustained and transient components of the cognitive load and is useful for dissociating the effects on the tonic pupil diameter and phasic pupil response. Copyright © 2016 Elsevier B.V. All rights reserved.
Capillary Limit in a Loop Heat Pipe with Dual Evaporators
NASA Technical Reports Server (NTRS)
Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.
Baharifar, Hadi; Amani, Amir
2017-01-01
When designing nanoparticles for drug delivery, many variables such as size, loading efficiency, and cytotoxicity should be considered. Usually, smaller particles are preferred in drug delivery because of longer blood circulation time and their ability to escape from immune system, whereas smaller nanoparticles often show increased toxicity. Determination of parameters which affect size of particles and factors such as loading efficiency and cytotoxicity could be very helpful in designing drug delivery systems. In this work, albumin (as a protein drug model)-loaded chitosan nanoparticles were prepared by polyelectrolyte complexation method. Simultaneously, effects of 4 independent variables including chitosan and albumin concentrations, pH, and reaction time were determined on 3 dependent variables (i.e., size, loading efficiency, and cytotoxicity) by artificial neural networks. Results showed that concentrations of initial materials are the most important factors which may affect the dependent variables. A drop in the concentrations decreases the size directly, but they simultaneously decrease loading efficiency and increase cytotoxicity. Therefore, an optimization of the independent variables is required to obtain the most useful preparation. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Killingo, Bactrin M; Taro, Trisa B; Mosime, Wame N
2017-11-01
HIV treatment outcomes are dependent on the use of viral load measurement. Despite global and national guidelines recommending the use of routine viral load testing, these policies alone have not translated into widespread implementation or sufficiently increased access for people living with HIV (PLHIV). Civil society and communities of PLHIV recognize the need to close this gap and to enable the scale up of routine viral load testing. The International Treatment Preparedness Coalition (ITPC) developed an approach to community-led demand creation for the use of routine viral load testing. Using this Community Demand Creation Model, implementers follow a step-wise process to capacitate and empower communities to address their most pressing needs. This includes utlizing a specific toolkit that includes conducting a baseline assessment, developing a treatment education toolkit, organizing mobilization workshops for knowledge building, provision of small grants to support advocacy work and conducting benchmark evaluations. The Community Demand Creation Model to increase demand for routine viral load testing services by PLHIV has been delivered in diverse contexts including in the sub-Saharan African, Asian, Latin American and the Caribbean regions. Between December 2015 and December 2016, ITPC trained more than 240 PLHIV activists, and disbursed US$90,000 to network partners in support of their national advocacy work. The latter efforts informed a regional, community-driven campaign calling for domestic investment in the expeditious implementation of national viral load testing guidelines. HIV treatment education and community mobilization are critical components of demand creation for access to optimal HIV treatment, especially for the use of routine viral load testing. ITPC's Community Demand Creation Model offers a novel approach to achieving this goal. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.
Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire
NASA Astrophysics Data System (ADS)
Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv
2018-05-01
The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.
Kim, Hye-Jin; Leitch, Megan; Naknakorn, Bhanuphong; Tilton, Robert D; Lowry, Gregory V
2017-01-15
The effect of nZVI mass loading and groundwater velocity on the tetrachloroethylene (PCE) dechlorination rate and the hydrogen evolution rate for poly(maleic acid-co-olefin) (MW=12K) coated nZVI was examined. In batch reactors, the PCE reaction rate constant (3.7×10 -4 Lhr -1 m -2 ) and hydrogen evolution rate constant (1.4 nanomolLhr -1 m -2 ) were independent of nZVI concentration above 10g/L, but the PCE dechlorination rate decreased and the hydrogen evolution rate increased for nZVI concentration below 10g/L. The nonlinearity between nZVI mass loading and PCE dechlorination and H 2 evolution was explained by differences in pH and E h at each nZVI mass loading; PCE reactivity increased when solution E h decreased, and the H 2 evolution rate increased with decreasing pH. Thus, nZVI mass loading of <5g/L yields lower reactivity with PCE and lower efficiency of Fe° utilization than for higher nZVI mass loading. The PCE dechlorination rate increased with increasing pore-water velocity, suggesting that mass transfer limits the reaction at low porewater velocity. Overall, this work suggests that design of nZVI-based reactive barriers for groundwater treatment should consider the non-linear effects of both mass loading and flow velocity on performance and expected reactive lifetime. Copyright © 2016 Elsevier B.V. All rights reserved.
Saying what’s on your mind: Working memory effects on sentence production
Slevc, L. Robert
2011-01-01
The role of working memory (WM) in sentence comprehension has received considerable interest, but little work has investigated how sentence production relies on memory mechanisms. These three experiments investigated speakers’ tendency to produce syntactic structures that allow for early production of material that is accessible in memory. In Experiment 1, speakers produced accessible information early less often when under a verbal WM load than when under no load. Experiment 2 found the same pattern for given-new ordering, i.e., when accessibility was manipulated by making information given. Experiment 3 addressed the possibility that these effects do not reflect WM mechanisms but rather increased task difficulty by relying on the distinction between verbal and spatial WM: Speakers’ tendency to produce sentences respecting given-new ordering was reduced more by a verbal than by a spatial WM load. These patterns show that accessibility effects do in fact reflect accessibility in verbal WM, and that representations in sentence production are vulnerable to interference from other information in memory. PMID:21767058
Melter Throughput Enhancements for High-Iron HLW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A. A.; Gan, Hoa; Joseph, Innocent
2012-12-26
This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less
Firminger, Colin R; Edwards, W Brent
2016-12-01
To examine the effects of shoe type and stride length reduction on lower-extremity running mechanics and cumulative loading. Within-subject with four conditions: (1) control shoe at preferred stride length; (2) control shoe at 90% preferred stride length; (3) minimalist shoe at preferred stride length; (4) minimalist shoe at 90% preferred stride length. Fourteen young healthy males ran overground at their preferred speed while motion capture, force platform, and plantar pressure data were collected. Peak moments, impulse, mechanical work, and cumulative impulse were calculated at the metatarsophalangeal, ankle, and knee joint, and compared between conditions using a 2×2 factor repeated measures ANOVA. In general, running in minimalist footwear increased measures of loading at the metatarsophalangeal joint and ankle joint (mean increases of 7.3% and 5.9%, respectively), but decreased measures of loading at the knee (mean decrease of 7.3%). Conversely, running with reduced stride length decreased single-stance measures of loading at the ankle and knee joint (ranging from -0.9% to -20.5%), though cumulative impulse was higher at the ankle and lower at the knee. Running in minimalist shoes increased loads at the metatarsophalangeal and ankle joint, which may explain some of the incidence of overuse injuries observed in minimalist shoe users. Decreased ankle loads at 90% preferred stride length were not necessarily sufficient to reduce cumulative loads when impulse and loading cycles were weighted equally. Knee loads decreased more when running at 90% preferred stride length (16.2% mean reduction) versus running in a minimalist shoe (7.3% mean reduction), but both load reduction mechanisms appeared to have an additive effect (22.2% mean reduction). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Ahern, Robert J; Crean, Abina M; Ryan, Katie B
2012-12-15
Poor water solubility of drugs can complicate their commercialisation because of reduced drug oral bioavailability. Formulation strategies such as increasing the drug surface area are frequently employed in an attempt to increase dissolution rate and hence, improve oral bioavailability. Maximising the drug surface area exposed to the dissolution medium can be achieved by loading drug onto a high surface area carrier like mesoporous silica (SBA-15). The aim of this work was to investigate the impact of altering supercritical carbon dioxide (SC-CO(2)) processing conditions, in an attempt to enhance drug loading onto SBA-15 and increase the drug's dissolution rate. Other formulation variables such as the mass ratio of drug to SBA-15 and the procedure for combining the drug and SBA-15 were also investigated. A model drug with poor water solubility, fenofibrate, was selected for this study. High drug loading efficiencies were obtained using SC-CO(2), which were influenced by the processing conditions employed. Fenofibrate release rate was enhanced greatly after loading onto mesoporous silica. The results highlighted the potential of this SC-CO(2) drug loading approach to improve the oral bioavailability of poorly water soluble drugs. Copyright © 2012 Elsevier B.V. All rights reserved.
MacNamara, Annmarie; Schmidt, Joseph; Zelinsky, Gregory J; Hajcak, Greg
2012-12-01
Working memory load reduces the late positive potential (LPP), consistent with the notion that functional activation of the DLPFC attenuates neural indices of sustained attention. Visual attention also modulates the LPP. In the present study, we sought to determine whether working memory load might exert its influence on ERPs by reducing fixations to arousing picture regions. We simultaneously recorded eye-tracking and EEG while participants performed a working memory task interspersed with the presentation of task-irrelevant fearful and neutral faces. As expected, fearful compared to neutral faces elicited larger N170 and LPP amplitudes; in addition, working memory load reduced the N170 and the LPP. Participants made more fixations to arousing regions of neutral faces and faces presented under high working memory load. Therefore, working memory load did not induce avoidance of arousing picture regions and visual attention cannot explain load effects on the N170 and LPP. Copyright © 2012 Elsevier B.V. All rights reserved.
Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart
2013-05-15
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Analysis of collaborative communication for linguistic cues of cognitive load.
Khawaja, M Asif; Chen, Fang; Marcus, Nadine
2012-08-01
Analyses of novel linguistic and grammatical features, extracted from transcribed speech of people working in a collaborative environment, were performed for cognitive load measurement Prior studies have attempted to assess users' cognitive load with several measures, but most of them are intrusive and disrupt normal task flow. An effective measurement of people's cognitive load can help improve their performance by deploying appropriate output and support strategies accordingly. The authors studied 33 members of bushfire management teams working collaboratively in computerized incident control rooms and involved in complex bushfire management tasks. The participants' communication was analyzed for some novel linguistic features as potential indices of cognitive load, which included sentence length, use of agreement and disagreement phrases, and use of personal pronouns, including both singular and plural pronoun types. Results showed users' different linguistic and grammatical patterns with various cognitive load levels. Specifically, with high load, people spoke more and used longer sentences, used more words that indicated disagreement with other team members, and exhibited increased use of plural personal pronouns and decreased use of singular pronouns. The article provides encouraging evidence for the use of linguistic and grammatical analysis for measuring users' cognitive load and proposes some novel features as cognitive load indices. The proposed approach may be applied to many data-intense and safety-critical task scenarios, such as emergency management departments, for example, bushfire or traffic incident management centers; air traffic control rooms; and call centers, where speech is used as part of everyday tasks.
Varying negative work assistance at the ankle with a soft exosuit during loaded walking.
Malcolm, Philippe; Lee, Sangjun; Crea, Simona; Siviy, Christopher; Saucedo, Fabricio; Galiana, Ignacio; Panizzolo, Fausto A; Holt, Kenneth G; Walsh, Conor J
2017-06-26
Only very recently, studies have shown that it is possible to reduce the metabolic rate of unloaded and loaded walking using robotic ankle exoskeletons. Some studies obtained this result by means of high positive work assistance while others combined negative and positive work assistance. There is no consensus about the isolated contribution of negative work assistance. Therefore, the aim of the present study is to examine the effect of varying negative work assistance at the ankle joint while maintaining a fixed level of positive work assistance with a multi-articular soft exosuit. We tested eight participants during walking at 1.5 ms -1 with a 23-kg backpack. Participants wore a version of the exosuit that assisted plantarflexion via Bowden cables tethered to an off-board actuation platform. In four active conditions we provided different rates of exosuit bilateral ankle negative work assistance ranging from 0.015 to 0.037 W kg -1 and a fixed rate of positive work assistance of 0.19 W kg -1 . All active conditions significantly reduced metabolic rate by 11 to 15% compared to a reference condition, where the participants wore the exosuit but no assistance was provided. We found no significant effect of negative work assistance. However, there was a trend (p = .08) toward greater reduction in metabolic rate with increasing negative work assistance, which could be explained by observed reductions in biological ankle and hip joint power and moment. The non-significant trend of increasing negative work assistance with increasing reductions in metabolic rate motivates the value in further studies on the relative effects of negative and positive work assistance. There may be benefit in varying negative work over a greater range or in isolation from positive work assistance.
NASA Astrophysics Data System (ADS)
Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.
2014-12-01
Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.
Kirkness, Jason P.; Grote, Ludger; Fricke, Kathrin; Schwartz, Alan R.; Smith, Philip; Schneider, Hartmut
2017-01-01
Patients with chronic obstructive pulmonary disease (COPD) endure excessive resistive and elastic loads leading to chronic respiratory failure. Oxygen supplementation corrects hypoxemia but is not expected to reduce mechanical loads. Nasal high-flow (NHF) therapy supports breathing by reducing dead space, but it is unclear how it affects mechanical loads of patients with COPD. The objective of this study was to compare the effects of low-flow oxygen and NHF therapy on ventilation and work of breathing (WOB) in patients with COPD and controls during sleep. Patients with COPD (n = 12) and controls (n = 6) were recruited and submitted to polysomnography to measure sleep parameters and ventilation in response to administration of oxygen and NHF. A subset of six patients also had an esophageal catheter inserted for the purpose of measuring WOB. Patients with COPD had similar minute ventilation (V̇e) but lower tidal volumes than matched controls. With oxygen, SaO2was increased and V̇e was reduced in both controls and patients with COPD, but there was an increase in transcutaneous CO2 levels. NHF produced a greater reduction in V̇e and was associated with a reduction in CO2 levels. Although NHF halved WOB, oxygen produced only a minor reduction in this parameter. We conclude that oxygen produced little change in WOB, which was associated with CO2 elevations. On the other hand, NHF produced a large reduction in V̇e and WOB with a concomitant decrease in CO2 levels. Our data indicate that NHF improves alveolar ventilation during sleep compared with oxygen and room air in patients with COPD and therefore can decrease their cost of breathing. NEW & NOTEWORTHY Nasal high-flow (NHF) therapy can support ventilation in patients with chronic obstructive pulmonary disease during sleep by decreasing the work of breathing and improving CO2 levels. On the other hand, oxygen supplementation corrects hypoxemia, but it produces only a minimal reduction in work of breathing and is associated with increased CO2 levels. Therefore, NHF can be a useful method to assist ventilation in patients with increased respiratory mechanical loads. PMID:27815367
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder
Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less
Kantor, Rose S.; Huddy, Robert J.; Iyer, Ramsunder; ...
2017-01-31
Remediation of industrial wastewater is important for preventing environmental contamination and allowing water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN - ), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN - loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN - . A second reactor was fed ammonium sulfate to mimic breakdown products of SCN - . Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and onemore » rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN - reactor, Thiobacillus strains capable of SCN - degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN - reactor expressed proteins involved in SCN - degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.« less
Force Generation in Single Conventional Actomyosin Complexes under High Dynamic Load
Takagi, Yasuharu; Homsher, Earl E.; Goldman, Yale E.; Shuman, Henry
2006-01-01
The mechanical load borne by a molecular motor affects its force, sliding distance, and its rate of energy transduction. The control of ATPase activity by the mechanical load on a muscle tunes its efficiency to the immediate task, increasing ATP hydrolysis as the power output increases at forces less than isometric (the Fenn effect) and suppressing ATP hydrolysis when the force is greater than isometric. In this work, we used a novel ‘isometric’ optical clamp to study the mechanics of myosin II molecules to detect the reaction steps that depend on the dynamic properties of the load. An actin filament suspended between two beads and held in separate optical traps is brought close to a surface that is sparsely coated with motor proteins on pedestals of silica beads. A feedback system increases the effective stiffness of the actin by clamping the force on one of the beads and moving the other bead electrooptically. Forces measured during actomyosin interactions are increased at higher effective stiffness. The results indicate that single myosin molecules transduce energy nearly as efficiently as whole muscle and that the mechanical control of the ATP hydrolysis rate is in part exerted by reversal of the force-generating actomyosin transition under high load without net utilization of ATP. PMID:16326899
The influence of tip shape on bending force during needle insertion
van de Berg, Nick J.; de Jong, Tonke L.; van Gerwen, Dennis J.; Dankelman, Jenny; van den Dobbelsteen, John J.
2017-01-01
Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth — the force-displacement slopes — were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation. PMID:28074939
NIRS and indocyanine-green-determined muscle blood flow during exercise in humans
NASA Astrophysics Data System (ADS)
Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.
1998-01-01
We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.
NIRS and indocyanine-green-determined muscle blood flow during exercise in humans
NASA Astrophysics Data System (ADS)
Boushel, Robert; Ide, Kojiro; Moller-Sorensen, Hasse; Fernandes, Alvito; Pott, Frank; Secher, Niels H.
1997-12-01
We present a method for determination of muscle blood flow (MBF) using near infrared spectroscopy (NIRS) with indocyanine green (ICG) as the tracer. MBF was quantified using the integrated arterial [ICG] and the accumulation of ICG in muscle. MBF was determined together with ICG-assessed cardiac output (CO) at rest and during incremental cycling. To further modify CO, the same work loads were performed after cardio-selective beta blockade by metoprolol. In one subject both MBF (9 to 110 ml (DOT) 100 g-1 (DOT) min-1) and CO increased linearly with work rate (8 to 19 l (DOT) min-1). Under beta blockade, both the increase in MBF and CO were lower: 5 to 70 ml (DOT) 100 g-1 (DOT) min-1 and 5 to 161 DOT min-1, respectively. During exercise with and without beta blockade, MBF increased with work load to represent a larger proportion of CO. Also, NIRS could detect an attenuated increase in MBF manifest by the restrained CO during leg exercise after cardio-selective beta blockade. Both observations indicate that NIRS detection of indocyanine green provides an estimate of muscle blood flow over the range from rest to intense exercise.
Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André
2016-03-01
Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.
Analytical and Experimental Characterization of Thick-Section Fiber-Metal Laminates
2013-06-01
individual metal layers as loading increases. The off-axis deformation properties of the prepreg layers were modeled by using equivalent constraint models...the degraded stiffness of the prepreg layer is found. At each loading step the stiffness properties of individual layers are calculated. These...predicts stress-strain curves on-axis, additional work is needed to study the local interactions between metal and prepreg layers as damage occurs in each
NASA Technical Reports Server (NTRS)
Gause, R. L.; Bynum, B. G. (Inventor)
1973-01-01
An ergometer is described that has a pedal driven direct current motor as a load and includes a frame for supporting the body of a person in either a sitting or a prone position. The pedals may be operated by either the feet or the hands. The electrical circuitry of the ergometer includes means for limiting the load applied to the pedals as a function of work being performed, heart rate, and increases in heart rate.
NASA Technical Reports Server (NTRS)
Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.
2007-01-01
High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.
NASA Astrophysics Data System (ADS)
Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.
2007-04-01
High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.
Finite element analysis of chip formation usingale method
NASA Astrophysics Data System (ADS)
Jayaprakash, V.
2017-05-01
In recent times, many studies made in FEM on plain isotropic metal plate formulation. The stress analysis plays the significant role in the stability of structural safety and system. The stress and distortion estimation is very helpful for designing and manufacturing product well. Usually the residual stress and plastic strain determine the fatigue life of structure, it also plays the significant role in designing and choosing material. When the load magnitude increases the crack starts to form, decreasing the work load and the residual stress reduces the damage of the metal. The manufacturing process is a key parameter in process and forming the part of any system. However, machining operation involves complex thing like hot development, material property and other estimates based on transition of the plastic strain and residual stress. The reduction of residual stress plays the complexity role in the finite element study. This paper deals with the manufacturing process with less residual stress and strain. The results shows that, by applying the ALE method in machining we can reduce the load on the work piece hence the life type of the work piece can be increased. We also investigate the cutting tool wear and there efficiency since it is a essential machine member in fabrication technology. ABAQUS platform used to solve the machining operation
Oscillation in O2 uptake in impulse exercise.
Yano, T; Afroundeh, R; Yamanaka, R; Arimitsu, T; Lian, C S; Shirakawa, K; Yunoki, T
2014-06-01
The purpose of the present study was to examine 1) whether O(2) uptake (VO(2)) oscillates during light exercise and 2) whether the oscillation is enhanced after impulse exercise. After resting for 1 min on a bicycle seat, subjects performed 5-min pre-exercise with 25 watts work load, 10-s impulse exercise with 200 watts work load and 15-min post exercise with 25 watts work load at 80 rpm. VO(2) during pre-exercise significantly increased during impulse exercise and suddenly decreased and re-increased until 23 s after impulse exercise. In the cross correlation between heart rate (HR) and VO(2) after impulse exercise, VO(2) strongly correlated to HR with a time delay of -4 s. Peak of power spectral density (PSD) in HR appeared at 0.0039 Hz and peak of PSD in VO(2) appeared at 0.019 Hz. The peak of the cross power spectrum between VO(2) and HR appeared at 0.0078 Hz. The results suggested that there is an oscillation in O(2) uptake during light exercise that is associated with the oscillation in O(2) consumption in active muscle. The oscillation is enhanced not only by change in O(2) consumption but also by O(2) content transported from active muscle to the lungs.
Reliability analysis of structures under periodic proof tests in service
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1976-01-01
A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.
Probability of stress-corrosion fracture under random loading.
NASA Technical Reports Server (NTRS)
Yang, J.-N.
1972-01-01
A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.
The discomfort index, mortality and the London summers of 1976 and 1978
NASA Astrophysics Data System (ADS)
Tout, D. G.
1980-12-01
The Discomfort Index (DI), and its associated heat load categories as worked out for conditions in Israel, was used in a study of the summer months of 1976 and 1978 in London. The cool summer of 1978 presented no heat load problems but the exceptionally warm summer of 1976, especially the period between 22 June and 9 July, produced several days of moderate heat load conditions. During this hot spell mortality from ischaemic heart disease, cerebrovascular accidents and respiratory disease all increased substantially. It is suggested that the heat load categories, although rarely attained, would be useful in predicting danger periods during heatwave conditions in the United Kingdom.
No negative priming without cognitive control.
de Fockert, Jan W; Mizon, Guy A; D'Ubaldo, Mariangela
2010-12-01
There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also affect the negative priming effect produced when a distractor from 1 trial appears as a target on the next trial. We measured priming on trials that involved either high or low cognitive control load, and found that under high control load, negative priming was eliminated, and could even be reversed to positive priming, suggesting that the negative priming effect depends on the availability of cognitive control resources.
Leavitt, Victoria M; Lengenfelder, Jean; Moore, Nancy B; Chiaravalloti, Nancy D; DeLuca, John
2011-06-01
Cognitive symptoms of multiple sclerosis (MS) include processing-speed deficits and working memory impairment. The precise manner in which these deficits interact in individuals with MS remains to be explicated. We hypothesized that providing more time on a complex working memory task would result in performance benefits for individuals with MS relative to healthy controls. Fifty-three individuals with clinically definite MS and 36 matched healthy controls performed a computerized task that systematically manipulated cognitive load. The interval between stimuli presentations was manipulated to provide increasing processing time. The results confirmed that individuals with MS who have processing-speed deficits significantly improve in performance accuracy when given additional time to process the information in working memory. Implications of these findings for developing appropriate cognitive rehabilitation interventions are discussed.
Time-dependent fiber bundles with local load sharing.
Newman, W I; Phoenix, S L
2001-02-01
Fiber bundle models, where fibers have random lifetimes depending on their load histories, are useful tools in explaining time-dependent failure in heterogeneous materials. Such models shed light on diverse phenomena such as fatigue in structural materials and earthquakes in geophysical settings. Various asymptotic and approximate theories have been developed for bundles with various geometries and fiber load-sharing mechanisms, but numerical verification has been hampered by severe computational demands in larger bundles. To gain insight at large size scales, interest has returned to idealized fiber bundle models in 1D. Such simplified models typically assume either equal load sharing (ELS) among survivors, or local load sharing (LLS) where a failed fiber redistributes its load onto its two nearest flanking survivors. Such models can often be solved exactly or asymptotically in increasing bundle size, N, yet still capture the essence of failure in real materials. The present work focuses on 1D bundles under LLS. As in previous works, a fiber has failure rate following a power law in its load level with breakdown exponent rho. Surviving fibers under fixed loads have remaining lifetimes that are independent and exponentially distributed. We develop both new asymptotic theories and new computational algorithms that greatly increase the bundle sizes that can be treated in large replications (e.g., one million fibers in thousands of realizations). In particular we develop an algorithm that adapts several concepts and methods that are well-known among computer scientists, but relatively unknown among physicists, to dramatically increase the computational speed with no attendant loss of accuracy. We consider various regimes of rho that yield drastically different behavior as N increases. For 1/2< or =rho< or =1, ELS and LLS have remarkably similar behavior (they have identical lifetime distributions at rho=1) with approximate Gaussian bundle lifetime statistics and a finite limiting mean. For rho>1 this Gaussian behavior also applies to ELS, whereas LLS behavior diverges sharply showing brittle, weakest volume behavior in terms of characteristic elements derived from critical cluster formation. For 0
Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process
Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.
2010-01-01
Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477
Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.
Huo, Linsheng; Wang, Bo; Chen, Dongdong; Song, Gangbing
2017-10-27
Rock bolts ensure structural stability for tunnels and many other underground structures. The pre-load on a rock bolt plays an important role in the structural reinforcement and it is vital to monitor the pre-load status of rock bolts. In this paper, a rock bolt pre-load monitoring method based on the piezoceramic enabled time reversal method is proposed. A lead zirconate titanate (PZT) patch transducer, which works as an actuator to generate stress waves, is bonded onto the anchor plate of the rock bolt. A smart washer, which is fabricated by sandwiching a PZT patch between two metal rings, is installed between the hex nut and the anchor plate along the rock bolt. The smart washer functions as a sensor to detect the stress wave. With the increase of the pre-load values on the rock bolt, the effective contact surface area between the smart washer and the anchor plate, benefiting the stress wave propagation crossing the contact surface. With the help of time reversal technique, experimental results reveal that the magnitude of focused signal clearly increases with the increase of the pre-load on a rock bolt before the saturation which happens beyond a relatively high value of the pre-load. The proposed method provides an innovative and real time means to monitor the pre-load level of a rock bolt. By employing this method, the pre-load degradation process on a rock bolt can be clearly monitored. Please note that, currently, the proposed method applies to only new rock bolts, on which it is possible to install the PZT smart washer.
Akter, Shamima; Eguchi, Masafumi; Kurotani, Kayo; Kochi, Takeshi; Pham, Ngoc Minh; Ito, Rie; Kuwahara, Keisuke; Tsuruoka, Hiroko; Mizoue, Tetsuya; Kabe, Isamu; Nanri, Akiko
2015-02-01
Acid-base status has been suggested to influence blood pressure, but there is a paucity of epidemiologic evidence linking dietary acid load to hypertension. We examined cross-sectionally the association between dietary acid load and hypertension in a Japanese working population. Data were derived from health surveys from 2028 employees, ages 18 to 70 y, in two workplaces in Japan. A validated brief diet history questionnaire was used to assess diet. Two measures were used to characterize dietary acid load: potential renal acid load and estimated net endogenous acid production, which were derived from nutrient intakes. Multilevel logistic regression was used to examine the association between dietary acid load and hypertension with adjustment of potential confounding variables. High dietary acid load was suggestively associated with increased prevalence of hypertension. The multivariable adjusted odds ratios (95% confidence interval) of hypertension for the lowest through highest tertiles of net endogenous acid production were 1.00 (reference), 1.07 (0.80-1.42), and 1.33 (0.998-1.78), respectively (P for trend = 0.053). This positive association was statistically significant among normal-weight (body mass index <23 kg/m(2); P for trend = 0.03) and non-shift workers (P for trend = 0.04). Similar positive associations were observed between potential renal acid load and hypertension. The present findings suggest that high dietary acid load may be associated with increased prevalence of hypertension among those who were normal weight and non-shift workers. Copyright © 2015 Elsevier Inc. All rights reserved.
Investigating the Effects of Veridicality on Age Differences in Verbal Working Memory
ERIC Educational Resources Information Center
Shake, Matthew C.; Perschke, Meghan K.
2013-01-01
In the typical loaded verbal working memory (WM) span task (e.g., Daneman & Carpenter, 1980), participants judge the veridicality of a series of sentences while simultaneously storing the sentence final word for later recall. Performance declines as the number of sentences is increased; aging exacerbates this decline. The present study examined…
Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred
2014-07-11
Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.
The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load
Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas
2018-01-01
Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246
[The actual possibilities of robotic microscopy in analysis automation and laboratory telemedicine].
Medovyĭ, V S; Piatnitskiĭ, A M; Sokolinskiĭ, B Z; Balugian, R Sh
2012-10-01
The article discusses the possibilities of automation microscopy complexes manufactured by Cellavision and MEKOS to perform the medical analyses of blood films and other biomaterials. The joint work of the complex and physician in the regimen of automatic load stages, screening, sampling and sorting on types with simple morphology, visual sorting of sub-sample with complex morphology provides significant increase of method sensitivity, load decrease and enhancement of physician work conditions. The information technologies, the virtual slides and laboratory telemedicine included permit to develop the representative samples of rare types and pathologies to promote automation methods and medical research targets.
Trends in phosphorus loading to the western basin of Lake ...
Dave Dolan spent much of his career computing and compiling phosphorus loads to the Great Lakes. None of his work in this area has been more valuable than his continued load estimates to Lake Erie, which has allowed us to unambiguously interpret the cyanobacteria blooms and hypoxia development in the lake. To help understand the re-occurrence of cyanobacteria blooms in the Western Basin of Lake Erie, we have examined the phosphorus loading to the Western Basin over the past 15 years. Furthermore, we have examined the relative contributions from various tributaries and the Detroit River. On an annual basis the total phosphorus load has not exhibited a trend, other than being well correlated with flow from major tributaries. However, the dissolved reactive phosphorus (DRP) load has trended upward, returning to levels observed in the mid-1970s. This increase has largely been attributed to the increase in flow-weighted DRP concentration in the Maumee River. Over the period, about half of the phosphorus load comes from the Maumee River with the other half coming from the Detroit River; other tributaries contribute much small amounts to the load. Seasonal analysis shows the highest percentage of the load occurs in the spring during high flow events. We are very grateful to our friend Dave for making this type of analysis possible not applicable
NASA Astrophysics Data System (ADS)
Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.
2014-03-01
Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.
Using Multiple Ways to Investigate Cognitive Load Theory in the Context of Physics Instruction
NASA Astrophysics Data System (ADS)
Zu, Tianlong
Cognitive load theory (CLT) (Sweller 1988, 1998, 2010) provides us a guiding framework for designing instructional materials. CLT differentiates three subtypes of cognitive load: intrinsic, extraneous, and germane cognitive load. The three cognitive loads are theorized based on the number of simultaneously processed elements in working memory. Intrinsic cognitive load depends upon the number of interacting elements in the instructional material that are related to the learning objective. Extraneous cognitive load is the mental resources allocated to processing unnecessary information which does not contribute to learning as caused by non- optimal instructional procedure. It is determined by the number of interacting elements which are not related to learning goal. Both intrinsic and extraneous load vary according to prior knowledge of learners. Germane cognitive load is indirectly related to interacting elements. It represents the cognitive resources deployed for processing intrinsic load, chunking information and constructing and automating schema. Germane cognitive load is related to level of motivation of the learner. Given this triarchic model of cognitive load and their different roles in learning activities, different learning outcomes can be expected depending upon the characteristics of the educational materials, learner characteristics, and instructional setting. In three experiments, we investigated cognitive load theory following different approaches. Given the triarchic nature of cognitive load construct, it is critical to find non- intrusive ways to measure cognitive load. In study one, we replicated and extended a previous landmark study to investigate the use of eye movements related metrics to measure the three kinds of cognitive load independently. We also collected working memory capacity of students using a cognitive operation-span task. Two of the three types of cognitive load (intrinsic and extraneous) were directly manipulated, and the third type of cognitive load (germane) was indirectly ascertained. We found that different eye-movement based parameters were most sensitive to different types of cognitive load. These results indicate that it is possible to monitor the three kinds of cognitive load separately using eye movement parameters. We also compared the up-to-date cognitive load theory model with an alternative model using a multi-level model analysis and we found that Sweller's (2010) up-to-date model is supported by our data. In educational settings, active learning based methodologies such as peer instruction have been shown to be effective in facilitating students' conceptual understanding. In study two, we discussed the effect of peer interaction on conceptual test performance of students from a cognitive load perspective. Based on the literature, a self-reported cognitive load survey was developed to measure each type of cognitive load. We found that a certain level of prior knowledge is necessary for peer interaction to work and that peer interaction is effective mainly through significantly decreasing the intrinsic load experienced by students, even though it may increase the extraneous load. In study three, we compared the effect of guided instruction in the form of worked examples using narrated-animated video solutions and semi-guided instruction using visual cues on students' performance, shift of visual attention during transfer, and extraneous cognitive load during learning. We found that multimedia video solutions can be more effective in promoting transfer performance of learners than visual cues. We also found evidence that guided instruction in the form of multimedia video solutions can decrease extraneous cognitive load of students during learning, more so than semi-guided instruction using visual cues.
Perry, E; Gulson, N; Liu Cross, T-W; Swanson, K S
2017-01-01
Working canines are deployed by the Federal Emergency Management Agency (FEMA), as part of a National Disaster Response Plan. Stress associated with helicopter flight and the resulting physical effects on the dog are unknown. Our objective was to test the hypotheses that (1) helicopter travel affects the physiology and faecal microbiota of working canines, but that (2) physiological consequences of helicopter travel will not negatively affect their work performance. A total of nine FEMA canines were loaded onto helicopters and flown for 30 min in July 2015. Rectal temperature, behavioural stress indicators and saliva swabs (for cortisol) were collected at baseline, loading, mid-flight and post-flight. After flight, canines completed a standardised search exercise to monitor work performance. Faecal samples were collected for microbial DNA extraction and Illumina sequencing. All canines were on a standardised diet (CANIDAE ® Grain Free PURE Land ® ) for 3 weeks prior to the study. Visible indicators of stress were observed at loading and at mid-flight and corresponded with an increase ( P < 0·05) in salivary cortisol from 5·4 µg/l (baseline) to 6·4 µg/l (loading). Additionally, rectal temperature increased ( P < 0·05) from 38·61°C (baseline) to 39·33°C (mid-flight) and 39·72°C (post-flight). Helicopter travel did not affect search performance ( P > 0·05). We found that α- and β-diversity measures of faecal microbiota were not affected ( P > 0·05). Our data suggest that although helicopter travel may cause physiological changes that have been associated with stress in working dogs, it does not make an impact on their search performance or the stability of faecal microbiota.
Effect of Thermal Storage on the Performance of a Wood Pellet-fired Residential Boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Butcher
Interest in the direct use of biomass for thermal applications as a renewable technology is increasing as is also focus on air pollutant emissions from these sources and methods to minimize the impact. This work has focused on wood pellet-fired residential boilers, which are the cleanest fuel in this category. In the residential application the load varies strongly over the course of a year and a high fraction of the load is typically under 15% of the maximum boiler capacity. Thermal storage can be used even with boilers which have modulation capacity typically to 30% of the boiler maximum. Onemore » common pellet boiler was tested at full load and also at the minimum load used in the U.S. certification testing (15%). In these tests the load was steady over the test period. Testing was also done with an emulated load profile for a home in Albany, N.Y. on a typical January, March, and April day. In this case the load imposed on the boiler varied hourly under computer control, based on the modeled load for the example case used. The boiler used has a nominal output of 25 kW and a common mixed hardwood/softwood commercial pellet was used. Moisture content was 3.77%. A dilution tunnel approach was used for the measurement of particulate emissions, in accordance with U.S. certification testing requirements. The test results showed that the use of storage strongly reduces cycling rates under part load conditions. The transients which occur as these boilers cycle contribute to increased particulate emissions and reduced efficiency. The time period of a full cycle at a given load condition can be increased by increasing the storage tank volume and/or increasing the control differential range. It was shown that increasing the period strongly increased the measured efficiency and reduced the particulate emission (relative to the no storage case). The impact was most significant at the low load levels. Storage tank heat loss is shown to be a significant factor in thermal efficiency, particularly at low load. Different methods to measure this heat loss were explored. For one of the tanks evaluated the efficiency loss at the 15% load point was found to be as high as 7.9%. Where storage is used good insulation on the tank, insulation on the piping, and attention to fittings are recommended.« less
Visual short-term memory load reduces retinotopic cortex response to contrast.
Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli
2012-11-01
Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.
Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig
2012-09-01
Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.
Research on EHN additive on the diesel engine combustion characteristics in plateau environment
NASA Astrophysics Data System (ADS)
Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan
2017-03-01
Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.
Loading rate effect on nanohardness of human enamel
NASA Astrophysics Data System (ADS)
Biswas, Nilormi; Dey, Arjun; Mukhopadhyay, Anoop K.
2012-07-01
In the present work, nanoindentation technique has been utilised to study the physics of deformation at the scale of micro/nano-structure of tooth enamel which is basically the hardest natural biomaterial in the human body comprising of a hybrid combination of hydroxypatite ceramic nano-crystal and organic-protein matrix. We have observed about 8 % increase in the nanohardness of human enamel with the increase in loading rate from 1 × 103 μN s-1 to 3 × 105 μN s-1. The results have been explained in terms of the maximum shear stress generated underneath the nanoindenter.
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Dynamic water exercise in individuals with late poliomyelitis.
Willén, C; Sunnerhagen, K S; Grimby, G
2001-01-01
To evaluate the specific effects of general dynamic water exercise in individuals with late effects of poliomyelitis. Before-after tests. A university hospital department. Twenty-eight individuals with late effects of polio, 15 assigned to the training group (TG) and 13 to the control group (CG). The TG completed a 40-minute general fitness training session in warm water twice weekly. Assessment instruments included the bicycle ergometer test, isokinetic muscle strength, a 30-meter walk indoors, Berg balance scale, a pain drawing, a visual analog scale, the Physical Activity Scale for the Elderly, and the Nottingham Health Profile (NHP). Peak load, peak work load, peak oxygen uptake, peak heart rate (HR), muscle function in knee extensors and flexors, and pain dimension of the NHP. The average training period was 5 months; compliance was 75% (range, 55-98). No negative effects were seen. The exercise did not influence the peak work load, peak oxygen uptake, or muscle function in knee extensors compared with the controls. However, a decreased HR at the same individual work load was seen, as well as a significantly lower distress in the dimension pain of the NHP. Qualitative aspects such as increased well-being, pain relief, and increased physical fitness were reported. A program of nonswimming dynamic exercises in heated water has a positive impact on individuals with late effects of polio, with a decreased HR at exercise, less pain, and a subjective positive experience. The program was well tolerated (no adverse effects were reported) and can be recommended for this group of individuals.
Cheng, Tao; Yu, Baozhi; Cao, Linli; Tan, Huiyun; Li, Xinghua; Zheng, Xinliang; Li, Weilong; Ren, Zhaoyu; Bai, Jinbo
2017-09-01
The ternary composite electrodes, nitrogen-doped graphene foam/carbon nanotube/manganese dioxide (NGF/CNT/MnO 2 ), have been successfully fabricated via chemical vapor deposition (CVD) and facile hydrothermal method. The morphologies of the MnO 2 nanoflakes presented the loading-dependent characteristics and the nanoflake thickness could also be tuned by MnO 2 mass loading in the fabrication process. The correlation between their morphology and electrochemical performance was systematically investigated by controlling MnO 2 mass loading in the ternary composite electrodes. The electrochemical properties of the flexible ternary electrode (MnO 2 mass loading of 70%) exhibited a high areal capacitance of 3.03F/cm 2 and a high specific capacitance of 284F/g at the scan rate of 2mV/s. Moreover, it was interesting to find that the capacitance of the NGF/CNT/MnO 2 composite electrodes showed a 51.6% increase after 15,000 cycles. The gradual increase in specific capacitance was due to the formation of defective regions in the MnO 2 nanostructures during the electrochemical cycles of the electrodes, which further resulted in increased porosity, surface area, and consequently increased electrochemical capacity. This work demonstrates a rarely reported conclusion about loading-dependent characteristics for the NGF/CNT/MnO 2 ternary composite electrodes. It will bring new perspectives on designing novel ternary or multi-structure for various energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Vermeij, Anouk; Kessels, Roy P C; Heskamp, Linda; Simons, Esther M F; Dautzenberg, Paul L J; Claassen, Jurgen A H R
2017-02-01
Cognitive training has been shown to result in improved behavioral performance in normal aging and mild cognitive impairment (MCI), yet little is known about the neural correlates of cognitive plasticity, or about individual differences in responsiveness to cognitive training. In this study, 21 healthy older adults and 14 patients with MCI received five weeks of adaptive computerized working-memory (WM) training. Before and after training, functional Near-Infrared Spectroscopy (fNIRS) was used to assess the hemodynamic response in left and right prefrontal cortex during performance of a verbal n-back task with varying levels of WM load. After training, healthy older adults demonstrated decreased prefrontal activation at high WM load, which may indicate increased processing efficiency. Although MCI patients showed improved behavioral performance at low WM load after training, no evidence was found for training-related changes in prefrontal activation. Whole-group analyses showed that a relatively strong hemodynamic response at low WM load was related to worse behavioral performance, while a relatively strong hemodynamic response at high WM load was related to higher training gain. Therefore, a 'youth-like' prefrontal activation pattern at older age may be associated with better behavioral outcome and cognitive plasticity.
Schilaty, Nathan D.; Bates, Nathaniel A.; Nagelli, Christopher; Krych, Aaron J.; Hewett, Timothy E.
2018-01-01
Background: Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. Purpose/Hypothesis: The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Study Design: Controlled laboratory study. Methods: Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Results: Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males (F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance (F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of “maximum ACL strain” demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Conclusion: Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. Clinical Relevance: KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes. PMID:29568787
Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher; Krych, Aaron J; Hewett, Timothy E
2018-03-01
Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Controlled laboratory study. Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males ( F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance ( F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of "maximum ACL strain" demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes.
Study on power grid characteristics in summer based on Linear regression analysis
NASA Astrophysics Data System (ADS)
Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi
2018-05-01
The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.
Jordan, Wolfgang; Adler, Lothar; Bleich, Stefan; von Einsiedel, Regina; Falkai, Peter; Grosskopf, Volker; Hauth, Iris; Steiner, Johann; Cohrs, Stefan
2011-11-01
Increasing psychiatric disorder treatment need, increased work load, changes in the working hour regulations, the nation-wide shortage of physicians, efficiency principle and economisation can necessitate a reorganisation of medical services. The essential steps and instruments of process optimisation in medical services for a psychiatric clinic are elucidated and discussed in the context of demographic changes, generation change, and a new concept of values. © Georg Thieme Verlag KG Stuttgart · New York.
Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials
NASA Astrophysics Data System (ADS)
Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan
2018-05-01
In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.
Visser, Bart; De Looze, Michiel; De Graaff, Matthijs; Van Dieën, Jaap
2004-02-05
The objective of the present study was to gain insight into the effects of precision demands and mental pressure on the load of the upper extremity. Two computer mouse tasks were used: an aiming and a tracking task. Upper extremity loading was operationalized as the myo-electric activity of the wrist flexor and extensor and of the trapezius descendens muscles and the applied grip- and click-forces on the computer mouse. Performance measures, reflecting the accuracy in both tasks and the clicking rate in the aiming task, indicated that the levels of the independent variables resulted in distinguishable levels of accuracy and work pace. Precision demands had a small effect on upper extremity loading with a significant increase in the EMG-amplitudes (21%) of the wrist flexors during the aiming tasks. Precision had large effects on performance. Mental pressure had substantial effects on EMG-amplitudes with an increase of 22% in the trapezius when tracking and increases of 41% in the trapezius and 45% and 140% in the wrist extensors and flexors, respectively, when aiming. During aiming, grip- and click-forces increased by 51% and 40% respectively. Mental pressure had small effects on accuracy but large effects on tempo during aiming. Precision demands and mental pressure in aiming and tracking tasks with a computer mouse were found to coincide with increased muscle activity in some upper extremity muscles and increased force exertion on the computer mouse. Mental pressure caused significant effects on these parameters more often than precision demands. Precision and mental pressure were found to have effects on performance, with precision effects being significant for all performance measures studied and mental pressure effects for some of them. The results of this study suggest that precision demands and mental pressure increase upper extremity load, with mental pressure effects being larger than precision effects. The possible role of precision demands as an indirect mental stressor in working conditions is discussed.
Lidar-Enhanced Wind Turbine Control: Past, Present, and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholbrock, Andrew; Fleming, Paul; Schlipf, David
The main challenges in harvesting energy from the wind arise from the unknown incoming turbulent wind field. Balancing the competing interests of reduction in structural loads and increasing energy production is the goal of a wind turbine controller to reduce the cost of producing wind energy. Conventional wind turbines use feedback methods to optimize these goals, reacting to wind disturbances after they have already impacted the wind turbine. Lidar sensors offer a means to provide additional inputs to a wind turbine controller, enabling new techniques to improve control methods, allowing a controller to actuate a wind turbine in anticipation ofmore » an incoming wind disturbance. This paper will look at the development of lidar-enhanced controls and how they have been used for various turbine load reductions with pitch actuation, as well as increased energy production with improved yaw control. Ongoing work will also be discussed to show that combining pitch and torque control using feedforward nonlinear model predictive control can lead to both reduced loads and increased energy production. Future work is also proposed on extending individual wind turbine controls to the wind plant level and determining how lidars can be used for control methods to further lower the cost of wind energy by minimizing wake impacts in a wind farm.« less
[Effects of +Gx load on energy metabolism of brain tissue in rats].
Wu, Bin; Xie, Bao-sheng; You, Guang-xing; Liu, Xing-hua; Lu, Sheng-qiang; Huang, Wei-fen
2002-12-01
Objective. To observe the changes of energy metabolism of brain tissue in rats under +Gx loads, and to explore its possible role in changes of brain function and work efficiency induced by +Gx stress. Method. Forty-five male Wistar rats were randomly divided into control, +5 Gx, +10 Gx, +15 Gx and +20 Gx group. Each group was exposed to the corresponding G value for 3 min. After that, cortical adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid (LA) content, lactate dehydrogenase (LDH) activity were measured. Result. Compared with the control group, the cortical (LA) content increased significantly after +5 Gx, +10 Gx, +15 Gx and +20 Gx exposure (P<0.01). Cortical ADP content and ratio of ADP/AMP and AMP/ATP increased significantly after +10 Gx, +15 Gx and +20 Gx exposure (P<0.01), whereas ATP content, energy charge and LDH activity decreased significantly (P<0.05 or 0.01). Cortical AMP content increased significantly after +15 Gx and +20 Gx exposure (P<0.05 and 0.01). Conclusion. It is suggested that +Gx load can result in obvious depression of brain energy metabolism, which could be an important reason for the change of brain function and work efficiency induced by +Gx stress.
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
Gozzi, Marta; Cherubini, Paolo; Papagno, Costanza; Bricolo, Emanuela
2011-05-01
Previous studies found mixed results concerning the role of working memory (WM) in the gambling task (GT). Here, we aimed at reconciling inconsistencies by showing that the standard version of the task can be solved using intuitive strategies operating automatically, while more complex versions require analytic strategies drawing on executive functions. In Study 1, where good performance on the GT could be achieved using intuitive strategies, participants performed well both with and without a concurrent WM load. In Study 2, where analytical strategies were required to solve a more complex version of the GT, participants without WM load performed well, while participants with WM load performed poorly. In Study 3, where the complexity of the GT was further increased, participants in both conditions performed poorly. In addition to the standard performance measure, we used participants' subjective expected utility, showing that it differs from the standard measure in some important aspects.
The Interplay between Uncertainty Monitoring and Working Memory: Can Metacognition Become Automatic?
Coutinho, Mariana V. C.; Redford, Joshua S.; Church, Barbara A.; Zakrzewski, Alexandria C.; Couchman, Justin J.; Smith, J. David
2016-01-01
The uncertainty response has grounded the study of metacognition in nonhuman animals. Recent research has explored the processes supporting uncertainty monitoring in monkeys. It revealed that uncertainty responding in contrast to perceptual responding depends on significant working memory resources. The aim of the present study was to expand this research by examining whether uncertainty monitoring is also working memory demanding in humans. To explore this issue, human participants were tested with or without a cognitive load on a psychophysical discrimination task including either an uncertainty response (allowing the decline of difficult trials) or a middle-perceptual response (labeling the same intermediate trial levels). The results demonstrated that cognitive load reduced uncertainty responding, but increased middle responding. However, this dissociation between uncertainty and middle responding was only observed when participants either lacked training or had very little training with the uncertainty response. If more training was provided, the effect of load was small. These results suggest that uncertainty responding is resource demanding, but with sufficient training, human participants can respond to uncertainty either by using minimal working memory resources or effectively sharing resources. These results are discussed in relation to the literature on animal and human metacognition. PMID:25971878
Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.
Wang, Zhenhua; Liu, Jun; Wu, Sizhu; Wang, Wenchuan; Zhang, Liqun
2010-03-28
Nano-strengthening by employing nanoparticles is necessary for high-efficiency strengthening of elastomers, which has already been validated by numerous researches and industrial applications, but the underlying mechanism is still an open challenge. In this work, we mainly focus our attention on studying the variation of the tensile strength of nanofilled elastomers by gradually increasing the filler content, within a low loading range. Interestingly, the percolation phenomenon is observed in the relationship between the tensile strength and the filler loading, which shares some similarities with the percolation phenomenon occurring in rubber toughened plastics. That is, as the loading of nanofillers (carbon black, zinc oxide) increases, the tensile strength of rubber nanocomposites (SBR, EPDM) increases slowly at first, then increases abruptly and finally levels off. Meanwhile, the bigger the particle size, the higher the filler content at the percolation point, and the lower the corresponding tensile strength of rubber nanocomposites. The concept of a critical particle-particle distance (CPD) is proposed to explain the observed percolation phenomenon. It is suggested that rubber strengthening through nanoparticles is attributed to the formation of stretched straight polymer chains between neighbor particles, induced by the slippage of adsorbed polymer chains on the filler surface during tension. Meanwhile, the factors to govern this CPD and the critical minimum particle size (CMPS) figured out in this work are both discussed and analyzed in detail. Within the framework of this percolation phenomenon, this paper also clearly answers two important and intriguing issues: (1) why is it necessary and essential to strengthen elastomers through nanofillers; (2) why does it need enough loading of nanofillers to effectively strengthen elastomers. Moreover, on the basis of the percolation phenomenon, we give out some guidance for reinforcement design of rubbery materials: the interfacial interactions between rubber and fillers cannot be complete chemical bonding, and partial physical absorption of macromolecular chains on the filler surface is necessary, otherwise the formation of stretched straight chains would be seriously hindered. There should exist such an optimum crosslinking density for a certain filler reinforced rubber system, and as well an optimum filler loading for rubber strengthening. Additionally, the different percolation behaviors of Young's modulus, the tensile strength and the electrical conductivity are compared and analyzed in our work. Lastly, molecular simulation indicates that it is not possible to strengthen glassy or hard polymer matrices by incorporating spherical nanoparticles. In general, by providing substantial experimental data and detailed analyses, this work is believed to promote the fundamental understanding of rubber reinforcement, as well provide better guidance for the design of high-performance and multi-functional rubber nanocomposites.
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Activation energy of the low-load NaCl transition from nanoindentation loading curves.
Kaupp, Gerd
2014-01-01
Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.
Yeung, Michael K; Sze, Sophia L; Woo, Jean; Kwok, Timothy; Shum, David H K; Yu, Ruby; Chan, Agnes S
2016-01-01
Some functional magnetic resonance imaging studies have reported altered activations in the frontal cortex during working memory (WM) performance in individuals with mild cognitive impairment (MCI), but the findings have been mixed. The objective of the present study was to utilize near-infrared spectroscopy (NIRS), an alternative imaging technique, to examine neural processing during WM performance in individuals with MCI. Twenty-six older adults with MCI (7 males; mean age 69.15 years) were compared with 26 age-, gender-, handedness-, and education-matched older adults with normal cognition (NC; 7 males; mean age 68.87 years). All of the participants undertook an n-back task with a low (i.e., 0-back) and a high (i.e., 2-back) WM load condition while their prefrontal dynamics were recorded by a 16-channel NIRS system. Although behavioral results showed that the two groups had comparable task performance, neuroimaging results showed that the MCI group, unlike the NC group, did not exhibit significantly increased frontal activations bilaterally when WM load increased. Compared to the NC group, the MCI group had similar frontal activations at low load (p > 0.05 on all channels) but reduced activations at high load (p < 0.05 on 4 channels), thus failing to demonstrate WM-related frontal activations (p < 0.05 on 9 channels). In addition, we found a positive correlation between the left WM-related frontal activations and WM ability primarily in the NC group (rs = 0.42, p = 0.035), suggesting a relationship between frontal hypoactivation and WM difficulties. The present findings suggest the presence of frontal dysfunction that is dependent on WM load in individuals with MCI. © 2016 S. Karger AG, Basel.
Rotenberg, Lúcia; Portela, Luciana Fernandes; Banks, Bahby; Griep, Rosane Harter; Fischer, Frida Marina; Landsbergis, Paul
2008-09-01
The association between working hours and work ability was examined in a cross-sectional study of male (N=156) and female (N=1092) nurses in three public hospitals. Working hours were considered in terms of their professional and domestic hours per week and their combined impact; total work load. Logistic regression analysis showed a significant association between total work load and inadequate work ability index (WAI) for females only. Females reported a higher proportion of inadequate WAI, fewer professional work hours but longer domestic work hours. There were no significant differences in total work load by gender. The combination of professional and domestic work hours in females seemed to best explain their lower work ability. The findings suggest that investigations into female well-being need to consider their total work load. Our male sample may have lacked sufficient power to detect a relationship between working hours and work ability.
Working Ni-Mn-Ga Single Crystals in a Magnetic Field Against a Spring Load
NASA Astrophysics Data System (ADS)
Lindquist, P. G.; Müllner, P.
2015-03-01
This research characterizes ferromagnetic shape memory elements for use as mechanical actuators. A single crystal of Ni-Mn-Ga was pre-strained in compression from 0 to 6 % and then the shape was recovered with a magnetic field perpendicular to the loading direction while working against a pair of springs. The magnetic field was raised from 0 to 0.64 MA/m and then reduced to zero field. Eight pairs of springs with combined spring constants ranging from 14.3 to 269.4 N/mm were used. When the magnetic field was on, the sample expanded against the springs due to magnetic field-induced strain. When the magnetic field was turned off, the springs compressed the sample back to the initial size before the next cycle. During each cycle, force and displacement were measured and the specific work was computed. Specific work increased with the applied magnetic field and the pre-strain, with a maximum of 14 kJ/m3 at 4.5 % pre-strain and 0.64 MA/m. This value is five times less than the values suggested in the literature which were inferred from stress-strain curves measured under various magnetic fields. The spring prescribes the load-displacement path of the magnetic shape memory element and controls the work output of the actuator.
NASA Astrophysics Data System (ADS)
Vandenberghe, Nicolas; Villermaux, Emmanuel
2009-03-01
When a thin rod is submitted to an axial force greater than its critical buckling load it takes the shape of an elastica. As the load further increases, a rod made of a brittle material breaks suddenly. More than two fragments may be formed during this fragmentation. In this work we discuss the sequence of events that lead to the final broken state with two or more fragments. We show that the criterion for breaking is not trivial. In particular, we investigate the effect of the duration of the loading and we show that at a given load the waiting time before breaking is broadly distributed. We discuss the consequences of the time delayed breaking on the distributions of fragment sizes and fragment numbers.
NASA Astrophysics Data System (ADS)
Woo, Sung-Choong; Goo, Nam Seo
The objective of this work is to investigate the influence of electromechanical cyclic loading on the performance of a bending piezoelectric composite actuator. We have analyzed the fatigue damage mechanisms in terms of the behavior of the AE event rate. It was found that whether the actuators are subjected to purely electric loading or electromechanical loading, the initial fatigue damage of the bending piezoelectric composite actuator was caused by the transgranular fracture in the PZT ceramic layer; the final failure was caused only in the case of PCAWB under electromechanical loading by a local discharge, which critically affected the performance reduction of the actuators. As the number of cycles increased, a large reduction in displacement performance coincided with a high AE event rate, which was identified via microscopic observations.
Gottlieb-Vedi, M; Essén-Gustavsson, B; Lindholm, A
1996-12-01
Five Standardbred trotters performed treadmill exercise with incrementally increasing trotting velocities for 2 min intervals in three different tests until fatigue. Each test was performed with draught loads of either 10, 20 or 30 kilopond (kp). Each trotting interval was followed by 2 min periods at a walk without draught load. Recordings were made of heart rate (HR), respiratory rate (RR), plasma lactate (PLA) and stride frequency (SF) at the end of each trotting interval. The HR increased to average values of 191 +/- 10,203 +/- 10 and 214 +/- 7 bpm and PLA increased to 3.8 +/- 0.7, 7.3 +/- 3.8 and 10.8 +/- 6.4 mmol/l at 9 m/s in the three tests, respectively. The HR response to exercise was significantly higher with increasing draught loads, and PLA was significantly higher with 30 kp compared to 10 kp draught resistance. The lowest respiratory rate was seen in the test with 30 kp loading. Peak oxygen uptake (VO2peak) was measured in a separate test on a sloped treadmill with increasing velocities without draught load and averaged 70.4 +/- 9.11/min. Muscle biopsies were taken from the gluteus muscle. Individual variations were seen in VO2peak, muscle fibre composition and HR and PLA responses to exercise. In conclusion, at a certain velocity a small increase in draught resistance from 10 to 30 kp significantly increases both the HR and PLA responses. At comparable work intensities the horses differed in circulatory and metabolic responses to exercise.
Keles, Hasan O; Radoman, Milena; Pachas, Gladys N; Evins, A Eden; Gilman, Jodi M
2017-01-01
Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis) on prefrontal cortex (PFC) function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS) to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13) performed a working memory task ( n -back) during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20-50 mg). Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO) concentration after THC administration in several channels on the PFC during both the high working memory load (2-back) and the low working memory load (0-back) condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.
Surface modification of protein enhances encapsulation in chitosan nanoparticles
NASA Astrophysics Data System (ADS)
Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael
2018-04-01
Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual’s perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual’s overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work–family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators’ alertness and job-performance. PMID:25232346
Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties.
Yeo, Woo Hyun; Ramasamy, Thiruganesh; Kim, Dong-Wuk; Cho, Hyuk Jun; Kim, Yong-Il; Cho, Kwan Hyung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2013-12-01
The main purpose of this work was to optimize the rheological properties of docetaxel (DCT)-loaded thermosensitive liquid suppositories for rectal administration. DCT-loaded liquid suppositories were prepared by a cold method and characterized in terms of physicochemical and viscoelastic properties. Major formulation parameters including poloxamer (P407) and Tween 80 were optimized to adjust the thermogelling and mucoadhesive properties for rectal administration. Notably, the gel strength and mucoadhesive force significantly increased with the increase in these variables. Furthermore, DCT incorporation did not alter the viscoelastic behavior, and the mean particle size of nanomicelles in it was approximately 16 nm with a distinct spherical shape. The formulation existed as liquid at room temperature and transformed into gel at physiological temperature through the reverse gelation phenomenon. Thus, DCT-loaded thermosensitive liquid suppositories [DCT/P407/P188/Tween 80 (0.25/11/15/10 %)] with optimal gel properties were easy to prepare and administer rectally, and might enable the gel to stay in the rectum without getting out from rectum.
NASA Astrophysics Data System (ADS)
Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang
2017-06-01
In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.
Working memory load and the retro-cue effect: A diffusion model account.
Shepherdson, Peter; Oberauer, Klaus; Souza, Alessandra S
2018-02-01
Retro-cues (i.e., cues presented between the offset of a memory array and the onset of a probe) have consistently been found to enhance performance in working memory tasks, sometimes ameliorating the deleterious effects of increased memory load. However, the mechanism by which retro-cues exert their influence remains a matter of debate. To inform this debate, we applied a hierarchical diffusion model to data from 4 change detection experiments using single item, location-specific probes (i.e., a local recognition task) with either visual or verbal memory stimuli. Results showed that retro-cues enhanced the quality of information entering the decision process-especially for visual stimuli-and decreased the time spent on nondecisional processes. Further, cues interacted with memory load primarily on nondecision time, decreasing or abolishing load effects. To explain these findings, we propose an account whereby retro-cues act primarily to reduce the time taken to access the relevant representation in memory upon probe presentation, and in addition protect cued representations from visual interference. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bria, Carmen R M; Skelly, Patrick W; Morse, James R; Schaak, Raymond E; Williams, S Kim Ratanathanawongs
2017-05-26
The design and performance of a semi-preparative asymmetrical flow field-flow fractionation (SP-AF4) channel are investigated with the objective of better understanding and exploiting the relationship between channel dimensions, sample loading, and resolution. Most size-based separations of nanometer and submicrometer particles are currently limited to analytical scale quantities (<100μg). However, there is a strong need to fractionate and collect larger quantities so that fundamental properties of the more narrowly dispersed fractions can be studied using additional characterization methods and for subsequent applications. In this work, dimensions of the spacer that defines the form of SP-AF4 channels are varied and their performances are assessed with respect to sample focusing position and loading. Separations are performed in aqueous and organic carrier fluids. A critical evaluation of channel dimensions showed that increasing the channel breadth is a practical and effective route to maintaining separation resolution while increasing sample loads to milligram quantities. Good size resolution (∼1.0) is achieved for separations of 10mg of 50 and 100nm silica nanoparticles suspended in water and up to 0.6mg of ∼10 to 35nm inorganic hybrid nanoparticles suspended in tetrahydrofuran. This work represents important advances in the understanding of SP-AF4 separations and extends sample loading capacities in both aqueous and organic solvents. Copyright © 2017 Elsevier B.V. All rights reserved.
Shock Mitigation in Open-Celled TiNi Foams
NASA Astrophysics Data System (ADS)
Jardine, A. Peter
2018-05-01
High-energy shock events generated by impacts are effectively mitigated by Nitinol materials. Initial evidence of this capability was suggested by the dramatically superior cavitation-erosion performance of Nitinol coatings made by plasma spray processes, over steels and brasses. A fast acting hysteretic stress-strain response mechanism was proposed to explain this result, transforming the shock energy into heat. Extending this work to bulk TiNi, dynamic load characterization using Split Rod Hopkinson Bar techniques on solid porous TiNi confirmed that the mechanical response to high strain rates below 4200 s-1 were indeed hysteretic. This paper reports on dynamical load characterization on TiNi foams made by Self-Propagating High-Temperature Synthesis (SHS) using Split Rod Hopkinson Bar and gas-gun impact characterization to compare these foams to alternative materials. This work verified that SHS-derived TiNi foams were indeed hysteretic at strain rates from 180 to 2300 s-1. In addition, Shock Spectrum Analysis demonstrated that TiNi foams were very effective in mitigating the shock spectrum range below 5 kHz, and that increasing porosity increased the amount of shock attenuation in that spectral range. Finally under impact loading, 55% porous TiNi foams were a factor of 7 superior to steel and a factor of 4 better than Al 6061 or Cu in mitigating peak g-loads and this attenuation improved with bilayer structures of 57 and 73% porous TiNi foam article.
Anvil for Flaring PCB Guide Pins
NASA Technical Reports Server (NTRS)
Winn, E.; Turner, R.
1985-01-01
Spring-loaded anvil results in fewer fractured pins. New anvil for flaring guide pins in printed-circuit boards absorbs approximately 80 percent of press force. As result fewer pins damaged, and work output of flaring press greatly increased.
Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo
2014-09-14
Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.
Does working memory load facilitate target detection?
Fruchtman-Steinbok, Tom; Kessler, Yoav
2016-02-01
Previous studies demonstrated that increasing working memory (WM) load delays performance of a concurrent task, by distracting attention and thus interfering with encoding and maintenance processes. The present study used a version of the change detection task with a target detection requirement during the retention interval. In contrast to the above prediction, target detection was faster following a larger set-size, specifically when presented shortly after the memory array (up to 400 ms). The effect of set-size on target detection was also evident when no memory retention was required. The set-size effect was also found using different modalities. Moreover, it was only observed when the memory array was presented simultaneously, but not sequentially. These results were explained by increased phasic alertness exerted by the larger visual display. The present study offers new evidence of ongoing attentional processes in the commonly-used change detection paradigm. Copyright © 2015 Elsevier B.V. All rights reserved.
Curvilinear relationship between phonological working memory load and social-emotional modulation
Mano, Quintino R.; Brown, Gregory G.; Bolden, Khalima; Aupperle, Robin; Sullivan, Sarah; Paulus, Martin P.; Stein, Murray B.
2015-01-01
Accumulating evidence suggests that working memory load is an important factor for the interplay between cognitive and facial-affective processing. However, it is unclear how distraction caused by perception of faces interacts with load-related performance. We developed a modified version of the delayed match-to-sample task wherein task-irrelevant facial distracters were presented early in the rehearsal of pseudoword memoranda that varied incrementally in load size (1-syllable, 2-syllables, or 3-syllables). Facial distracters displayed happy, sad, or neutral expressions in Experiment 1 (N=60) and happy, fearful, or neutral expressions in Experiment 2 (N=29). Facial distracters significantly disrupted task performance in the intermediate load condition (2-syllable) but not in the low or high load conditions (1- and 3-syllables, respectively), an interaction replicated and generalised in Experiment 2. All facial distracters disrupted working memory in the intermediate load condition irrespective of valence, suggesting a primary and general effect of distraction caused by faces. However, sad and fearful faces tended to be less disruptive than happy faces, suggesting a secondary and specific valence effect. Working memory appears to be most vulnerable to social-emotional information at intermediate loads. At low loads, spare capacity is capable of accommodating the combinatorial load (1-syllable plus facial distracter), whereas high loads maximised capacity and deprived facial stimuli from occupying working memory slots to cause disruption. PMID:22928750
ERIC Educational Resources Information Center
Selvi, B. Tamil; Thangarajathi, S.
2011-01-01
Teaching once was considered as a noble job but, within the last decade it has become an increasingly stressful profession for school teachers. Increased work load, insufficient salary package, fast changing curriculum, increase in the responsibilities of the students, modern fast mechanical life, conflicts with the colleagues and with higher…
Enabling aqueous processing for crack-free thick electrodes
Du, Zhijia; Rollag, K. M.; Li, J.; ...
2017-04-14
Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less
Reliability of Baropodometry on the Evaluation of Plantar Load Distribution: A Transversal Study.
Baumfeld, Daniel; Baumfeld, Tiago; da Rocha, Romário Lopes; Macedo, Benjamim; Raduan, Fernando; Zambelli, Roberto; Alves Silva, Thiago Alexandre; Nery, Caio
2017-01-01
Introduction . Baropodometry is used to measure the load distribution on feet during rest and walking. The aim of this study was to evaluate changes in plantar foot pressures distribution due to period of working and due to stretching exercises of the posterior muscular chain. Methods . In this transversal study, all participants were submitted to baropodometric evaluation at two different times: before and after the working period and before and after stretching the muscles of the posterior chain. Results . We analyzed a total of 54 feet of 27 participants. After the working period, there was an average increase in the forefoot pressure of 0.16 Kgf/cm 2 and an average decrease in the hindfoot pressure of 0.17 Kgf/cm 2 . After stretching the posterior muscular chain, the average increase in the forefoot pressure was 0.56 Kgf/cm 2 and the hindfoot average pressure decrease was 0.56 Kgf/cm 2 . These changes were not statistically significant. Discussion . It was reported that the strength of the Achilles tendon generates greater forefoot load transferred from the hindfoot. In our study, no significant variation in the distribution of plantar pressure was observed. It can be inferred that baropodometry was a reliable instrument to determine the plantar pressure, regardless of the tension of the posterior chain muscles.
Erythrocyte volume in acidified venous blood from exercising limbs.
NASA Technical Reports Server (NTRS)
Van Beaumont, W.; Rochelle, R. H.
1973-01-01
Five male volunteers performed arm exercises in the sitting position by cranking the pedals of a bicycle ergometer at 50 revolutions per min. The initial mechanical work load of 0 kgm/min was increased every minute by 75 kgm/min until exhaustion occurred. The data obtained show a significant acidification of the venous blood from the working arms and a substantial increase in venous pCO2 during this type of muscular activity. However, the erythrocyte volume remained unaltered during the exercise.
Structural Load Alleviation Applied to Next Generation Aircraft and Wind Turbines
NASA Technical Reports Server (NTRS)
Frost, Susan
2011-01-01
Reducing the environmental impact of aviation is a goal of the Subsonic Fixed Wing Project under the Fundamental Aeronautics Program of NASAs Aeronautics Research Mission Directorate. Environmental impact of aviation is being addressed by novel aircraft configurations and materials that reduce aircraft weight and increase aerodynamic efficiency. NASA is developing tools to address the challenges of increased airframe flexibility created by wings constructed with reduced structural material and novel light-weight materials. This talk will present a framework and demonstration of a flight control system using optimal control allocation with structural load feedback and constraints to achieve safe aircraft operation. As wind turbines age, they become susceptible to many forms of blade degradation. Results will be presented on work in progress that uses adaptive contingency control for load mitigation in a wind turbine simulation with blade damage progression modeled.
Lehto, Laura; Laaksonen, Laura; Vilkman, Erkki; Alku, Paavo
2008-03-01
The aim of this study was to investigate how different acoustic parameters, extracted both from speech pressure waveforms and glottal flows, can be used in measuring vocal loading in modern working environments and how these parameters reflect the possible changes in the vocal function during a working day. In addition, correlations between objective acoustic parameters and subjective voice symptoms were addressed. The subjects were 24 female and 8 male customer-service advisors, who mainly use telephone during their working hours. Speech samples were recorded from continuous speech four times during a working day and voice symptom questionnaires were completed simultaneously. Among the various objective parameters, only F0 resulted in a statistically significant increase for both genders. No correlations between the changes in objective and subjective parameters appeared. However, the results encourage researchers within the field of occupational voice use to apply versatile measurement techniques in studying occupational voice loading.
Alteration by hyperoxia of ventilatory dynamics during sinusoidal work.
Casaburi, R; Stremel, R W; Whipp, B J; Beaver, W L; Wasserman, K
1980-06-01
The effects of hyperoxia on ventilatory and gas exchange dynamics were studied utilizing sinusoidal work rate forcings. Five subjects exercised on 14 occasions on a cycle ergometer for 30 min with a sinusoidally varying work load. Tests were performed at seven frequencies of work load during air or 100% O2 inspiration. From the breath-by-breath responses to these tests, dynamic characteristics were analyzed by extracting the mean level, amplitude of oscillation, and phase lag for each six variables with digital computer techniques. Calculation of the time constant (tau) of the ventilatory responses demonstrated that ventilatory kinetics were slower during hyperoxia than during normoxia (P less than 0.025; avg 1.56 and 1.13 min, respectively). Further, for identical work rate fluctuations, end-tidal CO2 tension fluctuations were increased by hyperpoxia. Ventilation during hyperoxia is slower to respond to variations in the level of metabolically produced CO2, presumably because hyperoxia attenuates carotid body output; the arterial CO2 tension is consequently less tightly regulated.
Rozhkova, E A; Ordzhonikidze, Z G; Druzhinin, A E; Seĭfulla, N R; Paniushkin, V V; Kuznetsov, Iu M
2007-01-01
The effects of a submaximum single physical load with a mixed aerobic-anaerobic character (combined rowing test) on the intensity of lipid peroxidation (LPO) processes, antioxidant state of the organism, and rheological properties of blood have been studied in a group of athletes. The administration of natural antioxidants significantly decreased the LPO stress induced by the physical load, reduced the suppression of the antioxidant system of the organism, and normalized the LPO-disturbed hemorheological parameters. Antioxidants such as carnosine, cytamine, and apilac can be used as non-doping means for the accelerated recovery and increase in the physical work capacity in athletes.
Verbal working memory-related neural network communication in schizophrenia.
Kustermann, Thomas; Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte
2018-04-19
Impaired working memory (WM) in schizophrenia is associated with reduced hemodynamic and electromagnetic activity and altered network connectivity within and between memory-associated neural networks. The present study sought to determine whether schizophrenia involves disruption of a frontal-parietal network normally supporting WM and/or involvement of another brain network. Nineteen schizophrenia patients (SZ) and 19 healthy comparison subjects (HC) participated in a cued visual-verbal Sternberg task while dense-array EEG was recorded. A pair of item arrays each consisting of 2-4 consonants was presented bilaterally for 200 ms with a prior cue signaling the hemifield of the task-relevant WM set. A central probe letter 2,000 ms later prompted a choice reaction time decision about match/mismatch with the target WM set. Group and WM load effects on time domain and time-frequency domain 11-15 Hz alpha power were assessed for the cue-to-probe time window, and posterior 11-15 Hz alpha power and frontal 4-8 Hz theta power were assessed during the retention period. Directional connectivity was estimated via Granger causality, evaluating group differences in communication. SZ showed slower responding, lower accuracy, smaller overall time-domain alpha power increase, and less load-dependent alpha power increase. Midline frontal theta power increases did not vary by group or load. Network communication in SZ was characterized by temporal-to-posterior information flow, in contrast to bidirectional temporal-posterior communication in HC. Results indicate aberrant WM network activity supporting WM in SZ that might facilitate normal load-dependent and only marginally less accurate task performance, despite generally slower responding. © 2018 Society for Psychophysiological Research.
Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Reed; Ickes, Andrew; Wallner, Thomas
2015-01-01
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13Lmore » multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.« less
Characteristics of Pt-K/MgAl2O4 lean NOx trap catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos
2012-04-30
We report the various characteristics of Pt-K/MgAl{sub 2}O{sub 4} lean NOx trap (LNT) catalysts including the effect of K loading on nitrate formation/decomposition, NOx storage activity and durability. Upon the adsorption of NO{sub 2} on K/MgAl{sub 2}O{sub 4} samples, potassium nitrates formed on Mg-related sites in MgAl{sub 2}O{sub 4} support are observed, in addition to the typical two potassium nitrates (ionic and bidentate) formed also on Al{sub 2}O{sub 3} supported sample. Based on NO{sub 2} TPD and FTIR results, the Mg-bound KNO{sub 3} thermally decompose at higher temperature than Al-bound KNO{sub 3}, implying its superior thermal stability. At a potassiummore » loading of 5wt%, the temperature of maximum NOx uptake (T{sub max}) is 300 C. Increasing the potassium loading from 5wt% to 10 wt%, the T{sub max} gradually shifted from 300 C to 450 C, indicating the dependence of T{sub max} on the potassium loading. However, increase in potassium loading above 10 wt% only gives rise to the reduction in the overall NOx storage capacity. This work also underlines the obstacles these materials have prior to their practical application (e.g., durability and sulfur poisoning/ removal). This work provides fundamental understanding of Pt-K/MgAl{sub 2}O{sub 4}-based lean NOx trap catalysts, which could be good candidates for high temperature LNT applications.« less
Meiron, Oded; Lavidor, Michal
2013-05-01
Recent studies revealed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may improve verbal working memory (WM) performance in humans. In the present study, we evaluated executive attention, which is the core of WM capacity, considered to be significantly involved in tasks that require active maintenance of memory representations in interference-rich conditions, and is highly dependent on DLPFC function. We investigated verbal WM accuracy using a WM task that is highly sensitive to executive attention function. We were interested in how verbal WM accuracy may be affected by WM load, unilateral DLPFC stimulation, and gender, as previous studies showed gender-dependent brain activation during verbal WM tasks. We utilized a modified verbal n-Back task hypothesized to increase demands on executive attention. We examined "online" WM performance while participants received transcranial direct current stimulation (tDCS), and implicit learning performance in a post-stimulation WM task. Significant lateralized "online" stimulation effects were found only in the highest WM load condition revealing that males benefit from left DLPFC stimulation, while females benefit from right DLPFC stimulation. High WM load performance in the left DLPFC stimulation was significantly related to post-stimulation recall performance. Our findings support the idea that lateralized stimulation effects in high verbal WM load may be gender-dependent. Further, our post-stimulation results support the idea that increased left hemisphere activity may be important for encoding verbal information into episodic memory as well as for facilitating retrieval of context-specific targets from semantic memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Effects of working memory load on processing of sounds and meanings of words in aphasia
Martin, Nadine; Kohen, Francine; Kalinyak-Fliszar, Michelene; Soveri, Anna; Laine, Matti
2011-01-01
Background Language performance in aphasia can vary depending on several variables such as stimulus characteristics and task demands. This study focuses on the degree of verbal working memory (WM) load inherent in the language task and how this variable affects language performance by individuals with aphasia. Aims The first aim was to identify the effects of increased verbal WM load on the performance of judgments of semantic similarity (synonymy) and phonological similarity (rhyming). The second aim was to determine if any of the following abilities could modulate the verbal WM load effect: semantic or phonological access, semantic or phonological short-term memory (STM) and any of the following executive processing abilities: inhibition, verbal WM updating, and set shifting. Method and Procedures Thirty-one individuals with aphasia and 11 controls participated in this study. They were administered a synonymy judgment task and a rhyming judgment task under high and low verbal WM load conditions that were compared to each other. In a second set of analyses, multiple regression was used to identify which factors (as noted above) modulated the verbal WM load effect. Outcome and Results For participants with aphasia, increased verbal WM load significantly reduced accuracy of performance on synonymy and rhyming judgments. Better performance in the low verbal WM load conditions was evident even after correcting for chance. The synonymy task included concrete and abstract word triplets. When these were examined separately, the verbal WM load effect was significant for the abstract words, but not the concrete words. The same pattern was observed in the performance of the control participants. Additionally, the second set of analyses revealed that semantic STM and one executive function, inhibition ability, emerged as the strongest predictors of the verbal WM load effect in these judgment tasks for individuals with aphasia. Conclusions The results of this study have important implications for diagnosis and treatment of aphasia. As the roles of verbal STM capacity, executive functions and verbal WM load in language processing are better understood, measurements of these variables can be incorporated into our diagnostic protocols. Moreover, if cognitive abilities such as STM and executive functions support language processing and their impairment adversely affects language function, treating them directly in the context of language tasks should translate into improved language function. PMID:22544993
Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D
2010-09-01
Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.
Real-Time Assessment of Mechanical Tissue Trauma in Surgery.
Chandler, James H; Mushtaq, Faisal; Moxley-Wyles, Benjamin; West, Nicholas P; Taylor, Gregory W; Culmer, Peter R
2017-10-01
This work presents a method to assess and prevent tissue trauma in real-time during surgery. Tissue trauma occurs routinely during laparoscopic surgery with potentially severe consequences. As such, it is crucial that a surgeon is able to regulate the pressure exerted by surgical instruments. We propose a novel method to assess the onset of tissue trauma by considering the mechanical response of tissue as it is loaded in real-time. We conducted a parametric study using a lab-based grasping model and differing load conditions. Mechanical stress-time data were analyzed to characterize the tissue response to grasps. Qualitative and quantitative histological analyses were performed to inspect damage characteristics of the tissue under different load conditions. These were correlated against the mechanical measures to identify the nature of trauma onset with respect to our predictive metric. Results showed increasing tissue trauma with load and a strong correlation with the mechanical response of the tissue. Load rate and load history also showed a clear effect on tissue response. The proposed method for trauma assessment was effective in identifying damage. The metric can be normalized with respect to loading rate and history, making it feasible in the unconstrained environment of intraoperative surgery. This work demonstrates that tissue trauma can be predicted using mechanical measures in real-time. Applying this technique to laparoscopic tools has the potential to reduce unnecessary tissue trauma and its associated complications by indicating through user feedback or actively regulating the mechanical impact of surgical instruments.
Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Cezar, Gustavo V.
This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliablemore » and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.« less
Heinz, Andrew J; Johnson, Jeffrey S
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.
Heinz, Andrew J.; Johnson, Jeffrey S.
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference. PMID:28555099
An alternative way to increase the power gain of resonant rings
NASA Astrophysics Data System (ADS)
Zhuang, Dehao; Liu, Yunqi; Wang, Fang; Lin, Lin; Feng, Liwen; Quan, Shengwen; Liu, Kexin
2018-03-01
Resonant rings which can amplify RF power through the coupling of waves are used for high power breakdown tests, unidirectional filters, or pulse-shaping techniques. Usually, the RF output terminal of a resonant ring is connected to a matched load. For the resonant ring at Peking University, the matched load has been replaced by a waveguide shorting plate to obtain higher conditioning power for the 1.3 GHz capacitive type power couplers. The power gain is increased significantly with this short termination with the same input RF power. Working mechanism analysis, experiments, and results of this modified resonant ring will be presented.
Ajami, Shabnam; Mina, Ahmad; Nabavizadeh, Seyed Amin
2016-01-01
Objectives: To evaluate the effect of moments and the combination of forces and moments on the mechanical properties of a bracket type miniscrew, resembling engagement of a rectangular wire by three-dimensional (3D) finite element study. Materials and Methods: By solid work software (Dassaunlt systems solid works, concord, Mass), a 3D miniscrew model of 6, 8, 10 mm lengths was designed and inserted in the osseous block, consisted of the cortical, and cancellous bones. The stress distributions, maximum stresses, and deflections of the miniscrew were evaluated for all parts using ANSYS (Work Bench, 2014). Results: As the magnitudes of the load increased from 100 to 200, 400 and 800 grf-mm, the peak of stresses in the 6 mm long miniscrew were increased from 7.7 to 61.5 Mpa. The maximum values of Von Mises in the cancellous bone were tremendously lower in comparison to the cortical bone by one hundredth. As the length of the miniscrew in contact with the bone was increased, the amounts and patterns of stress distribution in the cortical bone and the miniscrew did not change significantly. Conclusions: As the moment magnitude increased, the pick stresses increased linearly. The existence of cancellous bone was not significantly responsible for the stress distribution. The pattern of stress distribution did not change by the length of the miniscrew. PMID:27127753
Feasibility study of RFID technology for construction load tracking.
DOT National Transportation Integrated Search
2010-12-01
ADOT&PF is seeking more efficient business practices and processes to increase its speed in delivering supplies to work sites, optimize the workforce, and minimize : costs. The current tracking process uses a computer-generated ticket carried by the ...
Parameters influencing the course of passive drug loading into lipid nanoemulsions.
Göke, Katrin; Bunjes, Heike
2018-05-01
Passive drug loading can be used to effectively identify suitable colloidal lipid carrier systems for poorly water-soluble drugs. This method comprises incubation of preformed carrier systems with drug powder and subsequent determination of the resulting drug load of the carrier particles. Until now, the passive loading mechanism is unknown, which complicates reliable routine use. In this work, the influence of drug characteristics on the course of passive loading was investigated systematically varying drug surface area and drug solubility. Fenofibrate and flufenamic acid were used as model drugs; the carrier system was a trimyristin nanodispersion. Loading progress was analyzed by UV spectroscopy or by a novel method based on differential scanning calorimetry. While increasing drug solubility by micelle incorporation did not speed up passive loading, a large drug surface area and high water solubility were key parameters for fast loading. Since both factors are crucial in drug dissolution as described by the Noyes-Whitney equation, these findings point to a dissolution-diffusion-based passive loading mechanism. Accordingly, passive loading also occurred when drug and carrier particles were separated by a dialysis membrane. Knowledge of the loading mechanism allows optimizing the conditions for future passive loading studies and assessing the limitations of the method. Copyright © 2017 Elsevier B.V. All rights reserved.
Perceptual load corresponds with factors known to influence visual search
Roper, Zachary J. J.; Cosman, Joshua D.; Vecera, Shaun P.
2014-01-01
One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a non-circular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spill-over to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. These results suggest that perceptual load might be defined in part by well-characterized, continuous factors that influence visual search. PMID:23398258
Wear Behavior and Mechanism of a Cr-Mo-V Cast Hot-Working Die Steel
NASA Astrophysics Data System (ADS)
Wei, M. X.; Wang, S. Q.; Zhao, Y. T.; Chen, K. M.; Cui, X. H.
2011-06-01
The wear behavior and mechanisms of a Cr-Mo-V cast hot-working die steel with three microstructures (tempered martensite, troostite, and sorbite) were studied systematically through the dry-sliding wear tests within a normal load range of 50 to 300 N and an ambient temperature range of 298 K to 673 K (25 °C to 400 °C) by a pin-on-disk high-temperature wear machine. Five different mechanisms were observed in the experiments, namely adhesive, abrasive, mild oxidative, oxidative, and extrusive wear; one or more of those mechanisms would be dominant within particular ranges of load and temperature. The transition of wear mechanisms depended on the formation of tribo-oxides, which was related closely to load and temperature, and their delamination, which was mainly influenced by the matrix. By increasing the load and ambient temperature, the protective effect of tribo-oxides first strengthened, then decreased, and in some cases disappeared. Under a load ranging 50 to 300 N at 298 K (25 °C) and a load of 50 N at 473 K (200 °C), adhesive wear was the dominant wear mechanism, and abrasive wear appeared simultaneously. The wear was of mild oxidative type under a load ranging 100 to 300 N at 473 K (200 °C) and a load ranging 50 to 150 N at 673 K (400 °C) for tempered martensite and tempered troostite as well as under a load of 100 N at 473 K (200 °C) and a load ranging 50 to 100 N at 673 K (400 °C) for tempered sorbite. At the load of 200 N or greater, or the temperatures above 673 K (400 °C), oxidative wear (beyond mild oxidative wear) prevailed. When the highest load of 300 N at 673 K (400 °C) was applied, extrusive wear started to dominate for the tempered sorbite.
NASA Astrophysics Data System (ADS)
Kwan, Matthew P.
This work demonstrates that inserting nanomolecular layers (NMLs) can profoundly change and/or lead to novel electronic and mechanical properties of metal-ceramic interfaces. The first set of results demonstrate that organophosphonate NMLs up to 1.8 nm thick can alter metal work functions by +/- 0.6 eV. This work function change is a strong function of the NML terminal groups (methyl, mercaptan, carboxylic acid, or phosphonic acid), morphology (up right, lying down, or mixed orientation), and the nature of the bonding (covalent, polar, or Van der Waals) between NML and the adjacent layers. Additionally, while NML-ceramic bond type and strength can influence and counteract the effect of NML morphology, the metal-NML bond appears to be independent of the morphology of the NML underlayer. The second set of results demonstrate that inserting an organosilane NML at a metal-ceramic interface can lead to multifold fracture toughening under both static (stress corrosion) and cyclic loads (fatigue) tested in four-point bend. Nanolayer-induced interface strengthening during static loading activates metal plasticity above the metal yield strength, leading to two-fold fracture toughening. Metal plasticity-induced toughening increases as temperature is increased up to 85 °C due to decreasing yield stress. In the fatigue fracture tests I report for the first time a loading-frequency-dependent tripling in fracture toughening in the 75-300 Hz range upon inserting a mercapto-silane NML at the weakest interface of a ceramic-polymer-metal-ceramic stack. This unusual behavior arises from the NML strengthened interface enabling load transfer to- and plasticity in the polymer layer, while the fatigue toughening magnitude and frequency range are determined by polymer rheology.
Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.
2010-09-23
In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
46 CFR 109.525 - Cranes: Working loads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Cranes: Working loads. 109.525 Section 109.525 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Cranes § 109.525 Cranes: Working loads. The master or person in charge shall ensure that tables...
[Information value of "additional tasks" method to evaluate pilot's work load].
Gorbunov, V V
2005-01-01
"Additional task" method was used to evaluate pilot's work load in prolonged flight. Calculated through durations of latent periods of motor responses, quantitative criterion of work load is more informative for objective evaluation of pilot's involvement in his piloting functions rather than of other registered parameters.
Fiber Bundle Model Under Heterogeneous Loading
NASA Astrophysics Data System (ADS)
Roy, Subhadeep; Goswami, Sanchari
2018-03-01
The present work deals with the behavior of fiber bundle model under heterogeneous loading condition. The model is explored both in the mean-field limit as well as with local stress concentration. In the mean field limit, the failure abruptness decreases with increasing order k of heterogeneous loading. In this limit, a brittle to quasi-brittle transition is observed at a particular strength of disorder which changes with k. On the other hand, the model is hardly affected by such heterogeneity in the limit where local stress concentration plays a crucial role. The continuous limit of the heterogeneous loading is also studied and discussed in this paper. Some of the important results related to fiber bundle model are reviewed and their responses to our new scheme of heterogeneous loading are studied in details. Our findings are universal with respect to the nature of the threshold distribution adopted to assign strength to an individual fiber.
Han, Yafeng; Shen, Bo; Hu, Huajin; ...
2015-01-12
Ice-storage air-conditioning is a technique that uses ice for thermal energy storage. Replacing existing air conditioning systems with ice storage has the advantage of shifting the load from on-peak times to off-peak times that often have excess generation. However, increasing the use of ice-storage faces significant challenges in China. One major barrier is the inefficiency in the current electricity tariff structure. There is a lack of effective incentive mechanism that induces ice-storage systems from achieving optimal load-shifting results. This study presents an analysis that compares the potential impacts of ice-storage systems on load-shifting under a new credit-based incentive scheme andmore » the existing incentive arrangement in Jiangsu, China. The study indicates that by changing how ice-storage systems are incentivized in Jiangsu, load-shifting results can be improved.« less
Aerodynamic design and analysis of a highly loaded turbine exhaust
NASA Technical Reports Server (NTRS)
Huber, F. W.; Montesdeoca, X. A.; Rowey, R. J.
1993-01-01
The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity which, along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state/unsteady CFD analysis results are presented.
Carbonell-Ballestero, M.; Garcia-Ramallo, E.; Montañez, R.; Rodriguez-Caso, C.; Macía, J.
2016-01-01
Synthetic biology seeks to envision living cells as a matter of engineering. However, increasing evidence suggests that the genetic load imposed by the incorporation of synthetic devices in a living organism introduces a sort of unpredictability in the design process. As a result, individual part characterization is not enough to predict the behavior of designed circuits and thus, a costly trial-error process is eventually required. In this work, we provide a new theoretical framework for the predictive treatment of the genetic load. We mathematically and experimentally demonstrate that dependences among genes follow a quantitatively predictable behavior. Our theory predicts the observed reduction of the expression of a given synthetic gene when an extra genetic load is introduced in the circuit. The theory also explains that such dependence qualitatively differs when the extra load is added either by transcriptional or translational modifications. We finally show that the limitation of the cellular resources for gene expression leads to a mathematical formulation that converges to an expression analogous to the Ohm's law for electric circuits. Similitudes and divergences with this law are outlined. Our work provides a suitable framework with predictive character for the design process of complex genetic devices in synthetic biology. PMID:26656950
Smith, Nicola C; Wilson, Alan M
2013-03-01
It is unclear whether small animals, with their high stride frequency and crouched posture, or large animals, with more tendinous limbs, are more reliant on storage and return of elastic energy during locomotion. The ostrich has a limb structure that appears to be adapted for high-speed running with long tendons and short muscle fibres. Here we investigate biomechanics of ostrich gait through growth and, with consideration of anatomical data, identify scaling relationships with increasing body size, relating to forces acting on the musculoskeletal structures, effective mechanical advantage (EMA) and mechanical work. Kinematic and kinetic data were collected through growth from running ostriches. Joint moments scaled in a similar way to the pelvic limb segments as a result of consistent posture through growth, such that EMA was independent of body mass. Because no postural change was observed, relative loads applied to musculoskeletal tissues would be predicted to increase during growth, with greater muscle, and hence tendon, load allowing increased potential for elastic energy storage with increasing size. Mass-specific mechanical work per unit distance was independent of body mass, resulting in a small but significant increase in the contribution of elastic energy storage to locomotor economy in larger ostriches.
Disengagement from tasks as a function of cognitive load and depressive symptom severity.
Bowie, Christopher R; Milanovic, Melissa; Tran, Tanya; Cassidy, Sarah
2017-01-01
Depression is associated with impairment in cognition and everyday functioning. Mechanisms of cognitive dysfunction in depression and the factors that influence strategic deployment of cognitive abilities in complex environments remain elusive. In this study we investigated whether depression symptom severity is associated with disengagement from a working memory task (Paced Auditory Serial Addition Task; PASAT) with parametric adjustment of task difficulty. 235 participants completed the Beck Depression Inventory, low and high cognitive load conditions of the PASAT, and quality of life. Cognitive disengagement was the sum of consecutive items in which participants did not proffer a response to the trial. Individuals with higher depression severity showed more cognitive disengagement on the high but not low cognitive load trial of the PASAT; they did not differ in number of correct responses. Increased disengagement from the low to high cognitive load was associated with more impaired quality of life. Depression severity is associated with increased disengagement from tasks as difficulty increases. These findings suggest the importance of measuring how cognitive skills are avoided in complex environments in addition to considering performance accuracy. Individuals with depressive symptoms might preferentially avoid cognitive tasks that are perceived as more complex in spite of intact ability.
Cooling performance and evaluation of automotive refrigeration system for a passenger car
NASA Astrophysics Data System (ADS)
Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun
2016-06-01
A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.
Gerst, Kyle R; Gunn, Rachel L; Finn, Peter R
2017-10-01
Alcohol use disorders (AUDs) are associated with increased discounting of delayed rewards and reduced executive working memory (eWM) capacity. This association is amplified when comorbid with antisocial psychopathology (AP). Furthermore, recent studies suggest that reduced WM capacity is associated with disinhibited decisions reflected by increased impulsive decision making on the delay discounting of rewards task. While discounting of delayed rewards is well studied, the discounting of delayed losses has received significantly less experimental attention. The current study investigated (i) the rate of discounting of delayed losses in individuals with AUD only (n = 61), AUD with comorbid AP (n = 79) and healthy controls (n = 64); (ii) the relationship between eWM capacity and discounting of delayed losses; and (iii) the effect of a WM load on discounting of delayed losses. Discounting performance was assessed using a computerized discounting of delayed losses task. Results showed that the AUD-only and AUD-AP groups had higher rates of discounting of delayed losses and lower eWM capacity compared to the control groups. Lower individual eWM capacity was associated with increased discounting of delayed losses. However, WM load did not increase discounting rates overall. These results support the hypothesis that greater discounting of delayed losses is associated with AUD and comorbid AP problems and lower individual eWM capacity. Copyright © 2017 by the Research Society on Alcoholism.
Jagsi, Reshma; Weinstein, Debra F; Shapiro, Jo; Kitch, Barrett T; Dorer, David; Weissman, Joel S
2008-03-10
Limiting resident work hours may improve patient safety, but unintended adverse effects are also possible. We sought to assess the impact of Accreditation Council for Graduate Medical Education resident work hour limits implemented on July 1, 2003, on resident experiences and perceptions regarding patient safety. All trainees in 76 accredited programs at 2 teaching hospitals were surveyed in 2003 (preimplementation) and 2004 (postimplementation) regarding their work hours and patient load; perceived relation of work hours, patient load, and fatigue to patient safety; and experiences with adverse events and medical errors. Based on reported weekly duty hours, 13 programs experiencing substantial hours reductions were classified into a "reduced-hours" group. Change scores in outcome measures before and after policy implementation in the reduced-hours programs were compared with those in "other programs" to control for temporal trends, using 2-way analysis of variance with interaction. A total of 1770 responses were obtained (response rate, 60.0%). Analysis was restricted to 1498 responses from respondents in clinical years of training. Residents in the reduced-hours group reported significant reductions in mean weekly duty hours (from 76.6 to 68.0 hours, P < .001), and the percentage working more than 80 hours per week decreased from 44.0% to 16.6% (P < .001). No significant increases in patient load while on call (patients admitted, covered, or cross covered) were observed. Between 2003 and 2004, there was a decrease in the proportion of residents in the reduced-hours programs indicating that working too many hours (63.2% vs 44.0%; P < .001) or cross covering too many patients (65.9% vs 46.9%; P = .001) contributed to mistakes in patient care. There were no significant reductions in these 2 measures in the other group, and the differences in differences were significant (P = .03 and P = .02, respectively). The number of residents in reduced-hours programs who reported committing at least 1 medical error within the past week remained high in both study years (32.9% in 2003 and 26.3% in 2004, P = .27). It is possible to reduce residents' hours without increasing patient load. Doing so may reduce the extent to which fatigue affects patient safety as perceived by these frontline providers.
Compilation of load spectrum of loader drive axle
NASA Astrophysics Data System (ADS)
Wei, Yongxiang; Zhu, Haoyue; Tang, Heng; Yuan, Qunwei
2018-03-01
In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.
Phonological Working Memory for Words and Nonwords in Cerebral Cortex.
Perrachione, Tyler K; Ghosh, Satrajit S; Ostrovskaya, Irina; Gabrieli, John D E; Kovelman, Ioulia
2017-07-12
The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production.
Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A
2017-04-01
The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.
The Role of Cognitive Load in Intentional Forgetting Using the Think/No-Think Task.
Noreen, Saima; de Fockert, Jan W
2017-01-01
We investigated the role of cognitive control in intentional forgetting by manipulating working memory load during the think/no-think task. In two experiments, participants learned a series of cue-target word pairs and were asked to recall the target words associated with some cues or to avoid thinking about the target associated with other cues. In addition to this, participants also performed a modified version of the n-back task which required them to respond to the identity of a single target letter present in the currently presented cue word (n = 0 condition, low working memory load), and in either the previous cue word (n = 1 condition, high working memory load, Experiment 1) or the cue word presented two trials previously (n = 2 condition, high working memory load, Experiment 2). Participants' memory for the target words was subsequently tested using same and novel independent probes. In both experiments it was found that although participants were successful at forgetting on both the same and independent-probe tests in the low working memory load condition, they were only successful at forgetting on the same-probe test in the high working memory load condition. We argue that our findings suggest that the high load working memory task diverted attention from direct suppression and acted as an interference-based strategy. Thus, when cognitive resources are limited participants can switch between the strategies they use to prevent unwanted memories from coming to mind.
Pressure-overload-induced angiotensin-mediated early remodeling in mouse heart
Kim, Jeremy H.; Jiang, Ya-Ping; Cohen, Ira S.; Lin, Richard Z.; Mathias, Richard T.
2017-01-01
Our previous work on angiotensin II-mediated electrical-remodeling in canine left ventricle, in connection with a long history of other studies, suggested the hypothesis: increases in mechanical load induce autocrine secretion of angiotensin II (A2), which coherently regulates a coterie of membrane ion transporters in a manner that increases contractility. However, the relation between load and A2 secretion was correlative. We subsequently showed a similar or identical system was present in murine heart. To investigate whether the relation between mechanical load and A2-mediated electrical remodeling was causal, we employed transverse aortic constriction in mice to subject the left ventricle to pressure overload for short-term (1 to 2 days) or long-term (1 to 2 weeks) periods. Heart-to-body weight ratios and cell capacitance measurements were used to determine hypertrophy. Whole-cell patch clamp recordings of the predominant repolarization currents Ito,fast and IK,slow were used to assess electrical remodeling. Hearts or myocytes subjected to long-term load displayed significant hypertrophy, which was not evident in short-term load. However, short-term load induced significant reductions in Ito,fast and IK,slow. Incubation of these myocytes with the angiotensin II type 1 receptor inhibitor saralasin for 2 hours restored Ito,fast and IK,slow to control levels. The number of Ito.fast or IK,slow channels did not change with A2 or long-term load, however the hypertrophic increase in membrane area reduced the current densities for both channels. For Ito,fast but not IK,slow there was an additional reduction that was reversed by inhibition of angiotensin receptors. These results suggest increased load activates an endogenous renin angiotensin system that initially reduces Ito,fast and IK,slow prior to the onset of hypertrophic growth. However, there are functional interactions between electrical and anatomical remodeling. First, hypertrophy tends to reduce all current densities. Second, the hypertrophic program can modify signaling between the angiotensin receptor and target current. PMID:28464037
Research Update from EPA Permeable Parking Lot in Edison, NJ
Communities are increasingly installing green infrastructure stormwater control measures (SCMs) to reduce pollutant loads associated with stormwater runoff. Permeable pavement is a SCM that has limited research on working-scale, side-by-side performance of different pavement sur...
Career Implications of Doctoral Social Work Student Debt Load
ERIC Educational Resources Information Center
Begun, Audrey L.; Carter, James R.
2017-01-01
Although research has been conducted in other professional disciplines, social work has yet to explore how doctoral student debt load influences career development. This exploratory study surveyed 281 social work doctoral students and recent graduates, 75 BSW and MSW program leaders, and 24 doctoral program leaders about debt load, career choices,…
Effects of movement and work load in patients with congenital central hypoventilation syndrome.
Hager, Alfred; Koch, Walter; Stenzel, Heike; Hess, John; Schöber, Johannes
2007-04-01
Patients with congenital central hypoventilation syndrome lack ventilatory chemosensitivity and depend at least in part on the ergoreceptor function during exercise. In these patients a substantial increase of ventilation has been reported for passive movement during sleep as well as active movement on a treadmill. The aim of the study was to investigate ventilatory response to an increasing work load with constant movement. Eighteen patients and 17 healthy volunteers performed a cardiopulmonary exercise test on a bicycle pedaling at a constant rate of about 60 revolutions per minute throughout the entire test. The patients were able to exercise adequately and showed normal peak oxygen uptake. There was a steep rise in minute ventilation in both groups at the start of exercise, yet there was only a minor increase in both groups during the increase of workload up to the anaerobic threshold. After the anaerobic threshold, there was again an increase in ventilation in both groups, but the increase was less prominent in the patient group. Ventilation in patients with congenital central hypoventilation syndrome is increased during exercise caused both by movement (mechanoreceptors) and by anaerobic workload. This facilitates a normal ventilatory drive up to the anaerobic threshold and a normal exercise capacity in these patients.
Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model
Sporer, Siegfried L.
2016-01-01
Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the “cognitive load approach” as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley’s (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed. PMID:27092090
Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model.
Sporer, Siegfried L
2016-01-01
Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the "cognitive load approach" as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley's (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed.
Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements
Hadar, Britt; Skrzypek, Joshua E.; Wingfield, Arthur; Ben-David, Boaz M.
2016-01-01
In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the “visual world” eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., “point at the candle”). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424
Narrowing the scope of failure prediction using targeted fault load injection
NASA Astrophysics Data System (ADS)
Jordan, Paul L.; Peterson, Gilbert L.; Lin, Alan C.; Mendenhall, Michael J.; Sellers, Andrew J.
2018-05-01
As society becomes more dependent upon computer systems to perform increasingly critical tasks, ensuring that those systems do not fail becomes increasingly important. Many organizations depend heavily on desktop computers for day-to-day operations. Unfortunately, the software that runs on these computers is written by humans and, as such, is still subject to human error and consequent failure. A natural solution is to use statistical machine learning to predict failure. However, since failure is still a relatively rare event, obtaining labelled training data to train these models is not a trivial task. This work presents new simulated fault-inducing loads that extend the focus of traditional fault injection techniques to predict failure in the Microsoft enterprise authentication service and Apache web server. These new fault loads were successful in creating failure conditions that were identifiable using statistical learning methods, with fewer irrelevant faults being created.
Properties and Potential of Two (ni,pt)ti Alloys for Use as High-temperature Actuator Materials
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II.; Garg, Anita; Biles, Tiffany; Nathal, Michael
2005-01-01
The microstructure, transformation temperatures, basic tensile properties, shape memory behavior, and work output for two (Ni,Ti)Pt high-temperature shape memory alloys have been characterized. One was a Ni30Pt20Ti50 alloy (referred to as 20Pt) with transformation temperatures above 230 C and the other was a Ni20Pt30Ti50 alloy (30Pt) with transformation temperatures about 530 C. Both materials displayed shape memory behavior and were capable of 100% (no-load) strain recovery for strain levels up to their fracture limit (3-4%) when deformed at room temperature. For the 20Pt alloy, the tensile strength, modulus, and ductility dramatically increased when the material was tested just about the austenite finish (A(sub f)) temperature. For the 30Pt alloy, a similar change in yield behavior at temperatures above the A(sub f) was not observed. In this case the strength of the austentite phase was at best comparable and generally much weaker than the martensite phase. A ductility minimum was also observed just below the A(sub s) temperature in this alloy. As a result of these differences in tensile behavior, the two alloys performed completely different when thermally cycled under constant load. The 20Pt alloy behaved similar to conventional binary NiTi alloys with work output due to the martensite-to-austenite transformation initially increasing with applied stress. The maximum work output measured in the 20Pt alloy was nearly 9 J/cu cm and was limited by the tensile ductility of the material. In contrast, the martensite-to-austenite transformation in the 30Pt alloy was not capable of performing work against any bias load. The reason for this behavior was traced back to its basic mechanical properties, where the yield strength of the austenite phase was similar to or lower than that of the martensite phase, depending on temperature. Hence, the recovery or transformation strain for the 30Pt alloy under load was essentially zero, resulting in zero work output.
Work Status, Work Satisfaction, and Blood Pressure Among Married Black and White Women
ERIC Educational Resources Information Center
Hauenstein, Louise S.; And Others
1977-01-01
This study examined blood pressure levels of married women in relation to such work-related variables as work load, satisfaction with work, reported strain, and evaluated performance. Differences in work load were unrelated to blood pressure levels. However, currently unemployed working women had lower levels. (Author)
Cognitive Load Theory: An Empirical Study of Anxiety and Task Performance in Language Learning
ERIC Educational Resources Information Center
Chen, I-Jung; Chang, Chi-Cheng
2009-01-01
Introduction: This study explores the relationship among three variables--cognitive load, foreign language anxiety, and task performance. Cognitive load refers to the load imposed on working memory while performing a particular task. The authors hypothesized that anxiety consumes the resources of working memory, leaving less capacity for cognitive…
Gaussian step-pressure loading of rigid viscoplastic plates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hayduk, R. J.; Durling, B. J.
1978-01-01
The response of a thin, rigid viscoplastic plate subjected to a spatially axisymmetric Gaussian step pressure impulse loading was studied analytically. A Gaussian pressure distribution in excess of the collapse load was applied to the plate, held constant for a length of time, and then suddenly removed. The plate deforms with monotonically increasing deflections until the dynamic energy is completely dissipated in plastic work. The simply supported plate of uniform thickness obeys the von Mises yield criterion and a generalized constitutive equation for rigid viscoplastic materials. For the small deflection bending response of the plate, the governing system of equations is essentially nonlinear. Transverse shear stress is neglected in the yield condition and rotary inertia in the equations of dynamic equilibrium. A proportional loading technique, known to give excellent approximations of the exact solution for the uniform load case, was used to linearize the problem and to obtain the analytical solutions in the form of eigenvalue expansions. The effects of load concentration, of an order of magnitude change in the viscosity of the plate material, and of load duration were examined while holding the total impulse constant.
Moderate Load Eccentric Exercise; A Distinct Novel Training Modality
Hoppeler, Hans
2016-01-01
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894
Minamoto, Takehiro; Shipstead, Zach; Osaka, Naoyuki; Engle, Randall W
2015-07-01
Studies on visual cognitive load have reported inconsistent effects of distractor interference when distractors have visual characteristic that are similar to the cognitive load. Some studies have shown that the cognitive load enhances distractor interference, while others reported an attenuating effect. We attribute these inconsistencies to the amount of cognitive load that a person is required to maintain. Lower amounts of cognitive load increase distractor interference by orienting attention toward visually similar distractors. Higher amounts of cognitive load attenuate distractor interference by depleting attentional resources needed to process distractors. In the present study, cognitive load consisted of faces (Experiments 1-3) or scenes (Experiment 2). Participants performed a selective attention task in which they ignored face distractors while judging a color of a target dot presented nearby, under differing amounts of load. Across these experiments distractor interference was greater in the low-load condition and smaller in the high-load condition when the content of the cognitive load had similar visual characteristic to the distractors. We also found that when a series of judgments needed to be made, the effect was apparent for the first trial but not for the second. We further tested an involvement of working memory capacity (WMC) in the load effect (Experiment 3). Interestingly, both high and low WMC groups received an equivalent effect of the cognitive load in the first distractor, suggesting these effects are fairly automatic.
Choi, Seong Wook; Nam, Kyoung Won; Lim, Ki Moo; Shim, Eun Bo; Won, Yong Soon; Woo, Heung Myong; Kwak, Ho Hyun; Noh, Mi Ryoung; Kim, In Young; Park, Sung Min
2014-04-03
When using a pulsatile left ventricular assist device (LVAD), it is important to reduce the cardiac load variations of the native heart because severe cardiac load variations can induce ventricular arrhythmia. In this study, we investigated the effect of counter-pulsation control of the LVAD on the reduction of cardiac load variation. A ventricular electrocardiogram-based counter-pulsation control algorithm for a LVAD was implemented, and the effects of counter-pulsation control of the LVAD on the reduction of the working load variations of the left ventricle were determined in three animal experiments. Deviations of the working load of the left ventricle were reduced by 51.3%, 67.9%, and 71.5% in each case, and the beat-to-beat variation rates in the working load were reduced by 84.8%, 82.7%, and 88.2% in each ease after counter-pulsation control. There were 3 to 12 premature ventricle contractions (PVCs) before counter-pulsation control, but no PVCs were observed during counter-pulsation control. Counter-pulsation control of the pulsatile LVAD can reduce severe cardiac load variations, but the average working load is not markedly affected by application of counter-pulsation control because it is also influenced by temporary cardiac outflow variations. We believe that counter-pulsation control of the LVAD can improve the long-term safety of heart failure patients equipped with LVADs.
Capodieci, Agnese; Serafini, Alice; Dessuki, Alice; Cornoldi, Cesare
2018-02-20
The writing abilities of children with ADHD symptoms were examined in a simple dictation task, and then in two conditions with concurrent verbal or visuospatial working memory (WM) loads. The children with ADHD symptoms generally made more spelling mistakes than controls, and the concurrent loads impaired their performance, but with partly different effects. The concurrent verbal WM task prompted an increase in the phonological errors, while the concurrent visuospatial WM task prompted more non-phonological errors, matching the Italian phonology, but not the Italian orthography. In the ADHD group, the children proving better able to cope with a concurrent verbal WM load had a better spelling performance too. The ADHD and control groups had a similar handwriting speed, but the former group's writing quality was poorer. Our results suggest that WM supports writing skills, and that children with ADHD symptoms have general writing difficulties, but strength in coping with concurrent verbal information may support their spelling performance.
Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads
NASA Astrophysics Data System (ADS)
Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.
2017-10-01
The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).
Use of Adaptive Injection Strategies to Increase the Full Load Limit of RCCI Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Reed; Ickes, Andrew; Wallner, Thomas
Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection (DI) of a higher reactivity fuel, otherwise known as reactivity controlled compression ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on amore » 13 l multicylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and DI of diesel fuel. Engine testing was conducted at an engine speed of 1200 rpm over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion (CDC) and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection (PFI) quantity was reduced to keep peak cylinder pressure (PCP) and maximum pressure rise rate (MPRR) under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar brake mean effective pressure (BMEP) with a peak brake thermal efficiency (BTE) of 47.6%.« less
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
Fatigue properties of type 316LN stainless steel in air and mercury
NASA Astrophysics Data System (ADS)
Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.
2005-08-01
An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.
Ozlü, Tülay; Alçelik, Aytekin; Calişkan, Billur; Dönmez, Melahat Emine
2012-11-01
Preeclampsia is an important disease of pregnancy whose exact etiology is still unknown despite continuing developments in medicine. Although most commonly it is believed to be caused by a defective placentation, in this paper, we hypothesize that the primary underlying problem in the development of preeclampsia can be in kidneys in a greater proportion of cases than it is believed today. The increased intravascular volume and the increased work load of kidneys together with the resulting glomerular hypertrophy may precipitate nephrotic syndrome, which in this case is called "preeclampsia" in a previously affected kidney. Urinary tract infections in childhood leaving silent, unrecognized small scars in the kidneys may be the underlying renal cause which disrupts its silence with an increased work load of kidneys prominently occurring after the midtrimester. The histopathologic finding in kidneys with renal scars after childhood urinary tract infections and in preeclampsia is focal segmental glomerulosclerosis in the majority of cases and this similarity strengthens our hypothesis. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effect of non-visual working memory load on top-down modulation of visual processing
Rissman, Jesse; Gazzaley, Adam; D'Esposito, Mark
2009-01-01
While a core function of the working memory (WM) system is the active maintenance of behaviorally relevant sensory representations, it is also critical that distracting stimuli are appropriately ignored. We used functional magnetic resonance imaging to examine the role of domain-general WM resources in the top-down attentional modulation of task-relevant and irrelevant visual representations. In our dual-task paradigm, each trial began with the auditory presentation of six random (high load) or sequentially-ordered (low load) digits. Next, two relevant visual stimuli (e.g., faces), presented amongst two temporally interspersed visual distractors (e.g., scenes), were to be encoded and maintained across a 7-sec delay interval, after which memory for the relevant images and digits was probed. When taxed by high load digit maintenance, participants exhibited impaired performance on the visual WM task and a selective failure to attenuate the neural processing of task-irrelevant scene stimuli. The over-processing of distractor scenes under high load was indexed by elevated encoding activity in a scene-selective region-of-interest relative to low load and passive viewing control conditions, as well as by improved long-term recognition memory for these items. In contrast, the load manipulation did not affect participants' ability to upregulate activity in this region when scenes were task-relevant. These results highlight the critical role of domain-general WM resources in the goal-directed regulation of distractor processing. Moreover, the consequences of increased WM load in young adults closely resemble the effects of cognitive aging on distractor filtering [Gazzaley et al., (2005) Nature Neuroscience 8, 1298-1300], suggesting the possibility of a common underlying mechanism. PMID:19397858
NASA Astrophysics Data System (ADS)
Naik, Rudra, Dr.; Rama Narasihma, K., Dr.; Anikivi, Atmanand
2018-04-01
The present work reported here involves the experimental investigation and performance evaluation of wick assisted and axially square grooved heat pipes of outer diameter 8mm, inner diameter 4mm with a length of 150mm.The objective of this work is to design, fabricate and test the heat pipes with and without an axial square groove for horizontal and gravity assisted conditions. The performance of the heat pipes was measured in terms of thermal resistance and heat transfer coefficients. In the present investigation four different working fluids were chosen namely acetone, ethanol, methanol and distilled water. Experiments were conducted by varying the heat load from 2 W to 10 W for different fill charge ratios in the range of 25% to 75% of evaporator volume for wick assisted heat pipe and 8 W to 18 W for axially square grooved heat pipe. From the experiments, it was found that there is a steady increase in temperature with the increase in heat input. The overall heat transfer coefficient was found to increase with the increase heat load for wick assisted heat pipe. In case of axially square grooved heat pipe, an attempt was made to experiment the heat pipe in different orientations. The maximum heat transfer coefficient of 7000 W/m2 °C is found for Acetone at 180° orientation.
Evaluation of working conditions of workers engaged in tending horses.
Nowakowicz-Dębek, Bożena; Pawlak, Halina; Wlazło, Łukasz; Kuna-Broniowska, Izabela; Bis-Wencel, Hanna; Buczaj, Agnieszka; Maksym, Piotr
2014-01-01
A growing interest in the horse business has resulted in the increased engagement of many people in this area, and the health problems occurring among workers create the need to search for prophylactic measures. The objective of the study was evaluation of the level of exposure to air pollution in a stable, and estimation of the degree of work load among workers engaged in tending horses. The study was conducted twice, during the winter season, in a stable maintaining race horses, and in a social room. In order to evaluate workers' exposure, air samples were collected by the aspiration method. After the incubation of material, the total number of bacteria and fungi in the air was determined, as well as the number of aerobic mesophilic and thermophilic bacteria, expressed as the number of colony forming units per cubic meter of air (CFU/m3). The measurement of total dust concentration in the air was also performed, simultaneously with the measurement of microclimatic parameters. The study of work load also covered the measurement of energy expenditure, evaluation of static physical load, and monotony of movements performed. The stable may be considered as a workplace with considerable risk of the occurrence of unfavourable health effects.
Assessment of a novel biomechanical fracture model for distal radius fractures
2012-01-01
Background Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N ± 232 N vs. 1250 N ± 341 N; p = 0.001). Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard. PMID:23244634
Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra-Ramirez, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Hames, Bonnie; Thomas, Steve; Warner, Ryan E
2011-12-01
The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO(2), and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of β-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of β-glucosidase increased the xylan digestibility of alkaline treated samples due to the β-xylosidase activity present in Novozyme-188. Copyright © 2011 Elsevier Ltd. All rights reserved.
Exploratory Investigation into the Durability of Beneficial Cold Worked Fastener Hole in Aluminum
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Clark, David A.
1999-01-01
Cold working fastener holes in aluminum alloys is a widely used technique in the aerospace industry for improving the fatigue performance of structures. A compressive tangential stress introduced in the material during the cold working of the hole reduces the natural tendency of the material to crack at the holes under cyclic tensile loading. It is a lucrative technique for the aerospace industry in that it provides an increase in performance without any weight cost.
de Cassia Pereira, Josiani; Travaini, Rodolfo; Paganini Marques, Natalia; Bolado-Rodríguez, Silvia; Bocchini Martins, Daniela Alonso
2016-03-01
The saccharification of ozonated sugarcane bagasse (SCB) by enzymes from Myceliophthora thermophila JCP 1-4 was studied. Fungal enzymes provided slightly higher sugar release than commercial enzymes, working at 50°C. Sugar release increased with temperature increase. Kinetic studies showed remarkable glucose release (4.99 g/L, 3%w/w dry matter) at 60°C, 8 h of hydrolysis, using an enzyme load of 10 FPU (filter paper unit). FPase and β-glucosidase activities increased during saccharification (284% and 270%, respectively). No further significant improvement on glucose release was observed increasing the enzyme load above 7.5 FPU per g of cellulose. Higher dry matter contents increased sugars release, but not yields. The fermentation of hydrolysates by Saccharomyces cerevisiae provided glucose-to-ethanol conversions around to 63%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Infrared Ship Classification Using A New Moment Pattern Recognition Concept
NASA Astrophysics Data System (ADS)
Casasent, David; Pauly, John; Fetterly, Donald
1982-03-01
An analysis of the statistics of the moments and the conventional invariant moments shows that the variance of the latter become quite large as the order of the moments and the degree of invariance increases. Moreso, the need to whiten the error volume increases with the order and degree, but so does the computational load associated with computing the whitening operator. We thus advance a new estimation approach to the use of moments in pattern recog-nition that overcomes these problems. This work is supported by experimental verification and demonstration on an infrared ship pattern recognition problem. The computational load associated with our new algorithm is also shown to be very low.
Perceptual load corresponds with factors known to influence visual search.
Roper, Zachary J J; Cosman, Joshua D; Vecera, Shaun P
2013-10-01
One account of the early versus late selection debate in attention proposes that perceptual load determines the locus of selection. Attention selects stimuli at a late processing level under low-load conditions but selects stimuli at an early level under high-load conditions. Despite the successes of perceptual load theory, a noncircular definition of perceptual load remains elusive. We investigated the factors that influence perceptual load by using manipulations that have been studied extensively in visual search, namely target-distractor similarity and distractor-distractor similarity. Consistent with previous work, search was most efficient when targets and distractors were dissimilar and the displays contained homogeneous distractors; search became less efficient when target-distractor similarity increased irrespective of display heterogeneity. Importantly, we used these same stimuli in a typical perceptual load task that measured attentional spillover to a task-irrelevant flanker. We found a strong correspondence between search efficiency and perceptual load; stimuli that generated efficient searches produced flanker interference effects, suggesting that such displays involved low perceptual load. Flanker interference effects were reduced in displays that produced less efficient searches. Furthermore, our results demonstrate that search difficulty, as measured by search intercept, has little bearing on perceptual load. We conclude that rather than be arbitrarily defined, perceptual load might be defined by well-characterized, continuous factors that influence visual search. PsycINFO Database Record (c) 2013 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Keller, J.; LaCava, W.
2012-09-01
This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planetmore » load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.« less
Efficient field testing for load rating railroad bridges
NASA Astrophysics Data System (ADS)
Schulz, Jeffrey L.; Brett C., Commander
1995-06-01
As the condition of our infrastructure continues to deteriorate, and the loads carried by our bridges continue to increase, an ever growing number of railroad and highway bridges require load limits. With safety and transportation costs at both ends of the spectrum. the need for accurate load rating is paramount. This paper describes a method that has been developed for efficient load testing and evaluation of short- and medium-span bridges. Through the use of a specially-designed structural testing system and efficient load test procedures, a typical bridge can be instrumented and tested at 64 points in less than one working day and with minimum impact on rail traffic. Various techniques are available to evaluate structural properties and obtain a realistic model. With field data, a simple finite element model is 'calibrated' and its accuracy is verified. Appropriate design and rating loads are applied to the resulting model and stress predictions are made. This technique has been performed on numerous structures to address specific problems and to provide accurate load ratings. The merits and limitations of this approach are discussed in the context of actual examples of both rail and highway bridges that were tested and evaluated.
NASA Astrophysics Data System (ADS)
Vitiello, Antonio; Squillace, Antonino; Prisco, Umberto
2007-02-01
Shape memory alloys (SMA) are a particular family of materials, discovered during the 1930s and only now used in technological applications, with the property of returning to an imposed shape after a deformation and heating process. The study of the mechanical behaviour of SMA, through a proper constitutive model, and the possible ensuing applications form the core of an interesting research field, developed in the last few years and still now subject to studies driven by the aim of understanding and characterizing the peculiar properties of these materials. The aim of this work is to study the behaviour of SMA under torsional loads. To obtain a forecast of the mechanical response of the SMA, we utilized a numerical algorithm based on the Boyd-Lagoudas model and then we compared the results with those from some experimental tests. The experiments were conducted by subjecting helicoidal springs with a constant cross section to a traction load. It is well known, in fact, that in such springs the main stress under traction loads is almost completely a pure torsional stress field. The interest in these studies is due to the absence of data on such tests in the literature for SMA, and because there are an increasing number of industrial applications where SMA are subjected to torsional load, in particular in medicine, and especially in orthodontic drills which usually work under torsional loads.
NASA Astrophysics Data System (ADS)
Bairamov, A. N.
2017-11-01
The operation of a nuclear power plant with a hydrogen energy complex and a constantly operating low capacity additional steam turbine makes it possible to improve the reliability of the power supply to the needs of a nuclear power plant in the face of major systemic accidents. In this case, the additional steam turbine is always in operation. This determines the alternation of the operating conditions of the additional steam turbine, and, at the same time, the alternation of the loads attributable to the rotor, which affects its working life. The aim of the article is to investigate the effect of cyclic loads on the number of cycles before the destruction of the most important elements of the rotor of an additional steam turbine due to the alternation of operating conditions when entering the peak load and during unloading at night. The article demonstrates that the values of the stress range intensity index for the most important elements of the rotor of an additional steam turbine lie in the area of the threshold values of the fatigue failure diagram. For this region, an increase in the frequency of loading is associated with the phenomenon of closure of the fatigue crack and, as a consequence, a possible slowing of its growth. An approximate number of cycles before failure for the most loaded element of the rotor is obtained.
Molecular Dynamics Modeling of PPTA Crystals in Aramid Fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercer, Brian Scott
2016-05-19
In this work, molecular dynamics modeling is used to study the mechanical properties of PPTA crystallites, which are the fundamental microstructural building blocks of polymer aramid bers such as Kevlar. Particular focus is given to constant strain rate axial loading simulations of PPTA crystallites, which is motivated by the rate-dependent mechanical properties observed in some experiments with aramid bers. In order to accommodate the covalent bond rupture that occurs in loading a crystallite to failure, the reactive bond order force eld ReaxFF is employed to conduct the simulations. Two major topics are addressed: The rst is the general behavior ofmore » PPTA crystallites under strain rate loading. Constant strain rate loading simulations of crystalline PPTA reveal that the crystal failure strain increases with increasing strain rate, while the modulus is not a ected by the strain rate. Increasing temperature lowers both the modulus and the failure strain. The simulations also identify the C N bond connecting the aromatic rings as weakest primary bond along the backbone of the PPTA chain. The e ect of chain-end defects on PPTA micromechanics is explored, and it is found that the presence of a chain-end defect transfers load to the adjacent chains in the hydrogen-bonded sheet in which the defect resides, but does not in uence the behavior of any other chains in the crystal. Chain-end defects are found to lower the strength of the crystal when clustered together, inducing bond failure via stress concentrations arising from the load transfer to bonds in adjacent chains near the defect site. The second topic addressed is the nature of primary and secondary bond failure in crystalline PPTA. Failure of both types of bonds is found to be stochastic in nature and driven by thermal uctuations of the bonds within the crystal. A model is proposed which uses reliability theory to model bonds under constant strain rate loading as components with time-dependent failure rate functions. The model is shown to work well for predicting the onset of primary backbone bond failure, as well as the onset of secondary bond failure via chain slippage for the case of isolated non-interacting chain-end defects.« less
Biochemical Assessment of Stress in Cardiac Tissue in Response to Weightless Space Travel
NASA Technical Reports Server (NTRS)
Brunton, Laurence L.; Meszaros, J. Gary; Lio, Francisco M.
1997-01-01
The absence of unit gravity may cause physiological changes in the cardiovascular system. For instance, in the absence of Earth's gravity, venous return to the heart may increase due, in pan, to decreased pooling of the blood in the extremities. We hypothesize that this would produce an increase in the heart's work load ultimately resulting in hypertrophy.
Fatigue Life of Bovine Meniscus under Longitudinal and Transverse Tensile Loading
Creechley, Jaremy J.; Krentz, Madison E.; Lujan, Trevor J.
2017-01-01
The knee meniscus is composed of a fibrous matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loads either longitudinal or transverse to the principal fiber direction. Fatigue experiments consisted of cyclic loads to 60, 70, 80 or 90% of the predicted ultimate tensile strength until failure occurred or 20,000 cycles was reached. The fatigue data in each group was fit with a Weibull distribution to generate plots of stress level vs. cycles to failure (S-N curve). Results showed that loading transverse to the principal fiber direction gave a two-fold increase in failure strain, a three-fold increase in creep, and a nearly four-fold increase in cycles to failure (not significant), compared to loading longitudinal to the principal fiber direction. The S-N curves had strong negative correlations between the stress level and the mean cycles to failure for both loading directions, where the slope of the transverse S-N curve was 11% less than the longitudinal S-N curve (longitudinal: S=108–5.9ln(N); transverse: S=112–5.2ln(N)). Collectively, these results suggest that the non-fibrillar matrix is more resistant to fatigue failure than the collagen fibers. Results from this study are relevant to understanding the etiology of atraumatic radial and horizontal meniscal tears, and can be utilized by research groups that are working to develop meniscus implants with fatigue properties that mimic healthy tissue. PMID:28088070
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-01-01
BACKGROUND--Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. METHODS--Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. RESULTS--The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. CONCLUSIONS--The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation. PMID:8511732
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-04-01
Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation.
A second mechanism of increase of cerebellar hypermetria in humans
Manto, Mario-Ubaldo; Bosse, Pierre
2003-01-01
So far, there is only one procedure known to increase hypermetria in cerebellar patients. Facing an increased inertia of the moving limb, patients presenting a lesion of the lateral cerebellum are able to increase appropriately the intensity of the agonist electromyographic (EMG) activity (the launching force), but are unable to adapt the intensity of the antagonist activity (the braking force). As a result, hypermetria is larger when the inertial load is artificially increased. Recent studies have demonstrated that hyperventilation increases hypermetria in patients presenting a spinocerebellar ataxia type 6 (SCA 6), a disorder associated with polyglutamine expansions in the α1A-voltage-dependent calcium channel. The mechanism of this increase of hypermetria has not been identified so far. In the present work, we combined kinematic, EMG and transcranial Doppler studies to understand the effects of hyperventilation on fast goal-directed movements in patients presenting a SCA 6. Both in the normal mechanical state and after increasing the inertial load of the moving hand, hyperventilation induced an increase of hypermetria. Hyperventilation increased the delay of the onset latency of the antagonist EMG activity and decreased the rate of rise of both the agonist and the antagonist EMG activities. Hyperventilation induced a marked decrease in cerebral blood flow velocities. The mechanism of this provocative test is original and is distinct from the mechanism of the load-induced increase of hypermetria. PMID:12588903
Allostatic Load and Effort-Reward Imbalance: Associations over the Working-Career
Coronado, José Ignacio Cuitún; Chandola, Tarani; Steptoe, Andrew
2018-01-01
Although associations between work stressors and stress-related biomarkers have been reported in cross-sectional studies, the use of single time measurements of work stressors could be one of the reasons for inconsistent associations. This study examines whether repeated reports of work stress towards the end of the working career predicts allostatic load, a measure of chronic stress related physiological processes. Data from waves 2 to 6 of the English Longitudinal Study of Ageing (ELSA) were analysed, with a main analytical sample of 2663 older adults (aged 50+) who had at least one measurement of effort-reward imbalance between waves 2–6 and a measurement of allostatic load at wave 6. Cumulative work stress over waves 2–6 were measured by the effort-reward imbalance model. ELSA respondents who had reported two or more occasions of imbalance had a higher (0.3) estimate of the allostatic load index than those who did not report any imbalance, controlling for a range of health and socio-demographic factors, as well as allostatic load at baseline. More recent reports of imbalance were significantly associated with a higher allostatic load index, whereas reports of imbalance from earlier waves of ELSA were not. The accumulation of work related stressors could have adverse effects on chronic stress biological processes. PMID:29364177
Allostatic Load and Effort-Reward Imbalance: Associations over the Working-Career.
Coronado, José Ignacio Cuitún; Chandola, Tarani; Steptoe, Andrew
2018-01-24
Although associations between work stressors and stress-related biomarkers have been reported in cross-sectional studies, the use of single time measurements of work stressors could be one of the reasons for inconsistent associations. This study examines whether repeated reports of work stress towards the end of the working career predicts allostatic load, a measure of chronic stress related physiological processes. Data from waves 2 to 6 of the English Longitudinal Study of Ageing (ELSA) were analysed, with a main analytical sample of 2663 older adults (aged 50+) who had at least one measurement of effort-reward imbalance between waves 2-6 and a measurement of allostatic load at wave 6. Cumulative work stress over waves 2-6 were measured by the effort-reward imbalance model. ELSA respondents who had reported two or more occasions of imbalance had a higher (0.3) estimate of the allostatic load index than those who did not report any imbalance, controlling for a range of health and socio-demographic factors, as well as allostatic load at baseline. More recent reports of imbalance were significantly associated with a higher allostatic load index, whereas reports of imbalance from earlier waves of ELSA were not. The accumulation of work related stressors could have adverse effects on chronic stress biological processes.
Standing working posture compared in pregnant and non-pregnant conditions.
Paul, J A; Frings-Dresen, M H
1994-09-01
During pregnancy, an increase in body weight occurs together with changes in body weight distribution and in fit between body dimensions and workplace layout. These changes may cause alterations in working posture which may, in turn, have adverse consequences for the biomechanical load on the musculoskeletal system and so increase the risk of musculoskeletal disorders. Using photographic posture registration, the standing working posture was studied in 27 women during the last stage of pregnancy and after delivery (the experimental group). The women performed an assembly task while standing at various workplace layouts. The postural differences between the pregnant condition and the non-pregnant condition were studied and the effect of the various workplace layouts assessed. Ten non-pregnant controls were also studied twice to establish the effect of the time interval between the measuring occasions. We found that the women of the experimental group stood further from the work surface in the pregnant condition compared to the non-pregnant condition, the hips were positioned more backwards, and, in order to reach the tesk, they increased the flexion of the trunk, increased the anteflexion of the upper arms, and extended the arms more. At the workplace layout in which the work surface height was self-selected, the postural differences due to pregnancy were smallest or even absent, compared to the postural differences in the other workplace layouts studied. Ergonomists and workers in occupational health services should be alert to the consequences for the biomechanical load on the musculoskeletal system and the risk of development of health complaints caused by postural changes due to pregnancy. An adjustable workplace layout may prevent some problems.
NASA Astrophysics Data System (ADS)
Radchenko, Pavel; Radchenko, Andrey; Batuev, Stanislav
2013-06-01
The high velocity (supersonic) oxy-fuel (HVOF) thermal spray technology is a rather recent addition to family of thermal spray processes. This technique is considered most modern of technologies of spraying. The increase in velocity of the particles at lower temperatures allowed reducing level of oxidation of the particles and to increase the density of a powder coating. In HVOF dry dusting applicators of the first and second generations was used the cylindrical nozzle, whereas in the third generation expanding Laval nozzles are used. This method allows the velocity of a gas flow to exceed to 2000 m/sec, and the velocities of the powder particles 800 m/sec. Recently many results on elastic and strength properties of the multilayer coatings obtained by supersonic flame spraying method are received. But the main part of works on research of the coating obtained by the HVOF method is devoted to research of their stress-strain state at static loadings. In this work the behavior of the steel barrier with the multilayer coating applied by HVOF is researched, at dynamic loading of projectile structure at different velocities of interaction. The problem was solved numerically within Lagrangian approach, a finite element method with the use of the explicit finite difference scheme of G. Johnson.
Practical considerations for bicarbonate loading and sports performance.
Burke, Louise M
2013-01-01
Consumption of sodium bicarbonate (300 mg/kg 1-2 h before exercise) can temporarily increase blood bicarbonate concentrations, enhancing extracellular buffering of hydrogen ions which accumulate and efflux from the working muscle. Such 'bicarbonate loading' provides an ergogenic strategy for sporting events involving high rates of anaerobic glycolysis which are otherwise limited by the body's capacity to manage the progressive increase in intracellular acidity. Studies show that bicarbonate loading strategies have a moderate positive effect on the performance of sports involving 1-7 min of sustained strenuous exercise, and may also be useful for prolonged sports involving intermittent or sustained periods of high-intensity work rates. This potential to enhance sports performance requires further investigation using appropriate research design, but may be limited by practical considerations such as gut discomfort or the logistics of the event. The effect of chronic use of bicarbonate supplementation prior to high-intensity workouts to promote better training performance and adaptations is worthy of further investigation. While this relatively simple dietary strategy has been studied and used by sports people for over 80 years, it is likely that there are still ways in which further benefits from bicarbonate supplementation can be developed and individualized for specific athletes or specific events. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Plasma /Na+/, /Ca++/, and volume shifts and thermoregulation during exercise in man
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Convertino, V. A.; Stremel, R. W.; Bernauer, E. M.; Adams, W. C.; Vignau, S. R.; Brock, P. J.
1977-01-01
Graded-exercise experiments are conducted on six trained male runners (19-23 yr) subjected to ergometer exercise in a program consisting of 30-min resting control period, 60 min of rest or exercise at work loads that resulted in a maximal oxygen uptake equivalent to 6% (resting), 23%, 43%, and 62% of maximal oxygen uptake, followed by 30 min of recovery. The parameters measured and discussed are rectal temperature (T-re), skin temperatures at different spots, maximal oxygen uptake, plasma volume (PV), and various plasma electrolyte and protein concentrations. The objectives are to determine whether the increased T-re during progressively greater work loads are related to plasma sodium ion and calcium ion concentrations, as well as to evaluate the influence of PV shifts on the electrolyte and osmotic concentrations. The results suggest that the shift (loss) in PV accounts for the increases in the plasma constituent concentrations that result in significant correlations with T-re.
NASA Astrophysics Data System (ADS)
Li, Chengjun; Gong, Hui; Gan, Zhuo; Luo, Qingming
2005-01-01
Human prefrontal cortex (PFC) helps mediate working memory (WM), a system that is used for temporary storage and manipulation of information and is involved with many higher-level cognitive functions. Here, we report a functional near-infrared spectroscopy (NIRS) study on the PFC activation caused by verbal WM task. For investigating the effect of memory load on brain activation, we adopted the "n-back" task in which subjects must decide for each present letter whether it matches the letter presented n items back in sequence. 27 subjects (ages 18-24, 13 females) participated in the work. Concentration changes in oxy-Hb (HbO2), deoxy-Hb (Hb), and total-Hb (HbT) in the subjects" prefrontal cortex were monitored by a 24-channel functional NIRS imager. The cortical activations and deactivations were found in left ventrolateral PFC and bilateral dorsolateral PFC. As memory load increased, subjects showed poorer behavioral performance as well as monotonically increasing magnitudes of the activations and deactivations in PFC.
Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo
2016-04-13
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.
Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa
2016-01-01
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432
Is Hand Selection Modulated by Cognitive-perceptual Load?
Liang, Jiali; Wilkinson, Krista; Sainburg, Robert L
2018-01-15
Previous studies proposed that selecting which hand to use for a reaching task appears to be modulated by a factor described as "task difficulty". However, what features of a task might contribute to greater or lesser "difficulty" in the context of hand selection decisions has yet to be determined. There has been evidence that biomechanical and kinematic factors such as movement smoothness and work can predict patterns of selection across the workspace, suggesting a role of predictive cost analysis in hand-selection. We hypothesize that this type of prediction for hand-selection should recruit substantial cognitive resources and thus should be influenced by cognitive-perceptual loading. We test this hypothesis by assessing the role of cognitive-perceptual loading on hand selection decisions, using a visual search task that presents different levels of difficulty (cognitive-perceptual load), as established in previous studies on overall response time and efficiency of visual search. Although the data are necessarily preliminary due to small sample size, our data suggested an influence of cognitive-perceptual load on hand selection, such that the dominant hand was selected more frequently as cognitive load increased. Interestingly, cognitive-perceptual loading also increased cross-midline reaches with both hands. Because crossing midline is more costly in terms of kinematic and kinetic factors, our findings suggest that cognitive processes are normally engaged to avoid costly actions, and that the choice not-to-cross midline requires cognitive resources. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Working memory regulates trait anxiety-related threat processing biases.
Booth, Robert W; Mackintosh, Bundy; Sharma, Dinkar
2017-06-01
High trait anxious individuals tend to show biased processing of threat. Correlational evidence suggests that executive control could be used to regulate such threat-processing. On this basis, we hypothesized that trait anxiety-related cognitive biases regarding threat should be exaggerated when executive control is experimentally impaired by loading working memory. In Study 1, 68 undergraduates read ambiguous vignettes under high and low working memory load; later, their interpretations of these vignettes were assessed via a recognition test. Trait anxiety predicted biased interpretation of social threat vignettes under high working memory load, but not under low working memory load. In Study 2, 53 undergraduates completed a dot probe task with fear-conditioned Japanese characters serving as threat stimuli. Trait anxiety predicted attentional bias to the threat stimuli but, again, this only occurred under high working memory load. Interestingly however, actual eye movements toward the threat stimuli were only associated with state anxiety, and this was not moderated by working memory load, suggesting that executive control regulates biased threat-processing downstream of initial input processes such as orienting. These results suggest that cognitive loads can exacerbate trait anxiety-related cognitive biases, and therefore represent a useful tool for assessing cognitive biases in future research. More importantly, since biased threat-processing has been implicated in the etiology and maintenance of anxiety, poor executive control may be a risk factor for anxiety disorders. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
ERIC Educational Resources Information Center
Cranford, Kristen N.; Tiettmeyer, Jessica M.; Chuprinko, Bryan C.; Jordan, Sophia; Grove, Nathaniel P.
2014-01-01
Information processing provides a powerful model for understanding how learning occurs and highlights the important role that cognitive load plays in this process. In instances in which the cognitive load of a problem exceeds the available working memory, learning can be seriously hindered. Previously reported methods for measuring cognitive load…
Neural effects of cognitive control load on auditory selective attention
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R.; Mangalathu, Jain; Desai, Anjali
2014-01-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210 msec, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. PMID:24946314
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale.
Tian, Kaiwen; Gosvami, Nitya N; Goldsby, David L; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W
2017-02-17
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Load and Time Dependence of Interfacial Chemical Bond-Induced Friction at the Nanoscale
NASA Astrophysics Data System (ADS)
Tian, Kaiwen; Gosvami, Nitya N.; Goldsby, David L.; Liu, Yun; Szlufarska, Izabela; Carpick, Robert W.
2017-02-01
Rate and state friction (RSF) laws are widely used empirical relationships that describe the macroscale frictional behavior of a broad range of materials, including rocks found in the seismogenic zone of Earth's crust. A fundamental aspect of the RSF laws is frictional "aging," where friction increases with the time of stationary contact due to asperity creep and/or interfacial strengthening. Recent atomic force microscope (AFM) experiments and simulations found that nanoscale silica contacts exhibit aging due to the progressive formation of interfacial chemical bonds. The role of normal load (and, thus, normal stress) on this interfacial chemical bond-induced (ICBI) friction is predicted to be significant but has not been examined experimentally. Here, we show using AFM that, for nanoscale ICBI friction of silica-silica interfaces, aging (the difference between the maximum static friction and the kinetic friction) increases approximately linearly with the product of the normal load and the log of the hold time. This behavior is attributed to the approximately linear dependence of the contact area on the load in the positive load regime before significant wear occurs, as inferred from sliding friction measurements. This implies that the average pressure, and thus the average bond formation rate, is load independent within the accessible load range. We also consider a more accurate nonlinear model for the contact area, from which we extract the activation volume and the average stress-free energy barrier to the aging process. Our work provides an approach for studying the load and time dependence of contact aging at the nanoscale and further establishes RSF laws for nanoscale asperity contacts.
Liu, Dan-qing; Cheng, Zhi-qiang; Feng, Qing-jie; Li, He-jie; Ye, Shu-feng
2018-01-01
In this work, 20(S)-protopanaxadiol (PPD)-loaded polycaprolactone (PCL) nanofibres were successfully fabricated by the electrospinning technique using Tween 80 as a solubilizer. Firstly, smooth and continuous nanofibres were collected using suitable solvents and appropriate spinning conditions. Secondly, nanofibre mats were characterized by scanning electron microscopy, thermogravimetric (TG) analysis, Fourier transform infrared spectroscopy and mechanical testing. Finally, nanofibrous membranes were evaluated using water contact angle, in vitro drug release, biodegradation test, in vitro and in vivo anti-tumour activity and cell apoptosis assay. Scanning electron microscopic observations indicated that the diameter of the drug-loaded nanofibres increased with the increase of drug concentration. TG analysis and mechanical test showed that nanofibres were equipped with great thermal and mechanical properties. Biodegradation test exhibited that the structure of fabricated nanofibres had a certain degree of change after 15 days. An in vitro release study showed that PPD from drug-loaded nanofibres could be released in a sustained and prolonged mode. The cytotoxic effect of drug-loaded nanofibre mats examined on human laryngeal carcinoma cells (Hep-2 cells) demonstrated that the prepared nanofibres had a remarkable anti-tumour effect. Meanwhile, the drug-loaded fibre mats showed a super anti-tumour effect in an in vivo anti-tumour study. All in all, PCL nanofibres could be a potential carrier of PPD for cancer treatment. PMID:29892448
Load Variation Influences on Joint Work During Squat Exercise in Reduced Gravity
NASA Technical Reports Server (NTRS)
DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.; Guilliams, Mark E.; Ploutz-Snyder, Lori L.
2011-01-01
Resistance exercises that load the axial skeleton, such as the parallel squat, are incorporated as a critical component of a space exercise program designed to maximize the stimuli for bone remodeling and muscle loading. Astronauts on the International Space Station perform regular resistance exercise using the Advanced Resistive Exercise Device (ARED). Squat exercises on Earth entail moving a portion of the body weight plus the added bar load, whereas in microgravity the body weight is 0, so all load must be applied via the bar. Crewmembers exercising in microgravity currently add approx.70% of their body weight to the bar load as compensation for the absence of the body weight. This level of body weight replacement (BWR) was determined by crewmember feedback and personal experience without any quantitative data. The purpose of this evaluation was to utilize computational simulation to determine the appropriate level of BWR in microgravity necessary to replicate lower extremity joint work during squat exercise in normal gravity based on joint work. We hypothesized that joint work would be positively related to BWR load.
Age-Related Differences in Working Memory Performance in A 2-Back Task
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2011-01-01
The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328
Ahmed, Lubna
2018-03-01
The ability to correctly interpret facial expressions is key to effective social interactions. People are well rehearsed and generally very efficient at correctly categorizing expressions. However, does their ability to do so depend on how cognitively loaded they are at the time? Using repeated-measures designs, we assessed the sensitivity of facial expression categorization to cognitive resources availability by measuring people's expression categorization performance during concurrent low and high cognitive load situations. In Experiment1, participants categorized the 6 basic upright facial expressions in a 6-automated-facial-coding response paradigm while maintaining low or high loading information in working memory (N = 40; 60 observations per load condition). In Experiment 2, they did so for both upright and inverted faces (N = 46; 60 observations per load and inversion condition). In both experiments, expression categorization for upright faces was worse during high versus low load. Categorization rates actually improved with increased load for the inverted faces. The opposing effects of cognitive load on upright and inverted expressions are explained in terms of a cognitive load-related dispersion in the attentional window. Overall, the findings support that expression categorization is sensitive to cognitive resources availability and moreover suggest that, in this paradigm, it is the perceptual processing stage of expression categorization that is affected by cognitive load. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Weber, Geraint J; O'Sullivan, Patrick E; Brassley, Paul
2006-01-01
Background Nutrient loadings from its catchment upon The Fleet, a highly valuable coastal lagoon in Southern England, were hindcast for the period AD 1866–2004, using a catchment model, export coefficients, and historical data on land use changes, livestock numbers, and human population. Agriculture was the main nutrient source throughout, other inputs representing minor contributions. Permanent pasture was historically the main land use, with temporary grassland and cereals increasing during the mid-20th century. Sheep, the main 19th century livestock, were replaced by cattle during the 1930s. Results Total nitrogen loadings rose from ca 41 t yr-1 during the late 19th century to 49–54 t yr-1 for the mid-20th, increasing to 98 t yr-1 by 1986. Current values are ca 77 t yr-1. Total phosphorus loads increased from ca 0.75 t yr-1 for the late 19th century to ca 1.6 t yr-1 for the mid-20th, reached ca 2.2 t yr-1 in 1986, and are now ca 1.5 t yr-1. Loadings rose most rapidly between 1946 and 1988, owing to increased use of inorganic fertilisers, and rising sheep and cattle numbers. Livestock were the main nutrient source throughout, but inputs from inorganic fertilisers increased after 1946, peaking in 1986. Sewage treatment works and other sources contribute little nitrogen, but ca 35% of total phosphorus. Abbotsbury Swannery, an ancient Mute Swan community, provides ca 0.5% of total nitrogen, and ca 5% of total phosphorus inputs. Conclusion The Fleet has been grossly overloaded with nitrogen since 1866, climaxing during the 1980s. Total phosphorus inputs lay below 'permissible' limits until the 1980s, exceeding them in inner, less tidal parts of the lagoon, during the 1940s. Loadings on Abbotsbury Bay exceeded 'permissible' limits by the 1860s, becoming 'dangerous' during the mid-20th century. Phosphorus stripping at point sources will not significantly reduce loadings to all parts of the lagoon. Installation of 5 m buffer strips throughout the catchment and shoreline will marginally affect nitrogen loadings, but will reduce phosphorus inputs to the West Fleet below 'permissible' limits. Only a combination of measures will significantly affect Abbotsbury Bay, where, without effluent diversion, loadings will remain beyond 'permissible'. PMID:17196108
NASA Astrophysics Data System (ADS)
Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander
2017-01-01
With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.
Health effects of supplemental work from home in the European Union.
Arlinghaus, Anna; Nachreiner, Friedhelm
2014-12-01
Internationalization and technological developments have changed the work organization in developed and developing industrial economies. Information and communication technologies, such as computers and smartphones, are increasingly used, allowing more temporal and spatial flexibility of work. This may lead to an increase in supplemental work, i.e. constant availability or working in addition to contractually agreed work hours. This in turn extends work hours and leads to work hours in evenings and weekends, causing interferences of work hours with biological and social rhythms for sleep, recovery and social interaction. However, empirical findings on the effects of supplemental work and work hours on occupational health are rather scarce. Therefore, the aim of this study was to investigate the association between (1) work-related contacts outside of regular work hours and (2) working in the free time with self-reported work-related health impairments in the fourth and fifth European Working Conditions Surveys (EWCS 2005, EWCS 2010). Out of these cross-sectional, large-scale surveys, data on n = 22 836 and n = 34 399 employed workers were used for weighted logistic regression analyses. About half of the sample reported at least occasional supplemental work. The results showed an increased risk of reporting at least one health problem for employees who had been contacted by their employer (EWCS 2005), or worked in their free time to meet work demands (EWCS 2010) in the last 12 months, compared to those reporting no supplemental work or work-related contacts during free time. These results were controlled for demographic variables, physical and mental work load, worker autonomy, and several work hours characteristics (e.g. hours per week, unusual and variable hours). The risk of reporting health problems was increased by being contacted both sometimes (Odds Ratio [OR] 1.26, 95% Confidence Interval [CI] 1.14-1.39) and often (OR 1.13, 95% CI 1.02-1.25), whereas the frequency of working in the free time showed a clear dose-response effect (sometimes: OR 1.14, 95% CI 1.04-1.24; often: OR 1.60, 95% CI 1.47-1.75), both compared to the category "never". The findings, thus, indicate that even a small amount of supplemental work beyond contractually agreed work hours may increase the risk of work-related health impairments. Working in the free time was associated with a substantial risk increase and might be a better indicator for actual work load than being contacted by the employer outside of contractually agreed work hours. Thus, in order to minimize negative health effects, availability requirements for employees outside their regular work hours should be minimized. While these effects definitely need further study, especially regarding a quantification of actual supplemental work and its temporal location, addressing the company culture and using incentives and policies might be options to reduce the amount of supplemental work and maintain the risks of health impairments in the working population at a lower level.
Kristiansen, Jesper; Lund, Søren Peter; Persson, Roger; Shibuya, Hitomi; Nielsen, Per Møberg; Scholz, Matthias
2014-11-01
The study investigated the noise exposure in a group of Danish school teachers. The aims were to investigate if noise posed a risk of impairment of hearing and to study the association between classroom acoustical conditions, noise exposure, vocal symptoms, and cognitive fatigue. Background noise levels, vocal load and speaking time were measured on 35 teachers during actual classroom teaching. The classrooms were characterized acoustically by measurements of reverberation time. Before and after the workday, the teachers answered a questionnaire on fatigue symptoms and carried out two cognitive test tasks sensitive to mental fatigue. The average noise level during the lessons was 72 dB(A), but during indoor sports activities the average noise level increased 6.6 dB(A). Room reverberation time (range 0.39-0.83 s) had no significant effect on the noise level. The teachers were talking with a raised voice in 61% of the time, and the vocal load increased 0.65 dB(A) per dB(A) increase in the average lesson noise level. An increase in voice symptoms during the workday correlated significantly with individual average noise exposure, and a decrease in performance in the two-back test correlated significantly with individual average vocal load. Noise exposure in general classrooms posed no risk of noise-induced hearing impairment in school teachers. However, the results provide evidence for an association between noise exposure and vocal load and development of vocal symptoms and cognitive fatigue after work.
NASA Astrophysics Data System (ADS)
Panjaitan, Arief; Hasibuan, Purwandy
2018-05-01
Implementation of an axial compression load on the steel angle can be found at the various structure such as truss system on telecommunication tower. For telecommunication tower, steel angle section can be suggested as an alternative solution due to its assembling easiness as well as its strength. But, antennas and microwaves installation that keep increases every time on this structure demand reinforcement on each leg of the tower structure. One solution suggested is reinforcement with increasing areas section capacity, where tower leg consisted of single angle section will be reinforced to be double angle section. Regarding this case, this research discussed the behavior of two types of steel angle section: single angle of L.30.30.3 and double angles of 2L.30.30.3. These two sections were designed identically in length (103 cm) and tested by axial compression load. At the first step, compression member together with tension member was formed to be a truss system, where compression and tension member were met at a joint plate. Schematic loading was implemented by giving tension loading on the joint plate until failure of specimens. Experimental work findings showed that implementing double angle sections (103 cm) significantly increased compression capacity of steel angle section up to 118 %.
Improving prediction accuracy of cooling load using EMD, PSR and RBFNN
NASA Astrophysics Data System (ADS)
Shen, Limin; Wen, Yuanmei; Li, Xiaohong
2017-08-01
To increase the accuracy for the prediction of cooling load demand, this work presents an EMD (empirical mode decomposition)-PSR (phase space reconstruction) based RBFNN (radial basis function neural networks) method. Firstly, analyzed the chaotic nature of the real cooling load demand, transformed the non-stationary cooling load historical data into several stationary intrinsic mode functions (IMFs) by using EMD. Secondly, compared the RBFNN prediction accuracies of each IMFs and proposed an IMF combining scheme that is combine the lower-frequency components (called IMF4-IMF6 combined) while keep the higher frequency component (IMF1, IMF2, IMF3) and the residual unchanged. Thirdly, reconstruct phase space for each combined components separately, process the highest frequency component (IMF1) by differential method and predict with RBFNN in the reconstructed phase spaces. Real cooling load data of a centralized ice storage cooling systems in Guangzhou are used for simulation. The results show that the proposed hybrid method outperforms the traditional methods.
Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer
2018-01-01
Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.
Analysis of load monitoring system in hydraulic mobile cranes
NASA Astrophysics Data System (ADS)
Kalairassan, G.; Boopathi, M.; Mohan, Rijo Mathew
2017-11-01
Load moment limiters or safe load control systems or are very important in crane safety. The system detects the moment of lifting load and compares this actual moment with the rated moment. The system uses multiple sensors such as boom angle sensor, boom length sensor for telescopic booms, pressure transducers for measuring the load, anti-two block switch and roller switches. The system works both on rubber and on outriggers. The sensors measure the boom extension, boom angle and load to give as inputs to the central processing, which calculate the safe working load range for that particular configuration of the crane and compare it with the predetermined safe load. If the load exceeds the safe load, actions will be taken which will reduce the load moment, which is boom telescopic retraction and boom lifting. Anti-two block switch is used to prevent the two blocking condition. The system is calibrated and load tested for at most precision.
On delay adjustment for dynamic load balancing in distributed virtual environments.
Deng, Yunhua; Lau, Rynson W H
2012-04-01
Distributed virtual environments (DVEs) are becoming very popular in recent years, due to the rapid growing of applications, such as massive multiplayer online games (MMOGs). As the number of concurrent users increases, scalability becomes one of the major challenges in designing an interactive DVE system. One solution to address this scalability problem is to adopt a multi-server architecture. While some methods focus on the quality of partitioning the load among the servers, others focus on the efficiency of the partitioning process itself. However, all these methods neglect the effect of network delay among the servers on the accuracy of the load balancing solutions. As we show in this paper, the change in the load of the servers due to network delay would affect the performance of the load balancing algorithm. In this work, we conduct a formal analysis of this problem and discuss two efficient delay adjustment schemes to address the problem. Our experimental results show that our proposed schemes can significantly improve the performance of the load balancing algorithm with neglectable computation overhead.
Deng, Yuqin; Wang, Yan; Ding, Xiaoqian; Tang, Yi-Yuan
2015-02-11
The aim of the present study was to examine electrophysiological and behavioral changes caused by different memory loads in a task-switching paradigm. A total of 31 healthy individuals were subjected to a task, in which the stimulus-response reversal paradigm was combined with the task-switching paradigm. The event-related potentials were recorded and the N2 component, an index of conflict processing, was measured. In addition, the neural sources of N2 were further analyzed by standardized low-resolution brain electromagnetic tomography. The event-related potential results showed that high memory load triggered a higher N2 mean amplitude. Moreover, the standardized low-resolution brain electromagnetic tomography data showed that high memory load caused an increase in current densities at the anterior cingulate cortex and the prefrontal cortex in the task-switching paradigm. In summary, our findings provide electrophysiological evidence to interpret possible influences of memory loads on conflict monitoring and modulation during the task switching. These results imply that the working memory load overrules the influence of task-switching performance on the intensification of cognitive control.
NASA Astrophysics Data System (ADS)
Dai, Jiamu; Jin, Junhong; Yang, Shenglin; Li, Guang
2017-07-01
A drug-loaded implantable scaffold is a promising substitute for the treatment of tissue defects after a tumor resection operation. In this work, natural pearl powder with good biocompatibility and osteoconductivity was incorporated into polylactic (PLA) nanofibers via electrospinning, and doxorubicin hydrochloride (DOX) was also loaded in the PLA/pearl scaffold, resulting in a drug-loaded composite nanofibrous scaffold (DOX@PLA/pearl). In vitro drug delivery of DOX from a PLA/pearl composite scaffold was measured and in vitro anti-tumor efficacy was also examined, in particular the effect of the pearl content on both key properties were studied. The results showed that DOX was successfully loaded into PLA/pearl composite nanofibrous scaffolds with different pearl content. More importantly, the delivery rate of DOX kept rising as the pearl content increased, and the anti-tumor efficacy of the drug-loaded scaffold on HeLa cells was improved at an appropriate pearl powder concentration. Thus, we expect that the prepared DOX@PLA/pearl powder nanofibrous mat is a highly promising implantable scaffold that has great potential in postoperative cancer treatment.
Afroundeh, R; Arimitsu, T; Yamanaka, R; Lian, C S; Shirakawa, K; Yunoki, T; Yano, T
2014-01-01
Time delay in the mediation of ventilation (V(.)E) by arterial CO(2) pressure (PaCO(2)) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V(.)E, end tidal CO(2) pressure (PETCO(2)) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO(2) was estimated from PETCO(2) and tidal volume (V(T)). Results showed that predicted arterial CO(2) pressure (PaCO(2 pre)) increased during recovery in both tests. In both tests, V(.)E increased and peaked at the end of exercise. V(.)E decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO(2 pre) and V(.)E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO(2 pre) drives V(.)E with a time delay and that higher work intensity induces a shorter time delay.
Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion.
Hui, C-Y; Glassmaker, N. J.; Tang, T.; Jagota, A.
2004-01-01
This study addresses the strength and toughness of generic fibrillar structures. We show that the stress sigmac required to pull a fibril out of adhesive contact with a substrate has the form sigma(c) = sigma(0)Phi(chi). In this equation, sigma(0) is the interfacial strength, Phi(chi) is a dimensionless function satisfying 0
Hester, Robert; Garavan, Hugh
2005-03-01
In a series of three experiments, increasing working memory (WM) load was demonstrated to reduce the executive control of attention, measured via task-switching and inhibitory control paradigms. Uniquely, our paradigms allowed comparison of the ability to exert executive control when the stimulus was either part of the currently rehearsed memory set or an unrelated distractor item. The results demonstrated a content-specific effect-insofar as switching attention away from, or exerting inhibitory control over, items currently held in WM was especially difficult-compounded by increasing WM load. This finding supports the attentional control theory that active maintenance of competing task goals is critical to executive function and WM capacity; however, it also suggests that the increased salience provided to the contents of WM through active rehearsal exerts a content-specific influence on attentional control. These findings are discussed in relation to cue-induced ruminations, where active rehearsal of evocative information (e.g., negative thoughts in depression or drug-related thoughts in addiction) in WM typically results from environmental cuing. The present study has demonstrated that when information currently maintained in WM is reencountered, it is harder to exert executive control over it. The difficulty with suppressing the processing of these stimuli presumably reinforces the maintenance of these items in WM, due to the greater level of attention they are afforded, and may help to explain how the cue-induced craving/rumination cycle is perpetuated.
Gentis, Nicolaos D; Betz, Gabriele
2012-02-01
The purpose of this work was to investigate and evaluate the powder compressibility of binary mixtures containing a well-compressible compound (microcrystalline cellulose) and a brittle active drug (paracetamol and mefenamic acid) and its progression after a drug load increase. Drug concentration range was 0%-100% (m/m) with 10% intervals. The powder formulations were compacted to several relative densities with the Zwick material tester. The compaction force and tensile strength were fitted to several mathematical models that give representative factors for the powder compressibility. The factors k and C (Heckel and modified Heckel equation) showed mostly a nonlinear correlation with increasing drug load. The biggest drop in both factors occurred at far regions and drug load ranges. This outcome is crucial because in binary mixtures the drug load regions with higher changeover of plotted factors could be a hint for an existing percolation threshold. The susceptibility value (Leuenberger equation) showed varying values for each formulation without the expected trend of decrease for higher drug loads. The outcomes of this study showed the main challenges for good formulation design. Thus, we conclude that such mathematical plots are mandatory for a scientific evaluation and prediction of the powder compaction process. Copyright © 2011 Wiley Periodicals, Inc.
The impact of cognitive load on reward evaluation.
Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M
2015-11-19
The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Jinku; Li, Xinsong; Sun, Fuqian
2011-02-01
The purpose of this work was to evaluate the usefulness of silicone hydrogel contact lenses loaded with ketotifen fumarate for ocular drug delivery. First, silicone contact lenses were prepared by photopolymerization of bitelechelic methacrylated polydimethylsiloxanes macromonomer, 3-methacryloxypropyltris(trimethylsiloxy)silane, and N,N-dimethylacrylamide using ethylene glycol dimethacrylate as a cross-linker and Darocur 1173 as an initiator followed by surface plasma treatment. Then, the silicone hydrogel matrices of the contact lenses were characterized by equilibrium swelling ratio (ESR), tensile tests, ion permeability, and surface contact angle. Finally, the contact lenses were loaded with ketotifen fumarate by pre-soaking in drug solution to evaluate drug loading capacity, in vitro and in vivo release behavior of the silicone contact lenses. The results showed that ESR and ion permeability increase, and the surface contact angle and tensile strength decreased with the increase of DMA component in the silicone hydrogel. The drug loading and in vitro releases were dependent on the hydrogel composition of hydrophilic/hydrophobic phase of the contact lenses. In rabbit eyes, the pre-soaked contact lenses sustained ketotifen fumarate release for more than 24 h, which leads to a more stable drug concentration and a longer mean retention time in tear fluid than that of eye drops of 0.05%.
Parenti, Carmela; Turnaturi, Rita
2017-01-01
Lipid nanocarriers show occlusive properties that may be related to their ability to improve skin hydration. The aim of this work was to evaluate the relationship between in vitro occlusion factor and in vivo skin hydration for three types of lipid nanocarriers: nanoemulsions (NEs), solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). These lipid nanocarriers were loaded with trans-resveratrol (RSV) and incorporated in gel vehicles. In vitro occlusion factor was in the order SLNs > NLCs > NEs. Gels containing unloaded or RSV loaded lipid nanocarriers were applied on the back of a hand of 12 healthy volunteers twice a day for one week, recording skin hydration changes using the instrument Soft Plus. An increase of skin hydration was observed for all lipid nanocarriers (SLNs > NLCs > NEs). RSV loading into these nanocarriers did not affect in vitro and in vivo lipid nanocarriers effects. A linear relationship (r2 = 0.969) was observed between occlusion factor and in vivo increase of skin hydration. Therefore, the results of this study showed the feasibility of using the occlusion factor to predict in vivo skin hydration resulting from topical application of different lipid nanocarriers loading an active ingredient with no inherent hydrating activity. PMID:29232856
Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles
Montenegro, Lucia; Zappalà, Agata; Parenti, Carmela
2017-01-01
Although rosemary essential oil (EO) shows many biological activities, its topical benefits have not been clearly demonstrated. In this work, we assessed the effects on skin hydration and elasticity of rosemary EO after topical application via gel vehicles in human volunteers. To improve its topical efficacy, rosemary EO was loaded into lipid nanoparticles (NLCs) consisting of cetyl palmitate as a solid lipid, and non-ionic surfactants. Such NLCs were prepared using different ratios of EO/solid lipid and those containing EO 3% w/w and cetyl pamitate 7% w/w were selected for in vivo studies, showing the best technological properties (small particle size, low polydispersity index and good stability). Gels containing free EO or EO-loaded NLCs were applied on the hand skin surface of ten healthy volunteers twice a day for one week. Skin hydration and elasticity changes were recorded using the instrument Soft Plus. Gels containing EO-loaded NLCs showed a significant increase in skin hydration in comparison with gels containing free EO. Skin elasticity increased, as well, although to a lesser extent. The results of this study point out the usefulness of rosemary EO-loaded NLCs for the treatment of cutaneous alterations involving loss of skin hydration and elasticity. PMID:29065483
NASA Technical Reports Server (NTRS)
Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.
2008-01-01
A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.
Communities are increasingly installing structural low impact development (LID) practices to mange stormwater and reduce pollutant loads associated with stormwater runoff. Permeable pavement is a LID practice that has limited research on working-scale, side-by-side performance o...
Blood and muscle metabolic responses to draught work of varying intensity and duration in horses.
Gottlieb, M; Essén-Gustavsson, B; Skoglund-Wallberg, H
1989-07-01
Three standardbred trotters performed treadmill exercise at a velocity of 2 m s-1 with a draught load of both 34 kiloponds (kp) (test 1) and 80 kp (test 2), and also at 7 m s-1 with 34 kp (test 3). The heart rate increased to average values of 111 (+/- 5), 157 (+/- 10) and 197 (+/- 7) beats min-1 in tests 1, 2, and 3, respectively. Plasma free fatty acids increased only during tests 1 and 2. Blood lactate and muscle glucose-6-phosphate and lactate concentrations were low after tests 1 and 2, but high after test 3, where also muscle glycogen utilisation was greatest. Muscle creatine phosphate and adenosine triphosphate concentrations decreased after test 3 only. The study indicates that oxidative metabolism is most important for energy supply in muscles when exercise is performed with draught loads of both 34 and 80 kp at a low velocity. Glycogenolysis with lactate accumulation and phosphagen breakdown becomes much more important when, with a draught load of 34 kp, the velocity of exercise increases.
Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.
2010-01-01
Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498
2014-01-01
Background Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). Methods We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7–13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Results Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Conclusions Children with ASD showed differences in activation in the frontal and parietal lobes—both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances. PMID:25057329
Scharinger, Christian; Soutschek, Alexander; Schubert, Torsten; Gerjets, Peter
2017-01-01
According to theoretical accounts, both, N-back and complex span tasks mainly require working memory (WM) processing. In contrast, simple span tasks conceptually mainly require WM storage. Thus, conceptually, an N-back task and a complex span task share more commonalities as compared to a simple span task. In the current study, we compared an N-back task, a complex operation span task (Ospan), and a simple digit span task (Dspan) by means of typical WM load-related measures of the Electroencephalogram (EEG) like the parietal alpha and beta frequency band power, the frontal theta frequency band power, and the P300 amplitude, to examine whether these tasks would show commonalities or differences in WM processing-load. We expected that increasing WM-load would generally lead to a decreased alpha and beta frequency band power, an increased theta frequency band power, and a decreased P300 amplitude. Yet, based on the conceptual considerations, we hypothesized that the outcomes of these measures would be more comparable between the N-back and the Ospan as compared to the Dspan. Our hypotheses were partly confirmed. The N-back and the Ospan showed timely more prolonged alpha frequency band power effects as compared to the Dspan. This might indicate higher demands on WM processing in the former two tasks. The theta frequency band power and the P300 amplitude were most pronounced in the N-back task as compared to both span tasks. This might indicate specific demands on cognitive control in the N-back task. Additionally, we observed that behavioral performance measures correlated with changes in EEG alpha power of the N-back and the Ospan, yet not of the Dspan. Taken together, the hypothesized conceptual commonalities between the N-back task and the Ospan (and, for the Dspan, differences) were only partly confirmed by the electrophysiological WM load-related measures, indicating a potential need for reconsidering the theoretical accounts on WM tasks and the value of a closer link to electrophysiological research herein. PMID:28179880
Scharinger, Christian; Soutschek, Alexander; Schubert, Torsten; Gerjets, Peter
2017-01-01
According to theoretical accounts, both, N -back and complex span tasks mainly require working memory (WM) processing. In contrast, simple span tasks conceptually mainly require WM storage. Thus, conceptually, an N -back task and a complex span task share more commonalities as compared to a simple span task. In the current study, we compared an N -back task, a complex operation span task (Ospan), and a simple digit span task (Dspan) by means of typical WM load-related measures of the Electroencephalogram (EEG) like the parietal alpha and beta frequency band power, the frontal theta frequency band power, and the P300 amplitude, to examine whether these tasks would show commonalities or differences in WM processing-load. We expected that increasing WM-load would generally lead to a decreased alpha and beta frequency band power, an increased theta frequency band power, and a decreased P300 amplitude. Yet, based on the conceptual considerations, we hypothesized that the outcomes of these measures would be more comparable between the N -back and the Ospan as compared to the Dspan. Our hypotheses were partly confirmed. The N -back and the Ospan showed timely more prolonged alpha frequency band power effects as compared to the Dspan. This might indicate higher demands on WM processing in the former two tasks. The theta frequency band power and the P300 amplitude were most pronounced in the N -back task as compared to both span tasks. This might indicate specific demands on cognitive control in the N -back task. Additionally, we observed that behavioral performance measures correlated with changes in EEG alpha power of the N -back and the Ospan, yet not of the Dspan. Taken together, the hypothesized conceptual commonalities between the N -back task and the Ospan (and, for the Dspan, differences) were only partly confirmed by the electrophysiological WM load-related measures, indicating a potential need for reconsidering the theoretical accounts on WM tasks and the value of a closer link to electrophysiological research herein.
Vogan, Vanessa M; Morgan, Benjamin R; Lee, Wayne; Powell, Tamara L; Smith, Mary Lou; Taylor, Margot J
2014-01-01
Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7-13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Children with ASD showed differences in activation in the frontal and parietal lobes-both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level processing, whereas controls showed activity in frontal lobes related to the classic WM network. Findings will help guide future work by localizing areas of vulnerability to developmental disturbances.
Phonological Working Memory for Words and Nonwords in Cerebral Cortex
Ghosh, Satrajit S.; Ostrovskaya, Irina; Gabrieli, John D. E.; Kovelman, Ioulia
2017-01-01
Purpose The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were related to participants' nonword repetition abilities. Method We used functional magnetic resonance imaging to measure neurophysiological response during a nonword discrimination task derived from standard clinical assessments of phonological working memory. Healthy adult control participants (N = 16) discriminated pairs of real words or nonwords under varying phonological working memory load, which we manipulated by parametrically varying the number of syllables in target (non)words. Participants' cognitive and phonological abilities were also measured using standardized assessments. Results Neurophysiological responses in bilateral superior temporal gyrus, inferior frontal gyrus, and supplementary motor area increased with greater phonological working memory load. Activation in left superior temporal gyrus during nonword discrimination correlated with participants' performance on standard clinical nonword repetition tests. Conclusion These results suggest that phonological working memory is related to the function of cortical structures that canonically underlie speech perception and production. PMID:28631005
Koike, Shinsuke; Takizawa, Ryu; Nishimura, Yukika; Kinou, Masaru; Kawasaki, Shingo; Kasai, Kiyoto
2013-09-01
Caudal regions of the prefrontal cortex, including the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex, are involved in essential cognitive functions such as working memory. In contrast, more rostral regions, such as the frontopolar cortex (FpC), have integrative functions among cognitive functions and thereby contribute crucially to real-world social activity. Previous functional magnetic resonance imaging studies have shown patients with schizophrenia had different DLPFC activity pattern in response to cognitive load changes compared to healthy controls; however, the spatial relationship between the caudal and rostral prefrontal activation has not been evaluated under less-constrained conditions. Twenty-six patients with schizophrenia and 26 age-, sex-, and premorbid-intelligence-matched healthy controls participated in this study. Hemodynamic changes during n-back working memory tasks with different cognitive loads were measured using multi-channel near-infrared spectroscopy (NIRS). Healthy controls showed significant task-related activity in the bilateral VLPFC and significant task-related decreased activity in the DLPFC, with greater signal changes when the task required more cognitive load. In contrast, patients with schizophrenia showed activation in the more rostral regions, including bilateral DLPFC and FpC. Neither decreased activity nor greater activation in proportion to elevated cognitive load occurred. This multi-channel NIRS study demonstrated that activation intensity did not increase in patients with schizophrenia associated with cognitive load changes, suggesting hypo-frontality as cognitive impairment in schizophrenia. On the other hand, patients had broader prefrontal activity in areas such as the bilateral DLPFC and FpC regions, thus suggesting a hyper-frontality compensatory response. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of integral exposure energy load on aural analyzer of miners
NASA Technical Reports Server (NTRS)
Kornilov, A. N.; Larantseva, Y. I.
1981-01-01
The individual exposure integral noise load on workers before the beginning of hearing impairment was determined for a group of 20 male miners who had worked with drilling equipment and harvesters for 8 to 20 years before the onset of the disability. Results show that the total exposure energy load of about 4 kw x h sq m, obtained by miners in the examined group, resulted in occupational injury to the auditory organ (cochlear neuritis) in 75% of the cases. The equivalent energy level of noise computed according to the date of total energy load is roughly 99 db A, which significantly exceeds the permissible amount of 85 db A. There is a correlation (r = 0.77) between the integral exposure energy noise on the aural analyzer in the degree of increase in the total threshold for the mean speech range.
NASA Astrophysics Data System (ADS)
Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.
2016-10-01
This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.
Design of responsive materials using topologically interlocked elements
NASA Astrophysics Data System (ADS)
Molotnikov, A.; Gerbrand, R.; Qi, Y.; Simon, G. P.; Estrin, Y.
2015-02-01
In this work we present a novel approach to designing responsive structures by segmentation of monolithic plates into an assembly of topologically interlocked building blocks. The particular example considered is an assembly of interlocking osteomorphic blocks. The results of this study demonstrate that the constraining force, which is required to hold the blocks together, can be viewed as a design parameter that governs the bending stiffness and the load bearing capacity of the segmented structure. In the case where the constraining forces are provided laterally using an external frame, the maximum load the assembly can sustain and its stiffness increase linearly with the magnitude of the lateral load applied. Furthermore, we show that the segmented plate with integrated shape memory wires employed as tensioning cables can act as a smart structure that changes its flexural stiffness and load bearing capacity in response to external stimuli, such as heat generated by the switching on and off an electric current.
Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus.
Lee, Minchul; Soya, Hideaki
2017-12-31
Voluntary loaded wheel running involves the use of a load during a voluntary running activity. A muscle-strength or power-type activity performed at a relatively high intensity and a short duration may cause fewer apparent metabolic adaptations but may still elicit muscle fiber hypertrophy. This study aimed to determine the effects of acute voluntary wheel running with an additional load on brain-derived neurotrophic factor (BDNF) expression in the rat hippocampus. Ten-week old male Wistar rats were assigned randomly to a (1) sedentary (Control) group; (2) voluntary exercise with no load (No-load) group; or (3) voluntary exercise with an additional load (Load) group for 1-week (acute period). The expression of BDNF genes was quantified by real-time PCR. The average distance levels were not significantly different in the No-load and Load groups. However, the average work levels significantly increased in the Load group. The relative soleus weights were greater in the No-load group. Furthermore, loaded wheel running up-regulated the BDNF mRNA level compared with that in the Control group. The BDNF mRNA levels showed a positive correlation with workload levels (r=0.75), suggesting that the availability of multiple workload levels contributes to the BDNF-related benefits of loaded wheel running noted in this study. This novel approach yielded the first set of findings showing that acute voluntary loaded wheel running, which causes muscular adaptation, enhanced BDNF expression, suggesting a possible role of high-intensity short-term exercise in hippocampal BDNF activity. ©2017 The Korean Society for Exercise Nutrition
Working memory load modulates microsaccadic rate.
Dalmaso, Mario; Castelli, Luigi; Scatturin, Pietro; Galfano, Giovanni
2017-03-01
Microsaccades are tiny eye movements that individuals perform unconsciously during fixation. Despite that the nature and the functions of microsaccades are still lively debated, recent evidence has shown an association between these micro eye movements and higher order cognitive processes. Here, in two experiments, we specifically focused on working memory and addressed whether differential memory load could be reflected in a modulation of microsaccade dynamics. In Experiment 1, participants memorized a numerical sequence composed of either two (low-load condition) or five digits (high-load condition), appearing at fixation. The results showed a reduction in the microsaccadic rate in the high-load compared to the low-load condition. In Experiment 2, five red or green digits were always presented at fixation. Participants either memorized the color (low-load condition) or the five digits (high-load condition). Hence, visual stimuli were exactly the same in both conditions. Consistent with Experiment 1, microsaccadic rate was lower in the high-load than in the low-load condition. Overall, these findings reveal that an engagement of working memory can have an impact on microsaccadic rate, consistent with the view that microsaccade generation is pervious to top-down processes.
Fryer, Susanna L.; Woods, Scott W.; Kiehl, Kent A.; Calhoun, Vince D.; Pearlson, Godfrey D.; Roach, Brian J.; Ford, Judith M.; Srihari, Vinod H.; McGlashan, Thomas H.; Mathalon, Daniel H.
2013-01-01
Background: The default mode network (DMN) is a set of brain regions typically activated at rest and suppressed during extrinsic cognition. Schizophrenia has been associated with deficient DMN suppression, though the extent to which DMN dysfunction predates psychosis onset is unclear. This study examined DMN suppression during working memory (WM) performance in youth at clinical high-risk (CHR) for psychosis, early schizophrenia (ESZ) patients, and healthy controls (HC). We hypothesized that the DMN would show load-dependent suppression during WM retrieval in HC but not in ESZ, with CHR participants showing an intermediate pattern. Methods: fMRI data were collected from CHR (n = 32), ESZ (n = 22), and HC (n = 54) participants, ages 12–30. DMN regions were defined via seed-based connectivity analysis of resting-state fMRI data from an independent HC sample. Load-dependent deactivations of these DMN regions in response to WM probes were interrogated. Results: Healthy controls showed linear load-dependent increases in DMN deactivation. Significant Group-by-Load interactions were observed in DMN regions including medial prefrontal and lateral posterior parietal cortices. Group-by-Load effects in posterior DMN nodes resulted from less suppression at higher WM loads in ESZ relative to HC, with CHR differing from neither group. In medial prefrontal cortex, suppression of activity at higher WM loads was significantly diminished in both CHR and ESZ groups, relative to HC. In addition, investigation of dorsolateral prefrontal cortex (DLPFC) activations revealed that ESZ activated right DLPFC significantly more than HC, with CHR differing from neither group. Conclusion: While HC showed WM load-dependent modulation of DMN suppression, CHR individuals had deficient higher-load DMN suppression that was similar to, but less pronounced than, the distributed suppression deficits evident in ESZ patients. These results suggest that DMN dysregulation associated with schizophrenia predates psychosis onset. PMID:24032017
Fryer, Susanna L; Woods, Scott W; Kiehl, Kent A; Calhoun, Vince D; Pearlson, Godfrey D; Roach, Brian J; Ford, Judith M; Srihari, Vinod H; McGlashan, Thomas H; Mathalon, Daniel H
2013-01-01
The default mode network (DMN) is a set of brain regions typically activated at rest and suppressed during extrinsic cognition. Schizophrenia has been associated with deficient DMN suppression, though the extent to which DMN dysfunction predates psychosis onset is unclear. This study examined DMN suppression during working memory (WM) performance in youth at clinical high-risk (CHR) for psychosis, early schizophrenia (ESZ) patients, and healthy controls (HC). We hypothesized that the DMN would show load-dependent suppression during WM retrieval in HC but not in ESZ, with CHR participants showing an intermediate pattern. fMRI data were collected from CHR (n = 32), ESZ (n = 22), and HC (n = 54) participants, ages 12-30. DMN regions were defined via seed-based connectivity analysis of resting-state fMRI data from an independent HC sample. Load-dependent deactivations of these DMN regions in response to WM probes were interrogated. Healthy controls showed linear load-dependent increases in DMN deactivation. Significant Group-by-Load interactions were observed in DMN regions including medial prefrontal and lateral posterior parietal cortices. Group-by-Load effects in posterior DMN nodes resulted from less suppression at higher WM loads in ESZ relative to HC, with CHR differing from neither group. In medial prefrontal cortex, suppression of activity at higher WM loads was significantly diminished in both CHR and ESZ groups, relative to HC. In addition, investigation of dorsolateral prefrontal cortex (DLPFC) activations revealed that ESZ activated right DLPFC significantly more than HC, with CHR differing from neither group. While HC showed WM load-dependent modulation of DMN suppression, CHR individuals had deficient higher-load DMN suppression that was similar to, but less pronounced than, the distributed suppression deficits evident in ESZ patients. These results suggest that DMN dysregulation associated with schizophrenia predates psychosis onset.
Psychosocial factors and mental work load: a reality perceived by nurses in intensive care units1
Ceballos-Vásquez, Paula; Rolo-González, Gladys; Hérnandez-Fernaud, Estefanía; Díaz-Cabrera, Dolores; Paravic-Klijn, Tatiana; Burgos-Moreno, Mónica
2015-01-01
OBJECTIVE: To analyse the perception of psychosocial factors and mental workload of nurses who work in intensive care units. It is hypothesised that nurses in these units could perceive psychosocial risks, manifesting in a high mental work load. The psychosocial dimension related to the position's cognitive demands is hypothesised to mostly explain mental work load. METHOD: Quantitative study, with a descriptive, cross-sectional, and comparative design. A total of 91% of the intensive care unit populations of three Chilean hospitals was surveyed, corresponding to 111 nurses. The instruments utilised included (A) a biosociodemographic history questionnaire; (b) the SUSESO-ISTAS 21 questionnaire; and (c) the Mental Work Load Subjective Scale (ESCAM, in Spanish). RESULTS: In total, 64% and 57% of participants perceived high levels of exposure to the psychosocial risks Psychosocial demands and Double shift, respectively. In addition, a medium-high level of overall mental load was observed. Positive and significant correlations between some of the SUSESO-ISTAS 21 and ESCAM dimensions were obtained. Using a regression analysis, it was determined that three dimensions of the psychosocial risk questionnaire helped to explain 38% of the overall mental load. CONCLUSION: Intensive care unit nurses felt that inadequate psychosocial factors and mental work overload existed in several of the tested dimensions. PMID:26039303
Psychosocial factors and mental work load: a reality perceived by nurses in intensive care units.
Ceballos-Vásquez, Paula; Rolo-González, Gladys; Hérnandez-Fernaud, Estefanía; Díaz-Cabrera, Dolores; Paravic-Klijn, Tatiana; Burgos-Moreno, Mónica
2015-01-01
To analyse the perception of psychosocial factors and mental workload of nurses who work in intensive care units. It is hypothesised that nurses in these units could perceive psychosocial risks, manifesting in a high mental work load. The psychosocial dimension related to the position's cognitive demands is hypothesised to mostly explain mental work load. Quantitative study, with a descriptive, cross-sectional, and comparative design. A total of 91% of the intensive care unit populations of three Chilean hospitals was surveyed, corresponding to 111 nurses. The instruments utilised included (A) a biosociodemographic history questionnaire; (b) the SUSESO-ISTAS 21 questionnaire; and (c) the Mental Work Load Subjective Scale (ESCAM, in Spanish). In total, 64% and 57% of participants perceived high levels of exposure to the psychosocial risks Psychosocial demands and Double shift, respectively. In addition, a medium-high level of overall mental load was observed. Positive and significant correlations between some of the SUSESO-ISTAS 21 and ESCAM dimensions were obtained. Using a regression analysis, it was determined that three dimensions of the psychosocial risk questionnaire helped to explain 38% of the overall mental load. Intensive care unit nurses felt that inadequate psychosocial factors and mental work overload existed in several of the tested dimensions.
Load-Dependent Friction Hysteresis on Graphene.
Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie
2016-05-24
Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.
Advancement Of Tritium Powered Betavoltaic Battery Systems FY16 EOY Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staack, G.; Gaillard, J.; Hitchcock, D.
2016-10-12
The goal of this work is to increase the power output of tritium-powered betavoltaic batteries and investigate the change in power output and film resistance in real-time during tritium loading of adsorbent films. To this end, several tritium-compatible test vessels with the capability of measuring both the resistivity of a tritium trapping film and the power output of a betavoltaic device in-situ have been designed and fabricated using four electrically insulated feedthroughs in tritium-compatible load cells. Energy conversion devices were received from Widetronix, a betavoltaic manufacturing firm based in Ithaca, NY. Thin films were deposited on the devices and cappedmore » with palladium to facilitate hydrogen loading. Gold contacts were then deposited on top of the films to allow resistivity measurements of the film during hydrogen loading. Finally, the chips were wire bonded and installed in the test cells. The cells were then baked-out under vacuum and leak checked at temperature to reduce the chances of tritium leaks during loading. Following the bake-out, IV curves were measured to verify no internal wires were compromised, and the cells were delivered to Tritium for loading. Tritium loading is anticipated in October, 2017.« less
The impact of working technique on physical loads - an exposure profile among newspaper editors.
Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E
2003-05-15
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.
The Office of General Counsel (OGC) has an ongoing business process engineering and business process automation initiative which has helped the office reduce administrative labor costs while increasing employee effectiveness. Supporting this effort is a system of automated routines accessible through a portal' interface called OGC Dashboard. The dashboard helps OGC track work progress, legal case load, written work products such as legal briefs and advice, and scheduling processes such as employee leave plans (via calendar) and travel compensatory time off.
Why a Network Energy Monitoring and Control System?
1985-01-01
years to complete as they were modified to work with existing, frequently very old, buildings. The benefits derived from those systems that did work were...or groups of workstations, then certain of the occupants could be tasked to turn off their respective lighting. The advantage is the increased...units. Duty Cycle (Strategy J) This strategy takes advantage of the oversizing of the air handling unit. The air handling unit is sized for a peak load
NASA Astrophysics Data System (ADS)
Al-asadi, M.; Miskolczi, N.
2018-05-01
In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando
2015-01-01
Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes--with no effects on perceptual processes--and a posterior to anterior shift in the recruitment of neural resources.
Jones, C.S.; Schilling, K.E.
2011-01-01
Fluvial sediment is a ubiquitous pollutant that negatively aff ects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate longterm TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that eff orts to reduce sediment load from the watershed appear to be working. ?? 2011 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando
2015-01-01
Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes -with no effects on perceptual processes- and a posterior to anterior shift in the recruitment of neural resources. PMID:26569113
Effect of same-sided and cross-body load carriage on 3D back shape in young adults.
O'Shea, C; Bettany-Saltikov, J A; Warren, J G
2006-01-01
Regular carriage of heavy loads such as backpacks, satchels and mailbags results in a variety of acute medical problems and increased potential for back injury. There is a paucity of information about the specific changes in back posture that occur in response to asymmetrical loading. The purpose of this study was to examine the changes in back shape that occurred in response to asymmetrical load carriage, either on one shoulder (same-side) or across the body (cross-body), in healthy young adults. A convenience sample of 21 physiotherapy students randomly performed three trials (unloaded, same-side loaded, cross-body loaded) in standing with a 15% body load. The Microscribe 3DX digitiser (Immersion Group Ltd) recorded the three dimensional coordinates of 15 Key anatomical landmarks on the back in the three conditions. A one-way ANOVA with repeated measures and post-hoc tests was implemented to highlight statistical differences in the data collected (p<0.05). Significant differences were found in the x, y and z coordinates of the anatomical landmarks in the upper back between unloaded and loaded conditions. Results demonstrated significantly less impact on spinal posture from cross-body loading as compared to same-sided loading. This study confirms that there are significant three-dimensional changes in back shape in response to asymmetrical loading. Further work is needed to evaluate the optimal carriage type and maximal body load that results in the least spinal impact and injury potential in young adults.
Assessing neurocognitive function in psychiatric disorders: A roadmap for enhancing consensus
Ahmari, Susanne E.; Eich, Teal; Cebenoyan, Deniz; Smith, Edward E.; Simpson, H. Blair
2014-01-01
It has been challenging to identify core neurocognitive deficits that are consistent across multiple studies in patients with Obsessive Compulsive Disorder (OCD). In turn, this leads to difficulty in translating findings from human studies into animal models to dissect pathophysiology. In this article, we use primary data from a working memory task in OCD patients to illustrate this issue. Working memory deficiencies have been proposed as an explanatory model for the evolution of checking compulsions in a subset of OCD patients. However, findings have been mixed due to variability in task design, examination of spatial vs. verbal working memory, and heterogeneity in patient populations. Two major questions therefore remain: first, do OCD patients have disturbances in working memory? Second, if there are working memory deficits in OCD, do they cause checking compulsions?. In order to investigate these questions, we tested 19 unmedicated OCD patients and 23 matched healthy controls using a verbal working memory task that has increased difficulty/task-load compared to classic digit-span tasks. OCD patients did not significantly differ in their performance on this task compared to healthy controls, regardless of the outcome measure used (i.e. reaction time or accuracy). Exploratory analyses suggest that a subset of patients with predominant doubt/checking symptoms may have decreased memory confidence despite normal performance on trials with the highest working memory load. These results suggest that other etiologic factors for checking compulsions should be considered. In addition, they serve as a touchstone for discussion, and therefore help us to generate a roadmap for increasing consensus in the assessment of neurocognitive function in psychiatric disorders. PMID:24994503
How accounting for transient catchment hydrology in the design of river engineering works ?
NASA Astrophysics Data System (ADS)
Rosso, R.; Bocchiola, D.; Rulli, M. C.
2009-04-01
Current engineering practice of hydrologic design is based on hazard estimates that are carried out under the steady state conjecture, i.e. stationarity. This occurs for both assessing averages and second order statistics, and predicting low frequency quantiles. Conversely, routing of hydrologic input variables via known boundary conditions of the systems, i.e. the hydrological basin, can produce non stationary behavior of derived variates, i.e. those required for design. Abrupt changes in the drainage basin can lead to unexpected and profound changes in the magnitude of design events, sometimes providing design loads higher than those expected for a stationary system. Modified connectivity between the constantly developing human mobility network, the drainage system, and the dendritic river topology may result in tremendously modified signature of the climate on hydrologic response. Anthropic footprint on soil use may lead to hugely increased hydrological feedback and floods therein. Transient effects of forest fires in arid or semiarid areas decrease vegetation dampening on runoff production and soil stability, with a dramatic fallout when heavy storms occur within the post event recovery time window. Sudden pulses of fine and coarse sediment occurring in the forest fire's wake, and in connection with rapid mass movements, such as landslides or avalanches in alpine areas, may decrease the effectiveness of engineering works even for unchanged hydrologic loads. New paradigms are necessary to provide enhanced design strategies of river engineering works. These should entail the heavily non linear effects of pulse events with transient effect in time on hydro-morphological dynamics of rivers and increased risk therein, particularly for those works aimed to bear extreme loads, i.e. coping with very high return periods. Major instances deal with dams, power plants, and all those schemes that are very sensitive because of potential consequences of hydrologic catastrophes. Here, examples are given of structures, works and events with transient effect in time affecting the expected hydrological risk, and some strategies sketched to deal with such issues henceforward.
Performance of distributed multiscale simulations
Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.
2014-01-01
Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258
Neural effects of cognitive control load on auditory selective attention.
Sabri, Merav; Humphries, Colin; Verber, Matthew; Liebenthal, Einat; Binder, Jeffrey R; Mangalathu, Jain; Desai, Anjali
2014-08-01
Whether and how working memory disrupts or alters auditory selective attention is unclear. We compared simultaneous event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) responses associated with task-irrelevant sounds across high and low working memory load in a dichotic-listening paradigm. Participants performed n-back tasks (1-back, 2-back) in one ear (Attend ear) while ignoring task-irrelevant speech sounds in the other ear (Ignore ear). The effects of working memory load on selective attention were observed at 130-210ms, with higher load resulting in greater irrelevant syllable-related activation in localizer-defined regions in auditory cortex. The interaction between memory load and presence of irrelevant information revealed stronger activations primarily in frontal and parietal areas due to presence of irrelevant information in the higher memory load. Joint independent component analysis of ERP and fMRI data revealed that the ERP component in the N1 time-range is associated with activity in superior temporal gyrus and medial prefrontal cortex. These results demonstrate a dynamic relationship between working memory load and auditory selective attention, in agreement with the load model of attention and the idea of common neural resources for memory and attention. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ameer, Fatima; Munir, Rimsha; Usman, Hina; Rashid, Rida; Shahjahan, Muhammad; Hasnain, Shahida; Zaidi, Nousheen
2017-04-01
Lipid-load in peripheral blood mononuclear cells (PBMCs) has recently gained attention of the researchers working on nutritional regulation of metabolic health. Previous works have indicated that the metabolic circuitries in the circulating PBMCs are influenced by dietary-intake and macronutrient composition of diet. In the present work, we analyzed the impact of diet and dietary macronutrients on PBMCs' lipid-load. The overall analyses revealed that dietary carbohydrates and fats combinatorially induce triglyceride accumulation in PBMCs. On the other hand, dietary fats were shown to induce significant decrease in PBMCs' cholesterol-load. The effects of various demographic factors -including age, gender and body-weight- on PBMCs' lipid-load were also examined. Body-weight and age were both shown to affect PBMC's lipid-load. Our study fails to provide any direct association between extracellular lipid availability and cholesterol-load in both, freshly isolated and cultured PBMCs. The presented work significantly contributes to the current understanding of the impact of food-consumption, dietary macronutrients, extracellular lipid availability and demographic factors on lipid-load in PBMCs. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
[Physical work capacity in coal miners and industrial workers].
Benavides, R
1992-10-01
The aerobic work capacity of 220 coal miners aged 22 to 63 years with a high physical work load and 78 industrial workers aged 19 to 58 years with a relatively light work load was measured to observe if there was a relationship between the work load of these subjects and their aerobic work capacity. All the subjects were subjected to a medical examination, spirometry, chest x Rays and anthropometric measurements. Aerobic work capacity was indirectly estimated extrapolating pulse rates obtained al submaximal work loads in a bicycle ergometer to the calculated maximal cardiac frequency for age. Aerobic work capacity was not different between coal miners and industrial workers, either measured as absolute values (2.43 +/- 0.41 and 2.5 +/- 0.49 l/min respectively) or as relative values (43.2 +/- 6.9 and 43.4 +/- 8.2 ml/kg lean body mass respectively). These values decreased with age in the same proportion in both groups (0.24 l/min per decade). Lean body mass was significantly higher in industrial workers and decreased significantly with age only in coal miners. Considering published energy requirements for mine labors, none of the studied miners should work as digger and a high proportion of the other workers would be exposed to hazardous work loads to their health. The fact that over 50% of these subjects can efficiently fulfill their jobs may indicate that they have a high anaerobic work capacity. This hypothesis needs confirmation with future studies.
Phillips, Steven; Niki, Kazuhisa
2002-10-01
Working memory is affected by items stored and the relations between them. However, separating these factors has been difficult, because increased items usually accompany increased associations/relations. Hence, some have argued, relational effects are reducible to item effects. We overcome this problem by manipulating index length: the fewest number of item positions at which there is a unique item, or tuple of items (if length >1), for every instance in the relational (memory) set. Longer indexes imply greater similarity (number of shared items) between instances and higher load on encoding processes. Subjects were given lists of study pairs and asked to make a recognition judgement. The number of unique items and index length in the three list conditions were: (1) AB, CD: four/one; (2) AB, CD, EF: six/one; and (3) AB, AD, CB: four/two, respectively. Japanese letters were used in Experiments 1 (kanji-ideograms) and 2 (hiragana-phonograms); numbers in Experiment 3; and shapes generated from Fourier descriptors in Experiment 4. Across all materials, right dominant temporoparietal and middle frontal gyral activity was found with increased index length, but not items during study. In Experiment 5, a longer delay was used to isolate retention effects in the absence of visual stimuli. Increased left hemispheric activity was observed in the precuneus, middle frontal gyrus, and superior temporal gyrus with increased index length for the delay period. These results show that relational load is not reducible to item load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.
2013-07-01
The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP's overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.
2013-01-16
The current estimates and glass formulation efforts have been conservative in terms of achievable waste loadings. These formulations have been specified to ensure that the glasses are homogenous, contain essentially no crystalline phases, are processable in joule-heated, ceramic-lined melters and meet Hanford Tank Waste Treatment and Immobilization Plant (WTP) Contract terms. The WTP?s overall mission will require the immobilization of tank waste compositions that are dominated by mixtures of aluminum (Al), chromium (Cr), bismuth (Bi), iron (Fe), phosphorous (P), zirconium (Zr), and sulphur (S) compounds as waste-limiting components. Glass compositions for these waste mixtures have been developed based upon previousmore » experience and current glass property models. Recently, DOE has initiated a testing program to develop and characterize HLW glasses with higher waste loadings and higher throughput efficiencies. Results of this work have demonstrated the feasibility of increases in waste loading from about 25 wt% to 33-50 wt% (based on oxide loading) in the glass depending on the waste stream. In view of the importance of aluminum limited waste streams at Hanford (and also Savannah River), the ability to achieve high waste loadings without adversely impacting melt rates has the potential for enormous cost savings from reductions in canister count and the potential for schedule acceleration. Consequently, the potential return on the investment made in the development of these enhancements is extremely favorable. Glass composition development for one of the latest Hanford HLW projected compositions with sulphate concentrations high enough to limit waste loading have been successfully tested and show tolerance for previously unreported tolerance for sulphate. Though a significant increase in waste loading for high-iron wastes has been achieved, the magnitude of the increase is not as substantial as those achieved for high-aluminum, high-chromium, high-bismuth or sulphur. Waste processing rate increases for high-iron streams as a combined effect of higher waste loadings and higher melt rates resulting from new formulations have been achieved.« less
Zhang, Fei-Ruo; He, Li-Hua; Wu, Shan-Shan; Li, Jing-Yun; Ye, Kang-Pin; Wang, Sheng
2011-11-01
Work-related musculoskeletal disorders (WMSDs) have high prevalence in sewing machine operators employed in the garment industry. Long work duration, sustained low level work and precise hand work are the main risk factors of neck-shoulder disorders for sewing machine operators. Surface electromyogram (sEMG) offers a valuable tool to determine muscle activity (internal exposure) and quantify muscular load (external exposure). During sustained and/or repetitive muscle contractions, typical changes of muscle fatigue in sEMG, as an increase in amplitude or a decrease as a shift in spectrum towards lower frequencies, can be observed. In this paper, we measured and quantified the muscle load and muscular activity patterns of neck-shoulder muscles in female sewing machine operators during sustained sewing machine operating tasks using sEMG. A total of 18 healthy women sewing machine operators volunteered to participate in this study. Before their daily sewing machine operating task, we measured the maximal voluntary contractions (MVC) and 20%MVC of bilateral cervical erector spinae (CES) and upper trapezius (UT) respectively, then the sEMG signals of bilateral UT and CES were monitored and recorded continuously during 200 minutes of sustained sewing machine operating simultaneously which equals to 20 time windows with 10 minutes as one time window. After 200 minutes' work, we retest 20%MVC of four neck-shoulder muscles and recorded the sEMG signals. Linear analysis, including amplitude probability distribution frequency (APDF), amplitude analysis parameters such as roof mean square (RMS) and spectrum analysis parameter as median frequency (MF), were used to calculate and indicate muscle load and muscular activity of bilateral CES and UT. During 200 minutes of sewing machine operating, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezius (LUT) and right upper trapezius (RUT) were 6.78%MVE, 6.94%MVE, 6.47%MVE and 5.68%MVE, respectively. Work load of right muscles are significantly higher than that of the left muscles (P < 0.05); sEMG signal analysis of isometric contractions indicated that the amplitude value before operating was significantly higher than that of after work (P < 0.01), and the spectrum value of bilateral CES and UT were significantly lower than those of after work (P < 0.01); according to the sEMG signal data of 20 time windows, with operating time pass by, the muscle activity patterns of bilateral CES and UT showed dynamic changes, the maximal amplitude of LCES, RCES, LUT occurred at the 20th time window, RUT at 16th time window, spectrum analysis showed that the lower value happened at 7th, 16th, 20th time windows. Female sewing machine operators were exposed to high sustained static load on bilateral neck-shoulder muscles; left neck and shoulder muscles were held in more static positions; the 7th, 16th, and 20th time windows were muscle fatigue period that ergonomics intervention can protocol at these periods.
Do You Hear What I Hear? A Response to Faculty Perceptions.
ERIC Educational Resources Information Center
Dill, Gary A.
Causes of morale problems among faculty at Southwest Texas State University are discussed, along with suggestions to improve conditions. Causes include: real income decline, a deteriorating work environment, an inhospitable academic labor market, increasing disciplinary isolation and inequity, a demanding teaching load, high research demands, lack…
Effects of buffer strips and grazing management on soil loss from pastures
USDA-ARS?s Scientific Manuscript database
Intensive grazing pressure can cause soil erosion from pastures causing increased sediment loading to aquatic systems. The objectives of this work were to determine the long-term effects of grazing management and buffer strips on soil erosion from pastures fertilized with broiler litter. Field stud...
Dynamic Multiple Work Stealing Strategy for Flexible Load Balancing
NASA Astrophysics Data System (ADS)
Adnan; Sato, Mitsuhisa
Lazy-task creation is an efficient method of overcoming the overhead of the grain-size problem in parallel computing. Work stealing is an effective load balancing strategy for parallel computing. In this paper, we present dynamic work stealing strategies in a lazy-task creation technique for efficient fine-grain task scheduling. The basic idea is to control load balancing granularity depending on the number of task parents in a stack. The dynamic-length strategy of work stealing uses run-time information, which is information on the load of the victim, to determine the number of tasks that a thief is allowed to steal. We compare it with the bottommost first work stealing strategy used in StackThread/MP, and the fixed-length strategy of work stealing, where a thief requests to steal a fixed number of tasks, as well as other multithreaded frameworks such as Cilk and OpenMP task implementations. The experiments show that the dynamic-length strategy of work stealing performs well in irregular workloads such as in UTS benchmarks, as well as in regular workloads such as Fibonacci, Strassen's matrix multiplication, FFT, and Sparse-LU factorization. The dynamic-length strategy works better than the fixed-length strategy because it is more flexible than the latter; this strategy can avoid load imbalance due to overstealing.
NASA Astrophysics Data System (ADS)
Zhang, Ming
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
Kulas, Anthony S.; Hortobágyi, Tibor; DeVita, Paul
2010-01-01
Abstract Context: Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. Objective: To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing. Design: Crossover study. Setting: Controlled laboratory environment. Patients or Other Participants: Twenty-one participants (10 men: age = 20.3 ± 1.15 years, height = 1.82 ± 0.04 m, mass = 78.2 ± 7.3 kg; 11 women: age = 20.0 ± 1.10 years, height = 1.72 ± 0.06 m, mass = 62.3 ± 6.4 kg). Intervention(s): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor. Main Outcome Measure(s): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model. Results: We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F1,19 = 10.56, P = .004; average: F1,19 = 9.56, P = .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F1,19 = 5.52, P = .030) and average (8%; F1,19 = 8.83, P = .008) quadriceps forces increased and average (4%; F1,19 = 4.94, P = .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F1,19 = 5.16, P = .035) and average (F1,19 = 12.35, P = .002) hamstrings forces. When trunk load was added, average hamstrings forces decreased by 16% in the trunk-extensor group but increased by 13% in the trunk-flexor group. Conclusions: Added trunk loads increased knee anterior shear and knee muscle forces, depending on trunk adaptation strategy. The trunk-extensor adaptation to the load resulted in a quadriceps-dominant strategy that increased knee anterior shear forces. Trunk-flexor adaptations may serve as a protective strategy against the added load. These findings should be interpreted with caution, as only the face validity of the biomechanical model was assessed. PMID:20064042
Melt rheological properties of nucleated PET/MWCNT nanocomposites
NASA Astrophysics Data System (ADS)
Gaonkar, Amita; Murudkar, Vrishali; Deshpande, V. D.
2018-05-01
This work investigates the effect of precipitated Polyethylene Terephthalate (p-PET) and loading of Multiwalled carbon nanotubes (MWCNT) on morphology and rheology of Polyethylene Terephthalate (PET)/MWCNT nanocomposites. As received PET and Self-Nucleated PET (Nuc-PET) nanocomposites with different loadings of multi-walled carbon nanotubes (MWCNT) were prepared by melt mixing technique. Synthesized reorganized PET crystallizes rapidly from the melt and it is used in small quantities as a self-nucleating agent to make Nuc-PET. In the present study, Rheological properties of nanocomposites are obtained and results show with increase in MWCNT loading complex viscosity of nanocomposites increases. Nonterminal solid like rheological behavior of PET nanocomposites were observed at low frequencies, which indicates the formation of the network like structures of MWCNT in nanocomposites. Morphological and rheological properties of self-nucleated PET nanocomposites improved significantly may be due to self-nucleating agent p-PET. Morphological properties were studied by Scanning Electron Microscopy (SEM). SEM shows better dispersion of MWCNT in Nuc-PET nanocomposites.
Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics
Martinez, Jonathan O.; Chiappini, Ciro; Ziemys, Arturas; Faust, Ari M.; Kojic, Milos; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio
2013-01-01
Nanovectors hold substantial promise in abating the off-target effects of therapeutics by providing a means to selectively accumulate payloads at the target lesion, resulting in an increase in the therapeutic index. A sophisticated understanding of the factors that govern the degradation and release dynamics of these nanovectors is imperative to achieve these ambitious goals. In this work, we elucidate the relationship that exists between variations in pore size and the impact on the degradation, loading, and release of multistage nanovectors. Larger pored vectors displayed faster degradation and higher loading of nanoparticles, while exhibiting the slowest release rate. The degradation of these particles was characterized to occur in a multi-step progression where they initially decreased in size leaving the porous core isolated, while the pores gradually increased in size. Empirical loading and release studies of nanoparticles along with diffusion modeling revealed that this prolonged release was modulated by the penetration within the porous core of the vectors regulated by their pore size. PMID:23911070
Softened Mechanical Properties of Graphene Induced by Electric Field.
Huang, Peng; Guo, Dan; Xie, Guoxin; Li, Jian
2017-10-11
The understanding on the mechanical properties of graphene under the applications of physical fields is highly relevant to the reliability and lifetime of graphene-based nanodevices. In this work, we demonstrate that the application of electric field could soften the mechanical properties of graphene dramatically on the basis of the conductive AFM nanoindentation method. It has been found that the Young's modulus and fracture strength of graphene nanosheets suspended on the holes almost stay the same initially and then exhibit a sharp drop when the normalized electric field strength increases to be 0.18 ± 0.03 V/nm. The threshold voltage of graphene nanosheets before the onset of fracture under the fixed applied load increases with the thickness. Supported graphene nanosheets can sustain larger electric field under the same applied load than the suspended ones. The excessively regional Joule heating caused by the high electric current under the applied load is responsible for the electromechanical failure of graphene. These findings can provide a beneficial guideline for the electromechanical applications of graphene-based nanodevices.
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-06-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
NASA Astrophysics Data System (ADS)
Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar
2018-03-01
In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.
Kuznetsova, Tatiana; D’hooge, Jan; Kloch-Badelek, Malgorzata; Sakiewicz, Wojciech; Thijs, Lutgarde; Staessen, Jan A.
2013-01-01
Background To understand better the mechanism of left ventricular (LV) remodeling related to hypertension, it is important to evaluate LV function in relation to the changes in loading conditions. The aim of this study was to investigate changes in conventional ventricular-arterial coupling indexes, LV strain, and a new index reflecting regional myocardial work assessed noninvasively at rest and during isometric exercise in a random sample including participants with normal blood pressure and those with hypertension. Methods A total of 148 participants (53.4% women; mean age, 52.0 years; 39.2% with hypertension) underwent simultaneous echocardiographic and arterial data acquisition at rest and during increased afterload (handgrip exercise). End-systolic pressure was determined from the carotid pulse wave. Arterial elastance (Ea) and LV elastance (Ees) were calculated as end-systolic pressure/stroke volume and end-systolic pressure/end-systolic volume. Doppler tissue imaging and two-dimensional speckle tracking were used to derive LV longitudinal strain. Regional myocardial work (ejection work density [EWD]) was the area of the pressure-strain loop during ejection. Results At rest, with adjustments applied, Ees (3.06 vs 3.71 mmHg/mL,P = .0003), Ea/Ees (0.54 vs 0.47,P=.002) and EWD (670 vs 802 Pa/m2, P = .0001) differed significantly between participants with normal blood pressure and those with hypertension. During handgrip exercise, Ea and Ea/Ees significantly increased (P < .0001) in both groups. Doppler tissue imaging and two-dimensional LV strain decreased in participants with hypertension (P ≤ .008). Only in subjects with normal blood pressure EWD significantly increased (+14.7%, P = .0009). Conclusions Although patients with hypertension compared with those with normal blood pressure have increased LV systolic stiffness and regional myocardial work to match arterial load at rest, they might have diminished cardiac reserve to increase myocardial performance, as estimated by EWD during isometric exercise. PMID:22622108
Kamalinia, Mojtaba; Nasl Saraji, Gebreal; Kee, Dohyung; Hosseini, Mostafa; Choobineh, Alireza
2013-01-01
Changes in industries and work practices have coincided with work-related musculoskeletal disorders (MSDs). This study was conducted to determine the prevalence of MSDs and to assess postural loading in assembly workers of an Iranian telecommunication manufacturing company. Data were collected from 193 randomly selected workers in 4 units of the company. The Nordic musculoskeletal disorders questionnaire and the UBC ergonomic checklist were used as data collection tools. Loading on the upper body assessment (LUBA) was used to assess postural loading. Lower back symptoms were the most prevalent problems among the workers (67.9%). LUBA showed that most assembly workers (94.3%) had experienced considerable and high postural loading (postural load index, PLI > 5). Regression analyses revealed that lighting, rotation, contact stress, repetition, gender and age were factors associated with symptoms. Work-related MSDs occurred at a high rate among workers. Postural loading requires consideration. Any ergonomic intervention should focus on eliminating ergonomic factors associated with symptoms.
Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong
2016-10-20
Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Sunwook; Nussbaum, Maury A; Mokhlespour Esfahani, Mohammad Iman; Alemi, Mohammad Mehdi; Jia, Bochen; Rashedi, Ehsan
2018-03-07
Adopting a new technology (exoskeletal vest designed to support overhead work) in the workplace can be challenging since the technology may pose unexpected safety and health consequences. A prototype exoskeletal vest was evaluated for potential unexpected consequences with a set of evaluation tests for: usability (especially, donning & doffing), shoulder range of motion (ROM), postural control, slip & trip risks, and spine loading during overhead work simulations. Donning/doffing the vest was easily done by a wearer alone. The vest reduced the max. shoulder abduction ROM by ∼10%, and increased the mean center of pressure velocity in the anteroposterior direction by ∼12%. However, vest use had minimal influences on trip-/slip-related fall risks during level walking, and significantly reduced spine loadings (up to ∼30%) especially during the drilling task. Use of an exoskeletal vest can be beneficial, yet the current evaluation tests should be expanded for more comprehensiveness, to enable the safe adoption of the technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment.
Nayak, Aditya P; Tiyaboonchai, Waree; Patankar, Swati; Madhusudhan, Basavaraj; Souto, Eliana B
2010-11-01
In the present work, curcuminoids-loaded lipid nanoparticles for parenteral administration were successfully prepared by a nanoemulsion technique employing high-speed homogenizer and ultrasonic probe. For the production of nanoparticles, trimyristin, tristerin and glyceryl monostearate were selected as solid lipids and medium chain triglyceride (MCT) as liquid lipid. Scanning electron microscopy (SEM) revealed the spherical nature of the particles with sizes ranging between 120 and 250 nm measured by photon correlation spectroscopy (PCS). The zeta potential of the particles ranged between -28 and -45 mV depending on the nature of the lipid matrix produced, which also influenced the entrapment efficiency (EE) and drug loading capacity (LC) found to be in the range of 80-94% and 1.62-3.27%, respectively. The LC increased reciprocally on increasing the amount of MCT as confirmed by differential scanning calorimetry (DSC). DSC analyses revealed that increasing imperfections within the lipid matrix allowed for increasing encapsulation parameters. Nanoparticles were further sterilized by filtration process which was found to be superior over autoclaving in preventing thermal degradation of thermo-sensitive curcuminoids. The in vivo pharmacodynamic activity revealed 2-fold increase in antimalarial activity of curcuminoids entrapped in lipid nanoparticles when compared to free curcuminoids at the tested dosage level. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Biomechanical evaluation of an innovative spring-loaded axillary crutch design.
Zhang, Yanxin; Liu, Guangyu; Xie, Shengquan; Liger, Aurélien
2011-01-01
We evaluated an innovative spring-loaded crutch design by comparing its performance with standard crutches through a biomechanical approach. Gait analysis was conducted for 7 male subjects under two conditions: walking with standard crutches and with spring-loaded crutches. Three-dimensional kinematic data and ground reaction force were recorded. Spatiotemporal variables, external mechanical work, and elastic energy (for spring crutches) were calculated based on recorded data. The trajectories of vertical ground reaction forces with standard crutches had two main peaks before and after mid-stance, and those with optimized spring-loaded crutches had only one main peak. The magnitude of external mechanical work was significantly higher with spring-loaded crutches than with standard crutches for all subjects, and the transferred elastic energy made an important contribution to the total external work for spring-loaded crutches. No significant differences in the spatiotemporal parameters were observed. Optimized spring-loaded crutches can efficiently propel crutch walkers and could reduce the total energy expenditure in crutch walking. Further research using optimized spring-loaded crutches with respect to energy efficiency is recommended.
[Effects of mental workload on work ability in primary and secondary school teachers].
Xiao, Yuanmei; Li, Weijuan; Ren, Qingfeng; Ren, Xiaohui; Wang, Zhiming; Wang, Mianzhen; Lan, Yajia
2015-02-01
To investigate the change pattern of primary and secondary school teachers' work ability with the changes in their mental workload. A total of 901 primary and secondary school teachers were selected by random cluster sampling, and then their mental workload and work ability were assessed by National Aeronautics and Space Administration-Task Load Index (NASA-TLX) and Work Ability Index (WAI) questionnaires, whose reliability and validity had been tested. The effects of their mental workload on the work ability were analyzed. Primary and secondary school teachers' work ability reached the highest level at a certain level of mental workload (55.73< mental workload ≤ 64.10). When their mental workload was lower than the level, their work ability had a positive correlation with the mental workload. Their work ability increased or maintained stable with the increasing mental workload. Moreover, the percentage of teachers with good work ability increased, while that of teachers with moderate work ability decreased. But when their mental workload was higher than the level, their work ability had a negative correlation with the mental workload. Their work ability significantly decreased with the increasing mental workload (P < 0.01). Furthermore, the percentage of teachers with good work ability decreased, while that of teachers with moderate work ability increased (P < 0.001). Too high or low mental workload will result in the decline of primary and secondary school teachers' work ability. Moderate mental workload (55.73∼64.10) will benefit the maintaining and stabilization of their work ability.
MacPherson, Megan K; Abur, Defne; Stepp, Cara E
2017-07-01
This study aimed to determine the relationship among cognitive load condition and measures of autonomic arousal and voice production in healthy adults. A prospective study design was conducted. Sixteen healthy young adults (eight men, eight women) produced a sentence containing an embedded Stroop task in each of two cognitive load conditions: congruent and incongruent. In both conditions, participants said the font color of the color words instead of the word text. In the incongruent condition, font color differed from the word text, creating an increase in cognitive load relative to the congruent condition in which font color and word text matched. Three physiologic measures of autonomic arousal (pulse volume amplitude, pulse period, and skin conductance response amplitude) and four acoustic measures of voice (sound pressure level, fundamental frequency, cepstral peak prominence, and low-to-high spectral energy ratio) were analyzed for eight sentence productions in each cognitive load condition per participant. A logistic regression model was constructed to predict the cognitive load condition (congruent or incongruent) using subject as a categorical predictor and the three autonomic measures and four acoustic measures as continuous predictors. It revealed that skin conductance response amplitude, cepstral peak prominence, and low-to-high spectral energy ratio were significantly associated with cognitive load condition. During speech produced under increased cognitive load, healthy young adults show changes in physiologic markers of heightened autonomic arousal and acoustic measures of voice quality. Future work is necessary to examine these measures in older adults and individuals with voice disorders. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Reynolds, Matthew R
2013-03-01
The linear loadings of intelligence test composite scores on a general factor (g) have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the g loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of this study was to (a) investigate whether the g loadings of composite scores from the Differential Ability Scales (2nd ed.) (DAS-II, C. D. Elliott, 2007a, Differential Ability Scales (2nd ed.). San Antonio, TX: Pearson) were nonlinear and (b) if they were nonlinear, to compare them with linear g loadings to demonstrate how SLODR alters the interpretation of these loadings. Linear and nonlinear confirmatory factor analysis (CFA) models were used to model Nonverbal Reasoning, Verbal Ability, Visual Spatial Ability, Working Memory, and Processing Speed composite scores in four age groups (5-6, 7-8, 9-13, and 14-17) from the DAS-II norming sample. The nonlinear CFA models provided better fit to the data than did the linear models. In support of SLODR, estimates obtained from the nonlinear CFAs indicated that g loadings decreased as g level increased. The nonlinear portion for the nonverbal reasoning loading, however, was not statistically significant across the age groups. Knowledge of general ability level informs composite score interpretation because g is less likely to produce differences, or is measured less, in those scores at higher g levels. One implication is that it may be more important to examine the pattern of specific abilities at higher general ability levels. PsycINFO Database Record (c) 2013 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Liu, Wei; Gao, Weicheng
2018-02-01
This work is carried out to study the influence of double cutouts and stiffener reinforcements on the performance of I-section Carbon Fibre/Epoxy composites beam, including buckling, post-buckling behavior and the ultimate failure. The cantilever I-section beam with two diamond-shaped cutouts in the web and three longitudinal L-shaped stiffeners bonded to one side is subjected to a shear load at free end. Both numerical modelling and Experiment of I-section CFRP beam are performed. In numerical analysis, Tsai-Wu failure criterion is utilized to detect the first-ply-failure load in nonlinear analysis by predicting the load-deflection response. Good agreements are obtained from comparison between the numerical simulations and test results. For the double-hole beam web, the two cutouts show close surface deformation amplitude, which indicates that the stiffeners make the force transformation more effective. Comparing to the numerical result of corresponding beam with single cutout and stiffener reinforcement, the longitudinal stiffeners can not only play a significant role in improving the structural stability (increase about 30%), but also take effects to improve the deformation compatibility of structure. Local buckling happened within the sub-webs partioned by the stiffener and the buckling load is different but close. With post-buckling regime, the two areas show similar deformation characteristic, while the sub-web close to fixed end bears more shear load than the sub-web close to loading end with the increase of normal deformation of structure. The catastrophic failure load is approximate 75.6% higher comparing to buckling load. Results illustrate that the tensile fracture of the fiber is the immediate cause of the ultimate failure of the structure.
Dependence of Helicon Antenna Loading on the Antenna/Plasma Gap and n|| in DIII-D Experiments
NASA Astrophysics Data System (ADS)
Pinsker, R. I.; Moeller, C. P.
2017-10-01
A comprehensive set of measurements of the plasma loading of a 12-element antenna array, designed to launch helicon waves (i.e., very-high-harmonic fast waves), were performed on DIII-D in 2016. The antenna, operated in the 466 - 486 MHz band, is prototypical of a wider array for a 1-MW-level experiment planned for 2018-9. The dependence of the antenna loading on antenna/plasma gap is of great practical significance, as the gap must be kept greater than a minimum distance to suppress deleterious plasma-material interactions, while the loading must be high enough to retain good efficiency of power transfer to the plasma. While the loading in all examined plasma regimes, including both limited and diverted L-mode discharges and H-mode discharges, decayed exponentially with increasing gap in agreement with simple theory, the characteristic decay length was in all cases larger than expected, motivating the development of a more realistic model. Furthermore, the characteristic decay length did not depend on the launched n||, though the absolute level of loading at a given gap increased as |n||| was decreased from 4 to 2. After the antenna was removed from DIII-D, measurements of the loading produced by a 100 Ω/sq resistive film were carried out on the bench. Both the antenna/film gap and n|| were scanned varied and the results compared with calculations done with the QuickWave FDTD electromagnetics solver. Very good agreement was found in this case. Work supported by the US DOE under DE-FC02-04ER54698.
The farrier's work environment.
Löfqvist, Lotta; Pinzke, Stefan
2012-01-01
The horse industry in Sweden has rapidly expanded in recent years. This increasing number of horses implies a greater need for more farriers. Shoeing a horse is hard physical work, and includes awkward work postures and repetitive movements. It is well known that hard physical work increases the risk of injuries and musculoskeletal problems. The risk is especially high for musculoskeletal disorders when certain movements are constantly repeated. Heavy or repeated unilateral loads lead to considerable stress on the muscles, which can lead to rupture and fatigue that can cause long term problems. A case study showed that farriers worked 75% of their work time with their backs in bent positions (often more than 70 degrees). Farriers are also exposed to risk factors in their physical environment like dust, noise and poor lighting. Risk of kicks and bites, eye injuries and burns are other factors that make their work environment hazardous. There are only a few studies available that have documented the farriers' working environment and these are not of recent date. A US study from 1984 described kicks and bites from horses, metal splinters in the eyes, heat exhaustion and problematic postures to be perceived as the greatest risks in their work. The back, knees and wrists were the most exposed body regions. There is a need for more current and in-depth studies investigating the farriers' working conditions in order to gain more knowledge of their health and work environment. The aim of the present study is to investigate the physical health and work environment of farriers. The investigation will use questionnaires, work load measurements and workplace analysis. The results will serve as a base for improvements concerning the design of the workplace, equipment, tools and aids as well as supplying recommendations about physical exercise and the correct work technique, etc. The results are planned to be incorporated in the education of farriers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... that for polypropylene fiber rope. (d) Welded steel chain which is not marked or labeled to enable... load limit shall be considered to have a working load limit equal to one-fourth of the nominal strength... Grade 43 high test Grade 70 transport Grade 80 alloy Grade 100 alloy 1. 7 (1/4) 580 (1,300) 1,180 (2,600...