Sample records for increased zn uptake

  1. Root Uptake of Lipophilic Zinc−Rhamnolipid Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, Samuel P.; McLaughlin, Michael J.; Cakmak, Ismail

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Brassica napus var. Pinnacle roots in {sup 65}Zn-spiked ice-cold solutions, compared with ZnSO{sub 4} alone. Therefore, rhamnolipid appeared to facilitate Zn absorption via a nonmetabolically mediated pathway. Synchrotron XRF and XAS showed that Zn was present in roots as Zn-phytate-like compounds when roots were treated with Zn-free solutions, ZnSO{sub 4}, or Zn-EDTA. With rhamnolipid application, Zn was predominantly found in roots as the Zn-rhamnolipid complex. When appliedmore » to a calcareous soil, rhamnolipids increased dry matter production and Zn concentrations in durum (Triticum durum L. cv. Balcali-2000) and bread wheat (Triticum aestivum L. cv. BDME-10) shoots. Rhamnolipids either increased total plant uptake of Zn from the soil or increased Zn translocation by reducing the prevalence of insoluble Zn-phytate-like compounds in roots.« less

  2. Induction of Nickel Accumulation in Response to Zinc Deficiency in Arabidopsis thaliana

    PubMed Central

    Nishida, Sho; Kato, Aki; Tsuzuki, Chisato; Yoshida, Junko; Mizuno, Takafumi

    2015-01-01

    Excessive accumulation of nickel (Ni) can be toxic to plants. In Arabidopsis thaliana, the Fe2+ transporter, iron (Fe)-regulated transporter1 (IRT1), mediates Fe uptake and also implicates in Ni2+ uptake at roots; however, the underlying mechanism of Ni2+ uptake and accumulation remains unelucidated. In the present study, we found that zinc (Zn) deficient conditions resulted in increased accumulation of Ni in plants, particularly in roots, in A. thaliana. In order to elucidate the underlying mechanisms of Ni uptake correlating zinc condition, we traced 63Ni isotope in response to Zn and found that (i) Zn deficiency induces short-term Ni2+ absorption and (ii) Zn2+ inhibits Ni2+ uptake, suggesting competitive uptake between Ni and Zn. Furthermore, the Zrt/Irt-like protein 3 (ZIP3)-defective mutant with an elevated Zn-deficient response exhibited higher Ni accumulation than the wild type, further supporting that the response to Zn deficiency induces Ni accumulation. Previously, expression profile study demonstrated that IRT1 expression is not inducible by Zn deficiency. In the present study, we found increased Ni accumulation in IRT1-null mutant under Zn deficiency in agar culture. These suggest that Zn deficiency induces Ni accumulation in an IRT1-independen manner. The present study revealed that Ni accumulation is inducible in response to Zn deficiency, which may be attributable to a Zn uptake transporter induced by Zn deficiency. PMID:25923075

  3. Enriching rice with Zn and Fe while minimizing Cd risk

    PubMed Central

    Slamet-Loedin, Inez H.; Johnson-Beebout, Sarah E.; Impa, Somayanda; Tsakirpaloglou, Nikolaos

    2015-01-01

    Enriching iron (Fe) and zinc (Zn) content in rice grains, while minimizing cadmium (Cd) levels, is important for human health and nutrition. Natural genetic variation in rice grain Zn enables Zn-biofortification through conventional breeding, but limited natural Fe variation has led to a need for genetic modification approaches, including over-expressing genes responsible for Fe storage, chelators, and transporters. Generally, Cd uptake and allocation is associated with divalent metal cations (including Fe and Zn) transporters, but the details of this process are still unknown in rice. In addition to genetic variation, metal uptake is sometimes limited by its bioavailability in the soil. The availability of Fe, Zn, and Cd for plant uptake varies widely depending on soil redox potential. The typical practice of flooding rice increases Fe while decreasing Zn and Cd availability. On the other hand, moderate soil drying improves Zn uptake but also increases Cd and decreases Fe uptake. Use of Zn- or Fe-containing fertilizers complements breeding efforts by providing sufficient metals for plant uptake. In addition, the timing of nitrogen fertilization has also been shown to affect metal accumulation in grains. The purpose of this mini-review is to identify knowledge gaps and prioritize strategies for improving the nutritional value and safety of rice. PMID:25814994

  4. Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).

    PubMed

    Niyogi, Som; Blewett, Tamzin A; Gallagher, Trevor; Fehsenfeld, Sandra; Wood, Chris M

    2016-09-01

    Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and pharmacological properties of short-term branchial Zn uptake were also examined. Green crabs (n=10) were exposed to control (no added Zn) and 50μM (3.25mgL(-1)) of waterborne Zn (∼25% of 96h LC50 in 100 seawater) for 96h at 3 different salinity regimes (100%, 60% and 20% seawater). Exposure to waterborne Zn increased tissue-specific Zn accumulation across different salinities. However, the maximum accumulation occurred in 20% seawater and no difference was recorded between 60% and 100% seawater. Gills appeared to be the primary site of Zn accumulation, since the accumulation was significantly higher in the gills relative to the hepatopancreas, haemolymph and muscle. Waterborne Zn exposure induced a slight increase in haemolymph osmolality and chloride levels irrespective of salinity. In contrast, Zn exposure elicited marked increases in both haemolymph and gill Ca levels, and these changes were more pronounced in 20% seawater relative to that in 60% or 100% seawater. An in vitro gill perfusion technique was used to examine the characteristics of short-term (1-4h) branchial Zn uptake over an exposure concentration range of 3-12μM (200-800μgL(-1)). The rate of short-term branchial Zn uptake did not change significantly after 2h, and no difference was recorded in the rate of uptake between the anterior (respiratory) and posterior (ion transporting) gills. The in vitro branchial Zn uptake occurred in a concentration-dependent manner across different salinities. However, the rate of uptake was consistently higher in 20% seawater relative to 60% or 100% seawater - similar to the trend observed with tissue Zn accumulation during in vivo exposure. The short-term branchial Zn uptake was found to be inhibited by lanthanum (a blocker of voltage-independent Ca channels), suggesting that branchial Zn uptake occurs via the Ca transporting pathways, at least in part. Overall, our findings indicate that acute exposure to waterborne Zn leads to the disruption of Zn and Ca homeostasis in green crab, and these effects are exacerbated at the lower salinity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evidence for a zinc/proton antiporter in rat brain.

    PubMed

    Colvin, R A; Davis, N; Nipper, R W; Carter, P A

    2000-05-01

    The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.

  6. Effects of polyamine inhibitors on zinc uptake by COMMA-1D mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, J.C.; Haedrich, L.H.

    1991-03-15

    Zn uptake or transport is stimulated by glucocorticoids in many types of epithelial cells, including the COMMA-1D mouse mammary cell line. The current objective was to determine whether polyamines also mediate glucocorticoid stimulation of Zn-uptake. Initially, cells grown in lactogenic hormone supplemented-media had approximately 65% greater {sup 65}Zn-uptake over 24 h than cells in nonsupplemented growth media (GM). {sup 65}Zn-uptake from HM with 10{sup {minus}5}M methylglyoxal-bis(guanylhydrazone) (MGBG) (s-adenosyl-methionine decarboxylase inhibitor to block polyamine synthesis) added was less than from GM. Exogenous spermidine added to the MGBG-HM media increased {sup 65}Zn-uptake. However, up to 10mM difluoromethylornithine (DFMO), a more specific inhibitormore » of sperimidine synthesis, had no significant effect on 24-h {sup 65}Zn-uptake by cells in HM. In GM, DFMO caused a slight dose-dependent decrease in {sup 65}Zn-uptake over the range 10{sup {minus}6} to 5 {times} 10{sup 3}M. Also, with 8 h of incubation, DFMO tended to decrease {sup 65}Zn-uptake in HM-stimulated cells. These data cannot yet distinguish between the possibilities that DFMO is inactivated during the 24-h incubation or that the dramatic effects of MGBG on {sup 65}Zn-uptake in these mammary-derived cells is not related to its inhibition of polyamine synthesis. Because COMMA-1D cells alter Zn uptake in response to lactogenic hormones and MGBG, the model system is suitable for further studies of the mechanisms of zinc transport in epithelia.« less

  7. Effects of zinc complexes on the distribution of zinc in calcareous soil and zinc uptake by maize.

    PubMed

    Alvarez, José M; Rico, María I

    2003-09-10

    The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.

  8. Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.

    PubMed

    Affholder, Marie-Cecile; Weiss, Dominik J; Wissuwa, Matthias; Johnson-Beebout, Sarah E; Kirk, Guy J D

    2017-12-01

    We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO 2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO 2 through root aerenchyma were responsible for the genotype and planting density effects. © 2017 John Wiley & Sons Ltd.

  9. Changes in spectral signatures of red lettuce regards to Zinc uptake

    NASA Astrophysics Data System (ADS)

    Shin, J.; Yu, J.; Koh, S. M.; Park, G.; Kim, S.

    2017-12-01

    Heavy metal contaminations caused by human activities such as mining and industrial activities caused serious soil contamination. Soil contaminations causes secondary impact on vegetation by uptake processes. Intakes of vegetables harvested from heavy metal contaminated soil may cause serious health problems. It would be very effective if screening tool could be developed before the vegetables are distributed over the market. This study investigated spectral response of red lettuce regards to Zn uptake from the treated soil in a laboratory condition. Zn solutions at different levels of concentration are injected to potted lettuce. The chemical composition and spectral characteristics of the leaves are analyzed every 2 days and the correlation between the Zn concentration and spectral reflectance is investigated. The experiment reveals that Zn uptake of red lettuce is significantly higher for the leaves from treated pot compared to untreated pot showing highly contaminated concentrations beyond the standard Zn concentrations for food. The spectral response regards to Zn is manifested at certain level of concentration threshold. Below the threshold, reflectance at NIR regions increases regards to increase in Zn concentration. On the other hand, above the threshold, IR reflectance decreases and slope of NIR shoulder increases regards to higher Zn concentration. We think this result may contribute for development of screening tools for heavy metal contaminations in vegetables.

  10. Kinetic control on Zn isotope signatures recorded in marine diatoms

    NASA Astrophysics Data System (ADS)

    Köbberich, Michael; Vance, Derek

    2017-08-01

    Marine diatoms dominate the oceanic cycle of the essential micronutrient zinc (Zn). The stable isotopes of zinc and other metals are increasingly used to understand trace metal micronutrient cycling in the oceans. One clear feature of the early isotope data is the heavy Zn isotope signature of the average oceanic dissolved pool relative to the inputs, potentially driven by uptake of light isotopes into phytoplankton cells and export to sediments. However, despite the fact that diatoms strip Zn from surface waters across the Antarctic polar front in the Southern Ocean, the local upper ocean is not isotopically heavy. Here we use culturing experiments to quantify the extent of Zn isotope fractionation by diatoms and to elucidate the mechanisms driving it. We have cultured two different open-ocean diatom species (T. oceanica and Chaetoceros sp.) in a series of experiments at constant medium Zn concentration but at bioavailable medium Fe ranging from limiting to replete. We find that T. oceanica can maintain high growth rates and Zn uptake rates over the full range of bioavailable iron (Fe) investigated, and that the Zn taken up has a δ66Zn that is unfractionated relative to that of the bioavailable free Zn in the medium. The studied representative of the genus Chaetoceros, on the other hand, shows more significantly reduced Zn uptake rates at low Fe and records more variable biomass δ66Zn signatures, of up to 0.85‰ heavier than the medium. We interpret the preferential uptake of heavy isotopes at extremely low Zn uptake rates as potentially due to either of the following two mechanisms. First, the release of extracellular polymeric substances (EPS), at low Fe levels, may preferentially scavenge heavy Zn isotopes. Second, the Zn uptake rate may be slow enough to establish pseudo-equilibrium conditions at the transporter site, with heavy Zn isotopes forming more stable surface complexes. Thus we find that, in our experiments, Fe-limitation exerts a key control that not only limits diatom growth, but also affects the Zn uptake physiology of diatoms. Uptake of heavy isotopes occurs under Fe-limiting conditions that drive extremely low Zn uptake rates. On the other hand, more rapid Zn uptake rates result in biomass that is indistinguishable from the external bioavailable free Zn pool. These experimental results can, in principle, explain the range of Zn isotopic compositions found in the real surface ocean, given the geographically variable interplay between Fe-limitation, Zn uptake rates, and the degree of organic complexation of oceanic Zn.

  11. Functional analysis RaZIP1 transporter of the ZIP family from the ectomycorrhizal Zn-accumulating Russula atropurpurea.

    PubMed

    Leonhardt, Tereza; Sácký, Jan; Kotrba, Pavel

    2018-04-01

    A search of R. atropurpurea transcriptome for sequences encoding the transporters of the Zrt-, Irt-like Protein (ZIP) family, which are in eukaryotes integral to Zn supply into cytoplasm, allowed the identification of RaZIP1 cDNA with a predicted product belonging to ZIP I subfamily; it was subjected to functional studies in mutant Saccharomyces cerevisiae strains. The expression of RaZIP1, but not RaZIP1 H208A or RaZIP1 H232A mutants lacking conserved-among-ZIPs transmembrane histidyls, complemented Zn uptake deficiency in zrt1Δzrt2Δ yeasts. RaZIP1 substantially increased cellular Zn uptake in this strain and added to Zn sensitivity in zrc1Δcot1Δ mutant. The Fe uptake deficiency in ftr1Δ strain was not rescued and Mn uptake was insufficient for toxicity in Mn-sensitive pmr1Δ yeasts. By contrast, RaZIP1 increased Cd sensitivity in yap1Δ strain and conferred Cd transport activity in yeasts, albeit with substantially lower efficiency compared to Zn transport. In metal uptake assays, the accumulation of Zn in zrt1Δzrt2Δ strain remained unaffected by Cd, Fe, and Mn present in 20-fold molar excess over Zn. Immunofluorescence microscopy detected functional hemagglutinin-tagged HA::RaZIP1 on the yeast cell protoplast periphery. Altogether, these data indicate that RaZIP1 is a high-affinity plasma membrane transporter specialized in Zn uptake, and improve the understanding of the cellular and molecular biology of Zn in R. atropurpurea that is known for its ability to accumulate remarkably high concentrations of Zn.

  12. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration.

    PubMed

    Tandy, Susan; Schulin, Rainer; Nowack, Bernd

    2006-04-15

    The use of chelants to enhance phytoextraction is one method being tested to make phytoextraction efficient enough to be used as a remediation technique for heavy metal pollution in the field. We performed pot experiments with sunflowers in order to investigate the use of the biodegradable chelating agent SS-EDDS for this purpose. We used singly and combined contaminated soils (Cu, Zn) and multimetal contaminated field soils (Cu, Zn, Cd, Pb). EDDS (10 mmol kg(-10 soil) increased soil solution metals greatly for Cu (factor 840-4260) and Pb (factor 100-315), and to a lesser extent for Zn (factor 23-50). It was found that Zn (when present as the sole metal), Cu, and Pb uptake by sunflowers was increased by EDDS, butin multimetal contaminated soil Zn and Cd were not. EDDS was observed in the sunflower roots and shoots at concentrations equal to metal uptake. The different metal uptake in the various soils can be related to a linear relationship between Cu and Zn in soil solution in the presence of EDDS and plant uptake, indicating the great importance of measuring and reporting soil solution metal concentrations in phytoextraction studies.

  13. Root Uptake Of Lipophilic Zinc-Rhamnolipid Complexes

    EPA Science Inventory

    This study investigated the formation and plant uptake of lipophilic metal-rhamnolipid complexes. Monorhamnosyl and dirhamnosyl rhamnolipids formed lipophilic complexes with copper (Cu), manganese (Mn), and zinc (Zn). Rhamnolipids significantly increased Zn absorption by Bra...

  14. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc.

    PubMed

    Shi, Wen-Guang; Li, Hong; Liu, Tong-Xian; Polle, Andrea; Peng, Chang-Hui; Luo, Zhi-Bin

    2015-01-01

    A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification. © 2014 John Wiley & Sons Ltd.

  15. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocytemore » chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.« less

  16. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.

    PubMed

    Andrade, Sara A L; Gratão, Priscila L; Schiavinato, Marlene A; Silveira, Adriana P D; Azevedo, Ricardo A; Mazzafera, Paulo

    2009-06-01

    The influence of arbuscular mycorrhizal fungi (AMF) inoculation on Canavalia ensiformis growth, nutrient and Zn uptake, and on some physiological parameters in response to increasing soil Zn concentrations was studied. Treatments were applied in seven replicates in a 2 x 4 factorial design, consisting of the inoculation or not with the AMF Glomus etunicatum, and the addition of Zn to soil at the concentrations of 0, 100, 300 and 900 mg kg(-1). AMF inoculation enhanced the accumulation of Zn in tissues and promoted biomass yields and root nodulation. Mycorrhizal plants exhibited relative tolerance to Zn up to 300 mg kg(-1) without exhibiting visual symptoms of toxicity, in contrast to non-mycorrhizal plants which exhibited a significant growth reduction at the same soil Zn concentration. The highest concentration of Zn added to soil was highly toxic to the plants. Leaves of plants grown in high Zn concentration exhibited a Zn-induced proline accumulation and also an increase in soluble amino acid contents; however proline contents were lower in mycorrhizal jack beans. Plants in association or not with the AMF exhibited marked differences in the foliar soluble amino acid profile and composition in response to Zn addition to soil. In general, Zn induced oxidative stress which could be verified by increased lipid peroxidation rates and changes in catalase, ascorbate peroxidase, glutathione reductase and superoxide dismutase activities. In summary, G. etunicatum was able to maintain an efficient symbiosis with jack bean plants in moderately contaminated Zn-soils, improving plant performance under those conditions, which is likely to be due to a combination of physiological and nutritional changes caused by the intimate relation between fungus and plant. The enhanced Zn uptake by AMF inoculated jack bean plants might be of interest for phytoremediation purposes.

  17. Lack of Zn inhibition of Cd accumulation by rice (Oryza sativa L.) supports non-Zn transporter uptake of Cd

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) grown on Cd contaminated soils has been linked to health problems in subsistence rice farmers in Japan and China. For other crops, normal geogenic Zn inhibits the increased uptake of Cd on contaminated soils. A study was conducted using a multi-chelator buffered nutrient sol...

  18. Diffusion Limitations in Root Uptake of Cadmium and Zinc, But Not Nickel, and Resulting Bias in the Michaelis Constant1[W][OA

    PubMed Central

    Degryse, Fien; Shahbazi, Afsaneh; Verheyen, Liesbeth; Smolders, Erik

    2012-01-01

    It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true Km for uptake of Cd2+ and Zn2+ was estimated at <5 nm, three orders of magnitude smaller than the Km measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity. PMID:22864584

  19. The influence of EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis).

    PubMed

    Lai, Hung-Yu; Chen, Zueng-Sang

    2006-10-11

    Soil used in this study was artificially contaminated with Cd, Zn, Pb, or applied in combinations (Cd-Zn, Cd-Pb, Zn-Pb, or Cd-Zn-Pb) to study the interactions of metals in soil contaminated with multiple metals. After planting rainbow pink (Dianthus chinensis) in these soils for 21 days, three different concentrations of ethylenedinitrilotetraacetic acid (EDTA) solutions were added to study the effect of applying EDTA on the interactions among these metals. The concentrations of Cd, Zn, and Pb in the soil solutions of different metals-treated soils increased significantly after applying 5 mmol EDTA kg(-1) soil (p<0.05). The potential of groundwater contamination will increase after applying EDTA and it is not recommended to be in situ used or have to use very carefully. The existence of Pb in the Cd-contaminated soil enhanced the uptake of Cd in rainbow pink in the treatments of control and 2 mmol EDTA kg(-1) soil. Cadmium inhibited the concentration of Zn without applying EDTA. However, whether the application of EDTA or not and the applied EDTA concentration had the greatest effect on the uptake of Pb when compared to Cd and Zn. After applying 5 mmol EDTA kg(-1) soil, Cd or Zn in the Pb-contaminated soil inhibited the uptake of Pb in rainbow pink, but there were no effect in other treatments.

  20. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins.

    PubMed

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2013-12-20

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs.

  1. Effect of Molecular Characteristics on Cellular Uptake, Subcellular Localization, and Phototoxicity of Zn(II) N-Alkylpyridylporphyrins*

    PubMed Central

    Ezzeddine, Rima; Al-Banaw, Anwar; Tovmasyan, Artak; Craik, James D.; Batinic-Haberle, Ines; Benov, Ludmil T.

    2013-01-01

    Tetra-cationic Zn(II) meso-tetrakis(N-alkylpyridinium-2 (or -3 or -4)-yl)porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tri-dimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to meta and para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to para positions. Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order para > meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs. PMID:24214973

  2. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.

    PubMed

    Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J

    2009-10-01

    Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.

  3. Bioremediation of surface water co-contaminated with zinc (II) and linear alkylbenzene sulfonates by Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Meng, Huijuan; Xia, Yunfeng; Chen, Hong

    Potential remediation of surface water contaminated with linear alkylbenzene sulfonates (LAS) and zinc (Zn (II)) by sorption on Spirulina platensis was studied using batch techniques. Results show that LAS can be biodegraded by Spirulina platensis, and its biodegradation rate after 5 days was 87%, 80%, and 70.5% when its initial concentration was 0.5, 1, and 2 mg/L, respectively. The maximum Zn (II) uptake capacity of Spirulina platensis was found to be 30.96 mg/g. LAS may enhance the maximum Zn (II) uptake capacity of Spirulina platensis, which can be attributed to an increase in bioavailability due to the presence of LAS. The biodegradation rates of LAS by Spirulina platensis increased with Zn (II) and reached the maximum when Zn (II) was 4 mg/L. The joint toxicity test showed that the combined effect of LAS and Zn (II) was Synergistic. LAS can enhance the biosorption of Zn (II), and reciprocally, Zn (II) can enhance LAS biodegradation.

  4. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding.

    PubMed

    Rose, T J; Impa, S M; Rose, M T; Pariasca-Tanaka, J; Mori, A; Heuer, S; Johnson-Beebout, S E; Wissuwa, M

    2013-07-01

    Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.

  5. Effect of pulmonary surfactant on the dissolution, stability and uptake of zinc oxide nanowires by human respiratory epithelial cells

    PubMed Central

    Theodorou, Ioannis G.; Ruenraroengsak, Pakatip; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Tetley, Teresa D.; Ryan, Mary P.; Porter, Alexandra E.

    2017-01-01

    Inhaled nanoparticles have high deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24h. Although serum, improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general. PMID:27441789

  6. Comparison of the IN VITRO Cytotoxicities of Nitrogen Doped (p-TYPE) and n-TYPE Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Fujihara, Junko; Hashimoto, Hideki; Nishimoto, Naoki; Tongu, Miki; Fujita, Yasuhisa

    The use of NPs in the health care field is increasing. Before their biological application, investigating the toxicities of both n-type ZnO nanoparticles (NPs) and nitrogen-doped (“p-type”) NPs is important. Using L929 cells, the cell viability, oxidative stress, apoptosis induction, inflammatory responses, and cellular uptake were assayed 24h after the addition of n-type ZnO NPs and nitrogen-doped NPs (which act as p-type) (25μg/mL). The ZnO NPs were fabricated using a gas evaporation method. Increased H2O2 generation and decreased levels of glutathione were more evident in with n-type than in those treated with nitrogen-doped (“p-type”) ZnO NPs. Caspase-3/-7 activity was higher in cells treated with n-type ZnO NPs than in those treated with nitrogen-doped (“p-type”) NPs. Elevated levels of TNF-α and IL-1β were observed in cell culture supernatants: IL-1β levels were higher in n-type ZnO NPs than nitrogen-doped (“p-type”) NPs. The cellular Zn uptake of n-type ZnO NPs was higher than nitrogen-doped (“p-type”) NPs. These findings show that n-type ZnO NPs have higher cytotoxicity than nitrogen-doped (“p-type”) ZnO NPs. This may be due to a reductive effect of n-type ZnO NPs that induces higher free radical production, reactive oxygen species (ROS) generation, and cellular uptake of this type of ZnO NPs.

  7. Zn uptake behavior of rice genotypes and its implication on grain Zn biofortification

    PubMed Central

    Johnson-Beebout, Sarah E.; Goloran, Johnvie Bayang; Rubianes, Francis H. C.; Jacob, Jack D. C.; Castillo, Oliver B.

    2016-01-01

    Understanding Zn uptake dynamics is critical to rice grain Zn biofortification. Here we examined soil Zn availability and Zn uptake pathways as affected by genotype (high-grain Zn varieties IR69428 and IR68144), Zn fertilization and water management in two pot experiments. Results showed significant interactions (P < 0.05) between genotypes and Zn fertilization on DTPA (diethylenetriaminepentaacetic acid)-extractable soil Zn from early tillering to flowering. DTPA-extractable Zn in soils grown with IR69428 was positively correlated with stem (r = 0.78, P < 0.01), flagleaf (r = 0.60, P < 0.01) and grain (r = 0.67, P < 0.01) Zn concentrations, suggesting improved soil Zn availability and continued soil Zn uptake by IR69428 even at maturity. Conversely for IR68144, DTPA-extractable Zn was positively correlated only with leaf Zn uptake (r = 0.60, P < 0.01) at active tillering, indicating dependence on remobilization for grain Zn loading. Furthermore, the highest grain Zn concentration (P < 0.05) was produced by a combination of IR69428 and Zn fertilization applied at panicle initiation (38.5 μg g−1) compared with other treatments (P < 0.05). The results highlight that Zn uptake behavior of a rice genotype determines the fate of Zn from the soil to the grain. This has implications on overcoming Zn translocation barriers between vegetative parts and grains, and achieving grain Zn biofortification targets (30.0 μg g−1). PMID:27910900

  8. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding

    PubMed Central

    Rose, T. J.; Impa, S. M.; Rose, M. T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S. E.; Wissuwa, M.

    2013-01-01

    Background Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. Scope This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Conclusions Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars. PMID:23071218

  9. Crop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical review

    PubMed Central

    Xue, Yanfang; Xia, Haiyong; Christie, Peter; Zhang, Zheng; Li, Long; Tang, Caixian

    2016-01-01

    Background Phosphorus (P), iron (Fe) and zinc (Zn) are essential elements for plant growth and development, but their availability in soil is often limited. Intercropping contributes to increased P, Fe and Zn uptake and thereby increases yield and improves grain nutritional quality and ultimately human health. A better understanding of how intercropping leads to increased plant P, Fe and Zn availability will help to improve P-fertilizer-use efficiency and agronomic Fe and Zn biofortification. Scope This review synthesizes the literature on how intercropping of legumes with cereals increases acquisition of P, Fe and Zn from soil and recapitulates what is known about root-to-shoot nutrient translocation, plant-internal nutrient remobilization and allocation to grains. Conclusions Direct interspecific facilitation in intercropping involves below-ground processes in which cereals increase Fe and Zn bioavailability while companion legumes benefit. This has been demonstrated and verified using isotopic nutrient tracing and molecular analysis. The same methodological approaches and field studies should be used to explore direct interspecific P facilitation. Both niche complementarity and interspecific facilitation contribute to increased P acquisition in intercropping. Niche complementarity may also contribute to increased Fe and Zn acquisition, an aspect poorly understood. Interspecific mobilization and uptake facilitation of sparingly soluble P, Fe and Zn from soil, however, are not the only determinants of the concentrations of P, Fe and Zn in grains. Grain yield and nutrient translocation from roots to shoots further influence the concentrations of these nutrients in grains. PMID:26749590

  10. Chelant-assisted phytoextraction and accumulation of Zn by Zea mays.

    PubMed

    Gheju, M; Stelescu, I

    2013-10-15

    Zea mays plants were exposed to soils with concentrations of Zn ranging from 64 to 1800 mg kg(-1) dw, and the efficiency of three selected chelating agents (trisodium citrate (CI), disodium oxalate (OX) and disodium dihydrogen ethylene-diamine-tetraacetate (EDTA)) in enhancing metal phytoextraction was compared. Zn concentration in plant tissues increased in conjunction with the metal concentration of the soil. EDTA was found to be the most efficient chelating amendment, increasing concentrations of Zn in shoots from 88 mg kg(-1) dw, at 64 mg kg(-1) dw soil, to 8026 mg kg(-1) dw at 1800 mg kg(-1) dw soil. The overall orders of BCFs and TFs which resulted from this study are: EDTA > H2O > OX > CI, and EDTANa2 > OX > CI > H2O, respectively. The more effective uptake of Zn by plants for the control treatment (distilled water only) than for CI and OX was attributed to the neutral or slightly alkaline pH of the two chelant irrigation solutions. Instead, EDTA had a favorable effect on Zn uptake from soil due to its additive chelating and acidifying properties. Among the three chelants, only EDTA significantly increased the Zn phytoextraction potential of Z. mays, while CI and OX induced a low metal uptake from soil by plants. Although Z. mays has a lower Zn accumulation capacity than the hyperaccumulator Thlaspi caerulescens, it could be considered as a potential phytoremediator of soils with elevated Zn concentrations, especially when metal pollution extends to depths greater than 20 cm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Regulation of biokinetics of (65)Zn by curcumin and zinc in experimentally induced colon carcinogenesis in rats.

    PubMed

    Jain, Kinnri; Dhawan, Devinder K

    2014-10-01

    This study was conducted to investigate the role of curcumin and zinc on the biokinetics and biodistribution of (65)Zn during colon carcinogenesis. Male wistar rats were divided into five groups, namely normal control, 1,2-dimethylhydrazine (DMH) treated, DMH + curcumin treated, DMH + zinc treated, and DMH + curcumin + zinc treated. Weekly subcutaneous injections of DMH (30 mg/kg body weight) for 16 weeks initiated colon carcinogenesis. Curcumin (100 mg/kg body weight orally) and ZnSO4 (227 mg/L in drinking water) were supplemented for 16 weeks. This study revealed a significant depression in the fast (Tb1) and slow component (Tb2) of biological half-life of (65)Zn in the whole body of DMH-treated rats, whereas liver showed a significant elevation in these components. Further, DMH treatment showed a significant increase in the uptake values of (65)Zn in colon, small intestine, and kidneys. Subcellular distribution depicted a significant increase in (65)Zn uptake values in mitochondrial, microsomal, and postmicrosomal fractions of colon. However, curcumin and zinc supplementation when given separately or in combination reversed the trends and restored the uptake values close to normal range. Our study concludes that curcumin and zinc supplementation during colon carcinogenesis shall prove to be efficacious in regulating the altered zinc metabolism.

  12. Aseptic hydroponics to assess rhamnolipid-Cd and rhamnolipid-Zn bioavailability for sunflower (Helianthus annuus): a phytoextraction mechanism study.

    PubMed

    Wen, Jia; McLaughlin, Mike J; Stacey, Samuel P; Kirby, Jason K

    2016-11-01

    The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.

  13. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    PubMed

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, P<0.0001), suggesting a shared transport system. Ca uptake failed to significantly correlate with either Zn or Cd ku values. Further, neither Zn nor Cd exhibited inhibitory effects toward Ca uptake. In fact, we saw evidence of modest stimulation of Ca uptake rates in some metal treatments. This work suggests that insects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  14. Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity.

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn(2+) concentration prior to cell death. The response of the cells within the population to intracellular Zn(2+) is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Light-mediated Zn uptake in photosynthetic biofilm

    USGS Publications Warehouse

    Morris, J.M.; Farag, A.M.; Nimick, D.A.; Meyer, J.S.

    2006-01-01

    Our experiments conducted under controlled laboratory conditions demonstrate diel uptake and release of zinc (Zn) in lab-cultured biofilm exposed to Zn concentrations that are present in some mining-impacted streams (1-2 mg Zn/l). Specifically, at constant pH, temperature, and aqueous Zn concentrations in the exposure water, biofilm accumulated Zn during the light periods of the photocycle and released Zn during the dark periods of the photocycle. The range of Zn uptake measured in biofilm during one light period in these laboratory experiments (0.6-8.3 mg Zn/g dw biofilm) encompassed the estimated Zn uptake (1.5-3.7 mg Zn/g dw biofilm) necessary to attribute aqueous diel Zn cycling in a mining-impacted stream in Montana (High Ore Creek) to uptake in biofilm. This is relevant to in situ studies of diel Zn cycling because we controlled three important parameters that naturally fluctuate daily in the field, thus demonstrating the potential for biofilm to remove large percentages of Zn from some mining-impacted streams. Researchers, modelers, regulators, and reclamation teams working in metals-contaminated streams should be aware of diel metal cycling, because the highest Zn concentrations (and therefore, perhaps the most toxic conditions) in the water column might occur at night, and the greatest exposure of grazers of phototrophs to dietborne Zn might occur during daylight hours. ?? Springer 2006.

  16. Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn

    PubMed Central

    Impa, Somayanda M.; Morete, Mark J.; Ismail, Abdelbagi M.; Schulin, Rainer; Johnson-Beebout, Sarah E.

    2013-01-01

    Zn deficiency is a widespread problem in rice (Oryza sativa L.) grown under flooded conditions, limiting growth and grain Zn accumulation. Genotypes with Zn deficiency tolerance or high grain Zn have been identified in breeding programmes, but little is known about the physiological mechanisms conferring these traits. A protocol was developed for growing rice to maturity in agar nutrient solution (ANS), with optimum Zn-sufficient growth achieved at 1.5 μM ZnSO4.7H2O. The redox potential in ANS showed a decrease from +350 mV to −200 mV, mimicking the reduced conditions of flooded paddy soils. In subsequent experiments, rice genotypes contrasting for Zn deficiency tolerance and grain Zn were grown in ANS with sufficient and deficient Zn to assess differences in root uptake of Zn, root-to-shoot Zn translocation, and in the predominant sources of Zn accumulation in the grain. Zn efficiency of a genotype was highly influenced by root-to-shoot translocation of Zn and total Zn uptake. Translocation of Zn from root to shoot was more limiting at later growth stages than at the vegetative stage. Under Zn-sufficient conditions, continued root uptake during the grain-filling stage was the predominant source of grain Zn loading in rice, whereas, under Zn-deficient conditions, some genotypes demonstrated remobilization of Zn from shoot and root to grain in addition to root uptake. Understanding the mechanisms of grain Zn loading in rice is crucial in selecting high grain Zn donors for target-specific breeding and also to establish fertilizer and water management strategies for achieving high grain Zn. PMID:23698631

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less

  18. A low molecular weight zinc2+-dipicolylamine-based probe detects apoptosis during tumour treatment better than an annexin V-based probe.

    PubMed

    Palmowski, Karin; Rix, Anne; Lederle, Wiltrud; Behrendt, Florian F; Mottaghy, Felix M; Gray, Brian D; Pak, Koon Y; Palmowski, Moritz; Kiessling, Fabian

    2014-02-01

    Molecular imaging of apoptosis is frequently discussed for monitoring cancer therapies. Here, we compare the low molecular weight phosphatidylserine-targeting ligand zinc2+-dipicolylamine (Zn2+-DPA) with the established but reasonably larger protein annexin V. Molecular apoptosis imaging with the fluorescently labelled probes annexin V (750 nm, 36 kDa) and Zn2+-DPA (794 nm, 1.84 kDa) was performed in tumour-bearing mice (A431). Three animal groups were investigated: untreated controls and treated tumours after 1 or 4 days of anti-angiogenic therapy (SU11248). Additionally, μPET with 18 F-FDG was performed. Imaging data were displayed as tumour-to-muscle ratio (TMR) and validated by quantitative immunohistochemistry. Compared with untreated control tumours, TUNEL staining indicated significant apoptosis after 1 day (P < 0.05) and 4 days (P < 0.01) of treatment. Concordantly, Zn2+-DPA uptake increased significantly after 1 day (P < 0.05) and 4 days (P < 0.01). Surprisingly, annexin V failed to detect significant differences between control and treated animals. Contrary to the increasing uptake of Zn2+-DPA, 18 F-FDG tumour uptake decreased significantly at days 1 (P < 0.05) and 4 (P < 0.01). Increase in apoptosis during anti-angiogenic therapy was detected significantly better with the low molecular weight probe Zn2+-DPA than with the annexin V-based probe. Additionally, significant treatment effects were detectable as early using Zn2+-DPA as with measurements of the glucose metabolism using 18 F-FDG. • The detection of apoptosis by non-invasive imaging is important in oncology. • A new low molecular weight probe Zn2+-DPA shows promise in depicting anti-angiogenic effects. • The small Zn2+-DPA ligand appears well suited for monitoring therapy. • Treatment effects are detectable just as early with Zn2+-DPA as with 18F-FDG.

  19. Relationship of /sup 65/Zn absorption kinetics to intestinal metallothionein in rats: effects of zinc depletion and fasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    1988-04-01

    Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less

  20. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil].

    PubMed

    Yang, Zhuo; Wang, Zhan-Li; Li, Bo-Wen; Zhang, Rui-Fang

    2009-08-01

    Taking Brassica juncea as a hyperaccumulator, a pot experiment was conducted to study the effects of Bacillusme gaterium - Bacillus mucilaginosus mixed agent and Aspergillus niger 30177 fermentation liquor on the phytoremediation of Cd, Pb, and Zn-contaminated soil. The B. gaterium - B. mucilaginosus mixed agent not only promoted the growth of B. juncea, but also increased the soil Cd, Pb, and Zn uptake by the hyperaccumulator, with the phytoremediation efficiency enhanced greatly. The enrichment amount of Cd, Pb and Zn in B. juncea on the soil added with soluble Cd, Pb and Zn increased by 1.18, 1.54 and 0.85 folds, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 4.00, 0. 64 and 0. 65 folds, respectively, compared with the control. A. niger 30177 fermentation liquor increased the soil Cd, Pb, and Zn uptake by B. juncea. Comparing with the control, the enrichment amount of Cd, Pb and Zn in aboveground part of B. juncea on the soil added with soluble Cd, Pb and Zn increased by 88.82%, 129.04% and 16.80%, while that on the soil added with Cd, Pb and Zn-contaminated sediment increased by 78.95%, 113.63% and 33.85%, respectively. However, A. niger 30177 fermentation liquor decreased the B. juncea biomass greatly, having less effect in the enhancement of phytoremediation efficiency. The analysis of reversed-phase high performance liquid chromatography showed that the fermentation liquor of B. gaterium and B. mucilaginosus contained some organic acids such as oxalic acid and citric acid. These acids could dissolve the heavy metals to some degree, and accordingly, enhance the bioavailability of the metals.

  1. Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants.

    PubMed

    Rate, Andrew W; Lee, Karen M; French, Peter A

    2004-02-01

    Mineral sands mining involves stripping topsoil to access heavy-mineral bearing deposits, which are then rehabilitated to their original state, commonly pasture in south-west Western Australia. Organic amendments such as biosolids (digested sewage sludge) can contribute organic carbon to the rehabilitating system and improve soil chemical fertility and physical conditions. Use of biosolids also introduces the risk of contamination of the soil-plant system with heavy metals, but may be a useful source of trace elements to plants if the concentrations of these elements are low in unamended soil. We expected that biosolids amendment of areas mined for mineral sands would result in increased concentrations of metals in soils and plants, and that metal uptake would be decreased by adding stockpiled topsoil or by liming. A glasshouse experiment growing a mixed annual ryegrass (Lolium rigidum)-subterranean clover (Trifolium subterraneum) sward was conducted using two soil materials (residue sand/clay and conserved topsoil) from a mineral sands mine amended with different rates of biosolids (0, 10, 20, 50 dry t/ha), and including a liming treatment (2 t/ha). Total concentrations of metals (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil increased with increasing rate of biosolids application. Metal uptake was generally lower where topsoil was present and was decreased by liming. With increasing biosolids application, plant metal concentrations increased for Cd, Ni and Zn but decreased or were erratic for other elements. In clover, biosolids application removed the Zn deficiency observed where biosolids were not applied. Plant uptake of all elements increased with increasing biosolids application, suggesting dilution by increased plant biomass was responsible for erratic metal concentration results. Despite the observed increases in uptake of metals by plants, metal concentrations in both species were low and below food standard thresholds. It is unlikely that a single application of biosolids in this system posed a threat from heavy metal contamination of soils or plants, and was beneficial in terms of Zn nutrition of T. subterraneum.

  2. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower ( Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    DOE PAGES

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; ...

    2015-01-21

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower ( Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower ( H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualizemore » Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.« less

  3. Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea.

    PubMed

    Sácký, Jan; Leonhardt, Tereza; Kotrba, Pavel

    2016-04-01

    Russula atropurpurea can accumulate remarkably high concentrations of Zn in its sporocarps. We have previously demonstrated that 40 % of the intracellular Zn in this species is sequestered by MT-like RaZBP peptides. To see what other mechanisms for the handling of the accumulated Zn are available to R. atropurpurea, we searched its transcriptome for cDNAs coding for transporters of the cation diffusion facilitator (CDF) family. The transcriptome search enabled us to identify RaCDF1 and RaCDF2, which were further subjected to functional studies in metal sensitive Saccharomyces cerevisiae. The expression of RaCDF1 and its translational fusion with green fluorescent protein (GFP) protected the yeasts against Zn and Co, but not Cd or Mn, toxicity and led to increased Zn accumulation in the cells. The GFP fluorescence, observed in the RaCDF1::GFP-expressing yeasts on tonoplasts, indicated that the RaCDF1-mediated Zn and Co tolerance was a result of vacuolar sequestration of the metals. The expression of RaCDF2 supported Zn, but not Mn, tolerance in the yeasts and reduced the cellular uptake of Zn, which is congruent with the proposed idea of the Zn-efflux function of RaCDF2, supported by the localization of GFP-derived fluorescence on the plasma membrane of the yeasts expressing functional RaCDF2::GFP. Contrarily, RaCDF2 increased the sensitivity to Co and Cd in the yeasts and significantly promoted Cd uptake, which suggested that it can act as a bidirectional metal transporter. The notion that RaCDF1 and RaCDF2 are genuine CDF transporters in R. atropurputrea was further reinforced by the fact that the RaCDF-associated metal tolerance and uptake phenotypes were lost upon the replacement of histidyl (in RaCDF1) and aspartyl (in RaCDF2), which are highly conserved in the second transmembrane domain and known to be essential for the function of CDF proteins.

  4. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    PubMed

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  5. Effect of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn and Ag

    USGS Publications Warehouse

    Harvey, Ronald W.; Luoma, Samuel N.

    1985-01-01

    Effects of adherent bacteria and bacterial extracellular polymer (exopolymer) upon uptake of particle-bound Cd, Zn and Ag by the deposit-feeding clam Macoma balthica were studied in the laboratory. Amorphous iron oxyhydroxide and unaltered and alkaline-extracted sediments were used as model particulates in separate, controlled deposit-feeding experiments. In general, amounts of metal taken up from ingested particles varied dramatically with the nature of the particle surface. Ingestion of contaminated iron oxide particles did not contribute to overall uptake of Cd and Ag in feeding clams, but accounted for 89 to 99% of total Zn uptake. Exopolymer adsorbed on iron oxide particles caused an increase in the biological availability of particle-bound metals in the order Ag>Cd>Zn, whereas adherent bacteria up to 3.2 X 1011 g-1 had no effect upon amounts of metal taken up from ingested particulates. At the higher Cd and Ag concentrations employed (3.6 X 10-7M), feeding rates declined with increasing amounts of iron oxide-bound exopolymer, suggesting behavioral avoidance due to increased metal availability. Much of the Cd (57 %) taken up by clams feeding on unaltered estuarine sediments originated from particulates, even though particle/solute distribution of Cd (86%) was similar to that in experiments with iron oxide particles. Uptake of Cd from alkalineextracted sediments was insignificant, as it was from unamended iron oxide. However, addition of exopolymer (10 mgg-1 sediment) caused a restoration nn bioavailability of sediment-bound Cd.

  6. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    PubMed

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  7. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. [Pisolithus tinctorius, Pinus virginiana Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; O'Neill, E.G.; Ells, J.M.

    One-year-old Virgina pine (Pinus virginiana Mill.) seedlings with native or Pisolithus tinctorius mycorrhizal associations were grown in pots with soil low in organic matter and in cation exchange capacity and were exposed to one of five atmospheric CO/sub 2/ levels in the range of 340 to 940 ..mu..L/L in open-top field chambers. The mean dry weight of the seedlings increased from 4.4 to 11.0 g/plant during the 122-d exposure period. Significant increases in dry weight and uptake of N, Ca, Al, Fe, Zn, and Sr occurred with CO/sub 2/ enrichment. Greater chemical uptake was associated with greater root weight. Specificmore » absorption rates for chemicals (uptake per gram of root per day) were generally not affected by CO/sub 2/ enrichment. The uptake of P and K was not increased with elevated CO/sub 2/, and these elements showed the greater nutrient-use efficiency (C gain per element uptake). The nutrient-use efficiency for N and Ca was not influenced by atmospheric CO/sub 2/ enrichment. Large increases in Zn uptake at high CO'' suggested an increase in rhizosphere acidification, which may have resulted from the release of protons from the roots, since it was estimated that cation uptake increasingly exceeded anion uptake with CO/sub 2/ enrichment. Potassium, P, and NO/sub 3//sup -/ concentrations in the pot leachate decreased with higher CO/sub 2/ levels, and a similar trend was found for Al and Mg. These results suggest that soil-plant systems may exhibit increased nutrient and chemical retention at elevated atmospheric CO/sub 2/.« less

  8. The mechanism of zinc uptake by cultured rat liver cells.

    PubMed Central

    Taylor, J A; Simons, T J

    1994-01-01

    1. The initial rate of 65Zn uptake into cultured rat hepatocytes has been measured over a range of Zn2+ concentrations from 3 x 10(-10) M to 5 x 10(-6) M. Histidine and albumin were used to buffer Zn2+ ions at concentrations below 1 x 10(-6) M. 2. The results suggest there are two mechanisms for Zn2+ uptake; a high-affinity, saturable pathway, with a maximum velocity (Vmax) of 20-30 pmol (mg protein)-1 min-1 and a Michaelis-Menten constant (Km) of about 2 x 10(-9) M Zn2+ (with histidine), and a low-affinity, linear pathway, that only makes a significant contribution to Zn2+ uptake at Zn2+ concentrations above 1 x 10(-6) M. 3. Transport via the high-affinity pathway is dependent on the concentration of Zn2+ ions and not on the concentrations of Zn(2+)-ligand complexes, suggesting that Zn2+ is the transported species. 4. The affinity of the saturable pathway for Zn2+ is slightly lower in the presence of albumin, with a Km of about 1.3 x 10(-8) M. The reason for this is uncertain. PMID:8014898

  9. Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere

    PubMed Central

    Mori, Asako; Kirk, Guy J. D.; Lee, Jae-Sung; Morete, Mark J.; Nanda, Amrit K.; Johnson-Beebout, Sarah E.; Wissuwa, Matthias

    2016-01-01

    Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly HCO3− or Fe2+), or both. Traits for these and crown root number are potential breeding targets. PMID:26793198

  10. Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere.

    PubMed

    Mori, Asako; Kirk, Guy J D; Lee, Jae-Sung; Morete, Mark J; Nanda, Amrit K; Johnson-Beebout, Sarah E; Wissuwa, Matthias

    2015-01-01

    Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly [Formula: see text] or Fe(2+)), or both. Traits for these and crown root number are potential breeding targets.

  11. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil.

    PubMed

    Li, X; Christie, P

    2001-01-01

    Red clover plants inoculated with Glomus mosseae were grown in a sterile pasture soil containing 50 mg Zn kg(-1) in 'Plexiglas' (acrylic) containers with nylon net partitions (30 microm mesh) designed to separate the soil into a central root zone and two outer zones for hyphal growth with no root penetration. Two porous plastic soil moisture samplers were installed in each pot, one in the root compartment and the other in one of the hyphal compartments. The soil in the outer compartments was amended with one of the four application rates of Zn (as ZnSO4) ranging from 0 to 1000 mg kg(-1). Non-mycorrhizal controls were included, and there were five replicates of each treatment in a randomised block in a glasshouse. Uninoculated plants received supplementary P to avoid yield limitation due to low soil P status. Plants grew in the central compartment for nine weeks. Soil moisture samples were collected 4, 24 and 62 days after sowing to monitor changes in the Zn concentration and pH of the soil solution. At harvest, the mean mycorrhizal infection rate of inoculated plants ranged from 29% to 34% of total root length and was little affected by Zn application. Root and shoot yields were not affected by mycorrhizal infection. Plant Zn concentration and uptake were lower in mycorrhizal plants than non-mycorrhizal controls, and this effect was more pronounced with increasing Zn application rate to the soil. Soil solution Zn concentrations were lower and pH values were higher in mycorrhizal treatments than non-mycorrhizal controls and the mycorrhiza effect was more pronounced at higher Zn application rates. The protective effect of mycorrhiza against plant Zn uptake may have been associated with changes in Zn solubility mediated by changes in the soil solution pH, or by immobilisation of Zn in the extraradical mycelium.

  12. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)

    USGS Publications Warehouse

    Kuwabara, J.S.

    1985-01-01

    Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.

  13. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers

    USGS Publications Warehouse

    Dybowska, A.D.; Croteau, M.-N.; Misra, S.K.; Berhanu, D.; Luoma, S.N.; Christian, P.; O'Brien, P.; Valsami-Jones, E.

    2011-01-01

    Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 ??g g-1). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 ??g g-1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. ?? 2010 Elsevier Ltd. All rights reserved.

  14. Zinc isotopic fractionation in Phragmites australis in response to toxic levels of zinc

    PubMed Central

    Caldelas, Cristina; Dong, Shuofei; Araus, José Luis; Jakob Weiss, Dominik

    2011-01-01

    Stable isotope signatures of Zn have shown great promise in elucidating changes in uptake and translocation mechanisms of this metal in plants during environmental changes. Here this potential was tested by investigating the effect of high Zn concentrations on the isotopic fractionation patterns of Phragmites australis (Cav.) Trin. ex Steud. Plants were grown for 40 d in a nutritive solution containing 3.2 μM (sufficient) or 2 mM (toxic) Zn. The Zn isotopic composition of roots, rhizomes, shoots, and leaves was analysed. Stems and leaves were sampled at different heights to evaluate the effect of long-distance transport on Zn fractionation. During Zn sufficiency, roots, rhizomes, and shoots were isotopically heavy (δ66ZnJMC Lyon=0.2‰) while the youngest leaves were isotopically light (–0.5‰). During Zn excess, roots were still isotopically heavier (δ66Zn=0.5‰) and the rest of the plant was isotopically light (up to –0.5‰). The enrichment of heavy isotopes at the roots was attributed to Zn uptake mediated by transporter proteins under Zn-sufficient conditions and to chelation and compartmentation in Zn excess. The isotopically lighter Zn in shoots and leaves is consistent with long-distance root to shoot transport. The tolerance response of P. australis increased the range of Zn fractionation within the plant and with respect to the environment. PMID:21193582

  15. Intracellular uptake and behavior of two types zinc protoporphyrin (ZnPP) micelles, SMA-ZnPP and PEG-ZnPP as anticancer agents; unique intracellular disintegration of SMA micelles.

    PubMed

    Nakamura, Hideaki; Fang, Jun; Gahininath, Bharate; Tsukigawa, Kenji; Maeda, Hiroshi

    2011-11-07

    SMA-ZnPP and PEG-ZnPP are micellar drugs, encapsulating zinc protoporphyrin IX (ZnPP) with styrene maleic acid copolymer (SMA) and covalent conjugate of ZnPP with polyethylene glycol (PEG) respectively. Their intracellular uptake rate and subcellular localization were investigated. We found SMA-ZnPP showed higher and more efficient (about 2.5 times) intracellular uptake rate than PEG-ZnPP, although both SMA-ZnPP and PEG-ZnPP micelles were localized at endoplasmic reticulum (ER) and inhibited the target enzyme heme oxygenase 1 (HO-1) similarly. Both micellar ZnPP were taken up into the tumor cells by endocytosis. Furthermore SMA-ZnPP and PEG-ZnPP were examined for their drug releasing mechanisms. Liberation of ZnPP from the SMA micelle appears to depend on cellular amphiphilic components such as lecithin, while that for PEG-ZnPP depends on hydrolytic cleavage. These results indicate that these micelle formulations make water insoluble ZnPP to water soluble practical anticancer agents. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Oxidative stress upregulates zinc uptake activity via Zrt/Irt-like protein 1 (ZIP1) in cultured mouse astrocytes.

    PubMed

    Furuta, Takahiro; Ohshima, Chiaki; Matsumura, Mayu; Takebayashi, Naoto; Hirota, Emi; Mawaribuchi, Toshiki; Nishida, Kentaro; Nagasawa, Kazuki

    2016-04-15

    Zinc released from glutamatergic boutons and astrocytes acts as neuro- and glio-transmitters, and thus its extracellular level has to be strictly regulated. We previously revealed that uptake of zinc by astrocytes plays a critical role in its clearance, and zinc transporter Zrt/Irt-like protein 1 (ZIP1) is the molecule responsible for the uptake. However, it is unknown whether or not the functionality of the zinc clearance system is altered under oxidative stress-loaded conditions. Here, we characterized zinc uptake by oxidative stress-loaded astrocytes. Cultured mouse astrocytes were treated with hydrogen peroxide (H2O2) to load oxidative stress. Functional expression of ZIP1 in astrocytes was evaluated by means of (65)Zn uptake, Western blotting and immunocytochemical analysis. Treatment of astrocytes with 0.4mM H2O2 for 24h increased the expression levels of glial fibrillary acidic protein and 4-hydroxynonenal without significant decreases in their viability, indicating that induction of oxidative stress in astrocytes. Under oxidative stress-loaded conditions, astrocytes exhibited increased (65)Zn uptake activity, and the maximum uptake velocity for the uptake was significantly increased compared to that in the control group, while there was no change in the Michaelis constants, which were almost identical to that of mouse ZIP1. In the H2O2-treated astrocytes, the expression levels of ZIP1 were significantly increased in the cellular and plasma membrane fractions. It appears that under oxidative stress-loaded conditions, astrocytes exhibit increased zinc clearance activity and this is due, at least in part, to increased ZIP1 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    PubMed

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The uptake of Cu, Zn and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  18. Differences in dissolved cadmium and zinc uptake among stream insects: Mechanistic explanations

    USGS Publications Warehouse

    Buchwalter, D.B.; Luoma, S.N.

    2005-01-01

    This study examined the extent to which dissolved Cd and Zn uptake rates vary in several aquatic insect taxa commonly used as indicators of ecological health. We further attempted to explain the mechanisms underlying observed differences. By comparing dissolved Cd and Zn uptake rates in several aquatic insect species, we demonstrated that species vary widely in these processes. Dissolved uptake rates were not related to gross morphological features such as body size or gill size-features that influence water permeability and therefore have ionoregulatory importance. However, finer morphological features, specifically, the relative numbers of ionoregulatory cells (chloride cells), appeared to be related to dissolved metal uptake rates. This observation was supported by Michaelis-Menten type kinetics experiments, which showed that dissolved Cd uptake rates were driven by the numbers of Cd transporters and not by the affinities of those transporters to Cd. Calcium concentrations in exposure media similarly affected Cd and Zn uptake rates in the caddisfly Hydropsyche californica. Dissolved Cd and Zn uptake rates strongly co-varied among species, suggesting that these metals are transported by similar mechanisms.

  19. Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS).

    PubMed

    Fässler, Erika; Evangelou, Michael W; Robinson, Brett H; Schulin, Rainer

    2010-08-01

    The use of plants for phytoextraction of heavy metals from contaminated soil is limited by the ability of the plants to grow on these soils and take up the target metals, as well as by the availability of the metals for plant uptake in the soil solution. The hypotheses of this study were that the growth-promoting phytohormone auxin (indole-3-acetic acid, IAA) can alleviate toxic effects of metals on plants and increase metal phytoextraction in combination with the biodegradable chelating agent ethylene diamine disuccinic acid (EDDS). To test these hypotheses we performed two sets of experiments with sunflowers (Helianthusannuus L.) in hydroponic solution. In the first set of experiments, five IAA concentrations (0, 10(-12), 10(-11), 10(-10), 10(-9)M) were applied in combination with Pb (2.5 microM) or Zn (15 microM). In the second set of experiments we applied combinations of IAA (0 or 10(-10)M) and EDDS (0 or 500 microM) to Pb or Zn-stressed sunflowers. Root and shoot growth of metal-stressed plants were most effectively increased with 10(-10)M IAA, and also the extraction of both metals was significantly increased at this treatment level. IAA reduced the negative metal effects, such as reduced shoot and root dry weight, root length, root volume and root surface area. EDDS significantly decreased metal uptake by the plants, thus reducing metal stress and promoting plant growth. The combined application of IAA with EDDS significantly increased Zn uptake in comparison to EDDS only treated plants. The experiments indicate that IAA can alleviate toxic effects of Pb and Zn on plant root and shoot growth and can in combination with chelants such as EDDS increase the phytoextraction potential of these plants. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes.

    PubMed

    Murtaza, Ghulam; Javed, Wasim; Hussain, Amir; Qadir, Manzoor; Aslam, Muhammad

    2017-02-01

    The present study aimed to evaluate the effect of soil-applied Zn and Cu on absorption and accumulation of Cd applied through irrigation water in legume (chickpea and mung bean) and cereal (wheat and maize) crops. The results revealed that Cd in irrigation water at higher levels (2 and 5 mg L -1 ) significantly (p < 0.05) reduced the plant biomass while the soil application of Zn and Cu, singly or combined, favored the biomass production. Plant tissue Cd concentration increased linearly with the increasing application of Cd via irrigation water. While Cd application caused a redistribution of metals in grains, straw, and roots with the highest concentration of Cd, Zn, and Cu occurred in roots followed by straw and grains. Zinc addition to soil alleviated Cd toxicity by decreasing Cd concentration in plant tissues due to a possible antagonistic effect. The addition of Cu to the soil had no consistent effects on Zn and Cd contents across all crops. Inhibitory effects of Cd on the uptake and accumulation of Zn and Cu have also been observed at higher Cd load. Thus, soil-applied Zn and Cu antagonized Cd helping the plant to cope with its toxicity and suppressed the toxic effects of Cd in plant tissues, thus favoring plant growth.

  1. Proteomic Profiling of the Interactions of Cd/Zn in the Roots of Dwarf Polish Wheat (Triticum polonicum L.)

    PubMed Central

    Wang, Yi; Wang, Xiaolu; Wang, Chao; Wang, Ruijiao; Peng, Fan; Xiao, Xue; Zeng, Jian; Fan, Xing; Kang, Houyang; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Cd and Zn have been shown to interact antagonistically or synergistically in various plants. In the present study of dwarf polish wheat (DPW)roots, Cd uptake was inhibited by Zn, and Zn uptake was inhibited by Cd, suggesting that Cd and Zn interact antagonistically in this plant. A study of proteomic changes showed that Cd, Zn, and Cd+Zn stresses altered the expression of 206, 303, and 190 proteins respectively. Among these, 53 proteins were altered significantly in response to all these stresses (Cd, Zn, and Cd+Zn), whereas 58, 131, and 47 proteins were altered in response to individual stresses (Cd, Zn, and Cd+Zn, respectively). Sixty-one differentially expressed proteins (DEPs) were induced in response to both Cd and Zn stresses; 33 proteins were induced in response to both Cd and Cd+Zn stresses; and 57 proteins were induced in response to both Zn and Cd+Zn stresses. These results indicate that Cd and Zn induce differential molecular responses, which result in differing interactions of Cd/Zn. A number of proteins that mainly participate in oxidation-reduction and GSH, SAM, and sucrose metabolisms were induced in response to Cd stress, but not Cd+Zn stress. This result indicates that these proteins participate in Zn inhibition of Cd uptake and ultimately cause Zn detoxification of Cd. Meanwhile, a number of proteins that mainly participate in sucrose and organic acid metabolisms and oxidation-reduction were induced in response to Zn stress but not Cd+Zn stress. This result indicates that these proteins participate in Cd inhibition of Zn uptake and ultimately cause the Cd detoxification of Zn. Other proteins induced in response to Cd, Zn, or Cd+Zn stress, participate in ribosome biogenesis, DNA metabolism, and protein folding/modification and may also participate in the differential defense mechanisms. PMID:27683584

  2. Soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) as affected by long-term organic matter management

    NASA Astrophysics Data System (ADS)

    Grüter, Roman; Costerousse, Benjamin; Mayer, Jochen; Mäder, Paul; Thonar, Cécile; Frossard, Emmanuel; Schulin, Rainer; Tandy, Susan

    2017-04-01

    Zinc (Zn) deficiency is a widespread problem in human mineral nutrition. It is mainly caused by imbalanced diets with low contents of bioavailable Zn. This is in particular a problem in populations depending on cereals such as wheat (Triticum aestivum L.) as a major source of this essential micronutrient element. Increasing Zn concentrations in wheat grains (biofortification) is therefore an important challenge. At the same time, increased uptake of the toxic heavy metal cadmium (Cd) must be prevented. Agronomic practises influence soil properties such as pH and soil organic carbon and thus also have an indirect effect on phytoavailable soil Zn and Cd concentrations and the uptake of these metals by wheat in addition to direct inputs with fertilizers and other amendments. This study investigated the effects of long-term organic matter management on the phytoavailability of soil Zn and Cd and their uptake by wheat on plots of two Swiss long-term field trials. In one trial (DOK), a farming system comparison trial established in 1978, we compared plots under conventional management with mineral fertilization either in combination or not with farmyard manure application to plots under biodynamic organic management and control plots with no fertilizer application. In the second trial (ZOFE), established in 1949, we compared different fertilizer regimes on conventionally managed plots, including plots with application of mineral fertilizers only, farmyard manure, or compost and control plots with no fertilizer application. Soil physico-chemical and biological properties were determined at the beginning of the growing season. Soil Zn and Cd availabilities were assessed by the Diffusive Gradients in Thin Films (DGT) method and by DTPA extraction before and after wheat cultivation. Additionally, various wheat yield components and element concentrations in shoots and grains were measured at harvest. In the ZOFE trial, soil Zn and Cd concentrations were lowest in the mineral fertilizer and highest in the farmyard manure treatments, where metal export via crop harvests and inputs through farmyard manure dominated soil metal mass balances in the long-term, respectively. DGT-available Zn and Cd correlated negatively with soil pH, total organic carbon and microbial biomass in both trials. They were lowest in the biodynamic and compost treatments and highest in the control treatments. In the ZOFE trial, wheat yields on mineral fertilized plots exceeded the other treatments by more than a factor of two. Cd concentrations in wheat shoots and grains showed a strong positive correlation with DGT-available soil Cd. They were lowest in biodynamic and compost treatments. In contrast, shoot and grain Zn concentrations correlated more closely with total and DTPA-extractable than with DGT-available soil Zn in the ZOFE trial and they poorly correlated with both Zn availability indicators in the DOK trial. Despite these differences, the study reveals that long-term organic matter management has an important influence on the availability of both elements in soil and their uptake by wheat.

  3. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    PubMed

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Phosphorus reduces the zinc concentration in cereals pot-grown on calcareous Vertisols from southern Spain.

    PubMed

    Sánchez-Rodríguez, Antonio Rafael; Del Campillo, María Carmen; Torrent, José

    2017-08-01

    Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains. Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P. Grain yield in the plants grown on the native soils was positively correlated with Olsen P but not with diethylenetriaminepentaacetic acid (DTPA)-extractable Zn except for wheat on P-rich soils. Grain Zn concentration was negatively correlated with Olsen P. Grain Zn uptake differed little among soils. Application of P to the soils increased grain yield insignificantly and P concentration significantly; however, it reduced grain Zn concentration (particularly at low Olsen P values). Applying Zn alone only increased grain Zn concentration, whereas applying P and Zn in combination increased yield and grain Zn concentration at low and high Olsen P values, respectively. Applying P alone to plants grown on calcareous Vertisols low in available P and Zn may in practice reduce grain Zn concentrations while not increasing grain yield significantly. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Contrasting Effects of Cattle Manure Applications and Root-Induced Changes on Heavy Metal Dynamics in the Rhizosphere of Soybean in an Acidic Haplic Fluvisol: A Chronological Pot Experiment.

    PubMed

    Chu, Qingnan; Sha, Zhimin; Osaki, Mitsuru; Watanabe, Toshihiro

    2017-04-19

    To characterize the dynamic mobilization of heavy metals (HM) in a crop-soil system affected by cattle manure (CM) application, soybean [Glycine max L. Merr. cv. Toyoharuka] crops were exposed in a chronological pot experiment to three CM application rates and sampled at two vegetative stages and two reproductive stages. A sequential extraction procedure for metal fractionation, soil pH, microbial activity, and plant HM uptake was determined. In non-rhizopshere soil, with CM application a liming effect was detected, and increased microbial activity was detected at the reproductive stage. CM application shifted Cd from available state to oxide-bound pool in non-rhizosphere soil; however, shifts in Cd from an oxide-bound pool to the available state were observed in rhizosphere soil. CM application stabilized the available Zn and Pb to oxide-bound Zn and organic-bound Pb in both non-rhizosphere and rhizosphere soils, and the stabilizing degree increased with higher CM application rates. The promoted Zn immobilization in the rhizosphere was due to the liming effects induced by added CM that counteracted the root-induced acidification. On the basis of a stepwise multiple regression analysis, the shift of Cd and Pb fractionation was mainly related to microbial activity. Adding manure inhibited Zn and Pb uptake but promoted Cd uptake by soybean, and a greater influence was detected at the reproductive stage, at which CM application increased the root Cd-absorbing power but did not significantly affect the Zn- and Pb-absorbing powers. In an agricultural context, long-term CM application, even at the recommended rate of 10.13 Mg ha -1 , may cause a soybean Zn deficiency and high Pb accumulation in Haplic Fluvisols, although CM is often considered as an environmentally friendly fertilizer.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, S.C.; Evenden, W.G.; Cornwell, T.C.

    The relative depuration and uptake kinetics of contaminants should be known to interpret appropriately the use of organisms such as earthworms in environmental bioassays and monitoring. For example, 14-d earthworm bioassays should be interpreted with the knowledge that some contaminants will continue to accumulate in tissues for months. The radiotracers {sup 125}I, {sup 134}Cs, {sup 54}Mn, {sup 65}Zn, and {sup 109}Cd were applied to deciduous litter and specimens of Lumbricus terrestris were exposed, either to litter alone or to litter on the top of soil columns. Depuration was monitored for 120 d and uptake, in a separate experiment, for 20more » d. Both depuration and uptake were described using two-phase, first-order statistical models. Cut clearance had a mean half-time of 1.4 d. The mean half-time for physiological depuration decreased from I (210 d) > Cd (150 d) > Zn (69 d) > Mn (40 d) > Cs (24 d). Both the depuration and the uptake experiments were necessary to resolve even partially the multiphase processes. Earthworm/soil dry weight concentration ratios decreased from Cd > Zn > I {ge} Cs {ge} Mn. The very slow kinetics indicate that tissue concentrations will increase continuously for a long time, with important implications for subsequent food-chain transfers.« less

  7. Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod Porcellionides pruinosus.

    PubMed

    Tourinho, Paula S; van Gestel, Cornelis A M; Lofts, Stephen; Soares, Amadeu M V M; Loureiro, Susana

    2013-12-01

    The effects of soil pH on the toxicity of ZnO nanoparticles (NPs) to the terrestrial isopod Porcellionides pruinosus were evaluated. Isopods were exposed to a natural soil amended with CaCO3 to reach 3 different pH(CaCl2) levels (4.5, 6.2, and 7.3) and to standard LUFA 2.2 soil (pH 5.5) spiked with ZnO NPs (30 nm), non-nano ZnO (200 nm), and ionic Zn as ZnCl₂. Toxicity was expressed based on total Zn concentration in soil, as well as total Zn and free Zn²⁺ ion concentrations in porewater. Compared with ZnO-spiked soils, the ZnCl₂-spiked soils had lower pH and higher porewater Ca²⁺ and Zn levels. Isopod survival did not differ between Zn forms and soils, but survival was higher for isopods exposed to ZnO NPs at pH 4.5. Median effect concentrations (EC50s) for biomass change showed similar trends for all Zn forms in all soils, with higher values at intermediate pH. Median lethal concentration (LC50) and EC50 values based on porewater Zn or free Zn ion concentrations were much lower for ZnO than for ionic zinc. Zn body concentrations increased in a dose-related manner, but no effect of soil pH was found. It is suggested not only that dissolved or free Zn in porewater contributed to uptake and toxicity, but also that oral uptake (i.e., ingestion of soil particles) could be an important additional route of exposure. © 2013 SETAC.

  8. Uptake and loss kinetics of Cd, Cr and Zn in the bivalves Potamocorbula amurensis and Macoma balthica: Effects of size and salinity

    USGS Publications Warehouse

    Lee, B.-G.; Wallace, W.G.; Luoma, S.N.

    1998-01-01

    Radiotracer studies were employed to quantitatively compare the biokinetics of uptake from the dissolved phase (influx rates) and loss (efflux) between 2 bivalves, Potamocorbula amurensis and Macoma balthica, and among the metals Cd, Cr and Zn. Effects of salinity on influx rate were evaluated in these 2 highly euryhaline species as were effects of animal size on uptake and loss. Metal speciation and biological attributes interacted to differentiate bioaccumulation processes among metals and between species. Influx rates of the 3 metals (??g g-1 [dry wt] d-1) increased linearly with dissolved metal concentrations. Influx rates of Zn in both clams were 3 to 4x those for Cd and 15x those for Cr. However, influx on the basis of free ion activities would be faster for Cd than for Zn. Relative influx rates among the metals were similar in the 2 bivalves. But, absolute influx rates of all 3 metals were 4 to 5x greater in P. amurensis than in M. balthica, probably because of differences in biological attributes (i.e. clearance rate or gill surface area). As salinity was reduced from 30 to 5 psu, the influx rate of Cd for P. amurensis increased 4-fold and that for M. balthica increased 6-fold, consistent with expected changes in speciation. However the influx rates of Cr in both clams also increased 2.4-fold over the same range, indicating a biological contribution to the salinity effect. Influx rates of Zn were not significantly affected by salinity. Weight specific metal influx rates (??g g-1 [dry wt] d-1) were negatively correlated with the tissue dry weight of the clams, but most rate constants determining physiological turnover of assimilated metals were not affected by clam size. The exception was the rate constant for Cd loss, which resulted in faster turnover in large M. balthica than in smaller clams. The rate constant of loss for P. amurensis increased in the order of Cd (0.011 d-1) < Zn (0.027 d-1) < Cr (0.048 d-1). This was different from the hierarchy of rate constants for M. balthica: Zn (0.012 d-1) < Cd (0.018 d-1) < Cr (0.024 d-1).

  9. Characterization of 68Zn uptake, translocation, and accumulation into developing grains and young leaves of high Zn-density rice genotype*

    PubMed Central

    Wu, Chun-yong; Feng, Ying; Shohag, Md. Jahidul Islam; Lu, Ling-li; Wei, Yan-yan; Gao, Chong; Yang, Xiao-e

    2011-01-01

    Zinc (Zn) is an essential micronutrient for humans, but Zn deficiency has become serious as equally as iron (Fe) and vitamin A deficiencies nowadays. Selection and breeding of high Zn-density crops is a suitable, cost-effective, and sustainable way to improve human health. However, the mechanism of high Zn density in rice grain is not fully understood, especially how Zn transports from soil to grains. Hydroponics experiments were carried out to compare Zn uptake and distribution in two different Zn-density rice genotypes using stable isotope technique. At seedling stage, IR68144 showed higher 68Zn uptake and transport rate to the shoot for the short-term, but no significant difference was observed in both genotypes for the long-term. Zn in xylem sap of IR68144 was consistently higher, and IR68144 exhibited higher Zn absorption ratio than IR64 at sufficient (2.0 µmol/L) or surplus (8.0 µmol/L) Zn supply level. IR64 and IR68144 showed similar patterns of 68Zn accumulation in new leaves at seedling stage and in developing grains at ripening stage, whereas 68Zn in new leaves and grains of IR68144 was consistently higher. These results suggested that a rapid root-to-shoot translocation and enhanced xylem loading capacity may be the crucial processes for high Zn density in rice grains. PMID:21528496

  10. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana.

    PubMed

    Zhao, Huijun; Wu, Liangqi; Chai, Tuanyao; Zhang, Yuxiu; Tan, Jinjuan; Ma, Shengwen

    2012-09-01

    Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. On the origin of the marine zinc-silicon correlation

    NASA Astrophysics Data System (ADS)

    de Souza, Gregory F.; Khatiwala, Samar P.; Hain, Mathis P.; Little, Susan H.; Vance, Derek

    2018-06-01

    The close linear correlation between the distributions of dissolved zinc (Zn) and silicon (Si) in seawater has puzzled chemical oceanographers since its discovery almost forty years ago, due to the apparent lack of a mechanism for coupling these two nutrient elements. Recent research has shown that such a correlation can be produced in an ocean model without any explicit coupling between Zn and Si, via the export of Zn-rich biogenic particles in the Southern Ocean, consistent with the observation of elevated Zn quotas in Southern Ocean diatoms. Here, we investigate the physical and biological mechanisms by which Southern Ocean uptake and export control the large-scale marine Zn distribution, using suites of sensitivity simulations in an ocean general circulation model (OGCM) and a box-model ensemble. These simulations focus on the sensitivity of the Zn distribution to the stoichiometry of Zn uptake relative to phosphate (PO4), drawing directly on observations in culture. Our analysis reveals that OGCM model variants that produce a well-defined step between relatively constant, high Zn:PO4 uptake ratios in the Southern Ocean and low Zn:PO4 ratios at lower latitudes fare best in reproducing the marine Zn-Si correlation at both the global and the regional Southern Ocean scale, suggesting the presence of distinct Zn-biogeochemical regimes in the high- and low-latitude oceans that may relate to differences in physiology, ecology or (micro-)nutrient status. Furthermore, a study of the systematics of both the box model and the OGCM reveals that regional Southern Ocean Zn uptake exerts control over the global Zn distribution via its modulation of the biogeochemical characteristics of the surface Southern Ocean. Specifically, model variants with elevated Southern Ocean Zn:PO4 uptake ratios produce near-complete Zn depletion in the Si-poor surface Subantarctic Zone, where upper-ocean water masses with key roles in the global oceanic circulation are formed. By setting the main preformed covariation trend within the ocean interior, the subduction of these Zn- and Si-poor water masses produces a close correlation between the Zn and Si distributions that is barely altered by their differential remineralisation during low-latitude cycling. We speculate that analogous processes in the high-latitude oceans may operate for other trace metal micronutrients as well, splitting the ocean into two fundamentally different biogeochemical, and thus biogeographic, regimes.

  12. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel

    2017-06-03

    The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.

  13. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions.

    PubMed

    Brun, Nadja Rebecca; Lenz, Markus; Wehrli, Bernhard; Fent, Karl

    2014-04-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of nZnO are solely or partly due to dissolved Zn(II). Here we compare potential effects of 0.2, 1 and 5mg/L nZnO and corresponding concentrations of released Zn(II) by water soluble ZnCl2 to two development stages of zebrafish, embryos and eleuthero-embryos, by analysing expressional changes by RT-qPCR. Another objective was to assess uptake and tissue distribution of Zn(II). Laser ablation-ICP-MS analysis demonstrated that uptake and tissue distribution of Zn(II) were identical for nZnO and ZnCl2 in eleuthero-embryos. Zn(II) was found particularly in the retina/pigment layer of eyes and brain. Both nZnO and dissolved Zn(II) derived from ZnCl2 had similar inhibiting effects on hatching, and they induced similar expressional changes of target genes. At 72hours post fertilization (hpf), both nZnO and Zn(II) delayed hatching at all doses, and inhibited hatching at 1 and 5 mg/L at 96 hpf. Both nZnO and Zn(II) lead to induction of metallothionein (mt2) in both embryos and eleuthero-embryos at all concentrations. Transcripts of oxidative stress related genes cat and Cu/Zn sod were also altered. Moreover, we show for the first time that nZnO exposure results in transcriptional changes of pro-inflammatory cytokines IL-1β and TNFα. Overall, transcriptional alterations were higher in embryos than eleuthero-embryos. The similarities of the effects lead to the conclusion that effects of nZnO are mainly related to the release of Zn(II). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia).

    PubMed

    Bhuvaneshwari, M; Iswarya, V; Vishnu, S; Chandrasekaran, N; Mukherjee, Amitava

    2018-07-01

    The rapid increase in production and usage of ZnO particles in recent years has instigated the concerns regarding their plausible effects on the environment. Current study explores the trophic transfer potential of ZnO particles of different sizes (50, 100 nm and bulk particles) from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia) and the contribution of ZnO (ions) (effect of dissolved Zn ions that remain in test medium after separation NPs) to the overall toxicity of ZnO (total) (impact of both particle and dissolved Zn ions). Toxicity and uptake of ZnO (total) and ZnO (ions) in algae were found to be dependent on the concentration and particle size. Feeding of Zn accumulated algae (517 ± 28, 354.7 ± 61 and 291 ± 20 µg/g dry wt.) post-exposure to 61 µM of ZnO (total) of 50, 100 nm and bulk ZnO particles caused a significant decrease in the survival (15-20%) of daphnia. A significant amount of Zn accumulation was observed in daphnia even after the 48 h depuration period. Biomagnification factor was found to be nearly 1 for all the sizes of ZnO particles tested. For 50 nm ZnO, the BMF was higher when compared to other two sizes, reaching the mean value of 1.06 ± 0.01 at 61 µM. Further analysis revealed that the dietary uptake of different sizes of ZnO particles caused ultra-structural damages and degradation of internal organs in daphnia. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development.

    PubMed

    Tellis, Margaret S; Lauer, Mariana M; Nadella, Sunita; Bianchini, Adalto; Wood, Chris M

    2014-01-01

    In order to understand sublethal mechanisms of lead (Pb) and zinc (Zn) toxicity, developing sea urchins were exposed continuously from 3h post-fertilization (eggs) to 96 h (pluteus larvae) to 55 (±2.4) μgPb/L or 117 (±11)μgZn/L, representing ~ 70% of the EC50 for normal 72 h development. Growth, unidirectional Ca uptake rates, whole body ion concentrations (Na, K, Ca, Mg), Ca(2+) ATPase activity, and metal bioaccumulation were monitored every 12h over this period. Pb exhibited marked bioaccumulation whereas Zn was well-regulated, and both metals had little effect on growth, measured as larval dry weight, or on Na, K, or Mg concentrations. Unidirectional Ca uptake rates (measured by (45)Ca incorporation) were severely inhibited by both metals, resulting in lower levels of whole body Ca accumulation. The greatest disruption occurred at gastrulation. Ca(2+) ATPase activity was also significantly inhibited by Zn but not by Pb. Interestingly, embryos exposed to Pb showed some capacity for recovery, as Ca(2+)ATPase activities increased, Ca uptake rates returned to normal intermittently, and whole body Ca levels were restored to control values by 72-96 h of development. This did not occur with Zn exposure. Both Pb and Zn rendered their toxic effects through disruption of Ca homeostasis, though likely through different proximate mechanisms. We recommend studying the toxicity of these contaminants periodically throughout development as an effective way to detect sublethal effects, which may not be displayed at the traditional toxicity test endpoint of 72 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.

    2015-08-06

    We explored the uptake of metal chloride salts with +1 to +3 metals of Na+, K+, Zn2+, Cd2+, Sn2+, Cu2+, and In3+ by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd2+ and Zn2+ increase open circuit voltage, whereas In3+ and K+ increase the photocurrent without influencing the spectral response or first exciton peak position. Using the mostmore » beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.« less

  17. Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women-A prospective cohort study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippler, M.; Goessler, W.; Nermell, B.

    Experimental studies indicate that zinc (Zn) and calcium (Ca) status, in addition to iron (Fe) status, affect gastrointestinal absorption of cadmium (Cd), an environmental pollutant that is toxic to kidneys, bone and endocrine systems. The aim of this study was to evaluate how various nutritional factors influence the uptake of Cd in women, particularly during pregnancy. The study was carried out in a rural area of Bangladesh, where malnutrition is prevalent and exposure to Cd via food appears elevated. The uptake of Cd was evaluated by associations between erythrocyte Cd concentrations (Ery-Cd), a marker of ongoing Cd exposure, and concentrationsmore » of nutritional markers. Blood samples, collected in early pregnancy and 6 months postpartum, were analyzed by inductively coupled plasma mass spectrometry (ICPMS). Ery-Cd varied considerably (range: 0.31-5.4 {mu}g/kg) with a median of 1.1 {mu}g/kg (approximately 0.5 {mu}g/L in whole blood) in early pregnancy. Ery-Cd was associated with erythrocyte manganese (Ery-Mn; positively), plasma ferritin (p-Ft; negatively), and erythrocyte Ca (Ery-Ca; negatively) in decreasing order, indicating common transporters for Cd, Fe and Mn. There was no evidence of Cd uptake via Zn transporters, but the association between Ery-Cd and p-Ft seemed to be dependent on adequate Zn status. On average, Ery-Cd increased significantly by 0.2 {mu}g/kg from early pregnancy to 6 months postpartum, apparently due to up-regulated divalent metal transporter 1 (DMT1). In conclusion, intestinal uptake of Cd appears to be influenced either directly or indirectly by several micronutrients, in particular Fe, Mn and Zn. The negative association with Ca may suggest that Cd inhibits the transport of Ca to blood.« less

  18. Green manure addition to soil increases grain zinc concentration in bread wheat.

    PubMed

    Aghili, Forough; Gamper, Hannes A; Eikenberg, Jost; Khoshgoftarmanesh, Amir H; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.

  19. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.

    PubMed

    Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B

    2012-05-01

    Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.

  20. Microscale Investigations of Soil Heterogeneity: Impacts on Zinc Retention and Uptake in Zinc-Contaminated Soils

    DOE PAGES

    Rosenfeld, Carla E.; Chaney, Rufus L.; Tappero, Ryan V.; ...

    2017-03-17

    Here, metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and to the strength and stability of solid-phase associations. We combined physical density separation with synchrotron-based microspectroscopy to reduce solid-phase complexity and to study Zn speciation in field-contaminated soils. We also investigated Zn uptake in two Zn-hyperaccumulating ecotypes of Noccaea caerulescens (Ganges and Prayon). Soils were either moderately contaminated (500–800 mg Zn kg –1 via contaminated biosolids application) or grossly enriched (26,000 mg Zn kg –1 via geogenic enrichment). Soils were separated using sodium polytungstate intomore » three fractions: light fraction (LF) (<1.6 g cm –3), medium fraction (MF) (1.6–2.8 g cm –3), and heavy fraction (HF) (>2.8 g cm –3). Approximately 45% of the total Zn was associated with MF in biosolids-contaminated soils. From these data, we infer redistribution to the MF after biosolids application because Zn in biosolids is principally associated with HF and LF. Our results suggest that increasing proportions of HF-associated Zn in soils may be related to greater relative Zn removal by Zn hyperaccumulating plants. Using density fractions enabled assessment of Zn speciation on a microscale despite incomplete fractionation. Analyzing both density fractions and whole soils revealed certain phases (e.g., ZnS, Zn coprecipitated with Fe oxides) that were not obvious in all analyses, indicating multiple views of the same soils enable a more complete understanding of Zn speciation.« less

  1. Acute changes in cellular zinc alters zinc uptake rates prior to zinc transporter gene expression in Jurkat cells.

    PubMed

    Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C

    2015-12-01

    A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.

  2. Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.

    2017-09-01

    Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.

  3. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants.

    PubMed

    Muhammad, Iqbal; Puschenreiter, Markus; Wenzel, Walter W

    2012-02-01

    Manipulation of soil pH by soil additives and / or rhizosphere processes may enhance the efficiency of metal phytoextraction. Here we report on the effect of nitric acid additions to four polluted soils on Cd and Zn concentrations in soil solution (C(soln)) and 0.005M Ca(NO(3))(2) extracts, and related changes in the diffusive fluxes and resupply of the metals as assessed by diffusive gradients in thin films (DGT). The responses of these chemical indicators of bioavailability were compared to metal uptake in two indicator plant species, common dandelion (Taraxacum officinale F.H. Wigg) and narrow leaf plantain (Plantago lanceolata L.) grown for 75days in a pot experiment. Lowering soil pH increased C(soln), the 0.005M Ca(NO(3))(2)-soluble fractions and the DGT-measured Cd and Zn concentrations (C(DGT)) in the experimental soils. This was associated with enhanced uptake of Cd and Zn on soils acidified to pH 4.5 whereas plants did not survive at pH 3.5. Toxicity along with decreased kinetics of metal resupply (calculated by the 2D DIFS model) in the strong acidification treatment suggests that moderate acidification is more appropriate to enhance the phytoextraction process. Each of the chemical indicators of bioavailability predicted well (R(2)>0.70) the Cd and Zn concentrations in plantain shoots but due to metal toxicity not for dandelion. Concentration factors, i.e. the ratio between metal concentrations in shoots and in soil solution (CF) indicate that Cd and Zn uptake in plantain was not limited by diffusion which may explain that DGT did not perform better than C(soln). However, DGT is expected to predict plant uptake better in diffusion-limited conditions such as in the rhizosphere of metal-accumulating phytoextraction crops. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination.

    PubMed

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-07-01

    Toxicity of engineered nanoparticles on organisms is of concern worldwide due to their extensive use and unique properties. The impacts of ZnO nanoparticles (ZnO NPs) on seed germination and root elongation of corn (Zea mays L.) and cucumber (Cucumis sativus L.) were investigated in this study. The role of seed coats of corn in the mitigation toxicity of nanoparticles was also evaluated. ZnO NPs (1,000 mg L(-1)) reduced root length of corn and cucumber by 17 % (p < 0.05) and 51 % (p < 0.05), respectively, but exhibited no effects on germination. In comparison with Zn(2+), toxicity of ZnO NPs on the root elongation of corn could be attributed to the nanoparticulate ZnO, while released Zn ion from ZnO could solely contribute to the inhibition of root elongation of cucumber. Zn uptake in corn exposed to ZnO NPs during germination was much higher than that in corn exposed to Zn(2+), whereas Zn uptake in cucumber was significantly correlated with soluble Zn in suspension. It could be inferred that Zn was taken up by corn and cucumber mainly in the form of ZnO NPs and soluble Zn, respectively. Transmission electron microscope confirmed the uptake of ZnO NPs into root of corn. Although isolation of the seed coats might not be the principal factor that achieved avoidance from toxicity on germination, seed coats of corn were found to mitigate the toxicity of ZnO NPs on root elongation and prevent approximately half of the Zn from entering into root and endosperm.

  5. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L

    PubMed Central

    2012-01-01

    Background Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development. PMID:22824090

  6. Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L.

    PubMed

    Gainza-Cortés, Felipe; Pérez-Dïaz, Ricardo; Pérez-Castro, Ramón; Tapia, Jaime; Casaretto, José A; González, Sebastián; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González, Enrique

    2012-07-23

    Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development.

  7. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification

    PubMed Central

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-01-01

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170

  8. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.

    PubMed

    Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu

    2015-08-13

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.

  9. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem.

    PubMed

    Owojori, Olugbenga J; Siciliano, Steven D

    2015-03-01

    Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture. © 2014 SETAC.

  10. Removal of lead from aqueous solutions by Penicillium biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Niu; Xue Shu Xu; Jian Hua Wang

    1993-09-05

    The removal of lead ions from aqueous solutions by adsorption on nonliving Penicillium chrysogenum biomass was studied. Biosorption of the Pb[sup +2] ion was strongly affected by pH. Within a pH range of 4 to 5, the saturated sorption uptake of Pb[sup +2] was 116 mg/g dry biomass, higher than that of activated charcoal and some other microorganisms. At pH 4.5, P. chrysogenum biomass exhibited selectivity for Pb[sup +2] over other metal ions such as Cd[sup +2], Cu[sup +2], Zn [sup +2], and As[sub +3]. Sorption preference for metals decreased in the following order: Pb > Cd > Cu >more » Zn > As. The sorption uptake of Pb[sup +2] remained unchanged in the presence of Cu[sup +2] and As [sup +3], it decreased in the presence of Zn[sup +2], and increased in the presence of Cd[sup +2].« less

  11. Green Manure Addition to Soil Increases Grain Zinc Concentration in Bread Wheat

    PubMed Central

    Aghili, Forough; Gamper, Hannes A.; Eikenberg, Jost; Khoshgoftarmanesh, Amir H.; Afyuni, Majid; Schulin, Rainer; Jansa, Jan; Frossard, Emmanuel

    2014-01-01

    Zinc (Zn) deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF) strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower), ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF), and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg−1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg−1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg−1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil)−1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil)−1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs. PMID:24999738

  12. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence.

    PubMed

    Desrosiers, Daniel C; Bearden, Scott W; Mier, Ildefonso; Abney, Jennifer; Paulley, James T; Fetherston, Jacqueline D; Salazar, Juan C; Radolf, Justin D; Perry, Robert D

    2010-12-01

    Little is known about Zn homeostasis in Yersinia pestis, the plague bacillus. The Znu ABC transporter is essential for zinc (Zn) uptake and virulence in a number of bacterial pathogens. Bioinformatics analysis identified ZnuABC as the only apparent high-affinity Zn uptake system in Y. pestis. Mutation of znuACB caused a growth defect in Chelex-100-treated PMH2 growth medium, which was alleviated by supplementation with submicromolar concentrations of Zn. Use of transcriptional reporters confirmed that Zur mediated Zn-dependent repression and that it can repress gene expression in response to Zn even in the absence of Znu. Virulence testing in mouse models of bubonic and pneumonic plague found only a modest increase in survival in low-dose infections by the znuACB mutant. Previous studies of cluster 9 (C9) transporters suggested that Yfe, a well-characterized C9 importer for manganese (Mn) and iron in Y. pestis, might function as a second, high-affinity Zn uptake system. Isothermal titration calorimetry revealed that YfeA, the solute-binding protein component of Yfe, binds Mn and Zn with comparably high affinities (dissociation constants of 17.8 ± 4.4 nM and 6.6 ± 1.2 nM, respectively), although the complete Yfe transporter could not compensate for the loss of Znu in in vitro growth studies. Unexpectedly, overexpression of Yfe interfered with the znu mutant's ability to grow in low concentrations of Zn, while excess Zn interfered with the ability of Yfe to import iron at low concentrations; these results suggest that YfeA can bind Zn in the bacterial cell but that Yfe is incompetent for transport of the metal. In addition to Yfe, we have now eliminated MntH, FetMP, Efe, Feo, a substrate-binding protein, and a putative nickel transporter as the unidentified, secondary Zn transporter in Y. pestis. Unlike other bacterial pathogens, Y. pestis does not require Znu for high-level infectivity and virulence; instead, it appears to possess a novel class of transporter, which can satisfy the bacterium's Zn requirements under in vivo metal-limiting conditions. Our studies also underscore the need for bacterial cells to balance binding and transporter specificities within the periplasm in order to maintain transition metal homeostasis.

  13. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    PubMed

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  14. [Efficacy of using zinc oxide nanoparticles in nutrition. Experiments on the laboratory animal].

    PubMed

    Raspopov, R V; Trushina, E N; Mustafina, O K; Tananova, O N; Gmoshinskiĭ, I V; Khotimchenko, S A

    2011-01-01

    In experiments on rats there was researched bioavailability of zinc oxide (ZnO) nanoparticles. There were determined the content of Zn in blood serum and tibia, intestinal uptake of macromolecules of egg albumin, some hematological, biochemical and immune indices, liver cells apoptosis. The results obtained show that the uptake of nanoparticles of ZnO enables restoration of this microelement status damaged by zinc deficit diet.

  15. Solution and particle effects on the biosorption of heavy metals by seaweed biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leusch, A.; Holan, Z.R.; Volesky, B.

    Biosorption of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) by six fractions of particle sizes, ranging from 0.063 to 1.4 mm of dry marine algal biomass of Sargassum fluitans and Ascophyllum nodosum, is examined. Equilibrium metal uptake by larger particles was higher than that by smaller particles in the order of Pb > Cd > Cu > Co > Zn > Ni for both biomass types, with S. fluitans sorbing slightly more than A. nodosum. Uptakes of metals ranged from the highest, q{sub max} = 369 mg Pb/g (particle size 0.84-1.00 mm), to themore » low Zn and Ni uptakes, q{sub max} = 77 mg/g (size 0.84-1.00 mm) for S. fluitans. A. nodosum adsorbed metals in the range from q{sub max} = 287 mg Pg/g (particle size 0.84-1.00 mm) to q{sub max} = 73 mg Zn/g (particle size 0.84-1.00mm). Harder stipe fractions of S. fluitans demonstrated generally higher metal uptakes than the softer fractions derived from its blades (leaves). The pH dependence of the Zn uptake by S. fluitans exhibited an S-shaped curve between pH 1.5 and pH 7, with 50% of the maximum (pH 7.0) uptake at pH 3.5. Monovalent Na and K ions at higher concentrations inhibited the biosorption of Zn by S. fluitans. A significant inhibition started at 50 mM potassium chloride or sodium acetate, and at 1M the biosorption was completely blocked. 40 refs., 8 figs., 3 tabs.« less

  16. The Fate of ZnO Nanoparticles Administered to Human Bronchial Epithelial Cells

    PubMed Central

    Gilbert, Benjamin; Fakra, Sirine C.; Xia, Tian; Pokhrel, Suman; Mädler, Lutz; Nel, André E.

    2014-01-01

    A particular challenge for nanotoxicology is the evaluation of the biological fate and toxicity of nanomaterials that dissolve in aqueous fluids. Zinc oxide nanomaterials are of particular concern because dissolution leads to release of the toxic divalent zinc ion. Although dissolved zinc ions have been implicated in ZnO cytotoxicity, direct identification of the chemical form of zinc taken up by cells exposed to ZnO nanoparticles, and its intracellular fate, has not yet been achieved. We combined high resolution X-ray spectromicroscopy and high elemental sensitivity X-ray microprobe analyses to determine the fate of ZnO and less soluble iron-doped ZnO nanoparticles following exposure to cultures of human bronchial epithelial cells, BEAS-2B. We complemented two-dimensional X-ray imaging methods with atomic force microscopy of cell surfaces to distinguish between nanoparticles that were transported inside the cells from those that adhered to the cell exterior. The data suggest cellular uptake of ZnO nanoparticles is a mechanism of zinc accumulation in cells. Following uptake, ZnO nanoparticles dissolved completely generating intracellular Zn2+ complexed by molecular ligands. These results corroborate a model for ZnO nanoparticle toxicity that is based on nanoparticle uptake followed by intracellular dissolution. PMID:22646753

  17. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2017-11-01

    Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg -1 ) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R 2  = 0.84, p < 0.01) in the presence of Zn in the whole dataset, whereas Zn and Zn 2+ activity in pore-water was reduced significantly only in the two alkaline soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p < 0.05) by As in whole dataset. However, an additive response was observed mostly except acidic MG soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0-80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Role of Streptomyces pactum in phytoremediation of trace elements by Brassica juncea in mine polluted soils.

    PubMed

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Zhen; Muhammad, Dost; Li, Ronghua; Wang, Ping; Shen, Feng; Xue, Quanhong; Zhang, Zengqiang

    2017-10-01

    The industrial expansion, smelting, mining and agricultural practices have increased the release of toxic trace elements (TEs) in the environment and threaten living organisms. The microbe-assisted phytoremediation is environmentally safe and provide an effective approach to remediate TEs contaminated soils. A pot experiment was conducted to test the potential of an Actinomycete, subspecies Streptomyces pactum (Act12) along with medical stone compost (MSC) by growing Brassica juncea in smelter and mines polluted soils of Feng County (FC) and Tongguan (TG, China), respectively. Results showed that Zn (7, 28%), Pb (54, 21%), Cd (16, 17%) and Cu (8, 10%) uptake in shoot and root of Brassica juncea was pronounced in FC soil. Meanwhile, the Zn (40, 14%) and Pb (82, 15%) uptake in the shoot and root were also increased in TG soil. Shoot Cd uptake remained below detection, while Cu decreased by 52% in TG soil. The Cd and Cu root uptake were increased by 17% and 33%, respectively. Results showed that TEs uptake in shoot increased with increasing Act12 dose. Shoot/root dry biomass, chlorophyll and carotenoid content in Brassica juncea were significantly influenced by the application of Act12 in FC and TG soil. The antioxidant enzymatic activities (POD, PAL, PPO and CAT) in Brassica juncea implicated enhancement in the plant defense mechanism against the TEs induced stress in contaminated soils. The extraction potential of Brasssica was further evaluated by TF (translocation factor) and MEA (metal extraction amount). Based on our findings, further investigation of Act12 assisted phytoremediation of TEs in the smelter and mines polluted soil and hyperaccumulator species are suggested for future studies. Copyright © 2017. Published by Elsevier Inc.

  20. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions.

    PubMed

    Gharaibeh, Mamoun A; Marschner, Bernd; Heinze, Stefanie

    2015-12-01

    Irrigation with wastewater is a promising option to improve crop yields and to reduce pressure on freshwater sources. However, heavy metal concentrations in wastewater may cause health concerns. A greenhouse pot experiment was conducted in order to determine cadmium (Cd) and zinc (Zn) concentrations in sandy soil and plant tissues of tomato (Lycopersicon esculentum L.) and alfalfa (Medicago sativa L.). A 2 × 2 × 4 × 2 factorial treatment arrangement was utilized. Two water sources, fresh (FW) or treated wastewater (TWW), at two salinity levels (1 and 3 dS m(-1)) containing different levels of Cd and Zn were used. Samples were collected after a 90-day growth period. It was observed that the growth of both plants was depressed at the highest metal level (L3). Metal accumulation in plant parts increased with the increase of metal concentration and salinity in irrigation water. At low salinity, water source was the main factor which controlled metal accumulation, whereas, at high salinity, chloride appeared to be the principal factor controlling metal uptake regardless of water source. Metal translocation from roots to shoots increased in TWW-irrigated plants, even in the controls. Tomatoes accumulated Cd up to and above critical levels safe for human consumption, even though Cd concentration in irrigation water did not exceed the current recommended values. Therefore, food production in sandy soils may well pose a health hazard when irrigated with TWW containing heavy metals. Complexation with dissolved organic compounds (DOC) in TWW may be to be the principal factor responsible for increased metal uptake and transfer at low salinity, thereby increasing the risk of heavy metal contamination of food and forage crops.

  1. Separation of solute and particulate vectors of heavy metal uptake in controlled suspension-feeding experiments with Macoma balthica

    USGS Publications Warehouse

    Harvey, R.W.; Luoma, S.N.

    1985-01-01

    Radioisotope labelling experiments with the estuarine clam, Macoma balthica, are described, in which a filter chamber device was used to separate solute metal uptake from uptake, of metals associated with suspended bacteria. Solute uptake contributed a majority of the 14-day total body burdens of 65Zn and 109Cd, whereas 57Co uptake largely resulted from ingestion of isotope-laden bacteria. In contrast to those for 109Cd and 65Zn, 57Co tissue distributions at 3 weeks differed significantly (p < 0.05) between feeding and non-feeding clams (housed within filter chambers). ?? 1985 Dr W. Junk Publishers.

  2. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO2 nanoparticles to human endothelial cells.

    PubMed

    Gu, Yuxiu; Cheng, Shanshan; Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Li, Juan; Cao, Yi

    2017-03-01

    It was recently shown that ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress in human umbilical vein endothelial cells (HUVECs). If ER stress is associated the toxicity of ZnO NPs, the presence of ER stress inducer thapsigargin (TG) should alter the response of HUVECs to ZnO NP exposure. In this study, we addressed this issue by assessing cytotoxicity, oxidative stress and inflammatory responses in ZnO NP exposed HUVECs with or without the presence of TG. Moreover, TiO 2 NPs were used to compare the effects. Exposure to 32 μg/mL ZnO NPs (p < 0.05), but not TiO 2 NPs (p > 0.05), significantly induced cytotoxicity as assessed by WST-1 and neutral red uptake assay, as well as intracellular ROS. ZnO NPs dose-dependently increased the accumulation of intracellular Zn ions, and ZnSO 4 induced similar cytotoxic effects as ZnO NPs, which indicated a role of Zn ions. The release of inflammatory proteins tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) or the adhesion of THP-1 monocytes to HUVECs was not significantly affected by ZnO or TiO 2 NP exposure (p > 0.05). The presence of 250 nM TG significantly induced cytotoxicity, release of IL-6 and THP-1 monocyte adhesion (p < 0.01), but did not significantly affect intracellular ROS or release of TNFα (p > 0.05). ANOVA analysis indicated no interaction between exposure to ZnO NPs and the presence of TG on almost all the endpoints (p > 0.05) except neutral red uptake assay (p < 0.01). We concluded ER stress is probably not associated with ZnO NP exposure induced oxidative stress and inflammatory responses in HUVECs.

  3. The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers.

    PubMed

    Tandy, Susan; Schulin, Rainer; Nowack, Bernd

    2006-03-01

    Phytoextraction is an environmentally friendly in situ technique for cleaning up metal contaminated land. Unfortunately, efficient metal uptake by remediation plants is often limited by low phytoavailability of the targeted metals. Chelant assisted phytoextraction has been proposed to improve the efficiency of phytoextraction. Phytoremediation involves several subsequent steps: transfer of metals from the bulk soil to the root surfaces, uptake into the roots and translocation to the shoots. Nutrient solution experiments address the latter two steps. In this context we investigated the influence of the biodegradable chelating agent SS-EDDS on uptake of essential (Cu and Zn) and non-essential (Pb) metals by sunflowers from nutrient solution. EDDS was detected in shoots and xylem sap for the first time, proving that it is taken up into the above ground biomass of plants. The essential metals Cu and Zn were decreased in shoots in the presence of EDDS whereas uptake of the non-essential Pb was enhanced. We suggest that in the presence of EDDS all three metals were taken up by the non-selective apoplastic pathway as the EDDS complexes, whereas in the absence of EDDS essential metal uptake was primarily selective along the symplastic pathway. This shows that synthetic chelating agents do not necessarily increase uptake of heavy metals, when soluble concentrations are equal in the presence and absence of chelates.

  4. Treatment of mining waste leachate by the adsorption process using spent coffee grounds.

    PubMed

    Ayala, Julia; Fernández, Begoña

    2018-02-15

    The removal of heavy metals from mining waste leachate by spent coffee grounds has been investigated. In synthetic solutions, metal uptake was studied in batch adsorption experiments as a function of pH, contact time, initial metal concentration, adsorbent concentration, particle size, and the effect of co-ions (Na, K, Ca, Mg, Cu, Cd, Ni, Zn). Results showed that adsorption was significantly affected by pH, showing the highest affinity within a pH range of 5-7. Sorption of heavy metals reached equilibrium in 3 h. Removal percentages of metals ions increased with increasing dosage. Particle size did not have a significant influence on metal uptake. The adsorption of heavy metals was found to fit Langmuir and Freundlich isotherms. Maximum Zn, Cd and Ni uptake values were calculated as 10.22, 5.96 and 7.51 mg/g, respectively, using unwashed coffee grounds (UCG) as the adsorbent and 5.36, 4.28 and 4.37 mg/g when employing washed coffee grounds as the adsorbent. The presence of co-ions inhibited the uptake of heavy metals, divalent ions having a more negative effect than monovalent ions. The results obtained in the experiments with mining waste leachate showed that UCG is effective in removing heavy metals.

  5. Stabilization of metal(loid)s in two contaminated agricultural soils: Comparing biochar to its non-pyrolysed source material.

    PubMed

    Trakal, Lukáš; Raya-Moreno, Irene; Mitchell, Kerry; Beesley, Luke

    2017-08-01

    Two metal(loid) contaminated agricultural soils were amended with grape stalk (wine production by-product)-derived biochar as well as its pre-pyrolysed origin material, to investigate their geochemical impacts on As, Cr, Cu and Zn. Detailed physico-chemical evaluation combined with a column leaching test determined the retention of metal(loid)s from soil solution by each amendments. A pot experiment measured metal(loid)s in soil pore water and their uptake to ryegrass when the amendments were mixed into soils at 1 and 5% (w/w). Total Cr and Zn concentrations were reduced furthest in column leachates by the addition of raw material and biochar respectively, compared to the untreated soil; Cr(III) was the predominant specie initially due to rapid acidification of leachates and organic complexation resulting from raw material addition. Loadings of metal(loid)s to the amendments recovered from the post-leached columns were in the order Cu » Zn > Cr ≈ As. In the pot test ryegrass Cr uptake was initiated by the addition of both amendments, compared to the untreated soil, whereas only biochar addition resulted in significant increases in Zn uptake, explained by its significant enhancement of ryegrass biomass yield, especially at 5% dosage; raw material addition significantly decreased biomass yields. Inconsistent relationships between pore water parameters and ryegrass uptake were common to both soils investigated. Therefore, whilst both amendments modified soil metal(loid) geochemistry, their effects differed fundamentally; in environmental risk management terms these results highlight the need to investigate the detailed geochemical response of contaminated soils to diverse organic amendment additions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity.

    PubMed

    Ondrasek, Gabrijel; Rengel, Zed; Romic, Davor

    2018-04-30

    Naturally-occurring highly-complexed and polymerised organics such as humic acids (HA), due to their large negative charge, play a crucial role in biogeochemistry of trace metals (TM). Toxic (Cd) as well as essential (Zn, Cu, Mn) TM bind strongly to HA, but how these organo-metalic forms influence metal uptake by plants is poorly understood. A solution culture study was conducted to characterize the effects of different concentrations of HA (0-225mg/L) on the growth and element uptake/distribution in roots, shoots and hypocotyls of radish (Raphanus sativus L.) exposed to Cd (0.5mg/L) contamination. After 10-d-exposure to applied treatments, Cd induced phytotoxicity; in contrast, different concentrations of HA had no influence on biomass, but decreased concentration of most TM in examined tissues (Cu by 4.2-fold, Zn by 2.2-fold, Cd by 1.6-fold and Mn by 34%) and their total plant accumulation (Cu by 73%, Cd by 39%, Zn by 29% and Mn by 22%). HA influenced the transport/distribution of TM, decreasing accumulation in roots and increasing their translocation/deposition in shoots, with no effect on TM content in edible hypocotyls. Chemical speciation modelling of the rooting medium confirmed predominance of free metallic forms in the control (no HA) and the pronounced organo-metal complexation in the HA treatments. The results provide evidence of strong capacity of HA to decrease phytoavailability and uptake of Cd, Zn, Cu and Mn while being non-toxic even at relatively high concentration (225mg/L). Thus, HA, as naturally present soil components, control mobility and phyto-extraction of most TM as well as their phyto-accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Hussain, Afzal; Ali, Qasim; Shakoor, Muhammad Bilal; Zia-Ur-Rehman, Muhammad; Farid, Mujahid; Asma, Maliha

    2017-11-01

    Cadmium (Cd) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. The role of micronutrient-amino chelates on reducing Cd toxicity in crop plants is recently introduced. The current study was conducted to highlight the role of foliar application of zinc-lysine (Zn-lys) complex on biochemical and growth parameters and Cd uptake in wheat (Triticum aestivum) grown in aged Cd-contaminated soil. Foliar concentration of Zn-lys (0, 10, 20, and 30 mg L -1 ) was applied at different time intervals (2nd, 3rd, 5th and 7th week of sowing) and plants were harvested at maturity. Folliar application of Zinc-lys significantly increased the photosynthesis, grain yield, enzyme activities and Zn contents in different plant tissues. Zinc-lys reduced Cd contents in grains, shoot and root as well as reduced the oxidative stress in wheat linearly in a dose-additive manner. Taken together, Zn-lys chelate efficiently improved wheat growth and fortified Zn contents while reduced Cd concentration in plant in a Zn-deficient Cd-contaminated soil. Although, health risk index (HRI) from the soil sampling area seems to be lower than <1 for Cd but may exceed due to long-term consumption of grains produced from such contaminated soil. Foliar applied Zn-lys reduced HRI which may help to reduce health risks associated with Cd. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.

    PubMed

    Andrade, S A L; Silveira, A P D; Mazzafera, P

    2010-10-15

    Studies on mycorrhizal symbiosis effects on metal accumulation and plant tolerance are not common in perennial crops under metal stress. The objective of this study was to evaluate the influence of mycorrhization on coffee seedlings under Cu and Zn stress. Copper (Cu) and zinc (Zn) uptake and some biochemical and physiological traits were studied in thirty-week old Coffea arabica seedlings, in response to the inoculation with arbuscular mycorrhizal fungi (AMF) and to increasing concentrations of Cu or Zn in soil. The experiments were conducted under greenhouse conditions in a 2×4 factorial design (inoculation or not with AMF and 0, 50, 150 and 450mgkg(-1) Cu or 0, 100, 300 and 900mgkg(-1) Zn). Non-mycorrhizal plants maintained a hampered and slow growth even in a soil with appropriate phosphorus (P) levels for this crop. As metal levels increased in soil, a greater proportion of the total absorbed metals were retained by roots. Foliar Cu concentrations increased only in non-mycorrhizal plants, reaching a maximum concentration of 30mgkg(-1) at the highest Cu in soil. Mycorrhization prevented the accumulation of Cu in leaves, and mycorrhizal plants showed higher Cu contents in stems, which indicated a differential Cu distribution in AMF-associated or non-associated plants. Zn distribution and concentrations in different plant organs followed a similar pattern independently of mycorrhization. In mycorrhizal plants, only the highest metal concentrations caused a reduction in biomass, leading to significant changes in some biochemical indicators, such as malondialdehyde, proline and amino acid contents in leaves and also in foliar free amino acid composition. Marked differences in these physiological traits were also found due to mycorrhization. In conclusion, AMF protected coffee seedlings against metal toxicity. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Foliar zinc biofortification effects in Lolium rigidum and Trifolium subterraneum grown in cadmium-contaminated soil

    PubMed Central

    Damon, Paul; Rengel, Zed

    2017-01-01

    Zinc (Zn) is an important micronutrient that can alleviate cadmium (Cd) toxicity to plants and limit Cd entry into the food chain. However, little is known about the Zn-Cd interactions in pasture plants. We characterized the effects of foliar Zn application and Cd uptake by ryegrass (Lolium rigidum L.) and clover (Trifolium subterraneum L.) grown on Cd-contaminated soils; all combinations of foliar Zn applications (0, 0.25 and 0.5% (w/v) ZnSO4·7H2O) and soil Cd concentrations (0, 2.5 and 5 mg Cd kg-1) were tested. For both plant species, soil concentrations of DTPA-extractable Cd and Zn increased with an increase in the Cd and Zn treatments, respectively. Compared with L. rigidum, T. subterraneum accumulated, respectively, 3.3- and 4.1-fold more Cd in the 2.5-Cd and 5-Cd treatments and about 1.3-, 2.3- and 2.8-fold more Zn in the No-Zn, 0.25-Zn and 0.5-Zn treatments. Also, DTPA-Zn concentration was higher in soil after T. subterraneum than L. rigidum growth regardless of Zn applications. Foliar application of 0.25% (w/v) Zn significantly decreased the total Cd concentration in shoots of both species grown in the Cd-contaminated soil and ameliorated the adverse effects of Cd exposure on root growth, particularly in T. subterraneum. PMID:28950025

  10. Zinc, a neuroprotective agent against aluminum-induced oxidative DNA injury.

    PubMed

    Singla, Neha; Dhawan, D K

    2013-08-01

    Aluminum (Al) has been considered as one of the most abundant elements and comprises nearly 8 % of the Earth's crust. Despite of its immense presence, studies regarding the molecular basis of its interaction with the physiological system are rather sparse. On the other hand, zinc (Zn), an essential micronutrient, has been regarded as the second most important metal for brain functioning. The objective of the present study was to investigate the protective potential of Zn, if any, during Al-induced detrimental effects on DNA, tritiated thymidine uptake as well as expression of stress marker genes and proteins in rat brain. Male Sprague-Dawley rats weighing 140-160 g were divided into four different groups viz.: normal control, Al treated (100 mg/kg b wt/day via oral gavage), Zn treated (227 mg/l in drinking water), and combined Al and Zn treated. All the treatments were carried out for a total duration of 8 weeks. Agarose gel electrophoresis revealed DNA laddering pattern and comets in the rat brain following Al treatment, which however, were attenuated upon Zn treatment. Further, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, number of apoptotic brain cells, and uptake of tritiated thymidine were increased after Al treatment but were decreased upon Zn supplementation. Western blot and mRNA expressions of p53 and nuclear factor κB (NF-κB) were also found to be significantly elevated after Al treatment, which however, were reversed following Zn treatment. Hence, Zn shall prove to be an effective agent in mitigating the detrimental effects caused by Al in the rat brain.

  11. Does biofilm contribute to diel cycling of Zn in High Ore Creek, Montana?

    USGS Publications Warehouse

    Morris, J.M.; Nimick, D.A.; Farag, A.M.; Meyer, J.S.

    2005-01-01

    Concentrations of metals cycle daily in the water column of some mining-impacted streams in the Rocky Mountains of the western USA. We hypothesized that biofilm in High Ore Creek, Montana, USA, sorbs and releases Zn on a diel cycle, and this uptake-and-release cycle controls the total and dissolved (0.45-??m filtered) Zn concentrations. We collected water samples from three sites (upstream, middle and downstream at 0, 350 and 650 m, respectively) along a 650-m reach of High Ore Creek during a 47-h period in August 2002 and from the upstream and downstream sites during a 24-h period in August 2003; we also collected biofilm samples at these sites. In 2002 and 2003, total and dissolved Zn concentrations did not exhibit a diel cycle at the upstream sampling site, which was ???30 m downstream from a settling pond through which the creek flows. However, total and dissolved Zn concentrations exhibited a diel cycle at the middle and downstream sampling sites, with the highest Zn concentrations occurring at dawn and the lowest Zn concentrations occurring during late afternoon (>2-fold range of concentrations at the downstream site). Based on (1) concentrations of Zn in biofilm at the three sites and (2) results of streamside experiments that demonstrated Zn uptake and release by nai??ve biofilm during the light and dark hours of a photocycle, respectively, we conclude that Zn uptake in photosynthetic biofilms could contribute a large percentage to the cycling of Zn concentrations in the water column in High Ore Creek. ?? Springer 2005.

  12. Application of Zero-Valent Iron Nanoparticles for the Removal of Aqueous Zinc Ions under Various Experimental Conditions

    PubMed Central

    Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2014-01-01

    Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439

  13. A study on zinc distribution in calcareous soils for cowpea (Vigna Unguiculata L.) and barely ( Hordeum Vulgare L.)

    NASA Astrophysics Data System (ADS)

    Boroomand, Naser; Maleki, Mohammad Reza

    2010-05-01

    Compared to other cereals, such as wheat and barley cultivars which have low sensitivity to Zn deficiency, cowpea is sensitive to zinc (Zn) deficiency, however it extensively grows even in soils with deficient in Zn. A 8-week greenhouse experiment was conducted to study the response of cowpea and barely to Zn in calcareous soils with different DTPA- Zn. The soil samples were taken from soil surface up to 0.3 m in which their DTPA- Zn ranged from 0.5 to 3.5 mg kg-1. Shoot dry matter, concentration and uptake of Zn were found to be significantly correlated with soil DTPA- Zn in cowpea and barely. Critical deficiency level of Zn in cowpea was 1.3 mg kg-1 in soil and 28.5 mg kg-1 in shoot dry matter, however, to barely symptoms of Zn deficiency was not observed and concentration of Zn was higher than the critical level reported in literatures. Organic carbon (OC), calcium carbonate equivalent (CCE), pH and field capacity soil moisture content(FC) were significantly correlated with plant responses to Zn which were the most influenced characteristics to Zn uptake by plants.

  14. Waterborne Zn influenced Zn uptake and lipid metabolism in two intestinal regions of juvenile goby Synechogobius hasta.

    PubMed

    Ling, Shi-Cheng; Luo, Zhi; Chen, Guang-Hui; Zhang, Dian-Guang; Liu, Xu

    2018-02-01

    The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L -1 , respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Metal ion removal from aqueous solution using physic seed hull.

    PubMed

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium. 2010 Elsevier B.V. All rights reserved.

  16. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    PubMed

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  18. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  19. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments.

    PubMed

    Duquène, L; Vandenhove, H; Tack, F; Meers, E; Baeten, J; Wannijn, J

    2009-02-15

    The applicability of biodegradable amendments in phytoremediation to increase the uptake of uranium (U), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn) by Indian mustard (Brassica juncea) and ryegrass (Lolium perenne) was tested in a greenhouse experiment. Plants were cultivated during one month on two soils with naturally or industrially increased contaminant levels of U. Treatments with citric acid, NH4-citrate/citric acid, oxalic acid, S,S-ethylenediamine disuccinic acid (EDDS) or nitrilotriacetic acid (NTA) at a rate of 5 mmol kg(-1) dry soil caused increases in soil solution concentrations that were up to 18 times higher for U and up to 1570 times higher for other heavy metals, compared to the controls. Shoot concentrations increased to a much smaller extent. With EDDS, 19-, 34-, and 37-fold increases were achieved in shoots of Indian mustard for U, Pb and Cu, respectively. The increases in plant uptake of Cd, Cr and Zn were limited to a factor of four at most. Ryegrass generally extracted less U and metals than Indian mustard. Despite a marked increase of U and metal concentrations in shoots after addition of amendments, the estimated time required to obtain an acceptable reduction in soil contaminant concentrations was impractically long. Only for Cu and Zn in one of the studied soils, could the Flemish standards for clean soil theoretically be attained in less than 100 years.

  20. Effects of added Zn, Ni and Cd on desert shrubs grown in desert soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, P.M.; Wallace, A.; Romney, E.M.

    1980-01-01

    Desert shrubs - Ambrosia dumosa, Lycium andersonii, Larrea tridenata, and Ephedra nevadensis wre grown in a glasshouse in desert (calcarous) soil with different levels of added Zn, Ni, and Cd. The objective was to study effects of the metals on growth and yield and uptake and translocation of metals in desert plant species which are common in the Mojave Desert (areas of Nevada and southeast California). Zinc and Cd considerably decreased yields of all four species. Yields of E. nevadensis were increased by Ni at 250 and 500 mg/kg applied to desert soil. Ephedra nevadensis was more tolerant of Nimore » than were the other three desert shrubs. Some interactions were observed among various elements: manganese concentration was increased in shrubs by Zn. Particularly, application of Ni reduced the concentrations of Zn and Mn over the control.« less

  1. Competition behaviour of metal uptake in cementitious systems: An XRD and EXAFS investigation of Nd- and Zn-loaded 11 Å tobermorite

    NASA Astrophysics Data System (ADS)

    Vespa, M.; Dähn, R.; Wieland, E.

    Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill and liner materials) of repositories for radioactive waste. In this study, bulk-X-ray absorption spectroscopy (XAS) was used to investigate the uptake mechanism of Nd on the crystalline C-S-H phase 11 Å tobermorite in the presence of Zn (co-absorbing metal), and vice versa, as potential competitor under strongly alkaline conditions (pH = 12.5-13.3). The Zn and Nd concentration in all samples was 50,000 ppm, whereas the reaction times varied from 1 to 6 months. Extended X-ray absorption fine structure (EXAFS) data of the Nd LIII-edge indicate that the local structural environment of Nd consists of ∼7-8 O atoms at 2.42 Å, ∼7-8 Si at ∼3.67 Å and ∼5-6 Ca at ∼3.8 Å, and that this environment remains unchanged in the presence and absence of Zn. In contrary, Zn K-edge EXAFS data exhibit distinct differences in the presence and absence of Nd as co-absorbing element. Data analysis indicates that Zn is tetrahedrally coordinated (∼4 O at ∼1.96 Å) and the obtained structural data in the simultaneous presence of Nd and Zn are consistent with the formation of mixed Zn surface complexes and Zn bound in the interlayer remaining in these positions also with prolonged reaction times (up to 6 months). However, without the co-absorbing element Nd, strong structural changes in the uptake mechanisms of Zn are observable, e.g., after 3 month reaction time Zn-Zn backscattering pairs can be observed. These findings suggest that Nd has an influence on the incorporation of Zn in the tobermorite structure. In addition, the results of this study indicate that competitive uptake of metal cations with similar sorption behaviour by C-S-H phases can take place, deserving further attention in future assessments of the safe disposal of radioactive wastes in cement-based repositories.

  2. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  3. [Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia briq].

    PubMed

    Wei, G; Wang, H

    1991-03-01

    Inoculating Schizonepeta tenuifolia with VA mycorrhizal fungi can significantly improve the plant growth and uptake of P and S, and influence the absorption of K, Na, Fe, Mo, Mn, Zn, Co, Ba, Ni and Pb. It is interesting to note that VA mycorrhiza can also increase the synthesis of volatile oil in the shoots of S. tenuifolia. The efficiency of VA mycorrhiza varies with the fungal species.

  4. Zinc as a second messenger of mitogenic induction. Effects on diadenosine tetraphosphate (Ap4A) and DNA synthesis.

    PubMed

    Grummt, F; Weinmann-Dorsch, C; Schneider-Schaulies, J; Lux, A

    1986-03-01

    DNA synthesis and adenosine(5')tetraphosphate(5')adenosine (Ap4A) levels decrease in cells treated with EDTA. The inhibitory effect of EDTA can be reversed with micromolar amounts of ZnCl2. ZnCl2 in micromolar concentrations also inhibits Ap4A hydrolase and stimulates amino acid-dependent Ap4A synthesis, suggesting that Zn2+ is modulating intracellular Ap4A pools. Serum addition to G1-arrested cells enhances uptake of Zn, whereas serum depletion leads to a fivefold decrease of the rates of zinc uptake. These results are discussed by regarding Zn2+ as a putative 'second messenger' of mitogenic induction and Ap4A as a possible 'third messenger' and trigger of DNA synthesis.

  5. First PET Imaging Studies With 63Zn-Zinc Citrate in Healthy Human Participants and Patients With Alzheimer Disease.

    PubMed

    DeGrado, Timothy R; Kemp, Bradley J; Pandey, Mukesh K; Jiang, Huailei; Gunderson, Tina M; Linscheid, Logan R; Woodwick, Allison R; McConnell, Daniel M; Fletcher, Joel G; Johnson, Geoffrey B; Petersen, Ronald C; Knopman, David S; Lowe, Val J

    2016-01-01

    Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63 Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. Dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63 Zn-zinc citrate (∼330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63 Zn clearances were compared with 11 C-Pittsburgh Compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) imaging data. 63 Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63 Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11 C-PiB) and 18 F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63 Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD. © The Author(s) 2016.

  6. First PET Imaging Studies With 63 Zn-Zinc Citrate in Healthy Human Participants and Patients With Alzheimer Disease

    DOE PAGES

    DeGrado, Timothy R.; Kemp, Bradley J.; Pandey, Mukesh K.; ...

    2016-01-01

    Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. A dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (~330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B ( 11C-PiB) andmore » 18F-fluorodeoxyglucose ( 18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD.« less

  7. Synthesis and evaluation of a radiolabeled bis-zinc(II)-cyclen complex as a potential probe for in vivo imaging of cell death.

    PubMed

    Wang, Hongliang; Wu, Zhifang; Li, Sijin; Hu, Kongzhen; Tang, Ganghua

    2017-04-01

    The exposition of phosphatidylserine (PS) from the cell membrane is associated with most cell death programs (apoptosis, necrosis, autophagy, mitotic catastrophe, etc.), which makes PS an attractive target for overall cell death imaging. To this end, zinc(II) macrocycle coordination complexes with cyclic polyamine units as low-molecular-weight annexin mimics have a selective affinity for biomembrane surfaces enriched with PS, and are therefore useful for detection of cell death. In the present study, a 11 C-labeled zinc(II)-bis(cyclen) complex ( 11 C-CyclenZn2) was prepared and evaluated as a new positron emission tomography (PET) probe for cell death imaging. 11 C-CyclenZn2 was synthesized by methylation of its precursor, 4-methoxy-2,5-di-[10-methyl-1,4,7,10-tetraazacyclododecane-1,4,7-tricarboxylic acid tri-tert-butyl ester] phenol (Boc-Cyclen2) with 11 C-methyl triflate as a prosthetic group in acetone, deprotection by hydrolysis in aqueous HCl solution, and chelation with zinc nitrate. The cell death imaging capability of 11 C-CyclenZn2 was evaluated using in vitro cell uptake assays with camptothecin-treated PC-3 cells, biodistribution studies, and in vivo PET imaging in Kunming mice bearing S-180 fibrosarcoma. Starting from 11 C-methyl triflate, the total preparation time for 11 C-CyclenZn2 was ~40 min, with an uncorrected radiochemical yield of 12 ± 3% (based on 11 C-CH 3 OTf, n = 10), a radiochemical purity of greater than 95%, and the specific activity of 0.75-1.01 GBq/μmol. The cell death binding specificity of 11 C-CyclenZn2 was demonstrated by significantly different uptake rates in camptothecin-treated and control PC-3 cells in vitro. Inhibition experiments for 18 F-radiofluorinated Annexin V binding to apoptotic/necrotic cells illustrated the necessity of zinc ions for zinc(II)-bis(cyclen) complexation in binding cell death, and zinc(II)-bis(cyclen) complexe and Annexin V had not identical binding pattern with apoptosis/necrosis cells. Biodistribution studies of 11 C-CyclenZn2 revealed a fast clearance from blood, low uptake rates in brain and muscle tissue, and high uptake rates in liver and kidney, which provide the main metabolic route. PET imaging using 11 C-CyclenZn2 revealed that cyclophosphamide-treated mice (CP-treated group) exhibited a significant increase of uptake rate in the tumor at 60 min postinjection, compared with control mice (Control group). The results indicate that the ability of 11 C-CyclenZn2 to detect cell death is comparable to Annexin V, and it has potential as a PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy.

  8. Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc

    USGS Publications Warehouse

    Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.

    1979-01-01

    Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.

  9. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.

    PubMed

    Marques, Ana P G C; Moreira, Helena; Franco, Albina R; Rangel, António O S S; Castro, Paula M L

    2013-06-01

    Plant growth promoting bacteria (PGPR) may help reducing the toxicity of heavy metals to plants in polluted environments. In this work the effects of inoculating metal resistant and plant growth promoting bacterial strains on the growth of Helianthus annuus grown in Zn and Cd spiked soils were assessed. The PGPR strains Ralstonia eutropha (B1) and Chrysiobacterium humi (B2) reduced losses of weight in metal exposed plants and induced changes in metal bioaccumulation and bioconcentration - with strain B2 decreasing up to 67% Zn accumulation and by 20% Zn bioconcentration factor (BCF) in the shoots, up to 64% Zn uptake and 38% Zn BCF in the roots, and up to 27% Cd uptake and 27% Cd BCF in plant roots. The impact of inoculation on the bacterial communities in the rhizosphere of the plant was also assessed. Bacterial community diversity decreased with increasing levels of metal contamination in the soil, but in rhizosphere soil of plants inoculated with the PGPR strains, a higher bacterial diversity was kept throughout the experimental period. Inoculation of sunflower, particularly with C. humi (B2), appears to be an effective way of enhancing the short term stabilization potential of the plant in metal contaminated land, lowering losses in plant biomass and decreasing aboveground tissue contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessing biochar and compost from the organic fraction of municipal solid waste on nutrient availability and plant growth of lettuce

    NASA Astrophysics Data System (ADS)

    Regkouzas, Panagiotis; Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    Biochars have a high variability in chemical composition, which is determined by types of feedstock and pyrolysis conditions. Inorganic compounds, such as N, P, K and Ca, retained in biochar could be released and become available to plants. The aim of this study was to understand the effect of biochar and compost addition, derived from the organic fraction of municipal solid wastes at two different pyrolysis temperatures 3000C (BC300) and 6000C (BC600), on phosphorus availability and plant growth of lettuce (Lactuca sativa L.) grown in an alkaline loam soil. This type of soil is widely available in Greece, leading us to investigate ways to increase its fertility. A 39 d growth period of lettuce was studied in a greenhouse in triplicate. Treatments comprised of control soils (no addition of biochar or compost), soils treated only with compost (5%) or biochar (5%), and combinations of biochar (5%) plus compost (5%). No fertilization was added to any of the treatments. One biomass cut was obtained. Plant shoot yield and height were determined along with elemental concentration (N, P, K, Ca, Mg, Mn, Fe, Zn, Cu) and uptake of shoots. Results showed that BC300 combined with compost significantly increased P uptake of lettuce. On the other hand, BC600 plus compost, along with the two biochar-only treatments, significantly decreased Ca and Mg uptake of lettuce. N, K, Fe, Zn, Mn and Cu uptakes were not affected by the application of biochar, compost or the combined treatments. Despite the significant increase of P uptake, plant height and shoot yield were not significantly influenced by any of the treatments.

  11. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Wolf, R.E.; Todd, A.S.; Brinkman, S.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the 67Zn/66Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured 67Zn/66Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.

  12. Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal.

    PubMed

    Rajkumar, Mani; Ma, Ying; Freitas, Helena

    2008-12-01

    A metal-resistant bacterial strain SM3 isolated from a serpentine soil in the north-east of Portugal was characterized as Bacillus weihenstephanensis based on the morphological and biochemical characteristics and on the comparative analysis of the partial 16S ribosomal DNA sequence. Bacillus weihenstephanensis SM3 showed a high degree of resistance to nickel (1500 mg l(-1)), copper (500 mg l(-1)) and zinc (700 mg l(-1)) and also to antibiotics (ampicillin, penicillin, kanamycin and streptomycin). Strain SM3 has also exhibited the capability of solubilizing phosphate and producing indole-3-acetic acid (IAA) both in the absence and in the presence of metals (Ni, Cu and Zn). A pot experiment was conducted to elucidate the effects of strain SM3 on plant growth and uptake of Ni, Cu or Zn by Helianthus annuus. Inoculation with strain SM3 increased the shoot and root biomass of H. annuus grown in both non-contaminated and contaminated soil. Furthermore, strain SM3 increased the accumulation of Cu and Zn in the root and shoot systems. A batch experiment was also conducted to assess the metal mobilization potential of strain SM3 in soil. Inoculation with this strain increased the concentrations of water soluble Ni, Cu and Zn in soil. Metal solubilization by this bacterial strain may be an important process to promote the uptake of heavy metals by plants. This study elucidates the multifarious role of strain SM3 in plant growth promotion and its metal mobilizing potential.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrado, Timothy R.; Kemp, Bradley J.; Pandey, Mukesh K.

    Abnormalities in zinc homeostasis are indicated in many human diseases, including Alzheimer disease (AD). 63Zn-zinc citrate was developed as a positron emission tomography (PET) imaging probe of zinc transport and used in a first-in-human study in 6 healthy elderly individuals and 6 patients with clinically confirmed AD. A dynamic PET imaging of the brain was performed for 30 minutes following intravenous administration of 63Zn-zinc citrate (~330 MBq). Subsequently, body PET images were acquired. Urine and venous blood were analyzed to give information on urinary excretion and pharmacokinetics. Regional cerebral 63Zn clearances were compared with 11C-Pittsburgh Compound B ( 11C-PiB) andmore » 18F-fluorodeoxyglucose ( 18F-FDG) imaging data. 63Zn-zinc citrate was well tolerated in human participants with no adverse events monitored. Tissues of highest uptake were liver, pancreas, and kidney, with moderate uptake being seen in intestines, prostate (in males), thyroid, spleen, stomach, pituitary, and salivary glands. Moderate brain uptake was observed, and regional dependencies were observed in 63Zn clearance kinetics in relationship with regions of high amyloid-β plaque burden ( 11C-PiB) and 18F-FDG hypometabolism. In conclusion, zinc transport was successfully imaged in human participants using the PET probe 63Zn-zinc citrate. Primary sites of uptake in the digestive system accent the role of zinc in gastrointestinal function. Preliminary information on zinc kinetics in patients with AD evidenced regional differences in clearance rates in correspondence with regional amyloid-β pathology, warranting further imaging studies of zinc homeostasis in patients with AD.« less

  14. Anemia induced by high zinc intake in chicks: Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimentel, J.L.; Greger, J.L.; Cook, M.E.

    1991-03-15

    The mechanisms by which excess Zn induced anemia in chickens was assessed in 8 studies in which chicks were randomly assigned to a 2 {times} 2 factorial arrangement of treatments with 60 or 2,000 {mu}g Zn and 10 or 250 {mu}g Cu/g diet. Less Fe-59 appeared in the plasma 1 hour after a labeled meal when chicks were fed excess Zn in 1 of 2 studies but less Fe-59 appeared in livers of chicks fed excess Zn in both studies. The decrease of Fe-59 uptake into tissues paralleled a decrease in Fe concentrations in livers and tibiotarsi. These differences inmore » tissue Fe did not reflect differences in Fe excretion because excretion and incorporation into tissues of injected Fe-59 was not affected by high Zn intake. Although excess Zn decreased tissue Cu concentrations, excess Zn, per se, did not affect cytosolic superoxide dismutase activity, the in vivo t 1/2 of erythrocytes, or erythrocyte hemolysis in vitro. The decrease in body weight of chicks fed excess Zn indicated that protein synthesis and/or degradation could be affected. Increased incorporation of C-14 tyrosine into liver and bone marrow of chicks fed excess Zn suggested increased protoporphyrin synthesis or metallothionein synthesis. These results indicated that decreased Fe absorption was the primary mechanism by which excess Zn induced anemia.« less

  15. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly plant Zn uptake and homeostasis

    USDA-ARS?s Scientific Manuscript database

    To gain a better understanding of the regulation of Zn homeostasis in plants and the degree of conservation of Zn homeostasis between plants and yeast, a cDNA library from the Zn/Cd hyperaccumulating plant species, Nocceae caerulescens, was screened for its ability to restore growth under Zn limitin...

  16. Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland.

    PubMed

    Herzig, Rolf; Nehnevajova, Erika; Pfistner, Charlotte; Schwitzguebel, Jean-Paul; Ricci, Arturo; Keller, Charles

    2014-01-01

    Phytoextraction with somaclonal variants of tobacco and sunflower mutant lines (non-GMs) with enhanced metal uptake and tolerance can be a sustainable alternative to conventional destructive decontamination methods, especially for stripping bioavailable zinc excess in topsoil. The overall results of a 5-year time series experiment at field scale in north-eastern Switzerland confirm that the labile Zn pool in soil can be lowered by 45-70%, whereas subplots without phytoextraction treatment maintained labile Zn concentrations. In 2011, the phytoextraction experiment site was enlarged by a factor of 3, and the labile 0.1 M NaNO3 extractable Zn concentration in the soil was reduced up to 58% one period after harvest. A Mass Balance Analysis confirmed soil Zn decontamination in line with plant Zn uptake. The plants partially take Zn from the non-labile pool of the totaL The sustainability of Zn phytoextraction in subplots that no longer exceed the Swiss trigger value is now assessed over time. In contrary to the phytoextraction of total soil Zn which needs a long cleaning up time, the bioavailable Zn stripping is feasible within a few years period.

  17. Effects of ZnSO4 and Zn-EDTA broadcast or banded to soil on Zn bioavailability in wheat (Triticum aestivum L.) and Zn fractions in soil.

    PubMed

    Zhao, Aiqing; Yang, Shu; Wang, Bini; Tian, Xiaohong; Zhang, Youlin

    2018-08-01

    Human Zn deficiency is prevalent in developing countries, and staple grains are commonly bio-fortified to increase their Zn contents. We measured Zn content, distribution, and bioavailability in calcareous soil and in wheat plants (Triticum aestivum L.) in Shaanxi Province, China, when either an organic Zn-ethylenediaminetetraacetate (Zn-EDTA) or an inorganic zinc sulfate heptahydrate (ZnSO 4 ·7H 2 O) Zn source was banded below the seedbed or broadcasted into soil. Compared with ZnSO 4 ·7H 2 O, Zn-EDTA fertilization produced higher Zn concentration and uptake in wheat plants. However, Zn bioavailability in grain remained low, with [phytate]/[Zn] ratio >15 and the resulting estimated dietary total absorbed zinc (TAZ) < 3 mg Zn/d. ZnSO 4 banded into soil had little short-term effect on grain Zn concentration but had a high residual effect and promoted the maintenance of a high concentration of the Zn fraction bound to loose organic matter (LOM-Zn) in rhizosphere soil. Both ZnSO 4 and Zn-EDTA were more efficient if uniformly mixed through the soil than if banded to soil. Both ZnSO 4 and Zn-EDTA had limited effects on Zn bioavailability in wheat plants due to the high rate of Zn fixation in this calcareous soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Solubilisation of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth

    PubMed Central

    Pang, Guan; Shen, Qi-Rong; Li, Rong; Chen, Wei

    2015-01-01

    Trichoderma harzianum strain SQR-T037 is a biocontrol agent that has been shown to enhance the uptake of nutrients (macro- and microelements) by plants in fields. The objective of this study was to investigate the contribution of SQR-T037 to P and microelement (Fe, Mn, Cu and Zn) nutrition in tomato plants grown in soil and in hydroponic conditions. Inoculation with SQR-T037 significantly improved the biomass and nutrient uptake of tomato seedlings grown in a nutrient-limiting soil. So we investigated the capability of SQR-T037 to solubilise sparingly soluble minerals in vitro via four known mechanisms: acidification by organic acids, chelation by siderophores, redox by ferric reductase and hydrolysis by phytase. SQR-T037 was able to solubilise phytate, Fe2O3, CuO, and metallic Zn but not Ca3(PO4)2 or MnO2. Organic acids, including lactic acid, citric acid, tartaric acid and succinic acid, were detected by HPLC and LC/MS in two Trichoderma cultures. Additionally, we inoculated tomato seedlings with SQR-T037 using a hydroponic system with specific nutrient deficiencies (i.e., nutrient solutions deficient in P, Fe, Cu or Zn and supplemented with their corresponding solid minerals) to better study the effects of Trichoderma inoculation on plant growth and nutrition. Inoculated seedlings grown in Cu-deficient hydroponic conditions exhibited increases in dry plant biomass (92%) and Cu uptake (42%) relative to control plants. However, we did not observe a significant effect on seedling biomass in plants grown in the Fe- and Zn-deficient hydroponic conditions; by contrast, the biomass decreased by 82% in the P-deficient hydroponic condition. Thus, we demonstrated that Trichoderma SQR-T037 competed for P (phytate) and Zn with tomato seedlings by suppressing root development, releasing phytase and/or chelating minerals. The results of this study suggest that the induction of increased or suppressed plant growth occurs through the direct effect of T. harzianum on root development, in combination with indirect mechanisms, such as mineral solubilisation (including solubilisation via acidification, redox, chelation and hydrolysis). PMID:26110536

  19. Solubilisation of Phosphate and Micronutrients by Trichoderma harzianum and Its Relationship with the Promotion of Tomato Plant Growth.

    PubMed

    Li, Rui-Xia; Cai, Feng; Pang, Guan; Shen, Qi-Rong; Li, Rong; Chen, Wei

    2015-01-01

    Trichoderma harzianum strain SQR-T037 is a biocontrol agent that has been shown to enhance the uptake of nutrients (macro- and microelements) by plants in fields. The objective of this study was to investigate the contribution of SQR-T037 to P and microelement (Fe, Mn, Cu and Zn) nutrition in tomato plants grown in soil and in hydroponic conditions. Inoculation with SQR-T037 significantly improved the biomass and nutrient uptake of tomato seedlings grown in a nutrient-limiting soil. So we investigated the capability of SQR-T037 to solubilise sparingly soluble minerals in vitro via four known mechanisms: acidification by organic acids, chelation by siderophores, redox by ferric reductase and hydrolysis by phytase. SQR-T037 was able to solubilise phytate, Fe2O3, CuO, and metallic Zn but not Ca3(PO4)2 or MnO2. Organic acids, including lactic acid, citric acid, tartaric acid and succinic acid, were detected by HPLC and LC/MS in two Trichoderma cultures. Additionally, we inoculated tomato seedlings with SQR-T037 using a hydroponic system with specific nutrient deficiencies (i.e., nutrient solutions deficient in P, Fe, Cu or Zn and supplemented with their corresponding solid minerals) to better study the effects of Trichoderma inoculation on plant growth and nutrition. Inoculated seedlings grown in Cu-deficient hydroponic conditions exhibited increases in dry plant biomass (92%) and Cu uptake (42%) relative to control plants. However, we did not observe a significant effect on seedling biomass in plants grown in the Fe- and Zn-deficient hydroponic conditions; by contrast, the biomass decreased by 82% in the P-deficient hydroponic condition. Thus, we demonstrated that Trichoderma SQR-T037 competed for P (phytate) and Zn with tomato seedlings by suppressing root development, releasing phytase and/or chelating minerals. The results of this study suggest that the induction of increased or suppressed plant growth occurs through the direct effect of T. harzianum on root development, in combination with indirect mechanisms, such as mineral solubilisation (including solubilisation via acidification, redox, chelation and hydrolysis).

  20. Dual Nuclear/Fluorescence Imaging Potantial of Zinc(II) Phthalocyanine in MIA PaCa-2 Cell Line.

    PubMed

    Lambrecht, Fatma Yurt; Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Sarı, Fatma Aslıhan; Kayabasi, Cagla; Gunduz, Cumhur

    2016-01-01

    Pancreatic cancer is very common and difficult to diagnose in early stage. Imaging systems for diagnosing cancer have many disadvantages. However, combining different imaging modalities offers synergistic advantages. Optical imaging is the most multidirectional and widely used imaging modality in both clinical practice and research. In present study, Zinc(II) phthalocyanine [Zn(II)Pc] was synthesized, labeled with iodine- 131 and in vitro study was carried out. The intracellular uptake studies of radiolabeled Zn(II)Pc were performed in WI-38 [ATCC CCL-75™, tissue: human fibroblast lung] and MIA PaCa-2 [ATCC CRL-1420™, tissue: human epithelial pancreas carcinoma] cell lines. The intracellular uptake efficiency of radiolabeled Zn(II)Pc in MIA PaCa-2 cells was determined two times higher than WI-38 cells. Also, fluorescence imaging (FI) efficiency of synthesized Zn(II)Pc was investigated in MIA PaCa-2 cells and significant uptake was observed. Zn(II)Pc might be used as a new agent for dual fluorescence/nuclear imaging for pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) F.K. Mey in field-contaminated soils.

    PubMed

    Rosenfeld, Carla E; Chaney, Rufus L; Martínez, Carmen E

    2018-03-01

    Cadmium contamination in soil is a substantial global problem, and of significant concern due to high food-chain transfer. Cadmium hyperaccumulators are of particular interest because of their ability to tolerate and take up significant amounts of heavy metal pollution from soils. One particular plant, Noccaea caerulescens (formerly, Thlaspi caerulescens), has been extensively studied in terms of its capacity to accumulate heavy metals (specifically Zn and Cd), though these studies have primarily utilized hydroponic and metal-spiked model soil systems. We studied Cd and nutrient uptake by two N. caerulescens ecotypes, Prayon (Zn-only hyperaccumulator) and Ganges (Zn- and Cd-hyperaccumulator) in four long-term field-contaminated soils. Our data suggest that individual soil properties such as total soil Cd, Zn:Cd molar ratio, or soil pH do not accurately predict Cd uptake by hyperaccumulating plants. Additionally, total Cd uptake by the hyperaccumulating Ganges ecotype was substantially less than its physiological capacity, which is likely due to Cd-containing solid phases (primarily iron oxides) and pH that play an important role in regulating and limiting Cd solubility. Increased P accumulation in the Ganges leaves, and greater plant Fe accumulation from Cd-containing soils suggests that rhizosphere alterations via proton, and potentially organic acid, secretion may also play a role in nutrient and Cd acquisition by the plant roots. The current study highlights the role that soil geochemical factors play in influencing Cd uptake by hyperaccumulating plants. While these plants may have high physiological potential to accumulate metals from contaminated soils, individual soil geochemical factors and the plant-soil interactions in that soil will dictate the actual amount of phytoextractable metal. This underlines the need for site-specific understanding of metal-containing solid phases and geochemical properties of soils before undertaking phytoextraction efforts. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.

    PubMed

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Ping; Ma, Fang; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2017-05-01

    The increasing industrial, mining and agricultural activities have intensified the release of potential toxic trace elements (PTEs), which are of great concern to human health and environment. The alarming increase in PTEs concentration, stress the need for biotechnological remediation approaches. In order to assist phytoextraction of PTEs, different combinations of Streptomyces pactum (Act12) with biochar were applied to mining and industrial polluted soils of Shaanxi and Hunan Provinces of China, respectively. Act12 affected soil physico-chemical properties in both soils. Bioavailable Zn and Pb increased due to microbial activities, while Cd decreased by adsorption on biochar surface. Phytoextraction of Zn and Pb occurred in TG and CZ soil, while Cd uptake decreased in iron rich CZ soil by conflicting effect of siderophores. Cd in sorghum shoot was below detection level, but uptake increased in the roots due to minimum available fraction in TG soil. Biochar reduced the shoot and root uptake of Cd. Sorghum shoot, root dry weight and chlorophyll significantly increased after Act12 and biochar application. β-glucosidase, alkaline phosphatase and urease activities were significantly enhanced by Act12. Antioxidant enzymatic activities (POD, PAL and PPO) and lipid peroxidation (MDA) were decreased after the application of Act12 and biochar by reduced PTEs stress. Act12 and biochar can be used for different crops to enumerate the transfer rate of PTEs into the food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Molecular and cellular characterisation of the zinc uptake (Znu) system of Nostoc punctiforme.

    PubMed

    Hudek, Lee; Pearson, Leanne A; Michalczyk, Agnes; Neilan, Brett A; Ackland, M Leigh

    2013-11-01

    Metal homoeostasis in cyanobacteria is based on uptake and export systems that are controlled by their own regulators. This study characterises the zinc uptake (Znu) system in Nostoc punctiforme. The system was found to comprise of three subunits in an ACB operon: a Zn(2+)-binding protein (ZnuA18), a transmembrane domain (ZnuB) and an ATPase (ZnuC). These proteins are encoded within the znu operon regulated by a zinc uptake transcription repressor (Zur). Interestingly, a second Zn(2+)-binding protein (ZnuA08) was also identified at a distal genomic location. Interactions between components of the ZnuACB system were investigated using knockouts of the individual genes. The znuA08(-), znuA18(-), znuB(-) and znuC(-) mutants displayed overall reduced znuACB transcript levels, suggesting that all system components are required for normal expression of znu genes. Zinc uptake assays in the Zn(2+)-binding protein mutant strains showed that the disruption of znuA18 had a greater negative effect on zinc uptake than disruption of znuA08. Complementation studies in Escherichia coli indicated that both znuA08 and znuA18 were able to restore zinc uptake in a znuA(-) mutant, with znuA18 permitting the highest zinc uptake rate. The N. punctiforme zur was also able to complement the E. coli zur(-) mutant. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Uptake and Distribution of Soil Applied Zinc by Citrus Trees—Addressing Fertilizer Use Efficiency with 68Zn Labeling

    PubMed Central

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  6. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    PubMed

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  7. A field study on the dynamic uptake and transfer of heavy metals in Chinese cabbage and radish in weak alkaline soils.

    PubMed

    Ai, Shiwei; Guo, Rui; Liu, Bailin; Ren, Liang; Naeem, Sajid; Zhang, Wenya; Zhang, Yingmei

    2016-10-01

    Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.

  8. Zn(2+) site engineering at the oligomeric interface of the dopamine transporter.

    PubMed

    Norgaard-Nielsen, Kristine; Norregaard, Lene; Hastrup, Hanne; Javitch, Jonathan A; Gether, Ulrik

    2002-07-31

    Increasing evidence suggests that Na(+)/Cl(-)-dependent neurotransmitter transporters exist as homo-oligomeric proteins. However, the functional implication of this oligomerization remains unclear. Here we demonstrate the engineering of a Zn(2+) binding site at the predicted dimeric interface of the dopamine transporter (DAT) corresponding to the external end of transmembrane segment 6. Upon binding to this site, which involves a histidine inserted in position 310 (V310H) and the endogenous Cys306 within the same DAT molecule, Zn(2+) potently inhibits [(3)H]dopamine uptake. These data provide indirect evidence that conformational changes critical for the translocation process may occur at the interface between two transporter molecules in the oligomeric structure.

  9. The use of a biodegradable chelator for enhanced phytoextraction of heavy metals by Festuca arundinacea from municipal solid waste compost and associated heavy metal leaching.

    PubMed

    Zhao, Shulan; Jia, Lina; Duo, Lian

    2013-02-01

    In a column experiment with horizontal permeable barriers, the effects of a biodegradable chelator-nitrilotriacetic acid (NTA) on the uptake of heavy metals from municipal solid waste (MSW) compost by Festuca arundinacea and metal leaching were investigated. The use of NTA was effective in increasing Cu, Pb, and Zn uptakes in shoots of two crops of F. arundinacea. In columns with barriers and treated with 20 mmol NTA per kg MSW compost, metal uptakes by the first and second crop of F. arundinacea were, respectively, 3.8 and 4.0 times for Pb, and 1.8 and 1.7 times for Zn greater with the added NTA than without it. Though NTA application mobilized metals, it caused only slight leaching of metals from MSW compost. Permeable barriers positioned between compost and soil effectively reduced metal leaching. NTA-assisted phytoextraction by turfgrass with permeable barriers to cleanup heavy metal contaminated MSW compost should be environmentally safe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Extracellular Zn2+ Is Essential for Amyloid β1-42-Induced Cognitive Decline in the Normal Brain and Its Rescue.

    PubMed

    Takeda, Atsushi; Tamano, Haruna; Tempaku, Munekazu; Sasaki, Miku; Uematsu, Chihiro; Sato, Shoko; Kanazawa, Hiroaki; Datki, Zsolt L; Adlard, Paul A; Bush, Ashley I

    2017-07-26

    Brain Aβ 1-42 accumulation is considered an upstream event in pathogenesis of Alzheimer's disease. However, accumulating evidence indicates that other neurochemical changes potentiate the toxicity of this constitutively generated peptide. Here we report that the interaction of Aβ 1-42 with extracellular Zn 2+ is essential for in vivo rapid uptake of Aβ 1-42 and Zn 2+ into dentate granule cells in the normal rat hippocampus. The uptake of both Aβ 1-42 and Zn 2+ was blocked by CaEDTA, an extracellular Zn 2+ chelator, and by Cd 2+ , a metal that displaces Zn 2+ for Aβ 1-42 binding. In vivo perforant pathway LTP was unaffected by perfusion with 1000 nm Aβ 1-42 in ACSF without Zn 2+ However, LTP was attenuated under preperfusion with 5 nm Aβ 1-42 in ACSF containing 10 nm Zn 2+ , recapitulating the concentration of extracellular Zn 2+ , but not with 5 nm Aβ 1-40 in ACSF containing 10 nm Zn 2+ Aβ 1-40 and Zn 2+ were not taken up into dentate granule cells under these conditions, consistent with lower affinity of Aβ 1-40 for Zn 2+ than Aβ 1-42 Aβ 1-42 -induced attenuation of LTP was rescued by both CaEDTA and CdCl 2 , and was observed even with 500 pm Aβ 1-42 Aβ 1-42 injected into the dentate granule cell layer of rats induced a rapid memory disturbance that was also rescued by coinjection of CdCl 2 The present study supports blocking the formation of Zn-Aβ 1-42 in the extracellular compartment as an effective preventive strategy for Alzheimer's disease. SIGNIFICANCE STATEMENT Short-term memory loss occurs in normal elderly and increases in the predementia stage of Alzheimer's disease (AD). Amyloid-β 1-42 (Aβ 1-42 ), a possible causing peptide in AD, is bound to Zn 2+ in the extracellular compartment in the hippocampus induced short-term memory loss in the normal rat brain, suggesting that extracellular Zn 2+ is essential for Aβ 1-42 -induced short-term memory loss. The evidence is important to find an effective preventive strategy for AD, which is blocking the formation of Zn-Aβ 1-42 in the extracellular compartment. Copyright © 2017 the authors 0270-6474/17/377253-10$15.00/0.

  11. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications.

    PubMed

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-12-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  12. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications

    NASA Astrophysics Data System (ADS)

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-05-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  13. Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gestel, C.A.M.; Hensbergen, P.J.

    1997-06-01

    The use of toxicity tests in which each chemical is tested separately is inadequate for assessing the potential risk of complex mixtures of chemicals for soil ecosystems. In the present study, the effects of Cd and Zn, alone or in combination, on the survival, growth, and reproduction of the collembolan Folsomia candida were determined after 2, 4, and 6 weeks of exposure in an artificial soil. The water solubility of Cd in the soil was significantly increased by the presence of Zn, whereas Cd did not affect the water solubility of Zn. In spite of this, uptake of Cd ormore » Zn in the animals was not affected by the presence of the other metal, suggesting that water solubility does not determine the uptake of these metals in F. candida. For both Cd and Zn, reproduction was the most sensitive parameter, with 50% effective concentration (EC50) values of 51 and 683 {micro}g/g dry soil, respectively, after 6 weeks. These values corresponded with internal concentrations of 44 {micro}g Cd/g and 14 {micro}g Zn/g dry soil, respectively. Although a proper comparison of the effects of mixtures of the metals with the effects of the individual metals was sometimes hampered by the nonsimilarity of dose-response relationships, it may be concluded that the effects of the mixture of Cd and Zn on the growth of F. candida are antagonistic (EC50 significantly greater than 1.0 toxic unit), while the effects on reproduction are additive (EC50 = 1.0 toxic unit). Similar conclusions could be drawn for EC50s expressed on the basis of total and water-soluble soil concentrations as well as on the basis of internal concentrations in animals. Analysis of the combined effects of Cd and Zn at the 10% effective concentration level did not change these conclusions.« less

  14. Cellular uptake and toxic effects of fine and ultrafine metal-sulfate particles in human A549 lung epithelial cells.

    PubMed

    Könczöl, Mathias; Goldenberg, Ella; Ebeling, Sandra; Schäfer, Bianca; Garcia-Käufer, Manuel; Gminski, Richard; Grobéty, Bernard; Rothen-Rutishauser, Barbara; Merfort, Irmgard; Gieré, Reto; Mersch-Sundermann, Volker

    2012-12-17

    Ambient airborne particulate matter is known to cause various adverse health effects in humans. In a recent study on the environmental impacts of coal and tire combustion in a thermal power station, fine crystals of PbSO(4) (anglesite), ZnSO(4)·H(2)O (gunningite), and CaSO(4) (anhydrite) were identified in the stack emissions. Here, we have studied the toxic potential of these sulfate phases as particulates and their uptake in human alveolar epithelial cells (A549). Both PbSO(4) and CaSO(4) yielded no loss of cell viability, as determined by the WST-1 and NR assays. In contrast, a concentration-dependent increase in cytotoxicity was observed for Zn sulfate. For all analyzed sulfates, an increase in the production of reactive oxygen species (ROS), assessed by the DCFH-DA assay and EPR, was observed, although to a varying extent. Again, Zn sulfate was the most active compound. Genotoxicity assays revealed concentration-dependent DNA damage and induction of micronuclei for Zn sulfate and, to a lower extent, for CaSO(4), whereas only slight effects could be found for PbSO(4). Moreover, changes of the cell cycle were observed for Zn sulfate and PbSO(4). It could be shown further that Zn sulfate increased the nuclear factor kappa-B (NF-κB) DNA binding activity and activated JNK. During our TEM investigations, no effect on the appearance of the A549 cells exposed to CaSO(4) compared to the nonexposed cells was observed, and in our experiments, only one CaSO(4) particle was detected in the cytoplasm. In the case of exposure to Zn sulfate, no particles were found in the cytoplasm of A549 cells, but we observed a concentration-dependent increase in the number and size of dark vesicles (presumably zincosomes). After exposure to PbSO(4), the A549 cells contained isolated particles as well as agglomerates both in vesicles and in the cytoplasm. Since these metal-sulfate particles are emitted into the atmosphere via the flue gas of coal-fired power stations, they may be globally abundant. Therefore, our study is of direct relevance to populations living near such power plants.

  15. Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth.

    PubMed

    Liu, Xue; Feng, Hua-Yuan; Fu, Jing-Wei; Chen, Yanshan; Liu, Yungen; Ma, Lena Q

    2018-05-01

    It is known that arsenic (As) promotes growth of As-hyperaccumulator Pteris vittata (PV), however, the associated mechanisms are unclear. Here we examined As-induced nutrient uptake in P. vittata and their potential role to enhance plant growth in sterile agar by excluding microbial effects. As-hyperaccumulator P. multifida (PM) and non-hyperaccumulator P. ensiformis (PE) belonging to the Pteris genus were used as comparisons. The results showed that, after 40 d of growth, As induced biomass increase in hyperaccumulators PV and PM by 5.2-9.4 fold whereas it caused 63% decline in PE. The data suggested that As played a beneficial role in promoting hyperaccumulator growth. In addition, hyperaccumulators PV and PM accumulated 7.5-13, 1.4-3.6, and 1.8-4.4 fold more As, Fe, and P than the non-hyperaccumulator PE. In addition, nutrient contents such as K and Zn were also increased while Ca, Mg, and Mn decreased or unaffected under As treatment. This study demonstrated that As promoted growth in hyperaccumulators and enhanced Fe, P, K, and Zn uptake. Different plant growth responses to As among hyperaccumulators PV and PM and non-hyperaccumulator PE may help to better understand why hyperaccumulators grow better under As-stress. Published by Elsevier Ltd.

  16. Effect of Cu(II), Cd(II) and Zn(II) on Pb(II) biosorption by algae Gelidium-derived materials.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2008-06-15

    Biosorption of Pb(II), Cu(II), Cd(II) and Zn(II) from binary metal solutions onto the algae Gelidium sesquipedale, an algal industrial waste and a waste-based composite material was investigated at pH 5.3, in a batch system. Binary Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II) solutions have been tested. For the same equilibrium concentrations of both metal ions (1 mmol l(-1)), approximately 66, 85 and 86% of the total uptake capacity of the biosorbents is taken by lead ions in the systems Pb(II)/Cu(II), Pb(II)/Cd(II) and Pb(II)/Zn(II), respectively. Two-metal results were fitted to a discrete and a continuous model, showing the inhibition of the primary metal biosorption by the co-cation. The model parameters suggest that Cd(II) and Zn(II) have the same decreasing effect on the Pb(II) uptake capacity. The uptake of Pb(II) was highly sensitive to the presence of Cu(II). From the discrete model it was possible to obtain the Langmuir affinity constant for Pb(II) biosorption. The presence of the co-cations decreases the apparent affinity of Pb(II). The experimental results were successfully fitted by the continuous model, at different pH values, for each biosorbent. The following sequence for the equilibrium affinity constants was found: Pb>Cu>Cd approximately Zn.

  17. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA].

    PubMed

    Wei, Ze-bin; Chen, Xiao-hong; Wu, Qi-tang; Tan, Meng

    2015-05-01

    Chemically enhanced phytoextraction by hyperaccumulator has been proposed as an effective approach to remove heavy metals from contaminated soil. Pot experiment was conducted to investigate the effect of application of the biodegradable chelate GLDA (L glutamic acid N,N-diacetic acid) at different doses or the combination of GLDA with EDTA (ethylenediamine tetraacetic acid) or CIT (citric acid) on the uptake of Cd, Zn and Pb by Sedum alfredii Hance (a Zn and Cd hyperaccumulator). Experimental results showed that GLDA addition to soil significantly increased the concentrations of Cd and Zn in Sedum alfredii Hance and its Cd and Zn phytoextraction compared to the control. Additionally, GLDA at 2.5 mmol · kg(-1) resulted in the highest phytoextraction, being 2.5 and 2.6 folds of the control for Cd and Zn, respectively. However, the combined application of GLDA + EDTA (1:1) and GLDA + CIT (1 :1 and 1:3) at a total dose of 5 mmol · kg(-1) did not increase the phytoextraction of Zn and Cd, compared to the GLDA only treatment. Therefore, the biodegradable chelate GLDA could be regarded as a good chelate candidate for the phytoextraction of heavy metals of heavy metals from contaminated soils, particularly for Cd and Zn contaminated soils.

  18. Zinc transformations in acidic soil and zinc efficiency on maize by adding six organic zinc complexes.

    PubMed

    López-Valdivia, L M; Fernández, M D; Obrador, A; Alvarez, J M

    2002-03-13

    Experiments under laboratory and greenhouse conditions were conducted to study the response of maize (Zea mays L.) to Zn fertilizer applications (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate) in an Aquic Haploxeralf soil. The application of Zn complexes significantly increased Zn uptake by the plant compared with that in the control soil. The highest enhancements were obtained in soil treated with Zn-EDTA, Zn-lignosulfonate, and Zn-EDDHA. The highest percentages of Zn taken up by the plants occurred when 20 mg x kg(-1) Zn was applied as Zn-EDTA fertilizer and 10 mg x kg(-1) as Zn-lignosulfonate fertilizer. In the greenhouse experiment, Zn speciation in soil after harvesting showed that almost all Zn was found in the residual fraction followed by metal in the water-soluble plus exchangeable fraction and metal bound to organic matter. The most effective fertilizers maintaining Zn in the most labile fractions were Zn-phenolate, Zn-EDTA, and Zn-lignosulfonate. Conversely, in the incubation experiment, only a small percentage of Zn was found in the water-soluble plus exchangeable fraction and no differences in the Zn distribution were observed between the different fertilizer treatments. The micronutrient content in maize was positively correlated with the water-soluble plus exchangeable Zn as well as with the available Zn determined by the diethylenetriaminepentaacetic acid and Mehlich-3 methods, in the greenhouse experiment. Results of this study showed that the incubation experiment in acidic soil is not a suitable tool to establish the different effectiveness of Zn chelates in plants.

  19. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yieldsmore » from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.« less

  20. Assessing the dietary bioavailability of metals associated with natural particles: Extending the use of the reverse labeling approach to zinc

    USGS Publications Warehouse

    Croteau, Marie-Noele; Cain, Daniel J.; Fuller, Christopher C.

    2017-01-01

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail’s soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  1. Assessing the Dietary Bioavailability of Metals Associated with Natural Particles: Extending the Use of the Reverse Labeling Approach to Zinc.

    PubMed

    Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C

    2017-03-07

    We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67 Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66 Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.

  2. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China.

    PubMed

    Chen, De; Guo, Hu; Li, Ruiyue; Li, Lianqing; Pan, Genxing; Chang, Andrew; Joseph, Stephen

    2016-01-15

    Biochar is becoming an environmentally friendly material for remediation of heavy metal contaminated soils and improving food safety. A field trial over four rice seasons was conducted to investigate the use of biochar and low Cd accumulating cultivars on Cd uptake in a heavy metal contaminated soil. Wheat straw derived biochar was applied at 0, 20 and 40 t ha(-1). Two rice cultivars with differing Cd accumulation abilities were selected in each season. The results showed that both biochar and low Cd affinity cultivars significantly reduced rice grain Cd accumulation. Biochar had no significant effect the first season but thereafter consistently reduced rice grain Cd by a maximum of 61, 86 and 57% over the next three seasons. Zn accumulation in the rice grains was not decreased by biochar application, although available soil Zn was sharply reduced (35-91%). Indica conventional rice cultivars had much lower Cd, but higher Zn and lower Cd/Zn ratios in the grain than indica hybrid cultivars. Biochar was more effective for mitigating grain Cd accumulation in low Cd affinity cultivars than in high affinity cultivars. Soil pH was sustainably increased (up to nearly 1 unit) while available Cd significantly decreased by a maximum of 85% after biochar addition. The translocation of Cd from rice roots to shoots was reduced from 20 to 80% by biochar. Low uptake affinity cultivars combined with biochar reduced late rice grain Cd concentration and Cd/Zn ratios by 69-80% and 72-80%, respectively. It indicated that the management of combining biochar and low Cd affinity cultivars should be an efficient way to remediate Cd contaminated rice paddies and reduce health risk associated with consuming rice from these soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Utilising caging techniques to investigate metal assimilation in Nucella lapillus, Mytilus edulis and Crassostrea gigas at three Irish coastal locations

    NASA Astrophysics Data System (ADS)

    Giltrap, Michelle; Macken, Ailbhe; Davoren, Maria; McGovern, Evin; Foley, Barry; Larsen, Martin; White, Jonathan; McHugh, Brendan

    2013-11-01

    Pollution by metals has been of increasing concern for a number of decades but at present, the mechanism of metal accumulation in sentinel species is not fully understood and further studies are required for environmental risk assessment of metals in aquatic environments. The use of caging techniques has proven to be useful for assessment of water quality in coastal and estuarine environments. This study investigates the application of caging techniques for monitoring uptake of 20 elements [Li, Na, Mg, Al, P, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, As, Sb, Pb, Hg, Cd and Zn] in three marine species namely Nucella lapillus, Mytilus edulis and Crassostrea gigas. Stable isotopes were used to determine predatory effects and also used for modelling metal uptake in test species and to track nutrient assimilation. Metal levels were monitored at three different coastal locations, namely Dublin Bay, Dunmore East and Omey Island over 18 weeks. Significant differences in concentrations of Mn, Co and Zn between mussels and oysters were found. Correlations between cadmium levels in N. lapillus and δ13C and δ15N suggest dietary influences in Cd uptake. Levels of Zn were highest in C. gigas compared to the other two species and levels of Zn were most elevated at the Dunmore East site. Copper levels were more elevated in all test species at both Dublin Bay and Dunmore East. Mercury was raised in all species at Dunmore East compared to the other two sites. Biotic accumulation of metals in the test species demonstrates that caging techniques can provide a valid tool for biomonitoring in metal impacted areas.

  4. Combined effects of cadmium and zinc on growth, tolerance, and metal accumulation in Chara australis and enhanced phytoextraction using EDTA.

    PubMed

    Clabeaux, Bernadette L; Navarro, Divina A; Aga, Diana S; Bisson, Mary A

    2013-12-01

    Chara australis (R. Br.) is a macrophytic alga that can grow in and accumulate Cd from artificially contaminated sediments. We investigated the effects of Zn independently and in combination with Cd on C. australis growth, metal tolerance, and uptake. Plant growth was reduced at concentrations ≥ 75 mg Zn (kg soil)⁻¹. Zn also increased the concentration of glutathione in the plant, suggesting alleviation of stress. Phytotoxic effects were observed at ≥ 250 mg added Zn (kg soil)⁻¹. At 1.5mg Zn (kg soil)⁻¹, the rhizoid bioconcentration factor (BCF) was >1.0 for both Cd and Zn. This is a criterion for hyperaccumulator status, a commonly used benchmark for utility in remediation of contaminated soils by phytoextraction. There was no significant interaction between Cd and Zn on accumulation, indicating that Chara should be effective at phytoextraction of mixed heavy metal contamination in sediments. The effects of the chelator, ethylenediaminetetraacetic acid (EDTA), were also tested. Moderate levels of EDTA increased Cd and Zn accumulation in rhizoids and Cd BCF of shoots, enhancing Chara's potential in phytoremediation. This study demonstrates for the first time the potential of macroalgae to remove metals from sediments in aquatic systems that are contaminated with a mixture of metals. © 2013 Published by Elsevier Inc.

  5. Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei.

    PubMed

    Peijnenburg, W J; Baerselman, R; de Groot, A C; Jager, T; Posthuma, L; Van Veen, R P

    1999-11-01

    Body residues are often better estimates of the amount of a chemical at the sites of toxic action in an organism than ambient soil concentrations, because bioavailability differences among soils are explicitly taken into account in considerations of body residues. Often, however, insufficient attention is paid to the rate and extent at which tissue concentrations respond to soil concentrations and soil characteristics. In this contribution the impact of soil characteristics on the environmental bioavailability of heavy metals for the oligochaete worm Eisenia andrei is reported. Uptake of As, Cd, Cr, Cu, Ni, Pb, and Zn in 20 Dutch field soils and in OECD artificial soil was quantified as a function of time. Internal metal concentrations varied less than the corresponding external levels. Metal uptake and elimination were both metal- and species-dependent. Worms typically attained steady-state concentrations rapidly for Cr, Cu, Ni, and Zn. Internal concentrations similar to those in the cultivation medium, linearly increasing body concentrations, or steady-state internal concentrations well above those in the cultivation medium were found for As, Cd, and Pb. Multivariate expressions were derived to describe uptake rate constants, steady-state concentrations, and bioaccumulation factors as a function of soil characteristics. Soil acidity is the most important solid-phase characteristic modulating the availability of As, Cd, and Pb. Although additional semimechanistic calculations yielded evidence of pore-water-related uptake of Cd and Pb modulated by competition between H(+) and metal ions at the active sites of the membranes, the findings for Cr, Cu, Ni, and Zn point to additional influences, among which is probably regulation. Copyright 1999 Academic Press.

  6. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments.

    PubMed

    Vandecasteele, Bart; Laing, Gijs Du; Quataert, Paul; Tack, Filip M G

    2005-04-01

    Several authors suggest that a hydrological regime aiming at wetland creation is a potential management option that favours reducing bioavailability for metal-contaminated sites. The hydrological conditions on a site constitute one of the many factors that may affect the availability of potentially toxic trace metals for uptake by plants. Bioavailability of Cd, Mn and Zn on a contaminated dredged sediment landfill (DSL) with variable duration of submersion was evaluated by measuring metal concentrations in the wetland plant species Salix cinerea in field conditions. Longer submersion periods in the field caused lower Cd and Zn concentrations in the leaves in the first weeks of the growing season. Foliar Cd and Zn concentrations at the end of the growing season were highest on the initially flooded plot that emerged early in the growing season. Foliar Zn concentrations were also high at a sandy-textured oxic plot with low soil metal concentrations. Zn uptake in the leaves was markedly slower than Cd uptake for trees growing on soils with prolonged waterlogging during the growing season, pointing at a different availability. Zn availability was lowest when soil was submerged, but metal transfer from stems and twigs to leaves may mask the lower availability of Cd in submerged soils. Especially for Cd, a transfer effect from one growing season to the next season was observed: oxic conditions at the end of the previous growing season seem to determine at least partly the foliar concentrations for S. cinerea through this metal transfer mechanism. Duration of the submersion period is a key factor for bioavailability inasmuch as initially submerged soils emerging only in the second half of the growing season resulted in elevated Cd and Zn foliar concentrations at that time.

  7. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com; Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) andmore » LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.« less

  8. Heavy metal phytoextraction by Sedum alfredii is affected by continual clipping and phosphorus fertilization amendment.

    PubMed

    Huang, Huagang; Li, Tingqiang; Gupta, D K; He, Zhenli; Yang, Xiao-E; Ni, Bingnan; Li, Mao

    2012-01-01

    Improving the efficacy of phytoextraction is critical for its successful application in metal contaminated soils. Mineral nutrition affects plant growth and metal absorption and subsequently the accumulation of heavy metal through hyper-accumulator plants. This study assessed the effects of di-hydrogen phosphates (KH2PO4, Ca(H2PO4)2, NaH2PO4 and NH4H2PO4) application at three levels (22, 88 and 352 mg P/kg soil) on Sedum alfredii growth and metal uptake by three consecutive harvests on aged and Zn/Cd combined contaminated paddy soil. The addition of phosphates (P) significantly increased the amount of Zn taken up by S. alfredii due to increased shoot Zn concentration and dry matter yield (DMY) (P < 0.05). The highest phytoextraction of Zn and Cd was observed in KH2PO4 and NH4H2PO4 treatment at 352 mg P/kg soil. The amount of Zn removed by phytoextraction increased in the order of 1st clipping < 2nd clipping < 3rd clipping, and for Cd extraction the order was 2nd clipping < 1st clipping < 3rd clipping. These results indicate that the application of P fertilizers coupled with multiple cuttings can enhance the removal of Zn and Cd from contaminated soils by S. alfredii, thus shortening the time needed for accomplishing remediation goals.

  9. Effects of UV-B and heavy metals on nitrogen and phosphorus metabolism in three cyanobacteria.

    PubMed

    Yadav, Shivam; Prajapati, Rajesh; Atri, Neelam

    2016-01-01

    Cyanobacteria sp. (diazotrophic and planktonic) hold a major position in ecosystem, former one due to their intrinsic capability of N2-fixation and later because of mineralization of organic matter. Unfortunately, their exposure to variety of abiotic stresses is unavoidable. Comparative analysis of interactive effect of UV-B and heavy metals (Cd/Zn) on nitrogen and phosphorus metabolism of three cyanobacteria (Anabaena, Microcystis, Nostoc) revealed additive inhibition (χ(2) significant p < 0.05) of NH4(+) and PO4(3-) uptake whereas increase in nitrate uptake upon UV-B + heavy metal exposure. Glutamine synthetase and Alkaline phosphatase activity was reduced after all treatments whereas Nitrate reductase activity showed slight stimulation in UV-B and UV-B + heavy metals treatment. Combination of UV-B and metals seems more detrimental to the NH4(+), PO4(3-) uptake, GS and APA activity. A significant stimulation in NO3(-) uptake and NR activity following exposure to UV-B in all the three cyanobacteria suggests UV-B-induced structural change(s) in the enzyme/carriers. Metals seem to compete for the binding sites of the enzymes and carriers; as noticed for Anabaena and Microcystis showing change in Km while no change in the Km value of Nostoc suggests non-competitive nutrient uptake. Higher accumulation and more adverse effect on Na(+) and K(+) efflux proposes Cd as more toxic compared to Zn. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bioaccumulation and associated dietary risks of Pb, Cd, and Zn in amaranth (Amaranthus cruentus) and jute mallow (Corchorus olitorius) grown on soil irrigated using polluted water from Asa River, Nigeria.

    PubMed

    Ogunkunle, Clement Oluseye; Ziyath, Abdul M; Adewumi, Faderera Esther; Fatoba, Paul Ojo

    2015-05-01

    Dietary uptake of heavy metals through the consumption of vegetables grown on polluted soil can have serious human health implications. Thus, the study presented in this paper investigated the bioaccumulation and associated dietary risks of Pb, Zn, and Cd present in vegetables widely consumed in Nigeria, namely amaranth and jute mallow, grown on soil irrigated with polluted water from Asa River. The study found that the soil was polluted with Zn, Pb, and Cd with Pb and Cd being contributed by polluted river, while Zn was from geogenic sources. The metal concentration in amaranth and jute mallow varied in the order of Zn > Pb > Cd and Zn > Pb ≈ Cd, respectively. Jute mallow acts as an excluder plant for Pb, Cd, and Zn. Consequently, the metal concentrations in jute mallow were below the toxic threshold levels. Furthermore, non-cancer human health risk of consuming jute mallow from the study site was not significant. In contrast, the concentrations of Pb and Cd in amaranth were found to be above the recommended safe levels and to be posing human health risks. Therefore, further investigation was undertaken to identify the pathways of heavy metals to amaranth. The study found that the primary uptake pathway of Pb and Cd by amaranth is foliar route, while root uptake is the predominant pathway of Zn in amaranth.

  11. Nitric Oxide Is Associated with Long-Term Zinc Tolerance in Solanum nigrum1[W

    PubMed Central

    Xu, Jin; Yin, Hengxia; Li, Yulong; Liu, Xiaojing

    2010-01-01

    Nitric oxide (NO) has been identified as a signal molecule that interplays with reactive oxygen species in response to heavy metal stresses. Roles of NO in regulating cadmium toxicity and iron deficiency have been proposed; however, the function of NO in zinc (Zn) tolerance in plants remains unclear. Here, we investigated NO accumulation and its role in plant Zn tolerance. Zn-induced NO production promoted an increase in reactive oxygen species accumulation in Solanum nigrum roots by modulating the expression and activity of antioxidative enzymes. Subsequently, programmed cell death (PCD) was observed in primary root tips. Inhibiting NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (a specific NO scavenger) or NG-nitro-l-arginine-methyl ester (a NO synthase inhibitor) prevented the increase of superoxide radical and hydrogen peroxide as well as the subsequent cell death in the root tips, supporting the role of NO in Zn-induced PCD in the root tips. Zn-induced NO production affected the length of primary roots, the number of lateral roots, and root hair growth and thereby modulated root system architecture and activity. Investigation of metal contents in Zn-treated roots suggests that NO is required for metal (especially iron) uptake and homeostasis in plants exposed to excess Zn. Taken together, our results indicate that NO production and the subsequent PCD in root tips exposed to excess Zn are favorable for the S. nigrum seedling response to long-term Zn toxicity by modulating root system architecture and subsequent adaptation to Zn stress. PMID:20855519

  12. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine.

    PubMed

    Nadella, Sunita Rao; Grosell, Martin; Wood, Chris M

    2007-05-01

    Copper (Cu) is both a vital nutrient and a potent toxicant. The objective of this study was to analyze the mechanistic nature of intestinal Cu transport in rainbow trout using radiolabeled Cu (64Cu) and an in vitro gut sac technique. Reduction of mucosal NaCl levels inhibited Cu transport while increase caused stimulation; Na(2)SO(4) had an identical effect, implicating Na(+) rather than the anion. These responses were unrelated to solvent drag, osmotic pressure or changes in transepithelial potential. The presence of elevated luminal Ag stimulated Cu and Na(+) uptake. Phenamil caused a partial inhibition of both Cu and Na(+) uptake while hypercapnia stimulated Na(+) and Cu transport. Cu uptake was sensitive to luminal pH and inhibited by a tenfold excess of Fe and Zn. These factors had no effect on Na(+ )uptake. On the basis of these results we propose a novel Na(+)-assisted mechanism of Cu uptake wherein the Na(+) gradient stimulates an increase in the H(+) concentration of the brushborder creating a suitable microenvironment for the effective transport of Cu via either DMT1 or Ctr1.

  13. Increment of root membrane permeability caused by microcystins result in more elements uptake in rice (Oryza sativa).

    PubMed

    Cao, Qing; Steinman, Alan D; Yao, Lei; Xie, Liqiang

    2017-11-01

    We conducted an indoor culture experiment to evaluate the phytotoxic effect of microcystins (MCs) on rice. After a 30day exposure, MCs induced a clear inhibition in rice growth, as well as a disruption of its antioxidant system and lipid peroxidation. We observed an increase in root membrane permeability; the conductivity of the leakage solution of the roots at 50 and 500μgL -1 was significantly increased by 77% and 136%, respectively, compared to the control. Uptake of microelements (Fe, Mn, Cu and Zn) was generally not affected after the 30day exposure to MCs. In contrast, uptake of macroelements, with the exception of K, was stimulated by MCs. Ca content in roots exposed to 500μgL -1 showed the greatest increase, by 47%, compared to the control. We propose the following mechanisms to explain our experimental results: exposure of rice roots to MCs leads to root damage and loss of membrane integrity, resulting in greater permeability and uptake of elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mechanisms of zinc transport into pig small intestine brush-border membrane vesicles.

    PubMed Central

    Tacnet, F; Lauthier, F; Ripoche, P

    1993-01-01

    1. The purpose of the present work was to examine certain membrane transport mechanisms likely to carry zinc across the brush-border membrane of pig small intestine, isolated in a vesicular form. 2. In initial velocity conditions, saturation kinetics revealed a great effect of pH on zinc transport: optimal conditions were observed with an intravesicular pH of around 6.6 with or without a H+ gradient; however, this did not allow us to conclude the existence of a neutral exchange between Zn2+ and H+ ions. 3. By measuring 36Cl uptakes, the presence of the Cl(-)-HCO3- or Cl(-)-OH-antiporter with typical 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) sensitivity was detected in vesicles; zinc did not alter this anionic exchange activity. A 65Zn time course, performed in conditions identical with those for 36Cl uptake, was DIDS insensitive and was greatly inhibited by an outward OH- gradient. This could argue against a transport of zinc as a complex with Cl- and HCO3- through the anion antiporter. 4. When external Cl- and HCO3- were replaced by SCN-, able to form a Zn(SCN)4(2-) complex, we observed a stimulating effect of outward HCO3- gradients on 65Zn uptake but neither DIDS nor diphenylamine-2-carboxylate (DPC) inhibited the transport in these conditions. This suggested that the intestinal anion antiporter was not a major route for zinc reabsorption. 5. The tripeptide Gly-Gly-His at low concentrations stimulated 65Zn uptake, then inhibited it in a dose-dependent manner either in the presence of an inward H+ gradient or in the presence of a membrane potential 'negative inside' or in both situations. These conditions are necessary for the active transport of the peptide and this strongly suggests that zinc can be transported as a [Gly-Gly-His-Zn] complex, utilizing the peptide carrier system. PMID:8229851

  15. Novel theranostic zinc phthalocyanine-phospholipid complex self-assembled nanoparticles for imaging-guided targeted photodynamic treatment with controllable ROS production and shape-assisted enhanced cellular uptake.

    PubMed

    Ma, Jinyuan; Li, Yang; Liu, Guihua; Li, Ai; Chen, Yilin; Zhou, Xinyi; Chen, Dengyue; Hou, Zhenqing; Zhu, Xuan

    2018-02-01

    The novel drug delivery system based on self-assembly of zinc phthalocyanine-soybean phosphatidylcholine (ZnPc-SPC) complex was developed by a co-solvent method followed by a nanoprecipitaion technique. DSPE-PEG-methotrexate (DSPE-PEG-MTX) was introduced on the surface of ZnPc-SPC self-assembled nanoparticles (ZS) to endow them with folate receptor-targeting property. NMR, XRD, FTIR, and UV-vis-NIR analysis demonstrated the weak molecular interaction between ZnPc and SPC. The ZS functionalized with DSPE-PEG-MTX (ZSPM) was successfully constructed with an average particle size of ∼170nm, a narrow size distribution, and could remain physiologically stable for at least 7days. In vitro cellular uptake and cytotoxicity studies demonstrated that ZSPM exhibited stronger cellular uptake efficacy and photodynamic cytotoxicity against HeLa and MCF-7 cells than ZS functionalized with DSPE-mPEG (ZSP) and free ZnPc. More importantly, ZSPM showed the enhanced accumulation effect at the tumor region compared with ZSP by the active-plus-passive targeting via enhanced permeability and retention (EPR) effect and folate receptor-mediated endocytosis. Furthermore, in vivo antitumor effect and histological analysis demonstrated the superior tumor growth inhibition effect of ZSPM. In addition, the needle-shape ZSP (ZSPN) exhibited better in vitro cellular uptake and in vivo tumor accumulation compared with ZSP due to the shape-assisted effect. Moreover, the interesting off-on switch effect of reactive oxygen species (ROS) production of ZnPc-SPC complex-based nanoparticles was discovered to achieve photodynamic treatment in a controllable way. These findings suggested that the ZnPc-SPC complex-based self-assembled nanoparticles could serve as a promising and effective formulation to achieve tumor-targeting fluorescence imaging and enhanced photodynamic treatment. Copyright © 2017. Published by Elsevier B.V.

  16. The Molecular Basis of Inactivation of Metronidazole-Resistant Helicobacter pylori Using Polyethyleneimine Functionalized Zinc Oxide Nanoparticles

    PubMed Central

    Chowdhury, Rukhsana; Chakrabarti, Pinak

    2013-01-01

    In view of the world wide prevalence of Helicobacter pylori infection, its potentially serious consequences, and the increasing emergence of antibiotic resistant H. pylori strains there is an urgent need for the development of alternative strategies to combat the infection. In this study it has been demonstrated that polyethyleneimine (PEI) functionalized zinc oxide (ZnO) nanoparticles (NPs) inhibit the growth of a metronidazole-resistant strain of H. pylori and the molecular basis of the anti-bacterial activity of ZnO-PEI NP has been investigated. The ZnO-PEI NP was synthesized using a wet chemical method with a core size of approximately 3–7 nm. Internalization and distribution of ZnO-PEI NP without agglomeration was observed in H. pylori cytosol by electron microscopy. Several lines of evidence including scanning electron microscopy, propidium iodide uptake and ATP assay indicate severe membrane damage in ZnO-PEI NP treated H. pylori. Intracellular ROS generation increased rapidly following the treatment of H. pylori with ZnO-PEI NP and extensive degradation of 16S and 23S rRNA was observed by quantitative reverse-transcriptase PCR. Finally, considerable synergy between ZnO-PEI NP and antibiotics was observed and it has been demonstrated that the concentration of ZnO-PEI NP (20 µg/ml) that is non-toxic to human cells could be used in combination with sub-inhibitory concentrations of antibiotics for the inhibition of H. pylori growth. PMID:23951006

  17. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  18. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  19. Application of 67Cu Produced by 68Zn(n,n'p+d)67Cu to Biodistribution Study in Tumor-Bearing Mice

    NASA Astrophysics Data System (ADS)

    Sugo, Yumi; Hashimoto, Kazuyuki; Kawabata, Masako; Saeki, Hideya; Sato, Shunichi; Tsukada, Kazuaki; Nagai, Yasuki

    2017-02-01

    67Cu produced by the 68Zn(n,n'p+d)67Cu reaction was used for the first time to determine the biodistribution of 67CuCl2 in colorectal tumor-bearing mice. A high uptake of 67Cu was observed in the tumor as well as in the liver and kidney, which are the major organs for copper metabolism. The result showing 67Cu accumulation in the tumor suggests that 67CuCl2 can be a potential radionuclide agent for cancer radiotherapy. It should also encourage further studies on the therapeutic effect on small animals using an increased dose of 67Cu produced by the 68Zn(n,n'p+d)67Cu reaction using presently available intense neutrons.

  20. Zinc stress affects ionome and metabolome in tea plants.

    PubMed

    Zhang, Yinfei; Wang, Yu; Ding, Zhaotang; Wang, Hui; Song, Lubin; Jia, Sisi; Ma, Dexin

    2017-02-01

    The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD + degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Effects on the accumulation of calcium, magnesium, iron, manganese, copper and zinc of adding the two inorganic forms of selenium to solution cultures of Zea mays.

    PubMed

    Longchamp, M; Angeli, N; Castrec-Rouelle, M

    2016-01-01

    The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances. Copyright © 2014. Published by Elsevier Ltd.

  3. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna.

    PubMed

    Muyssen, Brita T A; De Schamphelaere, Karel A C; Janssen, Colin R

    2006-05-25

    In order to gain better insights in the integrated response of Daphnia magna following chronic zinc exposure, several physiological parameters were measured in a time-dependent manner. D. magna juveniles were exposed for 21 days to dissolved Zn concentrations up to 340 microg/L. Next to standard endpoints such as mortality, growth and reproduction the following sub-lethal endpoints were measured: filtration and ingestion rate, respiration rate, energy reserves, internal Zn and total Ca concentrations in the organisms. Organisms exposed to 80 microg/L generally performed better than the Zn deprived control organisms. The former were used to elucidate the effects of higher Zn concentrations on the endpoints mentioned above. After 1 week, only 7% of the organisms exposed to 340 microg/L survived. Body Zn contents of these organisms were 281 +/- 76 microg g dry weight and a 37% decrease of the Ca contents was observed. This suggests a competitive effect of Zn on Ca uptake. Filtration rate (-51%), individual weight (-58%) and energy reserves (-35%) also exhibited a decreasing trend as a function of increasing Zn exposure concentrations. During the second and third exposure week an overall repair process was observed. In the surviving organisms mortality and reproduction were only slightly affected. This can be explained by (over)compensation reactions at lower levels of biological organisation: Ca contents (+24%) and filtration rate (+90%) increased as a function of the exposure concentration while respiration rate decreased (-29%) resulting in energy reserves remaining constant as a function of Zn exposure. It is hypothesized that a disturbed Ca balance is probably the first cause for zinc toxicity effects in D. magna.

  4. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    PubMed

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A

    1980-01-01

    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  5. Fate and effect of tire rubber ash nano-particles (RANPs) in cucumber.

    PubMed

    Moghaddasi, Sahar; Hossein Khoshgoftarmanesh, Amir; Karimzadeh, Fatholah; Chaney, Rufus

    2015-05-01

    There are growing interests on effects of nano-materials on living organisms including higher plants. No report is available on positive and negative effects of rubber ash nano-particles (RANPs) on edible plants. Recently, we reported the possibility of using waste tire rubber and rubber ash as zinc (Zn) fertilizer for plants. In this nutrient solution culture study, for the first time, root uptake and the effects of RANPs on growth and Zn, cadmium (Cd), and lead (Pb) concentration in cucumber was investigated. Various Zn levels (0, 1, 5, 25, 125mgL(-1)) were applied in the form of RANPs or ZnSO4. The root RANPs uptake was visualized by light (LA), scanning electron (SEM), and transmission electron microcopies (TEM). At all Zn levels, cucumber plants supplied with RANPs produced higher shoot and root biomass compared with those supplied with ZnSO4. In addition, the RANPs resulted in higher accumulation of Zn in cucumber tissues in comparison with ZnSO4; although phytotoxicity of Zn from ZnSO4 was greater than that from RANPs. Clear evidence of the RANPs penetration into the root cells was obtained by using SEM and TEM. Filaments of RANPs were also observed at the end of roots by LM and TEM. Further research is needed to clarify the fate of the RANPs in plant cells and their possible risks for food chain. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming.

    PubMed

    Hong, Chang Oh; Gutierrez, Jessie; Yun, Sung Wook; Lee, Yong Bok; Yu, Chan; Kim, Pil Joo

    2009-02-01

    The heavy metal contamination in soils and cultivated corn plants affected by zinc smelting activities in the vicinity of a zinc smelting factory in Korea was studied. Soils and corn plants were sampled at the harvesting stage and analyzed for cadmium (Cd) and zinc (Zn) concentration, as well as Cd and Zn fraction and other chemical properties of soils. Cd and Zn were highly accumulated in the surface soils (0-20 cm), at levels higher than the Korean warning criteria (Cd, 1.5; Zn, 300 mg kg(-1)), with corresponding mean values of 1.7 and 407 mg kg(-1), respectively, but these metals decreased significantly with increasing soil depth and distance from the factory, implying that contaminants may come from the factory through aerosol dynamics (Hong et al., Kor J Environ Agr 26(3):204-209, 2007a; Environ Contam Toxicol 52:496-502, 2007b) and not from geological sources. The leaf part had higher Cd and Zn concentrations, with values of 9.5 and 1733 mg kg(-1), compared to the stem (1.6 and 547 mg kg(-1)) and grain (0.18 and 61 mg kg(-1)) parts, respectively. Cd and Zn were higher in the oxidizable fraction, at 38.5% and 46.9% of the total Cd (2.6 mg kg(-1)) and Zn (407 mg kg(-1)), but the exchangeable + acidic fraction of Cd and Zn as the bioavailable phases was low, 0.2 and 50 mg kg(-1), respectively. To study the reduction of plant Cd and Zn uptake by liming, radish (Raphanus sativa L.) was cultivated in one representative field among the sites investigated, and Ca(OH)(2) was applied at rates of 0, 2, 4, and 8 mg ha(-1). Plant Cd and Zn concentrations and NH(4)OAc extractable Cd and Zn concentrations of soil decreased significantly with increasing Ca(OH)(2) rate, since it markedly increases the cation exchange capacity of soil induced by increased pH. As a result, liming in this kind of soil could be an effective countermeasure in reducing the phytoextractability of Cd and Zn.

  7. Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice.

    PubMed

    Fadel, Maha; Kassab, Kawser; Fadeel, Doa Abdel

    2010-03-01

    Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.

  8. Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil.

    PubMed

    Luo, Y M; Christie, P; Baker, A J

    2000-07-01

    Temporal changes in soil solution properties and metal speciation were studied in non-rhizosphere soil and in the rhizosphere of the hyperaccumulator Thlaspi caerulescens J. & C. Presl (population from Prayon, Belgium) grown in a Zn- and Cd-contaminated soil. This paper focuses on soil solution Zn and pH dynamics during phytoextraction. The concentration of Zn in both non-rhizosphere and rhizosphere soil solutions decreased from 23 mg/l at the beginning to 2 mg/l at the end of the experiment (84 days after transplanting of seedlings), mainly due to chemical sorption. There was no significant difference in overall Zn concentration between the planted and the unplanted soil solutions (P > 0.05). Soil solution pH decreased initially and then increased slightly in both planted and unplanted soil zones. From 60 to 84 days after transplanting, the pH of the rhizosphere soil solution was higher than that of non-rhizosphere soil solution (P<0.05). Zn uptake by the hyperaccumulator plants was 8.8 mg per pot (each containing 1 kg oven-dry soil) on average. The data indicate that the potential of T. caerulescens to remove Zn from contaminated soil may not be related to acidification of the rhizosphere.

  9. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Markovic, Tamara; Kirk, Guy J. D.; Schönbächler, Maria; Rehkämper, Mark; Zhao, Fangjie J.; Weiss, Dominik J.

    2015-11-01

    Stable isotope fractionation is emerging quickly as a powerful novel technique to study metal uptake and translocation in plants. Fundamental to this development is a thorough understanding of the processes that lead to isotope fractionation under differing environmental conditions. In this study, we investigated Zn and Fe isotope fractionation in rice grown to maturity in anaerobic and aerobic soils under greenhouse conditions. The overall Zn isotope fractionation between the soil and above ground plant material was negligible in aerobic soil but significant in anaerobic soil with isotopically lighter Zn in the rice plant. The observed range of fractionation is in line with previously determined fractionations of Zn in rice grown in hydroponic solutions and submerged soils and emphasizes the effect of taking up different chemical forms of Zn, most likely free and organically complexed Zn. The Zn in the grain was isotopically lighter than in the rest of the above ground plant in rice grown in aerobic and anaerobic soils alike. This suggests that in the course of the grain loading and during the translocation within the plant important biochemical and/or biophysical processes occur. The isotope fractionation observed in the grains would be consistent with an unidirectional controlled transport from shoot to grain with a fractionation factor of α ≈ 0.9994. Iron isotopes showed an isotopic lighter signature in shoot and grain compared to the bulk soil or the leachate in aerobic and anaerobic soils alike. The negative direction of isotopic fractionation is consistent with possible changes in the redox state of Fe occurring during the uptake and translocation processes. The isotope fractionation pattern between shoots and grain material are different for Zn and Fe which finally suggests that different mechanisms operate during translocation and grain-loading in rice for these two key micronutrients.

  10. The Yersinia pestis Siderophore, Yersiniabactin, and the ZnuABC system both contribute to Zinc acquisition and the development of lethal septicemic plague in mice

    PubMed Central

    Bobrov, Alexander G.; Kirillina, Olga; Fetherston, Jacqueline D.; Miller, M. Clarke; Burlison, Joseph A.; Perry, Robert D.

    2014-01-01

    Summary Bacterial pathogens must overcome host sequestration of zinc (Zn2+), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn2+ by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn2+-deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn2+ acquisition. Studies with the Zn2+-dependent transcriptional reporter znuA∷lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn2+. However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, that are required for Fe3+ acquisition by Ybt, are not needed for Ybt-dependent Zn2+ uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn2+ uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicemic plague mouse model. PMID:24979062

  11. Accumulation and Toxicity of CuO and ZnO Nanoparticles through Waterborne and Dietary Exposure of Goldfish (Carassius auratus)

    PubMed Central

    Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O.

    2014-01-01

    Dietary and waterborne exposure to CuO and ZnO nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a tenfold higher accumulation in the intestine. The heart, brain and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p≥0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p<0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. PMID:24860999

  12. Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus).

    PubMed

    Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O

    2015-01-01

    Dietary and waterborne exposure to copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects, and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a 10-fold higher accumulation in the intestine. The heart, brain, and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p ≥ 0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p < 0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. © 2014 Wiley Periodicals, Inc.

  13. Description of two-metal biosorption equilibria by Langmuir-type models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.H.; Volesky, B.

    A biosorbent prepared from Ascophyllum nodosum seaweed biomass, FCAN2, was examined for its sorption capacity. Equilibrium batch sorption studies were performed using two-metal systems containing either (Cu+Zn), (Cu+Cd), or (Zn+Cd). In the evaluation of the two-metal sorption system performance, simple isotherm curves had to be replaced by three-dimensional sorption isotherm surfaces. In order to describe the isotherm surfaces mathematically, three Langmuir-type models were evaluated. The apparent one-parameter Langmuir constant (b) was used to quantify FCAN2 ``affinity`` for one metal in the presence of another one. The uptake of Zn decreased drastically when Cu of Cd were present. The uptake ofmore » Cd was much more sensitive to the presence of Cu than to that of Zn. The presence of Cd and Zn alter the ``affinity`` of FCAN2 for Cu the least at high Cu equilibrium concentrations. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal (bio)sorption inhibition due to the influence of a second metal.« less

  14. Calcium deficiency and CaCO/sub 3/ on micronutrient status of plants grown in solution culture. [Lycopersicon esculentum, Phaseolus vulgaris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, A.; Cha, J.W.; Alexander, G.V.

    Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO/sub 3/ which increased pH did not influence the trace metal concentrations of plants any more than did Ca/sup + +/. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Camore » (10/sup -4/, 10/sup -2/, 10/sup -2/N) and Ni (0, 2 x 10/sup -6/ M, 2 x 10/sup -5/ M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.« less

  15. The Effects of Nitrogen Addition on the Uptake and Allocation of Macro- and Micronutrients in Bothriochloa ischaemum on Loess Plateau in China

    PubMed Central

    Ai, Zemin; Wang, Guoliang; Liang, Chutao; Liu, Hongfei; Zhang, Jiaoyang; Xue, Sha; Liu, Guobin

    2017-01-01

    The effects of nitrogen (N) addition on the macro- and micronutrient concentrations, storage, and allocation of Bothriochloa ischaemum (L.) Keng, a native forage plant on the Loess Plateau in China remain unclear. We studied the effects of N addition at 0 (CK), 2.5 (N1), 5.0 (N2), and 10.0 (N3) g N m-2 y-1. N addition significantly decreased the available copper (Cu), zinc (Zn), and total Cu concentration, but significantly increased the available iron concentration in the soil. Cu, manganese (Mn), and sodium (Na) concentrations in aboveground tissues and potassium (K), magnesium, and Zn concentrations in belowground tissues significantly increased with N addition. Calcium (Ca) concentrations in belowground tissues decreased significantly. The ratios of above- to belowground Ca, Cu, Zn, and Mn significantly increased with N addition. The maximum ratios appeared at N2 for Cu, Zn, and Mn. The aboveground, belowground, and total biomass storage of studied nutrients significantly changed with N addition, and most attained maximum values under N2 treatment. The storage ratios of above- to belowground Cu, Zn, Mn, and Na attained maximum values at N2. We conclude that N addition significantly, but differentially influence the macro- and micronutrient concentrations and storage in B. ischaemum. B. ischaemum allocated and accumulated increased macro- and micronutrients to its aboveground tissues and exhibited high total storage when the amount of N addition reached 5 g N m-2 y-1. PMID:28970839

  16. The Effects of Nitrogen Addition on the Uptake and Allocation of Macro- and Micronutrients in Bothriochloa ischaemum on Loess Plateau in China.

    PubMed

    Ai, Zemin; Wang, Guoliang; Liang, Chutao; Liu, Hongfei; Zhang, Jiaoyang; Xue, Sha; Liu, Guobin

    2017-01-01

    The effects of nitrogen (N) addition on the macro- and micronutrient concentrations, storage, and allocation of Bothriochloa ischaemum (L.) Keng, a native forage plant on the Loess Plateau in China remain unclear. We studied the effects of N addition at 0 (CK), 2.5 (N1), 5.0 (N2), and 10.0 (N3) g N m -2 y -1 . N addition significantly decreased the available copper (Cu), zinc (Zn), and total Cu concentration, but significantly increased the available iron concentration in the soil. Cu, manganese (Mn), and sodium (Na) concentrations in aboveground tissues and potassium (K), magnesium, and Zn concentrations in belowground tissues significantly increased with N addition. Calcium (Ca) concentrations in belowground tissues decreased significantly. The ratios of above- to belowground Ca, Cu, Zn, and Mn significantly increased with N addition. The maximum ratios appeared at N2 for Cu, Zn, and Mn. The aboveground, belowground, and total biomass storage of studied nutrients significantly changed with N addition, and most attained maximum values under N2 treatment. The storage ratios of above- to belowground Cu, Zn, Mn, and Na attained maximum values at N2. We conclude that N addition significantly, but differentially influence the macro- and micronutrient concentrations and storage in B. ischaemum . B. ischaemum allocated and accumulated increased macro- and micronutrients to its aboveground tissues and exhibited high total storage when the amount of N addition reached 5 g N m -2 y -1 .

  17. Bioavailability of zinc, copper, and manganese from infant diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less

  18. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous 'Ganges' in field trials.

    PubMed

    Jacobs, Arnaud; Drouet, Thomas; Sterckeman, Thibault; Noret, Nausicaa

    2017-03-01

    Urban soil contamination with trace metals is a major obstacle to the development of urban agriculture as crops grown in urban gardens are prone to accumulate trace metals up to toxic levels for human consumption. Phytoextraction is considered as a potentially cost-effective alternative to conventional methods such as excavation. Field trials of phytoextraction with Noccaea caerulescens were conducted on urban soils contaminated with Cd, Cu, Pb, and Zn (respectively around 2, 150-200, 400-500, and 400-700 μg g -1 of dry soil). Metallicolous (Ganges population) and non-metallicolous (NMET) populations were compared for biomass production and trace metal uptake. Moreover, we tested the effect of compost and fertilizer addition. Maximal biomass of 5 t ha -1 was obtained with NMET populations on some plots. Compared to Ganges- the high Cd-accumulating ecotype from South of France often used in phytoextraction trials- NMET populations have an advantage for biomass production and for Zn accumulation, with an average Zn uptake of 2.5 times higher. The addition of compost seems detrimental due to metal immobilization in the soil with little or no effect on plant growth. In addition to differences between populations, variations of growth and metal accumulation were mostly explained by soil Cd and Zn concentrations and texture. Our field trials confirm the potential of using N. caerulescens for both Cd and Zn remediation of moderately contaminated soils-with uptake values of up to 200 g Cd ha -1 and 47 kg Zn ha -1 -and show the interest of selecting the adequate population according to the targeted metal.

  20. Nanocarrier-mediated foliar zinc fertilization influences expression of metal homeostasis related genes in flag leaves and enhances gluten content in durum wheat.

    PubMed

    Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika

    2018-01-01

    Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.

  1. Effects of chemical elements in the trophic levels of natural salt marshes.

    PubMed

    Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina

    2016-06-01

    The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.

  2. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 dmore » in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.« less

  3. Antiproliferative effects of ZnO, ZnO-MTCP, and ZnO-CuMTCP nanoparticles with safe intensity UV and X-ray irradiation

    PubMed Central

    Sadjadpour, Susan; Safarian, Shahrokh; Zargar, Seyed Jalal; Sheibani, Nader

    2016-01-01

    In photodynamic therapy (PDT) of cancer both the light and the photosensitizing agent are normally harmless, but in combination they could result in selective tumor killing. Zinc oxide nanoparticles were synthesized and coated with the amino acid cysteine to provide an adequate arm for conjugation with porphyrin photosensitizers (meso-tetra (4-carboxyphenyl) porphyrin [MTCP] and CuMTCP). Porphyrin-conjugated nanoparticles were characterized by TEM, FTIR, and UV–vis, and fluorescence spectrophotometry. The 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay was used to measure cell viability in the presence or absence of porphyrin conjugates following UV and X-ray irradiation. The uptake of the porphyrin-conjugated ZnO nanoparticles by cells was detected using fluorescence microscopy. Our results indicated that the survival of T-47D cells was significantly compromised in the presence of ZnO-MTCP-conjugated nanostructures with UV light exposure. Exhibition of cytotoxic activity of ZnO-MTCP for human prostate cancer (Du145) cells occurred at a higher concentration, indicating the more resistant nature of these tumor cells. ZnO-CuMTCP showed milder cytotoxic effects in human breast cancer (T-47D) and no cytotoxic effects in Du145 with UV light exposure, consistent with its lower cytotoxic potency as well as cellular uptake. Surprisingly, none of the ZnO-porphyrin conjugates exhibited cytotoxic effects with X-ray irradiation, whereas ZnO alone exerted cytotoxicity. Thus, ZnO and ZnO-porphyrin nanoparticles with UV or X-ray irradiation may provide a suitable treatment option for various cancers. PMID:25581219

  4. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    NASA Astrophysics Data System (ADS)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  5. Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer.

    PubMed

    Yadav, Santosh Kumar; Juwarkar, Asha A; Kumar, G Phani; Thawale, Prashant R; Singh, Sanjeev K; Chakrabarti, Tapan

    2009-10-01

    The present study was planned to remediate the metalloid and metal contaminated soil by using non-edible and economic plant species Jatropha curcas L. The experiment was conducted on pots to improve the survival rate, metal tolerance and growth response of the plant on soil; having different concentrations of arsenic, chromium and zinc. The soil was amended with dairy sludge and bacterial inoculum (Azotobacter chroococcum) as biofertilizer. The results of the study showed that the bioaccumulation potential was increased with increase in metalloid and metal concentration in soil system. Application of dairy sludge significantly reduces the DTPA-extractable As, Cr and Zn concentration in soil. The application of organic amendment stabilizes the As, Cr and Zn and reduced their uptake in plant tissues.

  6. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster

    PubMed Central

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers. PMID:28280330

  7. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster.

    PubMed

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster . A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript ( DDIT3 ) and endoplasmic reticulum (ER) to nucleus signaling 1 ( ERN1 ) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be needed to verify the safety issues related to increased usage of ZnO NPs by consumers.

  8. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    PubMed

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impacts of weathered tire debris on the development of Rana sylvatica larvae

    USGS Publications Warehouse

    Camponelli, K.M.; Casey, R.E.; Snodgrass, J.W.; Lev, S.M.; Landa, E.R.

    2009-01-01

    Highway runoff has the potential to negatively impact receiving systems including stormwater retention ponds where highway particulate matter can accumulate following runoff events. Tire wear particles, which contain about 1% Zn by mass, make up approximately one-third of the vehicle derived particulates in highway runoff and therefore may serve as a stressor to organisms utilizing retention ponds as habitat. In this study, we focused on the potential contribution of tire debris to Zn accumulation by Rana sylvatica larvae and possible lethal or sublethal impacts resulting from exposure to weathered tire debris during development. Eggs and larvae were exposed to aged sediments (containing either ZnCl2 or tire particulate matter, both providing nominal concentrations of 1000 mg Zn kg-1) through metamorphosis. Water column Zn was elevated in both the ZnCl2 and tire treatments relative to the control treatment, indicating that aging allowed Zn leaching from tire debris to occur. Tissue Zn was also elevated for the ZnCl2 and tire treatments indicating that Zn in the treatments was available for uptake by the amphibians. Exposure to both ZnCl2 and tire treatments increased the time for larvae to complete metamorphosis in comparison with controls. We also observed that the longer the organisms took to complete metamorphosis, the smaller their mass at metamorphosis. Our results indicate that Zn leached from aged tire debris is bioavailable to developing R. sylvatica larvae and that exposure to tire debris amended sediments can result in measurable physiological outcomes to wood frogs that may influence population dynamics. ?? 2008 Elsevier Ltd.

  10. Phytotoxic effects of Cu and Zn on soybeans grown in field-aged soils: their additive and interactive actions.

    PubMed

    Kim, Bojeong; McBride, Murray B

    2009-01-01

    A field pot experiment was conducted to investigate the interactive phytotoxicity of soil Cu and Zn on soybean plants [Glycine max (L.) Merr.]. Two soils (Arkport sandy loam [coarse-loamy, mixed, active, mesic Lamellic Hapludalf] and Hudson silty clay loam [fine, illitic, mesic Glossaquic Hapludalf]) spiked with Cu, Zn, and combinations of both to reach the final soil metal range of 0 to 400 mg kg(-1) were tested in a 2-yr bioassay after 1 yr of soil-metal equilibration in the field. The soluble and easily-extractable fraction of soil Zn (or Cu), estimated by dilute CaCl2, increased linearly in response to the total Zn (or Cu) added. This linearity was, however, strongly affected where soils were treated with both metals in combination, most notably for Zn, as approximately 50% more of soil Zn was extracted into solution when the Cu level was high. Consequently, added Zn is less likely to be stabilized by aging than added Cu when both metals are present in field soils. The predictive model relating soil metal extractability to plant Zn concentration also revealed a significant Cu-Zn interaction. By contrast, the interaction between the two metals contributed little to explain plant Cu uptake. The additive action of soil Cu and Zn was of considerable importance in explaining plant biomass reduction. This work clearly demonstrates the critical roles of the properties of the soil, the nature of the metal, and the level of other toxic metals present on the development of differential phytotoxicity due to soil Cu and Zn.

  11. Impacts of weathered tire debris on the development of Rana sylvatica larvae.

    PubMed

    Camponelli, Kimberly M; Casey, Ryan E; Snodgrass, Joel W; Lev, Steven M; Landa, Edward R

    2009-02-01

    Highway runoff has the potential to negatively impact receiving systems including stormwater retention ponds where highway particulate matter can accumulate following runoff events. Tire wear particles, which contain about 1% Zn by mass, make up approximately one-third of the vehicle derived particulates in highway runoff and therefore may serve as a stressor to organisms utilizing retention ponds as habitat. In this study, we focused on the potential contribution of tire debris to Zn accumulation by Rana sylvatica larvae and possible lethal or sublethal impacts resulting from exposure to weathered tire debris during development. Eggs and larvae were exposed to aged sediments (containing either ZnCl2 or tire particulate matter, both providing nominal concentrations of 1000 mg Zn kg(-1)) through metamorphosis. Water column Zn was elevated in both the ZnCl2 and tire treatments relative to the control treatment, indicating that aging allowed Zn leaching from tire debris to occur. Tissue Zn was also elevated for the ZnCl2 and tire treatments indicating that Zn in the treatments was available for uptake by the amphibians. Exposure to both ZnCl2 and tire treatments increased the time for larvae to complete metamorphosis in comparison with controls. We also observed that the longer the organisms took to complete metamorphosis, the smaller their mass at metamorphosis. Our results indicate that Zn leached from aged tire debris is bioavailable to developing R. sylvatica larvae and that exposure to tire debris amended sediments can result in measurable physiological outcomes to wood frogs that may influence population dynamics.

  12. [Speciation Characteristics and Bioavailability of Heavy Metals in Oasis Soil Under Pb, Zn Combined Stress].

    PubMed

    Jin, Cheng; Zhao, Zhuan-jun; Nan, Zhong-ren; Wang, Sheng-li; Wu, Wen-fei; Wang, Hou-cheng

    2015-05-01

    Pot experiments were conducted on cole (Brassica) grown in oasis soil under combined stress of lead and zinc, to study the effect of heavy metal combined pollution on cole growth as well as the speciation conversion rules and bioavailability. The result showed that the promoting effect on cole growth was shown in the low concentration treatments, especially on stem leaves. With addition of exotic heavy metals, the main speciations of Pb and Zn in the soil transformed from tight-bound to loose-bound forms as compared to the control, and the bioavailability of heavy metals was increased. And, the exchangeable Pb and the carbonate bound form of Zn were the major contributing speciations which were absorbed in different parts of cole. What's more, the capabilities of uptake and translocation of Pb and Zn by cole were stronger at lower stress levels, and the enrichment and migration coefficients decreased with the increasing content of bioavailable fraction of the corresponding element or the coexisting element. In all treatments, the Pb concentration in the stem leaves of cole exceeded the food safety threshold, therefore it is recommended to conduct detection of relevant indicators before planting foliage vegetables in this kind of soil.

  13. Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus.

    PubMed

    Barata, Carlos; Markich, Scott J; Baird, Donald J; Taylor, Graeme; Soares, Amadeu M V M

    2002-10-02

    To date, studies on genetic variability in the tolerance of aquatic biota to chemicals have focused on exposure to single chemicals. In the field, metals occur as elemental mixtures, and thus it is essential to study whether the genetic consequences of exposure to such mixtures differs from response to single chemicals. This study determined the feeding responses of three Daphnia magna Straus clones exposed to Cd and Zn, both individually and as mixtures. Tolerance to mixtures of Cd and Zn was expressed as the proportional feeding depression of D. magna to Cd at increasing zinc concentrations. A quantitative genetic analysis revealed that genotype and genotype x environmental factors governed population responses to mixtures of both metals. More specifically, genetic variation in tolerance to sublethal levels of Cd decreased at those Zn concentrations where there were no effects on feeding, and increased again at Zn concentrations that affected feeding. The existence of genotype x environmental interactions indicated that the genetic consequences of exposing D. magna to mixtures of Cd and Zn cannot be predicted from the animals' response to single metals alone. Therefore, current ecological risk assessment methodologies for predicting the effects of chemical mixtures may wish to incorporate the concept of genetic variability. Furthermore, exposure to low and moderate concentrations of Zn increased the sublethal tolerance to Cd. This induction of tolerance to Cd by Zn was also observed for D. magna fed algae pre-loaded with both metals. Furthermore, in only one clone, physiological acclimatization to zinc also induced tolerance to cadmium. These results suggest that the feeding responses of D. magna may be related to gut poisoning induced by the release of metals from algae under low pH conditions. In particular, both induction of metallothionein synthesis by Zn and competition between Zn and Cd ions for uptake at target sites on the gut wall may be involved in determining sublethal responses to mixtures of both metals.

  14. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice.

    PubMed

    Bobrov, Alexander G; Kirillina, Olga; Fetherston, Jacqueline D; Miller, M Clarke; Burlison, Joseph A; Perry, Robert D

    2014-08-01

    Bacterial pathogens must overcome host sequestration of zinc (Zn(2+) ), an essential micronutrient, during the infectious disease process. While the mechanisms to acquire chelated Zn(2+) by bacteria are largely undefined, many pathogens rely upon the ZnuABC family of ABC transporters. Here we show that in Yersinia pestis, irp2, a gene encoding the synthetase (HMWP2) for the siderophore yersiniabactin (Ybt) is required for growth under Zn(2+) -deficient conditions in a strain lacking ZnuABC. Moreover, growth stimulation with exogenous, purified apo-Ybt provides evidence that Ybt may serve as a zincophore for Zn(2+) acquisition. Studies with the Zn(2+) -dependent transcriptional reporter znuA::lacZ indicate that the ability to synthesize Ybt affects the levels of intracellular Zn(2+) . However, the outer membrane receptor Psn and TonB as well as the inner membrane (IM) ABC transporter YbtPQ, which are required for Fe(3+) acquisition by Ybt, are not needed for Ybt-dependent Zn(2+) uptake. In contrast, the predicted IM protein YbtX, a member of the Major Facilitator Superfamily, was essential for Ybt-dependent Zn(2+) uptake. Finally, we show that the ZnuABC system and the Ybt synthetase HMWP2, presumably by Ybt synthesis, both contribute to the development of a lethal infection in a septicaemic plague mouse model. © 2014 John Wiley & Sons Ltd.

  15. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.

    PubMed

    Hu, Xiang; Wang, Qian; Liu, Yang; Liu, Hongguang; Qin, Chunxia; Cheng, Kai; Robinson, William; Gray, Brian D; Pak, Koon Y; Yu, Aixi; Cheng, Zhen

    2014-08-01

    Articular cartilage is the hydrated tissue that lines the ends of long bones in load bearing joints and provides joints with a smooth, nearly frictionless gliding surface. However, the deterioration of articular cartilage occurs in the early stages of osteoarthritis (OA) and is clinically and radiographically silent. Here two cationic near infrared fluorescent (NIRF) dipicolylamine (DPA) probes, Cy5-DPA-Zn and Cy7-DPA-Zn, were prepared for cartilage degeneration imaging and OA early detection through binding to the anionic glycosaminoglycans (GAGs). The feasibility of NIRF dye labeled DPA-Zn probes for cartilage degeneration imaging was examined ex vivo and in vivo. The ex vivo studies showed that Cy5-DPA-Zn and Cy7-DPA-Zn not only showed the high uptake and electrostatic attractive binding to cartilage, but also sensitively reflected the change of GAGs contents. In vivo imaging study further indicated that Cy5-DPA-Zn demonstrated higher uptake and retention in young mice (high GAGs) than old mice (low GAGs) when administrated via local injection in mouse knee joints. More importantly, Cy5-DPA-Zn showed dramatic higher signals in sham joint (high GAGs) than OA side (low GAGs), through sensitive reflecting the change of GAGs in the surgical induced OA models. In summary, Cy5-DPA-Zn provides promising visual detection for early cartilage pathological degeneration in living subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix

    NASA Astrophysics Data System (ADS)

    Li, Lu; Zhou, Pin; Zhang, Hongbo; Meng, Xianglong; Li, Juexiu; Sun, Tonghua

    2017-06-01

    Rare earth oxides (RE = Ce, La, Sm and Gd) doped ZnO supported on KIT-6 sorbents (RE-ZnO/KIT-6) were synthesized by sol-gel method and their performance for deep removal of H2S (bellow 0.1 ppmv) from gas stream at medium temperature was tested. The RE dopants (except Ce) significantly enhance the deep desulfurization capacity of ZnO/KIT-6 sorbent and maintained higher sulfur uptake capacities upon multiple cycles of regeneration by a simple thermal oxidation in 10 v% of O2 in N2 atmosphere. The results of SAXS, XRD, N2 physisorption, TEM, FIIR, and XPS implied that the KIT-6 structure of loading metal oxides remained intact. It was found that RE could hinder the ZnO crystal ripening during calcination resulted in smaller ZnO particles, enhance the interaction of ZnO and silica matrix to improve the dispersion of active phase on KIT-6. Furthermore, by increasing the outlayer electron density of Zn atom and oxygen transfer ability, the synergistic effect considered to be favorable for RE-ZnO/KIT-6 sulfidation. Even though the performance of improving ZnO dispersion was weaker than that of Sm and Gd, La-ZnO/KIT-6 performs the best deep desulfurizers by changing the surface chemical atmosphere for ZnO. Steam in the gas stream inhibited the capture of H2S by ZnO in the sorbents, in the case of La-ZnO/KIT-6, the steam content should control as lower as 5 v% to ensure the desulfurization efficiency and precision.

  17. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Beesley, L

    2015-08-15

    Heavy metals in soil are naturally occurring but may be enhanced by anthropogenic activities such as mining. Bio-accumulation of heavy metals in the food chain, following their uptake to plants can increase the ecotoxicological risks associated with remediation of contaminated soils using plants. In the current experiment sugar cane straw-derived biochar (BC), produced at 700 °C, was applied to a heavy metal contaminated mine soil at 1.5%, 3.0% and 5.0% (w/w). Jack bean (Canavalia ensiformis) and Mucuna aterrima were grown in pots containing soil and biochar mixtures, and control pots without biochar. Pore water was sampled from each pot to confirm the effects of biochar on metal solubility, whilst soils were analyzed by DTPA extraction to confirm available metal concentrations. Leaves were sampled for SEM analysis to detect possible morphological and anatomical changes. The application of BC decreased the available concentrations of Cd, Pb and Zn in 56, 50 and 54% respectively, in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water (1st collect: 99 to 39 μg L(-1), 2nd: 97 to 57 μg L(-1) and 3rd: 71 to 12 μg L(-1)). The application of BC reduced the uptake of Cd, Pb and Zn by plants with the jack bean translocating high proportions of metals (especially Cd) to shoots. Metals were also taken up by Mucuna aterrima but translocation to shoot was more limited than for jack bean. There were no differences in the internal structures of leaves observed by scanning electron microscopy. This study indicates that biochar application during mine soil remediation reduce plant concentrations of potential toxic metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil.

    PubMed

    Hassan, Saad Eldin; Hijri, Mohamed; St-Arnaud, Marc

    2013-09-25

    Trace metal (TM) pollution of soil is a worldwide problem that threatens the quality of human and environmental health. Phytoremediation using plants and their associated microbes has been increasingly used as a green technology for cleaning up TM-polluted soils. In this study, we investigated the effect of inoculating two arbuscular mycorrhizal fungal isolates, Rhizophagus irregularis and Funneliformis mosseae, on trace metal uptake by sunflower plants grown in soils contaminated with three different Cd concentrations in a greenhouse trial. Root colonization, plant dry mass, and plant tissue cadmium (Cd), zinc (Zn), and copper (Cu) concentrations in roots and shoots were determined after sunflower harvesting. We found that root mycorrhizal colonization rates were not significantly affected by Cd treatments. At low soil Cd concentration, R. irregularis-inoculated plants had significantly higher shoot Cd and Zn concentrations than plants inoculated with F. mosseae and non-inoculated plants. However, at high soil Cd concentrations, F. mosseae-inoculated plants had significantly lower shoot Cd and Zn concentrations and biological concentration factor (BCF) values than plants inoculated with R. irregularis and non-inoculated plants. Cadmium was mainly translocated in shoot tissues of R. irregularis-inoculated plants and sequestered in the rhizosphere of F. mosseae-inoculated plants. The results indicate that these AMF strains mediate different tolerance strategies to alleviate TM toxicity in their host plants and that inoculation with the R. irregularis strain can be used for Cd phytoextraction, whereas this F. mosseae strain can be useful for Cd and Zn phytostabilization of contaminated soil. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Relationship between Heavy Metal Concentrations in Soils and Grasses of Roadside Farmland in Nepal

    PubMed Central

    Yan, Xuedong; Zhang, Fan; Zeng, Chen; Zhang, Man; Devkota, Lochan Prasad; Yao, Tandong

    2012-01-01

    Transportation activities can contribute to accumulation of heavy metals in roadside soil and grass, which could potentially compromise public health and the environment if the roadways cross farmland areas. Particularly, heavy metals may enter the food chain as a result of their uptake by roadside edible grasses. This research was conducted to investigate heavy metal (Cu, Zn, Cd, and Pb) concentrations in roadside farmland soils and corresponding grasses around Kathmandu, Nepal. Four factors were considered for the experimental design, including sample type, sampling location, roadside distance, and tree protection. A total of 60 grass samples and 60 topsoil samples were collected under dry weather conditions. The Multivariate Analysis of Variance (MANOVA) results indicate that the concentrations of Cu, Zn, and Pb in the soil samples are significantly higher than those in the grass samples; the concentrations of Cu and Pb in the suburban roadside farmland are higher than those in the rural mountainous roadside farmland; and the concentrations of Cu and Zn at the sampling locations with roadside trees are significantly lower than those without tree protection. The analysis of transfer factor, which is calculated as the ratio of heavy-metal concentrations in grass to those in the corresponding soil, indicates that the uptake capabilities of heavy metals from soil to grass is in the order of Zn > Cu > Pb. Additionally, it is found that as the soils’ heavy-metal concentrations increase, the capability of heavy-metal transfer to the grass decreases, and this relationship can be characterized by an exponential regression model. PMID:23202679

  20. Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids.

    PubMed

    Vargas, Carmen; Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Moliner, Ana

    2016-07-01

    Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils.

  1. Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer.

    PubMed

    Dumontel, B; Canta, M; Engelke, H; Chiodoni, A; Racca, L; Ancona, A; Limongi, T; Canavese, G; Cauda, V

    2017-11-28

    The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn 2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCs' surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions.

  2. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout.

    PubMed

    Connolly, Mona; Fernández, Marta; Conde, Estefanía; Torrent, Fernando; Navas, José M; Fernández-Cruz, María L

    2016-05-01

    The increasing use of ZnO nanoparticles (ZnO NPs) in different fields has raised concerns about the possible environmental risks associated with these NPs entering aquatic systems. In this study, using a dietary exposure route, we have analysed the tissue distribution and depuration pattern of Zn as well as any associated redox balance disturbances in rainbow trout (Oncorhynchus mykiss) following exposure to ZnO NPs (20-30nm). Fish were fed a diet spiked with ZnO NPs prepared from a dispersion in sunflower oil at doses of 300 or 1000mg ZnO NPs/kg feed for 10days. This uptake phase was followed by a 28days depuration phase in which fish from all groups received untreated feed. While no overt signs of toxicity were observed and no important effects in fish growth (weight and length) or in the hepatosomatic index among groups were recorded, we observed high levels of Zn bioaccumulation in the gills and intestine of exposed fish following exposure to both dose levels. Zn levels were not eliminated during the depuration phase and we have evidenced oxidative stress responses in gills associated with such long term ZnO NPs bioaccumulation and lack of elimination. Furthermore, exposures to higher doses of ZnO NPs (1000mg/kg feed) resulted in Zn distribution to the liver of fish following 10days of exposure. Fish from this exposure group experienced biochemical disturbances associated with oxidative stress in the liver and ethoxy-resorufin-O-deethylase (EROD) activity which may point to the ability of ZnO NPs or its ions to interfere with cytochrome P450 metabolic processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils.

    PubMed

    Komárek, Michael; Tlustos, Pavel; Száková, Jirina; Chrastný, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L.xPopulus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH4Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils.

  4. Engineering high Zn in tomato shoots through expression of AtHMA4 involves tissue-specific modification of endogenous genes.

    PubMed

    Kendziorek, Maria; Klimecka, Maria; Barabasz, Anna; Borg, Sören; Rudzka, Justyna; Szczęsny, Paweł; Antosiewicz, Danuta Maria

    2016-08-12

    To increase the Zn level in shoots, AtHMA4 was ectopically expressed in tomato under the constitutive CaMV 35S promoter. However, the Zn concentration in the shoots of transgenic plants failed to increase at all tested Zn levels in the medium. Modification of Zn root/shoot distribution in tomato expressing 35S::AtHMA4 depended on the concentration of Zn in the medium, thus indicating involvement of unknown endogenous metal-homeostasis mechanisms. To determine these mechanisms, those metal-homeostasis genes that were expressed differently in transgenic and wild-type plants were identified by microarray and RT-qPCR analysis using laser-assisted microdissected RNA isolated from two root sectors: (epidermis + cortex and stele), and leaf sectors (upper epidermis + palisade parenchyma and lower epidermis + spongy parenchyma). Zn-supply-dependent modification of Zn root/shoot distribution in AtHMA4-tomato (increase at 5 μM Zn, no change at 0.5 μM Zn) involved tissue-specific, distinct from that in the wild type, expression of tomato endogenous genes. First, it is suggested that an ethylene-dependent pathway underlies the detected changes in Zn root/shoot partitioning, as it was induced in transgenic plants in a distinct way depending on Zn exposure. Upon exposure to 5 or 0.5 μM Zn, in the epidermis + cortex of the transgenics' roots the expression of the Strategy I Fe-uptake system (ethylene-dependent LeIRT1 and LeFER) was respectively lower or higher than in the wild type and was accompanied by respectively lower or higher expression of the identified ethylene genes (LeNR, LeACO4, LeACO5) and of LeChln. Second, the contribution of LeNRAMP2 expression in the stele is shown to be distinct for wild-type and transgenic plants at both Zn exposures. Ethylene was also suggested as an important factor in a pathway induced in the leaves of transgenic plants by high Zn in the apoplast, which results in the initiation of loading of the excess Zn into the mesophyll of "Zn accumulating cells". In transgenic tomato plants, the export activity of ectopically expressed AtHMA4 changes the cellular Zn status, which induces coordinated tissue-specific responses of endogenous ethylene-related genes and metal transporters. These changes constitute an important mechanism involved in the generation of the metal-related phenotype of transgenic tomato expressing AtHMA4.

  5. How do low doses of desferrioxamine B and EDTA affect the phytoextraction of metals in sunflower?

    PubMed

    Cornu, J Y; Dépernet, C; Garnier, C; Lenoble, V; Braud, A; Lebeau, T

    2017-08-15

    The aim of this study was to compare the efficiency of siderophore desferrioxamine B (DFOB) and EDTA in increasing the phytoextraction of metals in sunflower. A 28-day pot experiment was conducted in a metal-contaminated soil supplied with 200μmolkg -1 of DFOB or EDTA. Pore water was collected and pseudo-polarographic analyses were conducted to assess the impact of the two chelators on the mobility and speciation of metals in the liquid phase. Our results showed that DFOB is not an efficient mobilizing agent of divalent metals in soil. Adding DFOB selectively increased the mobility of trivalent metals while the supply of EDTA simultaneously increased the mobility of both trivalent and divalent metals. EDTA significantly reduced the labile fractions of Cd, Cu, (Pb) and Zn measured in the porewater. The labile concentration of Cd and Zn measured in presence of EDTA was even less than that measured in the control. As expected from the pore water analysis, the addition of DFOB did not affect the phytoextraction of any divalent metals. In contrast, the addition of EDTA enhanced Cu and Ni phytoextraction in sunflower 2.0 to 2.8 fold for Cu and 1.3 to 2.3 fold for Ni, depending on the cultivar. This result supports different hypotheses regarding the forms and the related pathways in which metals are taken up in presence of EDTA. Based on the results obtained for Ni, whose uptake is rate limited by its internalization across the cell membrane, the direct uptake of metal-EDTA complexes via the non-selective apoplastic pathway is hypothesized to contribute the most to the overall uptake of metals in presence of EDTA, even added at "low" concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil.

    PubMed

    Shaheen, Sabry M; Shams, Mohamed S; Khalifa, Mohamed R; El-Dali, Mohamed A; Rinklebe, Jörg

    2017-08-01

    Contamination of long-term sewage effluent irrigated soils by potentially toxic elements (PTEs) is a serious concern due to its high environmental and health risk. Our scientific hypothesis is that soil amendments can cause contradictory effects on the element mobilization and phytoavailability depending on the type of element and amendment. Therefore, we aimed to assess the impact of the application (1%) of several low cost amendments and environmental wastes on the (im)mobilization, availability, and uptake of Al, Cd, Cr, Cu, Fe, Mn, Ni, and Zn by sorghum (Sorghum bicolor) in a long term sewage effluent irrigated sandy soils collected from Egypt. The used materials include activated charcoal (AC), potassium humate (KH), phosphate rock (PR), phosphogypsum (PG), triple superphosphate (TSP), phosphoric acid (PA), sulfur (S), sugar beet factory lime (SBFL), cement bypass kiln dust (CBD), egg shell (ES), bone mill (BM), brick factory residual (BFR), ceramic powder (CP), and drinking water treatment residual (WTR). The mobilization and availability of the elements in the soil were extracted using NH 4 NO 3 and ammonium bicarbonate- diethylene triamine penta acetic acid (AB-DTPA), respectively. The above-ground biomass samples were analyzed for the elements studied. The results confirmed our hypothesis and concluded that although some amendments like S, PA, and TSP can be used for reducing the plant uptake of Al, Cr, and Fe, they might be used with KH for enhancing the phytoextraction of Cd, Cu, Mn, and Ni. Moreover, several wastes such as BFR and WTR might be used for enhancing the phytoextraction of Al, Cd, Cr, Cu, Fe, and Ni and reducing the uptake of Mn from the studied soil. Although SBFL decreased the plant uptake of Al, Fe, Mn, and Zn, it's increased the plant uptake of Cd, Cu, and Ni. Therefore, the amendments which reduce the plant uptake of an element might be suitable candidates for its immobilization, while the amendments which increase the plant uptake of an element might be used for enhancing its phytoextraction when using bioenergy crops like sorghum in similar contaminated sandy soils. The studied materials offered the potential for effective and low cost media for the treatment of PTEs contaminated sewage effluent irrigated sandy soils. These results should be verified in a field study. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management.

    PubMed

    Gramlich, A; Tandy, S; Andres, C; Chincheros Paniagua, J; Armengot, L; Schneider, M; Schulin, R

    2017-02-15

    Cadmium (Cd) uptake by cocoa has recently attracted attention, after the European Union (EU) decided to establish values for tolerable Cd concentrations in cocoa products. Bean Cd concentrations from some cocoa provenances, especially from Latin America, were found to exceed these values. Cadmium uptake by cocoa is expected not only to depend on a variety of soil factors, but also on plant and management factors. In this study, we investigated the influence of different production systems on Cd uptake by cocoa in a long-term field trial in the Alto Beni Region of Bolivia, where cocoa trees are grown in monocultures and in agroforestry systems, both under organic and conventional management. Leaf, fruits and roots of two cultivars were sampled from each production system along with soil samples collected around these trees. Leaf, pod husk and bean samples were analysed for Cd, iron (Fe) and zinc (Zn), the roots for mycorrhizal abundance and the soil samples for 'total' and 'available' Cd, Fe and Zn as well as DGT-available Cd and Zn, pH, organic matter, texture, 'available' phosphorus (P) and potassium (K). Only a small part of the variance in bean and pod husk Cd was explained by management, soil and plant factors. Furthermore, the production systems and cultivars alone had no significant influence on leaf Cd. However, we found lower Cd leaf contents in agroforestry systems than in monocultures when analysed in combination with DGT-available soil Cd, cocoa cultivar and soil organic matter. Overall, this model explained 60% of the variance of the leaf Cd concentrations. We explain lower leaf Cd concentrations in agroforestry systems by competition for Cd uptake with other plants. The cultivar effect may be explained by cultivar specific uptake capacities or by a growth effect translating into different uptake rates, as the cultivars were of different size. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater

    PubMed Central

    Kim, Ja-Myung; Baars, Oliver

    2016-01-01

    A poorly studied but potentially important consequence of the CO2-induced acidification of the surface ocean is a possible change in the bioavailability of trace metals, which play a critical role in the productivity and population dynamics of marine ecosystems. We report laboratory and field experiments designed to compare quantitatively the effects of acidification on the bioavailability of Zn, a metal essential to the growth of phytoplankton and on the extent of its complexation by model and natural ligands. We observed a good correspondence between the effects of pH on the rate of Zn uptake by a model diatom and the chemical lability of Zn measured by anodic stripping voltammetry (ASV). In model laboratory systems, the chemical lability and the bioavailability of Zn could either increase or decrease at low pH depending on the mix of complexing ligands. In a sample of coastal surface water, we observed similar increases in the ASV-labile and bioavailable Zn concentrations upon acidification, a result contrary to previous observations. These results, which can likely be generalized to other bioactive trace metals, mutatis mutandis, demonstrate the intricacy of the effects of ocean acidification on the chemistry and the ecology of surface seawater. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035261

  9. The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater.

    PubMed

    Kim, Ja-Myung; Baars, Oliver; Morel, François M M

    2016-11-28

    A poorly studied but potentially important consequence of the CO 2 -induced acidification of the surface ocean is a possible change in the bioavailability of trace metals, which play a critical role in the productivity and population dynamics of marine ecosystems. We report laboratory and field experiments designed to compare quantitatively the effects of acidification on the bioavailability of Zn, a metal essential to the growth of phytoplankton and on the extent of its complexation by model and natural ligands. We observed a good correspondence between the effects of pH on the rate of Zn uptake by a model diatom and the chemical lability of Zn measured by anodic stripping voltammetry (ASV). In model laboratory systems, the chemical lability and the bioavailability of Zn could either increase or decrease at low pH depending on the mix of complexing ligands. In a sample of coastal surface water, we observed similar increases in the ASV-labile and bioavailable Zn concentrations upon acidification, a result contrary to previous observations. These results, which can likely be generalized to other bioactive trace metals, mutatis mutandis , demonstrate the intricacy of the effects of ocean acidification on the chemistry and the ecology of surface seawater.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  10. Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Laboudigue, Agnès; Manceau, Alain; Sarret, Géraldine; Tiffreau, Christophe; Trocellier, Patrick; Lamble, Géraldine; Hazemann, Jean-Louis; Chateigner, Daniel

    2002-05-01

    Dredging and disposal of sediments onto agricultural soils is a common practice in industrial and urban areas that can be hazardous to the environment when the sediments contain heavy metals. This chemical hazard can be assessed by evaluating the mobility and speciation of metals after sediment deposition. In this study, the speciation of Zn in the coarse (500 to 2000 μm) and fine (<2 μm) fractions of a contaminated sediment dredged from a ship canal in northern France and deposited on an agricultural soil was determined by physical analytical techniques on raw and chemically treated samples. Zn partitioning between coexisting mineral phases and its chemical associations were first determined by micro-particle-induced X-ray emission and micro-synchrotron-based X-ray radiation fluorescence. Zn-containing mineral species were then identified by X-ray diffraction and powder and polarized extended X-ray absorption fine structure spectroscopy (EXAFS). The number, nature, and proportion of Zn species were obtained by a coupled principal component analysis (PCA) and least squares fitting (LSF) procedure, applied herein for the first time to qualitatively (number and nature of species) and quantitatively (relative proportion of species) speciate a metal in a natural system. The coarse fraction consists of slag grains originating from nearby Zn smelters. In this fraction, Zn is primarily present as sphalerite (ZnS) and to a lesser extent as willemite (Zn 2SiO 4), Zn-containing ferric (oxyhydr)oxides, and zincite (ZnO). In the fine fraction, ZnS and Zn-containing Fe (oxyhydr)oxides are the major forms, and Zn-containing phyllosilicate is the minor species. Weathering of ZnS, Zn 2SiO 4, and ZnO under oxidizing conditions after the sediment disposal accounts for the uptake of Zn by Fe (oxyhydr)oxides and phyllosilicates. Two geochemical processes can explain the retention of Zn by secondary minerals: uptake on preexisting minerals and precipitation with dissolved Fe and Si. The second process likely occurs because dissolved Zn and Si are supersaturated with respect to Zn phyllosilicate. EXAFS spectroscopy, in combination with PCA and LSF, is shown to be a meaningful approach to quantitatively determining the speciation of trace elements in sediments and soils.

  11. Phytoavailability and extractability of copper and zinc in calcareous soil amended with composted urban wastes.

    PubMed

    Gallardo-Lara, F; Azcón, M; Quesada, J L; Polo, A

    1999-11-01

    A greenhouse experiment was conducted under simulated field conditions using large-capacity plastic pots, filled each one with 25 kg of air-dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost, and co-composted municipal solid waste and sewage sludge (MSW-SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW-SS co-compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA-extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc-EDTA-extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA-extractable and AAAc-EDTA-extractable Zn contents in soil versus the control, except for the lower rate of MSW-SS co-compost. The values of DTPA-extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc-EDTA-extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc-EDTA-extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW-SS co-compost.

  12. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.

    PubMed

    Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba

    2017-06-01

    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Binding of the Zn2+ ion to ferric uptake regulation protein from E. coli and the competition with Fe2+ binding: a molecular modeling study of the effect on DNA binding and conformational changes of Fur

    NASA Astrophysics Data System (ADS)

    Jabour, Salih; Hamed, Mazen Y.

    2009-04-01

    The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1-3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity.

  15. Zinc uptake and regulation by the sublittoral prawn Pandalus montagui (Crustacea: Decapoda)

    NASA Astrophysics Data System (ADS)

    Nugegoda, D.; Rainbow, P. S.

    1988-06-01

    The sublittoral decapod crustacean Pandalus montagui Leach in artificial seawater at 10°C regulates the total body zinc concentration to a constant level in dissolved zinc concentrations up to ca. 22 μg Zn l -1, beyond which there is net accumulation of body zinc. This threshold of zinc regulation breakdown is lower than that in the littoral decapods Palaemon elegans (ca. 93 μg Zn l -1) and Palaemonetes varians (ca. 190 μg Zn l -1) under the same physico-chemical conditions. Correspondingly, zinc uptake rates of the three species of decapods decrease in the order P. montagui > P. elegans > P. varians. It is concluded that regulation of total body zinc concentration is more efficient in decapods adapted to the fluctuating environments of littoral habitats, possibly as a result of changes in permeability of uptake surfaces in combination with improved zinc excretion systems. The moult cycle is important in determining the ability of an individual prawn to regulate zinc. Body zinc in Pandalus montagui consists of at least two pools of zinc exchanging at different rates which the environment. Zinc and copper are not evenly distributed in the tissues of P. montagui.

  16. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2006-04-17

    Mining-related and industrial wastes are primary sources of heavy metal contamination in soils and groundwater. The limitation of such waste in drinking water needs to meet government requirements in order to safeguard human health and environment. Zinc, one of the most preponderant pollutants, is difficult to remove from wastewater rather than other heavy metals (i.e. lead, copper and cadmium). This paper investigates Zn2+ adsorption characteristics of two natural zeolites found in the regions of Gordes and Bigadic, in western Turkey. The results show that the Zn2+ adsorption behavior of both zeolites is highly dependent on the pH. Adsorption dependence on lower pH values (pH<4) is explained by the dissolution of crystal structure and the competition of the zinc ions with the H+. Between pH 4 and 6, the basic mechanism is the ion exchange process. The results also showed that decrease in grain size does not increase the adsorption capacity of zeolite from Gordes, yet it increases that of zeolite from Bigadic about 23%. The results also reveal that an increase in the initial concentration of Zn2+ in the system causes an increase in the adsorption capacity to a degree, then it becomes more constant at higher concentrations. With this, the removal efficiency of Gordes zeolite is two times higher than that of Bigadic zeolite. Results show that an increase in slurry concentration results in a lower uptake of Zn2+. In the final part of the paper, we compared the experimental data with the Langmuir and Freundlich isotherms. The results show that there is a good fit between the experimental data and empirical isotherms.

  17. Spontaneous plant colonization of brownfield soil and sludges and effects on substrate properties and pollutants mobility

    NASA Astrophysics Data System (ADS)

    Rocco, Claudia; Agrelli, Diana; Gonzalez, Maria Isabel; Mingo, Antonio; Motti, Riccardo; Stinca, Adriano; Coppola, Ida; Adamo, Paola

    2017-04-01

    This work was done on brownfield soil and sludges from a dismantled steel plant, moderately polluted by heavy metals (mainly Pb and Zn), 1) to analyzed the effects of substrate properties and environmental conditions on spontaneous vegetation; 2) to assess changes in the chemical properties of soils and sludges, with particular reference to the mobility and bioavailability of pollutants, induced by spontaneous plants revegetation. From 2006 to 2011, spontaneous plant colonization was monitored in the presence or absence of acidic peat both inside the degraded brownfield site and after transferal into a nearby Oak Park environment. During the five experimental years the vegetation growth was monitored using phytosociological method and data analyzed statistically. Both substrates, before and after plant growth, were analyzed for main chemical properties. Metals mobility and bioavailability was assessed using single (H2O; DTPA) and sequential extractions (EU-BCR). At the end of the experiment, plant ability to uptake metal was evaluated on selected species. Overall, 57 plant species grew healthily on the substrates. The combination of soil and sludges with peat resulted in an effective revegetation with a sensible increasing of plants biomass. Most of the species were found in the park (91%), showing plant colonization was mainly affected by the immediate environment rather than by substrate properties. Furthermore, after the five years, the substrate properties (pH, O.C.) were slightly affected by plant growth and, although metal pollutants in both substrates are characterized by low water solubility and DTPA availability, after plants growth an increase (even if not significant) of rhizospheric Cu, Fe, Mn and Zn solubility in H2O was detected. Metals speciation indicated a low risk of Pb and Zn mobility being either largely trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. Restricted metal uptake and tissue accumulation by selected plants were measured, with only Daucus carota showing a higher ability to translocate metals to shoots (shoot/root metal concentration quotient >1 with peat). Water always underestimated plant uptake, while DTPA and sequential extractions better predicted Pb and Zn uptake. Phytostabilization with native plant species can be an efficient, environmentally appropriate and low cost technology for rehabilitation of industrial sites. The addition of organic matter may help the spontaneous re-vegetation and could facilitate the recovery of degraded environment. However, the changing induced by peat and plants might induced a solubilization of metal pollutants. A continuous monitoring of the potential changes of pollutants mobility-bioavailability by plants is crucial to prevent risks to the environment and human health. Key words: Heavy metals, phytoremediation, Peat addition, bioavailability, sequential extractions

  18. Effect of radiation on metabolism of selected minerals in cattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasser, L.B.; Wade, L. Jr.; Bell, M.C.

    1974-01-01

    Zinc, Cu, Ca, Mg, and Fe contents of plasma and/or erythrocytes of steers were studied following exposure of the steers to either whole-body gamma irradiation, BETA irradiation of the gastrointestinal tract, BETA irradiation of the skin, or all combinations of the above. Gastrointestinal (GI) irradiation reduced plasma Zn concentrations 1, 2, and 3 weeks after irradiation, but no detectable change occurred in the erythrocyte concentration of stable Zn. The uptake of /sup 65/Zn by erythrocytes from control steers averaged about 5%; whereas the uptakes of the GI- and skin-irradiated steers exceeded l0%. Hypoferremia and hypercupremia accompanied the injury and infectionmore » produced by GI and skin irradiation. The decline of plasma Ca and Mg levels following GI irradiation appeared to be the result of radiation-induced anorexia, as control animals with a restricted feed intake had a similar reduction in plasma Ca and Mg. (auth)« less

  19. Micro-scale investigations on soil heterogeneity: Impacts on Zn retention and uptake in Zn contaminated soils

    USDA-ARS?s Scientific Manuscript database

    Metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and the strength and stability of their solid phase associations. We combined physical density separation with synchrotron-based mi...

  20. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals.

    PubMed

    Tassi, Eliana; Pouget, Joël; Petruzzelli, Gianniantonio; Barbafieri, Meri

    2008-03-01

    The term "assisted phytoextraction" usually refers to the process of applying a chemical additive to contaminated soil in order to increase the metal uptake by crop plants. In this study three commercially available plant growth regulators (PGRs) based on cytokinins (CKs) were used to boost the assisted phytoextraction of Pb and Zn in contaminated soil collected from a former manufactured gas-plant site. The effects of EDTA treatment in soil and PGR treatment in leaves of Helianthus annuus were investigated in terms of dry weight biomass, Pb and Zn accumulation in the upper parts of the plants, Pb and Zn phytoextraction efficiency and transpiration rate. Metal solubility in soil and its subsequent accumulation in shoots were markedly enhanced by EDTA. The combined effects of EDTA and cytokine resulted in an increase in the Pb and Zn phytoextraction efficiency (up to 890% and 330%, respectively, compared to untreated plants) and up to a 50% increase in foliar transpiration. Our results indicate that exogenous PGRs based on CKs can positively assist the phytoextraction increasing the biomass production, the metal accumulation in shoots and the plant transpiration. The observed increase in biomass could be related to its action in stimulation of cell division and shoot initiation. On the other hand, the increase in metal accumulation in upper parts of plant could be related to both the role of PGRs in the enhancement of plant resistance to stress (as toxic metals) and the increase in transpiration rate, i.e. flux of water-soluble soil components and contaminants by the regulation of stomatal opening.

  1. Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties

    PubMed Central

    Díez-Pascual, Ana M.; Díez-Vicente, Angel L.

    2014-01-01

    Poly(3-hydroxybutyrate) (PHB)-based bionanocomposites incorporating different contents of ZnO nanoparticles were prepared via solution casting technique. The nanoparticles were dispersed within the biopolymer without the need for surfactants or coupling agents. The morphology, thermal, mechanical, barrier, migration and antibacterial properties of the nanocomposites were investigated. The nanoparticles acted as nucleating agents, increasing the crystallization temperature and the degree of crystallinity of the matrix, and as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process, leading to higher thermal stability. The Young’s modulus, tensile and impact strength of the biopolymer were enhanced by up to 43%, 32% and 26%, respectively, due to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions, as revealed by the FT-IR spectra. Moreover, the nanocomposites exhibited reduced water uptake and superior gas and vapour barrier properties compared to neat PHB. They also showed antibacterial activity against both Gram-positive and Gram-negative bacteria, which was progressively improved upon increasing ZnO concentration. The migration levels of PHB/ZnO composites in both non-polar and polar simulants decreased with increasing nanoparticle content, and were well below the current legislative limits for food packaging materials. These biodegradable nanocomposites show great potential as an alternative to synthetic plastic packaging materials especially for use in food and beverage containers and disposable applications. PMID:24941255

  2. Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier and antibacterial properties.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-06-17

    Poly(3-hydroxybutyrate) (PHB)-based bionanocomposites incorporating different contents of ZnO nanoparticles were prepared via solution casting technique. The nanoparticles were dispersed within the biopolymer without the need for surfactants or coupling agents. The morphology, thermal, mechanical, barrier, migration and antibacterial properties of the nanocomposites were investigated. The nanoparticles acted as nucleating agents, increasing the crystallization temperature and the degree of crystallinity of the matrix, and as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process, leading to higher thermal stability. The Young's modulus, tensile and impact strength of the biopolymer were enhanced by up to 43%, 32% and 26%, respectively, due to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions, as revealed by the FT-IR spectra. Moreover, the nanocomposites exhibited reduced water uptake and superior gas and vapour barrier properties compared to neat PHB. They also showed antibacterial activity against both Gram-positive and Gram-negative bacteria, which was progressively improved upon increasing ZnO concentration. The migration levels of PHB/ZnO composites in both non-polar and polar simulants decreased with increasing nanoparticle content, and were well below the current legislative limits for food packaging materials. These biodegradable nanocomposites show great potential as an alternative to synthetic plastic packaging materials especially for use in food and beverage containers and disposable applications.

  3. L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.

    PubMed

    Benaroya, Rony Oren; Zamski, Eli; Tel-Or, Elisha

    2004-02-01

    L-Myo-inositol 1-phosphate synthase (INPS EC 5.5.1.4) catalyzes the conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate. INPS is a key enzyme involved in the biosynthesis of phytate which is a common form of stored phosphates in higher plants. The present study monitored the increase of INPS expression in Azolla filiculoides resulting from exposure to inorganic phosphates, metals and salt stress. The expression of INPS was significantly higher in Azolla plants that were grown in rich mineral growth medium than those maintained on nutritional growth medium. The expression of INPS protein and corresponding mRNA increased in plants cultured in minimal nutritional growth medium when phosphate or Zn2+, Cd2+ and NaCl were added to the growth medium. When employing rich mineral growth medium, INPS protein content increased with the addition of Zn2+, but decreased in the presence of Cd2+ and NaCl. These results indicated that accumulation of phytate in Azolla is a result of the intensified expression of INPS protein and mRNA, and its regulation may be primarily derived by the uptake of inorganic phosphate, and Zn2+, Cd2+ or NaCl.

  4. SEM-EDX, water absorption, and wetting capability studies on evaluation of the influence of nano-zinc oxide as additive to paraloid B72 solutions used for wooden artifacts consolidation.

    PubMed

    Tuduce Traistaru, Ana-Adriana; Crina Anca Sandu, Irina; Cristina Timar, Maria; Lucia Dumitrescu, Georgeta; Sandu, Ion

    2013-02-01

    Consolidation of frail, degraded wood is a key issue of wooden cultural heritage conservation. Paraloid B72 is one of the most often used consolidant in conservation practice. The present research aimed at formulating stable consolidation solutions of Paraloid B72 with ZnO nano-additives and at determining the influence of these additives on the penetration pathways, retention of the consolidation material into wood and on the water behavior of the treated wood. The experiments were performed on sound samples of aspen (Populus tremula). The addition of nano-ZnO slightly increased the uptake and retention of the consolidant within the wooden structure and led to hydrophobic surfaces. However, the influence of nano-ZnO additives to the water absorption was not conclusive. Scanning Electron Microscope coupled with an EDX Detector investigation proved vessels, fibers, and interconnecting pits as main pathways of consolidant penetration into the wooden structure as well as the presence and distribution of nano-ZnO. Copyright © 2012 Wiley Periodicals, Inc.

  5. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  6. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.

  7. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  8. Fivefold increase of hydrogen uptake in MOF74 through linker decorations

    NASA Astrophysics Data System (ADS)

    Arter, C. A.; Zuluaga, S.; Harrison, D.; Welchman, E.; Thonhauser, T.

    2016-10-01

    We present ab initio results for linker decorations in Mg-MOF74, i.e., attaching various metals M =Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker, creating new strong adsorption sites and thus maximizing small-molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening, we chose metals that bind favorably to the linker and further investigated adsorption of H2,CO2, and H2O for M =Li , Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the metal-organic framework (MOF) unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a fivefold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular, where the gravimetric hydrogen density increases from 1.63 to 7.28 mass % and the volumetric density increases from 15.10 to 75.50 g H2L-1 .

  9. Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.

    PubMed

    Ando, Masaki; Oku, Naoto; Takeda, Atsushi

    2010-11-01

    The rise in presynaptic calcium induced by high-frequency stimulation activates the calcium-calmodulin-sensitive adenylyl cyclase (AC) 1 followed by the induction of long-term potentiation (LTP) at the hippocampal mossy fiber-CA3 synapse. Zinc is released with glutamate from mossy fiber terminals. However, the role of the zinc in mossy fiber LTP is controversial. In the present study, the mechanism of zinc-mediated attenuation of mossy fiber LTP was examined in that induced by forskolin, an AC activator. Mossy fiber LTP induced by tetanic stimulation (100 Hz for 1 s) was attenuated in the presence of 5 microM ZnCl(2), whereas that induced by forskolin under test stimulation (0.1 Hz) was not attenuated. Forskolin-induced mossy fiber LTP was attenuated by perfusion with 100 microM ZnCl(2) prior to the induction. However, the zinc (100 microM) pre-perfusion did not attenuate mossy fiber LTP induced by Sp-cAMPS, an activator of protein kinase A, under test stimulation. Zinc is necessary to be taken up into mossy fiber boutons for effectively inhibiting AC activity. In hippocampal slices labeled with ZnAF-2 DA, a membrane-permeable zinc indicator, intracellular ZnAF-2 signal was increased during tetanic stimulation in the presence of 5 microM ZnCl(2), but not under test stimulation. Intracellular ZnAF-2 signal was increased under test stimulation in the presence of 100 microM ZnCl(2). These results suggest that zinc taken up into mossy fibers attenuates forskolin-induced mossy fiber LTP via inhibition of AC activity. The significance of endogenous zinc uptake by mossy fibers is discussed focused on tetanus-induced mossy fiber LTP. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum).

    PubMed

    Evens, Nicholas P; Buchner, Peter; Williams, Lorraine E; Hawkesford, Malcolm J

    2017-10-01

    Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn 2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  11. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.

    PubMed

    Rivelli, Anna Rita; De Maria, Susanna; Puschenreiter, Markus; Gherbin, Piergiorgio

    2012-04-01

    We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.

  12. EDTA Shuttle Effect vs. Lignosulfonate Direct Effect Providing Zn to Navy Bean Plants (Phaseolus vulgaris L ‘Negro Polo’) in a Calcareous Soil

    PubMed Central

    Cieschi, María T.; Benedicto, Ana; Hernández-Apaolaza, Lourdes; Lucena, Juan J.

    2016-01-01

    Zn-Lignosulfonates (LS) fertilizers are used as an eco-friendly alternative to chelate formulations. The mechanisms of Zn release in the rhizosphere by both types of products are compared. The ability to provide Zn to Phaseolus vulgaris L of non-modified and chemically modified ZnLS and ZnEDTA is compared in a hydroponic assay. Stable isotope 67Zn was used to study Zn source (fertilizer, ZnFer, or native, ZnNat) uptake and distribution in plants in two soil pot experiments. ZnEDTA was the best treatment to provide both ZnFer and ZnNat to navy bean plants. A shuttle effect mechanism and an isotopic exchange may occur. ZnLS from eucalyptus (ZnLSE) provides more Zn to the plant than LS from spruce. Chemical modifications of ZnLSE does not improve its efficiency. A double dose of ZnLSE provides similar ZnFer in leaves and similar soluble ZnFer content in soil than ZnEDTA. A model for the Zn fertilizers behavior in the soil and plant system is presented, showing the shuttle effect for the synthetic chelate and the direct delivery in the rhizosphere for the ZnLS complex. PMID:28018367

  13. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida.

    PubMed

    Heggelund, Laura R; Diez-Ortiz, Maria; Lofts, Stephen; Lahive, Elma; Jurkschat, Kerstin; Wojnarowicz, Jacek; Cedergreen, Nina; Spurgeon, David; Svendsen, Claus

    2014-08-01

    To determine how soil properties influence nanoparticle (NP) fate, bioavailability and toxicity, this study compared the toxicity of nano zinc oxide (ZnO NPs), non-nano ZnO and ionic ZnCl2 to the earthworm Eisenia fetida in a natural soil at three pH levels. NP characterisation indicated that reaction with the soil media greatly controls ZnO properties. Three main conclusions were drawn. First that Zn toxicity, especially for reproduction, was influenced by pH for all Zn forms. This can be linked to the influence of pH on Zn dissolution. Secondly, that ZnO fate, toxicity and bioaccumulation were similar (including relationships with pH) for both ZnO forms, indicating the absence of NP-specific effects. Finally, earthworm Zn concentrations were higher in worms exposed to ZnO compared to ZnCl2, despite the greater toxicity of the ionic form. This observation suggests the importance of considering the relationship between uptake and toxicity in nanotoxicology studies.

  14. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants.

    PubMed

    Břendová, Kateřina; Zemanová, Veronika; Pavlíková, Daniela; Tlustoš, Pavel

    2016-10-01

    In the present study, the content of risk elements and content of free amino acids were studied in spinach (Spinacia oleracea L.) and mustard (Sinapis alba L.) subsequently grown on uncontaminated and contaminated soils (5 mg Cd/kg, 1000 mg Pb/kg and 400 mg Zn/kg) with the addition of activated carbon (from coconut shells) or biochar (derived from local wood residues planted for phytoextaction) in different seasons (spring, summer and autumn). The results showed that activated carbon and biochar increased biomass production on contaminated site. Application of amendments decreased Cd and Zn uptake by spinach plants. Mustard significantly increased Pb accumulation in the biomass as well in subsequently grown autumn spinach. Glutamic acid and glutamine were major free amino acids in leaves of all plants (15-34% and 3-45%) from total content. Application of activated carbon and biochar increased content of glutamic acid in all plants on uncontaminated and contaminated soils. Activated carbon and biochar treatments also induced an increase of aspartic acid in spinach plants. Biochar produced from biomass originated from phytoextraction technologies promoted higher spinach biomass yield comparing unamended control and showed a tendency to reduce accumulation of cadmium and zinc and thus it is promising soil amendment. Copyright © 2016. Published by Elsevier Ltd.

  15. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils.

    PubMed

    Vítková, Martina; Puschenreiter, Markus; Komárek, Michael

    2018-06-01

    Characterisation of geochemical transformations and processes in soils with special focus on the rhizosphere is crucial for assessing metal(loid) bioavailability to plants during in situ immobilisation and phytostabilisation. In this study, the effects of nano zero-valent iron (nZVI) were investigated in terms of the immobilisation of As, Zn, Pb and Cd in two soil types and their potential uptake by plants using rhizobox experiments. Such system allowed monitoring the behaviour of trace elements in rooted and bulk soil compartments separately. Sunflower (Helianthus annuus L.) and ryegrass (Lolium perenne L.) were tested for As-rich (15.9 g As kg -1 ) and Zn-rich (4.1 g Zn kg -1 ) soil samples, respectively. The application of nZVI effectively lowered the uptake of all target risk elements into plant tissues. Efficient immobilisation of As was determined in the As-soil without a significant difference between plant and bulk soil compartments. Similarly, a significant decrease was determined for CaCl 2 -available fractions of Zn, Pb and Cd in nZVI-treated Zn-soil. The behaviour of As corresponded to changes in Eh, while Zn and Cd showed to be mainly pH-dependent. However, despite the observed stabilisation effect of nZVI, high amounts of As and Zn still remained available for plants. Furthermore, the accumulation of the target risk elements in roots and the overall effect of nZVI transformations in the rhizosphere were verified and visualised by SEM/EDS. The following immobilising mechanisms were suggested: (i) sorption onto both existing and newly formed Fe (hydr)oxides, (ii) formation of secondary Fe-As phases, and (iii) sorption onto Mn (hydr)oxides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    PubMed

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  17. CO2 induced growth response in a diatom dominated phytoplankton community from SW Bay of Bengal coastal water

    NASA Astrophysics Data System (ADS)

    Biswas, Haimanti; Shaik, Aziz Ur Rahman; Bandyopadhyay, Debasmita; Chowdhury, Neha

    2017-11-01

    The ongoing increase in surface seawater CO2 level could potentially impact phytoplankton primary production in coastal waters; however, CO2 sensitivity studies on tropical coastal phytoplankton assemblages are rare. The present study investigated the interactive impacts of variable CO2 level, light and zinc (Zn) addition on the diatom dominated phytoplankton assemblages from the western coastal Bay of Bengal. Increased CO2 supply enhanced particulate organic matter (POC) production; a concomitant depletion in δ13CPOM values at elevated CO2 suggested increased CO2 diffusive influx inside the cell. Trace amount of Zn added under low CO2 level accelerated growth probably by accelerating Zn-Carbonic Anhydrase activity which helps in converting bicarbonate ion to CO2. Almost identical values of δ13CPOM in the low CO2 treated cells grown with and without Zn indicated a low discrimination between 13C and 12C probably due to bicarbonate uptake. These evidences collectively indicated the existence of the carbon concentration mechanisms (CCMs) at low CO2. A minimum growth rate was observed at low CO2 and light limited condition indicating light dependence of CCMs activity. Upon the increase of light and CO2 level, growth response was maximum. The cells grown in the low CO2 levels showed higher light stress (higher values of both diatoxanthin index and the ratio of photo-protective to light-harvesting pigments) that was alleviated by both increasing CO2 supply and Zn addition (probably by efficient light energy utilization in presence of adequate CO2). This is likely that the diatom dominated phytoplankton communities benefited from the increasing CO2 supply and thus may enhance primary production in response to any further increase in coastal water CO2 levels and can have large biogeochemical consequences in the study area.

  18. New multifunctional porous materials based on inorganic-organic hybrid single-walled carbon nanotubes: gas storage and high-sensitive detection of pesticides.

    PubMed

    Wang, Feng; Zhao, Jinbo; Gong, Jingming; Wen, Lili; Zhou, Li; Li, Dongfeng

    2012-09-10

    Single-walled carbon nanotubes (SWNTs) that are covalently functionalized with benzoic acid (SWNT-PhCOOH) can be integrated with transition-metal ions to form 3D porous inorganic-organic hybrid frameworks (SWNT-Zn). In particular, N(2)-adsorption analysis shows that the BET surface area increases notably from 645.3 to 1209.9 m(2)  g(-1) for SWNTs and SWNT-Zn, respectively. This remarkable enhancement in the surface area of SWNT-Zn is presumably due to the microporous motifs from benzoates coordinated to intercalated zinc ions between the functionalized SWNTs; this assignment was also corroborated by NLDFT pore-size distributions. In addition, the excess-H(2)-uptake maximum of SWNT-Zn reaches about 3.1 wt. % (12 bar, 77 K), which is almost three times that of the original SWNTs (1.2 wt. % at 12 bar, 77 K). Owing to its inherent conductivity and pore structure, as well as good dispersibility, SWNT-Zn is an effective candidate as a sensitive electrochemical stripping voltammetric sensor for organophosphate pesticides (OPs): By using solid-phase extraction (SPE) with SWNT-Zn-modified glassy carbon electrode, the detection limit of methyl parathion (MP) is 2.3 ng mL(-1). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Randomized in situ Clinical Study of Fluoride Dentifrices on Enamel Remineralization and Resistance to Demineralization: Effects of Zinc.

    PubMed

    Creeth, Jonathan E; Karwal, Ritu; Hara, Anderson T; Zero, Domenick T

    2018-01-01

    This study aimed to determine the effect of zinc ions and F concentration in a dentifrice on remineralization of early caries lesions in situ and on resistance to subsequent demineralization. This was a single-center, 6-period, 6-product, blinded (examiner, subject, analyst), randomized (n = 62), crossover study. Products (all NaF) were: 0, 250, 1,150 and 1,426 ppm F (dose-response controls), "Zn-A" (0.3% ZnCl2, 1,426 ppm F), and "Zn-B" (as Zn-A, with high-foaming surfactants) in a conventional silica base. Subjects wore palatal appliances holding partially demineralized bovine enamel specimens. They brushed their teeth with 1.5 g test dentifrice (25 s), then swished the slurry ensuring even exposure of specimens (95 s), expectorated, and rinsed (15 mL water, 10 s). After 4 h intraoral remineralization, specimens were removed and acid-challenged in vitro. Surface microhardness (SMH), measured pre-experimental, post-initial acid exposure, post-remineralization, and post-second acid exposure, was used to calculate recovery (SMHR), net acid resistance (NAR), and a new, specifically demineralization-focused calculation, "comparative acid resistance" (CAR). Enamel fluoride uptake (EFU) was also measured. For the F dose-response controls, all measures showed significant relationships with dentifrice F concentration (p < 0.0001). The presence of zinc counteracted the ability of F to promote remineralization in this model. Compared to the 1,426 ppm F control, the zinc formulations gave reduced SMHR, EFU, and NAR (all p < 0.0001); however, they showed evidence of increased CAR (Zn-A: p = 0.0040; Zn-B: p = 0.0846). Products were generally well tolerated. In this study, increasing dentifrice F concentration progressively increased in situ remineralization and demineralization resistance of early caries enamel lesions. Zinc ions reduced remineralization but could increase demineralization resistance. © 2018 S. Karger AG, Basel.

  20. The effectiveness of various treatments in changing the nutrient status and bioavailability of risk elements in multi-element contaminated soil.

    PubMed

    García-Sánchez, Mercedes; García-Romera, Inmaculada; Száková, Jiřina; Kaplan, Lukáš; Tlustoš, Pavel

    2015-09-01

    Potential changes in the mobility and bioavailability of risk and essential macro- and micro-elements achieved by adding various ameliorative materials were evaluated in a model pot experiment. Spring wheat (Triticum aestivum L.) was cultivated under controlled condition for 60 days in two soils, uncontaminated Chernozem and multi-element contaminated Fluvisol containing 4900 ± 200 mg/kg Zn, 35.4 ± 3.6 mg/kg Cd, and 3035 ± 26 mg/kg Pb. The treatments were all contained the same amount of sulfur and were as follows: (i) digestate from the anaerobic fermentation of biowaste, (ii) fly ash from wood chip combustion, and (iii) ammonium sulfate. Macro- and micro-nutrients Ca, Mg, K, Fe, Mn, Cu, P, and S, and risk elements Cd, Cr, Pb, and Zn were assayed in soil extracts with 0.11 mol/l solution of CH3COOH and in roots, shoots, and grain of wheat after 30 and 60 days of cultivation. Both digestate and fly ash increased levels of macro- and micro-nutrients as well as risk elements (especially Cd and Zn; the mobility of Pb decreased after 30 days of cultivation). The changes in element mobility in ammonium sulfate-treated soils appear to be due to both changes in soil pH level and inter-element interactions. Ammonium sulfate tended to be the most effective measure for increasing nutrient uptake by plants in Chernozem but with opposite pattern in Fluvisol. Changes in plant yield and element uptake in treated plants may have been associated with the higher proline content of wheat shoots cultivated in both soils compared to control. None of the treatments decreased uptake of risk elements by wheat plants in the extremely contaminated Fluvisol, and their accumulation in wheat grains significantly exceeded maximum permissible levels; these treatments cannot be used to enable cereal and other crop production in such soils. However, the combination of increased plant growth alongside unchanged element content in plant biomass in pots treated with digestate and fly ash suggests that these treatments have a beneficial impact on yield and may be effective treatments in crops grown for phytoremediation.

  1. Concentrations of metals in water, sediment, biofilm, benthic macroinvertebrates, and fish in the Boulder River watershed, Montana, and the role of colloids in metal uptake

    USGS Publications Warehouse

    Farag, A.M.; Nimick, D.A.; Kimball, B.A.; Church, S.E.; Harper, D.D.; Brumbaugh, W.G.

    2007-01-01

    To characterize the partitioning of metals in a stream ecosystem, concentrations of trace metals including As, Cd, Cu, Pb, and Zn were measured in water, colloids, sediment, biofilm (also referred to as aufwuchs), macroinvertebrates, and fish collected from the Boulder River watershed, Montana. Median concentrations of Cd, Cu, and Zn in water throughout the watershed exceeded the U.S. EPA acute and chronic criteria for protection of aquatic life. Concentrations of As, Cd, Cu, Pb, and Zn in sediment were sufficient in the tributaries to cause invertebrate toxicity. The concentrations of As, Cu, Cd, Pb, and Zn in invertebrates from lower Cataract Creek (63, 339, 59, 34, and 2,410 μg/g dry wt, respectively) were greater than the concentrations in invertebrates from the Clark Fork River watershed, Montana (19, 174, 2.3, 15, and 648 μg/g, respectively), that were associated with reduced survival, growth, and health of cutthroat trout fed diets composed of those invertebrates. Colloids and biofilm seem to play a critical role in the pathway of metals into the food chain and concentrations of As, Cu, Pb, and Zn in these two components are significantly correlated. We suggest that transfer of metals associated with Fe colloids to biological components of biofilm is an important pathway where metals associated with abiotic components are first available to biotic components. The significant correlations suggest that Cd, Cu, and Zn may move independently to biota (biofilm, invertebrates, or fish tissues) from water and sediment. The possibility exists that Cd, Cu, and Zn concentrations increase in fish tissues as a result of direct contact with water and sediment and indirect exposure through the food chain. However, uptake through the food chain to fish may be more important for As. Although As concentrations in colloids and biofilm were significantly correlated with As water concentrations, As concentrations in fish tissues were not correlated with water. The pathway for Pb into biological components seems to begin with sediment because concentrations of Pb in water were not significantly correlated with any other component and because concentrations of Pb in the water were often below detection limits.

  2. EFFECT OF HUMIC ACID ON UPTAKE AND TRANSFER OF COPPER FROM MICROBES TO CILIATES TO COPEPODS

    EPA Science Inventory

    This research is part of an ongoing project designed to determine the effect of humic acid on the uptake and transfer of metals by marine organisms at the lower end of the food chain. Binding affinities for Cu, Cd, Zn, and Cr to Suwannee River humic acid were determined at variou...

  3. Uptake of As, Cd, Cu, Fe, Mn, Pb, and Zn in pasture grasses on three metal-contamimated soils from Montana

    USDA-ARS?s Scientific Manuscript database

    One of the biggest challenges to successfully phytoremediate contaminated mine land soils is the identification of plant materials that possess a broad adaptation to ecological sites and either exclude or uptake heavy metals of interest. This study evaluted forage concentrations (mg kg-1 DM) of arse...

  4. Influence of elevated Fe, Zn, and Cd on uptake and translocation of mineral elements in common bean

    USDA-ARS?s Scientific Manuscript database

    Common bean is an important crop plant and source of human health related macro- and micronutrients. Common bean uptake these nutrients from the soil environment and transport them to various storage tissues using proteins and genes located in different tissues (Phan-Thein et al. 2010). However, alo...

  5. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model

    USDA-ARS?s Scientific Manuscript database

    Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...

  6. [Analysis of effects of salt stress on absorption and accumulation of mineral elements in Elymus spp. using atomic absorption spectrophotometer].

    PubMed

    Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin

    2008-12-01

    Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.

  7. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants.

    PubMed

    Al-Wabel, Mohammad I; Usman, Adel R A; El-Naggar, Ahmed H; Aly, Anwar A; Ibrahim, Hesham M; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2015-07-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5-102% at 75% FC and 133-266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity.

  8. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants

    PubMed Central

    Al-Wabel, Mohammad I.; Usman, Adel R.A.; El-Naggar, Ahmed H.; Aly, Anwar A.; Ibrahim, Hesham M.; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2014-01-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5–102% at 75% FC and 133–266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity. PMID:26150758

  9. Layered Double Hydroxides: Potential Release-on-Demand Fertilizers for Plant Zinc Nutrition.

    PubMed

    López-Rayo, Sandra; Imran, Ahmad; Bruun Hansen, Hans Chr; Schjoerring, Jan K; Magid, Jakob

    2017-10-11

    A novel zinc (Zn) fertilizer concept based on Zn-doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthesized, their chemical composition was analyzed, and their nutrient release was studied in buffered solutions with different pH values. Uptake of Zn by barley (Hordeum vulgare cv. Antonia) was evaluated in short- (8 weeks), medium- (11 weeks), and long-term (28 weeks) experiments in quartz sand and in a calcareous soil enriched with Zn-doped Mg-Fe-LDHs. The Zn release rate of the Zn-doped Mg-Fe-LDHs was described by a first-order kinetics equation showing maximum release at pH 5.2, reaching approximately 45% of the total Zn content. The Zn concentrations in the plants receiving the LDHs were between 2- and 9.5-fold higher than those in plants without Zn addition. A positive effect of the LDHs was also found in soil. This work documents the long-term Zn release capacity of LDHs complying with a release-on-demand behavior and serves as proof-of-concept that Zn-doped Mg-Fe-LDHs can be used as Zn fertilizers.

  10. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    PubMed

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  11. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure.

    PubMed

    Dandley, Erinn C; Taylor, Alexia J; Duke, Katherine S; Ihrie, Mark D; Shipkowski, Kelly A; Parsons, Gregory N; Bonner, James C

    2016-06-08

    Atomic layer deposition (ALD) is a method for applying conformal nanoscale coatings on three-dimensional structures. We hypothesized that surface functionalization of multi-walled carbon nanotubes (MWCNTs) with polycrystalline ZnO by ALD would alter pro-inflammatory cytokine expression by human monocytes in vitro and modulate the lung and systemic immune response following oropharyngeal aspiration in mice. Pristine (U-MWCNTs) were coated with alternating doses of diethyl zinc and water over increasing ALD cycles (10 to 100 ALD cycles) to yield conformal ZnO-coated MWCNTs (Z-MWCNTs). Human THP-1 monocytic cells were exposed to U-MWCNTs or Z-MWCNTs in vitro and cytokine mRNAs measured by Taqman real-time RT-PCR. Male C57BL6 mice were exposed to U- or Z-MWCNTs by oropharyngeal aspiration (OPA) and lung inflammation evaluated at one day post-exposure by histopathology, cytokine expression and differential counting of cells in bronchoalveolar lavage fluid (BALF) cells. Lung fibrosis was evaluated at 28 days. Cytokine mRNAs (IL-6, IL-1β, CXCL10, TNF-α) in lung, heart, spleen, and liver were quantified at one and 28 days. DNA synthesis in lung tissue was measured by bromodeoxyuridine (BrdU) uptake. ALD resulted in a conformal coating of MWCNTs with ZnO that increased proportionally to the number of coating cycles. Z-MWCNTs released Zn(+2) ions in media and increased IL-6, IL-1β, CXCL10, and TNF-α mRNAs in THP-1 cells in vitro. Mice exposed to Z-MWCNTs by OPA had exaggerated lung inflammation and a 3-fold increase in monocytes and neutrophils in BALF compared to U-MWCNTs. Z-MWCNTs, but not U-MWCNTs, induced IL-6 and CXCL10 mRNA and protein in the lungs of mice and increased IL-6 mRNA in heart and liver. U-MWCNTs but not Z-MWCNTs stimulated airway epithelial DNA synthesis in vivo. Lung fibrosis at 28 days was not significantly different between mice treated with U-MWCNT or Z-MWCNT. Pulmonary exposure to ZnO-coated MWCNTs produces a systemic acute phase response that involves the release of Zn(+2), lung epithelial growth arrest, and increased IL-6. ALD functionalization with ZnO generates MWCNTs that possess increased risk for human exposure.

  12. Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean.

    PubMed

    Kang, S-M; Radhakrishnan, R; You, Y-H; Khan, A-L; Lee, K-E; Lee, J-D; Lee, I-J

    2015-09-01

    This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu-stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma-aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal-affected plants. Co-treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...

    EPA Pesticide Factsheets

    Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st

  14. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals.

    PubMed

    Pedron, F; Petruzzelli, G; Barbafieri, M; Tassi, E

    2009-05-01

    In microcosm experiments, the use of inorganic and organic amendments has been studied as potential agents to reduce heavy metal bioavailability in an acidic soil highly contaminated by Cu, Zn and Ni, that has to be remediated by phytoremediation. The concentrations of heavy metals in the original soil (O-Soil) produced phytotoxic effects with a strong reduction in biomass yield that hinder the utilization of this technology. To overcome phytotoxicity the use of three immobilizing agents was evaluated. The results obtained showed that all the strategies decreased the mobile fractions of heavy metals in soil and increased the metal removal efficiency. In the case of Brassica juncea the best results for Zn and Ni were obtained after zeolites addition (Z-Soil) with an increase of about 6 times with respect to the value found in the O-Soil. In the case of Cu, the more efficient treatment was Ca(OH)(2) addition (Ca-Soil). The B. juncea plants accumulated Cu amounts 8 times greater than in the O-Soil. For this metal, relevant results were obtained also with compost, that increased the amount of Cu in the plants of 7 times with respect to the O-Soil. Similar results were obtained with Helianthus annuus the highest Zn and Ni accumulation was detected in the Z-Soil and compost-treated soils (C-Soil), with an increase of nearly 11 times with respect to the accumulation in the O-Soil. In the case of Cu the highest increase of total uptake was found in the C-Soil: 28 times higher than in the O-Soil. Total accumulation in Poa annua plants showed the highest removal efficiency in the Z-Soil for all metals. The values obtained increased of 4, 11 and 12 times for Cu, Zn and Ni, respectively.

  15. Zn2+ currents are mediated by calcium-permeable AMPA/Kainate channels in cultured murine hippocampal neurones

    PubMed Central

    Jia, Yousheng; Jeng, Jade-Ming; Sensi, Stefano L; Weiss, John H

    2002-01-01

    Permeation of the endogenous cation Zn2+ through calcium-permeable AMPA/kainate receptor-gated (Ca-A/K) channels might subserve pathological and/or physiological signalling roles. Voltage-clamp recording was used to directly assess Zn2+ flux through these channels on cultured murine hippocampal neurones. Ca-A/K channels were present in large numbers only on a minority of neurones (Ca-A/K(+) neurones), many of which were GABAergic. The presence of these channels was assessed in whole-cell or outside-out patch recording as the degree of inward rectification of kainate-activated currents, quantified via a rectification index (RI = G+40/G-60), which ranged from <0.4 (strongly inwardly rectifying) to >2 (outwardly rectifying). The specificity of a low RI as an indication of robust Ca-A/K channel expression was verified by two other techniques, kainate-stimulated cobalt-uptake labelling, and fluorescence imaging of kainate-induced increases in intracellular Ca2+. In addition, the degree of inward rectification of kainate-activated currents correlated strongly with the positive shift of the reversal potential (Vrev) upon switching to a sodium-free, 10 mm Ca2+ buffer. With Zn2+ (3 mm) as the only permeant extracellular cation, kainate-induced inward currents were only observed in neurones that had previously been identified as Ca-A/K(+). A comparison between the Vrev observed with 3 mm Zn2+ and that observed with Ca2+ as the permeant cation revealed a PCa/PZn of ≈1.8. Inward currents recorded in 3 mm Ca2+ were unaffected by the addition of 0.3 mm Zn2+, while microfluorimetrically detected increases in the intracellular concentration of Zn2+ in Ca-A/K(+) neurones upon kainate exposure in the presence of 0.3 mm Zn2+ were only mildly attenuated by the addition of 1.8 mm Ca2+. These results provide direct evidence that Zn2+ can carry currents through Ca-A/K channels, and that there is little interference between Ca2+ and Zn2+ in permeating these channels. PMID:12181280

  16. The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L.

    PubMed

    Dąbrowska, G; Hrynkiewicz, K; Trejgell, A; Baum, C

    2017-07-03

    The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment, the strains were used for single Ba, Pf, Va or combined Ba + Pf, Ba + Va, Pf + Va, and Ba + Pf + Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it. However, single inoculation with Ba significantly increased the chlorophyll content and K + concentration in the leaves. The inoculation of rapeseed with Ba and Va strains was indicated to be the most promising combination for phytoextraction of Cd and Zn from contaminated soil. Combined inoculation with Pf+Va and Pf + Ba+Va significantly decreased the concentration of heavy metals in the roots of rapeseed. We conclude that suitable combinations of PGPR can control the metal uptake of B. napus, selectively increasing either metal extraction or metal stabilization in the rhizosphere and offering promising applications in soil remediation.

  17. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties.

    PubMed

    Botas, Juan A; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Orcajo, M Gisela

    2010-04-20

    Partial isomorphic substitution of Zn in IRMOF metal clusters by cobalt ions is described for the first time. Specifically, different numbers of Co(2+) ions have been incorporated during solvothermal crystallization into the Zn-based MOF-5 (IRMOF-1) framework, which is one of the most studied MOF materials. The amount of Zn that can be substituted seems to be limited, being no more than 25% of total metal content, that is, no more than one Co atom inside every metal cluster formed by four transition-metal ions, on average. Several characterization techniques, including X-ray diffraction, DR UV-visible spectroscopy, N(2) adsorption isotherms, and thermogravimetrical analysis, strongly support the effective incorporation of Co into the material framework. As-synthesized CoMOF-5 has cobalt ions in octahedral coordination, changing to tetrahedral by simple evacuation, presumably by the removal of two diethylformamide molecules per Co ion. Moreover, the H(2), CH(4), and CO(2) uptake of MOF-5 materials systematically increases with the Co content, particularly at high pressure. Such an increase is moderate anyway, considering that Co is incorporated into unexposed metal sites that are less accessible to gas molecules.

  18. Localized Metal Solubilization in the Rhizosphere of Salix smithiana upon Sulfur Application

    PubMed Central

    2015-01-01

    A metal-accumulating willow was grown under greenhouse conditions on a Zn/Cd-polluted soil to investigate the effects of sulfur (S0) application on metal solubility and plant uptake. Soil porewater samples were analyzed 8 times during 61 days of growth, while DGT-measured metal flux and O2 were chemically mapped at selected times. Sulfur oxidation resulted in soil acidification and related mobilization of Mn, Zn, and Cd, more pronounced in the rooted compared to bulk soil. Chemical imaging revealed increased DGT-measured Zn and Cd flux at the root-soil interface. Our findings indicated sustained microbial S0 oxidation and associated metal mobilization close to root surfaces. The localized depletion of O2 along single roots upon S0 addition indicated the contribution of reductive Mn (oxy)hydoxide dissolution with Mn eventually becoming a terminal electron acceptor after depletion of O2 and NO3–. The S0 treatments increased the foliar metal concentrations (mg kg–1 dwt) up to 10-fold for Mn, (5810 ± 593), 3.3-fold for Zn (3850 ± 87.0), and 1.7-fold for Cd (36.9 ± 3.35), but had no significant influence on biomass production. Lower metal solubilization in the bulk soils should translate into reduced leaching, offering opportunities for using S0 as environmentally favorable amendment for phytoextraction of metal-polluted soils. PMID:25782052

  19. A novel chitosan-polyethylene oxide nanofibrous mat designed for controlled co-release of hydrocortisone and imipenem/cilastatin drugs.

    PubMed

    Fazli, Yousef; Shariatinia, Zahra; Kohsari, Iraj; Azadmehr, Amirreza; Pourmortazavi, Seied Mahdi

    2016-11-20

    Antimicrobial chitosan-polyethylene oxide (CS-PEO) nanofibrous mats containing ZnO nanoparticles (NPs) and hydrocortisone-imipenem/cilastatin-loaded ZnO NPs were produced by electrospinning technique. The FE-SEM images displayed that the spherical ZnO NPs were ∼70-200nm in size and the CS-PEO nanofibers were very uniform and free of any beads which had average diameters within the range of ∼20-130nm. For all of the nanofibrous mats, the water uptakes were the highest in acidic medium but they were decreased in the buffer and the least swellings were obtained in the alkaline environment. The drug incorporated mat preserved its bactericidal activity even after it was utilized in the release experiment for 8days in the PBS buffer. The hydrocortisone release was increased to 82% within first 12h while the release rate of imipenem/cilastatin was very much slower so that 20% of the drug was released during this period of time suggesting this nanofibrous mat is very suitable to inhibit inflammation (by hydrocortisone) and infection (using imipenem/cilastatin antibiotic and ZnO NPs) principally for the wound dressing purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  1. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.

    PubMed

    Alaraby, Mohamed; Annangi, Balasubramanyam; Hernández, Alba; Creus, Amadeu; Marcos, Ricard

    2015-10-15

    This study planned to determine the range of biological effects associated with ZnO-NP exposure using Drosophila melanogaster as an in vivo model. In addition, ZnCl2 was used to determine the potential role of Zn ions alone. Toxicity, internalization through the intestinal barrier, gene expression changes, ROS production, and genotoxicity were the end-points evaluated. No toxicity or oxidative stress induction was observed in D. melanogaster larvae, whether using ZnO-NPs or ZnCl2. Internalization of ZnO-NPs through the intestinal barrier was observed. No significant changes in the frequency of mutant clones (wing-spot test) or percentage of DNA in tail (comet assay) were observed although significant changes in Hsp70 and p53 gene expression were detected. Our study shows that ZnO-NPs do not induce toxicity or genotoxicity in D. melanogaster, although uptake occurs and altered gene expression is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Uptake of Al, As, Cr, Cd, Cu, Fe, Mn, Ni, Pb, Sr, and Zn in native wheatgrasses, wildryes, and bluegrass on three metal-contaminated soils from Montana

    USDA-ARS?s Scientific Manuscript database

    One of the biggest challenges to successfully phytoremediate contaminated mineland soils is the identification of native plants that possess a broad adaptation to ecological sites and either exclude or uptake heavy metals of interest. This study evaluated forage concentrations of aluminum (Al), ars...

  3. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a given environment.

  4. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM)

    USGS Publications Warehouse

    Wallace, W.G.; Lee, B.-G.; Luoma, S.N.

    2003-01-01

    Many aspects of metal accumulation in aquatic invertebrates (i.e. toxicity, tolerance and trophic transfer) can be understood by examining the subcellular partitioning of accumulated metal. In this paper, we use a compartmentalization approach to interpret the significance of metal, species and size dependence in the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis. Of special interest is the compartmentalization of metal as metal-sensitive fractions (MSF) (i.e. organelles and heat-sensitive proteins, termed 'enzymes' hereafter) and biologically detoxified metal (BDM) (i.e. metallothioneins [MT] and metal-rich granules [MRG]). Clams from San Francisco Bay, CA, were exposed for 14 d to seawater (20??? salinity) containing 3.5 ??g l-1 Cd and 20.5 ??g l-1 Zn, including 109Cd and 65Zn as radiotracers. Uptake was followed by 21 d of depuration. The subcellular partitioning of metal within clams was examined following exposure and loss. P. amurensis accumulated ???22x more Cd and ???2x more Zn than M. balthica. MT played an important role in the storage of Cd in P. amurensis, while organelles were the major site of Zn accumulation. In M. balthica, Cd and Zn partitioned similarly, although the pathway of detoxification was metal-specific (MRG for Cd; MRG and MT for Zn). Upon loss, M. balthica depurated ???40% of Cd with Zn being retained; P. amurensis retained Cd and depurated Zn (???40%). During efflux, Cd and Zn concentrations in the MSF compartment of both clams declined with metal either being lost from the animal or being transferred to the BDM compartment. Subcellular compartmentalization was also size-dependent, with the importance of BDM increasing with clam size; MSF decreased accordingly. We hypothesized that progressive retention of metal as BDM (i.e. MRG) with age may lead to size dependency of metal concentrations often observed in some populations of M. balthica.

  5. Effects of zinc oxide nanoparticles on Kupffer cell phagosomal motility, bacterial clearance, and liver function

    PubMed Central

    Watson, Christa Y; Molina, Ramon M; Louzada, Andressa; Murdaugh, Kimberly M; Donaghey, Thomas C; Brain, Joseph D

    2015-01-01

    Background Zinc oxide engineered nanoparticles (ZnO ENPs) have potential as nanomedicines due to their inherent properties. Studies have described their pulmonary impact, but less is known about the consequences of ZnO ENP interactions with the liver. This study was designed to describe the effects of ZnO ENPs on the liver and Kupffer cells after intravenous (IV) administration. Materials and methods First, pharmacokinetic studies were conducted to determine the tissue distribution of neutron-activated 65ZnO ENPs post-IV injection in Wistar Han rats. Then, a noninvasive in vivo method to assess Kupffer cell phagosomal motility was employed using ferromagnetic iron particles and magnetometry. We also examined whether prior IV injection of ZnO ENPs altered Kupffer cell bactericidal activity on circulating Pseudomonas aeruginosa. Serum and liver tissues were collected to assess liver-injury biomarkers and histological changes, respectively. Results We found that the liver was the major site of initial uptake of 65ZnO ENPs. There was a time-dependent decrease in tissue levels of 65Zn in all organs examined, refecting particle dissolution. In vivo magnetometry showed a time-dependent and transient reduction in Kupffer cell phagosomal motility. Animals challenged with P. aeruginosa 24 hours post-ZnO ENP injection showed an initial (30 minutes) delay in vascular bacterial clearance. However, by 4 hours, IV-injected bacteria were cleared from the blood, liver, spleen, lungs, and kidneys. Seven days post-ZnO ENP injection, creatine phosphokinase and aspartate aminotransferase levels in serum were significantly increased. Histological evidence of hepatocyte damage and marginated neutrophils were observed in the liver. Conclusion Administration of ZnO ENPs transiently inhibited Kupffer cell phagosomal motility and later induced hepatocyte injury, but did not alter bacterial clearance from the blood or killing in the liver, spleen, lungs, or kidneys. Our data show that diminished Kupffer cell organelle motion correlated with ZnO ENP-induced liver injury. PMID:26170657

  6. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-06-25

    Biodegradable nanocomposites were prepared by adding ZnO nanoparticles to bacterial polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via solution casting technique. The morphology, thermal, mechanical, antibacterial, barrier, and migration properties of the nanocomposites were analyzed. The nanoparticles were uniformly dispersed within PHBV without the aid of coupling agents, and acted effectively as nucleating agents, raising the crystallization temperature and the level of crystallinity of the matrix while decreasing its crystallite size. A gradual rise in thermal stability was found with increasing ZnO loading, since the nanofillers hinder the diffusion of volatiles generated during the decomposition process. The nanocomposites displayed superior stiffness, strength, toughness, and glass transition temperature, whereas they displayed reduced water uptake and oxygen and water vapor permeability compared to the neat biopolymer, related to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions. At an optimal concentration of 4.0 wt % ZnO, the tensile strength and Young's and storage moduli showed a maximum that coincided with the highest crystallinity and the best barrier properties. PHBV/ZnO films showed antibacterial activity against human pathogen bacteria, and the effect on Escherichia coli was stronger than on Staphylococcus aureus. The overall migration levels of the nanocomposites in both nonpolar and polar simulants dropped upon increasing nanoparticle content, and were well below the limits required by the current normative for food packaging materials. These sustainable nanomaterials with antimicrobial function are very promising to be used as containers for beverage and food products as well as for disposable applications like cutlery or overwrap films.

  7. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.

    PubMed

    Luo, Chunling; Shen, Zhenguo; Li, Xiangdong; Baker, Alan J M

    2006-06-01

    Chemically enhanced phytoextraction is achieved by the application of chelates to soils. Using pot experiments, the effect of the combined application of EDTA and EDDS on the uptake of Cu, Pb, Zn and Cd by Zea mays L. was studied. Among the tested application ratios of 1:1, 1:2, and 2:1 (EDTA/EDDS), 2:1 of EDTA:EDDS was the most efficient ratio for increasing the concentrations of Cu, Pb, Zn and Cd in the shoots. The combined application of 3.33 mmol kg(-1) soil of EDTA+1.67 mmol kg(-1) soil of EDDS produced 650 mg kg(-1) of Pb in the shoots, which was 2.4 and 5.9 times the concentration of Pb in the shoots treated with 5 mmol kg(-1) of EDTA and EDDS alone, respectively. The total phytoextraction of Pb reached 1710 microg kg(-1) soil, which was 2.1 and 6.1 times the total Pb from 5 mmol kg(-1) EDTA and EDDS alone, respectively. The combined application of EDTA and EDDS also significantly increased the translocation of Pb from the roots to the shoots. The mechanism of enhancing the phytoextraction of Pb by the combined application of EDTA+EDDS did not involve a change in the pH of the soil. The increase in the phytoextraction of Pb by the shoots of Z. mays L. was more pronounced than the increase of Pb in the soil solution with the combined application of EDTA and EDDS. It was thought that the major role of EDDS might be to increase the uptake and translocation of Pb from the roots to the shoots of plants.

  8. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France.

    PubMed

    Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Quantitative proteomics of heavy metal exposure in Arabidopsis thaliana reveals alterations in one-carbon metabolism enzymes upon exposure to zinc.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Miranda-Vergara, María Cristina; Pantoja, Omar

    2014-12-05

    Plant zinc (Zn) homeostasis must be tightly regulated as the requirement for this micronutrient necessitates its uptake. However, excessive Zn can lead to toxicity and the plant must respond rapidly and effectively within its capacity to minimize damage. To detect mechanisms that may be important for coping with excess Zn we carried out a quantitative proteomics approach using 2D-DIGE to identify Zn-responsive proteins in microsomal fractions from leaves of 4day, 200μM Zn-treated, Arabidopsis thaliana plants. Of the eight proteins which showed significant changes in abundance in the Zn-treated samples and which met all of the selection criteria following statistical analysis, six were successfully identified by LC-MS/MS with 2 or more unique peptides. Three of the proteins were found to be involved in the one-carbon metabolism pathway; including glycine decarboxylase P protein, serine hydroxymethyltransferase (SHMT) and methionine synthase, all of which showed reduced abundance in the Zn-treated samples. Western blot analysis confirmed the decrease in SHMT, while changes in metal tolerance protein indicated plants were most likely actively sequestering Zn. Interestingly, excess Zn led to increased petiole length, a phenotype which may reflect the reduced levels of methionine, a key product of the one-carbon metabolism pathway. Metal contamination is becoming an increasingly common environmental problem. High levels of zinc can be found in certain soils naturally or as a result of long-term anthropogenic activity which leads to its accumulation; i.e. use of fertilizers or industrial waste. The study of metal tolerant plants, particularly those classified as hyperaccumulators has been driven by the potential use of these plants for bioremediation purposes. However, the effects of heavy metal exposure on sensitive plants and the different cellular processes that are affected have received significantly less attention. We are interested in identifying proteins in A. thaliana that are induced as a result of exposure to subtoxic levels of heavy metals with the aim of discovering novel participants in heavy metal stress and adaptation. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Metal uptake of Nerium oleander from aerial and underground organs and its use as a biomonitoring tool for airborne metallic pollution in cities.

    PubMed

    Vázquez, S; Martín, A; García, M; Español, C; Navarro, E

    2016-04-01

    The analysis of the airborne particulate matter-PM-incorporated to plant leaves may be informative of the air pollution in the surroundings, allowing their use as biomonitoring tools. Regarding metals, their accumulation in leaves can be the result of both atmospheric incorporation of metallic PM on aboveground plant organs and root uptake of soluble metals. In this study, the use of Nerium oleander leaves as a biomonitoring tool for metallic airborne pollution has been assessed. The metal uptake in N. oleander was assessed as follows: (a) for radicular uptake by irrigation with airborne metals as Pb, Cd, Cr, Ni, As, Ce and Zn (alone and in mixture) and (b) for direct leave exposure to urban PM. Plants showed a high resistance against the toxicity of metals under both single and multiple metal exposures. Except for Zn, the low values of translocation and bioaccumulation factors confirmed the excluder behaviour of N. oleander with respect to the metals provided by the irrigation. For metal uptake from airborne pollution, young plants grown under controlled conditions were deployed during 42 days in locations of the city of Zaragoza (700,000 h, NE Spain), differing in their level of traffic density. Samples of PM2.5 particles and the leaves of N. oleander were simultaneously collected weekly. High correlations in Pb concentrations were found between leaves and PM2.5; in a lesser extent, correlations were also found for Fe, Zn and Ti. Scanning electron microscopy showed the capture of airborne pollution particles in the large and abundant substomatal chambers of N. oleander leaves. Altogether, results indicate that N. Oleander, as a metal resistant plant by metal exclusion, is a suitable candidate as a biomonitoring tool for airborne metal pollution in urban areas.

  11. Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil.

    PubMed

    Lepp, Nicholas W; Madejón, Paula

    2007-01-01

    Vegetation that develops spontaneously on metal-contaminated soils presents an opportunity to evaluate both metal bioavailability and the risks posed to biota. The behavior of Cd and Zn in the species of a spontaneously developed woodland, colonizing a canal embankment, has been investigated. Nitric-acid-extractable metal concentrations in the sediment-derived substrate ranged between 5.0 to 376 mg kg(-1)dry wt. Cd and 83.0 to 784 mg kg(-1)dry wt. Zn. The woodland is dominated by Willow (Salix) species. Salix caprea selectively accumulated Cd in all stem tissues, in contrast to S. viminalis, which regulated tissue Cd content. Both species showed an effective regulation of tissue Zn. Cadmium uptake by S. caprea was correlated with differences in soil pH, while Zn uptake was not. There was no relationship between tissue metal concentrations and soil metal nitric acid-extractable concentrations. Other aspects of ecosystem function appeared unaffected by the elevated Cd flux in S. caprea; leaf litter organisms present represented all major groups and there was no accumulation of organic matter. The woodland represents a potentially sustainable option for remediating a low value site with difficult access that does not involve removal of the contaminated material to a landfill or making a permanent inert cover.

  12. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils.

    PubMed

    Hussain Lahori, Altaf; Zhang, Zengqiang; Guo, Zhanyu; Mahar, Amanullah; Li, Ronghua; Kumar Awasthi, Mukesh; Ali Sial, Tanveer; Kumbhar, Farhana; Wang, Ping; Shen, Feng; Zhao, Junchao; Huang, Hui

    2017-11-01

    This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (p< 0.05) significantly reduced the DTPA-extractable Pb 97.33, Cd 68.06 and Cu 91.11% with L+TB, L+CB, L+Z in FX-LC soil and Zn 87.12% respectively, with L+CB into TG-C soil. Consequently, the application of lime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop. Copyright © 2017. Published by Elsevier Inc.

  13. Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilising efficiency.

    PubMed

    Friesl-Hanl, Wolfgang; Platzer, Klaus; Riesing, Johann; Horak, Othmar; Waldner, Georg; Watzinger, Andrea; Gerzabek, Martin H

    2017-01-15

    Extensive contamination of grassland with cadmium (Cd), lead (Pb) and zinc (Zn) is a typical problem close to Pb/Zn smelter sites. The entry of Cd or Pb into the food chain is very likely, as are toxicity effects of Zn in plants. Previous promising results from pot and field experiments showed the high potential of using amendments for immobilisation to reduce metal input into the food chain via crops grown on smelter-contaminated soils at Arnoldstein (Austria) (Friesl et al., 2006). The aim of this study was to find a practical solution for large-scale contaminations in hilly regions that avoids erosion. Field application of amendments without destroying the vegetation cover (grassland) involved two approaches: (a) slurrying (Slu) the amendments into cut gaps in the vegetation cover and (b) injecting (Inj) the amendments through the vegetation cover. Here, we investigate the immobilising and long-term efficiency of treatments [gravel sludge (2.5%) + red mud (0.5%) (GS + RM)]. Risk assessment was based on soil, plant and water samples taken over a period of 10 years. Ammonium-nitrate-extractable Cd was reduced up to 50%, Pb up to 90%, and Zn over 90%. Plant uptake into the grass mixture and narrow leaf plantain was significantly reduced for Cd, Pb, and Zn. Harvesting early in vegetation period can further reduce uptake and meet the threshold for fodder crops. The reduction of these elements in the seepage water in 24 samplings within these 10 years reached 40%, 45% and 50%, respectively. Immobilisation increased microbial biomass and decreased human bioaccessibility for Pb. Our investigation of the long-term efficiency of GS + RM in all treatments shows that the Slu and Inj amendment application techniques have promising potential as a realistic and practical method for extensively contaminated hilly land. Slurrying performed best. We conclude that grassland remediation methods involving tillage are counterproductive from the viewpoint of bioaccessibility and soil protection and therefore should be avoided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Leaf elemental analysis in mycorrhizal post oak seedlings

    NASA Astrophysics Data System (ADS)

    Boling, B. C.; Naab, F. U.; Smith, D.; Duggan, J. L.; McDaniel, F. D.

    2006-09-01

    Growth and element assimilation was investigated in the leaves of post oak seedlings exposed to four different treatment combinations of fertilization and ectomycorrhizal inoculation. Element concentration was analyzed via particle-induced X-ray emission spectrometry (PIXE). PIXE detected 10 of the 13 essential macro and micronutrients: P, S, Mg, Ca, K, Cu, Zn, Mn, Fe and Cl. Mean growth and dry weight was significantly different across the treatment groups as well as the mean concentration of Mg, Al, S, K, Ca, Fe, Cu and Zn. The data suggest that fertilization rather than mycorrhizal inoculation had a stronger influence on nutrient uptake. This study is the first to analyze element concentration in post oak and to investigate the potential benefits of mycorrhizal symbiosis in post oak seedlings in terms of nutrient uptake.

  15. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  16. Isotopic insights into biological regulation of zinc in contaminated systems

    USGS Publications Warehouse

    Wanty, Richard B.; Balistrieri, Laurie S.; Wesner, Jeff S.; Walters, David; Schmidt, Travis S.; Podda, Francesca; De Giudici, G.; Stricker, Craig A.; Kraus, Johanna M.; Lattanzi, Pierfranco; Wolf, Ruth E.; Cidu, R.

    2015-01-01

    Aquatic organisms use a variety of biogeochemical reactions to regulate essential and non-essential trace metals. Many of these mechanisms can lead to isotopic fractionation, thus measurement of metal isotopes may yield insights into the processes by which organisms respond to metal exposure. We illustrate these concepts with two case studies, one involving an intra- and the other an extra-cellular mechanism of Zn sequestration. In the first study, the mayfly Neocloeon triangulifer was grown in the laboratory, and fed a diet of Zn-doped diatoms at Zn levels exceeding the requirements for normal mayfly life functions. The N. triangulifer larvae consumed the diatoms and retained their Zn isotopic signature. Upon metamorphosis, the subimago life stage lost Zn mass either in the exuvia or by excretion, and the Zn retained was isotopically enriched. Thus, Zn uptake is nonfractionating, but Zn regulation favors the lighter isotope. Thus the Zn remaining in the subimago was isotopically heavier. In the second study, Zn was adsorbed on the cell walls and exopolysaccharide secretions of cyanobacteria, which favored the heavier Zn isotope. Continued adsorption eventually resulted in nucleation and biomineralization of hydrozincite {Zn5(CO3)2(OH)6}. These case studies demonstrate the utility of Zn isotopes to provide insights into how aquatic insects respond to metal exposure.

  17. Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells.

    PubMed

    Shao, Jingwei; Dai, Yongchao; Zhao, Wenna; Xie, Jingjing; Xue, Jinping; Ye, Jianhui; Jia, Lee

    2013-03-01

    Zinc(II)-phthalocyanine (ZnPc) is a metal photosensitizer. In the present study, we formulated the poorly-soluble ZnPc in Cremophor EL solution to enhance its solubility and determined its intracellular distribution and mechanisms of action on human hepatocellular carcinoma HepG2 cells. ZnPc uptake by the cells reached a plateau by 8h. ZnPc primarily located in mitochondria, lysosome and endoplasmic reticulum. The concentration-growth inhibition curves of ZnPc on the cell lines were pharmacodynamically enhanced by 10-50 folds by irradiation. Once irradiated, ZnPc produced significant amount of reactive oxygen species (ROS), activated caspase-3 and caspase-9, arrested cell cycle mainly at G2/M stage, and decreased membrane potential (ΔΨm) of HepG2 cells. In conclusion, the present study first elucidated cellular and molecular mechanisms of ZnPc on HepG2 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment

    NASA Astrophysics Data System (ADS)

    Brunetti, Virgilio; Chibli, Hicham; Fiammengo, Roberto; Galeone, Antonio; Malvindi, Maria Ada; Vecchio, Giuseppe; Cingolani, Roberto; Nadeau, Jay L.; Pompa, Pier Paolo

    2012-12-01

    We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these two nanomaterials. Toxicity of CdSe/ZnS QDs appears to be related to the release of poisonous Cd2+ ions and indeed we show that there is leaching of Cd2+ ions from the particle core despite the two-layer ZnS shell. Since an almost identical amount of In(iii) ions is observed to leach from the core of InP/ZnS QDs, their very low toxicity as revealed in this study hints at a much lower intrinsic toxicity of indium compared to cadmium.

  19. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment.

    PubMed

    Brunetti, Virgilio; Chibli, Hicham; Fiammengo, Roberto; Galeone, Antonio; Malvindi, Maria Ada; Vecchio, Giuseppe; Cingolani, Roberto; Nadeau, Jay L; Pompa, Pier Paolo

    2013-01-07

    We show that water soluble InP/ZnS core/shell QDs are a safer alternative to CdSe/ZnS QDs for biological applications, by comparing their toxicity in vitro (cell culture) and in vivo (animal model Drosophila). By choosing QDs with comparable physical and chemical properties, we find that cellular uptake and localization are practically identical for these two nanomaterials. Toxicity of CdSe/ZnS QDs appears to be related to the release of poisonous Cd(2+) ions and indeed we show that there is leaching of Cd(2+) ions from the particle core despite the two-layer ZnS shell. Since an almost identical amount of In(III) ions is observed to leach from the core of InP/ZnS QDs, their very low toxicity as revealed in this study hints at a much lower intrinsic toxicity of indium compared to cadmium.

  20. [Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types].

    PubMed

    Zhao, Bing; Shen, Li-bo; Cheng, Miao-miao; Wang, Song-feng; Wu, Long-hua; Zhou, Shou-biao; Luo, Yong-ming

    2011-10-01

    A pot experiment with heavy metals- contaminated black soil from Heilongjiang Province, alluvial soil from Henan Province, and paddy soil from Zhejiang Province was conducted to study the effects of intercropping Sedum plumbizincicola in wheat growth season under wheat (Triticum aestivum) - rice (Oryza sativa) rotation on the growth of the crops and their heavy metals uptake, aimed to explore the feasibility of simultaneous grain production and heavy metals-contaminated soil phytoremediation in main food crop production areas of this country. Comparing with monoculture T. aestivum, intercropping S. plumbizincicola increased the soil NaNO3 -extractable Zn and Cd significantly, with the increment of extractable Zn in test paddy soil, alluvial soil, and black soil being 55%, 32% and 110%, and that of extractable Cd in test paddy soil and black soil being 38% and 110%, respectively. The heavy metals concentration in T. aestivum shoots under intercropping S. plumbizincicola was 0.1-0.9 times higher than that under monoculture T. aestivum, but the intercropping had little effects on the rice growth and its heavy metals uptake. Though the Cd concentration in rice grain after S. plumbizincicola planting was still higher than 0.2 mg kg(-1) (the limit of Cd in food standard), it presented a decreasing trend, as compared with that after monoculture T. aestivum. Therefore, intercropping S. plumbizincicola in wheat growth season under wheat-rice rota- tion could benefit the phytoremediation of heavy metals-contaminated soil, and decrease the food-chain risk of rotated rice.

  1. Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics.

    PubMed

    Song, Wei-Chao; Cui, Xun-Zhe; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2016-10-11

    A self-catenated Zn(II)-organic framework formulated as [Zn 2 (3,3'-bpeab)(oba) 2 ]·DMF (1) exhibiting a six-connected 4 4 ·6 10 ·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3'-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3'-bpeab) and 4,4'-oxybis-benzoic acid (H 2 oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO 2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media.

  2. Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics

    PubMed Central

    Song, Wei-Chao; Cui, Xun-Zhe; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2016-01-01

    A self-catenated Zn(II)-organic framework formulated as [Zn2(3,3′-bpeab)(oba)2]·DMF (1) exhibiting a six-connected 44·610·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3′-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3′-bpeab) and 4,4′-oxybis-benzoic acid (H2oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media. PMID:27725711

  3. Unravelling the role of zooxanthellae in the uptake and depuration of an essential metal in Exaiptasia pallida; an experiment using a model cnidarian.

    PubMed

    Hardefeldt, Jannah M; Reichelt-Brushett, Amanda J

    2015-07-15

    Coral skeletons record historical trace metal levels in the environment, however, the use of coral skeletal records for biomonitoring studies mostly fail to consider the influence of metal regulation by the living components of coral and subsequent incorporation into the skeleton. This study presents Exaiptasia pallida as a representative of the living components of coral and shows metal partitioning between the tissue and zooxanthellae after chronic exposure to Zn. A strong tendency for preferential accumulation in the zooxanthellae occurred after 32 days exposure and Zn concentrations in tissue and zooxanthellae were 123.3±0.7 mg kg(-1) and 294.9±8.5 respectively. This study shows zooxanthellae density plays an important role in controlling Zn loading in whole anemones and must be considered when investigating metal uptake and loading in zooxanthellate organisms. Further studies that investigate links between aragonite deposition rates and zooxanthellae density and incorporation pathways of metals into skeleton are warranted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 5-fold increase of hydrogen uptake in MOF74 through linker decorations

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Zuluaga, S.; Harrison, D.; Welchman, E.; Arter, C.

    We present ab initio results for linker decorations in Mg-MOF74-i.e. attaching various metals  = Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker-creating new strong adsorption sites and thus maximizing small molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening we chose metals that bind favorably to the linker and further investigate adsorption of H2, CO2, and H2O for  = Li, Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the MOF unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a 5-fold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular-where the gravimetric hydrogen density increases from 1 . 63 mass% to 7 . 28 mass% and the volumetric density from 15.10 g H2 L-1 to 75.50 g H2 L-1. This work was supported by NSF Grant No. DMR-1145968.

  5. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities

    PubMed Central

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Ma, Fang; Li, Ronghua; Shen, Feng; Wang, Ping; Zhang, Zengqiang

    2017-01-01

    Anthropogenic activities, such as industrial expansion, smelting, mining and agricultural practices, have intensified the discharge of potentially toxic trace elements (PTEs) into the environment, threatening human health and other organisms. To assist phytoremediation by sorghum in soil contaminated by smelters/mines in Feng County (FC), a pot experiment was performed to examine the phytoremediation potential of Streptomyces pactum (Act12) + biochar. The results showed that root uptake of Zn and Cd was reduced by 45 and 22%, respectively, while the uptake of Pb and Cu increased by 17 and 47%, respectively. The shoot and root dry weight and chlorophyll content improved after Act12 inoculation. β-glucosidase, alkaline phosphatase and urease activities in soil improved and antioxidant activities (POD, PAL, PPO) decreased after application of Act12 + biochar due to a reduction in stress from PTEs. BCF, TF and MEA confirmed the role of Act12 in the amelioration and translocation of PTEs. PCA analysis showed a correlation between different factors that affect the translocation of PTEs. Overall, Act12 promoted the phytoremediation of PTEs. Field experiments on Act12 + biochar may provide new insights into the rehabilitation and restoration of soils contaminated by mines. PMID:28387235

  6. In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management.

    PubMed

    Vamerali, Teofilo; Bandiera, Marianna; Mosca, Giuliano

    2011-05-01

    Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3m depth), the former yielding higher contamination (∼30%) in top soil. Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33mgm(-2) of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation. It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Ma, Fang; Li, Ronghua; Shen, Feng; Wang, Ping; Zhang, Zengqiang

    2017-04-01

    Anthropogenic activities, such as industrial expansion, smelting, mining and agricultural practices, have intensified the discharge of potentially toxic trace elements (PTEs) into the environment, threatening human health and other organisms. To assist phytoremediation by sorghum in soil contaminated by smelters/mines in Feng County (FC), a pot experiment was performed to examine the phytoremediation potential of Streptomyces pactum (Act12) + biochar. The results showed that root uptake of Zn and Cd was reduced by 45 and 22%, respectively, while the uptake of Pb and Cu increased by 17 and 47%, respectively. The shoot and root dry weight and chlorophyll content improved after Act12 inoculation. β-glucosidase, alkaline phosphatase and urease activities in soil improved and antioxidant activities (POD, PAL, PPO) decreased after application of Act12 + biochar due to a reduction in stress from PTEs. BCF, TF and MEA confirmed the role of Act12 in the amelioration and translocation of PTEs. PCA analysis showed a correlation between different factors that affect the translocation of PTEs. Overall, Act12 promoted the phytoremediation of PTEs. Field experiments on Act12 + biochar may provide new insights into the rehabilitation and restoration of soils contaminated by mines.

  8. Targeted Cancer Therapy: Correlative Light-Electron Microscopy Shows RGD-Targeted ZnO Nanoparticles Dissolve in the Intracellular Environment of Triple Negative Breast Cancer Cells and Cause Apoptosis with Intratumor Heterogeneity (Adv. Healthcare Mater. 11/2016).

    PubMed

    Othman, Basmah A; Greenwood, Christina; Abuelela, Ayman F; Bharath, Anil A; Chen, Shu; Theodorou, Ioannis; Douglas, Trevor; Uchida, Maskai; Ryan, Mary; Merzaban, Jasmeen S; Porter, Alexandra E

    2016-06-01

    On page 1310 J. S. Merzaban, A. E. Porter, and co-workers present fluorescently labeled RGD-targeted ZnO nanoparticles (NPs; green) for the targeted delivery of cytotoxic ZnO to integrin αvβ3 receptors expressed on triple negative breast cancer cells. Correlative light-electron microscopy shows that NPs dissolve into ionic Zn(2+) (blue) upon uptake and cause apoptosis (red) with intra-tumor heterogeneity, thereby providing a possible strategy for targeted breast cancer therapy. Cover design by Ivan Gromicho. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polyphenol-rich beverages enhance zinc uptake and metallothionein expression in Caco-2 cells.

    PubMed

    Sreenivasulu, Kilari; Raghu, Pullakhandam; Nair, K Madhavan

    2010-05-01

    The effect of red wine (RW), red grape juice (RGJ), green tea (GT), and representative polyphenols on Caco-2 cell (65)Zn uptake was explored. RW, RGJ, and GT enhanced the uptake of zinc from rice matrix. Fractionation of RW revealed that enhancing activity of zinc uptake was exclusively resided in the polyphenol fraction. Among the polyphenols tested, only tannic acid and quercitin stimulated the uptake of zinc while others did not influence the uptake. In tune with these results, only tannic acid and quercitin competed with zinquin (a zinc selective fluorophore) for zinc in vitro. Although all the polyphenols tested appear to enhance the expression of metallothionein (MT), the induction was higher with tannic acid, quercitin, and RW extract. Furthermore, phytic acid abrogated the tannic acid-induced MT expression. These results suggest that polyphenol-rich beverages, tannic acid, and quercitin bind and stimulate the zinc uptake and MT expression in Caco-2 cells.

  10. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils.

    PubMed

    Wang, Chunyan; Alidoust, Darioush; Yang, Xueling; Isoda, Akihiro

    2018-04-15

    Improvements in plant physiological performance by means of biochar application in soils contaminated by multi-elements are determinants of agroecosystem functioning. This study analyzed the effects of bamboo-derived biochar on root nodulation and plant growth in a moderately acidic Andosol (pH = 5.56) contaminated with multi-elements during a 70-day investigation of soybean growth. Bamboo biochar that had been pyrolyzed at a temperature below 500°C was applied to soils at three different and moderately high rates (5%, 10%, and 15%, w/w). Biochar amendment beyond 5% stimulated root nodulation as well as soybean growth. The nodule weight per root system was significantly enhanced by 186% and 243% over the control at the 10% and 15% addition rates, respectively. The primary explanation for these stimulatory effects was attributed to an increase in the K and Mo supplies for plant uptake that was induced by the biochar application, whereas the increased availability of P contributed to a lesser extent. Leaf CO 2 assimilation rate was slightly enhanced at the highest application rate, but this enhancement was not associated with an increase in biomass. The incorporation of biochar into the soil reduced extractable-NH 4 NO 3 Cd, Cu, Mn, Ni, and Zn, but not Pb, regardless of the application dose. This change was accompanied by a significant (P < 0.05) suppression of the uptake od trace elements in soybean shoots at the optimum application rate (10%); the degree of reduction followed this order: Pb>Mn>Cd>Zn>Cu>Ni. The increase in soil pH and the diffusion/adsorption of trace elements onto the biochar may have contributed to the lowering of the concentration of trace elements in the soil as well as in soybean shoots. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake.

    PubMed

    Santi, E; Facchin, G; Faccio, R; Barroso, R P; Costa-Filho, A J; Borthagaray, G; Torre, M H

    2016-02-01

    Xylitol (xylH5) is metabolized via the pentose pathway in humans, but it is unsuitable as an energy source for many microorganisms where it produces a xylitol-induced growth inhibition and disturbance in protein synthesis. For this reason, xylitol is used in the prophylaxis of several infections. In the search of better antimicrobial agents, new copper and zinc complexes with xylitol were synthesized and characterized by analytical and spectrosco pic methods: Na2[Cu3(xylH−4)2]·NaCl·4.5H2O (Cu-xyl) and [Zn4(xylH−4)2(H2O)2]·NaCl·3H2O (Zn-xyl). Both copper and zinc complexes presented higher MIC against Pseudomona aeruginosa than the free xylitol while two different behaviors were found against Candida albicans depending on the complex. The growth curves showed that Cu-xyl presented lower activity than the free ligand during all the studied period. In the case of Znxyl the growth curves showed that the inhibition of the microorganism growth in the first stage was equivalent to that of xylitol but in the second stage (after 18 h) Zn-xyl inhibited more. Besides, the PAE (post agent effect)obtained for Zn-xyl and xyl showed that the recovery from the damage of microbial cells had a delay of 14 and 13 h respectively. This behavior could be useful in prophylaxis treatments for infectious diseases where it is important that the antimicrobial effect lasts longer. With the aim to understand the microbiological activities the analysis of the particle size, lipophilicity and Zn uptake was performed.

  12. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    PubMed

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  14. Effect of Thiols, Zinc, and Redox Conditions on Hg Uptake in Shewanella oneidensis

    DOE PAGES

    Szczuka, Aleksandra; Morel, Francois M. M.; Schaefer, Jeffra K.

    2015-05-18

    Mercury uptake in bacteria represents a key first step in the production and accumulation Of methylmercury in biota. Previous experiments with mercury methylating bacteria have shown that Hg uptake is enhanced by some thiols, in particular cysteine, and that it is an energy-dependent process through heavy Metal TA transporters. In this study, we examine Hg uptake in the nonmethylating facultative aerobe, Shewanella oneidensis, under both anaerobic and aerobic conditions. Our results demonstrate similar characteristics of the Hg uptake system to those of the Hg methylating strains: uptake is enhanced in the presence of some thiols but not others; uptake ismore » energy dependent as evidenced by inhibition by a protonophore; and uptake is inhibited by high Zn(II) concentrations. Initial cellular uptake rates in S. oneidensis were remarkably similar under aerobic and fumarate-reducing conditions. In conclusion, these data support a similar Hg(II) uptake mechanism within the proteobacteria of accidental Hg(II) transport through heavy metal transporters with similar rates of uptake but differences in the ability to take up Hg bound to different thiols.« less

  15. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.

    PubMed

    Moghaddasi, Sahar; Fotovat, Amir; Khoshgoftarmanesh, Amir Hossein; Karimzadeh, F; Khazaei, Hamid Reza; Khorassani, Reza

    2017-10-01

    There is a gap of knowledge for the fate, effects and bioavailability of coated and uncoated ZnO nanoparticles (NPs) in soil. Moreover, little is known about the effects of soil properties on effects of NPs on plants. In this study, the availability ZnO NPs in two soils with different organic matter content (one treated with cow manure (CM) and the other as untreated) was compared with their bulk particles. Results showed that coated and uncoated ZnO NPs can be more bioaccessible than their bulk counterpart and despite their more positive effects at low concentration (< 100mgkg -1 ), they were more phytotoxic for plants compared to the bulk ZnO particles at high concentration (1000mgkg -1 ) in the soil untreated with CM. The concentration of 1000mgkg -1 of ZnO NPs, decreased shoot dry biomass (52%) in the soil untreated with CM but increased shoot dry biomass (35%) in CM-treated soil compared to their bulk counterpart. In general, plants in the CM-treated soil showed higher Zn concentration in their tissues compared with those in untreated soil. The difference in shoot Zn concentration between CM-treated and untreated soil for NPs treatments was more than bulk particles treatment. This different percentage at 100mgkg -1 of bulk particles was 20.6% and for coated and uncoated NPs were 37% and 32%, respectively. Generally, the distribution of ZnO among Zn fractions in soil (exchangeable, the metal bound to carbonates, Fe-Mn oxides, organic matter and silicate minerals and the residual fraction) changed based on applied Zn concentration, Zn source and soil organic matter content. The root tip deformation under high concentration of NPs (1000mgkg -1 treatment ) was observed by light microscopy in plants at the soil untreated with CM. It seems that root tip deformation is one of the specific effects of NPs which in turn inhibits plant growth and nutrients uptake by root. The transmission electron microcopy image showed the aggregation of NPs inside the plant cytoplasm and their accumulation adjacent to the cell membrane. Copyright © 2017. Published by Elsevier Inc.

  16. Differential tolerance of two Gammarus pulex populations transplanted from different metallogenic regions to a polymetal gradient.

    PubMed

    Khan, Farhan R; Irving, Jennifer R; Bury, Nicolas R; Hogstrand, Christer

    2011-03-01

    The River Hayle, Cornwall, UK exhibits pronounced Cu and Zn concentration gradients which were used to compare the metal handling abilities of two populations of Gammarus pulex (Crustacea: Amphipoda). One population was native to the Hayle region (Drym) and presumably has been historically impacted by elevated Cu and Zn levels, whilst naïve gammarids were collected from the River Cray, Kent, UK. Both populations were subject to a 32 day in situ exposure at four R. Hayle sites (Drym, Godolphin, Relubbus and St. Erth). Mortality (LT50), Cu and Zn accumulation and sub-cellular distribution, and oxidative stress (malondialdehyde production) increased with the expected Cu and Zn bioavailabilities at the four sites (i.e. Godolphin>Relubbus>St. Erth>Drym). The naïve population experienced greater metal induced effects in terms of Cu and Zn accumulation, oxidative stress responses and lower LT50s. Analysis of Cu and Zn sub-cellular distribution, however, revealed no significant differences in metal handling. In both populations each metal was localised predominantly to the sub-cellular fraction containing metal bound to metallothionein-like proteins (MTLP) or that holding both metal-rich granules (MRG) and exoskeleton, MTLP and MRG binding being indicative of metal detoxification. However, a greater capacity for detoxified metal storage is not a mechanism implicated in the perceived tolerance of the historically impacted gammarids. Instead our results suggest that the historically impacted population was adapted for lower uptake of Cu and Zn leading to lower bioaccumulation, stress response and ultimately mortality. These results demonstrate not only the usefulness of the in situ methodology, but also that differences in population exposure history can cause significant differences in metal responses during exposure at higher concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Some selected heavy metal concentrations in water, sediment, and oysters in the Er-Ren estuary, Taiwan: chemical fractions and the implications for biomonitoring.

    PubMed

    Chen, Yueh-Min; Li, Hong-Chun; Tsao, Tsung-Ming; Wang, Liaug-Chi; Chang, Yin

    2014-11-01

    Studies of heavy metal contamination and ecological risk in estuaries are an important emerging area of environmental science. However, there have been few detailed studies of heavy metal contamination that concern the spatial variation of heavy metal levels in water, sediment, and oyster tissue. Because of the effective uptake of heavy metals, cultured oysters are a cheap and effective subject for study. This study, conducts an experiment in the Er-Ren river to examine the biological uptake of heavy metals in farmed, cultured oysters. The distribution of copper, zinc, lead, cadmium, and arsenic concentrations in water, sediment, and oysters from the Er-Ren river is also evaluated. By sequential extraction of the sediments, the following order of mobilities is found for heavy metals Pb > Cd > As > Zn > Cu. The highest percentages of heavy metals are found in the residual phase. The mean uptake rates for young oysters are 7.24 mg kg(-1) day(-1) for Cu and 94.52 mg kg(-1) day(-1) for Zn, but that for adult oyster is 10.79 mg kg(-1) day(-1) for Cu and 137.24 mg kg(-1) day(-1) for Zn. With good policies and management, the establishment of cultured oyster frames in these contaminated tributaries and near shore environments is a potential method for removing Cu and Zn and protecting the coast.

  18. Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential.

    PubMed

    Zhai, Yunbo; Dai, Qingyun; Jiang, Kang; Zhu, Yun; Xu, Bibo; Peng, Chuan; Wang, Tengfei; Zeng, Guangming

    2016-07-01

    This study was performed to investigate pollution of traffic-related heavy metals (HMs-Zn, Pb, Cu, Cr, and Cd) in roadside soils and their uptake by wild plants growing along highways in Hunan Province, China. For this, we analyzed the concentration and chemical fractionation of HMs in soils and plants. Soil samples were collected with different depths in the profile and different distances from highway edge. And leaves and barks of six high-frequency plants were collected. Results of the modified European Community Bureau of Reference (BCR) showed that the mobile fraction of these HMs was in the order of Cd > Pb > Zn > Cu > Cr. A high percentage of the mobile fraction indicates Cd, Pb, and Zn were labile and available for uptake by wild plants. The total concentration and values of risk assessment code (RAC) showed that Cd was the main risk factor, which were in the range high to very high risk. The accumulation ability of HMs in plants was evaluated by the biological accumulation factor (BAF) and the metal accumulation index (MAI), and the results showed that all those plant species have good phyto-extraction ability, while accumulation capacity for most HMs plants tissues was bark > leaf. The highest MAI value (5.99) in Cinnamomum camphora (L) Presl indicates the potential for bio-monitoring and a good choice for planting along highways where there is contamination with HMs.

  19. Assessment of different methods to estimate heavy metal bioavailability in 30 contrasting Spanish and New Zealand soils

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.

    2009-04-01

    The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant. According to the results, DTPA seemed to be the extractant that best estimated plant uptake (except for Cd, not estimated by any of the methods used). Similar good results were found using the total heavy metal contents, except for Ni and Zn. DGT also worked well, but its use for Pb is not advisable, since many values were below the detection level. The heavy metals in soil solution were less successful for predicting plant uptake. In general, the good results obtained for Cr and Zn seemed to be influenced by a few high values found in some soils. Taking this point into account, the soils with very high levels of these heavy metals were removed from the analysis and simple correlations were done again with the remaining soils having a lower range of these metals. For the case of Cr, four soils were removed (soils with ten times or more total Cr than the average of the others 26 samples) and three for the case of Zn (soils with two times or more total Zn than the average of the others 27 samples). After this, the correlations with total heavy metals and DTPA became very weak, being the heavy metals in soil solution for Cr, and DGT for Zn, the methods that best estimated the plant uptake of these metals. This work has proved the importance of careful revision of the data distribution, since good results can be influenced by just few samples with high values. In this sense and as a conclusion, DTPA and total heavy metals followed similar patterns and were good predictors of Cu and Pb uptake, and useful to distinguish between low and high values for Cr and Zn. On the other hand, DGT and heavy metals in soil solution showed a similar effectiveness to estimate Cu, Ni, Pb, Zn and Cr, but DGT presented, in general, higher correlation levels (except for Cr). Taking all of the results together, it seems that the most robust and efficient estimator for all metals studied (except Cd, impossible to predict with any of the methods used) was the DGT. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

  20. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba).

    PubMed

    Kusznierewicz, Barbara; Bączek-Kwinta, Renata; Bartoszek, Agnieszka; Piekarska, Anna; Huk, Anna; Manikowska, Anna; Antonkiewicz, Jacek; Namieśnik, Jacek; Konieczka, Piotr

    2012-11-01

    The relationship between the ability to accumulate heavy metals (represented by Cd and Zn) and to synthesize bioactive compounds (represented by glucosinolates [GLS]) was investigated in two cabbage cultivars. Plants were grown in the greenhouse of a phytotron under controlled conditions in soils spiked with two different Zn or Cd concentrations. The measurements of Cd and Zn contents in soil and cabbage (leaf) samples were performed by atomic absorption spectroscopy, whereas GLS levels in cabbage were determined by high-performance liquid chromatography. The ranges of metal contents in soil were 80 to 450 mg/kg dry weight for Zn and 0.3 to 30 mg/kg dry weight for Cd, whereas the levels of accumulated Zn and Cd in cabbage amounted to 15 to 130 and 0.02 to 3 mg/kg dry weight, respectively. After initial symptoms of toxicity, during a later stage of growth, the plants exhibited very good tolerance to both metals. Enhanced biosynthesis of GLS was observed in a dose-dependent manner following exposure to the heavy metals. The GLS content in Zn-exposed cabbage rose from 3.2 to 12 µmol/g dry weight, and the corresponding values for Cd-treated plants were 3.5 to 10 µmol/g dry weight. Thus, the increased soil contamination by metals caused greater accumulation in cabbage, as well as stimulation of GLS biosynthesis. The results obtained point to the high phytoremediation and biofumigation potential of white cabbage. Copyright © 2012 SETAC.

  1. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea.

    PubMed

    Yu, Ran; Fang, Xiaohua; Somasundaran, Ponisseril; Chandran, Kartik

    2015-06-01

    Nanosized TiO2 (n-TiO2), CeO2 (n-CeO2), and ZnO (n-ZnO) and bulk ZnO were chosen for a 4-h exposure study on a model ammonia oxidizing bacterium, Nitrosomonas europaea. n-ZnO displayed the most serious cytotoxicity while n-TiO2 was the least toxic one. The change of cell morphologies, the retardance of specific oxygen uptake rates and ammonia oxidation rates, and the depression of amoA gene expressions under NP stresses were generally observed when the cell densities and membrane integrities were not significantly impaired yet. The TEM imaging and the synchrotron X-ray fluorescence microscopy of the NPs impacted cells revealed the increase of the corresponding intracellular Ti, Ce or Zn contents and suggested the intracellular NP accumulation. The elevation of intracellular S contents accompanied with higher K contents implied the possible activation of thiol-containing glutathione and thioredoxin production for NP stress alleviation. The NP cytotoxicity was not always a function of NP concentration. The 200 mg L(-1) n-TiO2 or n-CeO2 impacted cells displayed the similar ammonia oxidation activities but higher amoA gene expression levels than the 20 mg L(-1) NPs impacted ones. Such phenomenon further indicated the possible establishment of an anti-toxicity mechanism in N. europaea at the genetic level to redeem the weakened AMO activities along with the NP aggregation effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments.

    PubMed

    Lee, Sang-Hwan; Lee, Jin-Soo; Choi, Youn Jeong; Kim, Jeong-Gyu

    2009-11-01

    Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. We tested the effects of several amendments (limestone, red-mud, and furnace slag) on the extractability of heavy metals, microbial activities, phytoavailability of soil metals (assessed using lettuce, Lactuca sativa L.), and availability of heavy metals in ingested soil to the human gastrointestinal system (assessed using the physiologically based extraction test). The application of soil amendments significantly decreased the amount of soluble and extractable heavy metals in the soil (p<0.05). The decreased extractable metal content of soil was accompanied by increased microbial activity and decreased plant uptake of heavy metals. Soil microbial activities (soil respiration, urease, and dehydrogenase activity) significantly increased in limestone and red-mud-amended soils. Red-mud was the most effective treatment in decreasing heavy-metal concentrations in lettuce. Compared to non-amended control soil, lettuce uptake of Cd, Pb, and Zn was reduced 86%, 58%, and 73%, respectively, by the addition of red-mud.

  3. Divalent cation mobility throughout exponential growth and sporulation of Bacillus megaterium.

    PubMed

    Krueger, W B; Kolodziej, B J

    1978-01-01

    Each of the five elements considered was taken up by Bacillus megaterium during exponential growth. Initial Mg and Mn uptake was rapid and ended by mid-log. For Ca, Fe, and Zn, uptake continued throughout exponential growth. Elements were released from the cells immediately following initial uptake. For Mn, egression continued to t2, with release of 36% of total accumulated. Secondary uptake followed immediately and continued through stage V. Magnesium egression continued to t1 with release of 33% accumulated. Secondary uptake began by t5 (stage IV) and continued slowly through sporulation. Calcium egression ceased by t4 with release of 25% total accumulated. Secondary uptake began by t6 (stage V) and continued until depleted. Zinc egression stopped by t5 with release of 34% accumulated with some secondary uptake by stage V. Iron egression terminated at t4 with release of 59% of total accumulated. This was followed by secondary uptake after t12 (stage VI).

  4. Selective uptake, distribution, and redistribution of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L.

    PubMed

    Wei, Shuhe; Anders, Iwona; Feller, Urs

    2014-06-01

    The focus of this article was to explore the translocation of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of (109)Cd, (57)Co, and (65)Zn labeled by roots, and the redistribution of (109)Cd, (65)Zn, (57)Co, (63)Ni, and (134)Cs using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that (109)Cd added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, (57)Co was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. (65)Zn was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested ((109)Cd, (57)Co, (65)Zn, (63)Ni, (134)Cs) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for (63)Ni and (65)Zn, while a relatively high percentage of (57)Co was finally found in the roots. (134)Cs was roughly in the middle of them. The transport of (109)Cd differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium.

  5. Cytotoxicity of cadmium-free quantum dots and their use in cell bioimaging.

    PubMed

    Soenen, Stefaan J; Manshian, Bella B; Aubert, Tangi; Himmelreich, Uwe; Demeester, Jo; De Smedt, Stefaan C; Hens, Zeger; Braeckmans, Kevin

    2014-06-16

    The use of quantum dots (QDots) as bright and photostable probes for long-term fluorescence imaging is gaining more interest. Thus far, (pre)clinical use of QDots remains limited, which is primarily caused by the potential toxicity of QDots. Most QDots consist of Cd2+ ions, which are known to cause high levels of toxicity. In order to overcome this problem, several strategies have been tested, such as the generation of cadmium-free QDots. In the present study, two types of cadmium-free QDots, composed of ZnSe/ZnS (QDotZnSe) and InP/ZnS (QDotInP), were studied with respect to their cytotoxicity and cellular uptake in a variety of cell types. A multiparametric cytotoxicity approach is used, where the QDots are studied with respect to cell viability, oxidative stress, cell morphology, stem cell differentiation, and neurite outgrowth. The data reveal slight differences in uptake levels for both types of QDots (maximal for QDotZnSe), but clear differences in cytotoxicity and cell functionality effects exist, with highest toxicity for QDotZnSe. Differences between cell types and between both types of QDots can be explained by the intrinsic sensitivity of certain cell types and chemical composition of the QDots. At concentrations at which no toxic effects can be observed, the functionality of the QDots for fluorescence cell visualization is evaluated, revealing that the higher brightness of QDotZnSe overcomes most of the toxicity issues compared to that of QDotInP. Comparing the results obtained with common Cd2+-containing QDots tested under identical conditions, the importance of particle functionality is demonstrated, revealing that cadmium-free QDots tested in this study are not significantly better than Cd2+-containing QDots for long-term cell imaging and that more work needs to be performed in optimizing the brightness and surface chemistry of cadmium-free QDots for them to replace currently used Cd2+-containing QDots.

  6. Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites.

    PubMed

    Vandecasteele, Bart; De Vos, Bruno; Tack, Filip M G

    2002-11-01

    Salix species and Sambucus nigra L. (elder) naturally invade dredged sediment landfills and are commonly encountered on substrates contaminated with heavy metals. Foliar concentrations of Cd and Zn in four Salix species and elder were explored in the field. Metal contents in dredged sediment derived soils were elevated compared to baseline concentration levels reported for Flanders. To evaluate foliar concentrations, reference data were compiled from observations in nurseries, young plantations and unpolluted sites with volunteer willow vegetation. Willows grown on polluted dredged sediment landfills showed elevated foliar Cd and Zn concentrations (>6.6 mg Cd/kg DW and >700 mg Zn/kg DW). This was not the case for elder. For willow, a significant relation was found between soil total Zn or Cd and foliar Zn or Cd, regardless of age, species, or clone. Willows proved to be useful bioindicators. Results indicated a possible threat in long-term habitat development of willow brushwood from transfer of Cd and Zn to the food web.

  7. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides.

    PubMed

    Rakhshaee, Roohan; Khosravi, Morteza; Ganji, Masoud Taghi

    2006-06-30

    Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.

  8. Isolation and characterization of N2 -fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake.

    PubMed

    Xu, Jia; Kloepper, Joseph W; Huang, Ping; McInroy, John A; Hu, Chia H

    2018-05-01

    The aims of this study were to isolate and characterize N 2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N 2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems.

    PubMed

    Lim, H S; Lim, W; Hu, J Y; Ziegler, A; Ong, S L

    2015-01-01

    The filter media in biofiltration systems play an important role in removing potentially harmful pollutants from urban stormwater runoff. This study compares the heavy metal removal potential (Cu, Zn, Cd, Pb) of five materials (potting soil, compost, coconut coir, sludge and a commercial mix) using laboratory columns. Total/dissolved organic carbon (TOC/DOC) was also analysed because some of the test materials had high carbon content which affects heavy metal uptake/release. Potting soil and the commercial mix offered the best metal uptake when dosed with low (Cu: 44.78 μg/L, Zn: 436.4 μg/L, Cd, 1.82 μg/L, Pb: 51.32 μg/L) and high concentrations of heavy metals (Cu: 241 μg/L, Zn: 1127 μg/L, Cd: 4.57 μg/L, Pb: 90.25 μg/L). Compost and sludge also had high removal efficiencies (>90%). Heavy metal leaching from these materials was negligible. A one-month dry period between dosing experiments did not affect metal removal efficiencies. TOC concentrations from all materials increased after the dry period. Heavy metal removal was not affected by filter media depth (600 mm vs. 300 mm). Heavy metals tended to accumulate at the upper 5 cm of the filter media although potting soil showed bottom-enriched concentrations. We recommend using potting soil as the principal media mixed with compost or sludge since these materials perform well and are readily available. The use of renewable materials commonly found in Singapore supports a sustainable approach to urban water management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Seasonal growth and translocation of some major and trace elements in two Mediterranean grasses (Stipa tenacissima Loefl. ex L. and Lygeum spartum Loefl. ex L.)

    NASA Astrophysics Data System (ADS)

    Nedjimi, Bouzid

    2018-05-01

    The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.

  11. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  12. Connecting pigment composition and dissolved trace elements to phytoplankton population in the southern Benguela Upwelling zone (St. Helena Bay)

    NASA Astrophysics Data System (ADS)

    Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.

    2017-12-01

    Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.

  13. Feasibility of phytoextraction to remediate cadmium and zinc contaminated soils.

    PubMed

    Koopmans, G F; Römkens, P F A M; Fokkema, M J; Song, J; Luo, Y M; Japenga, J; Zhao, F J

    2008-12-01

    A Cd and Zn contaminated soil was mixed and equilibrated with an uncontaminated, but otherwise similar soil to establish a gradient in soil contamination levels. Growth of Thlaspi caerulescens (Ganges ecotype) significantly decreased the metal concentrations in soil solution. Plant uptake of Cd and Zn exceeded the decrease of the soluble metal concentrations by several orders of magnitude. Hence, desorption of metals must have occurred to maintain the soil solution concentrations. A coupled regression model was developed to describe the transfer of metals from soil to solution and plant shoots. This model was applied to estimate the phytoextraction duration required to decrease the soil Cd concentration from 10 to 0.5 mg kg(-1). A biomass production of 1 and 5 t dm ha(-1) yr(-1) yields a duration of 42 and 11 yr, respectively. Successful phytoextraction operations based on T. caerulescens require an increased biomass production.

  14. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.

    PubMed

    Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I

    2000-10-02

    The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.

  15. Is there a strategy I iron uptake mechanism in maize?

    PubMed

    Li, Suzhen; Zhou, Xiaojin; Chen, Jingtang; Chen, Rumei

    2018-04-03

    Iron is a metal micronutrient that is essential for plant growth and development. Graminaceous and nongraminaceous plants have evolved different mechanisms to mediate Fe uptake. Generally, strategy I is used by nongraminaceous plants like Arabidopsis, while graminaceous plants, such as rice, barley, and maize, are considered to use strategy II Fe uptake. Upon the functional characterization of OsIRT1 and OsIRT2 in rice, it was suggested that rice, as an exceptional graminaceous plant, utilizes both strategy I and strategy II Fe uptake systems. Similarly, ZmIRT1 and ZmZIP3 were identified as functional zinc and iron transporters in the maize genome, along with the determination of several genes encoding Zn and Fe transporters, raising the possibility that strategy I Fe uptake also occurs in maize. This mini-review integrates previous reports and recent evidence to obtain a better understanding of the mechanisms of Fe uptake in maize.

  16. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage.

    PubMed

    Anwaar, Shad Ali; Ali, Shafaqat; Ali, Skhawat; Ishaque, Wajid; Farid, Mujahid; Farooq, Muhammad Ahsan; Najeeb, Ullah; Abbas, Farhat; Sharif, Muhammad

    2015-03-01

    Silicon (Si) is as an important fertilizer element, which has been found effective in enhancing plant tolerance to variety of biotic and a-biotic stresses. This study investigates the Si potential to alleviate zinc (Zn) toxicity stress in cotton (Gossypium hirsutum L.). Cotton plants were grown in hydroponics and exposed to different Zn concentration, 0, 25, and 50 μM, alone and/or in combination with 1 mM Si. Incremental Zn concentration in growth media instigated the cellular oxidative damage that was evident from elevated levels of hydrogen peroxide (H2O2), electrolyte leakage, and malondialdehyde (MDA) and consequently inhibited cotton growth, biomass, chlorophyll pigments, and photosynthetic process. Application of Si significantly suppressed Zn accumulation in various plant parts, i.e., roots, stems, and leaves and thus promoted biomass, photosynthetic, growth parameters, and antioxidant enzymes activity of Zn-stressed as well unstressed plants. In addition, Si reduced the MDA and H2O2 production and electrolyte leakage suggesting its role in protecting cotton plants from Zn toxicity-induced oxidative damage. Thus, the study indicated that exogenous Si application could improve growth and development of cotton crop experiencing Zn toxicity stress by limiting Zn bioavailability and oxidative damage.

  17. ON THE EFFECT OF ETHYLENEDIAMINETETRAACETATE (EDTA) ON THE ACCUMULATION COEFFICIENT OF DIFFERENT RADIOISOTOPES FROM AQUEOUS SOLUTION BY FRESH-WATER PLANTS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeeva-Resovskaya, E.A.; Timofeev-Resovskii, N.V.

    1960-01-01

    The effects of ethylenediaminetetraacetate on the accumulation coefficients of Ce/sup 144/, Co/sup 60/, Cs/sup 137/, Fe/sup 59/, Nb /sup 95/, Ru/ sup 106/, S/sup 35/, Sr/sup 90/, Y/sup 91/, Zn/sup 65/, and Zr/sup 95/ from aqueous solutions were studied. Eight grams of elodea (Elodea canadinsis Rich,), aquatic plant (Ceratophyllum demersum L), duckweed (Lemna minor L.), and chara (Chara fragilis Desw.) were placed in three liters of water containirg 400 mg of EDTA per liter. Tabulated data show 4 groups of isotopic reactions to EDTA. The first group includes strontium and cesium (whose uptake increases in the presence of EDTA), themore » second is represented hy sulfur (which does not react to EDTA), the third group consists of zirconium, niobium, and ruthenium (whose uptake is reduced 2 to 3 fold in the presence of EDTA), and the fourth group contains iron, cobalt, zinc, yttrium, and cerium (whose uptake is reduced 10 to 100 fold). (R.V.J.)« less

  18. Uptake and distribution of Zn65 in the coho salmon egg (Oncorhynchus kisutch)

    USGS Publications Warehouse

    Wedemeyer, Gary

    1968-01-01

    1. Zinc uptake and distribution in the developing coho salmon egg was measured using radioisotope tracer techniques.2. The uptake was affected by pH, temperature, Cu2+, 2,4-fluorodinitrobenzene and the azo dye, malachite green; but not by azide ion or 2,4-dinitrophenol.3. About 70 per cent of the total accumulated zinc was bound, rather firmly, to the chorion; about 26 per cent was found in the perivitelline fluid, about 2 per cent in the yolk, and about 1 per cent in the embryo.4. Temperature, pH, inhibitor and kinetic studies indicated that zinc uptake involves physicochemical sorption to the chorion together with passive diffusion into the yolk and embryo.

  19. Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil.

    PubMed

    García-Gómez, C; Babin, M; Obrador, A; Álvarez, J M; Fernández, M D

    2015-11-01

    This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg(-1). Additionally, plants were also tested at 250 mg Zn kg(-1). The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.

  20. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    PubMed

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E

    1983-04-01

    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.

  1. Quinoline derivative containing monomeric and polymeric metal carboxylates: Synthesis, crystal structure and gas adsorption study over a 2D layered framework

    NASA Astrophysics Data System (ADS)

    Gayen, Saikat; Saha, Debraj; Koner, Subratanath

    2018-06-01

    A new supramolecular metal-carboxylate framework [Co(mqc)2]n (1), and another monomeric compound [Zn (mqc)2(H2O)] (2) (mqcH = 4-methoxy 2-quinolinecarboxylic acid) have been synthesized solvothermally and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, UV-vis spectra, powdered X-ray diffraction (PXRD) and thermogravimetric analysis. Compound 1 is a 2D coordination polymer, extended to a 3D porous supramolecular network having void space in between 2D layers. Compound 1 exhibits gas uptake capacity of N2, H2, CO2 and CH4 like small gas molecules in which moderately high uptake of H2 and CO2 takes place among the 2D MOFs. While the Zn variety, compound 2 features a one-dimensional chain like structure through strong intermolecular hydrogen-bonding.

  2. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush. [Atriplex canescens; Buchloe dactyloides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush (Atriplex canescens (Pursh Nutt.)) and buffalograss (Buchloe dactyloides (Nutt.) Engelm.) transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both speciesmore » was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected.« less

  3. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses.

    PubMed

    Song, Uhram; Lee, Sunryung

    2016-05-01

    The phytotoxicity and accumulation of zinc oxide nanoparticles (ZnO NPs) on aquatic plant Hydrilla verticillata and Phragmites australis were investigated using mesocosms. The percentage of dissolved Zn in the ZnO NP treatment solutions was measured along with plant shoot growth, antioxidant enzyme activity, chlorophyll content, and Zn content. The dissolution rate of ZnO NPs in Hoagland solution was inversely related to the concentration. The submerged aquatic plant H. verticillata, growth was reduced during the early stages of the experiment when exposed to the highest ZnO NP concentration (1000 mg/L), whereas the emerged aquatic plant P. australis began to show significantly reduced growth after a few weeks. The measurements of chlorophyll content, antioxidant enzyme activity, and Zn accumulation showed that P. australis was adversely affected by NPs and absorbed more Zn than H. verticillata. The results indicated that physiological differences among aquatic plants, such as whether they use leaves or roots for nutrient and water uptake, led to differences in nanoparticle toxicity. Overall, High ZnO NP concentrations caused significant phytotoxicity on aquatic plants, and low concentrations caused unpredictable phytotoxicity. Therefore, the use and disposal of zinc oxide nanoparticles should be carefully monitored.

  4. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  6. Nonspecific uptake and homeostasis drive the oceanic cadmium cycle

    NASA Astrophysics Data System (ADS)

    Horner, Tristan J.; Lee, Renee B. Y.; Henderson, Gideon M.; Rickaby, Rosalind E. M.

    2013-02-01

    The global marine distributions of Cd and phosphate are closely correlated, which has led to Cd being considered as a marine micronutrient, despite its toxicity to life. The explanation for this nutrient-like behavior is unknown because there is only one identified biochemical function for Cd, an unusual Cd/Zn carbonic anhydrase. Recent developments in Cd isotope mass spectrometry have revealed that Cd uptake by phytoplankton causes isotopic fractionation in the open ocean and in culture. Here we investigate the physiochemical pathways that fractionate Cd isotopes by performing subcellular Cd isotope analysis on genetically modified microorganisms. We find that expression of the Cd/Zn carbonic anhydrase makes no difference to the Cd isotope composition of whole cells. Instead, a large proportion of the Cd is partitioned into cell membranes with a similar direction and magnitude of Cd isotopic fractionation to that seen in surface seawater. This observation is well explained if Cd is mistakenly imported with other divalent metals and subsequently managed by binding within the cell to avoid toxicity. This process may apply to other divalent metals, whereby nonspecific uptake and subsequent homeostasis may contribute to elemental and isotopic distributions in seawater, even for elements commonly considered as micronutrients.

  7. Trophic transfer of trace metals from the polychaete worm Nereis diversicolor to the polychaete N. virens and the decapod crustacean Palaemonetes varians

    USGS Publications Warehouse

    Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.

    2006-01-01

    Diet is an important exposure route for the uptake of trace metals by aquatic invertebrates, with trace metal trophic transfer depending on 2 stages - assimilation and subsequent accumulation by the predator. This study investigated the trophic transfer of trace metals from the sediment-dwelling polychaete worm Nereis diversicolor from metal-rich estuarine sediments in southwestern UK to 2 predators - another polychaete N. virens (Cu, Zn, Pb, Cd, Fe) and the decapod crustacean Palaemonetes varians (Cu, Zn, Pb, Cd, Fe, Ag, As, Mn). N. virens showed net accumulation of Cu, Zn, Pb and Cd from the prey; accumulation increased with increasing prey concentration, but a coefficient of trophic transfer decreased with increasing prey concentration, probably because a higher proportion of accumulated metal in the prey is bound in less trophically available (insoluble) detoxified forms. The trace metal accumulation patterns of P. varians apparently restricted significant net accumulation of metals from the diet of N. diversicolor to just Cd. There was significant mortality of the decapods fed on the diets of metal-rich worms. Metal-rich invertebrates that have accumulated metals from the rich historical store in the sediments of particular SW England estuaries can potentially pass these metals along food chains, with accumulation and total food chain transfer depending on the metal assimilation efficiencies and accumulation patterns of the animal at each trophic level. This trophic transfer may be significant enough to have ecotoxicological effects. ?? Inter-Research 2006.

  8. Metal uptake by phytoplankton during a bloom in South San Francisco Bay: Implications for metal cycling in estuaries

    USGS Publications Warehouse

    Luoma, S.N.; VanGeen, A.; Lee, B.-G.; Cloern, J.E.

    1998-01-01

    The 1994 spring phytoplankton bloom in South San Francisco Bay caused substantial reductions in concentrations of dissolved Cd, Ni, and Zn, but not Cu. We estimate that the equivalent of ~60% of the total annual input of Cd, Ni, and Zn from local waste-water treatment plants is cycled through the phytoplankton in South Bay. The results suggest that processes that affect phytoplankton bloom frequency or intensity in estuaries (e.g. nutrient enrichment) may also affect metal trapping. The bloom was characterized by hydrographic surveys conducted at weekly intervals for 9 weeks. Metal samples were collected from the water column on three occasions, timed to bracket the period when the bloom was predicted. Factors that might confound observations of biological influences, such as freshwater inputs, were relatively constant during the study. Before the bloom, concentrations of dissolved Cd were 0.81 ?? 0.02 nmol kg-1, Zn concentrations were 19.8 ?? 1.5 nmol kg-1, Ni were 42 ?? 1.4 nmol kg-1, and Cu were 37 ?? 1.4 nmol kg-1. The values are elevated relative to riverine and coastal end-members, reflecting inputs from wastewater and(or) sediments. At the height of the bloom, dissolved Zn, Cd, and Ni were reduced to 19, 50, and 75% of their prebloom concentrations, respectively. Dissolved Cu concentrations increased 20%. The mass of Cd taken up by phytoplankton was similar to the mass of Cd removed from solution if particle settling was considered, and Cd concentrations estimated in phytoplankton were higher than concentrations in suspended particulate material (SPM). Particulate concentrations of Zn and Ni during the bloom appeared to be dominated by the influence of changes in resuspension of Zn- and Ni-rich sediments.

  9. Cytological stress and element uptake in moss and lichen exposed in bags in urban area.

    PubMed

    Spagnuolo, V; Zampella, M; Giordano, S; Adamo, P

    2011-07-01

    In this study cytological ultrastructure, total content of C, N and S, and cellular location of major and trace elements (K, Ca, Mg, Cu, Pb and Zn) were investigated in the moss Hypnum cupressiforme and in the lichen Pseudevernia furfuracea exposed in bags for a spring-summer 12-weeks period in the urban area of Naples city. In the moss, severe ultrastructural damages, such as membrane interruptions and dehydration, developed after exposure supporting the occurrence of a dead biomonitor. In the lichen, the post-exposure stress marks, such as the development of lysosome-like vesicles and concentric bodies, or the production of melanin, were overall compatible with life. With exposure, N, S, major and trace element contents all increased in both biomonitors, while C remained substantially unchanged. Copper and Pb were mainly retained in extracellular and particulate forms. Intracellular concentration of Zn consistently increased in both biomonitors, irrespective of their vitality. In transplants, cellular location of elements can better reflect the form in which they occur in the environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Soil trace element changes during a phytoremediation trial with willows in southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Tremblay, Gilbert; Munro, Lara; Masse, Jacynthe; Labrecque, Michel

    2017-07-03

    This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow ("Fish Creek" - Salix purpurea, SV1 - Salix x dasyclados and SX67 - Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO 3 -extractable and H 2 O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.

  11. Trace element phytoextraction from contaminated soil: a case study under Mediterranean climate.

    PubMed

    Guidi Nissim, Werther; Palm, Emily; Mancuso, Stefano; Azzarello, Elisa

    2018-03-01

    The current field study aims to assess the suitability of four different plant species (i.e. poplar, willow, hemp and alfalfa) to be used for trace element (TE) (i.e. Cd, Cu, Ni, Pb and Zn) phytoextraction under hot-arid Mediterranean climate conditions. Plants were grown for two consecutive years on a moderate TE contaminated soil, supplied with water and mineral nutrients. The growth and physiological parameters were assessed throughout the trial to compare the response of plants to the environmental pollution, and TE uptake rates were measured for aboveground plant tissues. The phytoextraction rate for each species was expressed as a function of aboveground biomass yield and the TE uptake and translocation within the plant. Alfalfa played a significant role in reducing extractable Ni (60.6%) and Zn (46%) in the soil, whereas hemp reduced 32% of extractable Cd and 46% of extractable Pb; poplar decreased extractable Cd (37%), Ni (49%), Pb (46%) and Zn (63%); and willow reduced the extractable Zn (73%) compared to the beginning of the trial. No change in total TE content was observed; however, poplar and willow were able to extract and accumulate the highest amount of Zn (3200 and 5200 g ha -1  year -1 respectively) and Cu (182 and 116 g ha -1  year -1 ), whereas hemp, with 36 g ha -1  year -1 , showed the best phytoextraction potential for Pb. Overall, we found a positive correlation between the phytoextraction rate and biomass yield, extractable TE concentration and translocation factor (TF) and a negative relationship with Ca concentration in the soil.

  12. Chromium and zinc uptake by algae Gelidium and agar extraction algal waste: kinetics and equilibrium.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-11-19

    Biosorption of chromium and zinc ions by an industrial algal waste, from agar extraction industry has been studied in a batch system. This biosorbent was compared with the algae Gelidium itself, which is the raw material for agar extraction, and the industrial waste immobilized with polyacrylonitrile (composite material). Langmuir and Langmuir-Freundlich equilibrium models describe well the equilibrium data. The parameters of Langmuir equilibrium model at pH 5.3 and 20 degrees C were for the algae, q(L)=18 mg Cr(III)g(-1) and 13 mgZn(II)g(-1), K(L) = 0.021l mg(-1)Cr(III) and 0.026l mg(-1) Zn(II); for the algal waste, q(L)=12 mgCr(III)g(-1) and 7mgZn(II)g(-1), K(L)=0.033lmg(-1) Cr(III) and 0.042l mg(-1) Zn(II); for the composite material, q(L) = 9 mgCr(III)g(-1) and 6 mgZn(II)g(-1), K(L)=0.032l mg(-1)Cr(III) and 0.034l mg(-1)Zn(II). The biosorbents exhibited a higher preference for Cr(III) ions and algae Gelidium is the best one. The pseudo-first-order Lagergren and pseudo-second-order models fitted well the kinetic data for the two metal ions. Kinetic constants and equilibrium uptake concentrations given by the pseudo-second-order model for an initial Cr(III) and Zn(II) concentration of approximately 100 mgl(-1), at pH 5.3 and 20 degrees C were k(2,ads)=0.04 g mg(-1)Cr(III)min(-1) and 0.07 g mg(-1)Zn(II)min(-1), q(eq)=11.9 mgCr(III)g(-1) and 9.5 mgZn(II)g(-1) for algae; k(2,ads)=0.17 g mg(-1)Cr(III)min(-1) and 0.19 g mg(-1)Zn(II)min(-1), q(eq)=8.3 mgCr(III)g(-1) and 5.6 mgZn(II)g(-1) for algal waste; k(2,ads)=0.01 g mg(-1)Cr(III)min(-1) and 0.18 g mg(-1)Zn(II)min(-1), q(eq)=8.0 mgCr(III)g(-1) and 4.4 mgZn(II)g(-1) for composite material. Biosorption was modelled using a batch adsorber mass transfer kinetic model, which successfully predicts Cr(III) and Zn(II) concentration profiles. The calculated average homogeneous diffusivities, D(h), were 4.2 x 10(-8), 8.3 x 10(-8) and 1.4 x 10(-8)cm(2)s(-1) for Cr(III) and 4.8 x 10(-8), 9.7 x 10(-8) and 6.2 x 10(-8)cm(2)s(-1) for Zn(II), respectively, for Gelidium, algal waste and composite material. The algal waste has the lower intraparticle resistance.

  13. Uptake of Elements From Aerosols by Humans ~ A Case Study From Delhi & Bangalore Cities

    NASA Astrophysics Data System (ADS)

    Anand, S.; Yadav, S.; Jain, V. K.

    2006-05-01

    Aerosol research has gained tremendous importance globally due to the cumulative effects of increasing industrialization and urbanization on aerosol production which can have an alarming impact on the climate of the planet as well as the health of its inhabitants. Therefore, there is an increasing need to study aerosols for all of their physicochemical and biological aspects on both local and global scales. World over extensive research has gone into studying the physical and the chemical aspects of aerosols. However, little information is yet available on the health impacts of aerosols particularly in the Asian context. Here we report uptake of various elements that are concentrated in aerosols by the human body in Delhi and Bangalore cities and their possible health effects. In many urban areas, for example in Delhi, inhalable fractions of aerosols are known to have high concentrations of elements such as Cu, Zn, Pb, Ba, Ni and Cr (Yadav and Rajamani 2004). Also aerosols in the North West part of India seem to be particularly enriched in these elements. If so, there is a high possibility of these elements getting into the human system either directly or indirectly through water and food. To determine the concentrations of these elements that are present in significant concentrations in the inhalable fractions of aerosols, human hair and blood samples are used as proxies. Both these regions have contrasting geographic and climatic conditions. Delhi (altitude : 213-305m above MSL) located on the fringes of the Thar desert which supplies considerable amount of dust, is semi-arid with annual rainfall of 60-80 cms & temperatures varying between 1° - 45°. Bangalore (altitude of 900m above MSL) receives a high annual rainfall of 80-100 cms and being located on the fringes of tropical forests of the Sahyadri Mountains (Western Ghats) receives little crustal contribution to the aerosols. Samples from least polluted mountainous areas of Himalayas (Gangothri) and Sahyadri (Ooty) were also collected as reference samples. All the samples were digested in a microwave system. Elemental analyses were carried out using both ICP-MS and ICP-AES methods using multi-element standard solutions from Merck. The elements analyzed include Al, Ca, Mg, Ni, Cu, Ba, Zn, Pb, Cr, Sr, K, Na, Si, and P in about 100 samples of blood and hair. Preliminary results indicate a possible human uptake of elements from the aerosols. In comparison to the international reference and local background values (Gangothri), Delhi and Bangalore samples of human hair and blood show significant enrichment of these elements. Samples from Gangothri are comparable to those of the international reference values. Delhi samples have much higher concentrations of several elements, especially Al, Zn, Pb and Cu. Although the Bangalore samples are also enriched compared to the reference values, they are much less enriched relative to the Delhi samples. Bangalore samples have negligible contributions from the crustal aerosols as compared to the Delhi samples where the crustal contributions seem to be very high. Elements enriched in the PM 10 aerosols or the respirable fractions include Ca, Mg, Al (crustal) and Ba, Zn,Cu, Pb, Ni, Cr (anthropogenic). In all the samples, hair seems to be a better long term indicator of elemental uptake compared to blood. The health effect of aerosols can be several as indicated by studies elsewhere and will be discussed.

  14. The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea

    PubMed Central

    Little, Susan H.; Archer, Corey; Cameron, Vyllinniskii; Andersen, Morten B.; Rijkenberg, Micha J. A.; Lyons, Timothy W.

    2016-01-01

    Isotopic data collected to date as part of the GEOTRACES and other programmes show that the oceanic dissolved pool is isotopically heavy relative to the inputs for zinc (Zn) and nickel (Ni). All Zn sinks measured until recently, and the only output yet measured for Ni, are isotopically heavier than the dissolved pool. This would require either a non-steady-state ocean or other unidentified sinks. Recently, isotopically light Zn has been measured in organic carbon-rich sediments from productive upwelling margins, providing a potential resolution of this issue, at least for Zn. However, the origin of the isotopically light sedimentary Zn signal is uncertain. Cellular uptake of isotopically light Zn followed by transfer to sediment does not appear to be a quantitatively important process. Here, we present Zn and Ni isotope data for the water column and sediments of the Black Sea. These data demonstrate that isotopically light Zn and Ni are extracted from the water column, probably through an equilibrium fractionation between different dissolved species followed by sequestration of light Zn and Ni in sulfide species to particulates and the sediment. We suggest that a similar, non-quantitative, process, operating in porewaters, explains the Zn data from organic carbon-rich sediments. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035259

  15. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus

    PubMed Central

    Braidy, Nady; Poljak, Anne; Marjo, Chris; Rutlidge, Helen; Rich, Anne; Jugder, Bat-Erdene; Jayasena, Tharusha; Inestrosa, Nibaldo C.; Sachdev, Perminder S.

    2017-01-01

    The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer’s disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus—a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aβ42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5′-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related. PMID:28405187

  17. Effects of zinc smelter emissions on farms and gardens at Palmerton, PA

    USGS Publications Warehouse

    Chaney, R.L.; Beyer, W.N.; Gifford, C.H.; Sileo, L.

    1988-01-01

    In 1979, before the primary Zn smelter at Palmerton was closed due to excessive Zn and Cd emissions and change in the price of Zn, we were contacted by a local veterinarian regarding death of foals (young horses) on farms near the smelter. To examine whether Zn or Cd contamination of forage or soils could be providing potentially toxic levels of Zn or other elements in the diets of foals, we measured metals in forages, soils, and feces of grazing livestock on two farms near Palmerton. The farms were about 2.5 and about 10 km northeast of the East stack. Soils, forages, and feces were greatly increased in Zn and Cd. Soil, forage, and fecal Zn were near 1000 mg/kg and Cd, 10-20 mg/kg at farm A (2.5 km) compared to normal background levels of 43 mg Zn and 0.2 mg Cd/kg, respectively. Liver and kidney of cattle raised on Farm A were increased in Zn and Cd, indicating that at least part of the Zn and Cd in smelter contaminated forages was bioavailable. During the farm sampling, we obtained soil from one garden in Palmerton within 200 m of the primary (West) smelter. The Borough surrounds the smelter facility in a valley. Because soil Cd was near 100 mg/kg, we sampled garden soils and vegetables from over 40 gardens in 6 randomly selected blocks and in rural areas at different distances from the smelter during September, 1980. All homes were contacted on each sampled block. Nearly all homes had some garden, while at least 2 appeared to grow over 50% of their annual vegetable and potato consumption. Palmerton garden soils averaged 76 mg Cd/kg and 5830 mg Zn/kg. Gardeners had been taught to add limestone and organic fertilizers to counteract yield reduction and chlorosis due to the excessive soil Zn. Gardens with over 5000 mg Zn/kg were nearly allover pH 7, and many were calcareous. Because the smelter had not yet ceased operations in 1980, crops could have been polluted by aerosol Zn and Cd emitted by the smelter. Crop Zn and Cd were extremely high, about 100 times normal Cd levels. In more distant gardens, soil metals were not so high, and gardeners had not added as much limestone. Bean rotated with the potatoes and leafy vegetables often suffered chlorosis and visible yield reduction. Potatoes contained up to 6 mg Cd/kg dry wt. compared to backgrournd 0.20 mg/kg DW. An estimate of potential Zn and Cd intakes due to the contaminated crops was made using the teen-aged male diet model, and average Cd intakes would be 250 ug/day if diets contained 100% locally grown leafy and root vegetables and potatoes. Gardeners were warned to restrict consumption of garden grown leafy and root vegetables and potatoes, and to apply 22 T/A of limestone to restrict Cd uptake. Use of improved adult diet models, and increased understanding of the effect of Zn on Cd bioavailability indicate that little Cd risk may result from consuming garden vegetables grown at Palmerton. Individuals appear to be protected because Zn accompanied crop Cd, they grew only small amounts of vegetables in most cases, and aerosol pollution of crops has ceased. Reduced Zn emissions, and Cu supplementation have prevented further health effects on foals or cattle. Detailed examination of these risks is needed to develop remedial measures for both farms and gardens in the Zn + Cd polluted soils near Zn smelters at many locations in the United States and other countries. Remedial actions are necessarary to prevent chronic Zn toxicity to crops and livestock, and minimize the risk of chronic Cd toxicity to humans who consume locally grown garden crops.

  18. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.

    PubMed

    Chayapan, P; Kruatrachue, M; Meetam, M; Pokethitiyook, P

    2015-09-01

    Cadmium and zinc phytoremediation potential of wetland plants, Colocasia esculenta, Cyperus malaccensis, and Typha angustifolia, was investigated. Plants were grown for 15 days in nutrient solutions containing various concentrations of Cd (0, 5, 10, 20, 50 mg l(-1)) and Zn (0, 10, 20, 50, 100 mg l(-1)). T angustifolia was tolerant to both metals as indicated by high RGR when grown in 50 mg I(-1) Cd and 100 mg I(-1) Zn solutions. All these plants accumulated more metals in their underground parts and > 100 mg kg(-1) in their aboveground with TF values < 1. Only C. esculenta could be considered a Zn hyperaccumulator because it could concentrate > 10,000 mg kg(-1) in its aboveground parts with TF > 1. T angustifolia exhibited highest biomass production and highest Cd and Zn uptake, confirming that this plant is a suitable candidate for treating of Cd contaminated soil/sediments.

  19. Pentalysine β-Carbonylphthalocyanine Zinc: An Effective Tumor-Targeting Photosensitizer for Photodynamic Therapy

    PubMed Central

    Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Deng, Yicai; Luo, Zhipu; Chen, Hongwei; Hamblin, Michael R.

    2010-01-01

    Unsymmetrical phthalocyanine derivatives have been widely studied as photosensitizers for photodynamic therapy (PDT), targeting various tumor types. However, the preparation of unsymmetrical phthalocyanines is always a challenge due to the presence of many possible structural isomers. Herein we report a new unsymmetrical zinc phthalocyanine, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys)5), that was prepared in large quantity and high purity. This is a water-soluble cationic photosensitizer and maintains a high quantum yield of singlet oxygen generation similar to that of unsubstituted zinc phthalocyanine (ZnPc). Compared with anionic ZnPc counterparts, ZnPc-(Lys)5 shows a higher level cellular uptake and 20-fold higher phototoxicity toward tumor cells. Pharmacokinetics and PDT studies of ZnPc-(Lys)5 in S180 tumor-bearing mice showed a high ratio of tumor versus skin retention and significant tumor inhibition. This new molecular framework will allow synthetic diversity in the number of lysine residues incorporated and will facilitate future QSAR studies. PMID:20458713

  20. Reconciling the discrepancies between crystallographic porosity and guest access as exemplified by Zn-HKUST-1.

    PubMed

    Feldblyum, Jeremy I; Liu, Ming; Gidley, David W; Matzger, Adam J

    2011-11-16

    There are several compounds for which there exists a disconnect between porosity as predicted by crystallography and porosity measured by gas sorption analysis. In this paper, the Zn-based analogue of Cu(3)(btc)(2) (HKUST-1), Zn(3)(btc)(2) (Zn-HKUST-1; btc = 1,3,5-benzenetricarboxylate) is investigated. Conventional analysis of Zn-HKUST-1 by powder X-ray diffraction and gas sorption indicates retention of crystalline structure but negligible nitrogen uptake at 77 K. By using positron annihilation lifetime spectroscopy, a densified surface layer preventing the entry of even small molecular species into the crystal framework is revealed. The material is shown to have inherent surface instability after solvent removal, rendering it impermeable to molecular guests irrespective of handling and processing methods. This previously unobserved surface instability may provide insight into the failure of other microporous coordination polymers to exhibit significant porosity despite crystal structures indicative of regular, interconnected, microporous networks.

  1. Mixtures of tritiated water, zinc and dissolved organic carbon: Assessing interactive bioaccumulation and genotoxic effects in marine mussels, Mytilus galloprovincialis.

    PubMed

    Pearson, Holly B C; Dallas, Lorna J; Comber, Sean D W; Braungardt, Charlotte B; Worsfold, Paul J; Jha, Awadhesh N

    2018-07-01

    Release of tritium ( 3 H) in the marine environment is of concern with respect to its potential bioaccumulation and detrimental impact on the biota. Previous studies have investigated the uptake and toxicity of this radionuclide in marine mussels, and the interaction of 3 H with dissolved organic ligands and elevated temperature. However, despite the well-established view that toxicity is partly governed by chemical speciation, and that toxic effects of mixture of contaminants are not always additive, there have been no studies linking the prevailing chemistry of exposure waters with observed biological effects and tissue specific accumulation of 3 H in combination with other constituents commonly found in natural waters. This study exposed the marine mussel Mytilus galloprovincialis for 14 days to mixtures of 3 H (as tritiated water, HTO) and zinc (Zn) at 5 Mbq L -1 , and 383, 1913 and 3825 nM Zn, respectively, to investigate (a) 3 H and Zn partitioning in soft tissues of mussels, and (b) DNA damage in haemocytes, determined using the single cell gel electrophoresis or the comet assay. Additionally, the extent of association of 3 H with dissolved organic carbon (DOC, added as humic acid) over the exposure period was investigated in order to aid the interpretation of biological uptake and effects. Results concluded a clear antagonistic effect of Zn on 3 H-induced DNA damage at all Zn concentrations used, likely explained by the importance of Zn in DNA repair enzymes. The interaction of DOC with 3 H was variable, with strong 3 H-DOC associations observed in the first 3 d of the experiment. The secretion of 3 H-binding ligands by the mussels is suggested as a possible mechanism for early biological control of 3 H toxicity. The results suggest risk assessments for radionuclides in the environment require consideration of potential mixture effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Phytoextraction of Zn and Cu from sewage sludge and impact on agronomic characteristics.

    PubMed

    Xiaomei, Liu; Qitang, Wu; Banks, M K; Ebbs, S D

    2005-01-01

    The presence of elevated concentrations of heavy metals limits the usage of sewage sludge as a fertilizer and soil amendment. Experiments were carried out to examine the extent to which seven plant species phytoextracted Zn and Cu from dewatered sludge. The hyperaccumulators Thlaspi caerulescens and Sedum alfredii showed the greatest removal of Zn, while shoots and tubers of two species of Alocasia showed the greatest Cu removal. Cultivation of plants in the sludge resulted in significant decreases in total Zn and changes in the partitioning of Zn between soil pools. However, Cu levels were largely unchanged and remained associated predominantly with the organic matter pool. Agronomic characteristics of the sludge material, such as pH, organic matter content, and nitrogen, phosphorus, and potassium concentrations, did not change significantly during the four-month growth period, indicating that subsequent crops could be sustained by this material. These results suggest that Zn can be phytoextracted from sludge material, provided the rate of metal uptake exceeds the rate of mobilization to the exchangeable fraction. Since there was no appreciable accumulation of Zn and Cu in seeds of Zea mays in this study, some tissues from sludge-grown plants could potentially be used as animal fodder.

  3. Heavy Metal Contents of Soils, Durum and Bread Wheats in Harran Plain, Southeast Turkey

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Soils are vital for regulating the biological effects and mobility of metals in nature. Iron and zinc are some of the essential nutrients for plants and animals, while other metals are potentially toxic such as lead and cadmium. Toxic heavy metals (HMs) can be taken up easily by organisms. HMs inputs to soil via the application of metal-contained fertilizers often exceed outputs in crops and drainage waters, thus toxic HMs content in many agricultural soils tends to be gradually increasing. Thus adverse human health effects due to soil-plant and plant-human transfer of HMs have been enhanced. HMs may cause harmful effects on human health due to the ingestion of food grain grown in soils. The objectives of this study were (1) to understand the chemistry of metals in soils for managing their agricultural and ecological impacts, (2) to identify metal uptakes of different genotypes of wheat. Concentrations of HMs (Cd, Zn, Ni, Mn, Cu, Mo, Pb) in wheat were investigated in different agricultural areas in Southeast, Turkey. The results showed that concentrations of HMs were in following order: Mn>Ni>Zn>Cu>Pb>Mo>Cd in surface and next to surface soil and Mn>Zn>Cu>Pb> Ni>Mo>Cd in wheat, respectively. HMs concentrations of several soil samples exceeded the permissible limits of Europe standard except for Ni and Mn. In addition, concentration of Cd, Zn, Cu, and Pb were higher in bread wheat than in durum wheat; however, concentration of Mn, Ni and Mo were higher in durum wheat than in bread wheat. Unusual amount of heavy metals found in some fertilizers used in the Southeast region of Turkey, it becomes an important subject to determine the amount of metals added to the soil every year. Heavy metals uptake by plants still remains to be an interest for researchers. As the heavy metals contents of plants were below the threshold levels, we conclude that the quality of wheat is high and it should receive attention in national and international markets. Keywords: Heavy Metals (HMs), Soil, Durum and Bread Wheat, Fertilizers.

  4. Zein nanoparticles as delivery systems for covalently linked and physically entrapped folic acid

    NASA Astrophysics Data System (ADS)

    Chuacharoen, Thanida; Sabliov, Cristina M.

    2017-02-01

    Zein nanoparticles covalently linked to folic acid were hypothesized to sustain the release of the folic acid in addition to targeting cancer cells overexpressing folate-binding receptors, whereas zein nanoparticles with physically entrapped folic acid would only be able to control the release of the bioactive without targeting of cancer cells. The two types of particles, folic acid covalently linked zein nanoparticles (ZN-FA nps) and zein nanoparticles with entrapped folic acid (ZN(FA) nps), were synthesized and the covalent link between folic acid and zein was assessed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H NMR). Their size, polydispersity index, zeta potential, morphology, and loading capacity were evaluated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and spectrophotometric technique. The release studies of the folic acid preformed in phosphate-buffered saline (PBS) at 37 °C for 7 days concluded that the release of the loaded folic acid was sustained over 7 days for both systems. The cytotoxicity was investigated using a methyl thiazolyl tetrazolium (MTT) assay, and the results showed that zein nanoparticles were biocompatible to HeLa (an overexpressing folate receptor cells) and A549 (a deficient folate receptor cells) cells, which have different levels of folate receptors on surface and both folic acid nanoparticle systems were able to diminish the adverse toxic effect of folic acid to cells. The increased uptake of ZN-FA nps relative to ZN(FA) nps supported the use of ZN-FA nps as targeting nanoagents to cells overexpressing folate receptors.

  5. Quaternized Zn(II) phthalocyanines for photodynamic strategy against resistant periodontal bacteria.

    PubMed

    Kussovski, Vesselin; Mantareva, Vanya; Durmuş, Mahmut; Angelov, Ivan

    2018-04-25

    Photodynamic inactivation (PDI) has been featured as an effective strategy in the treatment of acute drug-resistant infections. The efficiency of PDI was evaluated against three periodontal pathogenic bacteria that were tested as drug-resistant strains. In vitro studies were performed with four water-soluble cationic Zn(II) phthalocyanines (ZnPc1-4) and irradiation of a specific light source (light-emitting diode, 665 nm) with three doses (15, 36 and 60 J/cm2). The well detectable fluorescence of ZnPcs allowed the cellular imaging, which suggested relatively high uptakes of ZnPcs into bacterial species. Complete photoinactivation was achieved with all studied ZnPc1-4 for Enterococcus faecalis (E. faecalis) at a light dose of 15 J/cm2. The photodynamic response was high for Prevotella intermedia (P. intermedia) after the application of 6 μM of ZnPc1 and a light dose of 36 J/cm2 and for 6 μM of ZnPc2 at 60 J/cm2. P. intermedia was inactivated with ZnPc3 (4 log) and ZnPc4 (2 log) with irradiation at an optimal dose of 60 J/cm2. Similar photoinactivation results (2 log) were achieved for Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) treated with 6 μM ZnPc1 and ZnPc2 at a light dose of 60 J/cm2. The study suggested that PDI with quaternized Zn(II) phthalocyanines and specific light irradiation appears to be a very useful antimicrobial strategy for effective inactivation of drug-resistant periodontal pathogens.

  6. Hybrid ZnPc@TiO2 nanostructures for targeted photodynamic therapy, bioimaging and doxorubicin delivery.

    PubMed

    Flak, Dorota; Yate, Luis; Nowaczyk, Grzegorz; Jurga, Stefan

    2017-09-01

    In this study ZnPc@TiO 2 hybrid nanostructures, both nanoparticles and nanotubes, as potential photosensitizers for the photodynamic therapy, fluorescent bioimaging agents, as well as anti-cancer drug nanocarriers, were prepared via zinc phthalocyanine (ZnPc) deposition on TiO 2 . In order to provide the selectivity of prepared hybrid nanostructures towards cancer cells they were modified with folic acid molecules (FA). The efficient attachment of both ZnPc and FA molecules was confirmed with dynamic light scattering (DLS), zeta potential measurements and X-ray photoelectron spectroscopy (XPS). It was presented that ZnPc and FA attachment has a strong effect on fluorescence emission properties of TiO 2 nanostructures, which can be further used for their simultaneous visualization upon cellular uptake. ZnPc@TiO 2 and FA/ZnPc@TiO 2 hybrid nanotubes were then employed as doxorubicin nanocarriers. It was demonstrated that doxorubicin can be easily loaded on these hybrid nanostructures via an electrostatic interaction and then released. In vitro cytotoxicity and photo-cytotoxic activity studies showed that prepared hybrid nanostructures were selectively targeting to cancer cells. Doxorubicin loaded hybrid nanostructures were significantly more cytotoxic than un-loaded ones and their cytotoxic effect was even more severe upon irradiation. The cellular uptake of prepared hybrid nanostructures and their localization in cells was monitored in vitro in 2D cell culture and tumor-like 3D multicellular culture environment with fluorescent confocal microscopy. These hybrid nanostructures preferentially penetrated into human cervical cancer cells (HeLa) than into normal fibroblasts (MSU-1.1) and were mainly localized within the cell cytoplasm. HeLa cells spheroids were also efficiently labelled by prepared hybrid nanostructures. Fluorescent imaging of Hela cells treated with doxorubicin loaded hybrid nanostructures showed that doxorubicin was effectively delivered into cells, released and evenly distributed in the cytoplasm. In conclusion, prepared hybrid nanostructures exhibit high potential as selective bioimaging agents next to their photodynamic activity and drug delivery ability. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Kaneva, Nina; Spassov, Tony

    2017-04-01

    A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn2+-organic complexes followed by a treatment in Zn(CH3COO)2/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV-vis spectroscopy measurements along with N2 adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m2 g-1 and total pore volume of 0.26 cm3 g-1. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g-1 is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  8. In vivo biodistribution and behavior of CdTe/ZnS quantum dots.

    PubMed

    Zhao, Yan; Zhang, Yue; Qin, Gaofeng; Cheng, Jinjun; Zeng, Wenhao; Liu, Shuchen; Kong, Hui; Wang, Xueqian; Wang, Qingguo; Qu, Huihua

    2017-01-01

    The unique features of quantum dots (QDs) make them desirable fluorescent tags for cell and developmental biology applications that require long-term, multitarget, and highly sensitive imaging. In this work, we imaged fluorescent cadmium telluride/zinc sulfide (CdTe/ZnS) QDs in organs, tissues, and cells, and analyzed the mechanism of their lymphatic uptake and cellular distribution. We observed that the fluorescent CdTe/ZnS QDs were internalized by lymph nodes in four cell lines from different tissue sources. We obtained the fluorescence intensity-QD concentrations curve by quantitative analysis. Our results demonstrate that cells containing QDs can complete mitosis normally and that distribution of QDs was uniform across cell types and involved the vesicular transport system, including the endoplasmic reticulum. This capacity for CdTe/ZnS QD targeting provides insights into the applicability and limitations of fluorescent QDs for imaging biological specimens.

  9. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation.

    PubMed

    Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel

    2015-01-01

    A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).

  10. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.

    2014-06-01

    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during uptake. However, Cu in Fe-Mn crusts is isotopically light (at ∼0.3 to 0.5‰) compared to the dissolved phase in seawater (at ∼0.9‰). We suggest that this is because dissolved Cu in the oceans is overwhelmingly complexed to strong organic ligands, which are better competitors for the heavy isotope.

  11. Effects of sol-gel synthesis on 5Fe-15Mn-40Zn-40Ti-O mixed oxide structure and its H2S removal efficiency from industrial gas streams.

    PubMed

    Polychronopoulou, Kyriaki; Efstathiou, Angelos M

    2009-06-15

    A novel Fe-Mn-Zn-Ti-O mixed metal oxide has been developed for efficient low-temperature (25-50 degrees C) removal of H2S from a gas mixture containing 600 ppm H2S, 25 vol% H2, 7.5 vol % CO2, and 1-3 vol% H2O that simulates typical conditions experienced at the outlet of a bioreactor loaded with sulfate metal reducing bacteria (SMRB) that converts toxic Cr6+ and As5+ present in ground and surface waters and soils into nontoxic elements. During the latter conversion H2S gas is produced and has to be treated. In the present work it is demonstrated for the first time that by using the sol-gel synthesis route at given experimental conditions (e.g., metal precursor salts, solvent system, and solution pH), optimum structural properties for the Fe-Mn-Zn-Ti-O solid can be obtained for maximization of H2S uptake. In particular, at 25 degrees C an H2S uptake (0.085 g H2S/g solid) larger by at least a factor of 3 compared to a commercial Ni-based H2S absorbent material was obtained.

  12. Multiple metal resistance in the cyanobacterium Nostoc muscorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, S.K.; Singh, S.P.

    1995-04-01

    Metal tolerant strains of microbes are likely to originate in habitats having elevated metal levels. This aspect has been reviewed quite extensively by Silvers and Misra and the suggested mechanism of metal tolerance are: (a) cellular exclusion of metals; (b) extrusion of metals; and (c) intracellular immobilization. Similar studies on cyanobacterial strains appear to have been initiated by Shehata and Whitton who isolated a Zn-tolerant strain of Anacystis nidulans displaying a Zn uptake comparable to the Zn-sensitive wild type. The metal tolerance in the above strain was attributed to the intracellular detoxification mechanisms as suggested for Plectonema boryanum and Nostocmore » calcicola. The Cd-resistant strain of A. nidulans showed a protection of Cd-induced growth inhibition due to reduce uptake of metal. Recently we reported an energy- and dilution-dependent efflux of copper as the mechanism of Cu tolerance in a copper-resistant strain of Nostoc calcicola. The above studies were concerned mainly with single-metal resistance in cyanobacteria. Since natural habitats are generally characterized by the coexistence of a large number of toxic and nontoxic cations, it is necessary to study multiple-metal response on the physiology and biochemistry of microorganisms. In the presence study, therefore, we describe a multiple metal resistant strain of the cyanobacterium Nostoc muscorum. 15 refs., 1 fig., 1 tab.« less

  13. Interaction between zinc and freshwater and marine diatom species: Surface complexation and Zn isotope fractionation

    NASA Astrophysics Data System (ADS)

    Gélabert, A.; Pokrovsky, O. S.; Viers, J.; Schott, J.; Boudou, A.; Feurtet-Mazel, A.

    2006-02-01

    This work is devoted to characterization of zinc interaction in aqueous solution with two marine planktonic ( Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species ( Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption and electrophoretic measurements with surface complexation modeling and by assessing Zn isotopes fractionation during both long term uptake and short term adsorption on diatom cells and their frustules. Reversible adsorption experiments were performed at 25 and 5 °C as a function of exposure time (5 min to 140 h), pH (2 to 10), zinc concentration in solution (10 nM to 1 mM), ionic strength ( I = 0.001 to 1.0 M) and the presence of light. While the shape of pH-dependent adsorption edge is almost the same for all four species, the constant-pH adsorption isotherm and maximal Zn binding capacities differ by an order of magnitude. The extent of adsorption increases with temperature from 5 to 25 °C and does not depend on light intensity. Zinc adsorption decreases with increase of ionic strength suggesting competition with sodium for surface sites. Cell number-normalized concentrations of sorbed zinc on whole cells and their silica frustules demonstrated only weak contribution of the latter (10-20%) to overall zinc binding by diatom cell wall. Measurements of electrophoretic mobilities ( μ) revealed negative diatoms surface potential in the full range of zinc concentrations investigated (0.15-760 μmol/L), however, the absolute value of μ decreases at [Zn] > 15 μmol/L suggesting a change in surface speciation. These observations allowed us to construct a surface complexation model for Zn binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Zn complexation with carboxylate and silanol groups. Thermodynamic and structural parameters of this model are based on previous acid-base titration and spectroscopic results and allow quantitative reproduction of all adsorption experiments. Although Zn adsorption constants on carboxylate groups are almost the same, Zn surface adsorption capacities are very different among diatom species which is related to the systematic differences in their cell wall composition and thickness. Measurements of Zn isotopic composition ( 66Zn/( 64Zn)) performed using a multicollector ICP MS demonstrated that irreversible incorporation of Zn in cultured diatom cells produces enrichment in heavy isotope compared to growth media (Δ 66Zn(solid-solution) = 0.27 ± 0.05, 0.08 ± 0.05, 0.21 ± 0.05, and 0.19 ± 0.05‰ for TW, SC, NMIN, and AMIN species, respectively). Accordingly, an enrichment of cells in heavy isotopes (Δ 66Zn(solid-solution) = 0.43 ± 0.1 and 0.27 ± 0.1‰ for NMIN and AMIN, respectively) is observed following short-term Zn sorption on freshwater cells in nutrient media at pH ˜ 7.8. Finally, diatoms frustules are enriched in heavy isotopes compared to solution during Zn adsorption on silica shells at pH ˜ 5.5 (Δ 66Zn(solid-solution) = 0.35 ± 0.10‰). Measured isotopes fractionation can be related to the structure and stability of Zn complexes formed and they provide a firm basis for using Zn isotopes for biogeochemical tracing.

  14. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.

    PubMed

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.

  15. Metal transport capabilities of anticancer copper chelators.

    PubMed

    Gaál, Anikó; Orgován, Gábor; Mihucz, Victor G; Pape, Ian; Ingerle, Dieter; Streli, Christina; Szoboszlai, Norbert

    2018-05-01

    In the present study, several Cu chelators [2,2'-biquinoline, 8-hydroxiquinoline (oxine), ammonium pyrrolidinedithiocarbamate (APDTC), Dp44mT, dithizone, neocuproine] were used to study Cu uptake, depletion and localization in different cancer cell lines. To better understand the concentration dependent fluctuations in the Cu intracellular metal content and Cu-dependent in vitro antiproliferative data, the conditional stability constants of the Cu complex species of the investigated ligands were calculated. Each investigated chelator increased the intracellular Cu content on HT-29 cells causing Cu accumulation depending on the amount of the free Cu(II). Copper accumulation was 159 times higher for Dp44mT compared to the control. Investigating a number of other transition metals, intracellular accumulation of Cd was observed only for two chelators. Intracellular Zn content slightly decreased (cca. 10%) for MCF-7 cells, while a dramatic decrease was observed on MDA-MB-231 ones (cca. 50%). A similar decrease was observed for HCT-116, while Zn depletion for HT-29 corresponded to cca. 20%. The IC 50 values were registered for the investigated four cell lines at increasing external Cu(II) concentration, namely, MDA-MB-231 cells had the lowest IC 50 values for Dp44mT ranging between 7 and 35 nM. Thus, Zn depletion could be associated with lower IC 50 values. Copper depletion was observed for all ligands being less pronounced for Dp44mT and neocuproine. Copper localization and its colocalization with Zn were determined by μ-XRF imaging. Loose correlation (0.57) was observed for the MCF-7 cells independently of the applied chelator. Similarly, a weak correlation (0.47) was observed for HT-29 cells treated with Cu(II) and oxine. Colocalization of Cu and Zn in the nucleus of HT-29 cells was observed for Dp44mT (correlation coefficient of 0.85). Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.

    PubMed

    Puga, A P; Abreu, C A; Melo, L C A; Paz-Ferreiro, J; Beesley, L

    2015-11-01

    Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0% (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks.

  17. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions.

    PubMed

    Anjum, Naser A; Singh, Harminder P; Khan, M Iqbal R; Masood, Asim; Per, Tasir S; Negi, Asha; Batish, Daizy R; Khan, Nafees A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2015-03-01

    Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.

  18. Dried gamma-irradiated sewage solids use on calcareous soils: crop yeilds and heavy metals uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaslin, B.D.; Sivinski, J.S.

    1979-01-01

    Experiments designed to examine gamma-radiation effects on extractable and plant-available sludge elements and to examine the response of crops to sludge applications on two typical, calcareous soils in New Mexico are summarized. Information has been given indicating that the radiation process of reducing pathogens in sewage products being developed by Sandia Laboratories, does not significantly increase the chemical extractability and plant uptake of a broad range of nutrients and heavy metals. However, radiation treatment greatly facilitates handling sewage for experimentation, because pathogen contamination precautions are eliminated and weed seeds killed. Studies on the effects of sludge irradiation on plant nutrientmore » uptake revealed no concentration increases, agreeing with results presented herein. Sewage products may have special potential for use on calcareous soils, such as in New Mexico. For instance, in New Mexico the lack of potassium in sewage products is not a problem and the naturally high pH of New Mexico soil greatly reduces plant availability of many problem heavy metals. Dramatic increases in yield are typified by the greenhouse and field results presented herein, especially for the known micronutrient deficient soils of New Mexico. Results indicate that sewage sludge is an excellent Zn and Fe fertilizer. More research needs to be done before the economics of sludge application can be calculated and more field information is needed before irradiated sewage products are used indiscriminately. (ERB)« less

  19. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.

    PubMed

    Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu; Liu, Liangliang; Cao, Yi

    2017-03-01

    It was recently shown that exposure to ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress both in vivo and in vitro, but the role of ER stress in ZnO NP induced toxicity remains unclear. Because macrophages are sensitive to ER stress, we hypothesized that stressing macrophages with ER stress inducer could enhance the toxicity of ZnO NPs. In this study, the effects of ER stress inducer thapsigargin (TG) on the toxicity of ZnO NPs to THP-1 macrophages were investigated. The results showed that TG enhanced ZnO NP induced cytotoxicity as revealed by water soluble tetrazolium-1 (WST-1) and neutral red uptake assays, but not lactate dehydrogenase (LDH) assay. ZnO NPs dose-dependently enhanced the accumulation of intracellular Zn ions without the induction of reactive oxygen species (ROS), and the presence of TG did not significantly affect these effects. In the co-culture, exposure of THP-1 macrophages in the upper chamber to ZnO NPs and TG significantly reduced the viability of human umbilical vein endothelial cells (HUVECs) in the lower chamber, but the release of tumor necrosis factor α (TNFα) was not induced. In summary, our data showed that stressing THP-1 macrophages with TG enhanced the cytotoxicity of ZnO NPs to macrophages and macrophage-endothelial co-cultures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes).

    PubMed

    Newete, Solomon W; Erasmus, Barend F N; Weiersbye, Isabel M; Byrne, Marcus J

    2016-10-01

    The aim of this study was to investigate the overall root/shoot allocation of metal contaminants, the amount of metal removal by absorption and adsorption within or on the external root surfaces, the dose-response of water hyacinth metal uptake, and phytotoxicity. This was examined in a single-metal tub trial, using arsenic (As), gold (Au), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), uranium (U), and zinc (Zn). Iron and Mn were also used in low-, medium-, and high-concentration treatments to test their dose effect on water hyacinth's metal uptake. Water hyacinth was generally tolerant to metallotoxicity, except for Cu and Hg. Over 80 % of the total amount of metals removed was accumulated in the roots, of which 30-52 % was adsorbed onto the root surfaces. Furthermore, 73-98 % of the total metal assimilation by water hyacinth was located in the roots. The bioconcentration factor (BCF) of Cu, Hg, Au, and Zn exceeded the recommended index of 1000, which is used in selection of phytoremediating plants, but those of U, As, and Mn did not. Nevertheless, the BCF for Mn increased with the increase of Mn concentration in water. This suggests that the use of BCF index alone, without the consideration of plant biomass and metal concentration in water, is inadequate to determine the potential of plants for phytoremediation accurately. Thus, this study confirms that water hyacinth holds potential for a broad spectrum of phytoremediation roles. However, knowing whether these metals are adsorbed on or assimilated within the plant tissues as well as knowing their allocation between roots and shoots will inform decisions how to re-treat biomass for metal recovery, or the mode of biomass reduction for safe disposal after phytoremediation.

  1. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings

    PubMed Central

    Lamhamdi, Mostafa; El Galiou, Ouiam; Bakrim, Ahmed; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Aarab, Ahmed; Lafont, René

    2012-01-01

    Lead (Pb) is the most common heavy metal contaminant in the environment. Pb is not an essential element for plants, but they absorb it when it is present in their environment, especially in rural areas when the soil is polluted by automotive exhaust and in fields contaminated with fertilizers containing heavy metal impurities. To investigate lead effects on nutrient uptake and metabolism, two plant species, spinach (Spinacia oleracea) and wheat (Triticum aestivum), were grown under hydroponic conditions and stressed with lead nitrate, Pb(NO3)2, at three concentrations (1.5, 3, and 15 mM). Lead is accumulated in a dose-dependent manner in both plant species, which results in reduced growth and lower uptake of all mineral ions tested. Total amounts and concentrations of most mineral ions (Na, K, Ca, P, Mg, Fe, Cu and Zn) are reduced, although Mn concentrations are increased, as its uptake is reduced less relative to the whole plant’s growth. The deficiency of mineral nutrients correlates in a strong decrease in the contents of chlorophylls a and b and proline in both species, but these effects are less pronounced in spinach than in wheat. By contrast, the effects of lead on soluble proteins differ between species; they are reduced in wheat at all lead concentrations, whereas they are increased in spinach, where their value peaks at 3 mM Pb. The relative lead uptake by spinach and wheat, and the different susceptibility of these two species to lead treatment are discussed. PMID:23961216

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Wen-Wen; Xia, Liang; Peng, Zhen

    Under solvothermal conditions, the reactions of Co{sup II}/Zn{sup II} ions with bent ligand 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) afford two compounds {[M(4-pzpt)_2] guest}{sub n} (guest=H{sub 2}O, M=Co{sup II} (1), Zn{sup II} (2)). Both compounds are the thermally and hydrolytically robust 4-connected 3D NbO framework, which formed by double helical chains to give rise to 1D hollow nanochannel with uncoordinated nitrogens completely exposed on the pore surface. Compound 1 exhibits improved N{sub 2}, CO{sub 2} and H{sub 2} uptake capacities, while compound 2 displays the strong luminescent emission with obvious red shift. - Graphical abstract: Two 2-fold interpenetrated NbO-type MOFs with 1D nanochannel weremore » synthesized. Compound 1 exhibits improved N{sub 2}, CO{sub 2} and H{sub 2} uptake capacities, while compound 2 displays the strong fluorescent emission with obvious red shift. Display Omitted.« less

  3. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay.

    PubMed

    Ou, Jieyong; Li, Hong; Yan, Zengguang; Zhou, Youya; Bai, Liping; Zhang, Chaoyan; Wang, Xuedong; Chen, Guikui

    2018-03-15

    Clay minerals have been proposed as amendments for remediating metal-contaminated soils owing to their abundant reserves, high performance, simplicity of use and low cost. Two novel clay minerals, Maifan stone and illite/smectite clay, were examined in the in situ immobilisation of soil metals. The application of 0.5% Maifan stone or illite/smectite clay to field soils significantly decreased the fractions of diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Ni, Cr, Zn, Cu and Pb. Furthermore, reductions of 35.4% and 7.0% in the DTPA-extractable fraction of Cd were obtained with the Maifan stone and illite/smectite clay treatments, respectively, which also significantly reduced the uptake of Cd, Ni, Cr, Zn, Cu and Pb in the edible parts of Brassica rapa subspecies pekinensis, Brassica campestris and Spinacia oleracea. Quantitatively, the Maifan stone treatment reduced the metal uptake in B. rapa ssp. Pekinensis, B. campestris and S. oleracea from 11.6% to 62.2%, 4.6% to 41.8% and 11.3% to 58.2%, respectively, whereas illite/smectite clay produced reductions of 8.5% to 62.8% and 4.2% to 37.6% in the metal uptake in B. rapa ssp. Pekinensis and B. campestris, respectively. Therefore, both Maifan stone and illite/smectite clay are promising amendments for contaminated soil remediation.

  4. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials.

    PubMed

    Vareda, João P; Durães, Luisa

    2017-11-10

    Recently developed tailored adsorbents for heavy metal uptake are studied in batch tests with Cu, Pb, Cd, Ni, Cr and Zn, in order to decontaminate polluted environments where these heavy metals are found in solution - water courses and groundwater. The adsorbents feature mercapto or amine-mercapto groups that are capable of complexating the cations. Through the use of equilibrium tests it is found that a remarkably high heavy metal uptake is obtained for all metals (ranging from 84 to 140 mg/g). These uptake values are quite impressive when compared to other adsorbents reported in the literature, which is also due to the double functionalization present in one of the adsorbents. For the best adsorbent, adsorption capacities followed the order Cu(II) > Pb(II) > Zn(II) > Cr(III) > Cd(II) > Ni(II). With these adsorbents, the removal process was fast with most of the metals being removed in less than 1 h. Competitive sorption tests were performed in tertiary mixtures that were based on real world polluted sites. It was found that although competitive sorption occurs, affecting the individual removal of each metal, all the cations in solution still interact with the adsorbent, achieving removal values that make this type of material very interesting for its proposed application.

  5. Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice.

    PubMed

    Hirata, H; Ladenheim, B; Carlson, E; Epstein, C; Cadet, J L

    1996-04-01

    Methamphetamine (METH) has long-lasting neurotoxic effects on the nigrostriatal dopamine (DA) system of rodents. METH-induced neurotoxicity is thought to involve release of DA in presynaptic DA terminals, which is associated with increased formation of oxygen-based free radicals. We have recently shown that METH-induced striatal DA depletion is attenuated in transgenic (Tg) mice that express the human CuZn-superoxide dismutase (SOD) enzyme. That study did not specifically address the issue of loss of DA terminals. In the present study, we have used receptor autoradiographic studies of [(125)I]RTI-121-labeled DA uptake sites to evaluate the effects of several doses of METH on striatal DA terminals of Non-Tg as well as of heterozygous and homozygous SOD-Tg mice. In Non-Tg mice, METH caused decreases in striatal DA uptake sites in a dose-dependent fashion. The loss of DA terminals was more prominent in the lateral region than in the medial subdivisions of the striatum. In SOD-Tg mice, the loss of DA terminals caused by METH was attenuated in a gene dosage-dependent fashion, with the homozygous mice showing the greatest protection. Female mice were somewhat more resistant than male mice against these deleterious effects of METH. These results provide further evidence for a role of superoxide radicals in the long-term effects of METH. They also suggest the notion of a gender-specific handling of oxidative stress.

  6. Effect of graphene oxide on copper stress in Lemna minor L.: evaluating growth, biochemical responses, and nutrient uptake.

    PubMed

    Hu, Changwei; Liu, Lei; Li, Xiuling; Xu, Yundi; Ge, Zhigang; Zhao, Yongjun

    2018-01-05

    The wide application and unique properties of graphene oxide (GO) make it to interact with other pollutants and subsequently alter their behavior and toxicity. We evaluated the influences of GO at different concentrations (1 and 5mg/L) on copper (Cu) stress in duckweed (Lemna minor L.) GO below a concentration of 5mg/L showed no adverse effects on L. minor. The addition of Cu above 10μM represented a stress condition, which was evidenced by various parameters such as frond number, percent inhibition of growth rate (I r ), total chlorophyll content, dry weight, superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). When L. minor was simultaneously exposed to GO and Cu, especially at a GO concentration of 5mg/L and a Cu level above 10μM, the increase of I r and decrease of chlorophyll content were inhibited, suggesting that the Cu stress was diminished in the presence of GO. The addition of Cu alone, ranging between 5 and 20μM, increased Cu, B, Mn, Fe, Co, and Zn uptake, but decreased P uptake. Our results suggest that GO can lessen Cu stress in L. minor via Cu adsorption, thereby protecting the plants from the damaging effects of high Cu concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detrimental effects of commercial zinc oxide and silver nanomaterials on bacterial populations and performance of wastewater systems

    NASA Astrophysics Data System (ADS)

    Mboyi, Anza-vhudziki; Kamika, Ilunga; Momba, MaggyN. B.

    2017-08-01

    The widespread use of commercial nanomaterials (NMs) in consumer products has raised environmental concerns as they can enter and affect the efficiency of the wastewater treatment plants. In this study the effect of various concentrations of zinc oxide NMs (nZnO) and silver NMs (nAg) on the selected wastewater bacterial species (Bacillus licheniformis, Brevibacillus laterosporus and Pseudomonas putida) was ascertained at different pH levels (pH 2, 7 and 10). Lethal concentrations (LC) of NMs and parameters such as chemical oxygen demand (COD) and dissolved oxygen (DO) were taken into consideration to assess the performance of a wastewater batch reactor. Bacterial isolates were susceptible to varying concentrations of both nZnO and nAg at pH 2, 7 and 10. It was found that a change in pH did not significantly affect the toxicity of test NMs towards target bacterial isolates. All bacterial species were significantly inhibited (p < 0.05) in the presence of 0.65 g/L of nZnO and nAg. In contrast, there was no significant difference (p > 0.05) in COD removal in the presence of increasing concentrations of NMs, which resulted in increasing releases of COD. Noticeably, there was no significant difference (p > 0.05) in the decrease in DO uptake in the presence of increasing NM concentrations for all bacterial isolates. The toxic effects of the target NMs on bacterial populations in wastewater may negatively impact the performance of biological treatment processes and may thus affect the efficiency of wastewater treatment plants in producing effluent of high quality.

  8. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    PubMed Central

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  9. Dynamics of Zn in an urban wetland soil-plant system: Coupling isotopic and EXAFS approaches

    NASA Astrophysics Data System (ADS)

    Aucour, Anne-Marie; Bedell, Jean-Philippe; Queyron, Marine; Magnin, Valérie; Testemale, Denis; Sarret, Géraldine

    2015-07-01

    Plants play a key role in the stabilization of metals in contaminated environments. Studies have been performed on Zn uptake and storage mechanisms, mainly for Zn hyperaccumulating plants, though less is known about Zn stabilization in the rhizosphere of non-accumulating plants. This study was focused on the dynamics of Zn in a whole soil-litter-plant system and the processes controlling Zn mobilization and stabilization. The site studied was an infiltration basin receiving urban stormwater, in which Phalaris arundinacea (reed canary grass) developed spontaneously. A combination of chemical extractions (CaCl2, DTPA), EXAFS spectroscopy and Zn stable isotope measurements was applied for the water inlet, soil, plant organs and decaying biomass. Zn speciation changed from the water inlet to the soil. In the soil, Zn was present as Zn-layered double hydroxide (Zn-LDH), tetrahedral and octahedral sorbed Zn species. The formation of Zn-LDH participates in Zn stabilization. Tetrahedral Zn species, which were partly DTPA exchangeable, were enriched in heavy isotopes, whereas octahedral Zn (Zn-LDH and sorbed species) were enriched in light isotopes. Based on a linear model between δ66Zn and Zn speciation, δ66Zn for pure tetrahedral and octahedral end-members were estimated at ca. 0.33‰ and 0.04‰, respectively. In the plant, a mixture of octahedral Zn (attributed to aqueous Zn-organic acid complexes present in the symplasm), and tetrahedral Zn (attributed to apoplasmic Zn-cell wall complexes) was observed in all organs. Large enrichment in light isotopes from the soil to the plant Δ66Zn (of ca. -0.6‰) was observed. The stem was enriched in light isotopes versus roots and, to a lesser extent, versus leaves. The results suggest that Zn was taken up via a low-affinity transport system and that Zn was sequestrated in the stem symplasm after transit through leaves. Finally, intense Zn exchanges were observed between the decaying biomass and the soil, with the sorption of heavy Zn from the soil to cell wall remains and release of light Zn to the soil. Overall, this study provides a complete overview of Zn cycling in an urban wetland soil-plant system, and describes several changes in Zn speciation with Zn isotopic fractionation processes in a complex system.

  10. Application of mucilage from Dicerocaryum eriocarpum plant as biosorption medium in the removal of selected heavy metal ions.

    PubMed

    Jones, Bassey O; John, Odiyo O; Luke, Chimuka; Ochieng, Aoyi; Bassey, Bridget J

    2016-07-15

    The ability of mucilage from Dicerocaryum eriocarpum (DE) plant to act as biosorption medium in the removal of metals ions from aqueous solution was investigated. Functional groups present in the mucilage were identified using Fourier transform infrared spectroscopy (FTIR). Mucilage was modified with sodium and potassium chlorides. This was aimed at assessing the biosorption efficiency of modified mucilage: potassium mucilage (PCE) and sodium mucilage (SCE) and comparing it with non-modified deionised water mucilage (DCE) in the uptake of metal ions. FTIR results showed that the functional groups providing the active sites in PCE and SCE and DCE include: carboxyl, hydroxyl and carbonyl groups. The chloride used in the modification of the mucilage did not introduce new functional groups but increased the intensity of the already existing functional groups in the mucilage. Results from biosorption experiment showed that DE mucilage displays good binding affinity with metals ions [Zn(II), Cd(II) Ni(II), Cr(III) and Fe(II)] in the aqueous solution. Increase in the aqueous solution pH, metal ions initial concentration and mucilage concentration increased the biosorption efficiency of DE mucilage. The maximum contact time varied with each species of metal ions. Optimum pH for [Zn(II), Cd(II) Ni(II) and Fe(II)] occurred at pH 4 and pH 6 for Cr(III). Kinetic models result fitted well to pseudo-second-order with a coefficient values of R(2) = 1 for Cd(II), Ni(II), Cr(III), Fe(II) and R(2) = 0.9974 for Zn(II). Biosorption isotherms conforms best with Freundlich model for all the metal ions with correlation factors of 0.9994, 0.9987, 0.9554, 0.9621 and 0.937 for Zn(II), Ni(II), Fe(II), Cr(III) and Cd(II), respectively. Biosorption capacity of DE mucilage was 0.010, 2.387, 4.902, 0688 and 0.125 for Zn(II), Cr(III), Fe(II), Cd(II) and Ni(II) respectively. The modified mucilage was found to be highly efficient in the removal of metal ions than the unmodified mucilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Construction of two microporous metal-organic frameworks with flu and pyr topologies based on Zn4(μ3-OH)2(CO2)6 and Zn6(μ6-O)(CO2)6 secondary building units.

    PubMed

    Li, Xing-Jun; Jiang, Fei-Long; Wu, Ming-Yan; Chen, Lian; Qian, Jin-Jie; Zhou, Kang; Yuan, Da-Qiang; Hong, Mao-Chun

    2014-01-21

    By employment of a tripodal phosphoric carboxylate ligand, tris(4-carboxylphenyl)phosphine oxide (H3TPO), two novel porous metal-organic frameworks, namely, [Zn4(μ3-OH)2(TPO)2(H2O)2] (1) and [Zn6(μ6-O)(TPO)2](NO3)4·3H2O (2), have been synthesized by solvothermal methods. Complexes 1 and 2 exhibit three-dimensional microporous frameworks with flu and pyr topologies and possess rare butterfly-shaped Zn4(μ3-OH)2(CO2)6 and octahedral Zn6(μ6-O)(CO2)6 secondary building units, respectively. Large cavities and one-dimensional channels are observed in these two frameworks. Gas-sorption measurements indicate that complex 2 has a good H2 uptake capacity of 171.9 cm(3) g(-1) (1.53 wt %) at 77 K and 1.08 bar, and its ideal adsorbed solution theory calculation predicts highly selective adsorption of CO2 over N2 and CH4. Furthermore, complexes 1 and 2 exhibit excellent blue emission at room temperature.

  12. Long-term changes in the extractability and bioavailability of zinc and cadmium after sludge application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, S.P.; Zhao, F.J.; Dunham, S.J.

    2000-06-01

    Changes in the extractability and uptake by crops of sludge metals in a long-term field experiment, started in 1942, were measured to assess whether Zn and Cd are either fixed by the sludge/soil constituents or are released as the sludge organic matter (OM) decomposes. Total and 0.1 M CaCl{sub 2}-extractable concentrations of Zn and Cd in soil and total concentrations in crops were measured on archived crop and soil samples. Extractability of Zn as a proportion of the total ranged from 0.5 to 3% and that of Cd from 4 to 18%, and were higher in sludge-amended than farmyard manuremore » or fertilizer-amended soils. Over a 23-yr period after 1961, when sludge was last applied, the extractability of both metals fluctuated, but neither decreased nor increased consistently. The relationships between total soil and crop metal concentrations were linear, with no evidence of a plateau across the range of soil metal concentrations achieved. The slopes of the soil-plant relationships depended on the type of crop or crop part examined, but were generally in the order red beet (Beta vulgaris L.) > sugar beet (Beta vulgaris L.) > carrot (Daucus carota L.) > barley (Hordeum vulgare L.). However, there also were large seasonal differences in metal concentrations in the crops. It is concluded from the available evidence that up to 23 yr after sludge applications cease, Zn and Cd extractability and bioavailability do not decrease.« less

  13. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    PubMed

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and intact cells. In turn, this study further supports the formation of sensor-Zn-protein adducts as the principal observed fluorescent product during experiments employing these two sensors.

  14. DNA binding studies of a new dicationic porphyrin. Insights into interligand interactions.

    PubMed

    Shelton, Alexander H; Rodger, Alison; McMillin, David R

    2007-08-07

    Cationic porphyrins have an affinity for DNA and potential for applications in the fields of photodynamic therapy and cellular imaging. This report describes a new dicationic porphyrin, 5,15-dimethyl-10,20-di(N-methylpyridinium-4-yl)porphyrin, abbreviated H2tMe2D4. Although tetrasubstituted, H2tMe2D4 presents modest steric requirements and forms in reasonable yield by a "2+2" synthetic method. Accordingly, studies of the zinc(II)- and copper(II)-containing derivatives, Zn(tMe2D4) and Cu(tMe2D4), have also been possible. Methods used to characterize DNA-binding motifs include absorption, emission, linear, and circular dichroism spectroscopies, as well as viscometry. An unusually detailed picture of porphyrin uptake emerges. As the ratio of DNA to porphyrin increases during a typical titration, H2tMe2D4 or Cu(tMe2D4) initially aggregates on the host and then shifts to intercalative binding at close quarters before finally dispersing into non-interacting intercalation sites of the host. Emission studies of the copper(II) porphyrin have been very valuable. The existence of a measurable signal is diagnostic of intercalative binding, and the saturation behavior establishes that internalization typically monopolizes approximately three base pairs. In the moderate loading regime, emission data are most telling because dipole-dipole interactions between near-neighbor porphyrins tend to confuse other spectroscopic assays. The third ligand, Zn(tMe2D4), behaves differently in that the uptake is a strictly cooperative process. The mode of binding also varies with the base content of the DNA host. When the DNA is rich in A=T base pairs, the porphyrin remains five-coordinate and binds externally; however, Zn(tMe2D4) loses its axial ligand and binds by intercalation if the host contains only G[triple bond]C base pairs.

  15. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard.

    PubMed

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.

  16. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard

    PubMed Central

    Płociniczak, Tomasz; Sinkkonen, Aki; Romantschuk, Martin; Sułowicz, Sławomir; Piotrowska-Seget, Zofia

    2016-01-01

    Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction. PMID:26909087

  17. Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence*1

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Marques, A. F.; Lima, M. T.; Reus, U.

    2004-08-01

    The purpose of the present work is to investigate the suitability of TXRF technique to study the distribution of trace elements along human bones of the 13th century, to conclude about environmental conditions and dietary habits of old populations and to study the uptake of some elements from the surrounding soil. In this work, we used TXRF to quantify and to make profiles of the elements through long bones. Two femur bones, one from a man and another from a woman, buried in the same grave were cross-sectioned in four different points at a distance of 1 cm. Microsamples of each section were taken at a distance of 1 mm from each other. Quantitative analysis was performed for Ca, Mn, Fe, Cu, Zn, Sr, Ba and Pb. Very high concentrations of Mn and Fe were obtained in the whole analysed samples, reaching values higher than 2% in some samples of trabecular tissue, very much alike to the concentrations in the burial soil. A sharp decrease for both elements was observed in cortical tissue. Zn and Sr present steady concentration levels in both kinds of bone tissues. Pb and Cu show very low concentrations in the inner tissue of cortical bone. However, these concentrations increase in the regions in contact to trabecular tissue and external surface in contact with the soil, where high levels of both elements were found. We suggest that contamination from the surrounding soil exists for Mn and Fe in the whole bone tissue. Pb can be both from post-mortem and ante-mortem origin. Inner compact tissue might represent in vivo accumulation and trabecular one corresponds to uptake during burial. The steady levels of Sr and Zn together with soil concentration lower levels for these elements may allow us to conclude that they are originated from in vivo incorporation in the hydroxyapatite bone matrix.

  18. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    PubMed

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  19. Exogenous Glutathione Enhances Mercury Tolerance by Inhibiting Mercury Entry into Plant Cells

    PubMed Central

    Kim, Yeon-Ok; Bae, Hyeun-Jong; Cho, Eunjin; Kang, Hunseung

    2017-01-01

    Despite the increasing understanding of the crucial roles of glutathione (GSH) in cellular defense against heavy metal stress as well as oxidative stress, little is known about the functional role of exogenous GSH in mercury (Hg) tolerance in plants. Here, we provide compelling evidence that GSH contributes to Hg tolerance in diverse plants. Exogenous GSH did not mitigate the toxicity of cadmium (Cd), copper (Cu), or zinc (Zn), whereas application of exogenous GSH significantly promoted Hg tolerance during seed germination and seedling growth of Arabidopsis thaliana, tobacco, and pepper. By contrast, addition of buthionine sulfoximine, an inhibitor of GSH biosynthesis, severely retarded seed germination and seedling growth of the plants in the presence of Hg. The effect of exogenous GSH on Hg specific tolerance was also evident in the presence of other heavy metals, such as Cd, Cu, and Zn, together with Hg. GSH treatment significantly decreased H2O2 and O2- levels and lipid peroxidation, but increased chlorophyll content in the presence of Hg. Importantly, GSH treatment resulted in significantly less accumulation of Hg in Arabidopsis plants, and thin layer chromatography and nuclear magnetic resonance analysis revealed that GSH had much stronger binding affinity to Hg than to Cd, Cu, or Zn, suggesting that tight binding of GSH to Hg impedes Hg uptake, leading to low Hg accumulation in plant cells. Collectively, the present findings reveal that GSH is a potent molecule capable of conferring Hg tolerance by inhibiting Hg accumulation in plants. PMID:28507557

  20. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza

    2015-04-15

    A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. In-situ activation of CuO/ZnO/Al.sub.2 O.sub.3 catalysts in the liquid phase

    DOEpatents

    Brown, Dennis M.; Hsiung, Thomas H.; Rao, Pradip; Roberts, George W.

    1989-01-01

    The present invention relates to a method of activation of a CuO/ZnO/Al.sub.2 O.sub.3 catalyst slurried in a chemically inert liquid. Successful activation of the catalyst requires the use of a process in which the temperature of the system at any time is not allowed to exceed a certain critical value, which is a function of the specific hydrogen uptake of the catalyst at that same time. This process is especially critical for activating highly concentrated catalyst slurries, typically 25 to 50 wt %. Activation of slurries of CuO/ZnO/Al.sub.2 O.sub.3 catalyst is useful in carrying out the liquid phase methanol or the liquid phase shift reactions.

  2. Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b.

    PubMed

    Ma, Ying; Rajkumar, Mani; Luo, Yongming; Freitas, Helena

    2013-10-01

    The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L(-1)), Zn (1000 mg L(-1)) and Pb (1200 mg L(-1)). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Contrasting isotopic signatures between anthropogenic and geogenic Zn and evidence for post-depositional fractionation processes in smelter-impacted soils from Northern France

    NASA Astrophysics Data System (ADS)

    Juillot, Farid; Maréchal, Chloe; Morin, Guillaume; Jouvin, Delphine; Cacaly, Sylvain; Telouk, Philipe; Benedetti, Marc F.; Ildefonse, Philippe; Sutton, Steve; Guyot, François; Brown, Gordon E., Jr.

    2011-05-01

    Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ 66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2 σ) to +0.34 ± 0.17‰ (2 σ) at the lowest horizons and from +0.38 ± 0.45‰ (2 σ) to +0.76 ± 0.14‰ (2 σ) near the surface. The δ 66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ 66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe 2O 4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ 66Zn values of +0.81 ± 0.20‰ (2 σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ 66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ 66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.

  4. Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirilgen, N.; Inel, Y.

    1994-09-01

    Heavy metal pollutants are known to be quite toxic to a wide variety of aquatic plants. Lemna (duckweed), due to its special feature, is sought as a test organism for aquatic pollutant studies and for wastewater treatment. Lemna grows rapidly and reproduces vegetatively; its biomass is measured easily. It is adaptable to various aquatic conditions; it extacts and also accumulates metals in its frond bodies. Among the metals, Cu is classified as extremely toxic and Zn is classified as moderately toxic to Lemna. It is reported that both Cu and Zn concentrations in the medium have a great impact onmore » the growth responses and the physiological processes in Lemna. Deficiencies in Cu and Zn resulted in chlorosis of L.minor fronds and low concentrations of CU interfered with the floral induction in L.minor and L.gibba. Excess Cu inhibited both frond growth and frond multiplication of L. paucicostata and it decreased the content of chlorophyll [alpha] and photosynthetic CO[sub 2] uptake in L.minor. In water bodies, metals always are present in combination. Consequently, metal pair interaction is a factor to be considered. However, there are few studies on the effects of metal pair interactions on duckweed growth and metal accumulation. The purpose of this study was to investigate the effects of increased concentrations of Zn and Cu in combination on growth and metal accumulation by Lemna minor L. under controlled laboratory conditions. Zn and Cu were chosen since they are known as essential trace elements for duckweed up to a certain concentration; above that growth inhibition might occur. 16 refs., 3 figs., 6 tabs.« less

  5. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    PubMed

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits. © 2014 SETAC.

  6. Surface modification of zinc oxide nanoparticles with amorphous silica alters their fate in the circulation.

    PubMed

    Konduru, Nagarjun V; Murdaugh, Kimberly M; Swami, Archana; Jimenez, Renato J; Donaghey, Thomas C; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M

    2016-08-01

    Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.

  7. Zinc biosorption by the purple non-sulfur bacterium Rhodobacter capsulatus.

    PubMed

    Magnin, Jean-Pierre; Gondrexon, Nicolas; Willison, John C

    2014-12-01

    This paper presents the first report providing information on the zinc (Zn) biosorption potentialities of the purple non-sulfur bacterium Rhodobacter capsulatus. The effects of various biological, physical, and chemical parameters on Zn biosorption were studied in both the wild-type strain B10 and a strain, RC220, lacking the endogenous plasmid. At an initial Zn concentration of 10 mg·L(-1), the Zn biosorption capacity at pH 7 for bacterial biomass grown in synthetic medium containing lactate as carbon source was 17 and 16 mg Zn·(g dry mass)(-1) for strains B10 and RC220, respectively. Equilibrium was achieved in a contact time of 30-120 min, depending on the initial Zn concentration. Zn sorption by live biomass was modelled, at equilibrium, according to the Redlich-Peterson and Langmuir isotherms, in the range of 1-600 mg Zn·L(-1). The wild-type strain showed a maximal Zn uptake capacity (Qm) of 164 ± 8 mg·(g dry mass)(-1) and an equilibrium constant (Kads) of 0.017 ± 0.00085 L·(mg Zn)(-1), compared with values of 73.9 mg·(g dry mass)(-1) and 0.361 L·mg(-1) for the strain lacking the endogenous plasmid. The Qm value observed for R. capsulatus B10 is one of the highest reported in the literature, suggesting that this strain may be useful for Zn bioremediation. The lower Qm value and higher equilibrium constant observed for strain RC220 suggest that the endogenous plasmid confers an enhanced biosorption capacity in this bacterium, although no genetic determinants for Zn resistance appear to be located on the plasmid, and possible explanations for this are discussed.

  8. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    PubMed

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions.

    PubMed

    García-Gómez, Concepción; Obrador, Ana; González, Demetrio; Babín, Mar; Fernández, María Dolores

    2017-07-01

    The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg -1 ) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO 4 . The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg -1 , but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg -1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications: A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Zheng, Jian; Barpaga, Dushyant

    A mixed metal strategy, in which two different metal nodes coexist in one MOF framework, was examined using MOF-74. The Ni salt precursor for the MOF-74(Ni) analogue was partially replaced during synthesis with relatively inexpensive Zn salt. These bimetallic MOFs were developed and examined for water sorption for potential use in adsorption cooling/chiller applications. Varying concentration ratios of Ni:Zn in MOF-74 achieved using this mixed metal strategy were shown to provide unique impacts on H2O uptake while significantly mitigating the costs of synthesis

  11. A factor influence study of trace element bioaccumulation in moss bags.

    PubMed

    Cesa, M; Campisi, B; Bizzotto, A; Ferraro, C; Fumagalli, F; Nimis, P L

    2008-10-01

    Moss bags of Rhynchostegium riparioides were exposed to different water concentrations of 11 trace elements under laboratory conditions, according to a saturated fractional factorial design (67 treated combinations), with the aim of measuring (1) element uptake and (2) the main effects and first-order interactions of influent factors. Bioaccumulation was directly proportional to water concentration, but the uptake ratio (ranging from 10(2) to 10(5)) also depended on the concentration of other metals. The highest uptake ratios were observed for Al, Cu, Cr, Hg, and Pb. The multiple regression model showed that interactions among elements exist and induce both antagonism (Fe is the most frequent competitor) and synergism (Cr exerts a great influence on Pb and Zn uptake). Interactions might be relatively strong (as for As, Cr, and Pb) or weak (Cd and Hg). This evidence should be taken into consideration in biomonitoring surveys of industrial sites, where effluents release more than one contaminant.

  12. The mechanism of thorium biosorption by Rhizopus arrhizus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsezos, M.; Volesky, B.

    1982-04-01

    Inactive cells of Rhizopus arrhizus have been documented to exhibit a high thorium biosorptive uptake (170 mg/g) from aqueous solutions. The mechanism of thorium sequestering by this biomass type was investigated following the same method as for the uranium biosorption emchanism. The thorium sequestering mechanism appeared somewhat different from that of uranium. Experimental evidence is presented which indicates that, at optimum biosorption pH (4), thorium coordinates with the nitroge of the chitin cell wall network and, in addition, more thorium is adsorbed by the external section of the fungal cell wall. At pH 2 the overall thorium uptake is reduced.more » The kinetic study of thorium biosorption revealed a very rapid rate of uptake. Unlike uranium at optimum solution pH, Fe/sup 2 +/ and Zn/sup 2 +/ did not interfere significantly with the thorium biosorptive uptake capacity of R. arrhizus.« less

  13. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry

    PubMed Central

    Nolan, Elizabeth M.; Lippard, Stephen J.

    2008-01-01

    Conspectus Metal ions are involved in many neurobiological processes relevant to human health and disease. The metalloneurochemistry of Zn(II) is of substantial current interest. Zinc is the second most abundant d-block metal ion in the human brain and its distribution varies, with relatively high concentrations found in the hippocampus. Brain zinc is generally divided into two categories: protein-bound and loosely-bound. The latter pool is also referred to as histochemically observable, chelatable, labile, or mobile zinc. The neurophysiological and neuropathological significance of such mobile Zn(II) remains enigmatic. Studies of Zn(II) distribution, translocation, and function in vivo require tools for its detection. Because Zn(II) has a closed-shell d10 configuration and no convenient spectroscopic signature, fluorescence is a suitable method for monitoring Zn(II) in biological contexts. This Account summarizes work by our laboratory addressing the design, preparation, characterization, and use of small-molecule fluorescent sensors for imaging mobile Zn(II) in living cells and samples of brain tissue. These sensors provide “turn-on” or ratiometric Zn(II) detection in aqueous solution at neutral pH. By making alterations to the Zn(II)-binding unit and fluorophore platform, we have devised sensors with varied photophysical and metal-binding properties. We used several of these probes to image Zn(II) distribution, uptake, and mobilization in a variety of cell types, including neuronal cultures. Goals for the future include developing strategies for multi-color imaging, further defining the quenching and turn-on mechanisms of the sensors, and employing the probes to elucidate the functional significance of Zn(II) in neurobiology. PMID:18989940

  14. Effect of biochar soil-amendments on Allium porrum growth, arbuscular mycorrhizal fungus colonization

    USDA-ARS?s Scientific Manuscript database

    Aims: Examine the interaction of biochar addition and arbuscular mycorrhizal [AM] fungus inoculation upon growth and Zn and Cu uptake by Allium porrum L. in heavy metal amended soil mix, and relate these responses to physicochemical properties of the biochars. Methods: The experiment was a complete ...

  15. 65ZN AND 59FE UPTAKE BY LOBSTER HEPATOPANCREATIC EPITHELIAL CELLS OCCUR BY ELECTROGENIC, PROTON-DEPENDENT TRANSPORT PROCESSES. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Molecular Mechanism of Uptake of Cationic Photoantimicrobial Phthalocyanine across Bacterial Membranes Revealed by Molecular Dynamics Simulations.

    PubMed

    Orekhov, Philipp S; Kholina, Ekaterina G; Bozdaganyan, Marine E; Nesterenko, Alexey M; Kovalenko, Ilya B; Strakhovskaya, Marina G

    2018-04-12

    Phthalocyanines are aromatic macrocyclic compounds, which are structurally related to porphyrins. In clinical practice, phthalocyanines are used in fluorescence imaging and photodynamic therapy of cancer and noncancer lesions. Certain forms of the substituted polycationic metallophthalocyanines have been previously shown to be active in photodynamic inactivation of both Gram-negative and Gram-positive bacteria; one of them is zinc octakis(cholinyl)phthalocyanine (ZnPcChol 8+ ). However, the molecular details of how these compounds translocate across bacterial membranes still remain unclear. In the present work, we have developed a coarse-grained (CG) molecular model of ZnPcChol 8+ within the framework of the popular MARTINI CG force field. The obtained model was used to probe the solvation behavior of phthalocyanine molecules, which agreed with experimental results. Subsequently, it was used to investigate the molecular details of interactions between phthalocyanines and membranes of various compositions. The results demonstrate that ZnPcChol 8+ has high affinity to both the inner and the outer model membranes of Gram-negative bacteria, although this species does not show noticeable affinity to the 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphatidylcholine membrane. Furthermore, we found out that the process of ZnPcChol 8+ penetration toward the center of the outer bacterial membrane is energetically favorable and leads to its overall disturbance and formation of the aqueous pore. Such intramembrane localization of ZnPcChol 8+ suggests their twofold cytotoxic effect on bacterial cells: (1) via induction of lipid peroxidation by enhanced production of reactive oxygen species (i.e., photodynamic toxicity); (2) via rendering the bacterial membrane more permeable for additional Pc molecules as well as other compounds. We also found that the kinetics of penetration depends on the presence of phospholipid defects in the lipopolysaccharide leaflet of the outer membrane and the type of counterions, which stabilize it. Thus, the results of our simulations provide a detailed molecular view of ZnPcChol 8+ "self-promoted uptake", the pathway previously proposed for some small molecules crossing the outer bacterial membrane.

  17. An enriched stable-isotope approach to determine the gill-zinc binding properties of juvenile rainbow trout (Oncorhynchus mykiss) during acute zinc exposures in hard and soft waters

    USGS Publications Warehouse

    Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.

  18. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    NASA Astrophysics Data System (ADS)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn(NH3)(CO 3), renders this compound a potential candidate for separating CO 2 from H2and N2. The adsorbent selection screening affirmed that Zn(NH3)(CO 3) can be a potential candidate for LFG separation using PSA, LFG separation using VSA, oxy-fuel CO2 purification using PSA, and air separation using PSA at 263K. For those applications, the low CO2 uptake by Zn(NH3)(CO3) was offset by considerable selectivity, regenerability, and adsorbent selection parameter.

  19. A Mini HIP HOP Assay Uncovers a Central Role for Copper and Zinc in the Antifungal Mode of Action of Allicin.

    PubMed

    Prescott, Thomas A K; Panaretou, Barry

    2017-05-10

    Garlic contains the organosulfur compound allicin which exhibits potent antifungal activity. Here we demonstrate the use of a highly simplified yeast chemical genetic screen to characterize its mode of action. By screening 24 validated yeast gene deletion "signature" strains for which hypersensitivity is characteristic for common antifungal modes of action, yeast lacking the high affinity Cu 2+ transporter Ctr1 was found to be hypersensitive to allicin. Focusing on transition metal related genes identified two more hypersensitive strains lacking the Cu 2+ and Zn 2+ transcription factors Mac1 and Zap1. Hypersensitivity in these strains was reversed by the addition of Cu 2+ and Zn 2+ ions, respectively. The results suggest the antifungal activity of allicin is mediated through restricted Cu 2+ and Zn 2+ uptake or inhibition of Cu 2+ and Zn 2+ metalloproteins. As certain antimicrobial modes of action are much more common than others, the approach taken here provides a useful way to identify them early on.

  20. Effects of a mine tailings spill on feeding and metal concentrations in yellow perch (Perca flavescens)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draves, J.F.; Fox, M.G.

    1998-08-01

    In this study, the authors examined the effects of a gold mine tailings spill in the Montreal River (northern Ontario, Canada) on juvenile yellow perch (Perca flavescens), a benthic-feeding fish, and identified the major contributors to their uptake of tailings metals (Pb, Zn, Cd, and Cu) in dietary items and river water. Juvenile perch sampled from a 6-km reach of the river where most of the tailings were deposited had significantly less food in their stomachs than individuals sampled from a reference reach of the river. Concentrations of Pb in invertebrate prey taxa from the contaminated reach were 9 tomore » 20 times higher than in those sampled from the reference reach. These differences were consistent with a higher concentration of Pb in perch from the contaminated reach. In contrast, Zn concentrations were high in river water and perch from both the reference and contaminated reaches, and little difference was found in Zn concentration between invertebrate prey types sampled from the two reaches. No significant differences were found in Cu or Cd concentrations in yellow perch sampled from the two reaches. Higher levels of Pb in the major prey types from the contaminated reach indicate that dietary uptake may be the major vector for Pb accumulation in yellow perch from the Montreal River.« less

  1. Application of synchrotron methods to assess the uptake of roadway-derived Zn by earthworms in an urban soil

    USGS Publications Warehouse

    Lev, S.M.; Landa, E.R.; Szlavecz, K.; Casey, R.; Snodgrass, J.

    2008-01-01

    The impact of human activities on biogeochemical cycles in terrestrial environments is nowhere more apparent than in urban landscapes. Trace metals, collected on roadways and transported by storm water, may contaminate soils and sediments associated with storm water management systems. These systems will accumulate metals and associated sediments may reach toxic levels for terrestrial and aquatic organisms using the retention basins as habitat. The fate and bioavailability of these metals once deposited is poorly understood. Here we present results from a dose-response experiment that examines the application of synchrotron X-ray fluorescence methods (??-SXRF) to test the hypothesis that earthworms will bio-accumulate Zn in a roadway-dust contaminated soil system providing a potential pathway for roadway contaminants into the terrestrial food web, and that the storage and distribution of Zn will change with the level of exposure reflecting the micronutrient status of Zn. Lumbricus friendi was exposed to Zn-bearing roadway dust amended to a field soil at six target concentrations ranging from background levels (45 mg/kg Zn) to highly contaminated levels (460 mg/kg Zn) designed to replicate the observed concentration range in storm-water retention basin soils. After a 30 day exposure, Zn storage in the intestine is positively correlated with dose and there is a change in the pattern of Zn storage within the intestine. This relationship is only clear when ??-SXRF Zn map data is coupled with a traditional toxicological approach, and suggests that the gut concentration in L. friendi is a better indicator of Zn bioaccumulation and storage than the total body burden. ?? 2008 The Mineralogical Society.

  2. Preliminary evidences of CCM operation and its down regulation in relation to increasing CO2 levels in natural phytoplankton assemblages from the coastal waters of Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Biswas, Haimanti; Rahman Shaik, Aziz Ur; Bandyopadhyay, Debasmita

    2014-05-01

    Bay of Bengal (BoB), a low productive part of the North Indian Ocean, often possesses low CO2 levels in its surface water and diatoms dominate the phytoplankton communities. Virtually no studies are available from this area reporting how this diatom dominated phytoplankton community would respond any increase in dissolved CO2 levels either naturally or anthopogenically. In most of the marine phytoplankton, the inefficiency of the sole carbon fixing enzyme Rubisco necessitates the need of concentrating dissolved inorganic carbon (DIC) (mostly as HCO3) inside the cell in excess of the ambient water concentrations in order to maintain high rate of photosynthesis under low CO2 levels through an energy consuming carbon concentration mechanisms (CCMs). The ubiquitous enzyme carbonic anhydrase (CA) plays a vital role in CCMs by converting HCO3- to CO2 and usually utilizes the trace metal zinc (Zn) as a cofactor. However, it is evident in many marine phytoplankton species that with increasing external CO2 levels, CCMs can be down-regulated leading to energetic savings which can be reallocated to growth; although exceptions occur. Hence, in order to predict their responses to the projected changes, it is imperative to understand their carbon metabolism patterns. We have conducted a series of incubation experiments in microcosms with natural phytoplankton communities from the coastal waters of BoB under different CO2 levels. Our results revealed that the rate of net photosynthetic oxygen evolution and biomass build-up increased in response to increasing CO2 levels. The depletion in δ13CPOM values were more in the high CO2 treatments relative to the low CO2 treated cells (control), indicating that dissolved CO2 uptake was higher when CO2 levels were increased. When additional Zn was added to the low CO2 treated cells, net photosynthetic oxygen evolution rate was increased significantly than that of the untreated control. It is likely that upon the supply of Zn under low CO2 levels, CA activity was enhanced and accelerated DIC transport and photosynthetic rate. Moreover, δ13CPOM values of low CO2 samples (both Zn treated and untreated) were almost identical, though the rate of photosynthesis was higher in response to Zn addition. This could be because of the fact that under low CO2 levels, DIC was possibly transported as HCO3- and an active HCO3- transport can contribute to low discrimination of 13C compared to diffusive CO2uptake leading to unaltered values of δ13CPOM. Furthermore, under low CO2 treatments, the need of nitrogen resource can be higher to maintain an active CCM (to build-up required proteins, Rubisco and CCM components) and our results showed higher values of δ15NPOMunder low CO2 levels relative to the high CO2treatments suggesting higher nitrogen utilization efficiency in the former case. These observations strengthen the possibility of operating an active CCM under low CO2 levels. HPLC pigment analysis revealed the occurrences of diatoxanthin (DT) [indicator of non-photo-chemical quenching (NPQ)] and high values of photoprotective carotenoid to light harvesting carotenoid ratios (PPC/LHC) in the low CO2 treated cells indicating light stress. This is likely that, when CO2, the only substrate for Rubisco, is low, absorbed light energy within the cell can be surplus leading to photo-damage and to protect the cell from potential damage, DT was produced by energy dissipation via NPQ and PPC were synthesized in excess of LHC. Conversely, in Zn and high CO2 treated cells, the absence of DT and reduced values of PPC/LHC indirectly indicates reduced light stress which was possibly because of enhanced supply of Rubisco substrate either via active bicarbonate transport or diffusive CO2 supply. Thus, we infer that the diatom dominated phytoplankton communities from the study area perform CCMs under low CO2 conditions and the same can be down regulated upon the increasing levels of CO2 and the community may benefit from the increasing CO2 levels followed by increased rate of carbon fixation. These can have large biogeochemical significance.

  3. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D,L-polylactide microparticle formulation.

    PubMed

    Bartolini, D; Piroddi, M; Tidei, C; Giovagnoli, S; Pietrella, D; Manevich, Y; Tew, K D; Giustarini, D; Rossi, R; Townsend, D M; Santi, C; Galli, F

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this "depowered" GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of these effects with the expression pattern and signaling properties of GSTP . This has overcome the GPx-mimetic paradigm proposed for Se-organic drugs with a more pragmatic concept of GSTP signaling modulators. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its d,l-polylactide microparticle formulation

    PubMed Central

    Bartolini, D.; Piroddi, M.; Tidei, C.; Giovagnoli, S.; Pietrella, D.; Manevich, Y.; Tew, K.D.; Giustarini, D.; Rossi, R.; Townsend, D.M.; Santi, C.; Galli, F.

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of these effects with the expression pattern and signaling properties of GSTP. This has overcome the GPx-mimetic paradigm proposed for Se-organic drugs with a more pragmatic concept of GSTP signaling modulators. PMID:25452145

  5. Synthesis, structure refinement and chromate sorption characteristics of an Al-rich bayerite-based layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Sylvia, E-mail: sylviabritto11@gmail.com; Kamath, P. Vishnu

    2014-07-01

    “Imbibition” of Zn{sup 2+} ions into the cation vacancies of bayerite–Al(OH){sub 3} and NO{sub 3}{sup −} ions into the interlayer gallery yields an Al-rich layered double hydroxide with Al/Zn ratio ∼3. NO{sub 3}{sup −} ions are intercalated with their molecular planes inclined at an angle to the plane of the metal hydroxide slab and bonded to it by hydrogen bonds. Rietveld refinement of the structure shows that the monoclinic symmetry of the precursor bayerite is preserved in the product, showing that the imbibition is topochemical in nature. The nitrate ion is labile and is quantitatively replaced by CrO{sub 4}{sup 2−}more » ions from solution. The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm, thus showing that the hydroxide is a candidate material for green chemistry applications for the removal of CrO{sub 4}{sup 2−} ions from waste water. Rietveld refinement of the structure of the hydroxide after CrO{sub 4}{sup 2−} inclusion reveals that the CrO{sub 4}{sup 2−} ion is intercalated with one of its 2-fold axes parallel to the b-crystallographic axis of the crystal, also the principal 2 axis of the monoclinic cell. - Graphical abstract: The structure of the [Zn–Al4-nitrate] LDH viewed along the a-axis. - Highlights: • Synthesis of Al-rich layered double hydroxide with Al/Zn ratio ∼3. • Rietveld refinement indicates that the imbibition of Zn into Al(OH){sub 3} is topochemical in nature. • The uptake of CrO{sub 4}{sup 2−} ions follows a Langmuir adsorption isotherm.« less

  6. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    PubMed

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining

    USGS Publications Warehouse

    Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles. Average ??66Zn and ??65Cu values for streams varied from +0.02??? to +0.46??? and -0.7??? to +1.4???, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ???0.3??? (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.

  8. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    PubMed

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  9. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.

    PubMed

    Li, Wanlu; Xu, Binbin; Song, Qiujin; Liu, Xingmei; Xu, Jianming; Brookes, Philip C

    2014-02-15

    Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316 mg kg(-1) for Cd, 47.3 mg kg(-1) for Cu, 31.7 mg kg(-1) for Ni and 131 mg kg(-1) for Zn, and the metal concentrations in rice grain were 0.132 mg kg(-1) for Cd, 2.46 mg kg(-1) for Cu, 0.223 mg kg(-1) for Ni and 17.4 mg kg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Moran's I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into account to control soil pollution and to curtail metal contamination to the food chain in the areas of Wenling, which were the most polluted by toxic metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Arbuscular mycorrhizas enhance nutrient uptake in different wheat genotypes at high salinity levels under field and greenhouse conditions.

    PubMed

    Mardukhi, Baran; Rejali, Farhad; Daei, Gudarz; Ardakani, Mohammad Reza; Malakouti, Mohammad Javad; Miransari, Mohammad

    2011-07-01

    Since most experiments regarding the symbiosis between arbuscular mycorrhizal (AM) fungi and their host plants under salinity stress have been performed only under greenhouse conditions, this research work was also conducted under field conditions. The effects of three AM species including Glomus mosseae, G. etunicatum and G. intraradices on the nutrient uptake of different wheat cultivars (including Roshan, Kavir and Tabasi) under field and greenhouse (including Chamran and Line 9) conditions were determined. At field harvest, the concentrations of N, Ca, Mg, Fe, Cu, and Mn, and at greenhouse harvest, plant growth, root colonization and concentrations of different nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl were determined. The effects of wheat cultivars on the concentrations of N, Ca, and Mn, and of all nutrients were significant at field and greenhouse conditions, respectively. In both experiments, AM fungi significantly enhanced the concentrations of all nutrients including N, K, P, Ca, Mg, Mn, Cu, Fe, Zn, Na and Cl. The synergistic and enhancing effects of co-inoculation of AM species on plant growth and the inhibiting effect of AM species on Na(+) rather than on Cl(-) uptake under salinity are also among the important findings of this research work. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Environmental variation between habitats and uptake of heavy metals by Urtica dioica.

    PubMed

    Otte, M L; Wijte, A H

    1993-12-01

    The observation from previous surveys, that Urtica dioica plants that had grown in metal contaminated soil in the floodplains of the former Rhine estuary in different habitats, but at comparable total soil metal concentrations, showed significant differences in tissue metal concentrations, led to the hypothesis that variation in other environmental characteristics than soil composition and chemical speciation of metals between habitats is also important in determining uptake and translocation of metals in plants. A field survey indicated that differences in root Cd, Cu and Zn concentrations might partly be explained by variation in speciation of metals in different habitats. However, shoot concentrations showed a different pattern that did not relate to variation in soil metal concentrations. In a habitat experiment Urtica dioica plants were grown in artificially contaminated soil in pots that were placed in the four habitats (grassland, pure reed, mixed reed, osier bed) that were also included in the field survey. After seven weeks the plants showed significant differences in Cu and Zn concentrations in roots and aboveground plant parts and in distribution of the metals in the plants between habitats. It was concluded that variation between habitats in environmental characteristics other than soil composition can explain as much variation in plants as can variation in soil metal concentrations and/or speciation. The implications for assessment of soil metal contamination and uptake by plants are discussed.

  12. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  13. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response

    PubMed Central

    Liuzzi, Juan P.; Lichten, Louis A.; Rivera, Seth; Blanchard, Raymond K.; Aydemir, Tolunay Beker; Knutson, Mitchell D.; Ganz, Tomas; Cousins, Robert J.

    2005-01-01

    Infection and inflammation produce systemic responses that include hypozincemia and hypoferremia. The latter involves regulation of the iron transporter ferroportin 1 by hepcidin. The mechanism of reduced plasma zinc is not known. Transcripts of the two zinc transporter gene families (ZnT and Zip) were screened for regulation in mouse liver after turpentine-induced inflammation and LPS administration. Zip14 mRNA was the transporter transcript most up-regulated by inflammation and LPS. IL-6 knockout (IL-6–/–) mice did not exhibit either hypozincemia or the induction of Zip14 with turpentine inflammation. However, in IL-6–/– mice, LPS produced a milder hypozincemic response but no Zip14 induction. Northern analysis showed Zip14 up-regulation was specific for the liver, with one major transcript. Immunohistochemistry, using an antibody to an extracellular Zip14 epitope, showed both LPS and turpentine increased abundance of Zip14 at the plasma membrane of hepatocytes. IL-6 produced increased expression of Zip14 in primary hepatocytes cultures and localization of the protein to the plasma membrane. Transfection of mZip14 cDNA into human embryonic kidney cells increased zinc uptake as measured by both a fluorescent probe for free Zn2+ and 65Zn accumulation, as well as by metallothionein mRNA induction, all indicating that Zip14 functions as a zinc importer. Zip14 was localized in plasma membrane of the transfected cells. These in vivo and in vitro experiments demonstrate that Zip14 expression is up-regulated through IL-6, and that this zinc transporter most likely plays a major role in the mechanism responsible for hypozincemia that accompanies the acute-phase response to inflammation and infection. PMID:15863613

  14. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita.

    PubMed

    Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta

    2017-04-03

    The aim of the study was to evaluate the efficacy of the multiflora rose var. "Jatar" (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby) to phytoextract heavy metals from municipal sewage sludge. The 6-year field experiment involved four levels of fertilization with sewage sludge at doses of 0, 10, 20, 40, and 60 Mg DM (Dry Mass) sludge ha -1 . The increasing doses of sewage sludge were found to significantly increase the yield of multiflora rose and Virginia fanpetals biomass. They also significantly increased the content of heavy metals in these plants. The highest uptake of heavy metals by the multiflora rose and Virginia fanpetals crops was recorded at the fertilization dose of 60 Mg DM ⋅ ha -1 . Our investigations show that the Virginia fanpetals was more efficient in the phytoextraction of Cr, Ni, Cu, Zn, and Cd from the sewage sludge than the multiflora rose, due to the greater yields and higher heavy metal uptake by the former plant. In turn, the multiflora rose phytoextracted greater amounts of Pb from the sewage sludge. The analyses indicate that the Virginia fanpetals can be used for phytoremediation (phytoextraction) of heavy metals contained in sewage sludge.

  15. Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Klejdus, Bořivoj

    2014-05-30

    Toxicity of low (3μM) and high (60 and 120μM) concentrations of hexavalent chromium/Cr(VI) in chamomile plants was studied. Fluorescence staining confirmed reduction of Cr(VI) to Cr(III). Cr was mainly accumulated in the roots with translocation factor <0.007. Notwithstanding this, both shoots and roots revealed increase in oxidative stress and depletion of glutathione, total thiols, ascorbic acid and activities of glutathione reductase and partially ascorbate peroxidase mainly at 120μM Cr. Though some protective mechanisms were detected (elevation of nitric oxide, enhancement of GPX activity and increase in phenols and lignin), this was not sufficient to counteract the oxidative damage. Consequently, soluble proteins, tissue water content and biomass production were considerably depleted. Surprising increase in some mineral nutrients in roots (Ca, Fe, Zn and Cu) was also detected. Subsequent experiment confirmed that exogenous calcium suppressed oxidative symptoms and Cr uptake but growth of chamomile seedlings was not improved. Alteration of naturally present reductants could be a reason for Cr(III) signal detected using specific fluorescence reagent: in vitro assay confirmed disappearance of ascorbic acid in equimolar mixture with dichromate (>96% at pH 4 and 7) while such response of glutathione was substantially less visible. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chromium uptake and consequences for metabolism and oxidative stress in chamomile plants.

    PubMed

    Kováčik, Jozef; Babula, Petr; Klejdus, Bořivoj; Hedbavny, Josef

    2013-08-21

    Chromium Cr(III) toxicity toward chamomile metabolism and oxidative stress-related parameters after 7 days of exposure was studied. Cr preferentially accumulated in the roots and evoked extensive both dose-dependent and dose-independent increase in fluorescence signals of ROS, NO and thiols. Superoxide increased mainly at the highest Cr dose, whereas H2O2 accumulation revealed a discontinuous trend in relation to external Cr supply, and this could be owing to variation in activities of peroxidases. Glutathione and ascorbate quantification, using LC-MS/MS equipment, revealed strong stimulation despite low shoot Cr amounts. Phenolic enzyme activities, except for PAL, were depressed by Cr presence, whereas phenolic metabolites were stimulated, indicating various time dynamics. Among free amino acids, their sum and even proline decreased in the roots, whereas soluble proteins increased. Mineral nutrients showed negligible responses with only Zn and Cu being depleted in both shoots and roots. Cr staining using Cr(III)-specific (naphthalimide-rhodamine) and metal nonspecific (Phen Green) dyes indicated that the former correlated well with AAS quantification of Cr amount. Use of Phen Green is also discussed. These data indicate that Cr-induced oxidative stress is not simply a function of exposure time and applied concentration. Microscopic observations in terms of oxidative stress and chromium uptake are presented here for the first time.

  17. TiO2 nanoparticles alleviate toxicity by reducing free Zn2+ ion in human primary epidermal keratinocytes exposed to ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kathawala, Mustafa Hussain; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-06-01

    Nanoparticles have been a subject of intense safety screenings due to their influx in various applications. Although recent studies have reported on the plausible cytotoxicity of nanoparticles, many of these focused only on single-material nanoparticles, while the cytotoxicity of dual-nanoparticle systems (e.g., ZnO with TiO2) has remained unexplored. For example, commercial products like sunscreens and cosmetics contain both nano-sized ZnO and TiO2, but cytotoxicity studies of such systems are meager. In this paper, the cytotoxicity of this dual-nanoparticle system comprising both ZnO and TiO2 was evaluated in vitro on skin-mimicking human primary epidermal keratinocytes (HPEKs). Inductively coupled plasma mass spectrometry, flow cytometry, and confocal microscopy were used to investigate the uptake of nanoparticles and free ions. Results revealed that ZnO nanoparticles were partially soluble (up to 20 μg ml-1 after 1 day) and could induce strong cytotoxicity as compared to the insoluble TiO2 nanoparticles which remained non-toxic until very high concentrations. It was found that TiO2 nanoparticles could play "vigilante" by protecting keratinocytes from acute toxicity of ZnO nanoparticles. This is in agreement with the observation that TiO2 nanoparticles caused an attenuation of free intracellular Zn2+ ions concentration, by adsorbing and immobilizing free Zn2+ ions. This study reveals a unique dual-nanoparticle observation in vitro on HPEKs, and highlights the importance of dual-nanoparticulate toxicity studies, especially in applications where more than one nanoparticle material-type is present.

  18. Protein functionalization of ZnO nanostructure exhibits selective and enhanced toxicity to breast cancer cells through oxidative stress-based cell death mechanism.

    PubMed

    Mahanta, Sailendra; Prathap, S; Ban, Deependra Kumar; Paul, Subhankar

    2017-08-01

    Zinc oxide nanostructure (ZnONS) was chemically synthesized and functionalized (FZnONS BLA ) with a small protein bovine α-lactalbumin (BLA) by chemical cross-linking methods. Both nano-structures were characterized using various techniques such as electron microscopy, dynamic light scattering (DLS), UV-Vis spectroscopy, FT-IR, photo-luminescence and X-ray diffraction. Electron microscopy and DLS analysis revealed their (ZnONS and FZnONS BLA ) average size of 200nm and 450nm, respectively. When cytotoxicity of both the nanostructures were assessed in breast cancer cells MCF-7 and MDAMB231 by MTT assay and PI/Annexin V staining (FACS), FZnONS BLA demonstrated higher cell death than ZnONS primarily due to generation of intracellular reactive oxygen species (ROS). Our experimental results also suggested that such enhanced toxicity was due to the lethal structural variant of BLA in FZnONS BLA as well as higher cellular uptake than ZnONS by cancer cells. The death kinetics study with time in cancer cells further proved that FZnONS BLA caused toxicity much faster than ZnONS, thus suggested a strong role of lethal variant of BLA in FZnONS BLA as a cytotoxic agent in cancer cells. Furthermore, FZnONS BLA demonstrated excellent cytocompatibility (normal cells) and hemocompatibility compared to ZnONS. Hence, considering the biodegradable nature of ZnO nonmaterial, our results demonstrated that BLA functionalized ZnONS could be used to develop a suitable therapeutic strategy in cancer. Copyright © 2017. Published by Elsevier B.V.

  19. Selenium Nanoparticles Induce the Chemo-Sensitivity of Fluorouracil Nanoparticles in Breast and Colon Cancer Cells.

    PubMed

    Abd-Rabou, Ahmed A; Shalby, Aziza B; Ahmed, Hanaa H

    2018-05-11

    Drug resistance is a major challenge of breast and colon cancer therapies leading to treatment failure. The main objective of the current study is to investigate whether selenium nanoparticles (nano-Se) can induce the chemo-sensitivity of 5-fluorouracil (FU)-encapsulated poly (D, L-lactide-co-glycolide) nanoparticles (nano-FU) in breast and colon cancer cell lines. Nano-Se and nano-FU were synthesized and characterized, then applied individually or in combination upon MCF7, MDA-MB-231, HCT 116, and Caco-2 cancerous cell lines. Cytotoxicity, cellular glucose uptake, and apoptosis, as well as malondialdehyde (MDA), nitric oxide (NO), and zinc (Zn) levels, were investigated upon the different treatments. We have resulted that nano-FU induced cell death in MCF7 and Caco-2 more effectively than MDA-MB-231 and HCT 116 cell lines. Moreover, nano-FU plus nano-Se potentiate MCF7 and Caco-2 chemo-sensitivity were higher than MDA-MB-231 and HCT 116 cancerous cell lines. It is relevant to note that Se and FU nano-formulations inhibited cancer cell bioenergetics via glucose uptake slight blockage. Furthermore, nano-FU increased the levels of NO and MDA in media over cancer cells, while their combinations with nano-Se rebalance the redox status with Zn increment. We noticed that MCF7 cell line is sensitive, while MDA-MB-231 cell line is resistant to Se and nano-Se. This novel approach could be of great potential to enhance the chemo-sensitivity in breast and colon cancer cells.

  20. Synchrotron radiation induced X-ray emission studies of the antioxidant mechanism of the organoselenium drug ebselen.

    PubMed

    Aitken, Jade B; Lay, Peter A; Duong, T T Hong; Aran, Roshanak; Witting, Paul K; Harris, Hugh H; Lai, Barry; Vogt, Stefan; Giles, Gregory I

    2012-04-01

    Synchrotron radiation induced X-ray emission (SRIXE) spectroscopy was used to map the cellular uptake of the organoselenium-based antioxidant drug ebselen using differentiated ND15 cells as a neuronal model. The cellular SRIXE spectra, acquired using a hard X-ray microprobe beam (12.8-keV), showed a large enhancement of fluorescence at the K(α) line for Se (11.2-keV) following treatment with ebselen (10 μM) at time periods from 60 to 240 min. Drug uptake was quantified and ebselen was shown to induce time-dependent changes in cellular elemental content that were characteristic of oxidative stress with the efflux of K, Cl, and Ca species. The SRIXE cellular Se distribution map revealed that ebselen was predominantly localized to a discreet region of the cell which, by comparison with the K and P elemental maps, is postulated to correspond to the endoplasmic reticulum. On the basis of these findings, it is hypothesized that a major outcome of ebselen redox catalysis is the induction of cellular stress. A mechanism of action of ebselen is proposed that involves the cell responding to drug-induced stress by increasing the expression of antioxidant genes. This hypothesis is supported by the observation that ebselen also regulated the homeostasis of the transition metals Mn, Cu, Fe, and Zn, with increases in transition metal uptake paralleling known induction times for the expression of antioxidant metalloenzymes. © SBIC 2012

  1. Screening of sunflower cultivars for metal phytoextraction in a contaminated field prior to mutagenesis.

    PubMed

    Nehnevajova, Erika; Herzig, Rolf; Federer, Guido; Erismann, Karl-Hans; Schwitzguébel, Jean-Paul

    2005-01-01

    Sunflower can be used for the remediation of metal-contaminated soils. Its high biomass production makes this plant species interestingfor phytoextraction and using sunflower oil for a technical purpose may improve the economic balance of phytoremediation. The aim of the present field study was to screen 15 commercial cultivars of Helianthus annuus L. grown on metal-contaminated soil, to find out the variety with the highest metal extraction, which can be further improved by mutation or in vitro breeding procedures. Two different fertilizers (ammonium sulphate and ammonium nitrate) were also used to enhance the bioavailability of metals in soil Highly significant differences were observed within tested varieties for metal accumulation and extraction efficiency. Furthermore, ammonium nitrate increased cadmium extraction, whereas ammonium sulphate enhanced zinc and lead uptake in most tested cultivars. In this field-based sunflower screening, we found enhanced cumulative Cd, Zn, and Pb extraction efficiency by a factor 4.4 for Salut cultivar. We therefore emphasize that prior to any classical breeding or genetic engineering enhancing metal uptake potential, a careful screening of various genotypes should be done to select the cultivar with the naturally highest metal uptake and to start the genetic improvement with the best available plant material.

  2. Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings.

    PubMed

    Liu, Yujing; Yu, Xiaofang; Feng, Yimei; Zhang, Chao; Wang, Chao; Zeng, Jian; Huang, Zhuo; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Gao, Suping; Chen, Qibing

    2017-10-31

    To date, several species of Asteraceae have been considered as Cd-accumulators. However, little information on the Cd tolerance and associated mechanisms of Asteraceae species Cosmos bipinnatus, is known. Presently, several physiological indexes and transcriptome profiling under Cd stress were investigated. C. bipinnatus exhibited strong Cd tolerance and recommended as a Cd-accumulator, although the biomasses were reduced by Cd. Meanwhile, Cd stresses reduced Zn and Ca uptake, but increased Fe uptake. Subcellular distribution indicated that the vacuole sequestration in root mainly detoxified Cd under lower Cd stress. Whilst, cell wall binding and vacuole sequestration in root co-detoxified Cd under high Cd exposure. Meanwhile, 66,407 unigenes were assembled and 41,674 (62.75%) unigenes were annotated in at least one database. 2,658 DEGs including 1,292 up-regulated unigenes and 1,366 down-regulated unigenes were identified under 40 μmol/L Cd stress. Among of these DEGs, ZIPs, HMAs, NRAMPs and ABC transporters might participate in Cd uptake, translocation and accumulation. Many DEGs participating in several processes such as cell wall biosynthesis, GSH metabolism, TCA cycle and antioxidant system probably play critical roles in cell wall binding, vacuole sequestration and detoxification. These results provided a novel insight into the physiological and transcriptome response to Cd in C. bipinnatus seedlings.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, J.R.; Price, M.; Thurston, J.

    The rates of uptake by a turtle grass (Thalassia testudinum) ecosystem of Cd, Cr, Cu, Ni, Pb, and Zn which were leached from sewage sludge by seawater were determined. The experimental design used aerated flowing seawater (8.4l min/sup -1/), which passed over a 0.1 m/sup 3/ bed of sewage sludge before traversing the model ecosystem.

  4. LABORATORY EVALUATION OF ZERO-VALENT IRON TO TREAT WATER IMPACTED BY ACID MINE DRAINAGE

    EPA Science Inventory

    This study examines the applicability and limitations of granular zero-valent iron for the treatment of water impacted by mine wastes. Rates of acid neutralization and of metal (Cu, Cd, Ni, Zn, Hg, Al, and Mn) and metalloid (As) uptake were determined in batch systems using simu...

  5. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling.

    PubMed

    Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar

    2014-04-01

    The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. [Effect of inorganic amendments on the stabilization of heavy metals in contaminated soils].

    PubMed

    Cao, Meng-hua; Zhu, Xi; Liu, Huang-cheng; Wang, Lin-ling; Chen, Jing

    2013-09-01

    Effects of single and mixed inorganic amendments on the stabilization of heavy metals in contaminated soils were investigated. Significant synergistic effects on the stabilization of Zn and Cu were observed with the mixed inorganic amendments of KH2PO4 and Ca(OH)2 in the laboratory test. In the field test, the stabilization ratios of Zn, Cu and Cd were 41.8%, 28.2% and 48.4%, respectively, with the dosage of 0.5 kg x m(-2). The growth of peanut was inhibited by the addition of the inorganic amendments. Meanwhile, the uptake of heavy metals was reduced in peanut.

  7. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K{sup +} uptake and Na{sup +} transport in yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinxin; Zhang, Min; Takano, Tetsuo

    Highlights: {yields} The AtCCX5 protein coding a putative cation calcium exchanger was characterized. {yields} AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. {yields} AtCCX5 protein did not show the same transport properties as the CAXs. {yields} AtCCX5 protein involves in mediating high-affinity K{sup +} uptake in yeast. {yields} AtCCX5 protein also involves in Na{sup +} transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membranemore » and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K{sup +}, Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Cd{sup 2+}, Mn{sup 2+}, Ba{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Li{sup +}) were analyzed. AtCCX5 expression was found to affect the response to K{sup +} and Na{sup +} in yeast. The AtCCX5 transformant also showed a little better growth to Zn{sup 2+}. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K{sup +} (0.5 mM), and also suppressed its Na{sup +} sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K{sup +} uptake and was also involved in Na{sup +} transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K{sup +} uptake and Na{sup +} transport in yeast.« less

  8. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line

    PubMed Central

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Chaudhary, Dharmendra

    2015-01-01

    Metallic nanoparticles are widely used in cosmetics, food products and textile industry. These particles are known to cause respiratory toxicity and epithelial inflammation. They are eventually released to aquatic environment necessitating toxicity studies in cells from respiratory organs of aquatic organisms. Hence, we have developed and characterized a new cell line, WAG, from gill tissue of Wallago attu for toxicity assessment of TiO2 and ZnO nanoparticles. The efficacy of the cell line as an in vitro system for nanoparticles toxicity studies was established using electron microscopy, cytotoxicity assays, genotoxicity assays and oxidative stress biomarkers. Results obtained with MTT assay, neutral red uptake assay and lactate dehydrogenase assay showed acute toxicity to WAG cells with IC50 values of 25.29±0.12, 34.99±0.09 and 35.06±0.09 mg/l for TiO2 and 5.716±0.1, 3.160±0.1 and 5.57±0.12 mg/l for ZnO treatment respectively. The physicochemical properties and size distribution of nanoparticles were characterized using electron microscopy with integrated energy dispersive X-ray spectroscopy and Zetasizer. Dose dependent increase in DNA damage, lipid peroxidation and protein carbonylation along with a significant decrease in activity of Superoxide Dismutase, Catalase, total Glutathione levels and total antioxidant capacity with increasing concentration of exposed nanoparticles indicated that the cells were under oxidative stress. The study established WAG cell line as an in vitro system to study toxicity mechanisms of nanoparticles on aquatic organisms. PMID:26011447

  9. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    PubMed

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  10. A comparative uptake study of multiplexed PET tracers in mice with turpentine-induced inflammation.

    PubMed

    Huang, Tingting; Wang, Hongliang; Tang, Ganghua; Liang, Xiang; Nie, Dahong; Yi, Chang; Wu, Kening

    2012-11-26

    The potential value of multiplexed positron emission tomography (PET) tracers in mice with turpentine-induced inflammation was evaluated and compared with 2-[¹⁸F]fluoro-2-deoxy-D-glucose ([¹⁸F]FDG) for glucose metabolism imaging. These PET tracers included [¹⁸F]fluoromethylcholine ([¹⁸F]FCH) for choline metabolism imaging, (S-[¹¹C]methyl)-D-cysteine ([¹¹C]DMCYS) for amino acid metabolism imaging, [¹¹C]bis(zinc(II)-dipicolylamine) ([¹¹C]DPA-Zn²⁺) for apoptosis imaging, 2-(4-N-[¹¹C]-methylaminophenyl)-6-hydroxybenzothiazole ([¹¹C]PIB) for β amyloid binding imaging, and [¹⁸F]fluoride (¹⁸F⁻) for bone metabolism imaging. In mice with turpentine-induced inflammation mice, the biodistribution of all the tracers mentioned above at 5, 15, 30, 45, and 60 min postinjection was determined. Also, the time-course curves of the tracer uptake ratios for inflammatory thigh muscle (IM) to normal uninflammatory thigh muscle (NM), IM to blood (BL), IM to brain (BR), and IM to liver (LI) were acquired, respectively. Moreover, PET imaging with the tracers within 60 min postinjection on a clinical PET/CT scanner was also conducted. [¹⁸F]FDG and ¹⁸F⁻ showed relatively higher uptake ratios for IM to NM, IM to BL, IM to BR, and IM to LI than [¹⁸F]FCH, [¹¹C]DPA-Zn²⁺, [¹¹C]DMCYS and [¹¹C]PIB, which were highly consistent with the results delineated in PET images. The results demonstrate that ¹⁸F⁻ seems to be a potential PET tracer for inflammation imaging. [¹⁸F]FCH and [¹¹C]DMCYS, with lower accumulation in inflammatory tissue than [¹⁸F]FDG, are not good PET tracers for inflammation imaging. As a promising inflammatory tracer, the chemical structure of [¹¹C]DPA-Zn²⁺ needs to be further optimized.

  11. The use of polymer-ligands vs bioindicators in heavy metal monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.S.S.; Lau, T.C.

    Major problems involved in using bio-indicators to monitor heavy metals in the marine environment include standardizing a great variety of physical and biological factors which have a significant effect on metal accumulation. The fact that different species may have different accumulation strategies for different metals; and also limits of natural distribution of indicator species often prevent comparison between monitoring results in different geographic areas and hydrographic conditions. Environmental effects on the uptake and deputation of the metals in the biological indicators are generally poorly understood. In the present study, uptake of Cd, Cr, Cu, Ni, Pb and Zn by fourmore » polymer-ligands (i.e. Chelex 100, poly(4-vinylpyridine), Sephadex Sp C-J5 and Amberlite IR-122) were studied. Laboratory results showed that Chelex 100 was most effective in taking up the soluble fractions of these three metals at low ambient concentrations (0.1 to 10 mg/L). Equilibrium at low concentrations was reached at about 21 days. Concentration factors after 21 days` exposure ranged from 2,500 to 5,500, depending upon the metal species and ambient concentration. Both uptake and release of metals by Chelex are directly responsive to ambient concentrations and exposure time. Results of field transplantation of Chelex and mussels (P. virvidis) also showed that Chelex accumulated significantly higher levels of Cd, Cr and Pb; similar levels of Cu, and a lower level of Zn than those of mussels under natural field conditions. Coefficients of variations of metal uptake of Chelex were also much smaller. The suitability of using Chelex 100 as a novel chemical device for monitoring metal pollution in the aquatic environment is evaluated against selection criteria established for metal bioindicators.« less

  12. Cu, Zn and Mn uptake and redistribution in Cabernet Sauvignon grapes and wine: effect of soil metal content and plant vigor

    NASA Astrophysics Data System (ADS)

    Concepción Ramos, Maria; Romero, María Paz

    2015-04-01

    This study investigated the influence of leaf thinning on micronutrient (Cu, Zn and Mn) uptake and distribution in grape tissues, in a 16 year-old Cabernet Sauvignon vineyard. The analysis was carried out in two plots with differences in vigor (P1- high and P2-low) grown in calcareous soils. Vigour was analysed by the NDVI values. In each plot, two treatments (with and without leaf thinning after bloom) were applied. Total and the CaCl2-DTPA extractable fraction of these micronutrients were evaluated. Nutrient concentration in petiole were evaluated from veraison to harvest as well as the concentration of those elements in seeds and skins at ripening and in wines elaborated with grapes grown in each plot and treatment in 2013. Their relationships were evaluated. The soil extractable fraction did not give a good correlation with petiole concentrations. However, Mn in petiole was strongly correlated with soil total Mn. Cu and Zn had higher concentration at veraison than at harvest, while for Mn it was the opposite. Cu concentration in petiole and seeds was greater in the most vigorous plots, but there were not clear differences between treatments. Cu in seeds and skins correlated significantly but there was not correlation with Cu in petiole. Zn concentration in skins was quite similar in both plots, but with higher values in vines without leaf thinning. Zn concentrations in skins were correlated with Zn in petiole but no significant correlation was found with Zn in seeds. Higher concentrations were found in the no thinning treatment in skins. For Mn, petiole concentrations were greater in the high vigorous plot and in the leaf thinning treatment. However, petiole Zn concentrations were greater in the less vigorous plot and without clear effect of leaf thinning. Mn concentration in skins was greater in the less vigorous vines in both treatments and it was inversely correlated with Mn in seeds, but there were no significant correlation between them and Mn in petiole. In wine, significant differences between both plots were found for Cu and Zn, with greater values in the most vigorous vines and with some differences in the wines elaborated with grapes from the leaf thinning treatment and without it. Cu levels in wine ranged between 0.78 and 0.96 mg/l in plot 1 and between 0.28 and 0.44 mg/L in plot 2, respectively for the areas with and without leaf thinning. For Zn, levels ranged between 0.76 and 0.74 in plot 1and between 0.24 and 0.22 mg/L in plot 2. However, no differences were found between plots for Mn. Mn levels in wine ranged between 1 and 1.9 mg/L in plot 1 and between 1.12 and 1.2 mg/L in plot 2. This behavior was similar to that found in the skins and seed analysis.

  13. Cumulative effects of sewage sludge and effluent mixture application on soil properties of a sandy soil under a mixture of star and kikuyu grasses in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.

    Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio-available metal fraction in the soil that is correlated to plant uptake. The grasses appeared healthy even though they contained moderately high levels of Zn and Cu. This raises the possibility of beef animals grazing on ;healthy; looking grass that has very high concentrations of heavy metals. The fact that the total metal concentrations in the experimental soil were very high but did not cause any toxicity symptoms to the grass suggested that the limit soil concentration do not necessarily imply toxicity to all plants. However, limit concentrations are set not only for plant growth, but also for the protection of soil microorganisms and the latter are more sensitive to heavy metal pollution.

  14. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    PubMed

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Antibacterial and Antifungal Activity of ZnO Containing Glasses.

    PubMed

    Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín

    2015-01-01

    A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15-40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles.

  16. Antibacterial and Antifungal Activity of ZnO Containing Glasses

    PubMed Central

    Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín

    2015-01-01

    A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15–40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles. PMID:26230940

  17. Preferential uptake of ammonium ions by zinc ferrocyanide

    NASA Technical Reports Server (NTRS)

    Braterman, P. S.; Arrhenius, G.; Hui, S.; Paplawsky, W.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The concentration of ammonia from dilute aqueous solution could have facilitated many prebiotic reactions. This may be especially true if this concentration involves incorporation into an organized medium. We have shown that (unlike iron(III) ferrocyanide) zinc ferrocyanide,Zn2Fe(CN)6 xH2O, preferentially takes up ammonium ions from 0.01 M NH4Cl to give the known material Zn3(NH4)2[Fe(CN)6]2 xH2O, even in the presence of 0.01 M KCl. KCl alone gave Zn3K2[Fe(CN)6]2 xH2O. Products were characterized by elemental (CHN) analysis and powder X-ray diffraction (XRD). We attribute the remarkable specificity for the ammonium ion to the open framework of the product, which offers enough space for hydrogen-bonded ammonium ions, and infer that other inorganic materials with internal spaces rich in water may show a similar preference.

  18. Interleukin-1 stimulates zinc uptake by human thymic epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coto, J.A.; Hadden, J.W.

    1991-03-15

    Thymic epithelial cells (TEC) are known to secrete peptides which influence the differentiation and maturation of T-lymphocytes. These peptides include the thymic hormones thymulin, thymosin-{alpha}1, and thymopoietin. The biological activity of thymulin is dependent on the presence of zinc in an equimolar ratio. The authors have shown that both interleukin-1{alpha}(IL-1{alpha}) and interleukin-1{beta}(IL-1{beta}), which stimulate proliferation of TEC, stimulate the uptake of Zn-65 in-vitro independent of this proliferation. Mitomycin-C was used to inhibit the proliferation of TEC. Two other stimulators of proliferation of TEC, bovine pituitary extract (BPE) and epidermal growth factor (EGF), did not stimulate zinc uptake by the TECmore » independent of proliferation. They have also shown, utilizing in-situ hybridization, that IL-1 and zinc induce metallothionein(MT) mRNA expression in human thymic epithelial cells. The exact role of metallothionein is not clear, but it is thought to be involved in regulation of trace metal metabolism, especially in maintenance of zinc homeostasis. Their current hypothesis is that IL-1 stimulates uptake of zinc into the TEC, followed by its complexing with metallothionein. Zinc is then thought to be transferred from metallothionein to thymulin. Immunostaining, utilizing an antithymulin antibody and a fluoresceinated goat anti-rabbit second antibody, confirms the presence of thymulin in TEC and its dependence on zinc. Upon stimulation, thymulin is then secreted. Known stimulants for thymulin include progesterone, dexamethasone, estradiol, testosterone, and prolactin. None of these secretagogues increase zinc uptake, suggesting the priming of the zinc-thymulin complex is unrelated to the regulation of its secretion.« less

  19. Insight into the Interaction of Metal Ions with TroA from Streptococcus suis

    PubMed Central

    Zheng, Beiwen; Zhang, Qiangmin; Gao, Jia; Han, Huiming; Li, Ming; Zhang, Jingren; Qi, Jianxun; Yan, Jinghua; Gao, George F.

    2011-01-01

    Background The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized. Methodology/Principal Findings Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn2+ and Mn2+. Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn2+ and Mn2+ induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn2+/Mn2+ bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein. Conclusions/Significance Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport. PMID:21611125

  20. Potentially Toxic Element Uptake by Bacillus jeotgali Strain U3: A Natural Attenuation Mechanism in polluted sediments from Estero de Urías Coastal Lagoon (SE Gulf of California)?

    NASA Astrophysics Data System (ADS)

    Green-Ruiz, C. R.; Rodríguez-Tirado, V. A.; Carrasco-Valenzuela, A. C.; Gómez-Gil, B.

    2007-05-01

    In addition to an increased flux of potentially toxic elements (PTE's) into aquatic ecosystems, toxicity, bioavailability and persistency of these pollutants have led to critical localized pollution sites around the world, and the risk for the environment and the health of organism, including humans, has been increased. Clean-up technologies for the treatment of huge volumes of water, sediments and soils contaminated with these elements are needed. Use of bacteria as concentrators of PTE's can become a good tool for the remediation of man- impacted coastal ecosystems. A subtropical estuarine bacterium was isolate from surface sediments from Estero de Urías coastal lagoon, Mazatlán, Mexico, which is an aquatic ecosystem surrounded by several anthropogenic that release PTE's into the environment. This bacterial strain (U3) was ascertained (16s rRNA analysis) to belong to the Bacillus jeotgali specie. Batch experiments with different bacterial biomass and PTE (Cd, Cu, Hg, Pb and Zn) concentrations, pH and temperature were carried out in order to evaluate the biosorption capacity of Bacillus jeotgali strain U3. Except data from Zn experiments, all values were fitted to the adsorption Langmuir model. The maximum adsorption capacities (qmax) were 58 mg Cd g-1, 27 mg Cu g-1, 191 mg Hg g-1 (viable biomass), 21 mg Hg g-1 (non-viable biomass), 90 mg Pb g-1. Adsorption of Zn was 350 mg g-1, when equilibrium concentration in solution was 130 mg Zn l-1. According our data, Bacillus jeotgali strain U3 is considered as a suitable adsorbent and the presence of this microorganism in Estero de Urías coastal lagoon can produce a natural attenuation of potentially toxic elements pollution.

  1. Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO2

    PubMed Central

    Duval, Benjamin D.; Dijkstra, Paul; Drake, Bert G.; Johnson, Dale W.; Ketterer, Michael E.; Megonigal, J. Patrick; Hungate, Bruce A.

    2013-01-01

    The effects of elevated CO2 on ecosystem element stocks are equivocal, in part because cumulative effects of CO2 on element pools are difficult to detect. We conducted a complete above and belowground inventory of non-nitrogen macro- and micronutrient stocks in a subtropical woodland exposed to twice-ambient CO2 concentrations for 11 years. We analyzed a suite of nutrient elements and metals important for nutrient cycling in soils to a depth of ∼2 m, in leaves and stems of the dominant oaks, in fine and coarse roots, and in litter. In conjunction with large biomass stimulation, elevated CO2 increased oak stem stocks of Na, Mg, P, K, V, Zn and Mo, and the aboveground pool of K and S. Elevated CO2 increased root pools of most elements, except Zn. CO2-stimulation of plant Ca was larger than the decline in the extractable Ca pool in soils, whereas for other elements, increased plant uptake matched the decline in the extractable pool in soil. We conclude that elevated CO2 caused a net transfer of a subset of nutrients from soil to plants, suggesting that ecosystems with a positive plant growth response under high CO2 will likely cause mobilization of elements from soil pools to plant biomass. PMID:23717607

  2. Selective divalent cobalt ions detection using Ag2O3-ZnO nanocones by ICP-OES method for environmental remediation.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.

  3. Selective Divalent Cobalt Ions Detection Using Ag2O3-ZnO Nanocones by ICP-OES Method for Environmental Remediation

    PubMed Central

    Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.

    2014-01-01

    Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507

  4. Zinc oxide nanoparticles provide anti-cholera activity by disrupting the interaction of cholera toxin with the human GM1 receptor.

    PubMed

    Sarwar, Shamila; Ali, Asif; Pal, Mahadeb; Chakrabarti, Pinak

    2017-11-03

    Vibrio cholerae causes cholera and is the leading cause of diarrhea in developing countries, highlighting the need for the development of new treatment strategies to combat this disease agent. While exploring the possibility of using zinc oxide (ZnO) nanoparticles (NPs) in cholera treatment, we previously found that ZnO NPs reduce fluid accumulation in mouse ileum induced by the cholera toxin (CT) protein. To uncover the mechanism of action of ZnO NPs on CT activity, here we used classical (O395) and El Tor (C6706) V. cholerae biotypes in growth and biochemical assays. We found that a ZnO NP concentration of 10 μg/ml did not affect the growth rates of these two strains, nor did we observe that ZnO NPs reduce the expression levels of CT mRNA and protein. It was observed that ZnO NPs form a complex with CT, appear to disrupt the CT secondary structure, and block its interaction with the GM1 ganglioside receptor in the outer leaflet of the plasma membrane in intestinal (HT-29) cells and thereby reduce CT uptake into the cells. In the range of 2.5-10 μg/ml, ZnO NPs exhibited no cytotoxicity on kidney (HEK293) and HT-29 cells. We conclude that ZnO NPs prevent the first step in the translocation of cholera toxin into intestinal epithelial cells without exerting measurable toxic effects on HEK293 and HT-29 cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing.

    PubMed

    Kohler, J; Caravaca, F; Azcón, R; Díaz, G; Roldán, A

    2015-05-01

    A field experiment was carried out to assess the effectiveness of combining mycorrhizal inoculation with a native AM fungus (Glomus sp.) and the addition of an urban organic waste compost (OWC) applied at two rates (0.5 and 2.0% (w:w)), with regard to promoting the establishment of Anthyllis cytisoides L. seedlings in a heavy metal polluted mine tailing, as well as stimulating soil microbial functions. The results showed that the combined use of the highest dose of OWC and AM inoculation significantly increased shoot biomass - by 64% - compared to the control value. However, the separate use of each treatment had no effect on the shoot biomass of this shrub species. At the 2% rate, OWC enhanced root colonisation by the introduced fungus as well as soil nutrient content and soil dehydrogenase and ß-glucosidase activities. The combined treatment increased the uptake of Zn and Mn in shoots, although only Zn reached excessive or potentially toxic levels. This study demonstrates that the combination of organic amendment and an AM fungus is a suitable tool for the phytomanagement of degraded mine tailings, although its effectiveness is dependent on the dose of the amendment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    PubMed Central

    Elkady, Marwa F.; Hassan, Hassan Shokry; Amer, Wael A.; Salama, Eslam; Algarni, Hamed; Shaaban, Essam Ramadan

    2017-01-01

    Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA) as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD) analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM). The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes. PMID:29186853

  7. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer.

    PubMed

    Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2017-05-01

    In this study, we describe the synthesis of a stable, pH-sensitive micelle composed of heparin, 1, 2-distearoyl-sn-glycerol-3-phosphoethanolamine, and l-histidine (HDH) through 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) chemistry. 1 H-Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the formation of HDH copolymers and dynamic light scattering (DLS) measurements indicated a particle size of 111.57±12.36nm and zeta potential of -59.8±5.2mV for the nanoparticles. The drug-loading and encapsulation efficiency of the micelles were 14.52±1.2% and 65.47±1.87%, respectively. Drug release studies showed approximately 91% zinc phthalocyanine (ZnPc) release from micelles in acidic conditions (pH 5.0) in comparison with 63% in physiological conditions (pH 7.4) after 96h of incubation. Singlet oxygen ( 1 O 2 ) detection revealed that the micelles prevented ZnPc aggregation and enhanced 1 O 2 generation. Cellular uptake of ZnPc-loaded micelles (ZnPc-HDH) was observed using confocal microscopy. Phototoxicity experiments in HeLa cells showed that ZnPc-loaded micelles had higher toxicity than that shown by the same concentration of free ZnPc. Hence, pH-sensitive HDH micelles are a promising carrier for hydrophobic ZnPc and improving PDT efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site.

    PubMed

    Pichtel, J; Bradway, D J

    2008-03-01

    The ability of selected plants and amendments to treat Pb, Cd and Zn accumulations from a metalliferous waste disposal site was studied both in the greenhouse and field. Spinach (Spinacea oleracea), cabbage (Brassica oleracea), and a grass-legume mix (red fescue, Festuca rubra; ryegrass, Lolium perenne); and bean (Vicia faba) were grown in the greenhouse on blast furnace slag or baghouse dust amended with composted peat (CP). All plant species accumulated Pb, Cd and Zn to varying degrees. Total soil metal concentrations had a marked influence on plant uptake. Topdressing versus incorporating CP had a significant (p<0.05) effect on spinach and cabbage tissue metal concentrations. Soil Pb and Zn tended to shift towards less bioavailable forms after treatment with CP. Field plots were treated with CP, farmyard manure (FYM), or inorganic fertilizer. Dry matter production of spinach, cabbage and a grass-legume mix was greatest on either the CP or FYM treatments. Phytostabilization in combination with organic amendments may be the most appropriate technology to ensure stabilization of soil metals at this site.

  9. Recycled-tire pyrolytic carbon made functional: A high-arsenite [As(III)] uptake material PyrC350®.

    PubMed

    Mouzourakis, E; Georgiou, Y; Louloudi, M; Konstantinou, I; Deligiannakis, Y

    2017-03-15

    A novel material, PyrC 350 ® , has been developed from pyrolytic-tire char (PyrC), as an efficient low-cost Arsenite [As(III)] adsorbent from water. PyrC 350 ® achieves 31mgg -1 As(III) uptake, that remains unaltered at pH=4-8.5. A theoretical Surface Complexation Model has been developed that explains the adsorption mechanism, showing that in situ formed Fe 3 C, ZnS particles act cooperatively with the carbon matrix for As(III) adsorption. Addressing the key-issue of cost-effectiveness, we provide a comparison of As(III)-uptake effectiveness in conjunction with a cost analysis, showing that PyrC 350 ® stands in the top of [effectiveness/cost] vs. existing carbon-based, low-cost materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals.

    PubMed

    Lyubenova, Lyudmila; Nehnevajova, Erika; Herzig, Rolf; Schröder, Peter

    2009-07-01

    Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N(2). Studies were concentrated on the antioxidative enzymes of the Halliwell-Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell-Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.

  11. Mitigation of Quantum Dot Cytotoxicity by Microencapsulation

    PubMed Central

    Romoser, Amelia; Ritter, Dustin; Majitha, Ravish; Meissner, Kenith E.; McShane, Michael; Sayes, Christie M.

    2011-01-01

    When CdSe/ZnS-polyethyleneimine (PEI) quantum dots (QDs) are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG) mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the “first line of defense” for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor. PMID:21814567

  12. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply.

    PubMed

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism.

  13. Absorption Kinetics and Subcellular Fractionation of Zinc in Winter Wheat in Response to Nitrogen Supply

    PubMed Central

    Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen

    2017-01-01

    Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism. PMID:28868060

  14. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  15. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.

    PubMed

    Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O

    2015-09-01

    Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs. © 2015 SETAC.

  16. Soil pollution associated to the El Borracho Pb-Ag mine (Badajoz Province, Spain). Metal transfer to biota: oak-tree and moss.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo

    2014-05-01

    El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems to be similar and can be characterized by logistic curves, with higher affinity of mosses to uptake metals from soils.

  17. Transient increase in Zn2+ in hippocampal CA1 pyramidal neurons causes reversible memory deficit.

    PubMed

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn(2+) to the cytosolic compartment has been studied to understand Zn(2+) neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn(2+) in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn(2+) in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn(2+) delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn(2+) levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl(2) into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn(2+) in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn(2+) and/or the preferential vulnerability to Zn(2+) in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn(2+) in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn(2+). The present study indicates that the transient increase in cytosolic Zn(2+) in CA1 pyramidal neurons reversibly impairs object recognition memory.

  18. Transient Increase in Zn2+ in Hippocampal CA1 Pyramidal Neurons Causes Reversible Memory Deficit

    PubMed Central

    Takeda, Atsushi; Takada, Shunsuke; Nakamura, Masatoshi; Suzuki, Miki; Tamano, Haruna; Ando, Masaki; Oku, Naoto

    2011-01-01

    The translocation of synaptic Zn2+ to the cytosolic compartment has been studied to understand Zn2+ neurotoxicity in neurological diseases. However, it is unknown whether the moderate increase in Zn2+ in the cytosolic compartment affects memory processing in the hippocampus. In the present study, the moderate increase in cytosolic Zn2+ in the hippocampus was induced with clioquinol (CQ), a zinc ionophore. Zn2+ delivery by Zn-CQ transiently attenuated CA1 long-term potentiation (LTP) in hippocampal slices prepared 2 h after i.p. injection of Zn-CQ into rats, when intracellular Zn2+ levels was transiently increased in the CA1 pyramidal cell layer, followed by object recognition memory deficit. Object recognition memory was transiently impaired 30 min after injection of ZnCl2 into the CA1, but not after injection into the dentate gyrus that did not significantly increase intracellular Zn2+ in the granule cell layer of the dentate gyrus. Object recognition memory deficit may be linked to the preferential increase in Zn2+ and/or the preferential vulnerability to Zn2+ in CA1 pyramidal neurons. In the case of the cytosolic increase in endogenous Zn2+ in the CA1 induced by 100 mM KCl, furthermore, object recognition memory was also transiently impaired, while ameliorated by co-injection of CaEDTA to block the increase in cytosolic Zn2+. The present study indicates that the transient increase in cytosolic Zn2+ in CA1 pyramidal neurons reversibly impairs object recognition memory. PMID:22163318

  19. Functional characterization of the dimerization domain of the ferric uptake regulator (Fur) of Pseudomonas aeruginosa

    PubMed Central

    Bai, Erdeni; Rosell, Federico I.; Lige, Bao; Mauk, Marcia R.; Lelj-Garolla, Barbara; Moore, Geoffrey R.; Mauk, A. Grant

    2006-01-01

    The functional properties of the recombinant C-terminal dimerization domain of the Pseudomonas aeruginosa Fur (ferric uptake regulator) protein expressed in and purified from Escherichia coli have been evaluated. Sedimentation velocity measurements demonstrate that this domain is dimeric, and the UV CD spectrum is consistent with a secondary structure similar to that observed for the corresponding region of the crystallographically characterized wild-type protein. The thermal stability of the domain as determined by CD spectroscopy decreases significantly as pH is increased and increases significantly as metal ions are added. Potentiometric titrations (pH 6.5) establish that the domain possesses a high-affinity and a low-affinity binding site for metal ions. The high-affinity (sensory) binding site demonstrates association constants (KA) of 10(±7)×106, 5.7(±3)×106, 2.0(±2)×106 and 2.0(±3)×104 M−1 for Ni2+, Zn2+, Co2+ and Mn2+ respectively, while the low-affinity (structural) site exhibits association constants of 1.3(±2)×106, 3.2(±2)×104, 1.76(±1)×105 and 1.5(±2)×103 M−1 respectively for the same metal ions (pH 6.5, 300 mM NaCl, 25 °C). The stability of metal ion binding to the sensory site follows the Irving–Williams order, while metal ion binding to the partial sensory site present in the domain does not. Fluorescence experiments indicate that the quenching resulting from binding of Co2+ is reversed by subsequent titration with Zn2+. We conclude that the domain is a reasonable model for many properties of the full-length protein and is amenable to some analyses that the limited solubility of the full-length protein prevents. PMID:16928194

  20. Influence of Road Proximity on the Concentrations of Heavy Metals in Korean Urban Agricultural Soils and Crops.

    PubMed

    Kim, Hyuck Soo; Kim, Kwon-Rae; Kim, Won-Il; Owens, Gary; Kim, Kye-Hoon

    2017-02-01

    The urban agricultural (UA) environment near active roadways can be degraded by traffic-related particles (i.e., exhaust gases and road dust), which may contain heavy metals. The current study investigated changes in heavy-metal [cadmium (Cd), copper (Cu), chromium (Cr) nickel (Ni), lead (Pb) and zinc (Zn)] concentrations in soils located near highly trafficked roads in Korea and the subsequent uptake of these metals by Chinese cabbage. Heavy-metal plant concentrations were determined in both washed and unwashed plant leaves to determine whether foliar deposition played any role in plant metal uptake. Soil concentrations of Cd, Cu, Pb, and Zn were all lower than the Korean standard soil limits and showed no significant influence from road traffic. In contrast, both Ni and Cr concentrations in soils collected within 10 m of the road were 4 and 5 times greater, respectively, than those in soils collected 70 m from the road. Heavy-metal concentrations in unwashed Chinese cabbage leaf collected at 5 m from the road were consistently greater than those of washed leaf samples, thus indicating the deposition of traffic-related particles on the plant surface. With the exception of Cu, all heavy-metal concentration in washed plant samples collected at 5 m also showed greater accumulation compared with samples collected further away. This was mainly attributed to increased total soil heavy-metal concentrations and increased metal phytoavailability induced by decreases in soil pH near the road. However, overall heavy-metal soil concentrations were well lower than the allowable concentrations, and the levels observed in plants collected in this study were considered not to currently pose a significant risk to human health. However, some traffic-related heavy metals, in particular Cr and Ni, were being accumulated in the roadside UA environment, which may warrant some caution regarding the environment and/or health issues in the future.

  1. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.

    PubMed

    Rizwan, M; Meunier, J-D; Davidian, J-C; Pokrovsky, O S; Bovet, N; Keller, C

    2016-01-01

    We investigated the potential role of silicon in improving tolerance and decreasing cadmium (Cd) toxicity in durum wheat (Triticum turgidum L. durum) either through a reduced Cd uptake or exclusion/sequestration in non-metabolic tissues. For this, plants were grown in hydroponic conditions for 10 days either in presence or absence of 1 mM Si and for 11 additional days in various Cd concentrations (0, 0.5, 5.0 and 50 μM). After harvesting, morphological and physiological parameters as well as elemental concentrations were recorded. Cadmium caused reduction in growth parameters, photosynthetic pigments and mineral nutrient concentrations both in shoots and roots. Shoot and root contents of malate, citrate and aconitate increased, while contents of phosphate, nitrate and sulphate decreased with increasing Cd concentrations in plants. Addition of Si to the nutrient solution mitigated these adverse effects: Cd concentration in shoots decreased while concentration of Cd adsorbed at the root cell apoplasmic level increased together with Zn uptake by roots. Overall, total Cd uptake decreased in presence of Si. There was no co-localisation of Cd and Si either at the shoot or at the root levels. No Cd was detected in leaf phytoliths. In roots, Cd was mainly detected in the cortical parenchyma and Si at the endodermis level, while analysis of the outer thin root surface of the plants grown in the 50 μM Cd + 1 mM Si treatment highlighted non-homogeneous Cd and Si enrichments. These data strongly suggest the existence of a root localised protection mechanism consisting in armoring the root surface by Si- and Cd-bearing compounds and in limiting root-shoot translocation.

  2. Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L.

    PubMed

    Kichigina, Natalia E; Puhalsky, Jan V; Shaposhnikov, Aleksander I; Azarova, Tatiana S; Makarova, Natalia M; Loskutov, Svyatoslav I; Safronova, Vera I; Tikhonovich, Igor A; Vishnyakova, Margarita A; Semenova, Elena V; Kosareva, Irina A; Belimov, Andrey A

    2017-10-01

    Our study aimed to evaluate intraspecific variability of pea ( Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.

  3. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy.

    PubMed

    Ranjbar-Navazi, Zahra; Eskandani, Morteza; Johari-Ahar, Mohammad; Nemati, Ali; Akbari, Hamid; Davaran, Soudabeh; Omidi, Yadollah

    2018-03-01

    Nanoscaled quantum dots (QDs), with unique optical properties have been used for the development of theranostics. Here, InP/ZnS QDs were synthesised and functionalised with folate (QD-FA), D-glucosamine (QD-GA) or both (QD-FA-GA). The bi-functionalised QDs were further conjugated with doxorubicin (QD-FA-GA-DOX). Optimum Indium to fatty acid (In:MA) ratio was 1:3.5. Transmission electron microscopy (TEM) micrographs revealed spherical morphology for the QDs (11 nm). Energy-dispersive spectroscopy (EDS) spectrum confirmed the chemical composition of the QDs. MTT analysis in the OVCAR-3 cells treated with bare QDs, QD-FA, QD-GA, QD-FA-GA and QD-FA-GA-DOX (0.2 mg/mL of QDs) after 24 h indicated low toxicity for the bare QDs and functionalised QDs (about 80-90% cell viability). QD-FA-GA-DOX nanoparticles elicited toxicity in the cells. Cellular uptake of the engineered QDs were investigated in both folate receptor (FR)-positive OVCAR-3 cells and FR-negative A549 cells using fluorescence microscopy and FACS flow cytometry. The FA-functionalised QDs showed significantly higher uptake in the FR-positive OVCAR-3 cells, nonetheless the GA-functionalised QDs resulted in an indiscriminate uptake in both cell lines. In conclusion, our findings indicated that DOX-conjugated FA-armed QDs can be used as theranostics for simultaneous imaging and therapy of cancer.

  4. The Zinc Transporter Zip5 (Slc39a5) Regulates Intestinal Zinc Excretion and Protects the Pancreas against Zinc Toxicity

    PubMed Central

    Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.

    2013-01-01

    Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081

  5. Effect of citric acid on metals mobility in pruning wastes and biosolids compost and metals uptake in Atriplex halimus and Rosmarinus officinalis.

    PubMed

    Tapia, Y; Eymar, E; Gárate, A; Masaguer, A

    2013-05-01

    To assess metal mobility in pruning waste and biosolids compost (pH 6.9 and total concentration of metals in milligram per kilogram of Cd 1.9, Cu 132, Fe 8,513, Mn 192, Pb 81, and Zn 313), shrubs species Atriplex halimus and Rosmarinus officinalis were transplanted in this substrate and irrigated with citric acid (4 g L(-1), pH 2.9) and nutrient solution daily for 60 days. Citric acid significantly increased the concentrations of soluble Mn and Fe in the nutrient substrate solution measured by suction probes, while other metals did not vary in concentration (Cu and Zn) or were not observed at detectable levels (Cd and Pb). In plants, citric acid significantly increased the concentrations of Cu (2.7 ± 0.1-3.3 ± 0.1 mg kg(-1)), Fe (49.2 ± 5.2-76.8 ± 6.8 mg kg(-1)), and Mn (7.2 ± 1.1-11.4 ± 0.7 mg kg(-1)) in leaves of R. officinalis, whereas the concentration of only Mn (25.4 ± 0.3-42.2 ± 2.9 mg kg(-1)) was increased in A. halimus. Increasing Fe and Mn solubility by citric acid addition indicates the possibility of using it to improve plant nutrition. The mobility of metals in this substrate was influenced for the concentration of the metal, the degree of humification of organic matter and its high Fe content.

  6. Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide1

    PubMed Central

    Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard

    2016-01-01

    Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708

  7. Characterization of the organic ligand shell of semiconductor quantum dots by fluorescence quenching experiments.

    PubMed

    Boldt, Klaus; Jander, Sebastian; Hoppe, Kathrin; Weller, Horst

    2011-10-25

    We present the characterization of the organic ligand shell of CdSe/Cd(x)Zn(1-x)S/ZnS nanoparticles by means of fluorescence quenching experiments. Both electron scavengers and acceptors for resonance energy transfer were employed as probes. Different quenching behavior for short and long chain thiol ligands in water was found. It could be shown that poly(ethylene oxide) (PEO)-capping of the particles comprises a densely packed inner shell and a loosely packed outer shell in which ions and small molecules diffuse unhindered. A quantitative uptake of quencher molecules into the PEO shell was observed, through which the particle volume including the ligand sphere could be determined.

  8. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia).

    PubMed

    Vukosav, Petra; Mlakar, Marina; Cukrov, Neven; Kwokal, Zeljko; Pižeta, Ivanka; Pavlus, Natalija; Spoljarić, Ivanka; Vurnek, Maja; Brozinčević, Andrijana; Omanović, Dario

    2014-03-01

    An evaluation of the quality status of the pristine karst, tufa depositing aquatic environment of the Plitvice Lakes National Park based on the analysis of heavy (ecotoxic) metals was examined for the first time. Analyses of trace metals in water, sediment and fish (Salmo trutta, Oncorhynchus mykiss, Squalius cephalus) samples were conducted either by stripping voltammetry (Zn, Cd, Pb and Cu) or cold vapour atomic absorption spectrometry (Hg). The concentration of dissolved trace metals in water was very low revealing a pristine aquatic environment (averages were, in ng/L: 258 (Zn), 10.9 (Cd), 11.7 (Pb), 115 (Cu) and 1.22 (Hg)). Slightly enhanced concentrations of Cd (up to 50 ng/L) and Zn (up to 900 ng/L) were found in two main water springs and are considered as of natural origin. Observed downstream decrease in concentration of Cd, Zn and Cu in both water and sediments is a consequence of the self-purification process governed by the formation and settling of authigenic calcite. Anthropogenic pressure was spotted only in the Kozjak Lake: Hg concentrations in sediments were found to be up to four times higher than the baseline value, while at two locations, Pb concentrations exceeded even a probable effect concentration. The increase of Hg and Pb was not reflected on their levels in the fish tissues; however, significant correlations were found between Cd level in fish tissues (liver and muscle) and in the water/sediment compartments, while only partial correlations were estimated for Zn and Cu. A high discrepancy between values of potentially bioavailable metal fraction estimated by different modelling programs/models raised the question about the usefulness of these data as a parameter in understanding/relating the metal uptake and their levels in aquatic organism. The aquatic environment of the Plitvice Lakes National Park is characterized, in general, as a clean ecosystem.

  9. Influence of in-stream diel concentration cycles of dissolved trace metals on acute toxicity to one-year-old cutthroat trout (Oncorhynchus clarki lewisi)

    USGS Publications Warehouse

    Nimick, D.A.; Harper, D.D.; Farag, A.M.; Cleasby, T.E.; MacConnell, Elizabeth; Skaar, D.

    2007-01-01

    Extrapolating results of laboratory bioassays to streams is difficult, because conditions such as temperature and dissolved metal concentrations can change substantially on diel time scales. Field bioassays conducted for 96 h in two mining-affected streams compared the survival of hatchery-raised, metal-nai??ve westslope cutthroat trout (Oncorhynchus clarki lewisi) exposed to dissolved (0.1-??m filtration) metal concentrations that either exhibited the diel variation observed in streams or were controlled at a constant value. Cadmium and Zn concentrations in these streams increased each night by as much as 61 and 125%, respectively, and decreased a corresponding amount the next day, whereas Cu did not display a diel concentration cycle. In High Ore Creek (40 km south of Helena, MT, USA), survival (33%) after exposure to natural diel-fluctuating Zn concentrations (range, 214-634 ??g/L; mean, 428 ??g/L) was significantly (p = 0.008) higher than survival (14%) after exposure to a controlled, constant Zn concentration (422 ??g/L). Similarly, in Dry Fork Belt Creek (70 km southeast of Great Falls, MT, USA), survival (75%) after exposure to diel-fluctuating Zn concentrations (range, 266-522 ??g/L; mean, 399 ??g/L) was significantly (p = 0.022) higher than survival (50%) in the constant-concentration treatment (392 ??g/L). Survival likely was greater in these diel treatments, both because the periods of lower metal concentrations provided some relief for the fish and because toxicity during periods of higher metal concentrations was lessened by the simultaneous occurrence each night of lower water temperatures, which reduce the rate of metal uptake. Based on the present study, current water-quality criteria appear to be protective for streams with diel concentration cycles of Zn (and, perhaps, Cd) for the hydrologie conditions tested. ?? 2007 SETAC.

  10. Demonstration of subcellular migration of CK2α localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia.

    PubMed

    Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma

    2018-06-01

    The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic cardiomyopathy.

  11. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans

    PubMed Central

    Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin

    2017-01-01

    Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO4·7H2O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour. PMID:28481273

  12. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans.

    PubMed

    Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin

    2017-05-06

    Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO₄·7H₂O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour.

  13. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer.

    PubMed

    Sigua, G C; Novak, J M; Watts, D W; Johnson, M G; Spokas, K

    2016-01-01

    In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients and reduces organic carbon (C). Incorporation of pyrolyzed organic residues or "biochars" can provide an alternative recalcitrant C source. However, biochar quality and effect can be inconsistent and different biochars react differently in soils. We hypothesized that addition of different designer biochars will have variable effects on biomass and nutrient uptake of winter wheat. The objective of this study was to investigate the effects of designer biochars on biomass productivity and nutrient uptake of winter wheat (Triticum aestivum L.) in a Norfolk's hard setting subsoil layer. Biochars were added to Norfolk's hard setting subsoil layer at the rate of 40 Mg ha(-1). The different sources of biochars were: plant-based (pine chips, PC); animal-based (poultry litter, PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (HW). Aboveground and belowground biomass and nutrient uptake of winter wheat varied significantly (p⩽0.0001) with the different designer biochar applications. The greatest increase in the belowground biomass of winter wheat over the control was from 80:20 blend of PC:PL (81%) followed by HW (76%), PC (59%) and 50:50 blend of PC:PL (9%). However, application of PL resulted in significant reduction of belowground biomass by about 82% when compared to the control plants. The average uptake of P, K, Ca, Mg, Na, Al, Fe, Cu and Zn in both the aboveground and belowground biomass of winter wheat varied remarkably with biochar treatments. Overall, our results showed promising significance for the treatment of a Norfolk's hard setting subsoil layer since designer biochars did improve both aboveground/belowground biomass and nutrient uptake of winter wheat. Published by Elsevier Ltd.

  14. Effects of zinc-fortified drinking skim milk (as functional food) on cytokine release and thymic hormone activity in very old persons: a pilot study.

    PubMed

    Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; DeMartiis, MariLuisa; Giannandrea, Elvio; Renieri, Carlo; Busco, Franco; Galeazzi, Roberta; Mocchegiani, Eugenio

    2014-06-01

    Zinc is a relevant nutritional factor for the whole life of an organism because it affects the inflammatory/immune response and antioxidant activity, leading to a healthy state. Despite its important function, the dietary intake of zinc is inadequate in elderly. Possible interventions include food fortification because it does not require changes in dietary patterns, the cost is low and it can reach a large portion of the elderly population, including very old subjects. Studies evaluating the impact of Zn-fortified foods on functional parameters in elderly, in particular, in very old individuals, are missing. The objective of this study was to evaluate the efficacy of consumption of a zinc-fortified drinking skim milk (Zn-FMilk) for a period of 2 months in comparison to standard non-fortified milk (No-FMilk) on some biochemical parameters, zinc status, inflammatory/immune response and on a key parameter of the T cell-mediated immunity (thymulin hormone) in healthy very old subjects. The treatment with zinc-fortified milk (Zn-FMilk) is a good omen to increase the cell-mediated immunity in very old age represented by thymulin activity and some cytokine (IL-12p70, IFN-γ) release. At clinical level, a good healthy state occurs in 70 % of the subjects with no hospitalization after 1 year of the follow-up in comparison to very old control subjects that did not participate to crossover design. In conclusion, the Zn-FMilk can be considered a good functional food for elderly, including older people. It might be a good replacement to the zinc tablets or lozenges taking into account the attitude of old people to uptake milk as a preferential food.

  15. Bioavailability and toxicity of dietborne copper and zinc to fish

    USGS Publications Warehouse

    Clearwater, Susan J.; Farag, Aïda M.; Meyer, J.S.

    2002-01-01

    To date, most researchers have used dietborne metal concentrations rather than daily doses to define metal exposure and this has resulted in contradictory data within and between fish species. It has also resulted in the impression that high concentrations of dietborne Cu and Zn (e.g.>900 mg kg−1 dry diet) are relatively non-toxic to fish. We re-analyzed existing data using rations and dietborne metal concentrations and used daily dose, species and life stage to define the toxicity of dietborne Cu and Zn to fish. Partly because of insufficient information we were unable to find consistent relationships between metal toxicity in laboratory-prepared diets and any other factor including, supplemented metal compound (e.g. CuSO4 or CuCl2), duration of metal exposure, diet type (i.e. practical, purified or live diets), or water quality (flow rates, temperature, hardness, pH, alkalinity). For laboratory-prepared diets, dietborne Cu toxicity occurred at daily doses of >1 mg kg−1 body weight d−1 for channel catfish (Ictalurus punctatus), 1–15 mg kg−1 body weight d−1 (depending on life stage) for Atlantic salmon (Salmo salar) and 35–45 mg kg−1 body weight d−1 for rainbow trout (Oncorhynchus mykiss). We found that dietborne Zn toxicity has not yet been demonstrated in rainbow trout or turbot (Scophthalmus maximus) probably because these species have been exposed to relatively low doses of metal (<90 mg kg−1 body weight d−1) and effects on growth and reproduction have not been analyzed. However, daily doses of 9–12 mg Zn kg−1 body weight d−1 in laboratory-prepared diets were toxic to three other species, carp Cyprinus carpio, Nile tilapia Oreochromis niloticus, and guppy Poecilia reticulata. Limited research indicates that biological incorporation of Cu or Zn into a natural diet can either increase or decrease metal bioavailability, and the relationship between bioavailability and toxicity remains unclear. We have resolved the contradictory data surrounding the effect of organic chelation on metal bioavailability. Increased bioavailability of dietborne Cu and Zn is detectable when the metal is both organically chelated and provided in very low daily doses. We have summarized the information available on the effect of phosphates, phytate and calcium on dietborne Zn bioavailability. We also explored a rationale to understand the relative importance of exposure to waterborne or dietborne Cu and Zn with a view to finding an approach useful to regulatory agencies. Contrary to popular belief, the relative efficiency of Cu uptake from water and diet is very similar when daily doses are compared rather than Cu concentrations in each media. The ratio of dietborne dose:waterborne dose is a good discriminator of the relative importance of exposure to dietborne or waterborne Zn. We discuss gaps in existing data, suggest improvements for experimental design, and indicate directions for future research.

  16. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Ye, Jia-Wen; Wang, Hai-Ping; Pan, Mei; Yin, Shao-Yun; Wei, Zhang-Wen; Zhang, Lu-Yin; Wu, Kai; Fan, Ya-Nan; Su, Cheng-Yong

    2017-06-01

    A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal-organic framework, Zn(hpi2cf)(DMF)(H2O)) is assembled from a dual-emissive H2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

  17. Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.

    PubMed

    Tai, Yiping; Li, Zhian; Mcbride, Murray B

    2016-04-01

    Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.

  18. Flexibility of the Cu,Zn superoxide dismutase structure investigated at 0.57 GPa.

    PubMed

    Ascone, Isabella; Savino, Carmelinda; Kahn, Richard; Fourme, Roger

    2010-06-01

    The 2 A resolution crystal structure of bovine erythrocyte Cu,Zn superoxide dismutase (CuZnSOD) has been determined by X-ray diffraction at high pressure (0.57 GPa) and room temperature. At 0.57 GPa the secondary, tertiary and quaternary structures are similar to other previously determined bovine erythrocyte CuZnSOD structures. Nevertheless, pressure has a localized impact on the atomic coordinates of C(alpha) atoms and on side chains. The compression of the crystal and of the protein backbone is anisotropic. This anisotropy is discussed, taking into account intermolecular contacts and protein conformation. Pressure perturbation highlights the more flexible zones in the protein such as the electrostatic loop. At 0.57 GPa, a global shift of the dimetallic sites in both subunits and changes in the oxidation state of Cu were observed. The flexibility of the electrostatic loop may be useful for the interaction of different metal carriers in the copper-uptake process, whereas the flexibility of the metal sites involved in the activity of the protein could contribute to explaining the ubiquitous character of CuZnSODs, which are found in organisms living in very different conditions, including the deep-sea environment. This work illustrates the potential of combining X-ray crystallography with high pressure to promote and stabilize higher energy conformational substates.

  19. Efficacy of cheap amendments for stabilizing trace elements in contaminated paddy fields.

    PubMed

    Huang, Tai-Hsiang; Lai, Yun-Jie; Hseu, Zeng-Yei

    2018-05-01

    In situ stabilization of trace elements by adding cheap amendments is an emerging technology for large-scale soil remediation. Various amendments have been examined well in the literature, but related have focused predominantly on short-term laboratory scale incubation or pot experiments. This study applied dolomitic lime at 40 ton ha -1 , oyster shell (OS) at 80 ton ha -1 , and sugarcane bagasse compost (SC) at 60 ton ha -1 to a paddy field in Taiwan for two rice (Oryza sativa L.) cropping seasons. The aims of study were to gain an understanding of the bioavailable concentrations of Cr, Ni, Cu, and Zn in the amended soil and the metal uptake of rice for practical amendment use in field-scale remediation of contaminated soils. The treatments of lime and OS significantly (p < 0.05) decreased the 0.1 N HCl-extractable metals in the soil. The increase in soil pH was the key factor in decreasing the bioavailable pool of metals in the soil by using lime and OS. The concentrations of Cu, Zn, and Ni in the brown rice were substantially reduced only through the addition of OS, and thus OS met the requirement of being a cheap, locally available, and environmentally compatible amendment for field-scale soil remediation. The translocation of Cr in rice plants is heavily restricted, and thus no significant differences in Cr uptake by rice grain were observed between the different amendment treatments. However, SC is not recommended as an immobilization agent because it caused a pH decrease in the amended soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Seasonal and Spatial Variation of Particulate Cadmium and Phosphorous along Line P in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Bourne, H.; Bishop, J. K. B.; Wood, T.

    2016-02-01

    Line P is a transect along 50°N in the subarctic North Pacific that stretches from Sanich Inlet out to Ocean Station PAPA (OSP). Between February 1996 and March the following year, size fraction suspended particulate matter was collected (<1 μm, 1-51 μm and >51 μm) using the Multiple Unit Large Volume Filtration System (MULVFS) technique. Over the course of 4 cruises, 17 MULFS casts were taken. Using this large dataset, we examine the seasonal and spatial variability of cadmium content of particles. Throughout this one year time span, the particulate Cd uptake relative to P varied by a factor of two at individual sites during different seasons and by a factor of three at different sites during the same season. Typically, the Cd:P content of phytoplankton increases going from Sanich Inlet out toward station PAPA. While Sanich Inlet is an iron and zinc replete coastal environment, OSP is located in an HNLC region with low dissolved Fe and Zn concentrations. We compared the Cd:P profiles along the Line P transect to that of other divalent metals, specifically Zn, Mn, Co, Ba and Fe. While Fe:P, Mn:P and Co:P are highest in the coastal environment, Cd:P is higher in the open ocean environment. Cd:P peaks in the open ocean station below the mixed layer. We also compare the relationship between oxygen and Cd content in particles. The reason for Cd uptake by marine organisms is still not fully understood; by examining particles in a well-studied region with seasonal, nutrient, environmental and other divalent metal concentrations in particles, we can better understand the causes for variability.

Top