Sample records for increases bmp-2 expression

  1. BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    PubMed

    Pi, Weifeng; Guo, Xuejun; Su, Liping; Xu, Weiguo

    2012-01-01

    To investigate the role of bone morphogenetic protein 2 (BMP-2) in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN) and apoptosis of pulmonary artery smooth muscle cells (PASMCs) under hypoxia. Normal human PASMCs were cultured in growth medium (GM) and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2)+94% N(2)+1% O(2)) for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR). Protein expression levels of PTEN, AKT and phosph-AKT (pAKT) were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic) (PTEN inhibitor) and GW9662 (PPARγ antagonist) were used to determine the signalling pathways. Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%). BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic) and GW9662 (PPARγ inhibitor) inhibited PTEN protein expression and recovered PASMCs proliferation rate. BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.

  2. TNF-α Upregulates Expression of BMP-2 and BMP-3 Genes in the Rat Dental Follicle – Implications for Tooth Eruption

    PubMed Central

    Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.

    2011-01-01

    The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-α expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418

  3. Downregulated bone morphogenetic protein signaling in nitrofen-induced congenital diaphragmatic hernia.

    PubMed

    Makanga, Martine; Dewachter, Céline; Maruyama, Hidekazu; Vuckovic, Aline; Rondelet, Benoit; Naeije, Robert; Dewachter, Laurence

    2013-08-01

    Bone morphogenetic proteins (BMP) have been shown to play crucial roles in not only lung and heart development, but also in the pathogenesis of pulmonary vascular remodeling in pulmonary hypertension (PH). We therefore hypothesized that BMP signaling could be altered in nitrofen-induced congenital diaphragmatic hernia (CDH) and associated PH. Pregnant rats were exposed to either 100 mg nitrofen or vehicle on embryonic day (E) 9.5. On E17 and E21, fetuses were delivered by cesarean section, killed and checked for left-sided CDH. The tissue was then harvested for pathobiological evaluation. In nitrofen-induced CDH, pulmonary expressions of BMP4, BMP receptor (BMPR) type 2 and Id1 decreased on E17 and E21. On E17, pulmonary gremlin-1 expression increased, while BMP7 decreased. In the lungs, Id1 expression was correlated to BMP4 and BMPR2 and inversely correlated to gremlin-1 expression. Myocardial expressions of BMPR2, BMPR1A, BMP7 and SERCA-2A decreased, while gremlin-1 and noggin expressions increased on E17. On E21, myocardial expressions of Id1 and SERCA-2A decreased, while gremlin-1 expression increased. Moreover, BMPR2 and BMPR1A expressions were correlated to SERCA-2A expression and inversely correlated to pro-apoptotic Bax/Bcl2 ratio within the myocardium. Downregulation of BMP signaling seems to contribute to pulmonary and myocardial anomalies observed in nitrofen-induced CDH.

  4. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut.

    PubMed

    Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi

    2009-03-01

    Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.

  5. Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia.

    PubMed

    Barlow, A J; Francis-West, P H

    1997-01-01

    The facial primordia initially consist of buds of undifferentiated mesenchyme, which give rise to a variety of tissues including cartilage, muscle and nerve. These must be arranged in a precise spatial order for correct function. The signals that control facial outgrowth and patterning are largely unknown. The bone morphogenetic proteins Bmp-2 and Bmp-4 are expressed in discrete regions at the distal tips of the early facial primordia suggesting possible roles for BMP-2 and BMP-4 during chick facial development. We show that expression of Bmp-4 and Bmp-2 is correlated with the expression of Msx-1 and Msx-2 and that ectopic application of BMP-2 and BMP-4 can activate Msx-1 and Msx-2 gene expression in the developing facial primordia. We correlate this activation of gene expression with changes in skeletal development. For example, activation of Msx-1 gene expression across the distal tip of the mandibular primordium is associated with an extension of Fgf-4 expression in the epithelium and bifurcation of Meckel's cartilage. In the maxillary primordium, extension of the normal domain of Msx-1 gene expression is correlated with extended epithelial expression of shh and bifurcation of the palatine bone. We also show that application of BMP-2 can increase cell proliferation of the mandibular primordia. Our data suggest that BMP-2 and BMP-4 are part of a signalling cascade that controls outgrowth and patterning of the facial primordia.

  6. The level of BMP4 signaling is critical for the regulation of distinct T-box gene expression domains and growth along the dorso-ventral axis of the optic cup

    PubMed Central

    Behesti, Hourinaz; Holt, James KL; Sowden, Jane C

    2006-01-01

    Background Polarised gene expression is thought to lead to the graded distribution of signaling molecules providing a patterning mechanism across the embryonic eye. Bone morphogenetic protein 4 (Bmp4) is expressed in the dorsal optic vesicle as it transforms into the optic cup. Bmp4 deletions in human and mouse result in failure of eye development, but little attempt has been made to investigate mammalian targets of BMP4 signaling. In chick, retroviral gene overexpression studies indicate that Bmp4 activates the dorsally expressed Tbx5 gene, which represses ventrally expressed cVax. It is not known whether the Tbx5 related genes, Tbx2 and Tbx3, are BMP4 targets in the mammalian retina and whether BMP4 acts at a distance from its site of expression. Although it is established that Drosophila Dpp (homologue of vertebrate Bmp4) acts as a morphogen, there is little evidence that BMP4 gradients are interpreted to create domains of BMP4 target gene expression in the mouse. Results Our data show that the level of BMP4 signaling is critical for the regulation of distinct Tbx2, Tbx3, Tbx5 and Vax2 gene expression domains along the dorso-ventral axis of the mouse optic cup. BMP4 signaling gradients were manipulated in whole mouse embryo cultures during optic cup development, by implantation of beads soaked in BMP4, or the BMP antagonist Noggin, to provide a local signaling source. Tbx2, Tbx3 and Tbx5, showed a differential response to alterations in the level of BMP4 along the entire dorso-ventral axis of the optic cup, suggesting that BMP4 acts across a distance. Increased levels of BMP4 caused expansion of Tbx2 and Tbx3, but not Tbx5, into the ventral retina and repression of the ventral marker Vax2. Conversely, Noggin abolished Tbx5 expression but only shifted Tbx2 expression dorsally. Increased levels of BMP4 signaling caused decreased proliferation, reduced retinal volume and altered the shape of the optic cup. Conclusion Our findings suggest the existence of a dorsal-high, ventral-low BMP4 signaling gradient across which distinct domains of Tbx2, Tbx3, Tbx5 and Vax2 transcription factor gene expression are set up. Furthermore we show that the correct level of BMP4 signaling is critical for normal growth of the mammalian embryonic eye. PMID:17173667

  7. BMP-2 and titanium particles synergistically activate osteoclast formation

    PubMed Central

    Sun, S.X.; Guo, H.H.; Zhang, J.; Yu, B.; Sun, K.N.; Jin, Q.H.

    2014-01-01

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation. PMID:24820069

  8. Biphasic effects of FGF2 on odontoblast differentiation involve changes in the BMP and Wnt signaling pathways.

    PubMed

    Sagomonyants, Karen; Mina, Mina

    2014-08-01

    Odontoblast differentiation during physiological and reparative dentinogenesis is dependent upon multiple signaling molecules, including fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs) and Wingless/Integrated (Wnt) ligands. Recent studies in our laboratory showed that continuous exposure of primary dental pulp cultures to FGF2 exerted biphasic effects on the expression of markers of dentinogenesis. In the present study, we examined the possible involvement of the BMP and Wnt signaling pathways in mediating the effects of FGF2 on dental pulp cells. Our results showed that stimulatory effects of FGF2 on dentinogenesis during the proliferation phase of growth were associated with increased expression of the components of the BMP (Bmp2, Dlx5, Msx2, Osx) and Wnt (Wnt10a, Wisp2) pathways, and decreased expression of an inhibitor of the Wnt signaling, Nkd2. Further addition of FGF2 during the differentiation/mineralization phase of growth resulted in decreased expression of components of the BMP signaling (Bmp2, Runx2, Osx) and increased expression of inhibitors of the Wnt signaling (Nkd2, Dkk3). This suggests that both BMP and Wnt pathways may be involved in mediating the effects of FGF2 on dental pulp cells.

  9. Combined effects of dentin sialoprotein and bone morphogenetic protein-2 on differentiation in human cementoblasts.

    PubMed

    Lee, So-Youn; Auh, Q-Schick; Kang, Soo-Kyung; Kim, Hyung-Joon; Lee, Jung-Woo; Noh, Kwantae; Jang, Jun-Hyeog; Kim, Eun-Cheol

    2014-07-01

    The aim of this study is to determine the effects of the combination of recombinant human BMP-2 (rh-BMP-2) and dentin sialoprotein (rh-DSP) on growth and differentiation in human cementoblasts and determine the underlying signal transduction mechanism. Compared to treatment of cementoblasts with either rh-BMP-2 or rh-DSP alone, the combination of rh-BMP-2 and rh-DSP synergistically increased cell growth, ALP activity, nodule formation and expression of differentiation markers. The differentiation-promoting effect was also observed in periodontal ligament cells and an osteoblastic cell line. Likewise, combination of rh-DSP and rh-BMP-2 increased BMP-2 mRNA expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist noggin. The expression levels of α2β1 integrin and RhoA, as well as the phosphorylation status of FAK and Akt, were increased by the combination of rh-BMP-2 and rh-DSP in a time-dependent manner. In addition, rh-BMP-2 and rh-DSP enhanced expression of Wnt ligands, β-catenin activation and GSK-3β phosphorylation, all of which were inhibited by the Wnt receptor antagonist DKK1. Furthermore, treatment with rh-DSP plus rh-BMP-2 resulted in phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 and also induced the nuclear translocation of the NF-κB p65 subunit, which was blocked by noggin. This study demonstrates for the first time that rh-DSP and rh-BMP-2 act synergistically, enhancing each other's ability to stimulate cementoblastic cell growth and differentiation in vitro via autocrine BMP, integrin, Wnt/β-catenin, MAP kinase and NF-κB pathways. These results support the therapeutic potential of a combination strategy for aiding periodontal regeneration.

  10. Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells

    PubMed Central

    2012-01-01

    Background The Runt-related transcription factor Runx2 is essential for bone development but is also implicated in progression of several cancers of breast, prostate and bone, where it activates cancer-related genes and promotes invasive properties. The transforming growth factor β (TGF-β) family member bone morphogenetic protein-3B (BMP-3B/GDF10) is regarded as a tumor growth inhibitor and a gene silenced in lung cancers; however the regulatory mechanisms leading to its silencing have not been identified. Results Here we show that Runx2 is highly expressed in lung cancer cells and downregulates BMP-3B. This inverse relationship between Runx2 and BMP-3B expression is further supported by increased expression of BMP-3B in mesenchymal cells from Runx2 deficient mice. The ectopic expression of Runx2, but not DNA binding mutant Runx2, in normal lung fibroblast cells and lung cancer cells resulted in suppression of BMP-3B levels. The chromatin immunoprecipitation studies identified that the mechanism of Runx2-mediated suppression of BMP-3B is due to the recruitment of Runx2 and histone H3K9-specific methyltransferase Suv39h1 to BMP-3B proximal promoter and a concomitant increase in histone methylation (H3K9) status. The knockdown of Runx2 in H1299 cells resulted in decreased histone H3K9 methylation on BMP-3B promoter and increased BMP-3B expression levels. Furthermore, co-immunoprecipitation studies showed a direct interaction of Runx2 and Suv39h1 proteins. Phenotypically, Runx2 overexpression in H1299 cells increased wound healing response to TGFβ treatment. Conclusions Our studies identified BMP-3B as a new Runx2 target gene and revealed a novel function of Runx2 in silencing of BMP-3B in lung cancers. Our results suggest that Runx2 is a potential therapeutic target to block tumor suppressor gene silencing in lung cancer cells. PMID:22537242

  11. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells.

    PubMed

    Cruz, Ariadne Cristiane Cabral; Silva, Mariana Lúcia; Caon, Thiago; Simões, Cláudia Maria Oliveira

    2012-01-01

    Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.

  12. Lack of Obvious Influence of PLLA Nanofibers on the Gene Expression of BMP-2 and VEGF during Growth and Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Schofer, Markus D.; Fuchs-Winkelmann, S.; Wack, C.; Rudisile, M.; Dersch, R.; Leifeld, I.; Wendorff, J.; Greiner, A.; Paletta, J. R. J.; Boudriot, U.

    2009-01-01

    Growth factors like bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) play an important role in bone remodeling and fracture repair. Therefore, with respect to tissue engineering, an artificial graft should have no negative impact on the expression of these factors. In this context, the aim of this study was to analyze the impact of poly(L-lactic acid) (PLLA) nanofibers on VEGF and BMP-2 gene expression during the time course of human mesenchymal stem cell (hMSC) differentiation towards osteoblasts. PLLA matrices were seeded with hMSCs and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of VEGF and BMP-2. Furthermore, BMP-2–enwoven PLLA nanofibers were used in order to elucidate whether initial down-regulation of growth factor expression could be compensated. Although there was a great interpatient variability with respect to the expression of VEGF and BMP-2, PLLA nanofibers tend to result in a down-regulation in BMP-2 expression during the early phase of cultivation. This effect was diminished in the case of VEGF gene expression. The initial down-regulation was overcome when BMP-2 was directly incorporated into the PLLA nanofibers by electrospinning. Furthermore, the incorporation of BMP-2 into the PLLA nanofibers resulted in an increase in VEGF gene expression. Summarized, the results indicate that the PLLA nanofibers have little effect on growth factor production. An enhancement in gene expression of BMP-2 and VEGF can be achieved by an incorporation of BMP-2 into the PLLA nanofibers. PMID:19412560

  13. Human trabecular meshwork cells express BMP antagonist mRNAs and proteins.

    PubMed

    Tovar-Vidales, Tara; Fitzgerald, Ashley M; Clark, Abbot F

    2016-06-01

    Glaucoma patients have elevated aqueous humor and trabecular meshwork (TM) levels of transforming growth factor-beta2 (TGF-β2). TGF-β2 has been associated with increased extracellular matrix (ECM) deposition (i.e. fibronectin), which is attributed to the increased resistance of aqueous humor outflow through the TM. We have previously demonstrated that bone morphogenetic protein (BMP) 4 selectively counteracts the profibrotic effect of TGF-β2 with respect to ECM synthesis in the TM, and this action is reversed by the BMP antagonist gremlin. Thus, the BMP and TGF-β signaling pathways antagonize each other's antifibrotic and profibrotic roles. The purpose of this study was to determine whether cultured human TM cells: (a) express other BMP antagonists including noggin, chordin, BMPER, BAMBI, Smurf1 and 2, and (b) whether expression of these proteins is regulated by exogenous TGF-β2 treatment. Primary human trabecular meshwork (TM) cells were grown to confluency and treated with TGF-β2 (5 ng/ml) for 24 or 48 h in serum-free medium. Untreated cell served as controls. qPCR and Western immunoblots (WB) determined that human TM cells expressed mRNAs and proteins for the BMP antagonist proteins: noggin, chordin, BMPER, BAMBI, and Smurf1/2. Exogenous TGF-β2 decreased chordin, BMPER, BAMBI, and Smurf1 mRNA and protein expression. In contrast, TGF-β2 increased secreted noggin and Smurf2 mRNA and protein levels. BMP antagonist members are expressed in the human TM. These molecules may be involved in the normal function of the TM as well as TM pathogenesis. Altered expression of BMP antagonist members may lead to functional changes in the human TM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.

    PubMed

    Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae

    2009-08-01

    It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.

  15. Immunohistological Localization of BMP-2, BMP-7, and Their Receptors in Knee Joints with Focal Cartilage Lesions

    PubMed Central

    Schmal, Hagen; Mehlhorn, Alexander T.; Pilz, Ingo H.; Dovi-Akue, David; Kirchhoff, Christina; Südkamp, Norbert P.; Gerlach, Ulrike; Lohrmann, Christian; Niemeyer, Philipp

    2012-01-01

    Introduction. Although it is well known that BMP-2 and BMP-7 play significant roles in cartilage metabolism, data about intra-articular expression and localization of these proteins and their receptors in humans are rare. Methods. Biopsies of synovia and debrided cartilage were taken in patients undergoing autologous chondrocyte implantation. Expression of BMP-2, BMP-7, and their receptors BMPR-1A, BMPR-1B and BMPR-2 were semiquantitatively evaluated by immunohistological staining. Results. BMP-7 was equally highly expressed in all cartilage and synovial biopsies. Increased levels of BMPR-1A, but not of BMPR-1B, and BMPR-2, were found in all synovial and 47% of all cartilage samples (P = 0.002). BMP-2 was positively scored in 47% of all cartilage and 40% of all synovial specimens. Defect size, KOSS, Henderson or Kellgren-Lawrence score did not statistically significant correlate with the expression of the analyzed proteins or Mankin and Pritzker scores. Duration of symptoms and localization of lesions were associated with KOSS (P < 0.02), but there was no influence of these parameters on protein expression. Conclusions. BMP-2, BMP-7, and BMPR-1A were expressed in cartilage and synovia of knees with focal cartilage lesions. Although defect localization and duration of symptoms decisively influence KOSS, there was no associated alteration of protein expression observed. PMID:22272175

  16. A conserved post-transcriptional BMP2 switch in lung cells.

    PubMed

    Jiang, Shan; Fritz, David T; Rogers, Melissa B

    2010-05-15

    An ultra-conserved sequence in the bone morphogenetic protein 2 (BMP2) 3' untranslated region (UTR) markedly represses BMP2 expression in non-transformed lung cells. In contrast, the ultra-conserved sequence stimulates BMP2 expression in transformed lung cells. The ultra-conserved sequence functions as a post-transcriptional cis-regulatory switch. A common single-nucleotide polymorphism (SNP, rs15705, +A1123C), which has been shown to influence human morphology, disrupts a conserved element within the ultra-conserved sequence and altered reporter gene activity in non-transformed lung cells. This polymorphism changed the affinity of the BMP2 RNA for several proteins including nucleolin, which has an increased affinity for the C allele. Elevated BMP2 synthesis is associated with increased malignancy in mouse models of lung cancer and poor lung cancer patient prognosis. Understanding the cis- and trans-regulatory factors that control BMP2 synthesis is relevant to the initiation or progression of pathologies associated with abnormal BMP2 levels. (c) 2010 Wiley-Liss, Inc.

  17. Addition of bone morphogenetic protein type 2 to ascorbate and β-glycerophosphate supplementation did not enhance osteogenic differentiation of human adipose-derived stem cells

    PubMed Central

    CRUZ, Ariadne Cristiane Cabral; SILVA, Mariana Lúcia; CAON, Thiago; SIMÕES, Cláudia Maria Oliveira

    2012-01-01

    Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. Objectives This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Material and Methods Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. Conclusions We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs. PMID:23329244

  18. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy

    PubMed Central

    Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A.; Leyton, Patricio A.; Cheng, Juan; Tainsh, Robert E. T.; Mayeur, Claire; Rhee, David K.; Wu, Mei. X.; Scherrer-Crosbie, Marielle; Buys, Emmanuel S.; Zapol, Warren M.; Bloch, Kenneth D.; Bloch, Donald B.

    2016-01-01

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  19. Addition of BMP-2 or BMP-6 to dexamethasone, ascorbic acid, and β-glycerophosphate may not enhance osteogenic differentiation of human periodontal ligament cells.

    PubMed

    Khanna-Jain, Rashi; Agata, Hideki; Vuorinen, Annukka; Sándor, George K B; Suuronen, Riitta; Miettinen, Susanna

    2010-12-01

    This study was designed to investigate the potential merits of the combined use of bone morphogenetic protein (BMP)-2 or BMP-6 and osteogenic supplements (OS) [dexamethasone, ascorbic acid (AA), and β-glycerophosphate] on osteogenic differentiation of periodontal ligament cells (PDLCs). Osteogenic differentiation was evaluated by quantitative alkaline phosphatase (ALP) assay, alizarin red staining, quantitative calcium assay, and the qRT-PCR analysis for the expression of collagen type I, runt-related transcription factor-2, osteopontin (OPN), and osteocalcin in PDLCs. Culture with BMP-2 or BMP-6+AA increased ALP activity of PDLCs, suggesting their osteo-inductive effects. However, longer duration of culture showed neither of the BMPs induced in vitro mineralization. In contrast, OS were able to increase ALP activity and OPN expressions, and also induced in vitro mineralization. The mineralization ability was not enhanced by the addition of BMP-2 or BMP-6. These findings suggest that the addition of BMP-2 or BMP-6 to OS may not enhance an osteogenic differentiation of hPDLCs.

  20. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages

    PubMed Central

    Rocher, Crystal; Singla, Dinender K.

    2013-01-01

    Previously we demonstrated that bone morphogenetic protein-7 (BMP-7) treatment polarizes monocytes into M2 macrophages and increases the expression of anti-inflammatory cytokines. Despite these findings, the mechanisms for the observed BMP-7 induced monocyte polarization into M2 macrophages are completely unknown. In this study, we demonstrate the mechanisms involved in the polarization of monocytes into M2 macrophages. Apoptotic conditioned media (ACM) was generated to mimic the stressed conditions, inducing monocyte polarization. Monocytes were treated with ACM along with BMP-7 and/or its inhibitor, follistatin, for 48 hours. Furthermore, an inhibitor of the PI3K pathway, LY-294002, was also studied. Our data show that BMP-7 induces polarization of monocytes into M2 macrophages while significantly increasing the expression of anti-inflammatory markers, arginase-1 and IL-10, and significantly (p<0.05) decreasing the expression of pro-inflammatory markers iNOS, IL-6, TNF-α and MCP-1; (p<0.05). Moreover, addition of the PI3K inhibitor, LY-294002, significantly (p<0.05) decreases upregulation of IL-10 and arginase-1, suggesting involvement of the PI3K pathway in M2 macrophage polarization. Next, following BMP-7 treatment, a significant (p<0.05) increase in p-SMAD1/5/8 and p-PI3K expression resulting in downstream activation of p-Akt and p-mTOR was observed. Furthermore, expression of p-PTEN, an inhibitor of the PI3K pathway, was significantly (p<0.05) increased in the ACM group. However, BMP-7 treatment inhibited its expression, suggesting involvement of the PI3K-Akt-mTOR pathway. In conclusion, we demonstrate that BMP-7 polarizes monocytes into M2 macrophages and enhances anti-inflammatory cytokine expression which is mediated by the activated SMAD-PI3K-Akt-mTOR pathway. PMID:24376781

  1. β₂ adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.

    PubMed

    Yamada, Takayuki; Ezura, Yoichi; Hayata, Tadayoshi; Moriya, Shuichi; Shirakawa, Jumpei; Notomi, Takuya; Arayal, Smriti; Kawasaki, Makiri; Izu, Yayoi; Harada, Kiyoshi; Noda, Masaki

    2015-06-01

    β adrenergic stimulation suppresses bone formation in vivo while its actions in osteoblastic differentiation are still incompletely understood. We therefore examined the effects of β2 adrenergic stimulation on osteoblast-like MC3T3-E1 cells focusing on BMP-induced alkaline phosphatase expression. Morphologically, isoproterenol treatment suppresses BMP-induced increase in the numbers of alkaline phosphatase-positive small foci in the cultures of MC3T3-E1 cells. Biochemically, isoproterenol treatment suppresses BMP-induced enzymatic activity of alkaline phosphatase in a dose-dependent manner. Isoproterenol suppression of alkaline phosphatase activity is observed even when the cells are treated with high concentrations of BMP. With respect to cell density, isoproterenol treatment tends to suppress BMP-induced increase in alkaline phosphatase expression more in osteoblasts cultured at higher cell density. In terms of treatment protocol, continuous isoproterenol treatment is compared to cyclic treatment. Continuous isoproterenol treatment is more suppressive against BMP-induced increase in alkaline phosphatase expression than cyclic regimen. At molecular level, isoproterenol treatment suppresses BMP-induced enhancement of alkaline phosphatase mRNA expression. Regarding the mode of isoproterenol action, isoproterenol suppresses BMP-induced BRE-luciferase activity. These data indicate that isoproterenol regulates BMP-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells. © 2014 Wiley Periodicals, Inc.

  2. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2.

    PubMed

    Mitrofan, Claudia-Gabriela; Appleby, Sarah L; Nash, Gerard B; Mallat, Ziad; Chilvers, Edwin R; Upton, Paul D; Morrell, Nicholas W

    2017-08-18

    Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. The role of the BMP signaling cascade in regulation of stem cell activity following massive small bowel resection in a rat.

    PubMed

    Sukhotnik, I; Berkowitz, D; Dorfman, T; Halabi, Salim; Pollak, Y; Bejar, J; Bitterman, A; Coran, A G

    2016-02-01

    Bone morphogenetic proteins (BMPs) are a group of growth factors that are implicated in intestinal growth, morphogenesis, differentiation, and homeostasis. The role of the BMP signaling cascade in stimulation of cell proliferation after massive small bowel resection is unknown. The purpose of this study was to evaluate the role of BMP signaling during intestinal adaptation in a rat model of short bowel syndrome (SBS). Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75 % bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression analysis was used to determine the BMP signaling gene expression profiling. BMP-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. From the total number of 20,000 probes, 8 genes related to BMP signaling were investigated. From these genes, five genes were found to be up-regulated in jejunum (BMP1-10 %, BMP2-twofold increase, BMP3-10 %, BMP2R-12 % and STAT3-28 %) and four genes to be up-regulated in ileum (BMP1-16 %, BMP2-27 %, BMP3-10 %, and STAT3-20 %) in SBS vs sham animals with a relative change in gene expression level of 10 % or more. SBS rats also demonstrated a significant increase in BMP2 and STAT3 mRNA and protein levels (determined by real-time PCR and Western blot) compared to control animals. Two weeks following massive bowel resection in rats, the BMP signaling pathway is stimulated. BMP signaling may serve as an important mediator of reciprocal interactions between the epithelium and the underlying mesenchymal stroma during intestinal adaptation following massive bowel resection in a rat.

  4. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

    PubMed Central

    Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.

    2016-01-01

    STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD  increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. PMID:27385727

  5. BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2.

    PubMed

    Bayne, Rosemary A; Donnachie, Douglas J; Kinnell, Hazel L; Childs, Andrew J; Anderson, Richard A

    2016-09-01

    Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD  increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. Not applicable. This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  6. Microcontact printing of BMP-2 and its effect on human chondrocytes behavior

    NASA Astrophysics Data System (ADS)

    Pan, Chang-Jiang; Nie, Yu-Dong

    2010-01-01

    The present study is to investigate human chondrocytes behavior on microcontact printed bone morphogenetic protein-2 (BMP-2) lines on polystyrene (PS) surface. It was found that the cells aligned with BMP lines and expressed type II and VI collagen. The chondrocytes in vitro cultured on BMP lines were elongated, which resulted in altered cell morphology. Taking all these results into consideration, BMP-2 lines enhance cell adhesion, restrict spreading, and increase type II and VI collagen expression. The results represented in this study may be an approach to the problem of engineering reparative cartilage in vitro.

  7. Bone morphogenetic protein 2 and decorin expression in old fracture fragments and surrounding tissues.

    PubMed

    Han, X G; Wang, D K; Gao, F; Liu, R H; Bi, Z G

    2015-09-21

    Bone morphogenetic protein 2 (BMP-2) can promote fracture healing. Although the complex role BMP-2 in bone formation is increasingly understood, the role of endogenous BMP-2 in nonunion remains unclear. Decorin (DCN) can promote the formation of bone matrix and calcium deposition to control bone morphogenesis. In this study, tissue composition and expression of BMP-2 and DCN were detected in different parts of old fracture zones to explore inherent anti-fibrotic ability and osteogenesis. Twenty-three patients were selected, including eight cases of delayed union and 15 cases of nonunion. Average duration of delayed union or nonunion was 15 months. Fracture fragments and surrounding tissues, including bone grafts, marrow cavity contents, and sticking scars, were categorically sampled during surgery. Through observation and histological testing, component comparisons were made between fracture fragments and surrounding tissue. The expression levels of DCN and BMP-2 in different tissues were detected by immunohistochemical staining and real-time polymerase chain reaction. The expression of DCN and BMP- 2 in different parts of the nonunion area showed that, compared with bone graft and marrow cavity contents, sticking scars had the highest expression of BMP-2. Compared with the marrow cavity contents and sticking scars, bone grafts had the highest expression of DCN. The low antifibrotic and osteogenic activity of the nonunion area was associated with non-co-expression of BMP-2 and DCN. Therefore, the co-injection of osteogenic factor BMP and DCN into the nonunion area can improve the induction of bone formation and enhance the conversion of the old scar, thereby achieving better nonunion treatment.

  8. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro

    PubMed Central

    Garrett, I.R.; Chen, D.; Gutierrez, G.; Zhao, M.; Escobedo, A.; Rossini, G.; Harris, S.E.; Gallwitz, W.; Kim, K.B.; Hu, S.; Crews, C.M.; Mundy, G.R.

    2003-01-01

    We have found that the ubiquitin-proteasome pathway exerts exquisite control of osteoblast differentiation and bone formation in vitro and in vivo in rodents. Structurally different inhibitors that bind to specific catalytic β subunits of the 20S proteasome stimulated bone formation in bone organ cultures in concentrations as low as 10 nM. When administered systemically to mice, the proteasome inhibitors epoxomicin and proteasome inhibitor–1 increased bone volume and bone formation rates over 70% after only 5 days of treatment. Since the ubiquitin-proteasome pathway has been shown to modulate expression of the Drosophila homologue of the bone morphogenetic protein-2 and -4 (BMP-2 and BMP-4) genes, we examined the effects of noggin, an endogenous inhibitor of BMP-2 and BMP-4 on bone formation stimulated by these compounds and found that it was abrogated. These compounds increased BMP-2 but not BMP-4 or BMP-6 mRNA expression in osteoblastic cells, suggesting that BMP-2 was responsible for the observed bone formation that was inhibited by noggin. We show proteasome inhibitors regulate BMP-2 gene expression at least in part through inhibiting the proteolytic processing of Gli3 protein. Our results suggest that the ubiquitin-proteasome machinery regulates osteoblast differentiation and bone formation and that inhibition of specific components of this system may be useful therapeutically in common diseases of bone loss. PMID:12782679

  9. Adenoviral Mediated Expression of BMP2 by Bone Marrow Stromal Cells Cultured in 3D Copolymer Scaffolds Enhances Bone Formation.

    PubMed

    Sharma, Sunita; Sapkota, Dipak; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Bruland, Ove; Mustafa, Kamal

    2016-01-01

    Selection of appropriate osteoinductive growth factors, suitable delivery method and proper supportive scaffold are critical for a successful outcome in bone tissue engineering using bone marrow stromal cells (BMSC). This study examined the molecular and functional effect of a combination of adenoviral mediated expression of bone morphogenetic protein-2 (BMP2) in BMSC and recently developed and characterized, biodegradable Poly(L-lactide-co-є-caprolactone){poly(LLA-co-CL)}scaffolds in osteogenic molecular changes and ectopic bone formation by using in vitro and in vivo approaches. Pathway-focused custom PCR array, validation using TaqMan based quantitative RT-PCR (qRT-PCR) and ALP staining showed significant up-regulation of several osteogenic and angiogenic molecules, including ALPL and RUNX2 in ad-BMP2 BMSC group grown in poly(LLA-co-CL) scaffolds both at 3 and 14 days. Micro CT and histological analyses of the subcutaneously implanted scaffolds in NOD/SCID mice revealed significantly increased radiopaque areas, percentage bone volume and formation of vital bone in ad-BMP2 scaffolds as compared to the control groups both at 2 and 8 weeks. The increased bone formation in the ad-BMP2 group in vivo was paralleled at the molecular level with concomitant over-expression of a number of osteogenic and angiogenic genes including ALPL, RUNX2, SPP1, ANGPT1. The increased bone formation in ad-BMP2 explants was not found to be associated with enhanced endochondral activity as evidenced by qRT-PCR (SOX9 and FGF2) and Safranin O staining. Taken together, combination of adenoviral mediated BMP-2 expression in BMSC grown in the newly developed poly(LLA-co-CL) scaffolds induced expression of osteogenic markers and enhanced bone formation in vivo.

  10. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tada, Hiroyuki; Nemoto, Eiji, E-mail: e-nemoto@umin.ac.jp; Kanaya, Sousuke

    Dental pulp cells, which have been shown to share phenotypical features with osteoblasts, are capable of differentiating into odontoblast-like cells and generating a dentin-like mineral structure. Elevated extracellular Ca{sup 2+}Ca{sub o}{sup 2+} has been implicated in osteogenesis by stimulating the proliferation and differentiation of osteoblasts; however, the role of Ca{sub o}{sup 2+} signaling in odontogenesis remains unclear. We found that elevated Ca{sub o}{sup 2+} increases bone morphogenetic protein (BMP)-2 gene expression in human dental pulp cells. The increase was modulated not only at a transcriptional level but also at a post-transcriptional level, because treatment with Ca{sup 2+} increased the stabilitymore » of BMP-2 mRNA in the presence of actinomycin D, an inhibitor of transcription. A similar increase in BMP-2 mRNA level was observed in other human mesenchymal cells from oral tissue; periodontal ligament cells and gingival fibroblasts. However, the latter cells exhibited considerably lower expression of BMP-2 mRNA compared with dental pulp cells and periodontal ligament cells. The BMP-2 increase was markedly inhibited by pretreatment with an extracellular signal-regulated kinase (ERK) inhibitor, PD98059, and partially inhibited by the L-type Ca{sup 2+} channels inhibitor, nifedipine. However, pretreatment with nifedipine had no effect on ERK1/2 phosphorylation triggered by Ca{sup 2+}, suggesting that the Ca{sup 2+} influx from Ca{sup 2+} channels may operate independently of ERK signaling. Dental pulp cells do not express the transcript of Ca{sup 2+}-sensing receptors (CaSR) and only respond slightly to other cations such as Sr{sup 2+} and spermine, suggesting that dental pulp cells respond to Ca{sub o}{sup 2+} to increase BMP-2 mRNA expression in a manner different from CaSR and rather specific for Ca{sub o}{sup 2+} among cations.« less

  11. BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism.

    PubMed

    Mayeur, Claire; Leyton, Patricio A; Kolodziej, Starsha A; Yu, Binglan; Bloch, Kenneth D

    2014-09-25

    Expression of hepcidin, the hepatic hormone controlling iron homeostasis, is regulated by bone morphogenetic protein (BMP) signaling. We sought to identify which BMP type II receptor expressed in hepatocytes, ActR2a or BMPR2, is responsible for regulating hepcidin gene expression. We studied Bmpr2 heterozygous mice (Bmpr2(+/-)), mice with hepatocyte-specific deficiency of BMPR2, mice with global deficiency of ActR2a, and mice in which hepatocytes lacked both BMPR2 and ActR2a. Hepatic hepcidin messenger RNA (mRNA) levels, serum hepcidin and iron levels, and tissue iron levels did not differ in wild-type mice, Bmpr2(+/-) mice, and mice in which either BMPR2 or ActR2a was deficient. Deficiency of both BMP type II receptors markedly reduced hepatic hepcidin gene expression and serum hepcidin levels leading to severe iron overload. Iron injection increased hepatic hepcidin mRNA levels in mice deficient in either BMPR2 or ActR2a, but not in mice deficient in both BMP type II receptors. In addition, in mouse and human primary hepatocytes, deficiency of both BMPR2 and ActR2a profoundly decreased basal and BMP6-induced hepcidin gene expression. These results suggest that BMP type II receptors, BMPR2 and ActR2a, have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism. © 2014 by The American Society of Hematology.

  12. Iron regulation of hepcidin despite attenuated Smad1,5,8 signaling in mice without transferrin receptor 2 or Hfe

    PubMed Central

    Corradini, Elena; Rozier, Molly; Meynard, Delphine; Odhiambo, Adam; Lin, Herbert Y.; Feng, Qi; Migas, Mary C.; Britton, Robert S.; Babitt, Jodie L.; Fleming, Robert E.

    2011-01-01

    Background & Aims HFE and transferrin receptor 2 (TFR2) are each necessary for the normal relationship between body iron status and liver hepcidin expression. In murine Hfe and Tfr2 knockout models of hereditary hemochromatosis (HH), signal transduction to hepcidin via the bone morphogenetic protein 6 (Bmp6)/Smad1,5,8 pathway is attenuated. We examined the effect of dietary iron on regulation of hepcidin expression via the Bmp6/Smad1,5,8 pathway using mice with targeted disruption of Tfr2, Hfe, or both genes. Methods Hepatic iron concentrations and mRNA expression of Bmp6 and hepcidin were compared with wild-type mice in each of the HH models on standard or iron-loading diets. Liver phospho-Smad (P-Smad)1,5,8 and Id1 mRNA levels were measured as markers of Bmp/Smad signaling. Results While Bmp6 expression was increased, liver hepcidin and Id1 expression were decreased in each of the HH models compared with wild-type mice. Each of the HH models also demonstrated attenuated P-Smad1,5,8 levels relative to liver iron status. Mice with combined Hfe/Tfr2 disruption were most affected. Dietary iron loading increased hepcidin and Id1 expression in each of the HH models. Compared with wild-type mice, HH mice demonstrated attenuated (Hfe knockout) or no increases in P-Smad1,5,8 levels in response to dietary iron loading. Conclusions These observations demonstrate that Tfr2 and Hfe are each required for normal signaling of iron status to hepcidin via Bmp6/Smad1,5,8 pathway. Mice with combined loss of Hfe and Tfr2 up-regulate hepcidin in response to dietary iron loading without increases in liver BMP6 mRNA or steady-state P-Smad1,5,8 levels. PMID:21745449

  13. Early changes in retinal structure and BMP2 expression in the retina and crystalline lens of streptozotocin-induced diabetic pigs.

    PubMed

    Jeong, Jae Seung; Lee, Woon-Kyu; Moon, Yeon Sung; Kim, Na Rae

    2017-09-01

    This study aims to evaluate early changes in retinal structure and BMP2 expression in the retina and crystalline lens by comparing streptozotocin-induced diabetic pigs and normal control group pigs. Five eye samples from five diabetic Micro-pigs (Medikinetics, Pyeongtaek, Korea) and five eye samples from five control pigs bred in a specific pathogen-free area were used. Diabetes was developed through intravenous injection of nicotinamide and streptozotocin, and the average fasting glucose level was maintained at 250 mg/dL or higher for 16 weeks. To evaluate BMP2 expression in the retina and crystalline lens, Western blotting was performed. In Hematoxylin and Eosin staining, most diabetic pigs showed structural abnormalities in the inner plexiform layer. The number of nuclei in the ganglion cell layer within the range of 10 4 µm 2 was 3.78±0.60 for diabetic pigs and 5.57±1.07 for control group pigs, showing a statistically significant difference. In immunohistochemical staining, diabetic retinas showed an overall increase in BMP2 expression. In Western blotting, the average BMP2/actin level of diabetic retinas was 1.19±0.05, showing a significant increase compared to the 1.06±0.03 of the control group retinas ( P =0.016). The BMP2/actin level of diabetic crystalline lenses was similar to the control group crystalline lenses ( P =0.730). Compared to control group pigs, the number of nuclei in the inner nuclear layer of retinas from streptozotocin-induced diabetic pigs decreased, while an increase in BMP2 expression was observed in the retina of diabetic pigs.

  14. Arsenite suppression of BMP signaling in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Marjorie A.; Qin, Qin; Hu, Qin

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction,more » BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte differentiation.« less

  15. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis.

    PubMed

    Lee, Heon-Woo; Chong, Diana C; Ola, Roxana; Dunworth, William P; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L; Eichmann, Anne; Jin, Suk-Won

    2017-04-01

    Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2 , and Alk3 in mouse retinal vessels. Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2 . Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2 / acvr1 or Alk3 / Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels. © 2017 The Authors.

  16. Inactivation of bone morphogenetic protein 2 may predict clinical outcome and poor overall survival for renal cell carcinoma through epigenetic pathways

    PubMed Central

    Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki

    2015-01-01

    We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254

  17. Reciprocal repression between Fgf8 and miR-133 regulates cardiac induction through Bmp2 signaling.

    PubMed

    Lopez-Sanchez, Carmen; Franco, Diego; Bonet, Fernando; Garcia-Lopez, Virginio; Aranega, Amelia; Garcia-Martinez, Virginio

    2015-12-01

    This data article contains complementary figures and results related to the research article entitled "Negative Fgf8-Bmp2 feed-back is controlled by miR-130 during early cardiac specification" [15], which reveals what specific role miR-130 plays during the cardiac induction process. This study evidenced miR-130 a putative microRNA that targets Erk1/2 (Mapk1) 3'UTR- as a necessary linkage in the control of Fgf8 signaling, mediated by Bmp2. Thus, miR-130 regulates a negative Fgf8-Bmp2 feed-back loop responsible to achieve early cardiac specification. A significant aspect supporting our conclusions is given by the expression pattern of miR-130 during early cardiac specification, as well as by those results obtained after the designed experimental procedures. The data presented here reveal that miR-133 is also expressed within the precardiac areas during early cardiogenesis, pattern which is comparable to that of FGFR1, receptor involved in the Fgf8/ERK signaling pathway. Interestingly, our miR-133 overexpression experiments resulted in a decrease of Fgf8 expression, whereas we observed an increase of Bmp2 and subsequently of cardiac specific markers Nkx-2.5 and Gata4. Additionally, our loss-of-function experiments -through Fgf8 siRNA electroporation- showed an increase of miR-133 expression. Finally, after our Bmp2 experiments, we observed that miR-133 is upstream-regulated by Bmp2. All those results suggest that miR-133 also constitutes a crucial linkage in the crosstalk between Fgf8 and Bmp2 signaling by regulating the Fgf8/ERK pathway during cardiac induction.

  18. BMP2 induces PANC-1 cell invasion by MMP-2 overexpression through ROS and ERK.

    PubMed

    Liu, Jun; Ben, Qi-Wen; Yao, Wei-Yan; Zhang, Jian-Jun; Chen, Da-Fan; He, Xiang-Yi; Li, Lei; Yuan, Yao-Zong

    2012-06-01

    The emerging roles of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers have drawn great attention in cancer research. We hypothesized that BMP2 promotes cancer metastasis by modulating MMP-2 secretion and activity through intracellular ROS regulation and ERK activation in human pancreatic cancer. Our data show that stimulation of PANC-1 cells with BMP2 induced MMP-2 secretion and activation, associated with decreased E-cadherin expression, resulting in epithelial-to-mesenchymal transformation (EMT) and cell invasion. Blockade of ROS by the ROS scavenger, 2-MPG, abolished cell invasion, inhibited the EMT process and decreased MMP-2 expression, suggesting ROS accumulation caused an increase in MMP-2 expression in BMP2-stimulated PANC-1 cell invasion. Furthermore, treatment of PANC-1 cells with 2-MPG or ERK inhibitor PD98059 reduced the phosphorylation of ERK, resulting in attenuation of BMP2-induced cell invasion and MMP-2 activation. Taken together, these results suggest that BMP2 induces the cell invasion of PANC-1 cells by enhancing MMP-2 secretion and acting through ROS accumulation and ERK activation.

  19. Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts

    PubMed Central

    Chen, Yongjuan; Roohani-Esfahani, Seyed-Iman; Lu, ZuFu; Zreiqat, Hala; Dunstan, Colin R.

    2015-01-01

    Zirconium (Zr) is an element commonly used in dental and orthopedic implants either as zirconia (ZrO2) or in metal alloys. It can also be incorporated into calcium silicate-based ceramics. However, the effects of in vitro culture of human osteoblasts (HOBs) with soluble ionic forms of Zr have not been determined. In this study, primary culture of human osteoblasts was conducted in the presence of medium containing either ZrCl4 or Zirconium (IV) oxynitrate (ZrO(NO3)2) at concentrations of 0, 5, 50 and 500 µM, and osteoblast proliferation, differentiation and calcium deposition were assessed. Incubation of human osteoblast cultures with Zr ions increased the proliferation of human osteoblasts and also gene expression of genetic markers of osteoblast differentiation. In 21 and 28 day cultures, Zr ions at concentrations of 50 and 500 µM increased the deposition of calcium phosphate. In addition, the gene expression of BMP2 and BMP receptors was increased in response to culture with Zr ions and this was associated with increased phosphorylation of SMAD1/5. Moreover, Noggin suppressed osteogenic gene expression in HOBs co-treated with Zr ions. In conclusion, Zr ions appear able to induce both the proliferation and the differentiation of primary human osteoblasts. This is associated with up-regulation of BMP2 expression and activation of BMP signaling suggesting this action is, at least in part, mediated by BMP signaling. PMID:25602473

  20. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity.

    PubMed

    Intini, Giuseppe; Nyman, Jeffry S

    2015-06-01

    Bone fractures remain a serious health burden and prevention and enhanced healing of fractures have been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1(+/-)) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2(c/c);Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1(+/-) mice were crossed with Bmp2(c/c);Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity

    PubMed Central

    Intini, Giuseppe; Nyman, Jeffry S.

    2015-01-01

    Bone fractures remain a serious health burden and prevention and enhanced healing of fractures has been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1+/−) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2c/c;Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1+/− mice were crossed with Bmp2c/c;Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. PMID:25603465

  2. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Huiwu; Health and Science Center, SIBS CAS and SSMU, 225 South Chongqing Road, Shanghai 200025; Dai Kerong

    2007-05-18

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a {beta}-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified bymore » BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals.« less

  3. Strontium doping promotes bioactivity of rhBMP-2 upon calcium phosphate cement via elevated recognition and expression of BMPR-IA.

    PubMed

    Huang, Baolin; Tian, Yu; Zhang, Wenjing; Ma, Yifan; Yuan, Yuan; Liu, Changsheng

    2017-11-01

    Preserving and improving osteogenic activity of bone morphogenetic protein-2 (BMP-2) upon implants remains one of the key limitations in bone regeneration. With calcium phosphate cement (CPC) as model, we have developed a series of strontium (Sr)-doped CPC (SCPC) to address this issue. The effects of fixed Sr on the bioactivity of recombinant human BMP-2 (rhBMP-2) as well as the underlying mechanism were investigated. The results suggested that the rhBMP-2-induced osteogenic activity was significantly promoted upon SCPCs, especially with a low amount of fixed Sr (SrCO 3 content <10wt%). Further studies demonstrated that the Sr-induced enhancement of bioactivity of rhBMP-2 was related to an elevated recognition of bone morphogenetic protein receptor-IA (BMPR-IA) to rhBMP-2 and an increased expression of BMPR-IA in C2C12 model cells. As a result, the activations of BMP-induced signaling pathways were different in C2C12 cells incubated upon CPC/rhBMP-2 and SCPCs/rhBMP-2. These findings explicitly decipher the mechanism of SCPCs promoting osteogenic bioactivity of rhBMP-2 and signify the promising application of the SCPCs/rhBMP-2 matrix in bone regeneration implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein Induced Retinal Angiogenesis

    PubMed Central

    Lee, Heon-Woo; Chong, Diana C.; Ola, Roxana; Dunworth, William P.; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M.; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L.; Eichmann, Anne; Jin, Suk-Won

    2017-01-01

    Objective Increasing evidence suggests that Bone Morphogenetic Protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early post-natal angiogenesis by analysis of inducible, endothelial specific deletion of the BMP receptor components Bmpr2, Alk1, Alk2 and Alk3 in mouse retinal vessels. Approach and Results Expression analysis of several BMP ligands showed that pro-angiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of BMP Type 2 receptor (Bmpr2). Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branchpoints behind the front, leading to attenuated radial expansion. To identify critical BMPR1s associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of three BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial specific deletion of either Alk2/acvr1 or Alk3/Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for pro-angiogenic BMP signaling in retinal vessels. Conclusions Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential pro-angiogenic cue for retinal vessels. PMID:28232325

  5. Influences of Reduced Expression of Maternal Bone Morphogenetic Protein 2 on Embryonic Development

    PubMed Central

    Singh, Ajeet P.; Castranio, Trisha; Scott, Greg; Guo, Dayong; Harris, Marie A.; Ray, Manas; Harris, Stephan E.; Mishina, Yuji

    2009-01-01

    Bone morphogenetic protein 2 (BMP2) was originally found by its osteoinductive ability, and recent genetic analyses have revealed that it plays critical roles during early embryogenesis, cardiogenesis, decidualization as well as skeletogenesis. During a course of evaluation of the conditional allele for Bmp2, we found that the presence of a neo cassette, a selection marker needed for gene targeting events in embryonic stem cells, in the 3’ untranslated region of exon 3 of Bmp2, reduced the expression levels of Bmp2 both in embryonic and maternal tissues. Some of the embryos that were genotyped as transheterozygous for the floxed allele with the neo cassette over the conventional null allele (fn/−) showed a lethal phenotype including defects in cephalic neural tube closure and ventral abdominal wall closure. Embryos exhibiting these abnormalities were increased when genotypes of the pregnant females were different; when expression levels of Bmp2 in maternal tissues were lower, a larger proportion of fn/− embryos exhibit these abnormalities. These results suggest that the expression levels of Bmp2 together in both in embryonic and maternal tissues influence the normal neural tube closure and body wall closure with different thresholds. PMID:18769073

  6. Effect of early addition of bone morphogenetic protein 5 (BMP5) to embryo culture medium on in vitro development and expression of developmentally important genes in bovine preimplantation embryos.

    PubMed

    García, Elina V; Miceli, Dora C; Rizo, Gabriela; Valdecantos, Pablo A; Barrera, Antonio D

    2015-09-01

    Previous studies have reported that bone morphogenetic protein 5 (BMP5) is differentially expressed in the isthmus of bovine oviducts and it is present in the oviductal fluid. However, the specific action of this factor is unknown. To evaluate whether BMP5 exerts some effect during early bovine embryo development, gene expression of BMP5, BMP receptors, and the effect of exogenous BMP5 on in vitro development and expression of developmentally important genes were assessed. In experiment 1, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from in vitro fertilization, were collected for analysis of BMP5 and BMP receptors (BMPR1A, BMPR1B, and BMPR2) messenger RNA (mRNA) expression. On the basis of previous results, in experiment 2, presumptive zygotes were cultured for the first 48 hours after insemination in CR1aa medium assaying three different treatments: (1) control (CR1aa); (2) vehicle control (CR1aa + 0.04 mM HCl), and (3) BMP5 treatment (CR1aa + 100 ng/mL of BMP5). The cleavage rate was evaluated 48 hours after insemination (Day 2), and then, embryos were transferred to CR1aa + 10% fetal bovine serum. The blastocyst rate was determined on Day 7. In experiment 3, pools of embryos at two-cell, four-cell, eight-cell, and blastocyst stages, derived from control and BMP5-treated groups, were collected for analysis of ID2 (BMP target gene), OCT4, NANOG, and SOX2 (pluripotency genes) mRNA expression. BMP5 transcripts were not detectable in any of the embryonic stages examined, whereas the relative mRNA abundance of the three BMP receptors analyzed was greater in early embryo development stages before maternal-embryonic transition, raising the possibility of a direct effect of exogenous BMPs on the embryo during the first developmental period. Although early addition of 100 ng/mL of BMP5 to the embryo culture medium had no effect on the cleavage rate, a significantly higher proportion of cleaved embryos developed to the blastocyst stage in the BMP5 group. Moreover, reverse transcription quantitative real-time polymerase chain reaction analysis showed a significant increase in the relative abundance of SOX2 in two-cell stage embryos, ID2 and OCT4 in eight-cell stage embryos, and NANOG and OCT4 in blastocysts derived from BMP5-treated embryos. In conclusion, our results report that early addition of BMP5 to the embryo culture medium had a positive effect on the blastocyst rate and affected the relative expression of BMP target and pluripotency genes, suggesting that BMP5 could play an important role in the preimplantation development of bovine embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Involvement of over-expressed BMP4 in pentylenetetrazol kindling-induced cell proliferation in the dentate gyrus of adult rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Jinbo; Ma Yuxin; Yin Qing

    2007-03-30

    The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process andmore » explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after First PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression.« less

  8. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    PubMed

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  9. Smad4 mediated BMP2 signal is essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Lina; Shi, Jin; Gao, Wenqun

    2014-07-18

    Highlights: • BMP2 can upregulated cardiac related gene GATA4, Nkx2.5, MEF2c and Tbx5. • Inhibition of Smad4 decreased BMP2-induced hyperacetylation of histone H3. • Inhibition of Smad4 diminished BMP2-induced overexpression of GATA4 and Nkx2.5. • Inhibition of Smad4 decreased hyperacetylated H3 in the promoter of GATA4 and Nkx2.5. • Smad4 is essential for BMP2 induced hyperacetylated histone H3. - Abstract: BMP2 signaling pathway plays critical roles during heart development, Smad4 encodes the only common Smad protein in mammals, which is a pivotal nuclear mediator. Our previous studies showed that BMP2 enhanced the expression of cardiac transcription factors in part bymore » increasing histone H3 acetylation. In the present study, we tested the hypothesis that Smad4 mediated BMP2 signaling pathway is essential for the expression of cardiac core transcription factors by affecting the histone H3 acetylation. We successfully constructed a lentivirus-mediated short hairpin RNA interference vector targeting Smad4 (Lv-Smad4) in rat H9c2 embryonic cardiac myocytes (H9c2 cells) and demonstrated that it suppressed the expression of the Smad4 gene. Cultured H9c2 cells were transfected with recombinant adenoviruses expressing human BMP2 (AdBMP2) with or without Lv-Smad4. Quantitative real-time RT-PCR analysis showed that knocking down of Smad4 substantially inhibited both AdBMP2-induced and basal expression levels of cardiac transcription factors GATA4 and Nkx2.5, but not MEF2c and Tbx5. Similarly, chromatin immunoprecipitation (ChIP) analysis showed that knocking down of Smad4 inhibited both AdBMP2-induced and basal histone H3 acetylation levels in the promoter regions of GATA4 and Nkx2.5, but not of Tbx5 and MEF2c. In addition, Lv-Smad4 selectively suppressed AdBMP2-induced expression of HAT p300, but not of HAT GCN5 in H9c2 cells. The data indicated that inhibition of Smad4 diminished both AdBMP2 induced and basal histone acetylation levels in the promoter regions of GATA4 and Nkx2.5, suggesting that Smad4 mediated BMP2 signaling pathway was essential for the regulation of GATA4 and Nkx2.5 by affecting the histone H3 acetylation in H9c2 cells.« less

  10. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

    PubMed Central

    Jiang, Ming; Ku, Wei-Yao; Zhou, Zhongren; Dellon, Evan S.; Falk, Gary W.; Nakagawa, Hiroshi; Wang, Mei-Lun; Liu, Kuancan; Wang, Jun; Katzka, David A.; Peters, Jeffrey H.; Lan, Xiaopeng; Que, Jianwen

    2015-01-01

    Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE. PMID:25774506

  11. Regulation of Msx-1, Msx-2, Bmp-2 and Bmp-4 during foetal and postnatal mammary gland development.

    PubMed

    Phippard, D J; Weber-Hall, S J; Sharpe, P T; Naylor, M S; Jayatalake, H; Maas, R; Woo, I; Roberts-Clark, D; Francis-West, P H; Liu, Y H; Maxson, R; Hill, R E; Dale, T C

    1996-09-01

    Expression of the Msx-1 and Msx-2 homeobox genes have been shown to be coordinately regulated with the Bmp-2 and Bmp-4 ligands in a variety of developing tissues. Here we report that transcripts from all four genes are developmentally regulated during both foetal and postnatal mammary gland development. The location and time-course of the Bmp and Msx expression point to a role for Msx and Bmp gene products in the control of epithelial-mesenchymal interactions. Expression of Msx-2, but not Msx-1, Bmp-2 or Bmp-4 was decreased following ovariectomy, while expression of the human Msx-2 homologue was regulated by 17beta-oestradiol in the MCF-7 breast cancer cell line. The regulation of Msx-2 expression by oestrogen raises the possibility that hormonal regulation of mammary development is mediated through the control of epithelial-mesenchymal interactions.

  12. Abnormal Uterine Bleeding Is Associated With Increased BMP7 Expression in Human Endometrium.

    PubMed

    Richards, Elliott G; El-Nashar, Sherif A; Schoolmeester, John K; Keeney, Gary L; Mariani, Andrea; Hopkins, Matthew R; Dowdy, Sean C; Daftary, Gaurang S; Famuyide, Abimbola O

    2017-05-01

    Abnormal uterine bleeding (AUB), a common health concern of women, is a heterogeneous clinical entity that is traditionally categorized into organic and nonorganic causes. Despite varied pharmacologic treatments, few offer sustained efficacy, as most are empiric, unfocused, and do not directly address underlying dysregulated molecular mechanisms. Characterization of such molecular derangements affords the opportunity to develop and use novel, more successful treatments for AUB. Given its implication in other organ systems, we hypothesized that bone morphogenetic protein (BMP) expression is altered in patients with AUB and hence comprehensively investigated dysregulation of BMP signaling pathways by systematically screening 489 samples from 365 patients for differences in the expression of BMP2, 4, 6, and 7 ligands, BMPR1A and B receptors, and downstream SMAD4, 6, and 7 proteins. Expression analysis was correlated clinically with data abstracted from medical records, including bleeding history, age at procedure, ethnicity, body mass index, hormone treatment, and histological diagnosis of fibroids, polyps, adenomyosis, hyperplasia, and cancer. Expression of BMP7 ligand was significantly increased in patients with AUB (H-score: 18.0 vs 26.7; P < .0001). Patients reporting heavy menstrual bleeding (menorrhagia) as their specific AUB pattern demonstrated significantly higher BMP7 expression. Significantly, no differences in the expression of any other BMP ligands, receptors, or SMAD proteins were observed in this large patient cohort. However, expression of BMPR1A, BMPR1B, and SMAD4 was significantly decreased in cancer compared to benign samples. Our study demonstrates that BMP7 is a promising target for future investigation and pharmacologic treatment of AUB.

  13. BMP2 and BMP7 play antagonistic roles in feather induction

    PubMed Central

    Michon, Frédéric; Forest, Loïc; Collomb, Elodie; Demongeot, Jacques; Dhouailly, Danielle

    2008-01-01

    Summary During embryonic development, feathers first appear as primordia consisting of an epidermal placode associated with a dermal condensation. In most previous studies, the BMPs have been proposed to function as inhibitors of the formation of cutaneous appendages. We showed that the function of BMPs is quite nuanced: BMP-2 and BMP-7, which are expressed in both skin components, act antagonistically and yet are both involved in the dermal condensations formation. BMP-7, the first to be expressed, is implicated in chemotaxis which leads to cell recruitment to the condensation, whereas BMP-2, which is expressed later, leads to an arrest of cell migration, likely via its modulation of EIIIA Fibronectin domain and α4-Integrin expression. We also propose a mathematical model, a reaction-diffusion system, based on cell proliferation, chemotaxis and the timing of BMP-2 and BMP-7 expression, which simulates the endogenous situation and reproduces the negative effects of excess BMP-2 or BMP-7 on feather patterning. PMID:18635609

  14. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation.

    PubMed

    Basic-Jukic, Nikolina; Gulin, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Katalinic, Lea; Coric, Marijana; Veda, Marija Varnai; Ivkovic, Vanja; Kes, Petar; Jelakovic, Bojan

    2016-01-01

    Delayed graft function (DGF) is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2) is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF) and DGF. 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients) and DGF group (15 patients). BMP-2 expression in intima media (BMP2m) and endothelium (BMP2e) of epigastric artery was assessed by immunohistochemistry. Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001) (P<0.001 for no expression and P = 0.015 for 1st grade expression). Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477]) and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]). Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF. © 2016 The Author(s) Published by S. Karger AG, Basel.

  15. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis

    PubMed Central

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P.; Ananth, Sudha; Romej, Michelle A.; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D.; Martin, Pamela M.; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D.; Ganapathy, Vadivel

    2016-01-01

    Purpose Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv−/− mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv−/− retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Methods Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv−/− mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv−/− pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Results Expression of GPR91 was higher in Hjv−/− retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv−/− retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv−/− retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. Conclusions G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization. PMID:27046124

  16. Increased Retinal Expression of the Pro-Angiogenic Receptor GPR91 via BMP6 in a Mouse Model of Juvenile Hemochromatosis.

    PubMed

    Arjunan, Pachiappan; Gnanaprakasam, Jaya P; Ananth, Sudha; Romej, Michelle A; Rajalakshmi, Veeranan-Karmegam; Prasad, Puttur D; Martin, Pamela M; Gurusamy, Mariappan; Thangaraju, Muthusamy; Bhutia, Yangzom D; Ganapathy, Vadivel

    2016-04-01

    Hemochromatosis, an iron-overload disease, occurs as adult and juvenile types. Mutations in hemojuvelin (HJV), an iron-regulatory protein and a bone morphogenetic protein (BMP) coreceptor, underlie most of the juvenile type. Hjv(-/-) mice accumulate excess iron in retina and exhibit aberrant vascularization and angiomas. A succinate receptor, GPR91, is pro-angiogenic in retina. We hypothesized that Hjv(-/-) retinas have increased BMP signaling and increased GPR91 expression as the basis of angiomas. Expression of GPR91 was examined by qPCR, immunofluorescence, and Western blot in wild-type and Hjv(-/-) mouse retinas and pRPE cells. Influence of excess iron and BMP6 on GPR91 expression was investigated in ARPE-19 cells, and wild-type and Hjv(-/-) pRPE cells. Succinate was used to activate GPR91 and determine the effects of GPR91 signaling on VEGF expression. Signaling of BMP6 was studied by the expression of Smad1/5/8 and pSmad4, and the BMP-target gene Id1. The interaction of pSmad4 with GPR91 promoter was studied by ChIP. Expression of GPR91 was higher in Hjv(-/-) retinas and RPE than in wild-type counterparts. Unexpectedly, BMP signaling was increased, not decreased, in Hjv(-/-) retinas and RPE. Bone morphogenetic protein 6 induced GPR91 in RPE, suggesting that increased BMP signaling in Hjv(-/-) retinas was likely responsible for GPR91 upregulation. Exposure of RPE to excess iron and succinate as well as BMP6 and succinate increased VEGF expression. Bone morphogenetic protein 6 promoted the interaction of pSmad4 with GPR91 promoter in RPE. G-protein-coupled receptor 91 is a BMP6 target and Hjv deletion enhances BMP signaling in retina, thus underscoring a role for excess iron and hemochromatosis in abnormal retinal vascularization.

  17. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    PubMed

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  18. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: Implications for Hereditary Hemorrhagic Telangiectasia Type II

    PubMed Central

    Kim, Jai-Hyun; Peacock, Matthew R.; George, Steven C.; Hughes, Christopher C.W.

    2012-01-01

    ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for Hereditary Hemorrhagic Telangiectasia Type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations (AVMs). Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1 – restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis. PMID:22622516

  19. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2.

    PubMed

    Fukuda, Tomokazu; Scott, Gregory; Komatsu, Yoshihiro; Araya, Runa; Kawano, Masako; Ray, Manas K; Yamada, Masahisa; Mishina, Yuji

    2006-04-01

    BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines. Published 2006 Wiley-Liss, Inc.

  20. Immunohistochemical localization of bone morphogenetic proteins and the receptors in epiphyseal growth plate.

    PubMed

    Yazaki, Y; Matsunaga, S; Onishi, T; Nagamine, T; Origuchi, N; Yamamoto, T; Ishidou, Y; Imamura, T; Sakou, T

    1998-01-01

    The expression of bone morphogenetic proteins (BMPs) and BMP receptors (BMPRs) in the epiphyseal growth plate has not been clarified. In this study, we studied immunohistochemically the spatial and temporal localization of BMP-2/4, osteogenic protein-1 (OP-1, or BMP-7), and BMP receptors (BMPR-IA, BMPR-IB, and BMPR-II) in the epiphyseal plate of growing rats. The proximal parts of tibia in growing rats were observed. At 12 weeks after birth, BMP-2/4 and OP-1 were expressed markedly in proliferating and maturing chondrocytes. BMPR-IA, IB and II were clearly co-expressed in proliferating and maturing chondrocytes, and the expression was decreased in hypertrophic chondrocytes. At 24 weeks, the expression of BMP-2/4 and OP-1 was decreased, but BMPRs were still well-expressed in proliferating chondrocytes. The temporal and spatial expression of BMP and BMPR suggests that BMP and BMP receptors play roles in the multistep cascade of enchondral ossification in the epiphyseal growth plate.

  1. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing.

    PubMed

    Xu, M T; Sun, S; Zhang, L; Xu, F; Du, S L; Zhang, X D; Wang, D W

    2016-01-01

    Transforming growth factor beta 1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) are important regulators of bone repair and regeneration. In this study, we examined whether TGF-β1 and BMP-2 expressions were delayed during bone healing in type 1 diabetes mellitus. Tibial fractures were created in 95 diabetic and 95 control adult male Wistar rats of 10 weeks of age. At 1, 2, 3, 4, and 5 weeks after fracture induction, five rats were sacrificed from each group. The expressions of TGF-β1 and BMP2 in the fractured tibias were measured by immunohistochemistry and quantitative reverse-transcription polymerase chain reaction, weekly for the first 5 weeks post-fracture. Mechanical parameters (bending rigidity, torsional rigidity, destruction torque) of the healing bones were also assessed at 3, 4, and 5 weeks post-fracture, after the rats were sacrificed. The bending rigidity, torsional rigidity and destruction torque of the two groups increased continuously during the healing process. The diabetes group had lower mean values for bending rigidity, torsional rigidity and destruction torque compared with the control group (P<0.05). TGF-β1 and BMP-2 expression were significantly lower (P<0.05) in the control group than in the diabetes group at postoperative weeks 1, 2, and 3. Peak levels of TGF-β1 and BMP-2 expression were delayed by 1 week in the diabetes group compared with the control group. Our results demonstrate that there was a delayed recovery in the biomechanical function of the fractured bones in diabetic rats. This delay may be associated with a delayed expression of the growth factors TGF-β1 and BMP-2.

  2. Turning Bone Morphogenetic Protein 2 (BMP2) On and Off in Mesenchymal Cells†

    PubMed Central

    Rogers, Melissa B.; Shah, Tapan A.; Shaikh, Nadia N.

    2016-01-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. This article is protected by copyright. All rights reserved PMID:25776852

  3. BMP-2 Induces Versican and Hyaluronan That Contribute to Post-EMT AV Cushion Cell Migration

    PubMed Central

    Inai, Kei; Burnside, Jessica L.; Hoffman, Stanley; Toole, Bryan P.; Sugi, Yukiko

    2013-01-01

    Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions. PMID:24147033

  4. HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression

    PubMed Central

    Wu, Xing-gang; Wang, Yang; Wu, Qian; Cheng, Wai-Hang; Liu, Wenjing; Zhao, Yueshui; Mayeur, Claire; Schmidt, Paul J.; Yu, Paul B.; Wang, Fudi

    2014-01-01

    Mutations in HFE are the most common cause of hereditary hemochromatosis (HH). HFE mutations result in reduced expression of hepcidin, a hepatic hormone, which negatively regulates iron absorption from the duodenum and iron release from macrophages. However, the mechanism by which HFE regulates hepcidin expression in hepatocytes is not well understood. It is known that the bone morphogenetic protein (BMP) pathway plays a central role in controlling hepcidin expression in the liver. Here we show that HFE overexpression increased Smad1/5/8 phosphorylation and hepcidin expression, whereas inhibition of BMP signaling abolished HFE-induced hepcidin expression in Hep3B cells. HFE was found to associate with ALK3, inhibiting ALK3 ubiquitination and proteasomal degradation and increasing ALK3 protein expression and accumulation on the cell surface. The 2 HFE mutants associated with HH, HFE C282Y and HFE H63D, regulated ALK3 protein ubiquitination and trafficking differently, but both failed to increase ALK3 cell-surface expression. Deletion of Hfe in mice resulted in a decrease in hepatic ALK3 protein expression. Our results provide evidence that HFE induces hepcidin expression via the BMP pathway: HFE interacts with ALK3 to stabilize ALK3 protein and increase ALK3 expression at the cell surface. PMID:24904118

  5. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    PubMed

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  6. Immunohistochemical Analysis on Cortex-to-Cortex Healing After Mandibular Vertical Ramus Osteotomy: A Preliminary Study.

    PubMed

    Jung, Hwi-Dong; Kim, Sang Yoon; Jung, Han-Sung; Park, Hyung-Sik; Jung, Young-Soo

    2018-02-01

    The present study analyzed the expression of specific cytokines in the transforming growth factor (TGF)-β superfamily postoperatively after mandibular vertical ramus osteotomy (VRO). Four beagle dogs were enrolled and euthanized at 1, 2, 4, and 8 weeks postoperatively for immunohistochemical analysis using 6 specific antibodies (bone morphogenetic protein [BMP]-2/4, BMP-7, TGF-β2, TGF-β3, matrix metalloproteinase-3, and vascular endothelial growth factor [VEGF]). The results from the surgical site and control (adjacent area) were compared. Generalized upregulation of BMP-2/4 was observed in all healing periods, and the strongest expression of BMP-7 was observed at 1 week postoperatively. The strongest expression of TGF-β2 was observed at 8 weeks with increasing pattern. The strong expression of TGF-β3 was observed at 1 and 4 weeks, with the strongest expression of VEGF at 1 week, with a decreasing pattern. No notable uptake was detected with the 6 specific antibodies in the adjacent bone (control). The absence of internal fixation after VRO led to dynamic healing with a specific expression pattern of BMP-7 and TGF-β2. The anatomic factors, including sufficient preexisting vascularity, led to the earlier expression pattern of VEGF. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. [In vitro differentiation of synovial-derived mesenchymal stem cells infected by adenovirus vector mediated by bone morphogenetic protein 2/7 genes into fibrocartilage cells in rabbits].

    PubMed

    Fu, Peiliang; Zhang, Lei; Wu, Haishan; Cong, Ruijun; Chen, Song; Ding, Zheru; Hu, Kaimen

    2013-03-01

    To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 +/- 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.

  8. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    PubMed

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp; Ebe, Yukari; Kanaya, Sousuke

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance ofmore » noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.« less

  10. BMP4 Signaling Is Able to Induce an Epithelial-Mesenchymal Transition-Like Phenotype in Barrett’s Esophagus and Esophageal Adenocarcinoma through Induction of SNAIL2

    PubMed Central

    Kestens, Christine; Siersema, Peter D.; Offerhaus, G. Johan A.; van Baal, Jantine W. P. M.

    2016-01-01

    Background Bone morphogenetic protein 4 (BMP4) signaling is involved in the development of Barrett’s esophagus (BE), a precursor of esophageal adenocarcinoma (EAC). In various cancers, BMP4 has been found to induce epithelial-mesenchymal transition (EMT) but its function in the development of EAC is currently unclear. Aim To investigate the expression of BMP4 and several members of the BMP4 pathway in EAC. Additionally, to determine the effect of BMP4 signaling in a human Barrett’s esophagus (BAR-T) and adenocarcinoma (OE33) cell line. Methods Expression of BMP4, its downstream target ID2 and members of the BMP4 pathway were determined by Q-RT-PCR, immunohistochemistry and Western blot analysis using biopsy samples from EAC patients. BAR-T and OE33 cells were incubated with BMP4 or the BMP4 antagonist, Noggin, and cell viability and migration assays were performed. In addition, expression of factors associated with EMT (SNAIL2, CDH1, CDH2 and Vimentin) was evaluated by Q-RT-PCR and Western blot analysis. Results Compared to squamous epithelium (SQ), BMP4 expression was significantly upregulated in EAC and BE. In addition, the expression of ID2 was significantly upregulated in EAC and BE compared to SQ. Western blot analysis confirmed our results, showing an upregulated expression of BMP4 and ID2 in both BE and EAC. In addition, more phosphorylation of SMAD1/5/8 was observed. BMP4 incubation inhibited cell viability, but induced cell migration in both BAR-T and OE33 cells. Upon BMP4 incubation, SNAIL2 expression was significantly upregulated in BAR-T and OE33 cells while CDH1 expression was significantly downregulated. These results were confirmed by Western blot analysis. Conclusion Our results indicate active BMP4 signaling in BE and EAC and suggest that this results in an invasive phenotype by inducing an EMT-like response through upregulation of SNAIL2 and subsequent downregulation of CDH1. PMID:27191723

  11. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin.

    PubMed

    Song, Liang-Li; Cui, Yan; Yu, Si-Jiu; Liu, Peng-Gang; Liu, Jun; Yang, Xue; He, Jun-Feng; Zhang, Qian

    2018-05-01

    Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin. Copyright © 2017. Published by Elsevier Inc.

  12. Bone Morphogenetic Protein Regulation of Enteric Neuronal Phenotypic Diversity: Relationship to Timing of Cell Cycle Exit

    PubMed Central

    Chalazonitis, Alcmène; Pham, Tuan.D.; Li, Zhishan; Roman, Daniel; Guha, Udayan; Gomes, William; Kan, Lixin; Kessler, John A.; Gershon, Michael D.

    2008-01-01

    The effects of bone morphogenetic protein (BMP) signaling on enteric neuron development were examined in transgenic mice over expressing either the BMP inhibitor, noggin, or BMP4 under control of the neuron specific enolase (NSE) promoter. Noggin antagonism of BMP signaling increased total numbers of enteric neurons and those of subpopulations derived from precursors that exit the cell cycle early in neurogenesis (serotonin, calretinin, calbindin). In contrast, noggin overexpression decreased numbers of neurons derived from precursors that exit the cell cycle late (γ-aminobutyric acid, tyrosine hydroxylase [TH], dopamine transporter, calcitonin gene related peptide, TrkC). Numbers of TH- and TrkC-expressing neurons were increased by overexpression of BMP4. These observations are consistent with the idea that phenotypic expression in the enteric nervous system (ENS) is determined, in part, by the number of proliferative divisions neuronal precursors undergo before their terminal mitosis. BMP signaling may thus regulate enteric neuronal phenotypic diversity by promoting the exit of precursors from the cell cycle. BMP2 increased the numbers of TH- and TrkC-expressing neurons developing in vitro from immunoselected enteric crest-derived precursors; BMP signaling may thus also specify or promote the development of dopaminergic TrkC/NT-3-dependent neurons. The developmental defects in the ENS of noggin overexpressing mice caused a relatively mild disturbance of motility (irregular rapid transit and increased stool frequency, weight, and water content). Although the function of the gut thus displays a remarkable tolerance for ENS defects, subtle functional abnormalities in motility or secretion may arise when ENS defects short of aganglionosis occur during development. PMID:18537141

  13. Effects of simulated weightlessness on the kinase activity of MEK1 induced by bone morphogenetic protein-2 in rat osteosarcoma cells

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wang, B.; Cao, X. S.; Yang, Z.

    Objective The mRNA expression of alpha 1 chain of type I collagen COL-I alpha 1 in rat osteosarcoma ROS17 2 8 cells induced by bone morphogenetic protein-2 BMP-2 was reduced under simulated microgravity The protein kinase MEK1 of MAPK signal pathway plays an important role in the expression of COL-I alpha 1 mRNA The purpose of this study is to investigate the effects of simulated weightlessness on the activity of MEK1 induced by BMP-2 in ROS17 2 8 cells Methods ROS17 2 8 cells were cultured in 1G control and rotating clinostat simulated weightlessness for 24 h 48 h and 72 h BMP-2 500 ng ml was added into the medium 1 h before the culture ended There was a control group in which ROS17 2 8 cells were cultured in 1G condition without BMP-2 Then the total protein of cells was extracted and the expression of phosphated-ERK1 2 p-ERK1 2 protein was detected by means of Western Blotting to show the kinase activity of MEK1 Results There were no significant differences in the expression of total ERK1 2 among all groups The expression of p-ERK1 2 was unconspicuous in the control group without BMP-2 but increased significantly when BMP-2 was added P 0 01 The level of p-ERK1 2 in simulated weightlessness group was much more lower than that in 1G group in every time point P 0 01 The expression of p-ERK1 2 gradually decreased along with the time of weightlessness simulation P 0 01 Conclusions The kinase activity of MEK1 induced by BMP-2 in rat osteosarcoma cells was reduced under simulated weightlessness

  14. Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair.

    PubMed

    Qian, Dongyang; Bai, Bo; Yan, Guangbin; Zhang, Shujiang; Liu, Qi; Chen, Yi; Tan, Xiaobo; Zeng, Yanjun

    2016-01-01

    The repairing of large segmental bone defects is difficult for clinical orthopedists at present. Gene therapy is regarded as a promising method for bone defects repair. The present study aimed to construct an effective and controllable Tet-On expression system for transferring hBMP-2 gene into bone marrow mesenchymal progenitor cells (BMSCs). Meanwhile, with combination of alginate-poly-L-lysine-alginate (APA) microencapsulation technology, we attempted to reduce the influence of immunologic rejection and examine the effect of the Tet-On expression system on osteogenesis of BMSCs. The adenovirus encoding hBMP-2 (ADV-hBMP2) was constructed using the means of molecular cloning. The ADV-hBMP2 and Adeno-X Tet-On virus was respectively transfected to the HEK293 for amplification and afterward BMSCs were co-infected with the virus of ADV-hBMP2 and the Adeno-X Tet-On. The expression of hBMP-2 was measured with induction by doxycycline (DOX) at different concentration by means of RT-PCR and ELISA. Combining Tet-On expression system and APA microcapsules with the use of the pulsed high-voltage electrostatic microcapsule instrument, we examined the expression level of hBMP-2 in APA microcapsules by ELISA as well as the osteogenesis by alizarin red S staining. An effective Tet-On expression system for transferring hBMP-2 gene into BMSCs was constructed successfully. Also, the expression of hBMP-2 could be regulated by concentration of DOX. The data exhibited that BMSCs in APA microcapsules maintained the capability of proliferation and differentiation. The combination of Tet-On expression system and APA microcapsules could promote the osteogenesis of BMSCs. According to the results, microencapsulated Tet-On expression system showed the effective characteristics of secreting hBMP-2 and enhancing osteogenesis, which would provide a promising way for bone repair.

  15. BMP9 Inhibits Proliferation and Metastasis of HER2-Positive SK-BR-3 Breast Cancer Cells through ERK1/2 and PI3K/AKT Pathways

    PubMed Central

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer. PMID:24805814

  16. BMP9 inhibits proliferation and metastasis of HER2-positive SK-BR-3 breast cancer cells through ERK1/2 and PI3K/AKT pathways.

    PubMed

    Ren, Wei; Liu, Yuehong; Wan, Shaoheng; Fei, Chang; Wang, Wei; Chen, Yingying; Zhang, Zhihui; Wang, Ting; Wang, Jinshu; Zhou, Lan; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-01-01

    Bone morphogenetic protein 9 (BMP9), a member of TGF-β superfamily, is reported to inhibit the growth and migration of prostate cancer, osteosarcoma and triple-negative MDA-MB-231 breast cancer cells. However, little is known about the effect of on the biological behaviors of HER2-positive SK-BR-3 breast cancer cells and the underlying mechanisms. This study aimed to investigate the effects of BMP9 on the proliferation and metastasis of SK-BR-3 cells with BMP9 over-expression or BMP9 down-regulated expression. Results indicated that exogenously expressed BMP9 inhibited the proliferation and metastasis of SK-BR-3 cells while decreased endogenous BMP9 expression in SK-BR-3 cells promoted the proliferation and migration of breast cancer cells in vitro and in vivo. In SK-BR-3 cells with BMP9 over-expression, the phosphorylation of HER2, ERK1/2 and AKT was markedly suppressed and the HER2 expression decreased at both mRNA and protein levels, while opposite results were observed in SK-BR-3 cells with BMP9 knock down. When the phosphorylation of ERK1/2 and PI3K/AKT was inhibited by PD98059 and LY294002, respectively, the decreased proliferation and invasion induced by BMP9 knock down were eliminated. These findings suggest that BMP9 can inhibit the proliferation and metastasis of SK-BR-3 cells via inactivating ERK1/2 and PI3K/AKT signaling pathways. Thus, BMP9 may serve as a useful agent in the treatment of HER-2 positive breast cancer.

  17. Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone.

    PubMed

    Carpenter, Ryan S; Goodrich, Laurie R; Frisbie, David D; Kisiday, John D; Carbone, Beth; McIlwraith, C Wayne; Centeno, Christopher J; Hidaka, Chisa

    2010-10-01

    Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP's). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or -7 or BMP-2 and -7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of three human donors and tuber coxae of three equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay (ELISA). To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin (OSTN), osteocalcin (OCN), and runt-related transcription factor-2 (Runx2) were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation. Published by Wiley Periodicals, Inc. J Orthop Res 28:1330-1337, 2010.

  18. Bmp6 Expression in Murine Liver Non Parenchymal Cells: A Mechanism to Control their High Iron Exporter Activity and Protect Hepatocytes from Iron Overload?

    PubMed Central

    Rausa, Marco; Pagani, Alessia; Nai, Antonella; Campanella, Alessandro; Gilberti, Maria Enrica; Apostoli, Pietro; Camaschella, Clara; Silvestri, Laura

    2015-01-01

    Bmp6 is the main activator of hepcidin, the liver hormone that negatively regulates plasma iron influx by degrading the sole iron exporter ferroportin in enterocytes and macrophages. Bmp6 expression is modulated by iron but the molecular mechanisms are unknown. Although hepcidin is expressed almost exclusively by hepatocytes (HCs), Bmp6 is produced also by non-parenchymal cells (NPCs), mainly sinusoidal endothelial cells (LSECs). To investigate the regulation of Bmp6 in HCs and NPCs, liver cells were isolated from adult wild type mice whose diet was modified in iron content in acute or chronic manner and in disease models of iron deficiency (Tmprss6 KO mouse) and overload (Hjv KO mouse). With manipulation of dietary iron in wild-type mice, Bmp6 and Tfr1 expression in both HCs and NPCs was inversely related, as expected. When hepcidin expression is abnormal in murine models of iron overload (Hjv KO mice) and deficiency (Tmprss6 KO mice), Bmp6 expression in NPCs was not related to Tfr1. Despite the low Bmp6 in NPCs from Tmprss6 KO mice, Tfr1 mRNA was also low. Conversely, despite body iron overload and high expression of Bmp6 in NPCs from Hjv KO mice, Tfr1 mRNA and protein were increased. However, in the same cells ferritin L was only slightly increased, but the iron content was not, suggesting that Bmp6 in these cells reflects the high intracellular iron import and export. We propose that NPCs, sensing the iron flux, not only increase hepcidin through Bmp6 with a paracrine mechanism to control systemic iron homeostasis but, controlling hepcidin, they regulate their own ferroportin, inducing iron retention or release and further modulating Bmp6 production in an autocrine manner. This mechanism, that contributes to protect HC from iron loading or deficiency, is lost in disease models of hepcidin production. PMID:25860887

  19. Bmp2 Deletion Causes an Amelogenesis Imperfecta Phenotype Via Regulating Enamel Gene Expression

    PubMed Central

    GUO, FENG; FENG, JUNSHENG; WANG, FENG; LI, WENTONG; GAO, QINGPING; CHEN, ZHUO; SHOFF, LISA; DONLY, KEVIN J.; GLUHAK-HEINRICH, JELICA; CHUN, YONG HEE PATRICIA; HARRIS, STEPHEN E.; MACDOUGALL, MARY; CHEN, SHUO

    2015-01-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. PMID:25545831

  20. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    PubMed

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.

  1. Expression of bone morphogenetic proteins 4, 6 and 7 is downregulated in kidney allografts with interstitial fibrosis and tubular atrophy.

    PubMed

    Furic-Cunko, Vesna; Kes, Petar; Coric, Marijana; Hudolin, Tvrtko; Kastelan, Zeljko; Basic-Jukic, Nikolina

    2015-07-01

    Bone morphogenetic proteins (BMPs) are pleiotropic growth factors. This paper investigates the connection between the expression pattern of BMPs in kidney allograft tissue versus the cause of allograft dysfunction. The expression pattern of BMP2, BMP4, BMP6 and BMP7 in 50 kidney allografts obtained by transplant nephrectomy is investigated. Immunohistochemical staining is semiquantitatively evaluated for intensity to identify the expression pattern of BMPs in normal and allograft kidney tissues. The expression of BMP4 is unique between different tubular cell types in grafts without signs of fibrosis. This effect is not found in specimens with high grades of interstitial fibrosis and tubular atrophy (IFTA). In samples with IFTA grades II and III, the BMP7 expression is reduced in a significant fraction of specimens relative to those without signs of IFTA. The expression pattern of BMP6 indicates that its activation may be triggered by the act of transplantation and subsequent reperfusion injury. The expression of BMP2 is strong in all types of tubular epithelial cells and does not differ between the compared allografts and control kidney specimens. The intensity and expression pattern of BMP4, BMP6 and BMP7 in transplanted kidney tissue are found to be dependent upon the length of the transplanted period, the clinical indication for transplant nephrectomy and signs of IFTA in kidney tissue.

  2. Sox2 in the dermal papilla niche controls hair growth by fine-tuning Bmp signaling in differentiating hair shaft progenitors

    PubMed Central

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma’ayan, Avi; Rendl, Michael

    2012-01-01

    SUMMARY How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18Cre to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration rate of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased Bmp inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated Bmp signaling in knockout hair shaft progenitors and demonstrate that Bmps inhibit cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased Bmp activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning Bmp-mediated mesenchymal-epithelial crosstalk. PMID:23153495

  3. Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice.

    PubMed

    Lombardo, Ylenia; Scopelliti, Alessandro; Cammareri, Patrizia; Todaro, Matilde; Iovino, Flora; Ricci-Vitiani, Lucia; Gulotta, Gaspare; Dieli, Francesco; de Maria, Ruggero; Stassi, Giorgio

    2011-01-01

    The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal cancer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immunoblot, and flow cytometry analyses. The potential therapeutic effect of BMP4 was assessed in immunocompromised mice after injection of CRC-SCs that responded to chemotherapy (n = 4) or that did not (n = 2). CRC-SCs did not express BMP4 whereas differentiated cells did. Recombinant BMP4 promoted differentiation and apoptosis of CRC-SCs in 12 of 15 independent experiments; this effect did not depend on Small Mothers against decapentaplegic (Smad)4 expression level or microsatellite stability. BMP4 activated the canonical and noncanonical BMP signaling pathways, including phosphoInositide 3-kinase (PI3K) and PKB (protein kinase B)/AKT. Mutations in PI3K or loss of Phosphatase and Tensin homolog (PTEN) in Smad4-defective tumors made CRC-SCs unresponsive to BMP4. Administration of BMP4 to immunocompromised mice with tumors that arose from CRC-SCs increased the antitumor effects of 5-fluorouracil and oxaliplatin. BMP4 promotes terminal differentiation, apoptosis, and chemosensitization of CRC-SCs in tumors that do not have simultaneous mutations in Smad4 and constitutive activation of PI3K. BMP4 might be developed as a therapeutic agent against cancer stem cells in advanced colorectal tumors. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    PubMed

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1(-/-) ) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/-) mice. In serum assays, Aldh1a1(-/-) mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/-) mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/-) mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/-) mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  5. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells.

    PubMed

    Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji

    2012-04-01

    To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Signaling by Bone Morphogenetic Proteins directs formation of an ectodermal signaling center that regulates craniofacial development

    PubMed Central

    Foppiano, Silvia; Hu, Diane; Marcucio, Ralph S.

    2008-01-01

    We previously described a signaling center, the Frontonasal Ectodermal Zone (FEZ) that regulates growth and patterning of the frontonasal process (FNP). The FEZ is comprised of FNP ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains. Our objective was to examine BMP signaling during formation of the FEZ. We blocked BMP signaling throughout the FNP prior to FEZ formation by infecting chick embryos at stage 10 (HH10) with a replication competent avian retrovirus encoding the BMP antagonist Noggin. We assessed gene expression patterns in the FNP 72 hours after infection (~HH22) and observed that Shh expression was reduced or absent. In the mesenchyme we observed that Bmp2 transcripts were absent while the Bmp4 expression domain was expanded proximally. In addition to the molecular changes, infected embryos also exhibited facial malformations at 72 and 96 hours after infection suggesting that the FEZ did not form. Our data indicate that reduced cell proliferation, but not apoptosis, in the mesenchyme contributed to the phenotype that we observed. Additionally, adding exogenous SHH into the mesenchyme of RCAS-Noggin infected embryos did not restore Bmp2 and Bmp4 to a normal pattern of expression. These data indicate that BMP signaling mediates interactions between tissues in the FNP that regulate FEZ formation; and that the correct pattern of Bmp2 and Bmp4, but not Bmp7, expression in the FNP mesenchyme requires signaling by the BMP pathway. PMID:18028903

  7. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    PubMed

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Smurf1 plays a role in EGF inhibition of BMP2-induced osteogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye-Lim; Park, Hyun-Jung; Kwon, Arang

    2014-05-01

    It has been demonstrated that epidermal growth factor (EGF) plays a role in supporting the proliferation of bone marrow stromal cells in bone but inhibits their osteogenic differentiation. However, the mechanism underlying EGF inhibition of osteoblast differentiation remains unclear. Smurf1 is an E3 ubiquitin ligase that targets Smad1/5 and Runx2, which are critical transcription factors for bone morphogenetic protein 2 (BMP2)-induced osteoblast differentiation. In this study, we investigated the effect of EGF on the expression of Smurf1, and the role of Smurf1 in EGF inhibition of osteogenic differentiation using C2C12 cells, a murine myoblast cell line. EGF increased Smurf1 expression,more » which was blocked by inhibiting the activity of either JNK or ERK. Chromatin immunoprecipitation and Smurf1 promoter assays demonstrated that c-Jun and Runx2 play roles in the EGF induction of Smurf1 transcription. EGF suppressed BMP2-induced expression of osteogenic marker genes, which were rescued by Smurf1 knockdown. EGF downregulated the protein levels of Runx2 and Smad1 in a proteasome-dependent manner. EGF decreased the transcriptional activity of Runx2 and Smurf1, which was partially rescued by Smurf1 silencing. Taken together, these results suggest that EGF increases Smurf1 expression via the activation of JNK and ERK and the subsequent binding of c-Jun and Runx2 to the Smurf1 promoter and that Smurf1 mediates the inhibitory effect of EGF on BMP2-induced osteoblast differentiation. - Highlights: • EGF increases the expression level of Smurf1 in mesenchymal precursor cells. • EGF reduces the protein levels and transcriptional activity of Runx2 and Smad1. • EGF suppresses BMP2-induced osteogenic differentiation, which is rescued by Smurf1 knockdown.« less

  9. BMP4 and BMP7 Suppress StAR and Progesterone Production via ALK3 and SMAD1/5/8-SMAD4 in Human Granulosa-Lutein Cells.

    PubMed

    Zhang, Han; Klausen, Christian; Zhu, Hua; Chang, Hsun-Ming; Leung, Peter C K

    2015-11-01

    Adequate production of progesterone by the corpus luteum is critical to the successful establishment of pregnancy. In animal models, bone morphogenetic protein (BMP) 4 and BMP7 have been shown to suppress either basal or gonadotropin-induced progesterone production, depending on the species examined. However, the effects of BMP4 and BMP7 on progesterone production in human granulosa cells are unknown. In the present study, we used immortalized (SVOG) and primary human granulosa-lutein cells to investigate the effects of BMP4 and BMP7 on steroidogenic acute regulatory protein (StAR) expression and progesterone production and to examine the underlying molecular mechanism. Treatment of primary and immortalized human granulosa cells with recombinant BMP4 or BMP7 decreased StAR expression and progesterone accumulation. In SVOG cells, the suppressive effects of BMP4 and BMP7 on StAR expression were blocked by pretreatment with inhibitors of activin receptor-like kinase (ALK)2/3/6 (dorsomorphin) or ALK2/3 (DMH1) but not ALK4/5/7 (SB-431542). Moreover, small interfering RNA-mediated depletion of ALK3, but not ALK2 or ALK6, reversed the effects of BMP4 and BMP7 on StAR expression. Likewise, BMP4- and BMP7-induced phosphorylation of SMAD 1/5/8 was reversed by treatment with DMH1 or small interfering RNA targeting ALK3. Knockdown of SMAD4, the essential common SMAD for BMP/TGF-β signaling, abolished the effects of BMP4 and BMP7 on StAR expression. Our results suggest that BMP4 and BMP7 down-regulate StAR and progesterone production via ALK3 and SMAD1/5/8-SMAD4 signaling in human granulosa-lutein cells.

  10. Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes.

    PubMed

    Wang, Pinger; Ying, Jun; Luo, Cheng; Jin, Xing; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Mi, Meng; Chen, Di; Tong, Peijian; Jin, Hongting

    2017-01-01

    Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2 flox/flox conditional knockout (KO) mice ( Bmp2 Col2Cre ) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre - control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2 Col2Cre conditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing.

  11. Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes

    PubMed Central

    Wang, Pinger; Ying, Jun; Luo, Cheng; Jin, Xing; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Mi, Meng; Chen, Di; Tong, Peijian; Jin, Hongting

    2017-01-01

    Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2flox/flox conditional knockout (KO) mice (Bmp2Col2Cre) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre- control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2Col2Creconditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing. PMID:28924381

  12. Targeted Knockdown of Bone Morphogenetic Protein Signaling within Neural Progenitors Protects the Brain and Improves Motor Function following Postnatal Hypoxia-Ischemia

    PubMed Central

    Dettman, Robert W.; Birch, Derin; Fernando, Augusta; Kessler, John A.; Dizon, Maria L.V.

    2018-01-01

    Hypoxic-ischemic injury (HI) to the neonatal human brain results in myelin loss that, in some children, can manifest as cerebral palsy. Previously, we had found that neuronal overexpression of the bone morphogenic protein (BMP) inhibitor noggin during development increased oligodendroglia and improved motor function in an experimental model of HI utilizing unilateral common carotid artery ligation followed by hypoxia. As BMPs are known to negatively regulate oligodendroglial fate specification of neural stem cells and alter differentiation of committed oligodendroglia, BMP signaling is likely an important mechanism leading to myelin loss. Here, we showed that BMP signaling is upregulated within oligodendroglia of the neonatal brain. We tested the hypothesis that inhibition of BMP signaling specifically within neural progenitor cells (NPCs) is sufficient to protect oligodendroglia. We conditionally deleted the BMP receptor 2 subtype (BMPR2) in NG2-expressing cells after HI. We found that BMPR2 deletion globally protects the brain as assessed by MRI and protects motor function as assessed by digital gait analysis, and that conditional deletion of BMPR2 maintains oligodendrocyte marker expression by immunofluorescence and Western blot and prevents loss of oligodendroglia. Finally, BMPR2 deletion after HI results in an increase in noncompacted myelin. Thus, our data indicate that inhibition of BMP signaling specifically in NPCs may be a tractable strategy to protect the newborn brain from HI. PMID:29324456

  13. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells.

    PubMed

    Mendes, Luis Filipe; Tam, Wai Long; Chai, Yoke Chin; Geris, Liesbet; Luyten, Frank P; Roberts, Scott J

    2016-05-01

    Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p < 0.001), which in combination with BMP6 synergistically enhanced cartilage-like tissue formation that displayed in vitro mineralization capacity at day 14 (p < 0.001). Gene expression of μMasses cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches.

  14. Estrogen regulates hepcidin expression via GPR30-BMP6-dependent signaling in hepatocytes.

    PubMed

    Ikeda, Yasumasa; Tajima, Soichiro; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Tomita, Shuhei; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2012-01-01

    Hepcidin, a liver-derived iron regulatory protein, plays a crucial role in iron metabolism. It is known that gender differences exist with respect to iron storage in the body; however, the effects of sex steroid hormones on iron metabolism are not completely understood. We focused on the effects of the female sex hormone estrogen on hepcidin expression. First, ovariectomized (OVX) and sham-operated mice were employed to investigate the effects of estrogen on hepcidin expression in an in vivo study. Hepcidin expression was decreased in the livers of OVX mice compared to the sham-operated mice. In OVX mice, bone morphologic protein-6 (BMP6), a regulator of hepcidin, was also found to be downregulated in the liver, whereas ferroportin (FPN), an iron export protein, was upregulated in the duodenum. Both serum and liver iron concentrations were elevated in OVX mice relative to their concentrations in sham-operated mice. In in vitro studies, 17β-estradiol (E(2)) increased the mRNA expression of hepcidin in HepG2 cells in a concentration-dependent manner. E(2)-induced hepatic hepcidin upregulation was not inhibited by ICI 182720, an inhibitor of the estrogen receptor; instead, hepcidin expression was increased by ICI 182720. E(2) and ICI 182720 exhibit agonist actions with G-protein coupled receptor 30 (GPR30), the 7-transmembrane estrogen receptor. G1, a GPR30 agonist, upregulated hepcidin expression, and GPR30 siRNA treatment abolished E(2)-induced hepcidin expression. BMP6 expression induced by E(2) was abolished by GPR30 silencing. Finally, both E(2) and G1 supplementation restored reduced hepatic hepcidin and BMP6 expression and reversed the augmentation of duodenal FPN expression in the OVX mice. In contrast, serum hepcidin was elevated in OVX mice, which was reversed in these mice with E(2) and G1. Thus, estrogen is involved in hepcidin expression via a GPR30-BMP6-dependent mechanism, providing new insight into the role of estrogen in iron metabolism.

  15. Expression of bone morphogenetic proteins and Msx genes during root formation.

    PubMed

    Yamashiro, T; Tummers, M; Thesleff, I

    2003-03-01

    Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.

  16. Gene expression analysis in calcific tendinopathy of the rotator cuff.

    PubMed

    Oliva, F; Barisani, D; Grasso, A; Maffulli, N

    2011-06-20

    We evaluated the expression of several genes involved in tissue remodelling and bone development in patients with calcific tendinopathy of the rotator cuff. Biopsies from calcified and non-calcified areas were obtained from 10 patients (8 women and 2 men; average age: 55 years; range: 40-68) with calcific tendinopathy of the rotator cuff. To evaluate the expression of selected genes, RNA extraction, cDNA synthesis and quantitative polymerase chain reaction (PCR) were performed. A significantly increased expression of tissue transglutaminase (tTG)2 and its substrate, osteopontin, was detected in the calcific areas compared to the levels observed in the normal tissue from the same subject with calcific tendinopathy, whereas a modest increase was observed for catepsin K. There was also a significant decrease in mRNA expression of Bone Morphogenetic Protein (BMP)4 and BMP6 in the calcific area. BMP-2, collagen V and vascular endothelial growth factor (VEGF) did not show significant differences. Collagen X and matrix metalloproteinase (MMP)-9 were not detectable. A variation in expression of these genes could be characteristic of this form tendinopathy, since an increased level of these genes has not been detected in other forms of tendon lesions.

  17. Physiological exercise loading suppresses post-traumatic osteoarthritis progression via an increase in bone morphogenetic proteins expression in an experimental rat knee model.

    PubMed

    Iijima, H; Ito, A; Nagai, M; Tajino, J; Yamaguchi, S; Kiyan, W; Nakahata, A; Zhang, J; Wang, T; Aoyama, T; Nishitani, K; Kuroki, H

    2017-06-01

    To evaluate the dose-response relationship of exercise loading in the cartilage-subchondral bone (SB) unit in surgically-induced post-traumatic osteoarthritis (PTOA) of the knee. Destabilized medial meniscus (DMM) surgery was performed on the right knee of 12-week-old male Wistar rats, and sham surgery was performed on the contralateral knee. Four weeks after the surgery, the animals were subjected to moderate (12 m/min) or intense (21 m/min) treadmill exercises for 30 min/day, 5 days/week for 4 weeks. PTOA development in articular cartilage and SB was examined using histological and immunohistochemical analyses, micro-computed tomography (micro-CT) analysis, and biomechanical testing at 8 weeks after surgery. Gremlin-1 was injected to determine the role of bone morphogenetic protein (BMP) signaling on PTOA development following moderate exercise. Moderate exercise increased BMP-2, BMP-4, BMP-6, BMP receptor 2, pSmad-5, and inhibitor of DNA binding protein-1 expression in the superficial zone chondrocytes and suppressed cartilage degeneration, osteophyte growth, SB damage, and osteoclast-mediated SB resorption. However, intense exercise had little effect on BMP expression and even caused progression of these osteoarthritis (OA) changes. Gremlin-1 injection following moderate exercise caused progression of the PTOA development down to the level of the non-exercise DMM-operated knee. Exercise regulated cartilage-SB PTOA development in DMM-operated knees in a dose-dependent manner. Our findings shed light on the important role of BMP expression in superficial zone chondrocytes in attenuation of PTOA development following physiological exercise loading. Further studies to support a mechanism by which BMPs would be beneficial in preventing PTOA progression are warranted. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Chen, Lin; Zeng, Jing

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observedmore » that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic differentiaton and expression of BMP2 in PMVECs. • CBDL-rat serum activates the BMP2/smad signaling pathway. • The downregulation of Smurf1 stimulates the accumulation of Smad1/5 in PMVECs. • Noggin reverses partially the myogenic differentiaton in PMVECs.« less

  19. [Slow-release recombinant human bone morphogenetic protein-2 suppresses chromium wear particle-induced osteolysis in rats].

    PubMed

    Li, Gan; Li, Qi; Lin, Li-Jun; Duan, Xin; Zhang, Xi-Qi

    2012-03-01

    To observe the effect of a slow-release recombinant human bone morphogenetic protein-2 (rhBMP-2) formulation on the expressions of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in a murine air pouch model of bone implantation. A cranial bone allograft was implanted in the air pouch induced on the back of the recipients. The rat models were then randomized into 5 groups, including a blank control group, chromium particle group, and 3 rhBMP-2 groups receiving 50, 100 or 200 µg/L slow-release rhBMP-2 in addition to chromium particles. Three weeks later, the expressions of RANKL and OPG in the air pouch was detected using Western blotting and RT-PCR, and the positively stained area for osteoclasts in the bone graft was determined with TRAP staining for drug effect assessment. RANKL and OPG expressions were found in the air pouches in all the 5 groups. RANKL and OPG protein and mRNA expressions, RANKL/OPG ratio and osteoclast staining area in the bone graft were the highest in chromium particle group (P<0.05), but were significantly decreased by treatment with the slow-release rhBMP-2 formulation (P<0.05); the measurements showed no significant differences between the blank control group and 200 µg/L rhBMP-2 group (P>0.05). Chromium particles can cause osteolysis by increasing the RANKL/OPG ratio in rats, and intervention with slow-release rhBMP-2 can significantly promote bone formation and suppress bone resorption by decreasing RANKL/OPG ratio.

  20. Expression of Noggin and Gremlin1 and its implications in fine-tuning BMP activities in mouse cartilage tissues.

    PubMed

    Yu, Xiaodan; Kawakami, Hiroko; Tahara, Naoyuki; Olmer, Merissa; Hayashi, Shinichi; Akiyama, Ryutaro; Bagchi, Anindya; Lotz, Martin; Kawakami, Yasuhiko

    2017-08-01

    Increasing evidence supports the idea that bone morphogenetic proteins (BMPs) regulate cartilage maintenance in the adult skeleton. The aim of this study is to obtain insight into the regulation of BMP activities in the adult skeletal system. We analyzed expression of Noggin and Gremlin1, BMP antagonists that are known to regulate embryonic skeletal development, in the adult skeletal system by Noggin-LacZ and Gremlin1-LacZ knockin reporter mouse lines. Both reporters are expressed in the adult skeleton in a largely overlapping manner with some distinct patterns. Both are detected in the articular cartilage, pubic symphysis, facet joint in the vertebrae, and intervertebral disk, suggesting that they regulate BMP activities in these tissues. In a surgically induced knee osteoarthritis model in mice, expression of Noggin mRNA was lost from the articular cartilage, which correlated with loss of BMP2/4 and pSMAD1/5/8, an indicator of active BMP signaling. Both reporters are also expressed in the sterna and rib cartilage, suggesting an extensive role of BMP antagonism in adult cartilage tissue. Moreover, Noggin-LacZ was detected in sutures in the skull and broadly in the nasal cartilage, while Gremlin1-LacZ exhibits a weaker and more restricted expression domain in the nasal cartilage. These results suggest broad regulation of BMP activities by Noggin and Gremlin1 in cartilage tissues in the adult skeleton, and that BMP signaling and its antagonism by NOGGIN play a role in osteoarthritis development. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1671-1682, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Ginger Stimulates Hematopoiesis via Bmp Pathway in Zebrafish

    PubMed Central

    Ferri-Lagneau, Karine F.; Moshal, Karni S.; Grimes, Matthew; Zahora, Braden; Lv, Lishuang; Sang, Shengmin; Leung, TinChung

    2012-01-01

    Background Anemia is a hematologic disorder with decreased number of erythrocytes. Erythropoiesis, the process by which red blood cells differentiate, are conserved in humans, mice and zebrafish. The only known agents available to treat pathological anemia are erythropoietin and its biologic derivatives. However, erythropoietin therapy elicits unwanted side-effects, high cost and intravenous or subcutaneous injection, warranting the development of a more cost effective and non-peptide alternative. Ginger (Zingiber officinale) has been widely used in traditional medicine; however, to date there is no scientific research documenting the potential of ginger to stimulate hematopoiesis. Methodology/Principal Findings Here, we utilized gata1:dsRed transgenic zebrafish embryos to investigate the effect of ginger extract on hematopoiesis in vivo and we identified its bioactive component, 10-gingerol. We confirmed that ginger and 10-gingerol promote the expression of gata1 in erythroid cells and increase the expression of hematopoietic progenitor markers cmyb and scl. We also demonstrated that ginger and 10-gingerol can promote the hematopoietic recovery from acute hemolytic anemia in zebrafish, by quantifying the number of circulating erythroid cells in the dorsal aorta using video microscopy. We found that ginger and 10-gingerol treatment during gastrulation results in an increase of bmp2b and bmp7a expression, and their downstream effectors, gata2 and eve1. At later stages ginger and 10-gingerol can induce bmp2b/7a, cmyb, scl and lmo2 expression in the caudal hematopoietic tissue area. We further confirmed that Bmp/Smad pathway mediates this hematopoiesis promoting effect of ginger by using the Bmp-activated Bmp type I receptor kinase inhibitors dorsomorphin, LND193189 and DMH1. Conclusions/Significance Our study provides a strong foundation to further evaluate the molecular mechanism of ginger and its bioactive components during hematopoiesis and to investigate their effects in adults. Our results will provide the basis for future research into the effect of ginger during mammalian hematopoiesis to develop novel erythropoiesis promoting agents. PMID:22761764

  2. Homeobox protein MSX-1 inhibits expression of bone morphogenetic protein 2, bone morphogenetic protein 4, and lymphoid enhancer-binding factor 1 via Wnt/β-catenin signaling to prevent differentiation of dental mesenchymal cells during the late bell stage.

    PubMed

    Feng, Xiao-Yu; Wu, Xiao-Shan; Wang, Jin-Song; Zhang, Chun-Mei; Wang, Song-Lin

    2018-02-01

    Homeobox protein MSX-1 (hereafter referred to as MSX-1) is essential for early tooth-germ development. Tooth-germ development is arrested at bud stage in Msx1 knockout mice, which prompted us to study the functions of MSX-1 beyond this stage. Here, we investigated the roles of MSX-1 during late bell stage. Mesenchymal cells of the mandibular first molar were isolated from mice at embryonic day (E)17.5 and cultured in vitro. We determined the expression levels of β-catenin, bone morphogenetic protein 2 (Bmp2), Bmp4, and lymphoid enhancer-binding factor 1 (Lef1) after knockdown or overexpression of Msx1. Our findings suggest that knockdown of Msx1 promoted expression of Bmp2, Bmp4, and Lef1, resulting in elevated differentiation of odontoblasts, which was rescued by blocking the expression of these genes. In contrast, overexpression of Msx1 decreased the expression of Bmp2, Bmp4, and Lef1, leading to a reduction in odontoblast differentiation. The regulation of Bmp2, Bmp4, and Lef1 by Msx1 was mediated by the Wnt/β-catenin signaling pathway. Additionally, knockdown of Msx1 impaired cell proliferation and slowed S-phase progression, while overexpression of Msx1 also impaired cell proliferation and prolonged G1-phase progression. We therefore conclude that MSX-1 maintains cell proliferation by regulating transition of cells from G1-phase to S-phase and prevents odontoblast differentiation by inhibiting expression of Bmp2, Bmp4, and Lef1 at the late bell stage via the Wnt/β-catenin signaling pathway. © 2017 Eur J Oral Sci.

  3. Osthole Stimulates Osteoblast Differentiation and Bone Formation by Activation of β-Catenin–BMP Signaling

    PubMed Central

    Tang, De-Zhi; Hou, Wei; Zhou, Quan; Zhang, Minjie; Holz, Jonathan; Sheu, Tzong-Jen; Li, Tian-Fang; Cheng, Shao-Dan; Shi, Qi; Harris, Stephen E; Chen, Di; Wang, Yong-Jun

    2010-01-01

    Osteoporosis is defined as reduced bone mineral density with a high risk of fragile fracture. Current available treatment regimens include antiresorptive drugs such as estrogen receptor analogues and bisphosphates and anabolic agents such as parathyroid hormone (PTH). However, neither option is completely satisfactory because of adverse effects. It is thus highly desirable to identify novel anabolic agents to improve future osteoporosis treatment. Osthole, a coumarin-like derivative extracted from Chinese herbs, has been shown to stimulate osteoblast proliferation and differentiation, but its effect on bone formation in vivo and underlying mechanism remain unknown. In this study, we found that local injection of Osthole significantly increased new bone formation on the surface of mouse calvaria. Ovariectomy caused evident bone loss in rats, whereas Osthole largely prevented such loss, as shown by improved bone microarchitecture, histomorphometric parameters, and biomechanical properties. In vitro studies demonstrated that Osthole activated Wnt/β-catenin signaling, increased Bmp2 expression, and stimulated osteoblast differentiation. Targeted deletion of the β-catenin and Bmp2 genes abolished the stimulatory effect of Osthole on osteoblast differentiation. Since deletion of the Bmp2 gene did not affect Osthole-induced β-catenin expression and the deletion of the β-catenin gene inhibited Osthole-regulated Bmp2 expression in osteoblasts, we propose that Osthole acts through β-catenin–BMP signaling to promote osteoblast differentiation. Our findings demonstrate that Osthole could be a potential anabolic agent to stimulate bone formation and prevent estrogen deficiency–induced bone loss. © 2010 American Society for Bone and Mineral Research. PMID:20200936

  4. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, Roman A.; Schwarz, Edward M.; Zuscik, Michael J.

    2006-01-01

    The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes suchmore » as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.« less

  5. Effects of Roughly Focused Extracorporeal Shock Waves Therapy on the Expressions of Bone Morphogenetic Protein-2 and Osteoprotegerin in Osteoporotic Fracture in Rats

    PubMed Central

    Huang, Hai-Ming; Li, Xiao-Lin; Tu, Shu-Qiang; Chen, Xiao-Feng; Lu, Chang-Chun; Jiang, Liang-Hua

    2016-01-01

    Background: Roughly focused extracorporeal shock waves therapy (ESWT) is characterized by a wide focal area, a large therapy zone, easy positioning, and less pain during treatment. The purpose of this study was to investigate the effects of roughly focused ESWT on the expression of osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) in osteoporotic fractures in rats. Methods: Seventy-two female Sprague-Dawley (SD) rats, 3 months old, were divided into sham-operated group (n = 6) and an ovariectomized (OVX) group (n = 66). Sixty OVX SD rats were used as a model of double proximal tibial osteotomy and inner fixation. The osteotomy site in the left tibia was treated with roughly focused ESWT once at an energy density of 0.26 mJ/mm2, 60 doses/min, and 2000 pact quantities. The contralateral right tibia was left untreated and served as a control. Expression of OPG and BMP-2 in the callus of the osteoporotic fracture area was assessed using immunohistochemistry, real-time polymerase chain reaction (PCR), and Western blotting analysis. Results: Bone mineral density (BMD) at the proximal tibia, femur, and L5 spine was significantly reduced after ovariectomy. BMD of proximal tibia was 12.9% less in the OVX group than that in the sham-operated group. Meanwhile, bilateral oophorectomy resulted in a lower trabecular bone volume fraction (BV/TV) in the proximal tibia of the sham-OVX animals. Three months after bilateral oophorectomy, BV/TV was 14.29% of baseline BV/TV in OVX legs versus 45.91% in the sham-OVX legs (P < 0.001). These data showed that the SD rats became a suitable model of osteoporosis, 3 months after they were OVX. Immunohistochemical analysis showed higher levels of BMP-2 and OPG expression in the treatment group than those in the control group. Compared with the contralateral controls, decreased expression of OPG and BMP-2 at 3 days after roughly focused ESWT, followed by a later increase at 7 days, was indicated by real-time PCR and Western blotting analysis. The OPG messenger RNA (mRNA) expression levels peaked at 6 weeks after the shock wave treatment, paired with a much earlier (at 4 weeks) increase of BMP-2, and declined close to normal at 8 weeks. Conclusions: Roughly focused ESWT may promote the expression of OPG and BMP-2 in the osteoporotic fracture area in rats. BMP-2 and OPG may act synergistically and may lead to a significant enhancement of bone formation and remodeling. PMID:27779163

  6. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice

    PubMed Central

    McKenzie, Jennifer A.; Buettmann, Evan G.; Gardner, Michael J.; Silva, Matthew J.

    2015-01-01

    Post-natal osteogenesis after mechanical trauma or stimulus occurs through either endochondral healing, intramembranous healing or lamellar bone formation. Bone morphogenetic protein 2 (BMP2) is up-regulated in each of these osteogenic processes and is expressed by a variety of cells including osteoblasts and vascular cells. It is known that genetic knockout of Bmp2 in all cells or in osteo-chondroprogenitor cells completely abrogates endochondral healing after full fracture. However, the importance of BMP2 from differentiated osteoblasts and endothelial cells is not known. Moreover, the importance of BMP2 in non-endochondral bone formation such as intramembranous healing or lamellar bone formation is not known. Using inducible and tissue-specific Cre-lox mediated targeting of Bmp2 in adult (10–24 week old) mice, we assessed the role of BMP2 expression globally, by osteoblasts, and by vascular endothelial cells in endochondral healing, intramembranous healing and lamellar bone formation. These three osteogenic processes were modeled using full femur fracture, ulnar stress fracture, and ulnar non-damaging cyclic loading, respectively. Our results confirmed the requirement of BMP2 for endochondral fracture healing, as mice in which Bmp2 was knocked out in all cells prior to fracture failed to form a callus. Targeted deletion of Bmp2 in osteoblasts (osterix-expressing) or vascular endothelial cells (vascular endothelial cadherin-expressing) did not impact fracture healing in any way. Regarding non-endochondral bone formation, we found that BMP2 is largely dispensable for intramembranous bone formation after stress fracture and also not required for lamellar bone formation induced by mechanical loading. Taken together our results indicate that osteoblasts and endothelial cells are not a critical source of BMP2 in endochondral fracture healing, and that non-endochondral bone formation in the adult mouse is not as critically dependent on BMP2. PMID:26344756

  7. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    PubMed

    Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2014-01-01

    Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  8. Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo

    PubMed Central

    Nallamshetty, Shriram; Wang, Hong; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Lotinun, Sutada; Le, Phuong; Baron, Roland; Rosen, Clifford J.; Plutzky, Jorge

    2013-01-01

    The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling. PMID:23951127

  9. Increased bone morphogenetic protein signaling contributes to age-related declines in neurogenesis and cognition.

    PubMed

    Meyers, Emily A; Gobeske, Kevin T; Bond, Allison M; Jarrett, Jennifer C; Peng, Chian-Yu; Kessler, John A

    2016-02-01

    Aging is associated with decreased neurogenesis in the hippocampus and diminished hippocampus-dependent cognitive functions. Expression of bone morphogenetic protein 4 (BMP4) increases with age by more than 10-fold in the mouse dentate gyrus while levels of the BMP inhibitor, noggin, decrease. This results in a profound 30-fold increase in phosphorylated-SMAD1/5/8, the effector of canonical BMP signaling. Just as observed in mice, a profound increase in expression of BMP4 is observed in the dentate gyrus of humans with no known cognitive abnormalities. Inhibition of BMP signaling either by overexpression of noggin or transgenic manipulation not only increases neurogenesis in aging mice, but remarkably, is associated with a rescue of cognitive deficits to levels comparable to young mice. Additive benefits are observed when combining inhibition of BMP signaling and environmental enrichment. These findings indicate that increased BMP signaling contributes significantly to impairments in neurogenesis and to cognitive decline associated with aging, and identify this pathway as a potential druggable target for reversing age-related changes in cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2

    PubMed Central

    Kang, Yunqing; Kim, Sungwoo; Khademhosseini, Ali; Yang, Yunzhi

    2011-01-01

    Extracellular matrix (ECM) comprises a rich meshwork of proteins and proteoglycans, which not only contains biological cues for cell behavior, but is also a reservoir for binding growth factors and controlling their release. Here we aimed to create a suitable bony microenvironment with cell-derived ECM and biodegradable β-tricalcium phosphate (β-TCP). More specifically, we investigated whether the ECM produced by bone marrow-derived mesenchymal stem cells (hBMSC) on a β-TCP scaffold can bind bone morphogenetic protein-2 (BMP-2) and control its release in a sustained manner, and further examined the effect of ECM and the BMP-2 released from ECM on cell behaviors. The ECM was obtained through culturing the hBMSC on a β-TCP porous scaffold and performing decellularization and sterilization. SEM, XPS, FTIR, and immunofluorescent staining results indicated the presence of ECM on the β-TCP and the amount of ECM increased with the incubation time. BMP-2 was loaded onto the β-TCP with and without ECM by immersing the scaffolds in the BMP-2 solution. The loading and release kinetics of the BMP-2 on the β-TCP/ECM were significantly slower than those on the β-TCP. The β-TCP/ECM exhibited a sustained release profile of the BMP-2, which was also affected by the amount of ECM. This is probably because the β-TCP/ECM has different binding mechanisms with BMP-2. The β-TCP/ECM promoted cell proliferation. Furthermore, the BMP-2-loaded β-TCP/ECM stimulated reorganization of the actin cytoskeleton, increased expression of alkaline phosphatase and calcium deposition by the cells compared to those without BMP-2 loading and the β-TCP with BMP-2 loading. PMID:21632105

  11. Agmatine modulates melanogenesis via MITF signaling pathway.

    PubMed

    Kwon, Eun-Jeong; Kim, Moon-Moo

    2017-01-01

    Agmatine contained in soybean is also found in Manaca, an anti-aging plant, inhabited in Amazon and induces vasodilation by the promotion of NO synthesis in blood vessel. However, the research of agmatine on melanin synthesis related to hair greying is lacking. The aim of this study was to investigate the melanogenic effect of agmatine via regulation of MITF signaling pathway in B16F1 cells. It was determined whether agmatine regulates melanin synthesis at cellular level in addition to the effect of agmatine on mushroom tyrosinase in vitro in the presence of different concentrations of agmatine. Furthermore, the effect of agmatine on the protein expressions of tyrosinase, TRP-1, TRP-2, BMP-4, BMP-6, C-KIT, p-p38, MITF and C-FOS were examined by western blot analysis. In addition, immunofluorescence staining was carried out to visualize the location of MITF expression in cell. Agmatine at 256μM or more increased melanin synthesis as well as tyrosinase activity. Moreover, whereas agmatine increased the expression levels of TRP-1, BMP-6, p-p38 and MITF, it reduced the expression level of BMP-4. It was also found that agmatine enhanced the expression level of MITF in nucleus. These results suggest that agmatine could induce melanin synthesis though the regulation of MITF transcription factor via BMP-6/p38 signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Receptor-selective retinoids implicate retinoic acid receptor alpha and gamma in the regulation of bmp-2 and bmp-4 in F9 embryonal carcinoma cells.

    PubMed

    Rogers, M B

    1996-01-01

    The effect of retinoids on malignant cells and embryos indicates that retinoids influence the expression of growth factors or alter the response of cells to growth factors. The bone morphogenetic proteins, Bmp-2 and Bmp-4, are candidates for such growth factors because retinoic acid (RA) treatment of F9 embryonal carcinoma cells induced Bmp-2 mRNA, while simultaneously repressing Bmp-4 levels. Also, recombinant Bmp-2 affected the growth and differentiation of these cells. Regulation of each gene was concentration dependent and required continuous RA treatment. The short half-lives of the Bmp-2 (75 +/- 11 min) and Bmp-4 (70 +/- 4 min) mRNAs suggest that their abundance is primarily controlled at the transcriptional level. To determine which RA receptor (RAR) controls bmp-2 and bmp-4 expression, F9 cells were exposed to various receptor-selective retinoids. RAR alpha- and gamma-selective retinoids induced Bmp-2 and repressed Bmp-4 equally as well as all-trans RA. In contrast, a RAR beta-selective retinoid had little effect on Bmp-2 induction but repressed Bmp-4. A RAR alpha-selective antagonist inhibited all-trans RA stimulation of Bmp-2, although not as dramatically as a RAR beta gamma-selective antagonist. No differences were observed between Bmp levels in all-trans RA and 9-cis RA-treated cells, indicating that the RXRs play little part in controlling these genes. The results are consistent with RAR alpha and gamma-controlled Bmp-2 and Bmp-4 regulation.

  13. Endothelial follistatin-like-1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling

    PubMed Central

    Tania, Navessa P.; Maarsingh, Harm; T. Bos, I. Sophie; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Gunst, Quinn D.; Jimenez-Borreguero, Luis J.; Schmidt, Martina; van den Hoff, Maurice J.B.; Gosens, Reinoud

    2017-01-01

    Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1-KO mice (Fstl1-eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1-eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1-eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1-eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output. PMID:28680581

  14. Endothelial follistatin-like-1 regulates the postnatal development of the pulmonary vasculature by modulating BMP/Smad signaling.

    PubMed

    Tania, Navessa P; Maarsingh, Harm; T Bos, I Sophie; Mattiotti, Andrea; Prakash, Stuti; Timens, Wim; Gunst, Quinn D; Jimenez-Borreguero, Luis J; Schmidt, Martina; van den Hoff, Maurice J B; Gosens, Reinoud

    2017-03-01

    Bone morphogenetic protein (BMP) signaling regulates vascular smooth muscle maturation, endothelial cell proliferation, and tube formation. The endogenous BMP antagonist Follistatin-like 1 (Fstl1) is highly expressed in pulmonary vascular endothelium of the developing mouse lung, suggesting a role in pulmonary vascular formation and vascular homeostasis. The aim of this study was to investigate the role of Fstl1 in the pulmonary vascular endothelium. To this aim, Fstl1 was conditionally deleted from endothelial and endothelial-derived cells using Tie2-cre driven Fstl1 -KO mice ( Fstl1 -eKO mice). Endothelial-specific Fstl1 deletion was postnatally lethal, as ∼70% of Fstl1 -eKO mice died at three weeks after birth. Deletion of Fstl1 from endothelium resulted in a reduction of right ventricular output at three weeks after birth compared with controls. This was associated with pulmonary vascular remodeling, as the percentage of actin-positive small pulmonary vessels was increased at three weeks in Fstl1 -eKO mice compared with controls. Endothelial deletion of Fstl1 resulted in activation of Smad1/5/8 signaling and increased BMP/Smad-regulated gene expression of Jagged1, Endoglin, and Gata2 at one week after birth compared with controls. In addition, potent vasoconstrictor Endothelin-1, the expression of which is driven by Gata2, was increased in expression, both on the mRNA and protein levels, at one week after birth compared with controls. At three weeks, Jagged1 was reduced in the Fstl1 -eKO mice whereas Endoglin and Endothelin-1 were unchanged. In conclusion, loss of endothelial Fstl1 in the lung is associated with elevated BMP-regulated genes, impaired small pulmonary vascular remodeling, and decreased right ventricular output.

  15. Bone morphogenetic protein (BMP)1-3 enhances bone repair.

    PubMed

    Grgurevic, Lovorka; Macek, Boris; Mercep, Mladen; Jelic, Mislav; Smoljanovic, Tomislav; Erjavec, Igor; Dumic-Cule, Ivo; Prgomet, Stefan; Durdevic, Dragan; Vnuk, Drazen; Lipar, Marija; Stejskal, Marko; Kufner, Vera; Brkljacic, Jelena; Maticic, Drazen; Vukicevic, Slobodan

    2011-04-29

    Members of the astacin family of metalloproteinases such as human bone morphogenetic protein 1 (BMP-1) regulate morphogenesis by processing precursors to mature functional extracellular matrix (ECM) proteins and several growth factors including TGFβ, BMP2, BMP4 and GFD8. We have recently discovered that BMP1-3 isoform of the Bmp-1 gene circulates in the human plasma and is significantly increased in patients with acute bone fracture. We hypothesized that circulating BMP1-3 might have an important role in bone repair and serve as a novel bone biomarker. When administered systemically to rats with a long bone fracture and locally to rabbits with a critical size defect of the ulna, recombinant human BMP1-3 enhanced bone healing. In contrast, neutralization of the endogenous BMP1-3 by a specific polyclonal antibody delayed the bone union. Invitro BMP1-3 increased the expression of collagen type I and osteocalcin in MC3T3-E(1) osteoblast like cells, and enhanced the formation of mineralized bone nodules from bone marrow mesenchymal stem cells. We suggest that BMP1-3 is a novel systemic regulator of bone repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells.

    PubMed

    Mody, Avani A; Wordinger, Robert J; Clark, Abbot F

    2017-02-01

    Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2-induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2-induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2-induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2-induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies.

  17. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis.

    PubMed

    Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo

    2016-06-01

    Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  18. Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats.

    PubMed

    Hu, Tao; Abbah, Sunny Akogwu; Toh, Soo Yein; Wang, Ming; Lam, Raymond Wing Moon; Naidu, Mathanapriya; Bhakta, Gajadhar; Cool, Simon M; Bhakoo, Kishore; Li, Jun; Goh, James Cho-Hong; Wong, Hee-Kit

    2015-12-01

    The combination of potent osteoinductive growth factor, functional osteoblastic cells, and osteoconductive materials to induce bone formation is a well-established concept in bone tissue engineering. However, supraphysiological dose of growth factor, such as recombinant human bone morphogenetic protein 2 (rhBMP-2), which is necessary in contemporary clinical application, have been reported to result in severe side effects. We hypothesize that the synergistic osteoinductive capacity of low-dose bone morphogenetic protein 2 (BMP-2) combined with undifferentiated bone marrow-derived stromal cells (BMSCs) is comparable to that of osteogenically differentiated BMSCs when used in a rodent model of posterolateral spinal fusion. A prospective study using a rodent model of posterolateral spinal fusion was carried out. Thirty-six syngeneic Fischer rats comprised the patient sample. Six groups of implants were evaluated as follows (n=6): (1) 10 µg BMP-2 with undifferentiated BMSCs; (2) 10 µg BMP-2 with osteogenic-differentiated BMSCs; (3) 2.5 µg BMP-2 with undifferentiated BMSCs; (4) 2.5 µg BMP-2 with osteogenic-differentiated BMSCs; (5) 0.5 µg BMP-2 with undifferentiated BMSCs; and (6) 0.5 µg BMP-2 with osteogenic-differentiated BMSCs. Optimal in vitro osteogenic differentiation of BMSCs was determined by quantitative real-time polymerase chain reaction (qRT-PCR) gene analysis whereas in vivo bone formation capacity was evaluated by manual palpation, micro-computed tomography, and histology. Rat BMSCs cultured in fibrin matrix that was loaded into the pores of medical-grade poly epsilon caprolactone tricalcium phosphate scaffolds differentiated toward osteogenic lineage by expressing osterix, runt-related transcription factor 2, and osteocalcium mRNA when supplemented with dexamethasone, ascorbic acid, and β-glycerophosphate. Whereas qRT-PCR revealed optimal increase in osteogenic genes expression after 7 days of in vitro culture, in vivo transplantation study showed that pre-differentiation of BMSCs before transplantation failed to promote posterolateral spinal fusion when co-delivered with low-dose BMP-2 (1/6 or 17% fusion rate). In contrast, combined delivery of undifferentiated BMSCs with low-dose BMP-2 (2.5 µg) demonstrated significantly higher fusion rate (4/6 or 67%) as well as significantly increased volume of new bone formation (p<.05). In summary, this study supports the combination of undifferentiated BMSCs and low-dose rhBMP-2 for bone tissue engineering construct. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Microstructured Titanium Regulates Interleukin Production by Osteoblasts, an Effect Modulated by Exogenous BMP-2

    PubMed Central

    Hyzy, Sharon; Olivares-Navarrete, Rene; Hutton, Daphne L.; Tan, Christian; Boyan, Barbara D.; Schwartz, Zvi

    2013-01-01

    Microtextured implant surfaces increase osteoblast differentiation in vitro and enhance bone-to-implant contact in vivo and clinically. These implants may be used in combination with recombinant human bone morphogenetic protein 2 (rhBMP-2) to enhance peri-implant bone formation. However, the effect of surface modifications alone or in combination with rhBMP-2 on osteoblast-produced inflammatory microenvironment is unknown. MG63 cells were cultured on tissue culture polystyrene or titanium substrates: smooth pretreated (PT, Ra=0.2μm), sandblasted/acid-etched (SLA, Ra=3.2μm), or hydrophilic-SLA (modSLA). Expression and protein production of pro-inflammatory interleukins (IL1b, IL6, IL8, IL17) and anti-inflammatory interleukins (IL10) were measured in cells with or without rhBMP-2. To determine which BMP signaling pathways were involved, cultures were incubated with BMP pathway inhibitors to blocking Smad (dorsomorphin), TAB/TAK1 ((5Z)-7-oxozeaenol), or PKA (H-8) signaling. Culture on rough SLA and modSLA surfaces decreased pro-inflammatory interleukins and increased anti-inflammatory IL10. This effect was negated in cells treated with rhBMP-2, which caused an increase in pro-inflammatory interleukins and a decrease in anti-inflammatory interleukins through TAB/TAK signaling. The results suggest that surface microtexture modulates the inflammatory process during osseointegration, an effect that may enhance healing. However, rhBMP-2 in combination with microtextured titanium implants can influence the effect of cells on these surfaces, and may adversely affect cells involved in osseointegration. PMID:23123301

  20. Morphologic and molecular alteration during tibia fracture healing in rat.

    PubMed

    Yu, M-D; Su, B-H; Zhang, X-X

    2018-03-01

    To monitor morphological feature and related osteogenic and bone metabolic change during healing of tibia fracture in a rat model. Tibia density and trabecular thickness were evaluated. Histopathology was examined by HE staining. Serous inflammatory factors IL-4, IL-6, TNF-α and metabolic biomarkers ALP, β-CTX, P1NP, were determined by ELISA. The expression of RUNX2, TGF-β1, VEGF-α, BMP-2, BMP-4, and BMP-7 in callus tissue were qualified by RT-PCR. Bone density decreased until week 4 and then increased post-operation. Trabeculae in callus were thickened over time with active osteogenesis. ELISA indicated the most severe inflammation at week 2, with the highest level of TNF-α, IL-6, and the lowest level of IL-4. After 4 weeks, the inflammation was alleviated accompanying with the decline of TNF-α and IL-6, while there was the elevation of IL-4. Bone metabolism showed active osteogenesis and resorption at week 6 with high P1NP and β-CTX. The expression of RUNX2, TGF-β1, VEGF-α, BMP-2, BMP-4, and BMP-7 increased progressively from week 1 to 6. The major lesions at week 2 in sham were tissue necrosis, periosteal reactive hyperplasia, inflammatory cell infiltration, capillary hyperplasia and slight fibro-blast cytopoiesis. At week 4, proliferation was greatly activated, fibrous callus shaped and chondrogenesis and some osteogenesis occurred at week 8. In rat model, bone density started to increase at week 6 after fracture, accompanied with trabeculae thickening, serous inflammatory factors decline, and peaked bone morphogenetic protein/growth factors, which indicated active osteogenesis was conforming to the classical phase of secondary fracture healing.

  1. Selective Small Molecule Compounds Increase BMP-2 Responsiveness by Inhibiting Smurf1-mediated Smad1/5 Degradation

    PubMed Central

    Cao, Yu; Wang, Cheng; Zhang, Xueli; Xing, Guichun; Lu, Kefeng; Gu, Yongqing; He, Fuchu; Zhang, Lingqiang

    2014-01-01

    The ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) negatively regulates bone morphogenetic protein (BMP) pathway by ubiquitinating certain signal components for degradation. Thus, it can be an eligible pharmacological target for increasing BMP signal responsiveness. We established a strategy to discover small molecule compounds that block the WW1 domain of Smurf1 from interacting with Smad1/5 by structure based virtual screening, molecular experimental examination and cytological efficacy evaluation. Our selected hits could reserve the protein level of Smad1/5 from degradation by interrupting Smurf1-Smad1/5 interaction and inhibiting Smurf1 mediated ubiquitination of Smad1/5. Further, these compounds increased BMP-2 signal responsiveness and the expression of certain downstream genes, enhanced the osteoblastic activity of myoblasts and osteoblasts. Our work indicates targeting Smurf1 for inhibition could be an accessible strategy to discover BMP-sensitizers that might be applied in future clinical treatments of bone disorders such as osteopenia. PMID:24828823

  2. Pharmacological activation of aldehyde dehydrogenase 2 promotes osteoblast differentiation via bone morphogenetic protein-2 and induces bone anabolic effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Monika; Pal, Subhashis; China, Shyamsundar

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes involved in detoxifying aldehydes. Previously, we reported that an ALDH inhibitor, disulfiram caused bone loss in rats and among ALDHs, osteoblast expressed only ALDH2. Loss-of-function mutation in ALDH2 gene is reported to cause bone loss in humans which suggested its importance in skeletal homeostasis. We thus studied whether activating ALDH2 by N-(1, 3-benzodioxol-5-ylmethyl)-2, 6-dichlorobenzamide (alda-1) had osteogenic effect. We found that alda-1 increased and acetaldehyde decreased the differentiation of rat primary osteoblasts and expressions of ALDH2 and bone morphogenetic protein-2 (BMP-2). Silencing ALDH2 in osteoblasts abolished the alda-1 effects. Further, alda-1 attenuatedmore » the acetaldehyde-induced lipid-peroxidation and oxidative stress. BMP-2 is essential for bone regeneration and alda-1 increased its expression in osteoblasts. We then showed that alda-1 (40 mg/kg dose) augmented bone regeneration at the fracture site with concomitant increase in BMP-2 protein compared with control. The osteogenic dose (40 mg/kg) of alda-1 attained a bone marrow concentration that was stimulatory for osteoblast differentiation, suggesting that the tissue concentration of alda-1 matched its pharmacologic effect. In addition, alda-1 promoted modeling-directed bone growth and peak bone mass achievement, and increased bone mass in adult rats which reiterated its osteogenic effect. In osteopenic ovariectomized (OVX) rats, alda-1 reversed trabecular osteopenia with attendant increase in serum osteogenic marker (procollagen type I N-terminal peptide) and decrease in oxidative stress. Alda-1 has no effect on liver and kidney function. We conclude that activating ALDH2 by alda-1 had an osteoanabolic effect involving increased osteoblastic BMP-2 production and decreased OVX-induced oxidative stress. - Highlights: • Alda-1 induced osteoblast differentiation that involved upregulation of ALDH2 and BMP-2 • Alda-1 attenuated acetaldehyde-induced inhibition of osteoblast differentiation • Alda-1 enhanced bone regeneration at the fracture site and peak bone mass achievement • Alda-1 reversed trabecular osteopenia in OVX rats via an osteoanabolic mechanism.« less

  3. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jun; Department of Physiology, Third Military Medical University, Chongqing 400038; Song, Min

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{submore » {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.« less

  4. The Effect of Simvastatin on mRNA Expression of Transforming Growth Factor-β1, Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor in Tooth Extraction Socket

    PubMed Central

    Liu, Chang; Wu, Zhe; Sun, Hong-chen

    2009-01-01

    Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in the tooth sockets of rat. Methodology Forty-eight male Wistar rats were randomly divided into experimental and control groups (n=24). Polylactic acid/polyglycolic acid copolymer carriers, with or without simvastatin, were implanted into extraction sockets of right mandibular incisors. The expression of TGF-β1, BMP-2 and VEGF mRNA was determined by in situ hybridization in the tooth extraction socket at five days, one week, two weeks and four weeks after implantation. Results The fusiform stroma cells in the tooth extraction socket began to express TGF-β1, BMP-2 and VEGF mRNA in both experimental and control groups from one week after tooth extraction until the end of experiment. The expression of TGF-β1 and BMP-2 mRNA in the experimental group was significantly up-regulated after one, two and four weeks, and expression of VEGF mRNA was significantly increased after one and two weeks compared with that in the control group. Conclusion The findings indicate that local administration of simvastatin can influence alveolar bone remodeling by regulating the expression of a school of growth factors which are crucial to osteogenesis in the tooth extraction socket. PMID:20687301

  5. The potential of mangosteen (Garcinia mangostana) peel extract, combined with demineralized freeze-dried bovine bone xenograft, to reduce ridge resorption and alveolar bone regeneration in preserving the tooth extraction socket.

    PubMed

    Kresnoadi, Utari; Ariani, Maretaningtias Dwi; Djulaeha, Eha; Hendrijantini, Nike

    2017-01-01

    Following the extraction of a tooth, bone resorption can cause significant problems for a subsequent denture implant and restorative dentistry. Thus, the tooth extraction socket needs to be maintained to reduce the chance of any alveolar ridge bone resorption. The objective of this study is to determine whether the administration of mangosteen peel extracts (MPEs), combined with demineralized freeze-dried bovine bone xenograft (DFBBX) materials for tooth extraction socket preservation, could potentially reduce inflammation by decreased the expression of nuclear factor κβ (NfKb) and receptor activator of nuclear factor-κβ ligand (RANKL), to inhibit alveolar bone resorption, and increased of bone morphogenetic protein-2 (BMP2) expressions to accelerate alveolar bone regeneration. This study consists of several stages. First, a dosage of MPE combined with graft materials was applied to a preserved tooth extraction socket of a Cavia cobaya . Second, the C. cobaya was examined using immune histochemical expression of NfKb, RANKL, BMP2, as well as histology of osteoblasts and osteoclasts. The research was statistically analyzed, using an analysis of variance test and Tukey honest significant difference test. The results of this research were that it was determined that MPEs combined with graft materials on a preserved tooth extraction socket can reduce NfKb, RANK, and osteoclasts also increase of BMP2 and osteoblast. The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.

  6. DRAGON, a GPI-anchored membrane protein, inhibits BMP signaling in C2C12 myoblasts.

    PubMed

    Kanomata, Kazuhiro; Kokabu, Shoichiro; Nojima, Junya; Fukuda, Toru; Katagiri, Takenobu

    2009-06-01

    Bone morphogenetic proteins (BMPs) induce osteoblastic differentiation of myoblasts via binding to cell surface receptors. Repulsive guidance molecules (RGMs) have been identified as BMP co-receptors. We report here that DRAGON/RGMb, a member of the RGM family, suppressed BMP signaling in C2C12 myoblasts via a novel mechanism. All RGMs were expressed in C2C12 cells that were differentiated into myocytes and osteoblastic cells, but RGMc was not detected in immature cells. In C2C12 cells, only DRAGON suppressed ALP and Id1 promoter activities induced by BMP-4 or by constitutively activated BMP type I receptors. This inhibition by DRAGON was dependent on the secretory form of the von Willbrand factor type D domain. DRAGON even suppressed BMP signaling induced by constitutively activated Smad1. Over-expression of neogenin did not alter the inhibitory capacity of DRAGON. Taken together, these findings indicate that DRAGON may be an inhibitor of BMP signaling in C2C12 myoblasts. We also suggest that a novel molecule(s) expressed on the cell membrane may mediate the signal transduction of DRAGON in order to suppress BMP signaling in C2C12 myoblasts.

  7. Borrelia burgdorferi basic membrane protein A could induce chemokine production in murine microglia cell line BV2.

    PubMed

    Zhao, Hua; Liu, Aihua; Cui, Yuhui; Liang, Zhang; Li, Bingxue; Bao, Fukai

    2017-10-01

    Lyme neuroborreliosis is a nervous system infectious disease caused by Borrelia burgdorferi (B. burgdorferi). It has been demonstrated that cytokines induced by B. burgdorferi are related to Lyme neuroborreliosis. Microglia is known as a key player in the immune responses that occur within the central nervous system. In response to inflammation, it will be activated and generate cytokines and chemokines. Experiments in vitro cells have showed that B. Burgdorferi membrane protein A (BmpA), a major immunogen of B. Burgdorferi, could induce Lyme arthritis and stimulate human and murine lymphocytes to produce inflammatory cytokines. In our study, the murine microglia BV2 cell line was used as a cell model to explore the stimulating effects of recombinant BmpA (rBmpA); Chemokine chip, ELISA and QPCR technology were used to measure the production of chemokines from microglial cells stimulated by rBmpA. Compared with the negative control group, CXCL2, CCL22, and CCL5 concentrations in the cell supernatant increased significantly after the rBmpA stimulation; the concentration of these chemokines increased with rBmpA concentration increasing; the mRNA expression levels of chemokines (CXCL2, CCL22, and CCL5) in murine BV2 cells increased significantly with 10 μg/mL and 20 μg/mL rBmpA stimulation; CXCL13 was not change after the rBmpA stimulation. Our study shows that chemokines, such as CXCL2, CCL22, and CCL5 were up-regulated by the rBmpA in the BV2 cells. The production of chemokines in Lyme neuroborreliosis may be mainly from microglia cells and the rBmpA may be closely related with the development of Lyme neuroborreliosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. BMP6 down-regulates GDNF expression through SMAD1/5 and ERK1/2 signaling pathways in human granulosa-lutein cells.

    PubMed

    Zhang, Xin-Yue; Chang, Hsun-Ming; Taylor, Elizabeth L; Leung, Peter C K; Liu, Rui-Zhi

    2018-05-09

    Bone morphogenetic protein 6 (BMP6) is a critical regulator of follicular development that is expressed in mammalian oocytes and granulosa cells. Glial cell line-derived neurotrophic factor (GDNF) is an intraovarian neurotrophic factor that plays an essential role in regulating mammalian oocyte maturation. The aim of this study was to investigate the effect of BMP6 on the regulation of GDNF expression and the potential underlying mechanisms. We used an established immortalized human granulosa cell line (SVOG cells) and primary human granulosa-lutein cells as in vitro cell models. Our results showed that BMP6 significantly down-regulated the expression of GDNF in both SVOG and primary human granulosa-lutein cells. Using dual inhibition approaches (kinase receptor inhibitor and small interfering RNA knockdown), our results showed that both ALK2 and ALK3 are involved in BMP6-induced down-regulation of GDNF. In addition, BMP6 induced the phosphorylation of SMAD1/5/8 and ERK1/2 but not AKT or p38. Among three downstream mediators, both SMAD1 and SMAD5 are involved in BMP6-induced down-regulation of GDNF. Moreover, concomitant knockdown of endogenous SMAD4 and inhibition of ERK1/2 activity completely reversed BMP6-induced down-regulation of GDNF, indicating that both SMAD and ERK1/2 signaling pathways are required for the regulatory effect of BMP6 on GDNF expression. Our findings suggest an additional role for an intrafollicular growth factor in regulating follicular function through their paracrine interactions in human granulosa cells.

  9. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis.

    PubMed

    Wu, Lian; Wang, Feng; Donly, Kevin J; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-11-01

    Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages. © 2015 Wiley Periodicals, Inc.

  10. Low-intensity pulsed ultrasound stimulation facilitates in vitro osteogenic differentiation of human adipose-derived stem cells via up-regulation of heat shock protein (HSP)70, HSP90, and bone morphogenetic protein (BMP) signaling pathway.

    PubMed

    Zhang, Zhonglei; Ma, Yalin; Guo, Shaowen; He, Yi; Bai, Gang; Zhang, Wenjun

    2018-05-29

    Low-intensity pulsed ultrasound (LIPUS) has positive effects on osteogenic differentiation. However, the effect of LIPUS on osteogenic differentiation of human adipose-derived stem cells (hASCs) is unclear. In the present study, we investigated whether LIPUS could promote the proliferation and osteogenic differentiation of hASCs. hASCs were isolated and osteogenically induced with LIPUS stimulation at 20 and 30 mW cm -2 for 30 min day -1 Cell proliferation and osteogenic differentiation potential of hASCs were respectively analyzed by cell counting kit-8 assay, Alizarin Red S staining, real-time polymerase chain reaction, and Western blotting. The results indicated that LIPUS stimulation did not significantly affect the proliferation of hASCs, but significantly increased their alkaline phosphatase activity on day 6 of culture and markedly promoted the formation of mineralized nodules on day 21 of culture. The mRNA expression levels of runt-related transcription factor, osteopontin, and osteocalcin were significantly up-regulated by LIPUS stimulation. LIPUS stimulation did not affect the expression of heat shock protein (HSP) 27, HSP40, bone morphogenetic protein (BMP)-6 and BMP-9, but significantly up-regulated the protein levels of HSP70, HSP90, BMP-2, and BMP-7 in the hASCs. Further studies found that LIPUS increased the mRNA levels of Smad 1 and Smad 5, elevated the phosphorylation of Smad 1/5, and suppressed the expression of BMP antagonist Noggin. These findings indicated that LIPUS stimulation enhanced osteogenic differentiation of hASCs possibly through the up-regulation of HSP70 and HSP90 expression and activation of BMP signaling pathway. Therefore, LIPUS might have the potential to promote the repair of bone defect. © 2018 The Author(s).

  11. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    PubMed

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice.

    PubMed

    Nguyen, Ha M; Barlow, Linda A

    2010-10-13

    Bone Morphogenetic Protein 4 (BMP4) is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae) and posterior (circumvallate papilla) tongue. BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III). BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers and BrdU birthdating. Our data suggest that intragemmal BMP4-ß-gal cells in circumvallate papillae are immature taste cells which eventually differentiate into each of the 3 taste cell types, whereas perigemmal BMP4-ß-gal cells in both circumvallate and fungiform papillae may be slow cycling stem cells, or belong to the stem cell niche to regulate taste cell renewal from the proliferative cell population.

  13. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression.

    PubMed

    Sehgal, Rachna; Sheibani, Nader; Rhodes, Simon J; Belecky Adams, Teri L

    2009-08-15

    Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.

  14. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability.

    PubMed

    Krawczak, David A; Westendorf, Jennifer J; Carlson, Cathy S; Lewis, Jack L

    2009-06-01

    The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.

  15. Augmented BMP signaling in the neural crest inhibits nasal cartilage morphogenesis by inducing p53-mediated apoptosis.

    PubMed

    Hayano, Satoru; Komatsu, Yoshihiro; Pan, Haichun; Mishina, Yuji

    2015-04-01

    Bone morphogenetic protein (BMP) signaling plays many roles in skull morphogenesis. We have previously reported that enhanced BMP signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells causes craniosynostosis during postnatal development. Additionally, we observed that 55% of Bmpr1a mutant mice show neonatal lethality characterized by a distended gastrointestinal tract. Here, we show that severely affected mutants exhibit defective nasal cartilage, failure of fusion between the nasal septum and the secondary palate, and higher levels of phosphorylated SMAD1 and SMAD5 in the nasal tissue. TUNEL demonstrated an increase in apoptosis in both condensing mesenchymal tissues and cartilage of the nasal region in mutants. The levels of p53 (TRP53) tumor suppressor protein were also increased in the same tissue. Injection of pifithrin-α, a chemical inhibitor of p53, into pregnant mice prevented neonatal lethality while concomitantly reducing apoptosis in nasal cartilage primordia, suggesting that enhanced BMP signaling induces p53-mediated apoptosis in the nasal cartilage. The expression of Bax and caspase 3, downstream targets of p53, was increased in the mutants; however, the p53 expression level was unchanged. It has been reported that MDM2 interacts with p53 to promote degradation. We found that the amount of MDM2-p53 complex was decreased in all mutants, and the most severely affected mutants had the largest decrease. Our previous finding that the BMP signaling component SMAD1 prevents MDM2-mediated p53 degradation coupled with our new data indicate that augmented BMP signaling induces p53-mediated apoptosis by prevention of p53 degradation in developing nasal cartilage. Thus, an appropriate level of BMP signaling is required for proper craniofacial morphogenesis. © 2015. Published by The Company of Biologists Ltd.

  16. BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1

    PubMed Central

    Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju

    2013-01-01

    Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation. PMID:23758588

  17. Regulation of bone morphogenetic protein signalling and cranial osteogenesis by Gpc1 and Gpc3.

    PubMed

    Dwivedi, Prem P; Grose, Randall H; Filmus, Jorge; Hii, Charles S T; Xian, Cory J; Anderson, Peter J; Powell, Barry C

    2013-08-01

    From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Does the calcification of adamantinomatous craniopharyngioma resemble the calcium deposition of osteogenesis/odontogenesis?

    PubMed

    Song-Tao, Qi; Xiao-Rong, Yan; Jun, Pan; Yong-Jian, Deng; Jin, Liang; Guang-Long, Huang; Yun-Tao, Lu; Jian, Ruan; Xiang-Zhao, Li; Jia-Ming, Xu

    2014-02-01

    Calcification in adamantinomatous craniopharyngioma (ACP) is troublesome for surgical intervention. The aim of this study was to examine the osteogenic proteins that play important roles in the calcium deposition of the odontogenic/osteogenic tissues in craniopharyngioma. Craniopharyngiomas (n = 89) were investigated for the presence and expression pattern of the osteoinductive/odontoinductive factor bone morphogenetic protein-2 (Bmp2) and two osteoblastic differentiation makers, Runt-related transcription factor-2 (Runx2) and Osterix, using immunohistochemistry and Western blotting. Our results showed that Bmp2, Runx2 and Osterix levels increased in cases with high calcification and correlated positively with the degree of calcification in ACP, whereas they showed little or no expression in squamous papillary craniopharyngioma. In ACP, Bmp2 was expressed primarily in the stellate reticulum and whorl-like array cells; Runx2 and Osterix tended to be expressed in calcification-related epithelia, including whorl-like array cells and epithelia in/around wet keratin and calcification lesions. Our study indicated, for the first time, that osteogenic factor Bmp2 may play an important role in the calcification of ACP via autocrine or paracrine mechanisms. Given the presence of osteogenic markers (Runx2 and Osterix), craniopharyngioma cells could differentiate into an osteoblast-like lineage, and the process of craniopharyngioma calcification resembles that which occurs in osteogenesis/odontogenesis. © 2014 John Wiley & Sons Ltd.

  19. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat.

    PubMed

    Jumabay, Medet; Moon, Jeremiah H; Yeerna, Huwate; Boström, Kristina I

    2015-11-01

    Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes. © 2015 Wiley Periodicals, Inc.

  20. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation.

    PubMed

    Lee, M H; Javed, A; Kim, H J; Shin, H I; Gutierrez, S; Choi, J Y; Rosen, V; Stein, J L; van Wijnen, A J; Stein, G S; Lian, J B; Ryoo, H M

    1999-04-01

    The bone morphogenetic protein (BMP)-2 is a potent osteoinductive signal, inducing bone formation in vivo and osteoblast differentiation from non-osseous cells in vitro. The runt domain-related protein Cbfa1/PEBP2alphaA/AML-3 is a critical component of bone formation in vivo and transcriptional regulator of osteoblast differentiation. To investigate the relationship between the extracellular BMP-2 signal, Cbfa1, and osteogenesis, we examined expression of Cbfa1 and osteoblastic genes during the BMP-2 induced osteogenic transdifferentiation of the myoblastic cell line C2C12. BMP-2 treatment completely blocked myotube formation and transiently induced expression of Cbfa1 and the bone-related homeodomain protein Msx-2 concomitant with loss of the myoblast phenotype. While induction of collagen type I and alkaline phosphatase (AP) expression coincided with Cbfa1 expression, Cbfa1 mRNA was strikingly downregulated at the onset of expression of osteopontin (OPN) and osteocalcin (OCN) genes, reflecting the mature osteoblast phenotype. TGF-beta1 treatment effectively suppressed myogenesis and induced Cbfa1 expression but was insufficient to support osteoblast differentiation reflected by the absence of ALP, OPN, and OCN. We addressed whether induction of Cbfa1 in response to BMP-2 results in the transcriptional activation of the OC promoter which contains three enhancer Cbfa1 elements. Transfection studies show BMP-2 suppresses OC promoter activity in C2C12, but not in osteoblastic ROS 17/2.8 cells. Maximal suppression of OC promoter activity in response to BMP-2 requires sequences in the proximal promoter (up to nt -365) and may occur independent of the three Cbfa sites. Taken together, our results demonstrate a dissociation of Cbfa1 expression from development of the osteoblast phenotype. Our findings suggest that Cbfal may function transiently to divert a committed myoblast to a potentially osteogenic cell. However, other factors induced by BMP-2 appear to be necessary for complete expression of the osteoblast phenotype.

  1. DAN (NBL1) specifically antagonizes BMP2 and BMP4 and modulates the actions of GDF9, BMP2, and BMP4 in the rat ovary.

    PubMed

    Hung, Wei-Ting; Wu, Fang-Ju; Wang, Chun-Jen; Luo, Ching-Wei

    2012-05-01

    Although differential screening-selected gene aberrative in neuroblastoma (DAN, official symbol NBL1) is the founding member of the DAN subfamily of bone morphogenetic protein (BMP) antagonists, its antagonizing targets, gene regulation, and physiological functions remain unclear. Using diverse cell expression systems, we found that the generation of bioactive DAN is likely to be cell type specific. Unlike other phylogenetically close members, which are covalently linked homodimers, DAN forms a noncovalently linked homodimer during folding. Purified recombinant DAN specifically blocked signaling of BMP2 and BMP4 but not that of other ovarian-expressed transforming growth factor-beta members. Although widely distributed in many organs, DAN transcript level was periodically regulated by gonadotropins. Ovarian microdissection indicated that NBL1 (DAN) mRNA is mainly expressed in granulosa cells, where its transcript level is up-regulated by the gonadotropin-driven cAMP cascade. We further investigated the local regulation and ovarian functions of DAN. NBL1 (DAN) mRNA expression in granulosa cells was up-regulated by oocyte-derived growth differentiation factor 9 (GDF9), whereas treatment with DAN significantly reversed the inhibitory effect of BMP4 on follicle-stimulating hormone-induced progesterone production in cultured granulosa cells. Our findings suggest the DAN gradient in granulosa cells, established by oocyte-derived GDF9, may serve as an antagonist barrier that modulates the actions of theca-derived BMP4 and granulosa/theca-derived BMP2 during folliculogenesis both spatially and temporally.

  2. A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA:protein interactions.

    PubMed

    Fritz, David T; Jiang, Shan; Xu, Junwang; Rogers, Melissa B

    2006-07-01

    The bone morphogenetic protein (BMP)2 gene has been genetically linked to osteoporosis and osteoarthritis. We have shown that the 3'-untranslated regions (UTR) of BMP2 genes from mammals to fishes are extraordinarily conserved. This indicates that the BMP2 3'-UTR is under stringent selective pressure. We present evidence that the conserved region is a strong posttranscriptional regulator of BMP2 expression. Polymorphisms in cis-regulatory elements have been proven to influence susceptibility to a growing number of diseases. A common single nucleotide polymorphism (SNP) disrupts a putative posttranscriptional regulatory motif, an AU-rich element, within the BMP2 3'-UTR. The affinity of specific proteins for the rs15705 SNP sequence differs from their affinity for the normal human sequence. More importantly, the in vitro decay rate of RNAs with the SNP is higher than that of RNAs with the normal sequence. Such changes in mRNA:protein interactions may influence the posttranscriptional mechanisms that control BMP2 gene expression. The consequent alterations in BMP2 protein levels may influence the development or physiology of bone or other BMP2-influenced tissues.

  3. Localized expression of a dpp/BMP2/4 ortholog in a coral embryo

    PubMed Central

    Hayward, David C.; Samuel, Gabrielle; Pontynen, Patricia C.; Catmull, Julian; Saint, Robert; Miller, David J.; Ball, Eldon E.

    2002-01-01

    As the closest outgroup to the Bilateria, the Phylum Cnidaria is likely to be critical to understanding the origins and evolution of body axes. Proteins of the decapentaplegic (DPP)/bone morphogenetic protein (BMP) 2/4 subfamily are central to the specification of the dorsoventral (D/V) axis in bilateral animals, albeit with an axis inversion between arthropods and chordates. We show that a dpp/BMP2/4 ortholog (bmp2/4-Am) is present in the reef-building scleractinian coral, Acropora millepora (Class Anthozoa) and that it is capable of causing phenotypic effects in Drosophila that mimic those of the endogenous dpp gene. We also show that, during coral embryonic development, bmp2/4-Am expression is localized in an ectodermal region adjacent to the blastopore. Thus, a representative of the DPP/BMP2/4 subfamily of ligands was present in the common ancestor of diploblastic and triploblastic animals where it was probably expressed in a localized fashion during development. A localized source of DPP/BMP2/4 may have already been used in axis formation in this ancestor, or it may have provided a means by which an axis could evolve in triploblastic animals. PMID:12048233

  4. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Myoung Hee; Oh, Sang Cheul; Lee, Hyun Joo

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B.more » Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.« less

  5. Increased BMP6 levels in the brains of Alzheimer's disease patients and APP transgenic mice are accompanied by impaired neurogenesis.

    PubMed

    Crews, Leslie; Adame, Anthony; Patrick, Christina; Delaney, Alexandra; Pham, Emiley; Rockenstein, Edward; Hansen, Lawrence; Masliah, Eliezer

    2010-09-15

    During aging and in the progression of Alzheimer's disease (AD), synaptic plasticity and neuronal integrity are disturbed. In addition to the alterations in plasticity in mature neurons, the neurodegenerative process in AD has been shown to be accompanied by alterations in neurogenesis. Members of the bone morphogenetic protein (BMP) family of growth factors have been implicated as important regulators of neurogenesis and neuronal cell fate determination during development; however, their role in adult neurogenesis and in AD is less clear. We show here by qRT-PCR analysis that BMP6 mRNA levels were significantly increased in the hippocampus of human patients with AD and in APP transgenic mice compared to controls. Immunoblot and immunohistochemical analyses confirmed that BMP6 protein levels were increased in human AD brains and APP transgenic mouse brains compared to controls and accumulated around hippocampal plaques. The increased levels of BMP6 were accompanied by defects in hippocampal neurogenesis in AD patients and APP transgenic mice. In support of a role for BMP6 in defective neurogenesis in AD, we show in an in vitro model of adult neurogenesis that treatment with amyloid-β(1-42) protein (Aβ) resulted in increased expression of BMP6, and that exposure to recombinant BMP6 resulted in reduced proliferation with no toxic effects. Together, these results suggest that Aβ-associated increases in BMP6 expression in AD may have deleterious effects on neurogenesis in the hippocampus, and therapeutic approaches could focus on normalization of BMP6 levels to protect against AD-related neurogenic deficits.

  6. Bone morphogenetic protein 4 antagonizes hair cell regeneration in the avian auditory epithelium.

    PubMed

    Lewis, Rebecca M; Keller, Jesse J; Wan, Liangcai; Stone, Jennifer S

    2018-07-01

    Permanent hearing loss is often a result of damage to cochlear hair cells, which mammals are unable to regenerate. Non-mammalian vertebrates such as birds replace damaged hair cells and restore hearing function, but mechanisms controlling regeneration are not understood. The secreted protein bone morphogenetic protein 4 (BMP4) regulates inner ear morphogenesis and hair cell development. To investigate mechanisms controlling hair cell regeneration in birds, we examined expression and function of BMP4 in the auditory epithelia (basilar papillae) of chickens of either sex after hair cell destruction by ototoxic antibiotics. In mature basilar papillae, BMP4 mRNA is highly expressed in hair cells, but not in hair cell progenitors (supporting cells). Supporting cells transcribe genes encoding receptors for BMP4 (BMPR1A, BMPR1B, and BMPR2) and effectors of BMP4 signaling (ID transcription factors). Following hair cell destruction, BMP4 transcripts are lost from the sensory epithelium. Using organotypic cultures, we demonstrate that treatments with BMP4 during hair cell destruction prevent supporting cells from upregulating expression of the pro-hair cell transcription factor ATOH1, entering the cell cycle, and fully transdifferentiating into hair cells, but they do not induce cell death. By contrast, noggin, a BMP4 inhibitor, increases numbers of regenerated hair cells. These findings demonstrate that BMP4 antagonizes hair cell regeneration in the chicken basilar papilla, at least in part by preventing accumulation of ATOH1 in hair cell precursors. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Expression levels of brown/beige adipocyte-related genes in fat depots of vitamin A-restricted fattening cattle.

    PubMed

    Chen, Hsuan-Ju; Ihara, Tsubasa; Yoshioka, Hidetugu; Itoyama, Erina; Kitamura, Shoko; Nagase, Hiroshi; Murakami, Hiroaki; Hoshino, Yoichiro; Murakami, Masaru; Tomonaga, Shozo; Matsui, Tohru; Funaba, Masayuki

    2018-06-15

    Brown/beige adipocytes dissipate energy as heat. We previously showed that brown/beige adipocytes are present in white adipose tissue (WAT) of fattening cattle. The present study examined the effect of vitamin A restriction on mRNA expression of brown/beige adipocyte-related genes. In Japan, fattening cattle are conventionally fed a vitamin A-restricted diet to improve beef marbling. Twelve Japanese Black steers aged 10 months were fed control feed (n=6) or vitamin A-restricted feed (n=6) for 20 months. Subcutaneous WAT (scWAT) and mesenteric WAT (mesWAT) were collected, and mRNA expression levels of molecules related to function of brown/beige adipocytes (Ucp1, Cidea, Dio2, Cox7a and Cox8b) as well as transcriptional regulators related to brown/beige adipogenesis (Zfp516, Nfia, Prdm16, and Pgc-1α) were evaluated. The vitamin A restriction significantly increased or tended to increase expression levels of Cidea and Pgc-1α in scWAT, and Cidea, Dio2, and Nfia in mesWAT. Previous studies revealed that the bone morphogenetic protein (BMP) pathway was responsible for commitment of mesenchymal stem cells to brown/beige adipocyte-lineage cells. The vitamin A restriction increased expression of Bmp7 and some Bmp receptors in WAT. The interrelationship between gene expression levels indicated that expression levels of Nfia, Prdm16, and Pgc-1α were closely related to those of genes related to function of brown/beige adipocytes in scWAT. Also, expression levels of Nfia, Prdm16, and Pgc-1α were highly correlated with those of Alk3 in scWAT. In summary, the present results suggest that the vitamin A restriction increases the number or activity of brown/beige adipocytes through regulatory expression of transcriptional regulators to induce brown/beige adipogenesis especially in scWAT of fattening cattle, which may be governed by the Bmp pathway.

  8. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    PubMed

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  9. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

    PubMed Central

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  10. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole

    PubMed Central

    Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae

    2015-01-01

    Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing. PMID:26491693

  11. Repair of Cranial Bone Defects Using rhBMP2 and Submicron Particle of Biphasic Calcium Phosphate Ceramics with Through-Hole.

    PubMed

    Jeong, Byung-Chul; Choi, Hyuck; Hur, Sung-Woong; Kim, Jung-Woo; Oh, Sin-Hye; Kim, Hyun-Seung; Song, Soo-Chang; Lee, Keun-Bae; Park, Kwang-Bum; Koh, Jeong-Tae

    2015-01-01

    Recently a submicron particle of biphasic calcium phosphate ceramic (BCP) with through-hole (donut-shaped BCP (d-BCP)) was developed for improving the osteoconductivity. This study was performed to examine the usefulness of d-BCP for the delivery of osteoinductive rhBMP2 and the effectiveness on cranial bone regeneration. The d-BCP was soaked in rhBMP2 solution and then freeze-dried. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy analyses confirmed that rhBMP2 was well delivered onto the d-BCP surface and the through-hole. The bioactivity of the rhBMP2/d-BCP composite was validated in MC3T3-E1 cells as an in vitro model and in critical-sized cranial defects in C57BL/6 mice. When freeze-dried d-BCPs with rhBMP2 were placed in transwell inserts and suspended above MC3T3-E1, alkaline phosphatase activity and osteoblast-specific gene expression were increased compared to non-rhBMP2-containing d-BCPs. For evaluating in vivo effectiveness, freeze-dried d-BCPs with or without rhBMP2 were implanted into critical-sized cranial defects. Microcomputed tomography and histologic analysis showed that rhBMP2-containing d-BCPs significantly enhanced cranial bone regeneration compared to non-rhBMP2-containing control. These results suggest that a combination of d-BCP and rhBMP2 can accelerate bone regeneration, and this could be used to develop therapeutic strategies in hard tissue healing.

  12. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring.

    PubMed

    Abadjieva, Desislava; Kistanova, Elena

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers' oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris.

  13. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring

    PubMed Central

    2016-01-01

    Although previous research has demonstrated the key role of the oocyte-derived factors, bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9, in follicular development and ovulation, there is a lack of knowledge on the impact of external factors, which females are exposed to during folliculogenesis, on their expression. The present study investigated the effect of the aphrodisiac Tribulus terrestris on the GDF9 and BMP15 expression in the oocytes and cumulus cells at mRNA and protein levels during folliculogenesis in two generations of female rabbits. The experiment was conducted with 28 New Zealand rabbits. Only the diet of the experimental mothers group was supplemented with a dry extract of T. terrestris for the 45 days prior to insemination. The expression of BMP15 and GDF9 genes in the oocytes and cumulus cells of mothers and F1 female offspring was analyzed using real-time polymerase chain reaction (RT-PCR). The localization of the GDF9 and BMP15 proteins in the ovary tissues was determined by immunohistochemical analysis. The BMP15 and GDF9 transcripts were detected in the oocytes and cumulus cells of rabbits from all groups. T. terrestris caused a decrease in the BMP15 mRNA level in the oocytes and an increase in the cumulus cells. The GDF9 mRNA level increased significantly in both oocytes and cumulus cells. The downregulated expression of BMP15 in the treated mothers’ oocytes was inherited in the F1 female offspring born to treated mothers. BMP15 and GDF9 show a clearly expressed sensitivity to the bioactive compounds of T. terrestris. PMID:26928288

  14. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.

    PubMed

    McNatty, Kenneth P; Lawrence, Stephen; Groome, Nigel P; Meerasahib, Mohammed F; Hudson, Norma L; Whiting, Lynda; Heath, Derek A; Juengel, Jennifer L

    2006-01-01

    Sheep (Ovis aries) are a highly diverse species, with more than 900 different breeds that vary significantly in their physiological characteristics, including ovulation rate and fecundity. From examination of inherited patterns of ovulation rate, several breeds have been identified with point mutations in two growth factor genes that are expressed in oocytes. Currently, five different point mutations have been identified in the BMP15 (GDF9b) gene and one in GDF9. Animals heterozygous for the GDF9 and/or the BMP15 mutations have higher ovulation rates than their wild-type counterparts. In contrast, those homozygous for any of the aforementioned BMP15 or GDF9 mutations are sterile owing to arrested follicular development. In bovine and ovine ovaries, GDF9 was expressed exclusively in oocytes throughout follicular growth from the primordial stage of development, whereas in sheep BMP15 was expressed exclusively in oocytes from the primary stage: no data for the ontogeny of BMP15 expression are currently available for cattle. In vitro, ovine growth differentiation factor 9 (oGDF9) has no effect on (3)H-thymidine incorporation by either bovine or ovine granulosa cells, whereas ovine bone morphogenetic protein 15 (oBMP15) has modest (1.2- to 1.6-fold; P < 0.05) stimulatory effects. Ovine GDF9 or oBMP15 alone inhibited progesterone production by bovine granulosa cells, whereas in ovine cells only oGDF9 was inhibitory. The effects of oGDF9 and oBMP15 together were often cooperative and not always the same as those observed for each factor alone. Active immunisation of ewes with BMP15 and/or GDF9 peptides affected ovarian follicular development and ovulation rate. Depending on the GDF9 and/or BMP15 vaccine formulation, ovulation rate was either increased or suppressed. A primary and single booster immunisation of ewes with a BMP15 peptide in a water-based adjuvant has led to 19-40% increases in lambs born per ewe lambing. Collectively, the evidence suggests that oocyte signalling molecules have profound effects on reproduction in mammals, including rodents, humans and ruminants. Moreover, in vivo manipulation of these oocyte signalling molecules provides new opportunities for the management of the fertility of ruminants.

  15. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head

    PubMed Central

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy. PMID:29399103

  16. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    PubMed

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  17. Two Variants of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) with Additional Protein Domains: Synthesis in an Escherichia coli Heterologous Expression System.

    PubMed

    Karyagina, A S; Boksha, I S; Grunina, T M; Demidenko, A V; Poponova, M S; Sergienko, O V; Lyashchuk, A M; Galushkina, Z M; Soboleva, L A; Osidak, E O; Bartov, M S; Gromov, A V; Lunin, V G

    2017-05-01

    Two variants of recombinant human bone morphogenetic protein-2 (rhBMP-2) with additional N-terminal protein domains were obtained by expression in E. coli. The N-terminal domains were s-tag (15-a.a. oligopeptide from bovine pancreatic ribonuclease A) and lz (leucine zipper dimerization domain from yeast transcription factor GCN4). The s-tag-BMP-2 and lz-BMP-2 were purified by a procedure that excluded a long refolding stage. The resulting dimeric proteins displayed higher solubility compared to rhBMP-2 without additional protein domains. Biological activity of both proteins was demonstrated in vitro by induction of alkaline phosphatase in C2C12 cells, and the activity of s-tag-BMP-2 in vivo was shown in various experimental animal models.

  18. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts.

    PubMed

    Huh, Jeong-Eun; Seo, Dong-Min; Baek, Yong-Hyeon; Choi, Do-Young; Park, Dong-Suk; Lee, Jae-Dong

    2010-04-01

    Osteoarthritis is a multifactorial disease characterized by loss of articular cartilage and subchondral plate thickening. Therefore, biochemical analysis of the underlying bone tissue has provided important information for treatment of osteoarthritis. In this study, we determined the potential role of formononetin, a phytoestrogen isolated from Astragalus membranaceus to alter the expression of metabolic markers and cytokine production of human normal osteoblasts (Obs) and osteoarthritis subchondral osteoblasts (OA Obs). Human OA Obs and normal Obs were cultured for 3days, 7days or 14days in the present medium only or were treated with various doses of formononetin. Cells were analyzed for viability by WST-8 assay, alkaline phosphatase (ALP) activity, osteogenic markers (osteocalcin (OCN) and type I collagen (Col I)) and cytokines (interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), bone morphogenic protein-2 (BMP-2)). The level of IL-6, VEGF, BMP-2, OCN and Col I was increased in OA Obs compared with normal Obs. Formononetin dose-dependently decreased ALP, IL-6, VEGF, BMP-2, OCN and Col I in OA Obs, while markedly increased ALP, VEGF, BMP-2, OCN and Col I in normal Obs. Interestingly, formononetin markedly increased the expression of VEGF and BMP-2 for 3days of culture and significantly increased OCN and Col I at 14days in human normal Obs. The remodeling effect of formononetin on osteogenic markers and cytokines of inflammatory mediators was more striking in OA Obs as well. Taken together, these results could suggest that formononetin has biphasic positive effects on normal Obs and OA Obs by modifying their biological synthetic capacities. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  19. Suppression of BMP-7 by histone deacetylase 2 promoted apoptosis of renal tubular epithelial cells in acute kidney injury

    PubMed Central

    Ma, Taotao; Huang, Cheng; Xu, Qingqing; Yang, Yang; Liu, Yaru; Meng, Xiaoming; Li, Jun; Ye, Min; Liang, Hong

    2017-01-01

    Cisplatin, a highly effective and widely used chemotherapeutic agent, has a major limitation for its nephrotoxicity. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. We recently identified a novel strategy for attenuating its nephrotoxicity in chemotherapy by histone deacetylase (HDAC) inhibitors via epigenetic modification to enhance bone morphogenetic protein 7 (BMP-7) expression. Cisplatin upregulated the activity of HDAC2 in the kidney. Inhibition of HDAC with clinically used trichostatin A (TSA) or valproic acid (VPA) suppressed cisplatin-induced kidney injury and epithelial cell apoptosis. Overexpression of HDAC2 promotes CP-treated tubular epithelium cells apoptosis. Chromatin immunoprecipitation assay clearly detected HDAC2 assosiation with BMP-7 promoter. Western blot and immunofluorescence results demonstrated that the expression of BMP-7 was clearly induced by TSA or VPA in vivo and in vitro. Interestingly, administration of recombinant BMP-7 (rhBMP-7) reduced cisplatin-induced kidney dysfunction. Moreover, BMP-7 treatment suppressed epithelial cell apoptosis and small interfering RNA-based knockdown of BMP-7 expression abolished HDAC inhibitors suppression of epithelial cell apoptosis in vitro. Results of current study indicated that TSA or VPA inhibited apoptosis of renal tubular epithelial cells via promoting the level of BMP-7 epigenetically through targeting HDAC2. Hence, HDAC inhibitors could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:29072686

  20. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression

    PubMed Central

    Abdel-Hakeem, Ahmed K; Henry, Tasmia Q; Magee, Thomas R; Desai, Mina; Ross, Michael; Mansano, Roy; Torday, John; Nast, Cynthia C.

    2010-01-01

    Objective Maternal food restriction during pregnancy results in growth restricted newborns and reduced glomerular number, contributing to programmed offspring hypertension. We investigated whether reduced nephrogenesis may be programmed by dysregulation of factors controlling ureteric bud branching and mesenchyme to epithelial transformation. Study Design 10 to 20 days gestation, Sprague Dawley pregnant rats (n=6/group) received ad libitum food; FR rats were 50% food restricted. At embryonic day 20, mRNA and protein expression of WT1, Pax2, FGF2, GDNF, cRET, WNT4, WNT11, BMP4, BMP7, and FGF7 were determined by real-time PCR and Western blotting. Results Maternal FR resulted in up-regulated mRNA expression for WT1, FGF2, and BMP7 whereas Pax2, GDNF, FGF7, BMP4, WNT4, and WNT11 mRNAs were down-regulated. Protein expression was concordant for WT1, GDNF, Pax2, FGF7, BMP4 and WNT4. Conclusion Maternal FR altered gene expression of fetal renal transcription and growth factors, and likely contributes to development of offspring hypertension. PMID:18639218

  1. EFFECT OF COLLA CORNUS CERVI COMBINED WITH LV-MEDIATED BMP7 TRANSFECTED BMSCs ON ANFH IN RATS.

    PubMed

    Wang, Ping; Shi, Bin; Gao, Zhi-Hui; Sun, Tie-Feng; Yang, Wu-Bin; Han, Shu-Fang; Liu, Peng; Wang, Lei-Lei; Zhao, Bo-Nian; Wang, Dan-Dan

    2016-11-01

    In the present study, we investigated the combined effect of Colla Comus Cervi (CCC) and BMP7-overexpressing bone marrow-derived mesenchymal stem cells (BMSCs) on osteogenic induction and the treatment of avascular necrosis of the femoral head (ANFH). BMSCs were isolated from rats. BMP7-overexpressing BMSCs were generated by lentiviral-mediated gene transduction. Cell proliferation, alkaline phosphatase (ALP) activity, osteogenesis related gene expression, osteocalcin levels, and calcified nodules were quantified and compared between four groups: untreated controls, BMSCs cultured with CCC complex medium, BMP7-overexpressing BMSCs, and BMP7-overexpressing BMSCs cultured with CCC complex medium (CCC+BMP7). CCC+BMP7 BMSCs showed higher proliferation rate. ALP activity and osteaocalcin content were significantly increased in CCC+BMP7 BMSCs. The osteogenesis related genes, COLI, and integrin-α2, -α5, and -β1, were expressed significantly higher in CCC+BMP7 BMSCs. The number of calcified nodules in the CCC+BMP7 group was significantly higher than that in other groups. For in vivo assays, ANFH was induced in rats, and BMSCs were injected into the femoral head of the lower left extremity. In rats with induced ANFH, general observation scores of the CCC+BMP7 injected group were significantly higher than the model group. X-ray and microscopic observations revealed that ANFH was significantly improved and femoral head cells gradually recovered in rats treated with CCC+BMP7 BMSCs. Our results suggest that CCC+BMP7 significantly promote the proliferation and osteogenic differentiation of BMSCs in vitm. CCC+BMP7 BMSCs promote the ability of repairing ANFH in rats, providing a new therapeutic paradigm for the treatment of ANFH.

  2. Overlapping and differential localization of Bmp-2, Bmp-4, Msx-2 and apoptosis in the endocardial cushion and adjacent tissues of the developing mouse heart.

    PubMed

    Abdelwahid, E; Rice, D; Pelliniemi, L J; Jokinen, E

    2001-07-01

    The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.

  3. Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface.

    PubMed

    Cho, Hankyu; Tarafder, Solaiman; Fogge, Michael; Kao, Kristy; Lee, Chang H

    2016-11-01

    Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.

  4. Dissecting BMP signaling input into the gene regulatory networks driving specification of the blood stem cell lineage

    PubMed Central

    Kirmizitas, Arif; Meiklejohn, Stuart; Ciau-Uitz, Aldo; Stephenson, Rachel; Patient, Roger

    2017-01-01

    Hematopoietic stem cells (HSCs) that sustain lifelong blood production are created during embryogenesis. They emerge from a specialized endothelial population, termed hemogenic endothelium (HE), located in the ventral wall of the dorsal aorta (DA). In Xenopus, we have been studying the gene regulatory networks (GRNs) required for the formation of HSCs, and critically found that the hemogenic potential is defined at an earlier time point when precursors to the DA express hematopoietic as well as endothelial genes, in the definitive hemangioblasts (DHs). The GRN for DH programming has been constructed and, here, we show that bone morphogenetic protein (BMP) signaling is essential for the initiation of this GRN. BMP2, -4, and -7 are the principal ligands expressed in the lineage forming the HE. To investigate the requirement and timing of all BMP signaling in HSC ontogeny, we have used a transgenic line, which inducibly expresses an inhibitor of BMP signaling, Noggin, as well as a chemical inhibitor of BMP receptors, DMH1, and described the inputs from BMP signaling into the DH GRN and the HE, as well as into primitive hematopoiesis. BMP signaling is required in at least three points in DH programming: first to initiate the DH GRN through gata2 expression, then for kdr expression to enable the DH to respond to vascular endothelial growth factor A (VEGFA) ligand from the somites, and finally for gata2 expression in the DA, but is dispensable for HE specification after hemangioblasts have been formed. PMID:28584091

  5. Low intracellular iron increases the stability of matriptase-2.

    PubMed

    Zhao, Ningning; Nizzi, Christopher P; Anderson, Sheila A; Wang, Jiaohong; Ueno, Akiko; Tsukamoto, Hidekazu; Eisenstein, Richard S; Enns, Caroline A; Zhang, An-Sheng

    2015-02-13

    Matriptase-2 (MT2) is a type II transmembrane serine protease that is predominantly expressed in hepatocytes. It suppresses the expression of hepatic hepcidin, an iron regulatory hormone, by cleaving membrane hemojuvelin into an inactive form. Hemojuvelin is a bone morphogenetic protein (BMP) co-receptor. Here, we report that MT2 is up-regulated under iron deprivation. In HepG2 cells stably expressing the coding sequence of the MT2 gene, TMPRSS6, incubation with apo-transferrin or the membrane-impermeable iron chelator, deferoxamine mesylate salt, was able to increase MT2 levels. This increase did not result from the inhibition of MT2 shedding from the cells. Rather, studies using a membrane-permeable iron chelator, salicylaldehyde isonicotinoyl hydrazone, revealed that depletion of cellular iron was able to decrease the degradation of MT2 independently of internalization. We found that lack of the putative endocytosis motif in its cytoplasmic domain largely abolished the sensitivity of MT2 to iron depletion. Neither acute nor chronic iron deficiency was able to alter the association of Tmprss6 mRNA with polyribosomes in the liver of rats indicating a lack of translational regulation by low iron levels. Studies in mice showed that Tmprss6 mRNA was not regulated by iron nor the BMP-mediated signaling with no evident correlation with either Bmp6 mRNA or Id1 mRNA, a target of BMP signaling. These results suggest that regulation of MT2 occurs at the level of protein degradation rather than by changes in the rate of internalization and translational or transcriptional mechanisms and that the cytoplasmic domain of MT2 is necessary for its regulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Low Intracellular Iron Increases the Stability of Matriptase-2*

    PubMed Central

    Zhao, Ningning; Nizzi, Christopher P.; Anderson, Sheila A.; Wang, Jiaohong; Ueno, Akiko; Tsukamoto, Hidekazu; Eisenstein, Richard S.; Enns, Caroline A.; Zhang, An-Sheng

    2015-01-01

    Matriptase-2 (MT2) is a type II transmembrane serine protease that is predominantly expressed in hepatocytes. It suppresses the expression of hepatic hepcidin, an iron regulatory hormone, by cleaving membrane hemojuvelin into an inactive form. Hemojuvelin is a bone morphogenetic protein (BMP) co-receptor. Here, we report that MT2 is up-regulated under iron deprivation. In HepG2 cells stably expressing the coding sequence of the MT2 gene, TMPRSS6, incubation with apo-transferrin or the membrane-impermeable iron chelator, deferoxamine mesylate salt, was able to increase MT2 levels. This increase did not result from the inhibition of MT2 shedding from the cells. Rather, studies using a membrane-permeable iron chelator, salicylaldehyde isonicotinoyl hydrazone, revealed that depletion of cellular iron was able to decrease the degradation of MT2 independently of internalization. We found that lack of the putative endocytosis motif in its cytoplasmic domain largely abolished the sensitivity of MT2 to iron depletion. Neither acute nor chronic iron deficiency was able to alter the association of Tmprss6 mRNA with polyribosomes in the liver of rats indicating a lack of translational regulation by low iron levels. Studies in mice showed that Tmprss6 mRNA was not regulated by iron nor the BMP-mediated signaling with no evident correlation with either Bmp6 mRNA or Id1 mRNA, a target of BMP signaling. These results suggest that regulation of MT2 occurs at the level of protein degradation rather than by changes in the rate of internalization and translational or transcriptional mechanisms and that the cytoplasmic domain of MT2 is necessary for its regulation. PMID:25550162

  7. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro.

    PubMed

    Muñoz-Félix, José M; Cuesta, Cristina; Perretta-Tejedor, Nuria; Subileau, Mariela; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-09-01

    Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Insulin-like growth factor-1 (IGF-1) enhances the osteogenic activity of bone morphogenetic protein-6 (BMP-6) in vitro and in vivo, and together have a stronger osteogenic effect than when IGF-1 is combined with BMP-2.

    PubMed

    Rico-Llanos, Gustavo A; Becerra, Jose; Visser, Rick

    2017-07-01

    Bone morphogenetic protein-2 (BMP-2) is widely used in orthopedic surgery and bone tissue engineering because of its strong osteogenic activity. However, BMP-2 treatments have several drawbacks and many groups are actively exploring alternatives. Since BMP-6 has been demonstrated to be more osteoinductive, its use, either alone or together with other growth factors, might be an interesting option. In this work, we have compared the effect of BMP-2, BMP-6, or insulin-like growth factor-1 (IGF-1), either alone or in combination. Murine preosteoblasts were treated with 15 nM IGF-1 and/or 6 nM BMP-2 or -6 and the expression of osteogenic marker genes, proliferation, and alkaline phosphatase (ALP) activity in vitro were analyzed. The results showed that IGF-1 greatly enhanced the BMP-induced osteogenic differentiation of these cells in general and that the ALP activity in the cultures was higher when the combination was made with BMP-6 than with BMP-2. Furthermore, we tested the osteogenic potential of these treatments in vivo by loading 25 pmoles of IGF-1 and/or 10 pmoles of BMP-2 or -6 onto absorbable collagen sponges and implanting them into an ectopic bone formation model in rats. This study revealed that only BMP-6 was able to induce bone formation at the used dose and that the addition of IGF-1 contributed to an increase of the mineralization in the implants. Hence, the combination of BMP-6 with IGF-1 might be a better alternative than BMP-2 for orthopedic surgery or bone tissue engineering approaches. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1867-1875, 2017. © 2017 Wiley Periodicals, Inc.

  9. Effect of bone mesenchymal stem cells transplantation on the micro-environment of early osteonecrosis of the femoral head.

    PubMed

    Song, Huanjin; Tao, Li; Wang, Fang; Wang, Weizhuo; Wei, Yongchang; Shen, Wenjun; Zhou, Fuling

    2015-01-01

    Autologous implantation of bone mesenchymal stem cells (BMSCs) has achieved promising clinical efficacy for the treatment of early-stage osteonecrosis of the femoral head (ONFH). However, the underlying mechanisms are not completely elucidated. Here, we investigated the effect of BMSCs on the early ONFH in vitro and in vivo. In co-cultured system, primary BMSCs enhanced the activity and inhibited the apoptosis of primary OB. The concentrations of VEGF and BMP-2 in the co-cultured medium were significantly higher than those without co-culture. Importantly, BMSCs implantation increased OB, capillaries and VEGF and BMP-2 expressions of the necrotic areas of femoral head in the ONFH rabbits. In conclusion, our results indicated that BMSCs treated the early ONFH possibly through increasing OB and capillaries, as well as VEGF and BMP-2 expression in the femoral head. These results provided possible mechanisms for the treatment of early-stage ONFH with BMSCs transplantation.

  10. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation

    PubMed Central

    Levet, Sandrine; Ciais, Delphine; Merdzhanova, Galina; Mallet, Christine; Zimmers, Teresa A.; Lee, Se-Jin; Navarro, Fabrice P.; Texier, Isabelle; Feige, Jean-Jacques; Bailly, Sabine

    2013-01-01

    Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function. PMID:23741013

  11. Exogenous BMP7 in aortae of rats with chronic uremia ameliorates expression of profibrotic genes, but does not reverse established vascular calcification

    PubMed Central

    Gravesen, Eva; Lerche Mace, Maria; Nordholm, Anders; Hofman-Bang, Jacob; Hruska, Keith; Haagen Nielsen, Carsten; Kjær, Andreas; Olgaard, Klaus

    2018-01-01

    Hyperphosphatemia and vascular calcification are frequent complications of chronic renal failure and bone morphogenetic protein 7 (BMP7) has been shown to protect against development of vascular calcification in uremia. The present investigation examined the potential reversibility of established uremic vascular calcification by treatment of uremic rats with BMP7. A control model of isogenic transplantation of a calcified aorta from uremic rats into healthy littermates examined whether normalization of the uremic environment reversed vascular calcification. Uremia and vascular calcification were induced in rats by 5/6 nephrectomy, high phosphate diet and alfacalcidol treatment. After 14 weeks severe vascular calcification was present and rats were allocated to BMP7, vehicle or aorta transplantation. BMP7 treatment caused a significant decrease of plasma phosphate to 1.56 ± 0.17 mmol/L vs 2.06 ± 0.34 mmol/L in the vehicle group even in the setting of uremia and high phosphate diet. Uremia and alfacalcidol resulted in an increase in aortic expression of genes related to fibrosis, osteogenic transformation and extracellular matrix calcification, and the BMP7 treatment resulted in a decrease in the expression of profibrotic genes. The total Ca-content of the aorta was however unchanged both in the abdominal aorta: 1.9 ± 0.6 μg/mg tissue in the vehicle group vs 2.2 ± 0.6 μg/mg tissue in the BMP7 group and in the thoracic aorta: 71 ± 27 μg/mg tissue in the vehicle group vs 54 ± 18 μg/mg tissue in the BMP7 group. Likewise, normalization of the uremic environment by aorta transplantation had no effect on the Ca-content of the calcified aorta: 16.3 ± 0.6 μg/mg tissue pre-transplantation vs 15.9 ± 2.3 μg/mg tissue post-transplantation. Aortic expression of genes directly linked to extracellular matrix calcification was not affected by BMP7 treatment, which hypothetically might explain persistent high Ca-content in established vascular calcification. The present results highlight the importance of preventing the development of vascular calcification in chronic kidney disease. Once established, vascular calcification persists even in the setting when hyperphosphatemia or the uremic milieu is abolished. PMID:29304096

  12. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells.

    PubMed

    Son, Hyo-Eun; Kim, Eun-Jung; Jang, Won-Gu

    2018-01-15

    Curcumin (diferuloylmethane or [1E,6E]-1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6heptadiene-3,5-dione) is a phenolic natural product derived from the rhizomes of the turmeric plant, Curcuma longa. It is reported to have various biological actions such as anti-oxidative, anti-inflammatory, and anti-cancer effects. However, the molecular mechanism of osteoblast differentiation by curcumin has not yet been reported. The cytotoxicity of curcumin was identified using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Expression of osteogenic markers and endoplasmic reticulum (ER) stress markers in C3H1-T1/2 cells were measured using reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blotting. Alkaline phosphatase (ALP) staining was performed to assess ALP activity in C3H10T1/2 cells. Transcriptional activity was detected using a luciferase reporter assay. Curcumin increased the expression of genes such as distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), ALP, and osteocalcin (OC), which subsequently induced osteoblast differentiation in C3H10T1/2 cells. In addition, ALP activity and mineralization was found to be increased by curcumin treatment. Curcumin also induced mild ER stress similar to bone morphogenetic protein 2 (BMP2) function in osteoblast cells. Next, we confirmed that curcumin increased mild ER stress and osteoblast differentiation similar to BMP2 in C3H10T1/2 mesenchymal stem cells. Transient transfection studies also showed that curcumin increased ATF6-Luc activity, while decreasing the activities of CREBH-Luc and SMILE-Luc. In addition, similar to BMP2, curcumin induced the phosphorylation of Smad 1/5/9. Overall, these results demonstrate that curcumin-induced mild ER stress increases osteoblast differentiation via ATF6 expression in C3H10T1/2 cells. Copyright © 2017. Published by Elsevier Inc.

  13. BMP4 Cooperates with Retinoic Acid to Induce the Expression of Differentiation Markers in Cultured Mouse Spermatogonia

    PubMed Central

    Feng, Yanmin; Feng, Xue; Wang, Xiuxia; Gan, Haiyun; Wang, Lixian; Lin, Xiwen

    2016-01-01

    Spermatogenesis is sustained by the proliferation and differentiation of spermatogonial stem cells (SSCs). However, the molecules controlling these processes remain largely unknown. Here, we developed a simplified high concentration serum-containing system for the culture of mouse SSCs. Analysis of SSCs markers and transplantation results revealed that the cultured spermatogonia retained stem cell characteristics after long-term in vitro propagation. Using this culture system, the expression and function of bone morphogenetic protein 4 (BMP4) were explored. Immunostaining showed that BMP4 was predominantly expressed in germ cells and that its level increased as spermatogenesis progresses. BMP4 receptors BMPR1A and BMPRII were present in spermatogonia, spermatocytes, and round spermatids. Moreover, despite the mRNAs of these two genes being present in mouse Sertoli cells, only BMPRII was detected by using Western blotting assays. While exogenous BMP4 by itself did not induce the expression of Stra8 and c-Kit, two marker genes of differentiating spermatogonia, a significant cooperative effect of BMP4 and retinoic acid (RA) was observed. Moreover, pretreatment of cultured spermatogonia with the BMP4 antagonist Noggin could inhibit RA-induced expression of these two marker genes. In conclusion, BMP4 may exert autocrine effects and act cooperatively with RA to induce the differentiation of spermatogonia in vivo. PMID:27795714

  14. Morphological diversity of the avian foot is related with the pattern of msx gene expression in the developing autopod.

    PubMed

    Gañan, Y; Macias, D; Basco, R D; Merino, R; Hurle, J M

    1998-04-01

    The formation of the digits in amniota embryos is accompanied by apoptotic cell death of the interdigital mesoderm triggered through BMP signaling. Differences in the intensity of this apoptotic process account for the establishment of the different morphological types of feet observed in amniota (i.e., free-digits, webbed digits, lobulated digits). The molecular basis accounting for the differential pattern of interdigital cell death remains uncertain since the reduction of cell death in species with webbed digits is not accompanied by a parallel reduction in the pattern of expression of bmp genes in the interdigital regions. In this study we show that the duck interdigital web mesoderm exhibits an attenuated response to both BMP-induced apoptosis and TGFbeta-induced chondrogenesis in comparison with species with free digits. The attenuated response to these signals is accompanied by a reduced pattern of expression of msx-1 and msx-2 genes. Local application of FGF in the duck interdigit expands the domain of msx-2 expression but not the domain of msx-1 expression. This change in the expression of msx-2 is followed by a parallel increase in spontaneous and exogenous BMP-induced interdigital cell death, while the chondrogenic response to TGFbetas is unchanged. The regression of AER, as deduced by the pattern of extinction of fgf-8 expression, takes place in a similar fashion in the chick and duck regardless of the differences in interdigital cell death and msx gene expression. Implantation of BMP-beads in the distal limb mesoderm induces AER regression in both the chick and duck. This finding suggests an additional role for BMPs in the physiological regression of the AER. It is proposed that the formation of webbed vs free-digit feet in amniota results from a premature differentiation of the interdigital mesoderm into connective tissue caused by a reduced expression of msx genes in the developing autopod. Copyright 1998 Academic Press.

  15. Effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of BMP-2

    PubMed Central

    Han, Jinyou; He, Hong

    2016-01-01

    The aim of the study was to investigate the effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of bone morphogenetic protein-2 (BMP-2). Adult male Wistar rats (n=30), with an age range of 14–15 weeks, and an average weight of 250±16 g were used. The animals were randomly divided into the control and observation groups. The rats in the control group were injected with 25-dihydroxyvitamin (1,25-dihydroxycholecalciferol) into their dental ligament. The rats in the observation group were placed with an orthodontic device between the first molar and central incisor in the maxillary. On the first day after animal treatment, piezosurgery stimulation was performed on the first molar in maxillary. The changes of the movement distance of the first molar and gum surface temperature on days 1, 3, 5, 7 and 14 were then compared. Immunohistochemical staining was performed to detect the expression of BMP-2 of periodontal tissue in the tension side of the first molar. Tooth movement distance in the observation group on days 5, 7 and 14 was significantly longer than that in the control group (p<0.05). The gum surface temperature of the observation group was elevated to some extent, peaking after 20 min. BMP-2 mRNA and protein levels in the observation group were significantly higher than those of the control group at days 3, 5, 7 and 14 (p<0.05). In conclusion, piezosurgery may significantly accelerate the movement of orthodontic alveolar bone tooth of rats and be associated with an increasing BMP-2 expression. PMID:27882108

  16. Effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of BMP-2.

    PubMed

    Han, Jinyou; He, Hong

    2016-11-01

    The aim of the study was to investigate the effects of piezosurgery in accelerating the movement of orthodontic alveolar bone tooth of rats and the expression mechanism of bone morphogenetic protein-2 (BMP-2). Adult male Wistar rats (n=30), with an age range of 14-15 weeks, and an average weight of 250±16 g were used. The animals were randomly divided into the control and observation groups. The rats in the control group were injected with 25-dihydroxyvitamin (1,25-dihydroxycholecalciferol) into their dental ligament. The rats in the observation group were placed with an orthodontic device between the first molar and central incisor in the maxillary. On the first day after animal treatment, piezosurgery stimulation was performed on the first molar in maxillary. The changes of the movement distance of the first molar and gum surface temperature on days 1, 3, 5, 7 and 14 were then compared. Immunohistochemical staining was performed to detect the expression of BMP-2 of periodontal tissue in the tension side of the first molar. Tooth movement distance in the observation group on days 5, 7 and 14 was significantly longer than that in the control group (p<0.05). The gum surface temperature of the observation group was elevated to some extent, peaking after 20 min. BMP-2 mRNA and protein levels in the observation group were significantly higher than those of the control group at days 3, 5, 7 and 14 (p<0.05). In conclusion, piezosurgery may significantly accelerate the movement of orthodontic alveolar bone tooth of rats and be associated with an increasing BMP-2 expression.

  17. Bone Morphogenetic Protein 3 Controls Insulin Gene Expression and Is Down-regulated in INS-1 Cells Inducibly Expressing a Hepatocyte Nuclear Factor 1A–Maturity-onset Diabetes of the Young Mutation*

    PubMed Central

    Bonner, Caroline; Farrelly, Angela M.; Concannon, Caoimhín G.; Dussmann, Heiko; Baquié, Mathurin; Virard, Isabelle; Wobser, Hella; Kögel, Donat; Wollheim, Claes B.; Rupnik, Marjan; Byrne, Maria M.; König, Hans-Georg; Prehn, Jochen H. M.

    2011-01-01

    Inactivating mutations in the transcription factor hepatocyte nuclear factor (HNF) 1A cause HNF1A–maturity-onset diabetes of the young (HNF1A-MODY), the most common monogenic form of diabetes. To examine HNF1A-MODY-induced defects in gene expression, we performed a microarray analysis of the transcriptome of rat INS-1 cells inducibly expressing the common hot spot HNF1A frameshift mutation, Pro291fsinsC-HNF1A. Real-time quantitative PCR (qPCR), Western blotting, immunohistochemistry, reporter assays, and chromatin immunoprecipitation (ChIP) were used to validate alterations in gene expression and to explore biological activities of target genes. Twenty-four hours after induction of the mutant HNF1A protein, we identified a prominent down-regulation of the bone morphogenetic protein 3 gene (Bmp-3) mRNA expression. Reporter assays, qPCR, and Western blot analysis validated these results. In contrast, inducible expression of wild-type HNF1A led to a time-dependent increase in Bmp-3 mRNA and protein levels. Moreover, reduced protein levels of BMP-3 and insulin were detected in islets of transgenic HNF1A-MODY mice. Interestingly, treatment of naïve INS-1 cells or murine organotypic islet cultures with recombinant human BMP-3 potently increased their insulin levels and restored the decrease in SMAD2 phosphorylation and insulin gene expression induced by the HNF1A frameshift mutation. Our study suggests a critical link between HNF1A-MODY-induced alterations in Bmp-3 expression and insulin gene levels in INS-1 cells and indicates that the reduced expression of growth factors involved in tissue differentiation may play an important role in the pathophysiology of HNF1A-MODY. PMID:21628466

  18. Regulatory role of melatonin and BMP-4 in prolactin production by rat pituitary lactotrope GH3 cells.

    PubMed

    Ogura-Ochi, Kanako; Fujisawa, Satoshi; Iwata, Nahoko; Komatsubara, Motoshi; Nishiyama, Yuki; Tsukamoto-Yamauchi, Naoko; Inagaki, Kenichi; Wada, Jun; Otsuka, Fumio

    2017-08-01

    The effects of melatonin on prolactin production and its regulatory mechanism remain uncertain. We investigated the regulatory role of melatonin in prolactin production using rat pituitary lactotrope GH3 cells by focusing on the bone morphogenetic protein (BMP) system. Melatonin receptor activation, induced by melatonin and its receptor agonist ramelteon, significantly suppressed basal and forskolin-induced prolactin secretion and prolactin mRNA expression in GH3 cells. The melatonin MT2 receptor was predominantly expressed in GH3 cells, and the inhibitory effects of melatonin on prolactin production were reversed by treatment with the receptor antagonist luzindole, suggesting functional involvement of MT2 action in the suppression of prolactin release. Melatonin receptor activation also suppressed BMP-4-induced prolactin expression by inhibiting phosphorylation of Smad and transcription of the BMP-target gene Id-1, while BMP-4 treatment upregulated MT2 expression. Melatonin receptor activation suppressed basal, BMP-4-induced and forskolin-induced cAMP synthesis; however, BtcAMP-induced prolactin mRNA expression was not affected by melatonin or ramelteon, suggesting that MT2 activation leads to inhibition of prolactin production through the suppression of Smad signaling and cAMP synthesis. Experiments using intracellular signal inhibitors revealed that the ERK pathway is, at least in part, involved in prolactin induction by GH3 cells. Thus, a new regulatory role of melatonin involving BMP-4 in prolactin secretion was uncovered in lactotrope GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    PubMed Central

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  20. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells.

    PubMed

    Sugimoto, Asuna; Miyazaki, Aya; Kawarabayashi, Keita; Shono, Masayuki; Akazawa, Yuki; Hasegawa, Tomokazu; Ueda-Yamaguchi, Kimiko; Kitamura, Takamasa; Yoshizaki, Keigo; Fukumoto, Satoshi; Iwamoto, Tsutomu

    2017-12-18

    The extracellular environment regulates the dynamic behaviors of cells. However, the effects of hydrostatic pressure (HP) on cell fate determination of mesenchymal stem cells (MSCs) are not clearly understood. Here, we established a cell culture chamber to control HP. Using this system, we found that the promotion of osteogenic differentiation by HP is depend on bone morphogenetic protein 2 (BMP2) expression regulated by Piezo type mechanosensitive ion channel component 1 (PIEZO1) in MSCs. The PIEZO1 was expressed and induced after HP loading in primary MSCs and MSC lines, UE7T-13 and SDP11. HP and Yoda1, an activator of PIEZO1, promoted BMP2 expression and osteoblast differentiation, whereas inhibits adipocyte differentiation. Conversely, PIEZO1 inhibition reduced osteoblast differentiation and BMP2 expression. Furthermore, Blocking of BMP2 function by noggin inhibits HP induced osteogenic maker genes expression. In addition, in an in vivo model of medaka with HP loading, HP promoted caudal fin ray development whereas inhibition of piezo1 using GsMTx4 suppressed its development. Thus, our results suggested that PIEZO1 is responsible for HP and could functions as a factor for cell fate determination of MSCs by regulating BMP2 expression.

  1. Root bark of Sambucus Williamsii Hance promotes rat femoral fracture healing by the BMP-2/Runx2 signaling pathway.

    PubMed

    Yang, Bingyou; Lin, Xiaoying; Tan, Jinyan; She, Xian; Liu, Yan; Kuang, Haixue

    2016-09-15

    Sambucus Williamsii Hance (SWH) is a plant from a family of Caprifoliaceae, which has a long medical history of use as an effective folk treatment for fracture bruises. To evaluate the effects of 50% ethanol extracts of root-bark of Sambucus Williamsii Hance(EE-rbSWH) on fracture healing of rats and explore its mechanism of actions related to the BMP-2 signaling pathway. EE-rbSWH was orally administered at the doses of 340 and 680mg/kg to adult Sprague-Dawley rats with operation of open femur fracture completely for 2, 4 and 8 weeks. And the rats of sham operation and Model groups were administered Vehicle (distilled water 0.8mL/200g/day). Firstly, the bone X-ray morphology and bone mineral density(BMD) of the fracture site were observed and measured after anesthesia the rats at weeks 2, 4, and 8 after surgery, then the serum levels of alkaline phosphatase(ALP) and osteocalcin (BGP) were measured; Secondly, the tissue morphology of the fracture site was observed after sacrificed the rats; Thirdly, the formation of mineralized nodules in bone marrow stromal cells(BMSC) were evaluated at week 2; Lastly, the genes levels of BMP-2 and Runx2 in the femur were detected at week 2 and 4, and the proteins expression of BMP-2 signaling pathway (BMP-2, BMPRIB, BMPRII and Runx2) in the femur also were detected at week 2. EE-rbSWH remarkably accelerated fracture healing by promoting bone formation at all the time points of fracture healing. Mainly by increasing the BMD level at the fracture site, the levels of serum ALP and BGP, and also the numbers increasing of calcified nodules in BMSC. The mechanism studies, EE-rbSWH can promote fracture healing by enhancing the expressions of BMP-2 and Runx2 mRNA, and also the proteins of BMP-2, BMPRIB, BMPRII and Runx2 at the fracture site of rats. Our results suggested that 50% ethanol extracts of root-bark of Sambucus Williamsii Hance can accelerate fracture healing by recruitment of osteoblasts at the fracture site and through up-regulation of the BMP-2 signaling pathway. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Low-intensity pulsed ultrasound enhances bone morphogenetic protein expression of human mandibular fracture haematoma-derived cells.

    PubMed

    Huang, W; Hasegawa, T; Imai, Y; Takeda, D; Akashi, M; Komori, T

    2015-07-01

    We previously demonstrated that human mandibular fracture haematoma-derived cells (MHCs) play an important role in mandibular fracture healing and that low-intensity pulsed ultrasound (LIPUS) accelerates this effect by stimulating various osteogenic cytokines. In the present study, we investigated how LIPUS affects the expression of bone morphogenetic proteins (BMPs), which are also known to have the ability to induce bone formation. MHCs were isolated from human mandibular fracture haematomas and the cells were divided into two groups: a LIPUS (+) group and a LIPUS (-) group, both of which were cultured in osteogenic medium. LIPUS was applied to the LIPUS (+) group 20 min a day for 4, 8, 14, and 20 days (1.5 MHz, 30 mW/cm(2)). Real-time PCR and immunofluorescence studies were carried out to determine the expression of BMP-2, 4, and 7. Compared to the LIPUS (-) group, gene expression levels were significantly increased in the LIPUS (+) group for BMP-2 on day 20 (67.38 ± 26.59 vs. 11.52 ± 3.42, P < 0.001), for BMP-4 on days 14 (45.12 ± 11.06 vs. 9.20 ± 2.88, P = 0.045) and 20 (40.96 ± 24.81 vs. 3.22 ± 1.53, P = 0.035), and for BMP-7 on day 8 (48.11 ± 35.36 vs. 7.03 ± 3.96, P = 0.034). These findings suggest that BMP-2, 4, and 7 may be mediated by LIPUS therapy during the bone repair process. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells

    PubMed Central

    Park, Yu Mi; Lee, Won Taek; Bokara, Kiran Kumar; Seo, Su Kyoung; Park, Seung Hwa; Kim, Jae Hwan; Yenari, Midori A.; Park, Kyung Ah; Lee, Jong Eun

    2013-01-01

    Presently, few treatments for spinal cord injury (SCI) are available and none have facilitated neural regeneration and/or significant functional improvement. Agmatine (Agm), a guanidinium compound formed from decarboxylation of L-arginine by arginine decarboxylase, is a neurotransmitter/neuromodulator and been reported to exert neuroprotective effects in central nervous system injury models including SCI. The purpose of this study was to demonstrate the multifaceted effects of Agm on functional recovery and remyelinating events following SCI. Compression SCI in mice was produced by placing a 15 g/mm2 weight for 1 min at thoracic vertebra (Th) 9 segment. Mice that received an intraperitoneal (i.p.) injection of Agm (100 mg/kg/day) within 1 hour after SCI until 35 days showed improvement in locomotor recovery and bladder function. Emphasis was made on the analysis of remyelination events, neuronal cell preservation and ablation of glial scar area following SCI. Agm treatment significantly inhibited the demyelination events, neuronal loss and glial scar around the lesion site. In light of recent findings that expressions of bone morphogenetic proteins (BMPs) are modulated in the neuronal and glial cell population after SCI, we hypothesized whether Agm could modulate BMP- 2/4/7 expressions in neurons, astrocytes, oligodendrocytes and play key role in promoting the neuronal and glial cell survival in the injured spinal cord. The results from computer assisted stereological toolbox analysis (CAST) demonstrate that Agm treatment dramatically increased BMP- 2/7 expressions in neurons and oligodendrocytes. On the other hand, BMP- 4 expressions were significantly decreased in astrocytes and oligodendrocytes around the lesion site. Together, our results reveal that Agm treatment improved neurological and histological outcomes, induced oligodendrogenesis, protected neurons, and decreased glial scar formation through modulating the BMP- 2/4/7 expressions following SCI. PMID:23349763

  4. BMP9 inhibits the bone metastasis of breast cancer cells by downregulating CCN2 (connective tissue growth factor, CTGF) expression.

    PubMed

    Ren, Wei; Sun, Xiaoxiao; Wang, Ke; Feng, Honglei; Liu, Yuehong; Fei, Chang; Wan, Shaoheng; Wang, Wei; Luo, Jinyong; Shi, Qiong; Tang, Min; Zuo, Guowei; Weng, Yaguang; He, Tongchuan; Zhang, Yan

    2014-03-01

    Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-β superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.

  5. BMP signaling and podocyte markers are decreased in human diabetic nephropathy in association with CTGF overexpression.

    PubMed

    Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V; Lyons, Karen M; Nguyen, Tri Q; Goldschmeding, Roel

    2009-07-01

    Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF(+/+) and CTGF(+/-) mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF(+/-) mice, pSmad1/5/8 was preserved, compared with diabetic CTGF(+/+) mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1.

  6. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model.

    PubMed

    Park, Shin-Young; Kim, Kyoung-Hwa; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo

    2013-11-01

    Bone tissue healing is a dynamic, orchestrated process that relies on multiple growth factors and cell types. Platelet-derived growth factor-BB (PDGF-BB) is released from platelets at wound sites and induces cellular migration and proliferation necessary for bone regeneration in the early healing process. Bone morphogenetic protein-2 (BMP-2), the most potent osteogenic differentiation inducer, directs new bone formation at the sites of bone defects. This study evaluated a combinatorial treatment protocol of PDGF-BB and BMP-2 on bone healing in a critical-sized defect model. To mimic the bone tissue healing process, a dual delivery approach was designed to deliver the rhPDGF-BB protein transiently during the early healing phase, whereas BMP-2 was supplied by rat bone marrow stromal cells (BMSCs) transfected with an adenoviral vector containing the BMP2 gene (AdBMP2) for prolonged release throughout the healing process. In in vitro experiments, the dual delivery of rhPDGF-BB and BMP2 significantly enhanced cell proliferation. However, the osteogenic differentiation of BMSCs was significantly suppressed even though the amount of BMP-2 secreted by the AdBMP2-transfected BMSCs was not significantly affected by the rhPDGF-BB treatment. In addition, dual delivery inhibited the mRNA expression of BMP receptor type II and Noggin in BMSCs. In in vivo experiments, critical-sized calvarial defects in rats showed enhanced bone regeneration by dual delivery of autologous AdBMP2-transfected BMSCs and rhPDGF-BB in both the amount of new bone formed and the bone mineral density. These enhancements in bone regeneration were greater than those observed in the group treated with AdBMP2-transfected BMSCs alone. In conclusion, the dual delivery of rhPDGF-BB and AdBMP2-transfected BMSCs improved the quality of the regenerated bone, possibly due to the modulation of PDGF-BB on BMP-2-induced osteogenesis.

  7. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation.

    PubMed

    Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong

    2017-03-01

    Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.

  8. Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats.

    PubMed

    Li, Ming; Wu, Wei; Tan, Lei; Mu, Degong; Zhu, Dong; Wang, Jian; Zhao, Bin

    2015-09-25

    The present study aimed to investigate the impact of low-magnitude and high-frequency mechanical vibration with various lengths of resting period incorporated between loading cycles on the expression of osteogenesis-related proteins in a rat model of osteoporosis. The rats in the mechanical loading groups received low-magnitude and high-frequency vibration (35 Hz and acceleration of 0.25 g, 15 min/day) for 8 weeks. Bilateral humeral heads and femoral heads were then isolated, and protein levels of bone morphogenetic protein 2 (BMP-2), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (p-ERK1/2), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were determined by Western blotting. Increased levels of BMP-2, Runx2 and OCN were observed in rats receiving mechanical vibration. Total ERK1/2 protein remained unchanged, whereas the level of activated ERK1/2 (p-ERK1/2) increased after mechanical vibration. Vibration with incorporated resting period, regardless of length, was more effective in inducing expression of these osteogenic proteins, and the vibration with 7-day resting period had the most profound impact. Signals from low-magnitude and high-frequency mechanical vibration upregulated the expression of BMP-2 and Runx2, activated the ERK1/2 signaling pathway, and consequently led to increased expression of OCN. The anabolic effect of mechanical stimulation was enhanced with incorporation of resting period between loadings, and the one with 7-day resting period exhibited the strongest effect among all. Our results could provide a reference for development of mechanical stimulation as a non-pharmacological intervention for osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nell-1-Induced Bone Regeneration in Calvarial Defects

    PubMed Central

    Aghaloo, Tara; Cowan, Catherine M.; Chou, Yu-Fen; Zhang, Xinli; Lee, Haofu; Miao, Steve; Hong, Nichole; Kuroda, Shun’ichi; Wu, Benjamin; Ting, Kang; Soo, Chia

    2006-01-01

    Many craniofacial birth defects contain skeletal components requiring bone grafting. We previously identified the novel secreted osteogenic molecule NELL-1, first noted to be overexpressed during premature bone formation in calvarial sutures of craniosynostosis patients. Nell-1 overexpression significantly increases differentiation and mineralization selectively in osteoblasts, while newborn Nell-1 transgenic mice significantly increase premature bone formation in calvarial sutures. In the current study, cultured calvarial explants isolated from Nell-1 transgenic newborn mice (with mild sagittal synostosis) demonstrated continuous bone growth and overlapping sagittal sutures. Further investigation into gene expression cascades revealed that fibroblast growth factor-2 and transforming growth factor-β1 stimulated Nell-1 expression, whereas bone morphogenetic protein (BMP)-2 had no direct effect. Additionally, Nell-1-induced osteogenesis in MC3T3-E1 osteoblasts through reduction in the expression of early up-regulated osteogenic regulators (OSX and ALP) but induction of later markers (OPN and OCN). Grafting Nell-1 protein-coated PLGA scaffolds into rat calvarial defects revealed the osteogenic potential of Nell-1 to induce bone regeneration equivalent to BMP-2, whereas immunohistochemistry indicated that Nell-1 reduced osterix-producing cells and increased bone sialoprotein, osteocalcin, and BMP-7 expression. Insights into Nell-1-regulated osteogenesis coupled with its ability to stimulate bone regeneration revealed a potential therapeutic role and an alternative to the currently accepted techniques for bone regeneration. PMID:16936265

  10. A BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing hindbrain.

    PubMed

    Hornbruch, Amata; Ma, Grace; Ballermann, Mark A; Tumova, Katerina; Liu, Dan; Cairine Logan, C

    2005-07-01

    The divergent homeobox-containing transcription factor, Tlx-3 (also known as Hox11L2/Rnx), is required for proper formation of first-order relay sensory neurons in the developing vertebrate brainstem. To date, however, the inductive signals and transcriptional regulatory cascade underlying their development are poorly understood. We previously isolated the chick Tlx-3 homologue and showed it is expressed early (i.e. beginning at HH15) in distinct subcomponents of both the trigeminal/solitary and vestibular nuclei. Here we show via in vivo rhombomere inversions that expression of Tlx-3 is under control of local environmental signals. Our RNA in situ analysis shows expression of the BMP-specific receptor, Bmpr-1b, correlates well with Tlx-3. Furthermore, manipulation of the BMP signaling pathway in vivo via electroporation of expression vectors encoding either BMP or NOGGIN coupled with MASH1 gain-of-function experiments demonstrate that a BMP-mediated transcriptional cascade involving Cash1 and Tlx-3 specifies first-order relay sensory neurons in the developing brainstem. Notably, high-level Noggin misexpression results in an increase in newly differentiated Tlx-3+ neurons that correlates with a corresponding increase in the number of Calretinin+ neurons in vestibular nuclei at later developmental stages strongly suggesting that Tlx-3, in addition to being required for proper formation of somatic as well as visceral sensory neurons in the trigeminal and solitary nuclei, respectively, is sufficient for proper formation of special somatic sensory neurons in vestibular nuclei.

  11. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2

    PubMed Central

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng

    2011-01-01

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. PMID:21983003

  12. Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2.

    PubMed

    Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng

    2011-12-15

    During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification.

    PubMed

    Tribulo, Celeste; Aybar, Manuel J; Nguyen, Vu H; Mullins, Mary C; Mayor, Roberto

    2003-12-01

    There is evidence in Xenopus and zebrafish embryos that the neural crest/neural folds are specified at the border of the neural plate by a precise threshold concentration of a Bmp gradient. In order to understand the molecular mechanism by which a gradient of Bmp is able to specify the neural crest, we analyzed how the expression of Bmp targets, the Msx genes, is regulated and the role that Msx genes has in neural crest specification. As Msx genes are directly downstream of Bmp, we analyzed Msx gene expression after experimental modification in the level of Bmp activity by grafting a bead soaked with noggin into Xenopus embryos, by expressing in the ectoderm a dominant-negative Bmp4 or Bmp receptor in Xenopus and zebrafish embryos, and also through Bmp pathway component mutants in the zebrafish. All the results show that a reduction in the level of Bmp activity leads to an increase in the expression of Msx genes in the neural plate border. Interestingly, by reaching different levels of Bmp activity in animal cap ectoderm, we show that a specific concentration of Bmp induces msx1 expression to a level similar to that required to induce neural crest. Our results indicate that an intermediate level of Bmp activity specifies the expression of Msx genes in the neural fold region. In addition, we have analyzed the role that msx1 plays on neural crest specification. As msx1 has a role in dorsoventral pattering, we have carried out conditional gain- and loss-of-function experiments using different msx1 constructs fused to a glucocorticoid receptor element to avoid an early effect of this factor. We show that msx1 expression is able to induce all other early neural crest markers tested (snail, slug, foxd3) at the time of neural crest specification. Furthermore, the expression of a dominant negative of Msx genes leads to the inhibition of all the neural crest markers analyzed. It has been previously shown that snail is one of the earliest genes acting in the neural crest genetic cascade. In order to study the hierarchical relationship between msx1 and snail/slug we performed several rescue experiments using dominant negatives for these genes. The rescuing activity by snail and slug on neural crest development of the msx1 dominant negative, together with the inability of msx1 to rescue the dominant negatives of slug and snail strongly argue that msx1 is upstream of snail and slug in the genetic cascade that specifies the neural crest in the ectoderm. We propose a model where a gradient of Bmp activity specifies the expression of Msx genes in the neural folds, and that this expression is essential for the early specification of the neural crest.

  14. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation

    PubMed Central

    Steinbicker, Andrea U.; Sachidanandan, Chetana; Vonner, Ashley J.; Yusuf, Rushdia Z.; Deng, Donna Y.; Lai, Carol S.; Rauwerdink, Kristen M.; Winn, Julia C.; Saez, Borja; Cook, Colleen M.; Szekely, Brian A.; Roy, Cindy N.; Seehra, Jasbir S.; Cuny, Gregory D.; Scadden, David T.; Peterson, Randall T.; Bloch, Kenneth D.

    2011-01-01

    Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6–induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation. PMID:21393479

  15. Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo.

    PubMed

    Suliman, Salwa; Xing, Zhe; Wu, Xujun; Xue, Ying; Pedersen, Torbjorn O; Sun, Yang; Døskeland, Anne P; Nickel, Joachim; Waag, Thilo; Lygre, Henning; Finne-Wistrand, Anna; Steinmüller-Nethl, Doris; Krueger, Anke; Mustafa, Kamal

    2015-01-10

    A low dose of 1μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(l-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short distance effect prevents adverse systemic side effects. Copyright © 2014. Published by Elsevier B.V.

  16. Combined Effects of Vascular Endothelial Growth Factor and Bone Morphogenetic Protein 2 on Odonto/Osteogenic Differentiation of Human Dental Pulp Stem Cells In Vitro.

    PubMed

    Aksel, Hacer; Huang, George T-J

    2017-06-01

    The purpose of this study was to investigate whether combined and concerted delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2) enhances odonto/osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro. Various concentrations of VEGF and/or BMP-2 with or without the presence of odonto/osteogenic medium (OM) were added into DPSC cultures for 21 days. The mineral formation in cultures was evaluated using alizarin red stain (ARS). Optimal concentrations of VEGF and BMP-2 were codelivered to DPSCs for total of 21 days with the following experimental groups: (1) group 1: OM only, (2) group 2: OM + VEGF, (3) group 3: OM + BMP-2, and (4) group 4: OM + VEGF + BMP-2 (subgroup 4a: VEGF present the first 7 days, 4b: BMP-2 present the last 14 days, and 4c, both present for 21 days). Cultures were then subjected to quantitative ARS analysis or harvested for quantitative polymerase chain reaction analysis for the expression of core-binding factor alpha 1 (CBFA1), alkaline phosphatase (ALP), and dentin matrix protein 1 (DMP-1). No mineral formation was detected by ARS when VEGF and/or BMP-2 were used without OM. OM + VEGF, but not OM + BMP-2, formed more mineralization than OM (P < .05). In the codelivery groups, the highest mineralization was observed in OM + VEGF and subgroup 4a compared with OM or the other groups (P < .05). Quantitative polymerase chain reaction analysis showed that CBFA1, ALP, and DMP-1 levels were higher in groups 2, 3, and 4a compared with 4b and 4c (P < .05). CBFA1 expressed higher in groups 2, 3, and 4a compared with OM (P < .05). For ALP expression, only subgroup 4a expressed higher than OM (P < .05). No difference was detected between groups 2 and 3 (P > .05) in the expression of the 3 genes. VEGF addition in the early phase rather than a continuous presence of both VEGF and BMP-2 enhances odonto/osteogenic differentiation of DPSCs. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. BMP15 regulates AMH expression via the p38 MAPK pathway in granulosa cells from goat.

    PubMed

    Zhao, Zhongquan; Guo, Fangyue; Sun, Xiaowei; He, Qijie; Dai, Zinuo; Chen, Xiaochuan; Zhao, Yongju; Wang, Jian

    2018-05-31

    Anti-Mullerian hormone (AMH), a member of the TGF-β superfamily, is produced by granulosa cells (GCs) of preantral and small antral follicles and plays a role in regulating the recruitment of primordial follicles and the FSH-dependent development of follicles. However, the regulation of AMH expression in follicles remains poorly understood. The objectives of this study were to determine the following: 1. the association between bone morphogenetic protein 15 (BMP15) and AMH; 2. whether BMP15 can regulate the expression of AMH by inhibiting the p38 MAPK pathway; and 3. whether SRY-related HMG box 9 (SOX9), a transcription factor for AMH, is involved in the regulation of AMH expression by BMP15. In this study, an inhibitor of p38 MAPK and an siRNA specific for p38 MAPK were used to prevent the function of the p38 MAPK signaling pathway. Then, AMH mRNA expression and AMH secretion were detected in goat GCs using an RT-PCR assay and ELISA, respectively, after treatment with BMP15. The results indicated that BMP15 up-regulates the transcription of AMH and that the inhibition of p38 MAPK decreases the BMP15-induced expression of AMH and SOX9, suggesting that BMP15 up-regulates the expression of AMH via the p38 MAPK signaling pathway, and this process involves the SOX9 transcription factor. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. The human chondrosarcoma HCS-2/8 cell line is responsive to BMP-7, but not to IL-1beta.

    PubMed

    Saas, Joachim; Gebauer, Matthias; Jacobi, Carsten; Haag, Jochen; Takigawa, Masaharu; Aigner, Thomas

    2005-05-01

    Cultures of primary chondrocytes as in vitro model systems for studying the cellular behavior of chondrocytes are notoriously difficult to cultivate and propagate. One way to circumvent these problems appears to be the use of immortalized/immortal chondrocytic cell lines. In the present study, we were interested whether the chondrosarcoma derived HCS-2/8 cells are suitable for studying major cellular reaction pattern in response to key anabolic (BMP-7) and catabolic (IL-1beta) factors. Therefore, we used cDNA array and real-time PCR technology in order to evaluate gene expression triggered by stimulation with IL-1beta (0,1-100 ng/ml) and BMP-7 in confluent monolayer cultures. HCS-2/8 cells hardly responded to IL-1beta, but showed good responsiveness to BMP-7. We found 12 genes up- and 17 significantly down-regulated by BMP-7 (out of 340 investigated genes). Besides the expected activation of anabolic genes chondrocytic cells after BMP-stimulation try to neutralize activation of the BMP-signalling cascade by expressing intra- and extracellular BMP-antagonists. Chondrosarcoma derived cell lines are a potential substitute for primary articular chondrocytes promising consistent expression of a differentiated chondrocyte phenotype with sufficient proliferative capacity. However, as shown by this study one needs to carefully select the cell line depending on the effects which one intends to study. In this respect, HCS-2/8 cells are a validated tool for studying BMP-effects on chondrocytes, but not e.g. effects of interleukin-1.

  19. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    PubMed

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future sites of tooth formation, creating a positive feedback loop that maintains expression of both genes in tooth mesenchymal cells.

  20. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    PubMed

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  1. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications.

    PubMed

    Bhakta, Gajadhar; Ekaputra, Andrew K; Rai, Bina; Abbah, Sunny A; Tan, Tuan Chun; Le, Bach Quang; Chatterjea, Anindita; Hu, Tao; Lin, Tingxuan; Arafat, M Tarik; van Wijnen, Andre J; Goh, James; Nurcombe, Victor; Bhakoo, Kishore; Birch, William; Xu, Li; Gibson, Ian; Wong, Hee-Kit; Cool, Simon M

    2018-05-01

    Interbody spinal fusion relies on the use of external fixation and the placement of a fusion cage filled with graft materials (scaffolds) without regard for their mechanical performance. Stability at the fusion site is instead reliant on fixation hardware combined with a selected cage. Ideally, scaffolds placed into the cage should both support the formation of new bone and contribute to the mechanical stability at the fusion site. We recently developed a scaffold consisting of silane-modified PCL-TCP (PCL-siTCP) with mechanical properties that can withstand the higher loads generated in the spine. To ensure the scaffold more closely mimicked the bone matrix, we incorporated collagen (Col) and a heparan sulfate glycosaminoglycan sugar (HS3) with increased affinity for heparin-binding proteins such as bone morphogenetic protein-2 (BMP-2). The osteostimulatory characteristic of this novel device delivering exogenous BMP2 was assessed in vitro and in vivo as a prelude to future spinal fusion studies with this device. A combination of cell-free assays (BMP2 release), progenitor cell-based assays (BMP2 bioactivity, cell proliferation and differentiation), and rodent ectopic bone formation assays was used to assess the osteostimulatory characteristics of the PCL-siTCP-based scaffolds. Freshly prepared rat mesenchymal stem cells were used to determine reparative cell proliferation and differentiation on the PCL-siTCP-based scaffolds over a 28-day period in vitro. The bioactivity of BMP2 released from the scaffolds was assessed on progenitor cells over a 28-day period using ALP activity assays and release kinetics as determined by enzyme-linked immunosorbent assay. For ectopic bone formation, intramuscular placement of scaffolds into Sprague Dawley rats (female, 4 weeks old, 120-150 g) was achieved in five animals, each receiving four treatments randomized for location along the limb. The four groups tested were (1) PCL-siTCP/Col (5-mm diameter×1-mm thickness), PCL-siTCP/Col/BMP2 (5 µg), (3) PCL-siTCP/Col/HS3 (25 µg), and (4) PCL-siTCP/Col/HS3/BMP2 (25 and 5 µg, respectively). Bone formation was evaluated at 8 weeks post implantation by microcomputed tomography (µCT) and histology. Progenitor cell-based assays (proliferation, mRNA transcripts, and ALP activity) confirmed that BMP2 released from PCL-siTCP/Col/HS3 scaffolds increased ALP expression and mRNA levels of the osteogenic biomarkers Runx2, Col1a2, ALP, and bone gla protein-osteocalcin compared with devices without HS3. When the PCL-siTCP/Col/HS3/BMP2 scaffolds were implanted into rat hamstring muscle, increased bone formation (as determined by two-dimensional and three-dimensional µCTs and histologic analyses) was observed compared with scaffolds lacking BMP2. More consistent increases in the amount of ectopic bone were observed for the PCL-siTCP/Col/HS3/BMP2 implants compared with PCL-siTCP/Col/BMP2. Also, increased mineralizing tissue within the pores of the scaffold was seen with modified-tetrachrome histology, a result confirmed by µCT, and a modest but detectable increase in both the number and the thickness of ectopic bone structures were observed with the PCL-siTCP/Col/HS3/BMP2 implants. The combination of PCL-siTCP/Col/HS3/BMP2 thus represents a promising avenue for further development as a bone graft alternative for spinal fusion surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dorsoventral patterning in hemichordates: insights into early chordate evolution.

    PubMed

    Lowe, Christopher J; Terasaki, Mark; Wu, Michael; Freeman, Robert M; Runft, Linda; Kwan, Kristen; Haigo, Saori; Aronowicz, Jochanan; Lander, Eric; Gruber, Chris; Smith, Mark; Kirschner, Marc; Gerhart, John

    2006-09-01

    We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called "dorsal." On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.

  3. Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution

    PubMed Central

    Lowe, Christopher J; Terasaki, Mark; Wu, Michael; Freeman, Robert M; Runft, Linda; Kwan, Kristen; Haigo, Saori; Aronowicz, Jochanan; Lander, Eric; Gruber, Chris; Smith, Mark; Kirschner, Marc; Gerhart, John

    2006-01-01

    We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other. PMID:16933975

  4. Activation of the PI3K/Akt pathway mediates bone morphogenetic protein 2-induced invasion of pancreatic cancer cells Panc-1.

    PubMed

    Chen, Xiong; Liao, Jie; Lu, YeBin; Duan, XiaoHui; Sun, WeiJia

    2011-06-01

    Bone morphogenetic proteins (BMPs) signaling has an emerging role in pancreatic cancer. However, because of the multiple effects of different BMPs, no final conclusions have been made as to the role of BMPs in pancreatic cancer. In our studies, we have focused on bone morphogenetic protein 2(BMP-2) because it induces an epithelial to mesenchymal transition (EMT) and accelerates invasion in the human pancreatic cancer cell line Panc-1. It has been reported that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates invasion of gastric and colon cancer cells, which is unrevealed in pancreatic cancer cells. The objective of our study was to investigate whether BMP-2 mediated invasion might pass through the PI3K/Akt pathway. Our results show that expression of phosphorylation of Akt was increased by treatment with BMP-2, but not Noggin, a BMP-2 antagonist. Then pretreatment of Panc-1 cells with LY294002, an inhibitor of the PI3K/AKT pathway, significantly inhibited BMP-2-induced EMT and invasiveness. The data suggest that BMP-2 accelerates invasion of panc-1 cells via the PI3K/AKT pathway in panc-1 cells, which gives clues to searching new therapy targets in advanced pancreatic cancer.

  5. Osteogenic Response to BMP-2 of hMSCs Grown on Apatite-Coated Scaffolds

    PubMed Central

    Davis, Hillary E.; Case, Erin M.; Miller, Stephanie L.; Genetos, Damian C.; Leach, J. Kent

    2011-01-01

    Osteoconductive materials play a critical role in promoting integration with surrounding bone tissue and resultant bone repair in vivo. However, the impact of 3D osteoconductive substrates coupled with soluble signals on progenitor cell differentiation is not clear. In this study, we investigated the influence of bone morphogenetic protein-2 (BMP-2) concentration on the osteogenic differentiation of human mesenchymal stem cells (hMSCs) when seeded in carbonated apatite-coated polymer scaffolds. Mineralized scaffolds were more hydrophilic and adsorbed more BMP-2 compared to nonmineralized scaffolds. Changes in alkaline phosphatase (ALP) activity within stimulated hMSCs were dependent on the dose of BMP-2 and the scaffold composition. We detected more cell-secreted calcium on mineralized scaffolds at all time points, and higher BMP-2 concentrations resulted in increased ALP and calcium levels. RUNX2 and IBSP gene expression within hMSCs was affected by both substrate and soluble signals, SP7 by soluble factors, and SPARC by substrate-mediated cues. The present data indicate that a combination of apatite and BMP-2 do not simply enhance the osteogenic response of hMSCs, but act through multiple pathways that may be both substrate- and growth factor-mediated. Thus, multiple signaling strategies will likely be necessary to achieve optimal bone regeneration. PMID:21656707

  6. Differences in fat and muscle mass associated with a functional human polymorphism in a post-transcriptional BMP2 gene regulatory element.

    PubMed

    Devaney, Joseph M; Tosi, Laura L; Fritz, David T; Gordish-Dressman, Heather A; Jiang, Shan; Orkunoglu-Suer, Funda E; Gordon, Andrew H; Harmon, Brennan T; Thompson, Paul D; Clarkson, Priscilla M; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Brandoli, Cinzia; Hoffman, Eric P; Rogers, Melissa B

    2009-08-15

    A classic morphogen, bone morphogenetic protein 2 (BMP2) regulates the differentiation of pluripotent mesenchymal cells. High BMP2 levels promote osteogenesis or chondrogenesis and low levels promote adipogenesis. BMP2 inhibits myogenesis. Thus, BMP2 synthesis is tightly controlled. Several hundred nucleotides within the 3' untranslated regions of BMP2 genes are conserved from mammals to fishes indicating that the region is under stringent selective pressure. Our analyses indicate that this region controls BMP2 synthesis by post-transcriptional mechanisms. A common A to C single nucleotide polymorphism (SNP) in the BMP2 gene (rs15705, +A1123C) disrupts a putative post-transcriptional regulatory motif within the human ultra-conserved sequence. In vitro studies indicate that RNAs bearing the A or C alleles have different protein binding characteristics in extracts from mesenchymal cells. Reporter genes with the C allele of the ultra-conserved sequence were differentially expressed in mesenchymal cells. Finally, we analyzed MRI data from the upper arm of 517 healthy individuals aged 18-41 years. Individuals with the C/C genotype were associated with lower baseline subcutaneous fat volumes (P = 0.0030) and an increased gain in skeletal muscle volume (P = 0.0060) following resistance training in a cohort of young males. The rs15705 SNP explained 2-4% of inter-individual variability in the measured parameters. The rs15705 variant is one of the first genetic markers that may be exploited to facilitate early diagnosis, treatment, and/or prevention of diseases associated with poor fitness. Furthermore, understanding the mechanisms by which regulatory polymorphisms influence BMP2 synthesis will reveal novel pharmaceutical targets for these disabling conditions. (c) 2009 Wiley-Liss, Inc.

  7. Differences in Fat and Muscle Mass Associated With a Functional Human Polymorphism in a Post-Transcriptional BMP2 Gene Regulatory Element

    PubMed Central

    Devaney, Joseph M.; Tosi, Laura L.; Fritz, David T.; Gordish-Dressman, Heather A.; Jiang, Shan; Orkunoglu-Suer, Funda E.; Gordon, Andrew H.; Harmon, Brennan T.; Thompson, Paul D.; Clarkson, Priscilla M.; Angelopoulos, Theodore J.; Gordon, Paul M.; Moyna, Niall M.; Pescatello, Linda S.; Visich, Paul S.; Zoeller, Robert F.; Brandoli, Cinzia; Hoffman, Eric P.; Rogers, Melissa B.

    2014-01-01

    A classic morphogen, bone morphogenetic protein 2 (BMP2) regulates the differentiation of pluripotent mesenchymal cells. High BMP2 levels promote osteogenesis or chondrogenesis and low levels promote adipogenesis. BMP2 inhibits myogenesis. Thus, BMP2 synthesis is tightly controlled. Several hundred nucleotides within the 3′ untranslated regions of BMP2 genes are conserved from mammals to fishes indicating that the region is under stringent selective pressure. Our analyses indicate that this region controls BMP2 synthesis by post-transcriptional mechanisms. A common A to C single nucleotide polymorphism (SNP) in the BMP2 gene (rs15705, +A1123C) disrupts a putative post-transcriptional regulatory motif within the human ultra-conserved sequence. In vitro studies indicate that RNAs bearing the A or C alleles have different protein binding characteristics in extracts from mesenchymal cells. Reporter genes with the C allele of the ultra-conserved sequence were differentially expressed in mesenchymal cells. Finally, we analyzed MRI data from the upper arm of 517 healthy individuals aged 18–41 years. Individuals with the C/C genotype were associated with lower baseline subcutaneous fat volumes (P = 0.0030) and an increased gain in skeletal muscle volume (P = 0.0060) following resistance training in a cohort of young males. The rs15705 SNP explained 2–4% of inter-individual variability in the measured parameters. The rs15705 variant is one of the first genetic markers that maybe exploited to facilitate early diagnosis, treatment, and/or prevention of diseases associated with poor fitness. Furthermore, understanding the mechanisms by which regulatory polymorphisms influence BMP2 synthesis will reveal novel pharmaceutical targets for these disabling conditions. PMID:19492344

  8. Chondrogenesis of Embryonic Stem Cell-Derived Mesenchymal Stem Cells Induced by TGFβ1 and BMP7 Through Increased TGFβ Receptor Expression and Endogenous TGFβ1 Production.

    PubMed

    Lee, Patrick T; Li, Wan-Ju

    2017-01-01

    For decades stem cells have proven to be invaluable to the study of tissue development. More recently, mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) (ESC-MSCs) have emerged as a cell source with great potential for the future of biomedical research due to their enhanced proliferative capability compared to adult tissue-derived MSCs and effectiveness of musculoskeletal lineage-specific cell differentiation compared to ESCs. We have previously compared the properties and differentiation potential of ESC-MSCs to bone marrow-derived MSCs. In this study, we evaluated the potential of TGFβ1 and BMP7 to induce chondrogenic differentiation of ESC-MSCs compared to that of TGFβ1 alone and further investigated the cellular phenotype and intracellular signaling in response to these induction conditions. Our results showed that the expression of cartilage-associated markers in ESC-MSCs induced by the TGFβ1 and BMP7 combination was increased compared to induction with TGFβ1 alone. The TGFβ1 and BMP7 combination upregulated the expression of TGFβ receptor and the production of endogenous TGFβs compared to TGFβ1 induction. The growth factor combination also increasingly activated both of the TGF and BMP signaling pathways, and inhibition of the signaling pathways led to reduced chondrogenesis of ESC-MSCs. Our findings suggest that by adding BMP7 to TGFβ1-supplemented induction medium, ESC-MSC chondrogenesis is upregulated through increased production of endogenous TGFβ and activities of TGFβ and BMP signaling. J. Cell. Biochem. 118: 172-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    PubMed

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  10. BMP Signaling and Podocyte Markers Are Decreased in Human Diabetic Nephropathy in Association With CTGF Overexpression

    PubMed Central

    Turk, Tamara; Leeuwis, Jan Willem; Gray, Julia; Torti, Suzy V.; Lyons, Karen M.; Nguyen, Tri Q.; Goldschmeding, Roel

    2009-01-01

    Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009) PMID:19255250

  11. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis.

    PubMed

    Gupta, Sunny; Zhu, Hao; Zon, Leonard I; Evans, Todd

    2006-06-01

    The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.

  12. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6

    PubMed Central

    Mouillesseaux, Kevin P.; Wiley, David S.; Saunders, Lauren M.; Wylie, Lyndsay A.; Kushner, Erich J.; Chong, Diana C.; Citrin, Kathryn M.; Barber, Andrew T.; Park, Youngsook; Kim, Jun-Dae; Samsa, Leigh Ann; Kim, Jongmin; Liu, Jiandong; Jin, Suk-Won; Bautch, Victoria L.

    2016-01-01

    Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation. PMID:27834400

  13. Bone morphogenetic protein signaling is impaired in an Hfe knockout mouse model of hemochromatosis

    PubMed Central

    Corradini, Elena; Garuti, Cinzia; Montosi, Giuliana; Ventura, Paolo; Andriopoulos, Billy; Lin, Herbert Y.; Pietrangelo, Antonello; Babitt, Jodie L.

    2009-01-01

    Background and Aims Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis (HH). Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in HH mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression. We investigated whether HFE is involved in BMP6-SMAD regulation of hepcidin expression. Methods The BMP6-SMAD pathway was examined in Hfe knockout (KO) mice and in wild-type (WT) mice as controls. Mice were placed on diets of varying iron content. Hepcidin induction by BMP6 was examined in primary hepatocytes from Hfe KO mice; data were compared with those of WT mice. Results Liver levels of Bmp6 mRNA were higher in Hfe KO mice; these were appropriate for the increased hepatic levels of iron in these mice, compared with WT mice. However, levels of hepatic phosphorylated Smad 1/5/8 protein (an intracellular mediator of Bmp6 signaling) and Id1 mRNA (a target gene of Bmp6) were inappropriately low for the body iron burden and Bmp6 mRNA levels in Hfe KO, compared with WT mice. BMP6 induction of hepcidin expression was reduced in Hfe KO hepatocytes compared with WT hepatocytes. Conclusions HFE is not involved in regulation of BMP6 by iron, but does regulate the downstream signals of BMP6 that are triggered by iron. PMID:19591830

  14. Traf2 interacts with Smad4 and regulates BMP signaling pathway in MC3T3-E1 osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Koichi, E-mail: shimada-ki@dent.nihon-u.ac.jp; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo; Ikeda, Kyoko

    2009-12-18

    Bone morphogenetic proteins (BMPs) play important roles in osteoblast differentiation and maturation. In mammals, the BMP-induced receptor-regulated Smads form complexes with Smad4. These complexes translocate and accumulate in the nucleus, where they regulate the transcription of various target genes. However, the function of Smad4 remains unclear. We performed a yeast two-hybrid screen using Smad4 as bait and a cDNA library derived from bone marrow, to indentify the proteins interacting with Smad4. cDNA clones for Tumor necrosis factor (TNF) receptor-associated factor 2 (Traf2) were identified, and the interaction between the endogenous proteins was confirmed in the mouse osteoblast cell line MC3T3-E1.more » To investigate the function of Traf2, we silenced it with siRNA. The level of BMP-2 protein in the medium, the expression levels of the Bmp2 gene and BMP-induced transcription factor genes, including Runx2, Dlx5, Msx2, and Sp7, and the phosphorylated-Smad1 protein level were increased in cells transfected with Traf2 siRNA. The nuclear accumulation of Smad1 increased with TNF-{alpha} stimulation for 30 min at Traf2 silencing. These results suggest that the TNF-{alpha}-stimulated nuclear accumulation of Smad1 may be dependent on Traf2. Thus, the interaction between Traf2 and Smad4 may play a role in the cross-talk between TNF-{alpha} and BMP signaling pathways.« less

  15. BMP regulates regional gene expression in the dorsal otocyst through canonical and non-canonical intracellular pathways

    PubMed Central

    2016-01-01

    The inner ear consists of two otocyst-derived, structurally and functionally distinct components: the dorsal vestibular and ventral auditory compartments. BMP signaling is required to form the vestibular compartment, but how it complements other required signaling molecules and acts intracellularly is unknown. Using spatially and temporally controlled delivery of signaling pathway regulators to developing chick otocysts, we show that BMP signaling regulates the expression of Dlx5 and Hmx3, both of which encode transcription factors essential for vestibular formation. However, although BMP regulates Dlx5 through the canonical SMAD pathway, surprisingly, it regulates Hmx3 through a non-canonical pathway involving both an increase in cAMP-dependent protein kinase A activity and the GLI3R to GLI3A ratio. Thus, both canonical and non-canonical BMP signaling establish the precise spatiotemporal expression of Dlx5 and Hmx3 during dorsal vestibular development. The identification of the non-canonical pathway suggests an intersection point between BMP and SHH signaling, which is required for ventral auditory development. PMID:27151948

  16. Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage

    PubMed Central

    Garrison, Presley; Yue, Shanna; Hanson, Jeffrey; Baron, Jeffrey; Lui, Julian C.

    2017-01-01

    Articular and growth plate cartilage both arise from condensations of mesenchymal cells, but ultimately develop important histological and functional differences. Each is composed of three layers—the superficial, mid and deep zones of articular cartilage and the resting, proliferative and hypertrophic zones of growth plate cartilage. The bone morphogenetic protein (BMP) system plays an important role in cartilage development. A gradient in expression of BMP-related genes has been observed across growth plate cartilage, likely playing a role in zonal differentiation. To investigate the presence of a similar expression gradient in articular cartilage, we used laser capture microdissection (LCM) to separate murine growth plate and articular cartilage from the proximal tibia into their six constituent zones, and used a solution hybridization assay with color-coded probes (nCounter) to quantify mRNAs for 30 different BMP-related genes in each zone. In situ hybridization and immunohistochemistry were then used to confirm spatial expression patterns. Expression gradients for Bmp2 and 6 were observed across growth plate cartilage with highest expression in hypertrophic zone. However, intracellular BMP signaling, assessed by phospho-Smad1/5/8 immunohistochemical staining, appeared to be higher in the proliferative zone and prehypertrophic area than in hypertrophic zone, possibly due to high expression of Smad7, an inhibitory Smad, in the hypertrophic zone. We also found BMP expression gradients across the articular cartilage with BMP agonists primarily expressed in the superficial zone and BMP functional antagonists primarily expressed in the deep zone. Phospho-Smad1/5/8 immunohistochemical staining showed a similar gradient. In combination with previous evidence that BMPs regulate chondrocyte proliferation and differentiation, the current findings suggest that BMP signaling gradients exist across both growth plate and articular cartilage and that these gradients may contribute to the spatial differentiation of chondrocytes in the postnatal endochondral skeleton. PMID:28467498

  17. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians.

    PubMed

    Gaviño, Michael A; Reddien, Peter W

    2011-02-22

    Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway, BMP signaling, controls development of the dorsoventral (DV) axis throughout the Bilateria. In vertebrates, spatially opposed expression of the BMP family proteins Bmp4 and Admp (antidorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal. bmp4 orthologs have been identified in all three groups of the Bilateria (deuterostomes, ecdysozoans, and lophotrochozoans). By contrast, the absence of admp orthologs in ecdysozoans such as Drosophila and C. elegans has suggested that a regulatory circuit of oppositely expressed bmp4 and admp genes represents a deuterostome-specific innovation. Here we describe the existence of spatially opposed bmp and admp expression in a protostome. An admp ortholog (Smed-admp) is expressed ventrally and laterally in adult Schmidtea mediterranea planarians, opposing the dorsal-pole expression of Smed-bmp4. Smed-admp is required for regeneration following parasagittal amputation. Furthermore, Smed-admp promotes Smed-bmp4 expression and Smed-bmp4 inhibits Smed-admp expression, generating a regulatory circuit that buffers against perturbations of Bmp signaling. These results suggest that a Bmp/Admp regulatory circuit is a central feature of the Bilateria, used broadly for the establishment, maintenance, and regeneration of the DV axis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians

    PubMed Central

    Gaviño, Michael A.; Reddien, Peter W.

    2011-01-01

    Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway – BMP signaling – controls development of the dorsoventral (DV) axis throughout the Bilateria [1-8]. In vertebrates, spatially opposed expression of the BMP-family signaling proteins Bmp4 and Admp (anti-dorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal [9-11]. bmp4 orthologs have been identified in all three groups of the Bilateria (deuterostomes, ecdysozoans, and lophotrochozoans) [12]. By contrast, the absence of admp orthologs in ecdysozoans such as Drosophila and C. elegans has suggested that a DV regulatory circuit of oppositely expressed bmp4 and admp genes represents an innovation specific to deuterostomes. Here we describe the existence of spatially opposed bmp and admp expression in a protostome. An admp ortholog (Smed-admp) is expressed at the ventral pole and laterally in adult Schmidtea mediterranea planarians, spatially opposing the dorsal-pole domain of Smed-bmp4 expression. Smed-admp is required for planarian regeneration following parasagittal amputation. Furthermore, Smed-admp promotes Smed-bmp4 expression and Smed-bmp4 inhibits Smed-admp expression, generating a regulatory circuit that buffers against perturbations of Bmp signaling. These results suggest that a Bmp/Admp regulatory circuit is a central feature of the Bilateria, used broadly for the establishment, maintenance, and regeneration of the DV axis. PMID:21295483

  19. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube.

    PubMed

    Shimeld, S M; McKay, I J; Sharpe, P T

    1996-04-01

    The mouse homeobox-genes Msx-1 and Msx-2 are expressed in several areas of the developing embryo, including the neural tube, neural crest, facial processes and limb buds. Here we report the characterisation of a third mouse Msx gene, which we designate Msx-3. The embryonic expression of Msx-3 was found to differ from that of Msx-1 and -2 in that it was confined to the dorsal neural tube. In embryos with 5-8 somites a segmental pattern of expression was observed in the hindbrain, with rhombomeres 3 and 5 lacking Msx-3 while other rhombomeres expressed Msx-3. This pattern was transient, however, such that in embryos with 18 or more somites expression was continuous throughout the dorsal hindbrain and anterior dorsal spinal cord. Differentiation of dorsal cell types in the neural tube can be induced by addition of members of the Tgf-beta family. Additionally, Msx-1 and -2 have been shown to be activated by addition of the Tgf-beta family member Bmp-4. To determine if Bmp-4 could activate Msx-3, we incubated embryonic hindbrain explants with exogenous Bmp-4. The dorsal expression of Msx-3 was seen to expand into more ventral regions of the neurectoderm in Bmp-4-treated cultures, implying that Bmp-4 may be able to mimic an in vivo signal that induces Msx-3.

  20. Functional expression of BMP7 receptors in oral epithelial cells. Interleukin-17F production in response to BMP7.

    PubMed

    Nishio, Kensuke; Ozawa, Yasumasa; Ito, Hisanori; Kifune, Takashi; Narita, Tatsuya; Iinuma, Toshimitsu; Gionhaku, Nobuhito; Asano, Masatake

    2017-10-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily. Recently, BMP7 has been demonstrated to be produced by salivary glands and contribute to embryonic branching in mice. The BMP7 in saliva is thought to be delivered to the oral cavity and is expected to contact with stratified squamous epithelial cells which line the surface of oral mucosa. In this study, we attempted to investigate the effects of BMP7 on oral epithelial cells. The expression of BMP receptors was examined by reverse transcriptase-polymerase chain reaction (RT-PCR). OSCCs were stimulated with human recombinant BMP7 (hrBMP7) and the phosphorylation status of Smad1/5/8 was examined by western blotting. For microarray analysis, Ca9-22 cells were stimulated with 100 ng/mL of hrBMP7 and total RNA was extracted and subjected to real-time PCR. The 5'-untranslated region (5'-UTR) of IL-17 F gene was cloned to pGL4-basic vector and used for luciferase assay. Ca9-22 cells were pre-incubated with DM3189, a specific inhibitor of Smad1/5/8, for inhibition assay. All isoforms of type I and type II BMP receptors were expressed in both Ca9-22 and HSC3 cells and BMP7 stimulation resulted in the phosphorylation of Smad1/5/8 in both cell lines. The microarray analysis revealed the induction of interleukin-17 F (IL-17 F), netrin G2 (NTNG2) and hyaluronan synthase 1 (HAS1). Luciferase assay using the 5'-UTR of the IL-17 F gene revealed transcriptional regulation. Induced IL-17 F production was further confirmed at the protein level by ELISA. Smad1/5/8 inhibitor pretreatment decreased IL-17 F expression levels in the cells.

  1. Sensory Nerve Induced Inflammation Contributes to Heterotopic Ossification

    PubMed Central

    Salisbury, Elizabeth; Rodenberg, Eric; Sonnet, Corinne; Hipp, John; Gannon, Francis H.; Vadakkan, Tegy J.; Dickinson, Mary E.; Olmsted-Davis, Elizabeth A.; Davis, Alan R.

    2012-01-01

    Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1−/−), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation. PMID:21678472

  2. Fibroblast growth factor 2 inhibits up-regulation of bone morphogenic proteins and their receptors during osteoblastic differentiation of human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biver, Emmanuel, E-mail: ebiver@yahoo.fr; Department of Rheumatology, Lille University Hospital, Roger Salengro Hospital, 59037 Lille cedex; Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva, CH-1211 Geneva 14

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer FGF modulates BMPs pathway in HMSCs by down-regulating BMP/BMPR expression. Black-Right-Pointing-Pointer This effect is mediated by ERK and JNK MAPKs pathways. Black-Right-Pointing-Pointer Crosstalk between FGF and BMPs must be taken into account in skeletal bioengineering. Black-Right-Pointing-Pointer It must also be considered in the use of recombinant BMPs in orthopedic and spine surgeries. -- Abstract: Understanding the interactions between growth factors and bone morphogenic proteins (BMPs) signaling remains a crucial issue to optimize the use of human mesenchymal stem cells (HMSCs) and BMPs in therapeutic perspectives and bone tissue engineering. BMPs are potent inducers of osteoblastic differentiation. They exertmore » their actions via BMP receptors (BMPR), including BMPR1A, BMPR1B and BMPR2. Fibroblast growth factor 2 (FGF2) is expressed by cells of the osteoblastic lineage, increases their proliferation and is secreted during the healing process of fractures or in surgery bone sites. We hypothesized that FGF2 might influence HMSC osteoblastic differentiation by modulating expressions of BMPs and their receptors. BMP2, BMP4, BMPR1A and mainly BMPR1B expressions were up-regulated during this differentiation. FGF2 inhibited HMSCs osteoblastic differentiation and the up-regulation of BMPs and BMPR. This effect was prevented by inhibiting the ERK or JNK mitogen-activated protein kinases which are known to be activated by FGF2. These data provide a mechanism explaining the inhibitory effect of FGF2 on osteoblastic differentiation of HMSCs. These crosstalks between growth and osteogenic factors should be considered in the use of recombinant BMPs in therapeutic purpose of fracture repair or skeletal bioengineering.« less

  3. Activated protein C (APC) can increase bone anabolism via a protease-activated receptor (PAR)1/2 dependent mechanism.

    PubMed

    Shen, Kaitlin; Murphy, Ciara M; Chan, Ben; Kolind, Mille; Cheng, Tegan L; Mikulec, Kathy; Peacock, Lauren; Xue, Meilang; Park, Sang-Youel; Little, David G; Jackson, Chris J; Schindeler, Aaron

    2014-12-01

    Activated Protein C (APC) is an anticoagulant with strong cytoprotective properties that has been shown to promote wound healing. In this study APC was investigated for its potential orthopedic application using a Bone Morphogenetic Protein 2 (rhBMP-2) induced ectopic bone formation model. Local co-administration of 10 µg rhBMP-2 with 10 µg or 25 µg APC increased bone volume at 3 weeks by 32% (N.S.) and 74% (p<0.01) compared to rhBMP-2 alone. This was associated with a significant increase in CD31+ and TRAP+ cells in tissue sections of ectopic bone, consistent with enhanced vascularity and bone turnover. The actions of APC are largely mediated by its receptors endothelial protein C receptor (EPCR) and protease-activated receptors (PARs). Cultured pre-osteoblasts and bone nodule tissue sections were shown to express PAR1/2 and EPCR. When pre-osteoblasts were treated with APC, cell viability and phosphorylation of ERK1/2, Akt, and p38 were increased. Inhibition with PAR1 and sometimes PAR2 antagonists, but not with EPCR blocking antibodies, ameliorated the effects of APC on cell viability and kinase phosphorylation. These data indicate that APC can affect osteoblast viability and signaling, and may have in vivo applications with rhBMP-2 for bone repair. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. A new molecular logic for BMP-mediated dorsoventral patterning in the leech Helobdella.

    PubMed

    Kuo, Dian-Han; Weisblat, David A

    2011-08-09

    Bone morphogenetic protein (BMP) signaling is broadly implicated in dorsoventral (DV) patterning of bilaterally symmetric animals [1-3], and its role in axial patterning apparently predates the birth of Bilateria [4-7]. In fly and vertebrate embryos, BMPs and their antagonists (primarily Sog/chordin) diffuse and interact to generate signaling gradients that pattern fields of cells [8-10]. Work in other species reveals diversity in essential facets of this ancient patterning process, however. Here, we report that BMP signaling patterns the DV axis of segmental ectoderm in the leech Helobdella, a clitellate annelid (superphylum Lophotrochozoa) featuring stereotyped developmental cell lineages, but the detailed mechanisms of DV patterning in Helobdella differ markedly from fly and vertebrates. In Helobdella, BMP2/4s are expressed broadly, rather than in dorsal territory, whereas a dorsally expressed BMP5-8 specifies dorsal fate by short-range signaling. A BMP antagonist, gremlin, is upregulated by BMP5-8 in dorsolateral, rather than ventral territory, and yet the BMP-antagonizing activity of gremlin is required for normal ventral cell fates. Gremlin promotes ventral fates without disrupting dorsal fates by selectively inhibiting BMP2/4s, not BMP5-8. Thus, DV patterning in the development of the leech revealed unexpected evolutionary plasticity of the conserved BMP patterning system, presumably reflecting its adaptation to different modes of embryogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Increased bone morphogenetic protein 7 signalling in the kidneys of dogs affected with a congenital portosystemic shunt.

    PubMed

    van Dongen, Astrid M; Heuving, Susanne M; Tryfonidou, Marianna A; van Steenbeek, Frank G; Rothuizen, Jan; Penning, Louis C

    2015-05-01

    Dogs with a congenital portosystemic shunt (CPSS) often have enlarged and hyper-filtrating kidneys. Although expression of different growth factors has been well-described in the livers of dogs affected with a CPSS, their expression in the kidneys has yet to be determined. Bone morphogenetic protein 7 (BMP-7), hepatocyte growth factor (HGF) and transforming growth factor (TGF)-β have been implicated in renal development (BMP-7, HGF) or the onset of renal fibrosis (TGF-β). Moreover, BMP-7 and HGF have protective properties in renal fibrosis. In this study, the expression and activity of BMP-7 were investigated in renal biopsies obtained from 13 dogs affected with a CPSS and compared to similar samples from age-matched healthy control dogs. Both quantitative reverse-transcriptase PCR and Western blotting showed up-regulated BMP-7 signalling in kidneys of CPPS-affected dogs. These research findings may help to explain the renal pathology/dysfunction in dogs affected with a CPSS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    NASA Technical Reports Server (NTRS)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; hide

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  7. In vitro and in vivo evaluation of osteoinductivity and bone fusion ability of an activin a/BMP2 chimera (AB204): a comparison study between AB204 and rhBMP-2.

    PubMed

    Zheng, Guang Bin; Lee, Jae Hyup; Jin, Yuan-Zhe

    2017-12-01

    This study compared osteoinductivity and osteogenic capacity between AB204 and rhBMP-2 using hMSCs in vitro and a beagle's posterolateral spinal fusion model. Cultured hMSCs were treated with AB204 or rhBMP-2 with low to high doses. Three male beagles were performed posterolateral spinal fusion with biphasic calcium phosphate (2 ml) + AB204 or rhBMP-2 (20, 50 or 200 µg). They were euthanized after 8 weeks. The fusion rate and bone formation of spine samples were examined. AB204 had higher alkaline phosphatase activity, mineralization and osteogenic-related gene expression than rhBMP-2. Fusion rates in all rhBMP-2 groups were 0. They were 100% for 50 μg and 200 μg AB204 groups. Therefore, AB204 showed higher osteogenicity than rhBMP-2. It could be a better bone graft substitute.

  8. BMP-induced reprogramming of the neural retina into retinal pigment epithelium requires Wnt signalling

    PubMed Central

    Steinfeld, Jörg; Steinfeld, Ichie; Bausch, Alexander; Coronato, Nicola; Hampel, Meggi-Lee; Depner, Heike; Layer, Paul G.

    2017-01-01

    ABSTRACT In vertebrates, the retinal pigment epithelium (RPE) and photoreceptors of the neural retina (NR) comprise a functional unit required for vision. During vertebrate eye development, a conversion of the RPE into NR can be induced by growth factors in vivo at optic cup stages, but the reverse process, the conversion of NR tissue into RPE, has not been reported. Here, we show that bone morphogenetic protein (BMP) signalling can reprogram the NR into RPE at optic cup stages in chick. Shortly after BMP application, expression of Microphthalmia-associated transcription factor (Mitf) is induced in the NR and selective cell death on the basal side of the NR induces an RPE-like morphology. The newly induced RPE differentiates and expresses Melanosomalmatrix protein 115 (Mmp115) and RPE65. BMP-induced Wnt2b expression is observed in regions of the NR that become pigmented. Loss of function studies show that conversion of the NR into RPE requires both BMP and Wnt signalling. Simultaneous to the appearance of ectopic RPE tissue, BMP application reprogrammed the proximal RPE into multi-layered retinal tissue. The newly induced NR expresses visual segment homeobox-containing gene (Vsx2), and the ganglion and photoreceptor cell markers Brn3α and Visinin are detected. Our results show that high BMP concentrations are required to induce the conversion of NR into RPE, while low BMP concentrations can still induce transdifferentiation of the RPE into NR. This knowledge may contribute to the development of efficient standardized protocols for RPE and NR generation for cell replacement therapies. PMID:28546339

  9. Quantitative expression patterns of GDF9 and BMP15 genes in sheep ovarian follicles grown in vivo or cultured in vitro.

    PubMed

    Kona, S S R; Praveen Chakravarthi, V; Siva Kumar, A V N; Srividya, D; Padmaja, K; Rao, V H

    2016-01-15

    Quantitative patterns of expression of the growth differentiation factor 9 (GDF9) and bone morphogenic protein 15 (BMP15) genes in different development stages of in vivo and in vitro grown ovarian follicles in sheep were studied for the first time. Both GDF9 and BMP15 were expressed in the cumulus cells and oocytes at all the development stages of in vivo and in vitro grown ovarian follicles. Growth differentiation factor 9 and bone morphogenic protein 15 exhibited stage-specific undulations in the expression in the cumulus cells and oocytes isolated from in vivo grown ovarian follicles. These undulations could be related to discrete development events during the ovarian follicle development. The expression of GDF9 and BMP15 was highest (3.38 ± 0.02 and 2.69 ± 0.06, respectively; P ≤ 0.05) in the primordial follicles compared with preantral, early antral, antral, and large antral stages. Similarly, GDF9 and BMP15 expression in the cumulus cells (0 ± 0.16 and 0 ± 0.07) and oocytes (1.47 ± 0.07 and 1.32 ± 0.03) was lowest (P ≤ 0.05) in the in vivo grown antral follicles. In the cultured follicles, the stage-specific undulations observed in the expression of GDF9 and BMP15 in the in vivo grown follicles were either different or abolished. For example, in the oocytes from in vitro grown follicles, the expression of BMP15 did not change as the development progressed all the way from preantral to large antral follicle stage although in the oocytes from in vivo grown follicles BMP15 expression exhibited stage-specific variations. It is concluded that GDF9 and BMP15 follow a stage-specific pattern of expression during the in vivo development of ovarian follicles in sheep, and in vitro culture altered the stage-specific changes in the expression of these two genes. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Bmp 2 and bmp 7 induce odonto- and osteogenesis of human tooth germ stem cells.

    PubMed

    Taşlı, P Neslihan; Aydın, Safa; Yalvaç, Mehmet Emir; Sahin, Fikrettin

    2014-03-01

    Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.

  11. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries.

    PubMed

    Hernandez-Hurtado, Adelina A; Borrego-Soto, Gissela; Marino-Martinez, Ivan A; Lara-Arias, Jorge; Romero-Diaz, Viktor J; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G; Espinoza-Juarez, Marcela A; Lopez-Romero, Gloria C; Robles-Zamora, Alejandro; Mendoza Lemus, Oscar F; Ortiz-Lopez, Rocio; Rojas-Martinez, Augusto

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.

  12. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    PubMed

    Gibert, Yann; Lattanzi, Victoria J; Zhen, Aileen W; Vedder, Lea; Brunet, Frédéric; Faasse, Sarah A; Babitt, Jodie L; Lin, Herbert Y; Hammerschmidt, Matthias; Fraenkel, Paula G

    2011-01-21

    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  13. Smad 1/5 and Smad 4 Expression Are Important for Osteoclast Differentiation

    PubMed Central

    Tasca, Amy; Stemig, Melissa; Broege, Aaron; Huang, Brandon; Davydova, Julia; Zwijsen, An; Umans, Lieve; Jensen, Eric D.; Gopalakrishnan, Raj; Mansky, Kim C.

    2015-01-01

    To investigate the necessity of the canonical BMP pathway during osteoclast differentiation, we created osteoclasts with a conditional gene deletion for Smad1 and Smad5 (SMAD1/5), or Smad4 using adenovirus expressing CRE recombinase (Ad-CRE). Reduction of either Smad4 or Smad1/5 expression resulted in fewer and smaller multinuclear cells compared to control cells. We also detected changes in osteoclast enriched genes, demonstrated by decreased Dc-stamp and cathepsin K expression in both Smad4 and Smad1/5 Ad-CRE osteoclasts, and changes in c-fos and Nfatc1 expression in only Smad4 Ad-CRE cells. Lastly we also detected a significant decrease in resorption pits and area resorbed in both the Smad4 and Smad1/5 Ad-CRE osteoclasts. Because we inhibited osteoclast differentiation with loss of either Smad4 or Smad1/5 expression, we assessed whether BMPs affected osteoclast activity in addition to BMP’s effects on differentiation. Therefore, we treated mature osteoclasts with BMP2 or with dorsomorphin, a chemical inhibitor that selectively suppresses canonical BMP signaling. We demonstrated that BMP2 stimulated resorption in mature osteoclasts whereas treatment with dorsomorphin blocks osteoclast resorption. These results indicate that the BMP canonical signaling pathway is important for osteoclast differentiation and activity. PMID:25711193

  14. Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Henry F., E-mail: Hal.Duncan@dental.tcd.ie; Smith, Anthony J.; Fleming, Garry J.P.

    Application of histone deacetylase inhibitors (HDACi) to cells epigenetically alters their chromatin structure and induces transcriptional and cellular reparative events. This study investigated the application of two HDACi, valproic acid (VPA) and trichostatin A (TSA) on the induction of repair-associated responses in primary dental pulp cell (DPC) cultures. Flow cytometry demonstrated that TSA (100 nM, 400 nM) significantly increased cell viability. Neither HDACi was cytotoxic, although cell growth analysis revealed significant anti-proliferative effects at higher concentrations for VPA (>0.5 mM) and TSA (>50 nM). While high-content-analysis demonstrated that HDACi did not significantly induce caspase-3 or p21 activity, p53-expression was increasedmore » by VPA (3 mM, 5 mM) at 48 h. HDACi-exposure induced mineralization per cell dose-dependently to a plateau level (VPA-0.125 mM and TSA-25 nM) with accompanying increases in mineralization/dentinogenic-associated gene expression at 5 days (DMP-1, BMP-2/-4, Nestin) and 10 days (DSPP, BMP-2/-4). Both HDACis, at a range of concentrations, significantly stimulated osteopontin and BMP-2 protein expression at 10 and 14 days further supporting the ability of HDACi to promote differentiation. HDACi exert different effects on primary compared with transformed DPCs and promote mineralization and differentiation events without cytotoxic effects. These novel data now highlight the potential in restorative dentistry for applying low concentrations of HDACi in vital pulp treatment. -- Highlights: • Valproic acid and trichostatin A promoted mineralization in primary pulp cells. • Cell viability, apoptosis, caspase-3, p21 unaltered; p53 increased by valproic acid. • Trichostatin A increased cell viability at 24 h at selected concentrations. • Altered cell toxicity and differentiation between primary and transformed cells. • HDACi-induced the differentiation marker proteins osteopontin and BMP-2.« less

  15. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  16. Bone morphogenetic protein antagonist gene NOG is involved in myeloproliferative disease associated with myelofibrosis.

    PubMed

    Andrieux, Joris; Roche-Lestienne, Catherine; Geffroy, Sandrine; Desterke, Christophe; Grardel, Nathalie; Plantier, Isabelle; Selleslag, Dominik; Demory, Jean-Loup; Laï, Jean-Luc; Leleu, Xavier; Le Bousse-Kerdiles, Caroline; Vandenberghe, Peter

    2007-10-01

    In a case with secondary myelofibrosis occurring after essential thrombocythemia, cytogenetic analysis revealed an isolated translocation t(X;17)(q27;q22) in all cells. We found that a bacterial artificial chromosome (BAC) encompassing the breakpoint on chromosome 17 long arm contained only one gene, NOG. We therefore investigated the occurrence of this rare breakpoint in myeloproliferative disorders (MPDs). We identified three more patients with a 17q abnormality in MPDs: myelofibrosis with myeloid metaplasia (MMM); chronic myeloid leukemia positive for t(9;22)(q34;q11) with additional t(4;17)(p15;q22) at diagnosis; and myelofibrosis complicating polycythemia vera. All three cases exhibited a split of BACs containing NOG. The protein encoded by NOG, noggin, acts as an antagonist to bone morphogenetic secreted protein 2 and 4 (BMP2 and BMP4). A comparative analysis of gene expression on Agilent 22K oligonucleotide microarrays in purified CD34+ cells from the blood of MMM patients showed significant downregulation of BMPR2, BMPR1B, BMP2, and BMP8; upregulation of BMP3 and BMP10; and a trend to lower expression of NOG. Thus, given that expression and release of BMPs are important in the induction of osteosclerosis and angiogenic activity, the observed BMP deregulations could be triggered by potential NOG genetic alterations in the four cases here described, and may contribute to the myelofibrotic process characterized by bone marrow stromal reaction including collagen fibrosis, osteosclerosis, and angiogenesis.

  17. Human embryonic stem cell-derived neural crest cells capable of expressing markers of osteochondral or meningeal-choroid plexus differentiation.

    PubMed

    Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D

    2014-01-01

    The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.

  18. Enhancement of Tendon–Bone Healing for Anterior Cruciate Ligament (ACL) Reconstruction Using Bone Marrow-Derived Mesenchymal Stem Cells Infected with BMP-2

    PubMed Central

    Dong, Yu; Zhang, Qingguo; Li, Yunxia; Jiang, Jia; Chen, Shiyi

    2012-01-01

    At present, due to the growing attention focused on the issue of tendon–bone healing, we carried out an animal study of the use of genetic intervention combined with cell transplantation for the promotion of this process. Here, the efficacy of bone marrow stromal cells infected with bone morphogenetic protein-2 (BMP-2) on tendon–bone healing was determined. A eukaryotic expression vector containing the BMP-2 gene was constructed and bone marrow-derived mesenchymal stem cells (bMSCs) were infected with a lentivirus. Next, we examined the viability of the infected cells and the mRNA and protein levels of BMP-2-infected bMSCs. Gastrocnemius tendons, gastrocnemius tendons wrapped by bMSCs infected with the control virus (bMSCs+Lv-Control), and gastrocnemius tendons wrapped by bMSCs infected with the recombinant BMP-2 virus (bMSCs+Lv-BMP-2) were used to reconstruct the anterior cruciate ligament (ACL) in New Zealand white rabbits. Specimens from each group were harvested four and eight weeks postoperatively and evaluated using biomechanical and histological methods. The bMSCs were infected with the lentivirus at an efficiency close to 100%. The BMP-2 mRNA and protein levels in bMSCs were significantly increased after lentiviral infection. The bMSCs and BMP-2-infected bMSCs on the gastrocnemius tendon improved the biomechanical properties of the graft in the bone tunnel; specifically, bMSCs infected with BMP-2 had a positive effect on tendon–bone healing. In the four-week and eight-week groups, bMSCs+Lv-BMP-2 group exhibited significantly higher maximum loads of 29.3 ± 7.4 N and 45.5 ± 11.9 N, respectively, compared with the control group (19.9 ± 6.4 N and 21.9 ± 4.9 N) (P = 0.041 and P = 0.001, respectively). In the eight-week groups, the stiffness of the bMSCs+Lv-BMP-2 group (32.5 ± 7.3) was significantly higher than that of the bMSCs+Lv-Control group (22.8 ± 7.4) or control groups (12.4 ± 6.0) (p = 0.036 and 0.001, respectively). Based on the histological findings, there was an increased amount of perpendicular collagen fibers formed between the tendon and bone in the bMSCs+Lv-Control and bMSCs+Lv-BMP-2 group, compared with the gastrocnemius tendons. The proliferation of cartilage-like cells and the formation of fibrocartilage-like tissue were highest within the bone tunnels in the bMSCs+Lv-BMP-2 group. These results suggest that this lentivirus can be used to efficiently infect bMSCs with BMP-2. Furthermore, tendons wrapped by bMSCs+Lv-BMP-2 improved tendon–bone healing. PMID:23202970

  19. Smad4-Mediated Signaling Inhibits Intestinal Neoplasia by Inhibiting Expression of β-Catenin

    PubMed Central

    Freeman, Tanner J.; Smith, J. Joshua; Chen, Xi; Washington, M. Kay; Roland, Joseph T.; Means, Anna L.; Eschrich, Steven A.; Yeatman, Timothy J.; Deane, Natasha G.; Beauchamp, R. Daniel

    2012-01-01

    Background & Aims Mutational inactivation of APC is an early event in colorectal cancer (CRC) progression that affects the stability and increases the activity of β-catenin, a mediator of Wnt signaling. CRC progression also involves inactivation of signaling via transforming growth factor (TGF)β and bone morphenogenic protein (BMP), which are tumor suppressors. However, the interactions between these pathways are not clear. We investigated the effects of loss of the transcription factor Smad4 loss on levels of β-catenin mRNA and Wnt signaling. Methods We used microarray analysis to associate levels of Smad4 and β-catenin mRNA in colorectal tumor samples from 250 patients. We performed oligonucleotide-mediated knockdown of Smad4 in human embryonic kidney (HEK293T) and in HCT116 colon cancer cells and transgenically expressed Smad4 in SW480 colon cancer cells. We analyzed adenomas from (APCΔ1638/+) and (APCΔ1638/+)x(K19CreERT2Smad4lox/lox) mice using laser-capture microdissection. Results In human CRC samples, reduced levels of Smad4 correlated with increased levels of β-catenin mRNA. In Smad4-depleted cell lines, levels of β-catenin mRNA and Wnt signaling increased. Inhibition of BMP or depletion of Smad4 in HEK293T cells increased binding of RNA polymerase II to the β-catenin gene. Expression of Smad4 in SW480 cells reduced Wnt signaling and levels of β-catenin mRNA. In mice with heterozygous disruption of Apc(APCΔ1638/+), Smad4-deficient intestinal adenomas had increased levels of β-catenin mRNA and expression of Wnt target genes, compared with adenomas from APCΔ1638/+mice that expressed Smad4. Conclusions Transcription of β-catenin is inhibited by BMP signaling to Smad4. These findings provide important information about the interaction among TGF-β, BMP, and Wnt signaling pathways in CRC progression. PMID:22115830

  20. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    PubMed

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.

    PubMed

    McCarthy, Bryce; Yuan, Yuan; Koria, Piyush

    2016-07-08

    Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.

  2. Injectable Shear-Thinning CaSO4/FGF-18-Incorporated Chitin-PLGA Hydrogel Enhances Bone Regeneration in Mice Cranial Bone Defect Model.

    PubMed

    Sivashanmugam, A; Charoenlarp, Pornkawee; Deepthi, S; Rajendran, Arunkumar; Nair, Shantikumar V; Iseki, Sachiko; Jayakumar, R

    2017-12-13

    For craniofacial bone regeneration, shear-thinning injectable hydrogels are favored over conventional scaffolds because of their improved defect margin adaptability, easier handling, and ability to be injected manually into deeper tissues. The most accepted method, after autografting, is the use of recombinant human bone morphogenetic protein-2 (BMP-2); however, complications such as interindividual variations, edema, and poor cost-efficiency in supraphysiological doses have been reported. The endogenous synthesis of BMP-2 is desirable, and a molecule which induces this is fibroblast growth factor-18 (FGF-18) because it can upregulate the BMP-2 expression  by supressing noggin. We developed a chitin-poly(lactide-co-glycolide) (PLGA) composite hydrogel by regeneration chemistry and then incorporated CaSO 4 and FGF-18 for this purpose. Rheologically, a 7-fold increase in the elastic modulus was observed in the CaSO 4 -incorporated chitin-PLGA hydrogels as compared to the chitin-PLGA hydrogel. Shear-thinning Herschel-Bulkley fluid nature was observed for both hydrogels. Chitin-PLGA/CaSO 4 gel showed sustained release of FGF-18. In vitro osteogenic differentiation showed an enhanced alkaline phosphatase (ALP) expression in the FGF-18-containing chitin-PLGA/CaSO 4 gel when compared to cells alone. Further, it was confirmed by studying the expression of osteogenic genes [RUNX2, ALP, BMP-2, osteocalcin (OCN), and osteopontin (OPN)], immunofluorescence staining of BMP-2, OCN, and OPN, and alizarin red S staining. Incorporation of FGF-18 in the hydrogel increased the endothelial cell migration. Further, the regeneration potential of the prepared hydrogels was tested in vivo, and longitudinal live animal μ-CT was performed. FGF-18-loaded chitin-PLGA/CaSO 4 showed early and almost complete bone healing in comparison with chitin-PLGA/CaSO 4 , chitin-PLGA/FGF-18, chitin-PLGA, and sham control systems, as confirmed by hematoxylin and eosin and osteoid tetrachrome stainings. This shows that the CaSO 4 and FGF-18-incorporated hydrogel is a potential candidate for craniofacial bone defect regeneration.

  3. BMP suppresses PTEN expression via RAS/ERK signaling.

    PubMed

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  4. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation.

    PubMed

    Balint, Eva; Lapointe, David; Drissi, Hicham; van der Meijden, Caroline; Young, Daniel W; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2003-05-15

    Understanding physiological control of osteoblast differentiation necessitates characterization of the regulatory signals that initiate the events directing a cell to lineage commitment and establishing competency for bone formation. The bone morphogenetic protein, BMP-2, a member of the TGFbeta superfamily, induces osteoblast differentiation and functions through the Smad signal transduction pathway during in vivo bone formation. However, the molecular targets of BMP-mediated gene transcription during the process of osteoblast differentiation have not been comprehensively identified. In the present study, BMP-2 responsive factors involved in the early stages of commitment and differentiation to the osteoblast phenotype were analyzed by microarray gene expression profiling in samples ranging from 1 to 24 h following BMP-2 dependent differentiation of C2C12 premyoblasts into the osteogenic lineage. A total of 1,800 genes were responsive to BMP-2 and expression was modulated from 3- to 14-fold for less than 100 genes during the time course. Approximately 50% of these 100 genes are either up- or downregulated. Major events associated with phenotypic changes towards the osteogenic lineage were identified from hierarchical and functional clustering analyses. BMP-2 immediately responsive genes (1-4 h), which exhibited either transient or sustained expression, reflect activation and repression of non-osseous BMP-2 developmental systems. This initial response was followed by waves of expression of nuclear proteins and developmental regulatory factors including inhibitors of DNA binding, Runx2, C/EBP, Zn finger binding proteins, forkhead, and numerous homeobox proteins (e.g., CDP/cut, paired, distaless, Hox) which are expressed at characterized stages during osteoblast differentiation. A sequential profile of genes mediating changes in cell morphology, cell growth, and basement membrane formation is observed as a secondary transient early response (2-8 h). Commitment to the osteogenic phenotype is recognized by 8 h, reflected by downregulation of most myogenic-related genes and induction of a spectrum of signaling proteins and enzymes facilitating synthesis and assembly of an extracellular skeletal environment. These genes included collagens Type I and VI and the small leucine rich repeat family of proteoglycans (e.g., decorin, biglycan, osteomodulin, fibromodulin, and osteoadherin/osteoglycin) that reached peak expression at 24 h. With extracellular matrix development, the bone phenotype was further established from 16 to 24 h by induction of genes for cell adhesion and communication and enzymes that organize the bone ECM. Our microarray analysis resulted in the discovery of a class of genes, initially described in relation to differentiation of astrocytes and oligodendrocytes that are functionally coupled to signals for cellular extensions. They include nexin, neuropilin, latexin, neuroglian, neuron specific gene 1, and Ulip; suggesting novel roles for these genes in the bone microenvironment. This global analysis identified a multistage molecular and cellular cascade that supports BMP-2-mediated osteoblast differentiation. Copyright 2003 Wiley-Liss, Inc.

  5. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2

    PubMed Central

    Bylund, Jeffery B.; Trinh, Linh T.; Awgulewitsch, Cassandra P.; Paik, David T.; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B.; Kamp, Timothy J.

    2017-01-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling. PMID:28125926

  6. Coordinated Proliferation and Differentiation of Human-Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Depend on Bone Morphogenetic Protein Signaling Regulation by GREMLIN 2.

    PubMed

    Bylund, Jeffery B; Trinh, Linh T; Awgulewitsch, Cassandra P; Paik, David T; Jetter, Christopher; Jha, Rajneesh; Zhang, Jianhua; Nolan, Kristof; Xu, Chunhui; Thompson, Thomas B; Kamp, Timothy J; Hatzopoulos, Antonis K

    2017-05-01

    Heart development depends on coordinated proliferation and differentiation of cardiac progenitor cells (CPCs), but how the two processes are synchronized is not well understood. Here, we show that the secreted Bone Morphogenetic Protein (BMP) antagonist GREMLIN 2 (GREM2) is induced in CPCs shortly after cardiac mesoderm specification during differentiation of human pluripotent stem cells. GREM2 expression follows cardiac lineage differentiation independently of the differentiation method used, or the origin of the pluripotent stem cells, suggesting that GREM2 is linked to cardiogenesis. Addition of GREM2 protein strongly increases cardiomyocyte output compared to established procardiogenic differentiation methods. Our data show that inhibition of canonical BMP signaling by GREM2 is necessary to promote proliferation of CPCs. However, canonical BMP signaling inhibition alone is not sufficient to induce cardiac differentiation, which depends on subsequent JNK pathway activation specifically by GREM2. These findings may have broader implications in the design of approaches to orchestrate growth and differentiation of pluripotent stem cell-derived lineages that depend on precise regulation of BMP signaling.

  7. Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion

    PubMed Central

    Cyr-Depauw, Chanèle; Northey, Jason J.; Tabariès, Sébastien; Annis, Matthew G.; Dong, Zhifeng; Cory, Sean; Hallett, Michael; Rennhack, Jonathan P.; Andrechek, Eran R.

    2016-01-01

    ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling. PMID:26976638

  8. Thyroid Hormone-Induced Hypertrophy in Mesenchymal Stem Cell Chondrogenesis Is Mediated by Bone Morphogenetic Protein-4

    PubMed Central

    Karl, Alexandra; Olbrich, Norman; Pfeifer, Christian; Berner, Arne; Zellner, Johannes; Kujat, Richard; Angele, Peter; Nerlich, Michael

    2014-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) express markers of hypertrophic growth plate chondrocytes. As hypertrophic cartilage undergoes ossification, this is a concern for the application of MSCs in articular cartilage tissue engineering. To identify mechanisms that elicit this phenomenon, we used an in vitro hypertrophy model of chondrifying MSCs for differential gene expression analysis and functional experiments with the focus on bone morphogenetic protein (BMP) signaling. Hypertrophy was induced in chondrogenic MSC pellet cultures by transforming growth factor β (TGFβ) and dexamethasone withdrawal and addition of triiodothyronine. Differential gene expression analysis of BMPs and their receptors was performed. Based on these results, the in vitro hypertrophy model was used to investigate the effect of recombinant BMP4 and the BMP inhibitor Noggin. The enhancement of hypertrophy could be shown clearly by an increased cell size, alkaline phosphatase activity, and collagen type X deposition. Upon induction of hypertrophy, BMP4 and the BMP receptor 1B were upregulated. Addition of BMP4 further enhanced hypertrophy in the absence, but not in the presence of TGFβ and dexamethasone. Thyroid hormone induced hypertrophy by upregulation of BMP4 and this induced enhancement of hypertrophy could be blocked by the BMP antagonist Noggin. BMP signaling is an important modulator of the late differentiation stages in MSC chondrogenesis and the thyroid hormone induces this pathway. As cartilage tissue engineering constructs will be exposed to this factor in vivo, this study provides important insight into the biology of MSC-based cartilage. Furthermore, the possibility to engineer hypertrophic cartilage may be helpful for critical bone defect repair. PMID:23937304

  9. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization

    PubMed Central

    Mestre-Citrinovitz, Ana C.; Kleff, Veronika; Vallejo, Griselda

    2015-01-01

    Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone) and estrogen receptor (ICI182780) antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets. PMID:25897495

  10. Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development.

    PubMed

    Bonilla-Claudio, Margarita; Wang, Jun; Bai, Yan; Klysik, Elzbieta; Selever, Jennifer; Martin, James F

    2012-02-01

    We performed an in depth analysis of Bmp4, a critical regulator of development, disease, and evolution, in cranial neural crest (CNC). Conditional Bmp4 overexpression, using a tetracycline-regulated Bmp4 gain-of-function allele, resulted in facial skeletal changes that were most dramatic after an E10.5 Bmp4 induction. Expression profiling uncovered a signature of Bmp4-induced genes (BIG) composed predominantly of transcriptional regulators that control self-renewal, osteoblast differentiation and negative Bmp autoregulation. The complimentary experiment, CNC inactivation of Bmp2, Bmp4 and Bmp7, resulted in complete or partial loss of multiple CNC-derived skeletal elements, revealing a crucial requirement for Bmp signaling in membranous bone and cartilage development. Importantly, the BIG signature was reduced in Bmp loss-of-function mutants, indicating Bmp-regulated target genes are modulated by Bmp dose. Chromatin immunoprecipitation (ChIP) revealed a subset of the BIG signature, including Satb2, Smad6, Hand1, Gadd45γ and Gata3, that was bound by Smad1/5 in the developing mandible, revealing direct Smad-mediated regulation. These data support the hypothesis that Bmp signaling regulates craniofacial skeletal development by balancing self-renewal and differentiation pathways in CNC progenitors.

  11. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    PubMed

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  12. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features

    PubMed Central

    2010-01-01

    Background Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Methods Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Results Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. Conclusions These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue. PMID:20942943

  13. Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features.

    PubMed

    Wehrhan, Falk; Hyckel, Peter; Ries, Jutta; Stockmann, Phillip; Nkenke, Emeka; Schlegel, Karl A; Neukam, Friedrich W; Amann, Kerstin

    2010-10-13

    Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue. Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels. Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control. These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue.

  14. BMP15 c.-9C>G promoter sequence variant may contribute to the cause of non-syndromic premature ovarian failure.

    PubMed

    Fonseca, Dora Janeth; Ortega-Recalde, Oscar; Esteban-Perez, Clara; Moreno-Ortiz, Harold; Patiño, Liliana Catherine; Bermúdez, Olga María; Ortiz, Angela María; Restrepo, Carlos M; Lucena, Elkin; Laissue, Paul

    2014-11-01

    BMP15 has drawn particular attention in the pathophysiology of reproduction, as its mutations in mammalian species have been related to different reproductive phenotypes. In humans, BMP15 coding regions have been sequenced in large panels of women with premature ovarian failure (POF), but only some mutations have been definitely validated as causing the phenotype. A functional association between the BMP15 c.-9C>G promoter polymorphism and cause of POF have been reported. The aim of this study was to determine the potential functional effect of this sequence variant on specific BMP15 promoter transactivation disturbances. Bioinformatics was used to identify transcription factor binding sites located on the promoter region of BMP15. Reverse transcription polymerase chain reaction was used to study specific gene expression in ovarian tissue. Luciferase reporter assays were used to establish transactivation disturbances caused by the BMP15 c.-9C>G variant. The c.-9C>G variant was found to modify the PITX1 transcription factor binding site. PITX1 and BMP15 co-expressed in human and mouse ovarian tissue, and PITX1 transactivated both BMP15 promoter versions (-9C and -9G). It was found that the BMP15 c.-9G allele was related to BMP15 increased transcription, supporting c.-9C>G as a causal agent of POF. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    PubMed

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  16. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration

    PubMed Central

    Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C.; Ottmüller, Katja J.; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F.; Kreines, Fabiana; Lieberman, Sophia R.; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M.; Shono, Yusuke; Jenq, Robert R.; Hanash, Alan M.; Nolan, Daniel J.; Butler, Jason M.; Beilhack, Andreas; Manley, Nancy R.; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel RM

    2018-01-01

    The thymus is extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood and this capacity diminishes considerably with age. Here we show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration, via their production of BMP4. ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signalling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance and regeneration; and its downstream targets such as Dll4, itself a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. PMID:29330161

  17. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    PubMed

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  18. Conditioned medium from bone marrow-derived mesenchymal stem cells inhibits vascular calcification through blockade of the BMP2-Smad1/5/8 signaling pathway.

    PubMed

    Wang, Shuangshuang; Hu, Siwang; Wang, Jian; Liu, Yahui; Zhao, Ruochi; Tong, Maoqing; Cui, Hanbin; Wu, Nan; Chen, Xiaomin

    2018-06-13

    Arterial calcification is associated with cardiovascular disease as a complication of advanced atherosclerosis and is a significant contributor to cardiovascular morbidity and mortality. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important role in arterial calcification and is characterized by cellular necrosis, inflammation, and lipoprotein and phospholipid complexes, especially in atherosclerotic calcification. The conditioned medium from bone marrow-derived mesenchymal stem cells (MSC-CM) is well known as a rich source of autologous cytokines and is universally used for tissue regeneration in current clinical medicine. Here, we demonstrate that MSC-CM inhibits beta-glycerophosphate (β-GP)-induced vascular calcification through blockade of the bone morphogenetic protein-2 (BMP2)-Smad1/5/8 signaling pathway. VSMC calcification was induced by β-GP followed by treatment with MSC-CM. Mineral deposition was assessed by Alizarin Red S staining. Intracellular calcium content was determined colorimetrically by the o-cresolphthalein complexone method and alkaline phosphatase (ALP) activity was measured by the para-nitrophenyl phosphate method. Expression of BMP2, BMPR1A, BMPR1B, BMPR2, msh homeobox 2 (Msx2), Runt-related transcription factor 2 (Runx2), and osteocalcin (OC), representative osteoblastic markers, was assessed using real-time polymerase chain reaction analysis while the protein expression of BMP2, Runx2, and phosphorylated Smad1/5/8 was detected by western blot analysis. Our data demonstrated that MSC-CM inhibits osteoblastic differentiation and mineralization of VSMCs as evidenced by decreased calcium content, ALP activity, and decreased expression of BMP-2, Runx2, Msx2, and OC. MSC-CM suppressed the expression of phosphorylated Smad1/5/8 and the β-GP-induced translocation from the cytoplasm to the nucleus. Further study demonstrated that human recombinant BMP-2 overcame the suppression of VSMC calcification by MSC-CM. MSC-CM may act as a novel therapy for VSMC calcification by mediating the BMP2-Smad1/5/8 signaling pathway.

  19. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    PubMed Central

    Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology. PMID:27818692

  20. Associations between variants of bone morphogenetic protein 7 gene and growth traits in chickens.

    PubMed

    Wang, Yan; Guo, Fuyou; Qu, Hao; Luo, Chenglong; Wang, Jie; Shu, Dingming

    2018-04-18

    1. Enhancing bone strength to solve leg disorders in poultry has become an important goal in broiler production. 2. Bone morphogenetic protein 7 (BMP7), a member of the BMP family, represents an attractive therapeutic target for bone regeneration in humans and plays critical roles in skeletal development. 3. The objective of this study was to investigate the relationship between BMP7 gene expression, single nucleotide polymorphisms (SNPs) and growth traits in chickens. Here, a SNP (c.1995T>C) in the chicken (Gallus gallus) BMP7 gene was identified, that was associated with growth and carcass traits. 4. Genotyping revealed that the T allele occurred more frequently in breeds with high growth rates, whereas the C allele was predominant in those with low growth rates. The expression level of BMP7 in the thigh bone of birds with the TT genotype was significantly higher than in those with the CC genotype at 21, 42 and 91 days of age. 5. These findings suggest that selecting the birds with the TT genotype of SNP c.1995T>C could improve bone growth, could reduce leg disorders in fast-growing birds. The SNP c.1995T>C may serve as a selective marker for improving bone growth and increasing the consistency of body weights in poultry breeding.

  1. Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors

    PubMed Central

    Rutenberg, Joshua B.; Fischer, Andreas; Jia, Haibo; Gessler, Manfred; Zhong, Tao P.; Mercola, Mark

    2013-01-01

    Mutations in Notch2, Jagged1 or homologs of the Hairy-related transcriptional repressor Hey2 cause congenital malformations involving the non-chamber atrioventricular canal (AVC) and inner curvature (IC) regions of the heart, but the underlying mechanisms have not been investigated. By manipulating signaling directly within the developing chick heart, we demonstrated that Notch2, Hey1 and Hey2 initiate a signaling cascade that delimits the non-chamber AVC and IC regions. Specifically, misactivation of Notch2 signaling, or misexpression of either Hey1 or Hey2, repressed Bmp2. Because Jagged (also known as Serrate in non-mammalian species) ligands were found to be present in prospective chamber myocardium, these data support the model that Notch2 and Hey proteins cause the progressive restriction of Bmp2 expression to within the developing AVC and IC, where it is essential for differentiation. Misactivation or inhibition of Notch2 specifically induced or inhibited Hey1, respectively, but these manipulations did not affect Hey2, implicating Hey1 as the direct mediator of Notch2. Bmp2 within the developing AVC and IC has been shown to induce Tbx2, and we found that Tbx2 misexpression inhibited the expression of both Hey1 and Hey2. Tbx2, therefore, is envisaged to constitute a feedback loop that sharpens the border with the developing AVC and IC by delimiting Hey gene expression to within prospective chamber regions. Analysis of the loss-of-function phenotype in mouse embryos homozygous for targeted disruption of Hey2 revealed an expanded AVC domain of Bmp2. Similarly, zebrafish gridlock (Hey2 homolog) mutant embryos showed ectopic expression of Bmp4, which normally marks AVC myocardium in this species. Thus, Hey pathway regulation of cardiac Bmp appears to be an evolutionarily conserved mechanism to delimit AVC and IC fate, and provides a potential mechanistic explanation for cardiac malformations caused by mutations in Serrate/Jagged1 and Notch signaling components. PMID:17021042

  2. Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans.

    PubMed

    Daher, Raed; Kannengiesser, Caroline; Houamel, Dounia; Lefebvre, Thibaud; Bardou-Jacquet, Edouard; Ducrot, Nicolas; de Kerguenec, Caroline; Jouanolle, Anne-Marie; Robreau, Anne-Marie; Oudin, Claire; Le Gac, Gerald; Moulouel, Boualem; Loustaud-Ratti, Veronique; Bedossa, Pierre; Valla, Dominique; Gouya, Laurent; Beaumont, Carole; Brissot, Pierre; Puy, Hervé; Karim, Zoubida; Tchernitchko, Dimitri

    2016-03-01

    Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding hepcidin (HAMP) via the bone morphogenetic protein (BMP)6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these individuals. We sequenced the BMP6 gene in 70 consecutive patients with a moderate increase in serum ferritin and liver iron levels who did not carry genetic variants associated with hemochromatosis. We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals (controls), as well as in 2 other independent cohorts of hyperferritinemia patients. We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and analyzed BMP6 in liver biopsy specimens from patients by immunohistochemistry. The functions of mutant and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time quantitative polymerase chain reaction, and immunoblot analyses. We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These mutations were detected in less than 1% of controls. p.Leu96Pro also was found in 2 patients from the additional cohorts. Family studies indicated dominant transmission. Serum levels of hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was found in a biopsy specimen from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of hepcidin production. We identified 3 heterozygous missense mutations in BMP6 in patients with unexplained iron overload. These mutations lead to loss of signaling to SMAD proteins and reduced hepcidin production. These mutations might increase susceptibility to mild-to-moderate late-onset iron overload. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. Essential roles of zebrafish bmp2a, fgf10, and fgf24 in the specification of the ventral pancreas

    PubMed Central

    Naye, François; Voz, Marianne L.; Detry, Nathalie; Hammerschmidt, Matthias; Peers, Bernard; Manfroid, Isabelle

    2012-01-01

    In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10−/−; fgf24−/− embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region. PMID:22219376

  4. 2,2'-Bis(monoacylglycero) PO4 (BMP), but Not 3,1'-BMP, increases membrane curvature stress to enhance α-tocopherol transfer protein binding to membranes.

    PubMed

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D; Katsaras, John; Atkinson, Jeffrey

    2015-03-01

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  5. 2,2'-Bis(monoacylglycero) PO 4 (BMP), but Not 3,1'-BMP, Increases Membrane Curvature Stress to Enhance α-Tocopherol Transfer Protein Binding to Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D.

    2015-01-21

    Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. In this paper, we examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. Finally, α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.

  6. p38α MAPK regulates proliferation and differentiation of osteoclast progenitors and bone remodeling in an aging-dependent manner

    PubMed Central

    Cong, Qian; Jia, Hao; Li, Ping; Qiu, Shoutao; Yeh, James; Wang, Yibin; Zhang, Zhen-Lin; Ao, Junping; Li, Baojie; Liu, Huijuan

    2017-01-01

    Bone mass is determined by the balance between bone formation, carried out by mesenchymal stem cell-derived osteoblasts, and bone resorption, carried out by monocyte-derived osteoclasts. Here we investigated the potential roles of p38 MAPKs, which are activated by growth factors and cytokines including RANKL and BMPs, in osteoclastogenesis and bone resorption by ablating p38α MAPK in LysM+monocytes. p38α deficiency promoted monocyte proliferation but regulated monocyte osteoclastic differentiation in a cell-density dependent manner, with proliferating p38α−/− cultures showing increased differentiation. While young mutant mice showed minor increase in bone mass, 6-month-old mutant mice developed osteoporosis, associated with an increase in osteoclastogenesis and bone resorption and an increase in the pool of monocytes. Moreover, monocyte-specific p38α ablation resulted in a decrease in bone formation and the number of bone marrow mesenchymal stem/stromal cells, likely due to decreased expression of PDGF-AA and BMP2. The expression of PDGF-AA and BMP2 was positively regulated by the p38 MAPK-Creb axis in osteoclasts, with the promoters of PDGF-AA and BMP2 having Creb binding sites. These findings uncovered the molecular mechanisms by which p38α MAPK regulates osteoclastogenesis and coordinates osteoclastogenesis and osteoblastogenesis. PMID:28382965

  7. Gelatin-Derived Graphene–Silicate Hybrid Materials Are Biocompatible and Synergistically Promote BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yulong; Qazvini, Nader Taheri; Zane, Kylie

    Graphene-based materials are used in many fields but have found only limited applications in biomedicine, including bone tissue engineering. Here, we demonstrate that novel hybrid materials consisting of gelatin-derived graphene and silicate nanosheets of Laponite (GL) are biocompatible and promote osteogenic differentiation of mesenchymal stem cells (MSCs). Homogeneous cell attachment, long-term proliferation, and osteogenic differentiation of MSCs on a GL-scaffold were confirmed using optical microscopy and scanning electron microscopy. GL-powders made by pulverizing the GL-scaffold were shown to promote bone morphogenetic protein (BMP9)-induced osteogenic differentiation. GL-powders increased the alkaline phosphatase (ALP) activity in immortalized mouse embryonic fibroblasts but decreased themore » ALP activity in more-differentiated immortalized mouse adipose-derived cells. Note, however, that GL-powders promoted BMP9-induced calcium mineral deposits in both MSC lines, as assessed using qualitative and quantitative alizarin red assays. Furthermore, the expression of chondro-osteogenic regulator markers such as Runx2, Sox9, osteopontin, and osteocalcin was upregulated by the GL-powder, independent of BMP9 stimulation; although the powder synergistically upregulated the BMP9-induced Osterix expression, the adipogenic marker PPAR gamma was unaffected. Furthermore, in vivo stem cell implantation experiments demonstrated that GL-powder could significantly enhance the BMP9-induced ectopic bone formation from MSCs. Collectively, our results strongly suggest that the GL hybrid materials promote BMP9-induced osteogenic differentiation of MSCs and hold promise for the development of bone tissue engineering platforms.« less

  8. Hydrogen Sulfide Improves Endothelial Dysfunction via Downregulating BMP4/COX-2 Pathway in Rats with Hypertension.

    PubMed

    Xiao, Lin; Dong, Jing-Hui; Jin, Sheng; Xue, Hong-Mei; Guo, Qi; Teng, Xu; Wu, Yu-Ming

    2016-01-01

    Aims. We object to elucidate that protective effect of H2S on endothelium is mediated by downregulating BMP4 (bone morphogenetic protein 4)/cyclooxygenase- (COX-) 2 pathway in rats with hypertension. Methods and Results. The hypertensive rat model induced by two-kidney one-clip (2K1C) model was used. Exogenous NaHS administration (56 μmol/kg/day, intraperitoneally once a day) reduced mean arterial pressure (MAP) of 2K1C rats from 199.9 ± 3.312 mmHg to 159.4 ± 5.434 mmHg, while NaHS did not affect the blood pressure in the Sham rats and ameliorated endothelium-dependent contractions (EDCs) of renal artery in 2K1C rats. 2K1C reduced CSE level twofold, decreased plasma levels of H2S about 6-fold, increased BMP4, Nox2, and Nox4 levels 2-fold and increased markers of oxidative stress MDA and nitrotyrosine 1.5-fold, upregulated the expression of phosphorylation-p38 MAPK 2-fold, and increased protein levels of COX-2 1.5-fold, which were abolished by NaHS treatment. Conclusions. Our results demonstrate that H2S prevents activation of BMP4/COX-2 pathway in hypertension, which may be involved in the ameliorative effect of H2S on endothelial impairment. These results throw light on endothelial protective effect of H2S and provide new target for prevention and therapy of hypertension.

  9. Activin receptor inhibition by Smad2 regulates Drosophila wing disc patterning through BMP-response elements

    PubMed Central

    Peterson, Aidan J.; O'Connor, Michael B.

    2013-01-01

    Imaginal disc development in Drosophila requires coordinated cellular proliferation and tissue patterning. In our studies of TGFβ superfamily signaling components, we found that a protein null mutation of Smad2, the only Activin subfamily R-Smad in the fruit fly, produces overgrown wing discs that resemble gain of function for BMP subfamily signaling. The wing discs are expanded specifically along the anterior-posterior axis, with increased proliferation in lateral regions. The morphological defect is not observed in mutants for the TGFβ receptor baboon, and epistasis tests showed that baboon is epistatic to Smad2 for disc overgrowth. Rescue experiments indicate that Baboon binding, but not canonical transcription factor activity, of Smad2 is required for normal disc growth. Smad2 mutant discs generate a P-Mad stripe that is narrower and sharper than the normal gradient, and activation targets are correspondingly expressed in narrowed domains. Repression targets of P-Mad are profoundly mis-regulated, with brinker and pentagone reporter expression eliminated in Smad2 mutants. Loss of expression requires a silencer element previously shown to be controlled by BMP signaling. Epistasis experiments show that Baboon, Mad and Schnurri are required to mediate the ectopic silencer output in the absence of Smad2. Taken together, our results show that loss of Smad2 permits promiscuous Baboon activity, which represses genes subject to control by Mad-dependent silencer elements. The absence of Brinker and Pentagone in Smad2 mutants explains the compound wing disc phenotype. Our results highlight the physiological relevance of substrate inhibition of a kinase, and reveal a novel interplay between the Activin and BMP pathways. PMID:23293296

  10. Delayed Expression of Circulating TGF-β1 and BMP-2 Levels in Human Nonunion Long Bone Fracture Healing.

    PubMed

    Hara, Yoshiaki; Ghazizadeh, Mohammad; Shimizu, Hajime; Matsumoto, Hisashi; Saito, Nobuyuki; Yagi, Takanori; Mashiko, Kazuki; Mashiko, Kunihiro; Kawai, Makoto; Yokota, Hiroyuki

    2017-01-01

    The healing process of bone fracture requires a well-controlled multistage and sequential order beginning immediately after the injury. However, complications leading to nonunion exist, creating serious problems and costs for patients. Transforming growth factor-beta 1 (TGF-β1) and bone morphogenic protein 2 (BMP-2) are two major growth factors involved in human bone fracture healing by promoting various stages of bone ossification. In this study, we aimed to determine the role of these factors during the fracture healing of human long bones and assess their impacts on nonunion condition. We performed a comprehensive analysis of plasma TGF-β1 and BMP-2 levels in blood samples from 10 patients with proved nonunion and 10 matched patients with normal union following a predetermined time schedule. The concentrations of TGF-β1 and BMP-2 were measured at each time point using a solid-phase ELISA. TGF-β1 and BMP-2 levels were detectable in all patients. For all patients, a maximal peak for TGF-β1 was found at 3-week. In normal union group, TGF-β1 showed a maximal peak at 2-week while nonunion group had a delayed maximal peak at 3-week. Plasma levels of BMP-2 for all patients and for normal union group reached a maximal peak at 1-week, but nonunion group showed a delayed maximal peak at 2-week. In general, plasma TGF-β1 or BMP-2 level was not significantly different between normal union and nonunion groups. The expression levels of TGF-β1 and BMP-2 appeared to be delayed in nonunion patients which could play an important role in developing an early marker of fracture union condition and facilitate improved patient's management.

  11. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    PubMed

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  12. An intermediate level of BMP signaling directly specifies cranial neural crest progenitor cells in zebrafish.

    PubMed

    Schumacher, Jennifer A; Hashiguchi, Megumi; Nguyen, Vu H; Mullins, Mary C

    2011-01-01

    The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.

  13. Orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) protein negatively regulates bone morphogenetic protein 2-induced osteoblast differentiation through suppressing runt-related gene 2 (Runx2) activity.

    PubMed

    Lee, Kkot-Nim; Jang, Won-Gu; Kim, Eun-Jung; Oh, Sin-Hye; Son, Hye-Ju; Kim, Sun-Hun; Franceschi, Renny; Zhang, Xiao-Kun; Lee, Shee-Eun; Koh, Jeong-Tae

    2012-06-01

    Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear receptor of the steroid-thyroid hormone receptor superfamily. COUP-TFII is widely expressed in multiple tissues and organs throughout embryonic development and has been shown to regulate cellular growth, differentiation, and organ development. However, the role of COUP-TFII in osteoblast differentiation has not been systematically evaluated. In the present study, COUP-TFII was strongly expressed in multipotential mesenchymal cells, and the endogenous expression level decreased during osteoblast differentiation. Overexpression of COUP-TFII inhibited bone morphogenetic protein 2 (BMP2)-induced osteoblastic gene expression. The results of alkaline phosphatase, Alizarin Red staining, and osteocalcin production assay showed that COUP-TFII overexpression blocks BMP2-induced osteoblast differentiation. In contrast, the down-regulation of COUP-TFII synergistically induced the expression of BMP2-induced osteoblastic genes and osteoblast differentiation. Furthermore, the immunoprecipitation assay showed that COUP-TFII and Runx2 physically interacted and COUP-TFII significantly impaired the Runx2-dependent activation of the osteocalcin promoter. From the ChIP assay, we found that COUP-TFII repressed DNA binding of Runx2 to the osteocalcin gene, whereas Runx2 inhibited COUP-TFII expression via direct binding to the COUP-TFII promoter. Taken together, these findings demonstrate that COUP-TFII negatively regulates osteoblast differentiation via interaction with Runx2, and during the differentiation state, BMP2-induced Runx2 represses COUP-TFII expression and promotes osteoblast differentiation.

  14. Bone morphogenetic protein 4 and bone morphogenetic protein receptor expression in the pituitary gland of adult dogs in healthy condition and with ACTH-secreting pituitary adenoma.

    PubMed

    Sato, A; Ochi, H; Harada, Y; Yogo, T; Kanno, N; Hara, Y

    2017-01-01

    The purpose of this study was to investigate the expression of bone morphogenetic protein 4 (BMP4) and its receptors, bone morphogenetic protein receptor I (BMPRI) and BMPRII, in the pituitary gland of healthy adult dogs and in those with ACTH-secreting pituitary adenoma. Quantitative polymerase chain reaction analysis showed that the BMP4 messenger RNA expression level in the ACTH-secreting pituitary adenoma samples was significantly lower than that in the normal pituitary gland samples (P = 0.03). However, there were no statistically significant differences between samples with respect to the messenger RNA expression levels of the receptors BMPRIA, BMPRIB, and BMPRII. Double-immunofluorescence analysis of the normal canine pituitary showed that BMP4 was localized in the thyrotroph (51.3 ± 7.3%) and not the corticotroph cells. By contrast, BMPRII was widely expressed in the thyrotroph (19.9 ± 5.2%) and somatotroph cells (94.7 ± 3.6%) but not in the corticotroph cells (P < 0.001, thyrotroph cells vs somatotroph cells). Similarly, in ACTH-secreting pituitary adenoma, BMP4 and BMPRII were not expressed in the corticotroph cells. Moreover, the percentage of BMP4-positive cells was also significantly reduced in the thyrotroph cells of the surrounding normal pituitary tissue obtained from the resected ACTH-secreting pituitary adenoma (8.3 ± 7.9%) compared with that in normal canine pituitary (P < 0.001). BMP4 has been reported to be expressed in corticotroph cells in the human pituitary gland. Therefore, the results of this study reveal a difference in the cellular pattern of BMP4-positive staining in the pituitary gland between humans and dogs and further revealed the pattern of BMPRII-positive staining in the dog pituitary gland. These species-specific differences regarding BMP4 should be considered when using dogs as an animal model for Cushing's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Li-An; Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an; Yuan, Guohua

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show thatmore » transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.« less

  16. Wnt/β-catenin pathway regulates Bmp2-mediated differentiation of dental follicle cells

    PubMed Central

    Silvério, Karina G.; Davidson, Kathryn C.; James, Richard G.; Adams, Allison M.; Foster, Brian L.; Nociti, Francisco H.; Somermam, Martha J.; Moon, Randall T.

    2013-01-01

    Background and Objectives Bmp2-induced osteogenic differentiation has been shown to occur through the canonical Wnt/β-catenin pathway, whereas factors promoting canonical Wnt signaling in cementoblasts inhibited cell differentiation and promoted cell proliferation in vitro. The aim of this study was to investigate whether putative precursor cells of cementoblasts, dental follicle cells (murine SVF4 cells), when stimulated with Bmp2, would exhibit changes in genes/proteins associated with the Wnt/β-catenin pathway. Materials and Methods SVF4 cells were stimulated with Bmp2, and the following assays were carried out: 1) Wnt/β-catenin pathway activation assessed by western blot, β-catenin/TCF reporter assay, and gene expression of lymphoid enhancer-binding factor-1 (Lef1), transcription factor 7 (Tcf7), Wnt inhibitor factor 1 (Wif1) and Axin2, and 2) cementoblast/osteoblast differentiation assessed by mineralization in vitro, and mRNA levels of runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), osteocalcin (Ocn) and bone sialoprotein (Bsp) by qPCR after Wnt3a treatment and knockdown of β-catenin. Results Wnt3a induced β-catenin nuclear translocation and upregulated the transcriptional activity of a canonical Wnt-responsive reporter, suggesting the Wnt/β-catenin pathway functions in SVF4 cells. Activation of Wnt signaling with Wnt3a suppressed Bmp2-mediated induction of cementoblast/osteoblast maturation of SVF4 cells. However, β-catenin knockdown showed that Bmp2-induced expression of cementoblast/osteoblast differentiation markers requires endogenous β-catenin. Wnt3a down-regulated transcripts for Runx2, Alp and Ocn in SVF4 cells compared to untreated cells. In contrast, Bmp2 induction of Bsp transcripts occurred independent of Wnt/β-catenin signaling. Conclusions These data suggest that stabilization of β-catenin by Wnt-3a treatment inhibits Bmp2-mediated induction of cementoblast/osteoblast differentiation in SVF4 cells, although Bmp2 requires endogenous Wnt/β-catenin signaling to promote cell maturation. PMID:22150562

  17. BMP8B Is a Tumor Suppressor Gene Regulated by Histone Acetylation in Gastric Cancer.

    PubMed

    Wisnieski, Fernanda; Leal, Mariana Ferreira; Calcagno, Danielle Queiroz; Santos, Leonardo Caires; Gigek, Carolina Oliveira; Chen, Elizabeth Suchi; Artigiani, Ricardo; Demachki, Sâmia; Assumpção, Paulo Pimentel; Lourenço, Laércio Gomes; Burbano, Rommel Rodríguez; Smith, Marília Cardoso

    2017-04-01

    Different from genetic alterations, the reversible nature of epigenetic modifications provides an interesting opportunity for the development of clinically relevant therapeutics in different tumors. In this study, we aimed to screen and validate candidate genes regulated by the epigenetic marker associated with transcriptional activation, histone acetylation, in gastric cancer (GC). We first compared gene expression profile of trichostatin A-treated and control GC cell lines using microarray assay. Among the 55 differentially expressed genes identified in this analysis, we chose the up-regulated genes BMP8B and BAMBI for further analyses, that included mRNA and histone acetylation quantification in paired GC and nontumor tissue samples. BMP8B expression was reduced in GC compared to nontumor samples (P < 0.01). In addition, reduced BMP8B expression was associated with poorly differentiated GC (P = 0.02). No differences or histopathological associations were identified concerning BAMBI expression. Furthermore, acetylated H3K9 and H4K16 levels at BMP8B were increased in GC compared to nontumors (P < 0.05). However, reduced levels of acetylated H3K9 and H4K16 were associated with poorly differentiated GC (P < 0.05). Reduced levels of acetylated H3K9 was also associated with diffuse-type histological GC (P < 0.05). Notably, reduced BMP8B mRNA and acetylated H4K16 levels were positively correlated in poorly differentiated GC (P < 0.05). Our study demonstrated that BMP8B seems to be a tumor suppressor gene regulated by H4K16 acetylation in poorly differentiated GC. Therefore, BMP8B may be a potential target for TSA-based therapies in this GC sample subset. J. Cell. Biochem. 118: 869-877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Differential growth factor control of bone formation through osteoprogenitor differentiation.

    PubMed

    Chaudhary, L R; Hofmeister, A M; Hruska, K A

    2004-03-01

    The osteogenic factors bone morphogenetic protein (BMP-7), platelet-derived growth factor (PDGF)-BB, and fibroblast growth factor (FGF-2) regulate the recruitment of osteoprogenitor cells and their proliferation and differentiation into mature osteoblasts. However, their mechanisms of action on osteoprogenitor cell growth, differentiation, and bone mineralization remain unclear. Here, we tested the hypothesis that these osteogenic agents were capable of regulating osteoblast differentiation and bone formation in vitro. Normal human bone marrow stromal (HBMS) cells were treated with BMP-7 (40 ng ml(-1)), PDGF-BB (20 ng ml(-1)), FGF-2 (20 ng ml(-1)), or FGF-2 plus BMP-7 for 28 days in a serum-containing medium with 10 mM beta-glycerophosphate and 50 microg ml(-1) ascorbic acid. BMP-7 stimulated a morphological change to cuboidal-shaped cells, increased alkaline phosphatase (ALKP) activity, bone sialoprotein (BSP) gene expression, and alizarin red S positive nodule formation. Hydroxyapatite (HA) crystal deposition in the nodules was demonstrated by Fourier transform infrared (FTIR) spectroscopy only in BMP-7- and dexamethasone (DEX)-treated cells. DEX-treated cells appeared elongated and fibroblast-like compared to BMP-7-treated cells. FGF-2 did not stimulate ALKP, and cell morphology was dystrophic. PDGF-BB had little or no effect on ALKP activity and biomineralization. Alizarin Red S staining of cells and calcium assay indicated that BMP-7, DEX, and FGF-2 enhanced calcium mineral deposition, but FTIR spectroscopic analysis demonstrated no formation of HA similar to human bone in control, PDGF-BB-, and FGF-2-treated samples. Thus, FGF-2 stimulated amorphous octacalcium phosphate mineral deposition that failed to mature into HA. Interestingly, FGF-2 abrogated BMP-7-induced ALKP activity and HA formation. Results demonstrate that BMP-7 was competent as a sole factor in the differentiation of human bone marrow stromal cells to bone-forming osteoblasts confirmed by FTIR examination of mineralized matrix. Other growth factors, PDGF, and FGF-2 were incompetent as sole factors, and FGF-2 inhibited BMP-7-stimulated osteoblast differentiation.

  19. Continuous release of bone morphogenetic protein-2 through nano-graphene oxide-based delivery influences the activation of the NF-κB signal transduction pathway

    PubMed Central

    Zhong, Cheng; Feng, Jun; Lin, Xiangjin; Bao, Qi

    2017-01-01

    Graphene oxide (GO) has been used as a delivery vehicle for small molecule drugs and nucleotides. To further investigate GO as a smart biomaterial for the controlled release of cargo molecules, we hypothesized that GO may be an appropriate delivery vehicle because it releases bone morphogenetic protein 2 (BMP2). GO characterization indicated that the size distribution of the GO flakes ranged from 81.1 nm to 45,749.7 nm, with an approximate thickness of 2 nm. After BMP2 adsorption onto GO, Fourier-transformed infrared spectroscopy (FTIR) and thermal gravimetric analysis were performed. Compared to GO, BMP2-GO did not induce significant changes in the characteristics of the materials. GO continuously released BMP2 for at least 40 days. Bone marrow stem cells (BMSCs) and chondrocytes were treated with BMP2-GO in interleukin-1 media and assessed in terms of cell viability, flow cytometric characterization, and expression of particular mRNA. Compared to GO, BMP2-GO did not induce any significant changes in biocompatibility. We treated osteoarthritic rats with BMP2 and BMP2-GO, which showed significant differences in Osteoarthritis Research Society International (OARSI) scores (P<0.05). Quantitative assessment revealed significant differences compared to that using BMP2 and BMP2-GO (P<0.05). These findings indicate that GO may be potentially used to control the release of carrier materials. The combination of BMP2 and GO slowed the progression of NF-κB-activated degenerative changes in osteoarthritis. Therefore, we infer that our BMP2-GO strategy could alleviate the NF-κB pathway by inducing continuous BMP2 release. PMID:28243085

  20. Osteogenic gene expression of murine osteoblastic (MC3T3-E1) cells under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kao, C. T.; Chen, C. C.; Cheong, U.-I.; Liu, S. L.; Huang, T. H.

    2014-08-01

    Low-level laser therapy (LLLT) can promote cell proliferation. The remodeling ability of the tension side of orthodontic teeth affects post-orthodontic stability. The purpose of the present study was to investigate the osteogenic effects of LLLT on osteoblast-like cells treated with a simulated tension system that provides a mechanical tension regimen. Murine osteoblastic (MC3T3-E1) cells were cultured in a Flexcell strain unit with programmed loads of 12% elongation at a frequency of 0.5 Hz for 24 and 48 h. The cultured cells were treated with a low-level diode laser using powers of 5 J and 10 J. The proliferation of MC3T3-E1 cells was determined using the Alamar Blue assay. The expression of osteogenic genes (type I collagen (Col-1), osteopontin (OPN), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B ligand (RANKL), bone morphologic protein (BMP-2), and bone morphologic protein (BMP-4)) in MC3T3-E1 cells was analyzed using reverse transcription polymerase chain reaction (RT-PCR). The data were analyzed using one-way analysis of variance. The proliferation rate of tension-cultured MC3T3-E1 cells under 5 J and 10 J LLLT increased compared with that of the control group (p < 0.05). Prominent mineralization of the MC3T3-E1 cells was visible using a von Kossa stain in the 5 J LLLT group. Osteogenic genes (Col-1, OC, OPG and BMP-2) were significantly expressed in the MC3T3-E1 cells treated with 5 J and 10 J LLLT (p < 0.05). LLLT in tension-cultured MC3T3-E1 cells showed synergistic osteogenic effects, including increases in cell proliferation and Col-1, OPN, OC, OPG and BMP-2 gene expression. LLLT might be beneficial for bone remodeling on the tension side of orthodontics.

  1. Essential Roles of Epithelial Bone Morphogenetic Protein Signaling During Prostatic Development

    PubMed Central

    Omori, Akiko; Miyagawa, Shinichi; Ogino, Yukiko; Harada, Masayo; Ishii, Kenichiro; Sugimura, Yoshiki; Ogino, Hajime; Nakagata, Naomi

    2014-01-01

    Prostate is a male sex-accessory organ. The prostatic epithelia consist primarily of basal and luminal cells that differentiate from embryonic urogenital sinus epithelia. Prostate tumors are believed to originate in the basal and luminal cells. However, factors that promote normal epithelial differentiation have not been well elucidated, particularly for bone morphogenetic protein (Bmp) signaling. This study shows that Bmp signaling prominently increases during prostatic differentiation in the luminal epithelia, which is monitored by the expression of phosphorylated Smad1/5/8. To elucidate the mechanism of epithelial differentiation and the function of Bmp signaling during prostatic development, conditional male mutant mouse analysis for the epithelial-specific Bmp receptor 1a (Bmpr1a) was performed. We demonstrate that Bmp signaling is indispensable for luminal cell maturation, which regulates basal cell proliferation. Expression of the prostatic epithelial regulatory gene Nkx3.1 was significantly reduced in the Bmpr1a mutants. These results indicate that Bmp signaling is a key factor for prostatic epithelial differentiation, possibly by controlling the prostatic regulatory gene Nkx3.1. PMID:24731097

  2. Periosteal BMP2 activity drives bone graft healing.

    PubMed

    Chappuis, Vivianne; Gamer, Laura; Cox, Karen; Lowery, Jonathan W; Bosshardt, Dieter D; Rosen, Vicki

    2012-10-01

    Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Role of Activins in Hepcidin Regulation during Malaria.

    PubMed

    Spottiswoode, Natasha; Armitage, Andrew E; Williams, Andrew R; Fyfe, Alex J; Biswas, Sumi; Hodgson, Susanne H; Llewellyn, David; Choudhary, Prateek; Draper, Simon J; Duffy, Patrick E; Drakesmith, Hal

    2017-12-01

    Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life-threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the master controller of iron metabolism, the hormone hepcidin, in malaria infection. We show that hepcidin upregulation in Plasmodium berghei murine malaria infection was accompanied by changes in expression of bone morphogenetic protein (BMP)/sons of mothers against decapentaplegic (SMAD) pathway target genes, a key pathway involved in hepcidin regulation. We therefore investigated known agonists of the BMP/SMAD pathway and found that Bmp gene expression was not increased in infection. In contrast, activin B, which can signal through the BMP/SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei -infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi Concentrations of the closely related protein activin A increased in parallel with hepcidin in serum from malaria-naive volunteers infected in controlled human malaria infection (CHMI) clinical trials. However, antibody-mediated neutralization of activin activity during murine malaria infection did not affect hepcidin expression, suggesting that these proteins do not stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signaling pathway is perturbed in malaria infection but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting. Copyright © 2017 Spottiswoode et al.

  4. Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps

    PubMed Central

    Patel, Janki Jayesh; Modes, Jane E.; Flanagan, Colleen L.; Krebsbach, Paul H.; Edwards, Sean P.

    2015-01-01

    Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm3) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm3). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps. PMID:25809081

  5. Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps.

    PubMed

    Patel, Janki Jayesh; Modes, Jane E; Flanagan, Colleen L; Krebsbach, Paul H; Edwards, Sean P; Hollister, Scott J

    2015-09-01

    Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and <1% BMP2 and 83% EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.

  6. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development

    PubMed Central

    Yuan, Guohua; Yang, Guobin; Zheng, Yuqian; Zhu, Xiaojing; Chen, Zhi; Zhang, Zunyi; Chen, YiPing

    2015-01-01

    BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development. PMID:25428587

  7. Chronological gene expression of parathyroid hormone-related protein (PTHrP) in the stellate reticulum of the rat: implications for tooth eruption.

    PubMed

    Yao, Shaomian; Pan, Fenghui; Wise, Gary E

    2007-03-01

    Tooth eruption is a localized event that requires the expression of certain molecules at precise times to regulate bone resorption and bone formation. Parathyroid hormone-related protein (PTHrP) may be one of those molecules. Although PTHrP is produced in the stellate reticulum (SR) of the tooth and exerts its effect on the adjacent dental follicle, its expression pattern in the SR is unknown. Thus, it was the objectives of this study to determine the chronology of expression of PTHrP, and then to determine its effect on vascular endothelial growth factor (VEGF) expression for osteoclastogenesis and on bone morphogenetic protein-2 (BMP-2) for bone growth. Laser capture microdissection and RT-PCR were used to determine the chronological expression of PTHrP in vivo. In vitro, dental follicle cells were incubated with PTHrP and RT-PCR was conducted to determine its effect on VEGF and BMP-2 gene expression. PTHrP was maximally expressed at day 7 postnatally in the SR with the level of expression still high at day 9. In vitro, PTHrP upregulated VEGF120 and VEGF164 expression after 4h of incubation with a maximum effect at 6h. PTHrP upregulated BMP-2 gene expression with a maximal effect at 2h. Because the secondary burst of osteoclastogenesis needed for eruption occurs around day 10, it is possible that PTHrP is stimulating this osteoclastogenesis by upregulating VEGF. Concurrently, the upregulation of BMP-2 by PTHrP may stimulate bone growth at the base of the bony crypt to promote eruption.

  8. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency.

    PubMed

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-02-15

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments ( p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment ( p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  9. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    PubMed Central

    Chin, Kok-Yong; Abdul-Majeed, Saif; Mohamed, Norazlina; Ima-Nirwana, Soelaiman

    2017-01-01

    Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis. PMID:28212283

  10. TGF-β but not BMP signaling induces prechondrogenic condensation through ATP oscillations during chondrogenesis.

    PubMed

    Kwon, Hyuck Joon

    2012-08-10

    Although both TGF-β and BMP signaling enhance expression of adhesion molecules during chondrogenesis, TGF-β but not BMP signaling can initiate condensation of uncondensed mesenchymal cells. However, it remains unclear what causes the differential effects between TGF-β and BMP signaling on prechondrogenic condensation. Our previous report demonstrated that ATP oscillations play a critical role in prechondrogenic condensation. Thus, the current study examined whether ATP oscillations are associated with the differential actions of TGF-β and BMP signaling on prechondrogenic condensation. The result revealed that while both TGF-β1 and BMP2 stimulated chondrogenic differentiation, TGF-β1 but not BMP2 induced prechondrogenic condensation. It was also found that TGF-β1 but not BMP2 induced ATP oscillations and inhibition of TGF-β but not BMP signaling prevented insulin-induced ATP oscillations. Moreover, blockage of ATP oscillations inhibited TGF-β1-induced prechondrogenic condensation. In addition, TGF-β1-driven ATP oscillations and prechondrogenic condensation depended on Ca(2+) influx via voltage-dependent calcium channels. This study suggests that Ca(2+)-driven ATP oscillations mediate TGF-β-induced the initiation step of prechondrogenic condensation and determine the differential effects between TGF-β and BMP signaling on chondrogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry.

    PubMed

    Veerkamp, Justus; Rudolph, Franziska; Cseresnyes, Zoltan; Priller, Florian; Otten, Cécile; Renz, Marc; Schaefer, Liliana; Abdelilah-Seyfried, Salim

    2013-03-25

    Signaling by Nodal and Bmp is essential for cardiac laterality. How activities of these pathways translate into left-right asymmetric organ morphogenesis is largely unknown. We show that, in zebrafish, Nodal locally reduces Bmp activity on the left side of the cardiac field. This effect is mediated by the extracellular matrix enzyme Hyaluronan synthase 2, expression of which is induced by Nodal. Unilateral reduction of Bmp signaling results in lower expression of nonmuscle myosin II and higher cell motility on the left, driving asymmetric displacement of the entire cardiac field. In silico modeling shows that left-right differences in cell motility are sufficient to induce a robust, directional migration of cardiac tissue. Thus, the mechanism underlying the formation of cardiac left-right asymmetry involves Nodal modulating an antimotogenic Bmp activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Msx and dlx homeogene expression in epithelial odontogenic tumors.

    PubMed

    Ruhin-Poncet, Blandine; Ghoul-Mazgar, Sonia; Hotton, Dominique; Capron, Frédérique; Jaafoura, Mohamed Habib; Goubin, Gérard; Berdal, Ariane

    2009-01-01

    Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development-amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4-were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors.

  13. Bone Morphogenetic Protein 4 Promotes Vascular Smooth Muscle Contractility by Activating MicroRNA-21 (miR-21), which Down-regulates Expression of Family of Dedicator of Cytokinesis (DOCK) Proteins*

    PubMed Central

    Kang, Hara; Davis-Dusenbery, Brandi N.; Nguyen, Peter H.; Lal, Ashish; Lieberman, Judy; Van Aelst, Linda; Lagna, Giorgio; Hata, Akiko

    2012-01-01

    The bone morphogenetic protein 4 (BMP4) signaling pathway plays a critical role in the promotion and maintenance of the contractile phenotype in vascular smooth muscle cell (vSMC). Misexpression or inactivating mutations of the BMP receptor gene can lead to dedifferentiation of vSMC characterized by increased migration and proliferation that is linked to vascular proliferative disorders. Previously we demonstrated that vSMCs increase microRNA-21 (miR-21) biogenesis upon BMP4 treatment, which induces contractile gene expression by targeting programmed cell death 4 (PDCD4). To identify novel targets of miR-21 that are critical for induction of the contractile phenotype by BMP4, biotinylated miR-21 was expressed in vSMCs followed by an affinity purification of mRNAs associated with miR-21. Nearly all members of the dedicator of cytokinesis (DOCK) 180-related protein superfamily were identified as targets of miR-21. Down-regulation of DOCK4, -5, and -7 by miR-21 inhibited cell migration and promoted cytoskeletal organization by modulating an activity of small GTPase. Thus, this study uncovers a regulatory mechanism of the vSMC phenotype by the BMP4-miR-21 axis through DOCK family proteins. PMID:22158624

  14. Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/β-catenin and MAPK pathway.

    PubMed

    Yang, Hongpeng; Guo, Yue; Wang, Dawei; Yang, Xiaofei; Ha, Chengzhi

    2018-01-02

    Mesenchymal stem cells (MSCs) have the ability to differentiate into osteoblasts and chondrocytes. In vitro osteogenic differentiation is critical but the molecular mechanism has yet to be further clarified. The role of TGF-β activated kinase 1 (TAK1) in MSCs osteogenesis differentiation has not been reported. By adding si-TAK1 and rhTAK1, the osteogenic differentiation of MSCs was measured. Expression levels of the osteoblastic marker genes during osteogenic differentiation of MSCs were checked. As well as molecules involved in BMP and Wnt/β-catenin signaling pathways. The phosphorylation of p38 and JNK was also checked. TAK1 is essential for mineralization of MSCs at low concentration, but excessive rhTAK1 inhibits mineralization of MSCs. It up regulates the expression levels of bone sialoprotein (BSP), osteocalcin (OSC), Alkaline phosphatase (ALP), and RUNX2 during osteogenic differentiation of MSCs. It can also promote TGF-β/BMP-2 gene expression and β-catenin expression, and down regulate GSK-3β expression. Meanwhile, TAK1 promotes the phosphorylation of p38 and JNK. Additionally, TAK1 up regulates the expression of BMP-2 at all concentration under the inhibition of p38 and JNK. Our results suggested that TAK1 is essential in MSCs osteogenesis differentiation, and functions as a double-edged sword, probably through regulation of β-catenin and p38/JNK.

  15. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia

    PubMed Central

    Emmerton-Coughlin, Heather M. A.; Martin, K. Kathryn; Chiu, Jacky S. S.; Zhao, Lin; Scott, Leslie A.; Regnault, Timothy R. H.; Bütter, Andreana

    2014-01-01

    Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH) remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP) 4 and other factors such as late gestation lung protein 1 (LGL1), are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in seven experimental animals. Lungs were harvested at 136 days (term = 145 days). Lung weight (LW) and mean terminal bronchiole density (MTBD) were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4, and LGL1 mRNA expression. Results: Total LW was decreased while MTBD was increased in the CDH group (p < 0.05), confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p < 0.05). Wnt2 mRNA was decreased, although not significantly (p < 0.06). Conclusion: For the first time, down regulation of BMP4 and LGL1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis. PMID:25593968

  16. The spatial patterning of mouse cone opsin expression is regulated by BMP signaling through downstream effector COUP-TF nuclear receptors

    PubMed Central

    Satoh, Shinya; Tang, Ke; Iida, Atsumi; Inoue, Mariko; Kodama, Tatsuhiko; Tsai, Sophia Y.; Tsai, Ming-Jer; Furuta, Yasuhide; Watanabe, Sumiko

    2009-01-01

    Cone photopigments, known as opsins, are pivotal elements and the first detection module employed in color vision. In mice, cone photoreceptors are distributed throughout the retina, and S- and M-opsins have unique expression patterns in the retina with a gradient along the dorsoventral axis; however, the mechanisms regulating the spatial patterning of cone opsin expression have not been well documented. The purpose of this study was to define the mechanisms regulating the spatial patterning of cone opsin expression. By analyzing knockouts for bone morphogenetic protein (BMP) signaling, we found an essential role for BMP in forming cone opsin expression patterns in the retina; however, BMP signaling is activated only transiently in the dorsal half of the retina during early retinal development. Thus, BMP is not likely to play a direct role in opsin gene expression, which starts at a later stage of retinal development. We identified the chicken ovalbumin upstream promoter-transcription factor (COUP-TF) nuclear receptor as a link between BMP and opsin expression. BMP signaling is essential for the correct dorsoventral spatial expression of COUP-TFI and -TFII. Through gain- and loss-of-function analyses, we found that both COUP-TFI and -TFII are required to suppress S-opsin expression in the dorsal retina but that only COUP-TFI plays an essential role in suppressing M-opsin expression in the ventral retina. Based on these findings, we propose a new molecular cascade involving BMP and COUP-TFs that conveys dorsoventral information to direct the expression of cone opsins during retinal development. PMID:19812316

  17. Delivering growth factors through a polymeric scaffold to cell cultures containing both nucleus pulposus and annulus fibrosus.

    PubMed

    Akyuva, Yener; Kaplan, Necati; Yilmaz, Ibrahim; Ozbek, Hanefi; Sirin, Duygu Yasar; Karaaslan, Numan; Guler, Olcay; Ateş, Özkan

    2018-04-09

    The aim of this in vitro experimental study was to design a novel, polyvinyl alcohol(PVA)-basedpolymericscaffold that permits the controlled release of insulin-likegrowthfactor1(IGF-1)/bonemorphogenetic protein-2(BMP-2) following intervertebral disc administration. The drug delivery system was composed of two different solutions that formed a scaffold within seconds after coming into contact with each other. We performed swelling,pH,temperature tests and analysis of the controlled release of growth factors from this system.The release kinetics of the growth factors was determined through enzyme linked immunosorbent assay(ELISA). Cell proliferation and viability was monitored with microscopy and analyzed using an MTT assay and acridine orange/propidium iodide(AO/PI) staining. Chondroadherin(CHAD), hypoxiainduciblefactor-1alpha(HIF-1α),collagentypeII(COL2A1) gene expressions were determined with quantitative real-timepolymerasechainreaction(qRT-PCR) analysis to show the effects of IGF-1/BMP-2 administration on annulus fibrosus cell(AFC)/nucleus pulposus cell(NPC) cultures. The scaffold allowed for the controlled release of IGF-1 and BMP-2 in different time intervals. It was observed that as the application time increased, the number of cells and the degree of extracellular matrix development increased in AFC/NPC cultures. AO/PI staining and an MTT analysis showed that cells retained their specific morphology and continued to proliferate. It was observed that HIF-1α and CHAD expression increased in a time-dependent manner, and there wasn't any COL2A1 expression in the AFC/NPC cultures. The designed scaffold may be used as an alternative method for intervertebral disc administration of growth factors after further in vivo studies. We believe that such prototype scaffolds may be an innovative technology in targeted drug therapies after reconstructive neurosurgeries.

  18. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    PubMed Central

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  19. Fabrication of a biomimetic ZeinPDA nanofibrous scaffold impregnated with BMP-2 peptide conjugated TiO2 nanoparticle for bone tissue engineering.

    PubMed

    Babitha, S; Annamalai, Meenakshi; Dykas, Michal Marcin; Saha, Surajit; Poddar, Kingshuk; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Venkatesan, Thirumalai; Korrapati, Purna Sai

    2018-04-01

    A biomimetic Zein polydopamine based nanofiber scaffold was fabricated to deliver bone morphogenic protein-2 (BMP-2) peptide conjugated titanium dioxide nanoparticles in a sustained manner for investigating its osteogenic differentiation potential. To prolong its retention time at the target site, BMP-2 peptide has been conjugated to titanium dioxide nanoparticles owing to its high surface to volume ratio. The effect of biochemical cues from BMP-2 peptide and nanotopographical stimulation of electrospun Zein polydopamine nanofiber were examined for its enhanced osteogenic expression of human fetal osteoblast cells. The sustained delivery of bioactive signals, improved cell adhesion, mineralization, and differentiation could be attributed to its highly interconnected nanofibrous matrix with unique material composition. Further, the expression of osteogenic markers revealed that the fabricated nanofibrous scaffold possess better cell-biomaterial interactions. These promising results demonstrate the potential of the composite nanofibrous scaffold as an effective biomaterial substrate for bone regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Enhanced BMP signaling results in supernumerary tooth formation in USAG-1 deficient mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murashima-Suginami, Akiko; Takahashi, Katsu; Sakata, Tomoko

    2008-05-16

    Uterine sensitization associated gene-1 (USAG-1) is a BMP antagonist, and also modulates Wnt signaling. We previously reported that USAG-1 deficient mice have supernumerary teeth. The supernumerary maxillary incisor appears to form as a result of the successive development of the rudimentary upper incisor. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. We confirmed that BMPs were expressed in both the epithelium and mesenchyme of the rudimentary incisor at E14 and E15. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Wnt signaling as demonstrated bymore » the nuclear localization of {beta}-catenin was also up-regulated. Inhibition of BMP signaling rescues supernumerary tooth formation in E15 incisor explant culture. Based upon these results, we conclude that enhanced BMP signaling results in supernumerary teeth and BMP signaling was modulated by Wnt signaling in the USAG-1 deficient mouse model.« less

  1. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.

    PubMed

    Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A

    2016-04-01

    Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.

    PubMed

    Yang, Hee Seok; La, Wan-Geun; Bhang, Suk Ho; Kim, Hak-Jun; Im, Gun-Il; Lee, Haeshin; Park, Jung-Ho; Kim, Byung-Soo

    2011-07-01

    Microfracture of cartilage induces migration of bone-marrow-derived mesenchymal stem cells. However, this treatment often results in fibrocartilage regeneration. Growth factors such as bone morphogenetic protein (BMP)-2 induce the differentiation of bone-marrow-derived mesenchymal stem cells into chondrocytes, which can be used for hyaline cartilage regeneration. Here, we tested the hypothesis that long-term delivery of BMP-2 to cartilage defects subjected to microfracture results in regeneration of high-quality hyaline-like cartilage, as opposed to short-term delivery of BMP-2 or no BMP-2 delivery. Heparin-conjugated fibrin (HCF) and normal fibrin were used as carriers for the long- and short-term delivery of BMP-2, respectively. Rabbit articular cartilage defects were treated with microfracture combined with one of the following: no treatment, fibrin, short-term delivery of BMP-2, HCF, or long-term delivery of BMP-2. Eight weeks after treatment, histological analysis revealed that the long-term delivery of BMP-2 group (microfracture + HCF + BMP-2) showed the most staining with alcian blue. A biochemical assay, real-time polymerase chain reaction assay and Western blot analysis all revealed that the long-term delivery of BMP-2 group had the highest glucosaminoglycan content as well as the highest expression level of collagen type II. Taken together, the long-term delivery of BMP-2 to cartilage defects subjected to microfracture resulted in regeneration of hyaline-like cartilage, as opposed to short-term delivery or no BMP-2 delivery. Therefore, this method could be more convenient for hyaline cartilage regeneration than autologous chondrocyte implantation due to its less invasive nature and lack of cell implantation.

  3. Injectable chitosan microparticles incorporating bone morphogenetic protein-7 for bone tissue regeneration

    PubMed Central

    Mantripragada, Venkata P.; Jayasuriya, Ambalangodage C.

    2014-01-01

    This study investigates the influence of the controlled release of bone morphogenetic protein 7 (BMP-7) from cross-linked chitosan microparticles on pre-osteoblasts (OB-6) in vitro. BMP-7 was incorporated into microparticles by encapsulation during the particle preparation and coating after particle preparation. Chitosan microparticles had an average diameter of 700 μm containing ~100 ng of BMP-7. The release study profile indicates that nearly 98% of the BMP-7 coated on the microparticles was released in a period of 18 days while only 36% of the BMP-7 encapsulated in the microparticles was released in the same time period. Cell attachment study indicated that the BMP-7 coated microparticles have many cells adhered on the microparticles in comparison with microparticles without growth factors on day 10. DNA assay indicated a statistical significant increase (p<0.05) in the amount of DNA obtained from BMP-7 encapsulated and coated microparticles in comparison with microparticles without any growth factors. A real time RT-PCR experiment was performed to determine the expression of a few osteoblast specific genes - Dlx5, runx2, osterix, osteopontin, osteocalcin, and bone sialoprotein. The results thus suggest that chitosan microparticles obtained by coacervation method are biocompatible and helps in improving the encapsulation efficiency of BMP-7. Also BMP-7 incorporated in the microparticles is being released in a controlled fashion to support attachment, proliferation and differentiation of pre-osteoblasts, thus acting as a good scaffold for bone tissue regeneration. PMID:24497318

  4. Losartan Inhibits Vascular Calcification by Suppressing the BMP2 and Runx2 Expression in Rats In Vivo.

    PubMed

    Li, Mincai; Wu, Panfeng; Shao, Juan; Ke, Zhiqiang; Li, Dan; Wu, Jiliang

    2016-04-01

    The blockade of renin-angiotensin II system has been shown to reduce morbidity and mortality in hypertension, atherosclerosis, diabetes and chronic kidney disease. Since vascular calcification (VC) is commonly found in these diseases, the aim of this study was to examine whether or not losartan, a widely used angiotensin II receptor blockers, inhibits VC in rats in vivo. A rat model of VC was generated by treating rats with a combination of warfarin and vitamin K1. Two weeks after the treatments, the rats were treated with vehicle or without losartan (100 ng/kg/day) for 2 weeks. At the end of the experiments, aortic arteries were isolated for the examination of calcification morphology, mRNA and protein expression of BMP2 and Runx2, and osteoblast differentiation. Warfarin and vitamin K instigated vascular remodeling with calcified plaques in the aortic arteries in rats. Losartan significantly attenuated warfarin- and vitamin K-induced vascular injury and calcification. Consistently, losartan suppressed the levels of mRNA and protein expression of BMP2 and Runx2, two key factors for VC. Further, vascular calcified lesion areas expressed angiotensin II 1 receptor (AT1R). Finally, losartan treatment significantly inhibited apoptosis in vascular smooth muscle cell (VSMC) in rat arteries. We conclude that losartan suppresses VC by lowering the expression of AT1R, Runx2 and BMP2, and by inhibiting the apoptosis of VSMC in rat aortic arteries.

  5. Ex vivo bone morphogenetic protein 2 gene delivery using periodontal ligament stem cells for enhanced re-osseointegration in the regenerative treatment of peri-implantitis.

    PubMed

    Park, Shin-Young; Kim, Kyoung-Hwa; Gwak, Eun-Hye; Rhee, Sang-Hoon; Lee, Jeong-Cheol; Shin, Seung-Yun; Koo, Ki-Tae; Lee, Yong-Moo; Seol, Yang-Jo

    2015-01-01

    Peri-implantitis is a chronic inflammatory process with advanced bone loss and impaired healing potential. For peri-implantitis treatment, tissue engineering can be applied to enhance bone regeneration of peri-implant defects. This study aimed to evaluate ex vivo bone morphogenetic protein 2 (BMP2) gene delivery using canine periodontal ligament stem cells (PDLSCs) for regeneration of peri-implantitis defects. Canine PDLSCs were transduced with adenoviral vectors containing BMP2 (BMP2/PDLSCs). After peri-implantitis was induced by ligature placement in six beagle dogs, regenerative procedures were performed; hydroxyapatite (HA) particles and collagen gel with autologous canine PDLSCs (PDLSC group) or BMP2/PDLSCs (BMP/PDLSC group) or without cells (control group) were grafted into the defects and covered by an absorbable membrane. Three months later, the animals were sacrificed. In vitro, BMP2/PDLSCs showed similar levels of stem cell properties to PDLSCs, such as colony-forming efficiency and expression of MSC markers STRO-1 and CD 146. BMP2/PDLSCs produced BMP-2 until day 21 at a concentration of 4-8 ng/mL. In vivo, the BMP2/PDLSC group showed significantly more new bone formation and re-osseointegration in peri-implantitis defects compared to the other groups. In conclusion, ex vivo BMP2 gene delivery using PDLSCs enhanced new bone formation and re-osseointegration in peri-implantitis defects. © 2014 Wiley Periodicals, Inc.

  6. Development and characterization of a mouse floxed Bmp2 osteoblast cell line that retains osteoblast genotype and phenotype

    PubMed Central

    Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo

    2011-01-01

    Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257

  7. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation

    PubMed Central

    Rajagopal, Ramya; Huang, Jie; Dattilo, Lisa K.; Kaartinen, Vesa; Mishina, Yuji; Deng, Chu-Xia; Umans, Lieve; Zwijsen, An; Roberts, Anita B.; Beebe, David C.

    2009-01-01

    BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, αA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination. PMID:19733164

  8. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    PubMed

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  9. BMP15 gene is activated during human amniotic fluid stem cell differentiation into oocyte-like cells.

    PubMed

    Cheng, Xiang; Chen, Shuai; Yu, Xiaoli; Zheng, Pengsheng; Wang, Huayan

    2012-07-01

    The generation of oocyte-like cells (OLCs) from stem cell differentiation in vitro provides an optimal approach for studying the mechanism of oocyte development and maturation. The aim of this study was to investigate the activation of bone morphogenetic protein 15 gene (BMP15) during the differentiation of human amniotic fluid stem cells (hAFSCs) into OLCs. After 15 days of differentiation, OLCs with a diameter of 50-60 μm and zona pellucida (ZP)-like morphology were observed. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed the BMP15 was activated from approximately day 10 of differentiating hAFSCs and thereafter. The reporter construct pBMP15-enhanced green fluorescent protein (EGFP) was transiently transfected into the differentiated hAFSCs and the EGFP expression driven by the BMP15 promoter was positive in the OLCs. Moreover, RT-PCR analysis showed that the oocyte-specific markers including ZP1, ZP2, ZP3, and c-kit were expressed in the differentiated hAFSCs, and the immunofluorescence assay confirmed that the ZP2 was detected in the OLCs. Quantitative RT-PCR revealed that ZP2 and ZP3 were significantly elevated in the differentiated hAFSCs. Further, in the OLCs derived from hAFSCs, the BMP15 promoter directing the EGFP reporter was colocalized with ZP2. Together, these results illustrated that the BMP15 could be used as an oogenesis marker to track hAFSCs differentiation into the OLCs.

  10. Msx-1 is suppressed in bisphosphonate-exposed jaw bone analysis of bone turnover-related cell signalling after bisphosphonate treatment.

    PubMed

    Wehrhan, F; Hyckel, P; Amann, K; Ries, J; Stockmann, P; Schlegel, Ka; Neukam, Fw; Nkenke, E

    2011-05-01

    Bone-destructive disease treatments include bisphosphonates and antibodies against receptor activator for nuclear factor κB ligand (aRANKL). Osteonecrosis of the jaw (ONJ) is a side-effect. Aetiopathology models failed to explain their restriction to the jaw. The osteoproliferative transcription factor Msx-1 is expressed constitutively only in mature jaw bone. Msx-1 expression might be impaired in bisphosphonate-related ONJ. This study compared the expression of Msx-1, Bone Morphogenetic Protein (BMP)-2 and RANKL, in ONJ-affected and healthy jaw bone. An automated immunohistochemistry-based alkaline phosphatase-anti-alkaline phosphatase method was used on ONJ-affected and healthy jaw bone samples (n = 20 each): cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed to quantitatively compare Msx-1, BMP-2, RANKL and GAPDH mRNA levels. Labelling indices were significantly lower for Msx-1 (P < 0.03) and RANKL (P < 0.003) and significantly higher (P < 0.02) for BMP-2 in ONJ compared with healthy bone. Expression was sevenfold lower (P < 0.03) for Msx-1, 22-fold lower (P < 0.001) for RANKL and eightfold higher (P < 0.02) for BMP-2 in ONJ bone. Msx-1, RANKL suppression and BMP-2 induction were consistent with the bisphosphonate-associated osteopetrosis and impaired bone remodelling in BP- and aRANKL-induced ONJ. Msx-1 suppression suggested a possible explanation of the exclusivity of ONJ in jaw bone. Functional analyses of Msx-1- RANKL interaction during bone remodelling should be performed in the future. © 2011 John Wiley & Sons A/S.

  11. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate ceramics.

    PubMed

    Tang, Zhurong; Wang, Zhe; Qing, Fangzhu; Ni, Yilu; Fan, Yujiang; Tan, Yanfei; Zhang, Xingdong

    2015-03-01

    Porous calcium phosphate ceramics (CaP ceramics) could induce ectopic bone formation which was regulated by various signal molecules. In this work, bone marrow mesenchymal stem cells (MSCs) were cultured on the surface of osteoinductive hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramics in comparison with control (culture plate) for up to 14 days to detect the signal molecules which might be affected by the CaP ceramics. Without adding osteogenic factors, MSCs cultured on HA and BCP both expressed higher Runx2, Osterix, collagen type I, osteopontin, bone sialoprotein, and osteocalcin at various stages compared with control, thus confirmed the osteoblastic differentiation of MSCs. Later study demonstrated the messenger RNA level of bone morphogenetic protein 2 (BMP2) and BMP4 were also significantly enhanced by HA and BCP. Furthermore, Smad1, 4, 5, and Dlx5, the main molecules in the BMP/Smads signaling pathway, were upregulated by HA and BCP. Moreover, the higher expression of Smads and BMP2, 4 in BCP over HA, corresponded to the better performance of BCP in stimulating in vitro osteoblastic differentiation of MSCs. This was in accordance with the better osteoinductivity of BCP over HA in vivo. Altogether, these results implied that the CaP ceramics may initiate the osteoblastic differentiation of MSCs by influencing the expression of molecules in BMP/Smads pathway. © 2014 Wiley Periodicals, Inc.

  12. Obese rats supplemented with bitter melon display marked shifts in the expression of genes controlling inflammatory response and lipid metabolism by RNA-Seq analysis of colonic mucosa.

    PubMed

    Bai, Juan; Zhu, Ying; Dong, Ying

    2018-06-01

    Obesity is known to induce pathological changes in the gut and diets rich in complex carbohydrates that resist digestion in the small bowel can alter large bowel ecology. The purposes of this study were to identify the effects of bitter melon powder (BMP) on the global gene expression pattern in the colon mucosa of obese rats. Obese rats were fed a high-fat diet and treated without or with BMP for 8 weeks. Genome-wide expression profiles of the colon mucosa were determined by RNA sequencing (RNA-Seq) analysis at the end of experiment. A total of 87 genes were identified as differentially expressed (DE) between these two groups (fold change > 1.2). These results were further validated by quantitative RT-PCR, confirming the high reliability of the RNA-Seq. Interestingly, DE genes implicated in inflammation and lipid metabolism were found to be downregulated by BMP in the colon. Network between genes and the top 15 KEGG pathways showed that PRKCβ (protein kinase C beta) and Pla2g2a (phospholipase A2 group IIA) strongly interacted with surrounding pathways and genes. Results revealed that BMP supplement could remodel key colon functions by altering transcriptomic profile in obese rats.

  13. A comparative examination of odontogenic gene expression in both toothed and toothless amniotes

    PubMed Central

    Lainoff, Alexis J.; Moustakas-Verho, Jacqueline E.; Hu, Diane; Kallonen, Aki; Marcucio, Ralph S.; Hlusko, Leslea J.

    2015-01-01

    A well-known tenet of murine tooth development is that BMP4 and FGF8 antagonistically initiate odontogenesis, but whether this tenet is conserved across amniotes is largely unexplored. Moreover, changes in BMP4-signaling have previously been implicated in evolutionary tooth loss in Aves. Here we demonstrate that Bmp4, Msx1, and Msx2 expression is limited proximally in the red-eared slider turtle (Trachemys scripta) mandible at stages equivalent to those at which odontogenesis is initiated in mice, a similar finding to previously reported results in chicks. To address whether the limited domains in the turtle and the chicken indicate an evolutionary molecular parallelism, or whether the domains simply constitute an ancestral phenotype, we assessed gene expression in a toothed reptile (the American alligator, Alligator mississippiensis) and a toothed non-placental mammal (the gray short-tailed opossum, Monodelphis domestica). We demonstrate that the Bmp4 domain is limited proximally in M. domestica and that the Fgf8 domain is limited distally in A. mississippiensis just preceding odontogenesis. Additionally, we show that Msx1 and Msx2 expression patterns in these species differ from those found in mice. Our data suggest that a limited Bmp4 domain does not necessarily correlate with edentulism, and reveal that the initiation of odontogenesis in non-murine amniotes is more complex than previously imagined. Our data also suggest a partially conserved odontogenic program in T. scripta, as indicated by conserved Pitx2, Pax9, and Barx1 expression patterns and by the presence of a Shh-expressing palatal epithelium, which we hypothesize may represent potential dental rudiments based on the Testudinata fossil record. PMID:25678399

  14. Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yin; Zhao, Shaomin; School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069

    2013-11-29

    Highlights: •SERTAD1 interacts with SMAD1. •Sertad1 is expressed in mouse embryonic hearts. •SERTAD1 is localized in both cytoplasm and nucleus of cardiomyocytes. •SERTAD1 enhances expression of BMP target cardiogenic genes as a SMAD1 co-activator. -- Abstract: Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, themore » activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis.« less

  15. In Vivo Host Response and Degradation of Copolymer Scaffolds Functionalized with Nanodiamonds and Bone Morphogenetic Protein 2.

    PubMed

    Suliman, Salwa; Sun, Yang; Pedersen, Torbjorn O; Xue, Ying; Nickel, Joachim; Waag, Thilo; Finne-Wistrand, Anna; Steinmüller-Nethl, Doris; Krueger, Anke; Costea, Daniela E; Mustafa, Kamal

    2016-03-01

    The aim is to evaluate the effect of modifying poly[(l-lactide)-co-(ε-caprolactone)] scaffolds (PLCL) with nanodiamonds (nDP) or with nDP+physisorbed BMP-2 (nDP+BMP-2) on in vivo host tissue response and degradation. The scaffolds are implanted subcutaneously in Balb/c mice and retrieved after 1, 8, and 27 weeks. Molecular weight analysis shows that modified scaffolds degrade faster than the unmodified. Gene analysis at week 1 shows highest expression of proinflammatory markers around nDP scaffolds; although the presence of inflammatory cells and foreign body giant cells is more prominent around the PLCL. Tissue regeneration markers are highly expressed in the nDP+BMP-2 scaffolds at week 8. A fibrous capsule is detectable by week 8, thinnest around nDP scaffolds and at week 27 thickest around PLCL scaffolds. mRNA levels of ALP, COL1α2, and ANGPT1 are significantly upregulating in the nDP+BMP-2 scaffolds at week 1 with ectopic bone seen at week 8. Even when almost 90% of the scaffold is degraded at week 27, nDP are observable at implantation areas without adverse effects. In conclusion, modifying PLCL scaffolds with nDP does not aggravate the host response and physisorbed BMP-2 delivery attenuates inflammation while lowering the dose of BMP-2 to a relatively safe and economical level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Protective Effects of Exclusive Enteral Nutrition Formulas on Growth Factor Expression and the Proximal Tibial Epiphyseal Growth Plate in a TNBS-Induced IBD Rat Model.

    PubMed

    Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying

    2015-07-01

    This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.

  17. BMP Induction of Cardiogenesis in P19 Cells Requires Prior Cell-Cell Interaction(s)

    PubMed Central

    ANGELLO, JOHN C.; KAESTNER, STEFANIE; WELIKSON, ROBERT E.; BUSKIN, JEAN N.; HAUSCHKA, STEPHEN D.

    2008-01-01

    Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline which undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they “self-induce” cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction. PMID:16773658

  18. BMP induction of cardiogenesis in P19 cells requires prior cell-cell interaction(s).

    PubMed

    Angello, John C; Kaestner, Stefanie; Welikson, Robert E; Buskin, Jean N; Hauschka, Stephen D

    2006-08-01

    Mouse P19 embryonal carcinoma cells undergo cardiogenesis in response to high density and DMSO. We have derived a clonal subline that undergoes cardiogenesis in response to high density, but without requiring exposure to DMSO. The new subline retains the capacity to differentiate into skeletal muscle and neuronal cells in response to DMSO and retinoic acid. However, upon aggregation, these Oct 4-positive cells, termed P19-SI because they "self-induce" cardiac muscle, exhibit increased mRNAs encoding the mesodermal factor Brachyury, cardiac transcription factors Nkx 2.5 and GATA 4, the transcriptional repressor Msx-1, and cytokines Wnt 3a, Noggin, and BMP 4. Exposure of aggregated P19-SI cells to BMP 4, a known inducer of cardiogenesis, accelerates cardiogenesis, as determined by rhythmic beating and myosin staining. However, cardiogenesis is severely inhibited when P19-SI cells are aggregated in the presence of BMP 4. These results demonstrate that cell-cell interaction is required before P19-SI cells can undergo a cardiogenic response to BMP 4. A concurrent increase in the expression of Msx-1 suggests one possible process underlying the inhibition of cardiogenesis. The phenotype of P19-SI cells offers an opportunity to explore new aspects of cardiac induction.

  19. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    PubMed Central

    2012-01-01

    Background The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study PMID:22356869

  20. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells.

    PubMed

    Rici, Rose Eli Grassi; Alcântara, Dayane; Fratini, Paula; Wenceslau, Cristiane Valverde; Ambrósio, Carlos Eduardo; Miglino, Maria Angelica; Maria, Durvanei Augusto

    2012-02-22

    The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study.

  1. Msx and Dlx Homeogene Expression in Epithelial Odontogenic Tumors

    PubMed Central

    Ruhin-Poncet, Blandine; Ghoul-Mazgar, Sonia; Hotton, Dominique; Capron, Frédérique; Jaafoura, Mohamed Habib; Goubin, Gérard; Berdal, Ariane

    2009-01-01

    Epithelial odontogenic tumors are rare jaw pathologies that raise clinical diagnosis and prognosis dilemmas notably between ameloblastomas and clear cell odontogenic carcinomas (CCOCs). In line with previous studies, the molecular determinants of tooth development—amelogenin, Msx1, Msx2, Dlx2, Dlx3, Bmp2, and Bmp4—were analyzed by RT-PCR, ISH, and immunolabeling in 12 recurrent ameloblastomas and in one case of CCOC. Although Msx1 expression imitates normal cell differentiation in these tumors, other genes showed a distinct pattern depending on the type of tumor and the tissue involved. In benign ameloblastomas, ISH localized Dlx3 transcripts and inconstantly detected Msx2 transcripts in epithelial cells. In the CCOC, ISH established a lack of both Dlx3 and Msx2 transcripts but allowed identification of the antisense transcript of Msx1, which imitates the same scheme of distribution between mesenchyme and epithelium as in the cup stage of tooth development. Furthermore, while exploring the expression pattern of signal molecules by RT-PCR, Bmp2 was shown to be completely inactivated in the CCOC and irregularly noticeable in ameloblastomas. Bmp4 was always expressed in all the tumors. Based on the established roles of Msx and Dlx transcription factors in dental cell fates, these data suggest that their altered expression is a proposed trail to explain the genesis and/or the progression of odontogenic tumors. (J Histochem Cytochem 57:69–78, 2009) PMID:18854600

  2. Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds.

    PubMed

    Tabisz, Barbara; Schmitz, Werner; Schmitz, Michael; Luehmann, Tessa; Heusler, Eva; Rybak, Jens-Christoph; Meinel, Lorenz; Fiebig, Juliane E; Mueller, Thomas D; Nickel, Joachim

    2017-03-13

    The regenerative potential of bone is strongly impaired in pathological conditions, such as nonunion fractures. To support bone regeneration various scaffolds have been developed in the past, which have been functionalized with osteogenic growth factors such as bone morphogenetic proteins (BMPs). However, most of them required supra-physiological levels of these proteins leading to burst releases, thereby causing severe side effects. Site-specific, covalent coupling of BMP2 to implant materials might be an optimal strategy in order to overcome these problems. Therefore, we created a BMP-2 variant (BMP2-K3Plk) containing a noncanonical amino acid (propargyl-l-lysine) substitution introduced by genetic code expansion that allows for site-specific and covalent immobilization onto polymeric scaffold materials. To directly compare different coupling strategies, we also produced a BMP2 variant containing an additional cysteine residue (BMP2-A2C) allowing covalent coupling by thioether formation. The BMP2-K3Plk mutant was coupled to functionalized beads by a copper-catalyzed azide-alkyne cycloaddition (CuAAC) either directly or via a short biotin-PEG linker both with high specificity. After exposing the BMP-coated beads to C2C12 cells, ALP expression appeared locally restricted in close proximity to these beads, showing that both coupled BMP2 variants trigger cell differentiation. The advantage of our approach over non-site-directed immobilization techniques is the ability to produce fully defined osteogenic surfaces, allowing for lower BMP2 loads and concomitant higher bioactivities, for example, due to controlled orientation toward BMP2 receptors. Such products might provide superior bone healing capabilities with potential safety advantages as of homogeneous product outcome.

  3. Local administration of bone morphogenetic protein-2 and bisphosphonate during non-weight-bearing treatment of ischemic osteonecrosis of the femoral head: an experimental investigation in immature pigs.

    PubMed

    Kim, Harry K W; Aruwajoye, Olumide; Du, Justin; Kamiya, Nobuhiro

    2014-09-17

    Non-weight-bearing decreases the femoral head deformity but increases bone resorption without increasing bone formation in an experimental animal model of Legg-Calvé-Perthes disease. We sought to determine if local administration of bone morphogenetic protein (BMP)-2 with or without bisphosphonate can increase the bone formation during the non-weight-bearing treatment in the large animal model of Legg-Calvé-Perthes disease. Eighteen piglets were surgically induced with femoral head ischemia. Immediately following the surgery, all animals received an above-the-knee amputation to enforce local non-weight-bearing (NWB). One to two weeks later, six animals received local BMP-2 to the necrotic head (BMP group), six received local BMP-2 and ibandronate (BMP+IB group), and the remaining six received no treatment (NWB group). All animals were killed at eight weeks after the induction of ischemia. Radiographic, microcomputed tomography (micro-CT), and histomorphometric assessments were performed. Radiographic assessment showed that the femoral heads in the NWB, BMP, and BMP+IB groups had a decrease of 20%, 14%, and 10%, respectively, in their mean epiphyseal quotient in comparison with the normal control group. Micro-CT analyses showed significantly higher femoral head bone volume in the BMP+IB group than in the BMP group (p = 0.02) and the NWB group (p < 0.001). BMP+IB and BMP groups had a significantly higher trabecular number (p < 0.01) and lower trabecular separation (p < 0.02) than the NWB group. In addition, the osteoclast number per bone surface was significantly lower in the BMP+IB group compared with the NWB group. Calcein labeling showed significantly higher bone formation in the BMP and BMP+IB groups than in the NWB group (p < 0.05). Heterotopic ossification was found in the capsule of four hips in the BMP+IB group but not in the BMP group. Administration of BMP-2 with bisphosphonate best decreased bone resorption and increased new bone formation during non-weight-bearing treatment of ischemic osteonecrosis in a pig model, but heterotopic ossification is a concern. This preclinical study provides new evidence that BMP-2 with bisphosphonate can effectively prevent the extreme bone loss associated with the non-weight-bearing treatment and increase new bone formation in the femoral head in this animal model of ischemic osteonecrosis. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  4. Expression of BMP-4 in papillary thyroid carcinoma and its correlation with tumor invasion and progression.

    PubMed

    Meng, Xiaomei; Zhu, Peng; Li, Ning; Hu, Jinchen; Wang, Shaoguang; Pang, Shuguang; Wang, Jiahui

    2017-04-01

    Bone morphogenetic protein 4 (BMP-4) is a member of the BMP protein family. BMP-4 was reported to induce epithelial-mesenchymal transition (EMT) and promote tumor cell immigration and invasion. This study aimed to investigate the expression of BMP-4 in papillary thyroid carcinoma (PTC) and its correlation with the patients' clinicophathological features and with tumor invasion and metastasis. Surgically resected PTC specimens from 82 patients admitted to the Department of Thyroid Surgery of Yantai Yuhuangding Hospital between Feb 1st and May 31st, 2016 were collected. The expression level of BMP-4 in PTC tissues was examined by immunohistochemical staining. The full clinical records of all patients were collected to analyze the relevance between BMP-4 expression and the clinical pathological features of PTC. Our result showed that BMP-4-positive cell rate and staining intensity were positively correlated with the patient's age (P=0.031, 0.037), tumor size (P=0.033, 0.019), capsular invasion (P=0.001, 0.002) and TNM stage (P=0.001, 0.004), while not correlated with gender, multicentricity of tumor or lymphatic metastasis. In conclusion, this study identified BMP-4 as a potential molecular marker for predicting the invasion and progression of PTC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hyun; Singh, Rajendra K.; Kang, Min Sil; Kim, Joong-Hyun; Kim, Hae-Won

    2016-04-01

    The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ~73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ~73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07933k

  6. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration

    PubMed Central

    Xu, Jin; Cui, Jiaxi; Del Campo, Aranzazu; Shin, Chong Hyun

    2016-01-01

    The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. PMID:26845333

  7. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons.

    PubMed

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2014-04-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.

  8. Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4.

    PubMed

    Astorga, Jeanette; Carlsson, Peter

    2007-10-01

    The first vasculature of the developing vertebrate embryo forms by assembly of endothelial cells into simple tubes from clusters of mesodermal angioblasts. Maturation of this vasculature involves remodeling, pruning and investment with mural cells. Hedgehog proteins are part of the instructive endodermal signal that triggers the assembly of the first primitive vessels in the mesoderm. We used a combination of genetic and in vitro culture methods to investigate the role of hedgehogs and their targets in murine extraembryonic vasculogenesis. We show that Bmps, in particular Bmp4, are crucial for vascular tube formation, that Bmp4 expression in extraembryonic tissues requires the forkhead transcription factor Foxf1 and that the role of hedgehog proteins in this process is to activate Foxf1 expression in the mesoderm. We show in the allantois that genetic disruption of hedgehog signaling (Smo(-/-)) has no effect on Foxf1 expression, and neither Bmp4 expression nor vasculogenesis are disturbed. By contrast, targeted inactivation of Foxf1 leads to loss of allantoic Bmp4 and vasculature. In vitro, the avascular Foxf1(-/-) phenotype can be rescued by exogenous Bmp4, and vasculogenesis in wild-type tissue can be blocked by the Bmp antagonist noggin. Hedgehogs are required for activation of Foxf1, Bmp4 expression and vasculogenesis in the yolk sac. However, vasculogenesis in Smo(-/-) yolk sacs can be rescued by exogenous Bmp4, consistent with the notion that the role of hedgehog signaling in primary vascular tube formation is as an activator of Bmp4, via Foxf1.

  9. BMP15 suppresses progesterone production by down-regulating StAR via ALK3 in human granulosa cells.

    PubMed

    Chang, Hsun-Ming; Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-12-01

    In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.

  10. Inactivation of Bmp4 from the Tbx1 Expression Domain Causes Abnormal Pharyngeal Arch Artery and Cardiac Outflow Tract Remodeling

    PubMed Central

    Nie, Xuguang; Brown, Christopher B.; Wang, Qin; Jiao, Kai

    2011-01-01

    Maldevelopment of outflow tract and aortic arch arteries is among the most common forms of human congenital heart diseases. Both Bmp4 and Tbx1 are known to play critical roles during cardiovascular development. Expression of these two genes partially overlaps in pharyngeal arch areas in mouse embryos. In this study, we applied a conditional gene inactivation approach to test the hypothesis that Bmp4 expressed from the Tbx1 expression domain plays a critical role for normal development of outflow tract and pharyngeal arch arteries. We showed that inactivation of Bmp4 from Tbx1-expressing cells leads to the spectrum of deformities resembling the cardiovascular defects observed in human DiGeorge syndrome patients. Inactivation of Bmp4 from the Tbx1 expression domain did not cause patterning defects, but affected remodeling of outflow tract and pharyngeal arch arteries. Our further examination revealed that Bmp4 is required for normal recruitment/differentiation of smooth muscle cells surrounding the PAA4 and survival of outflow tract cushion mesenchymal cells. PMID:21123999

  11. Cyclic mechanical stretch enhances BMP9-induced osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Song, Yang; Tang, Yinhong; Song, Jinlin; Lei, Mingxing; Liang, Panpan; Fu, Tiwei; Su, Xudong; Zhou, Pengfei; Yang, Li; Huang, Enyi

    2018-04-01

    The purpose of this study was to investigate whether mechanical stretch can enhance the bone morphogenetic protein 9 (BMP9)-induced osteogenic differentiation in MSCs. Recombinant adenoviruses were used to overexpress the BMP9 in C3H10T1/2 MSCs. Cells were seeded onto six-well BioFlex collagen I-coated plates and subjected to cyclic mechanical stretch [6% elongation at 60 cycles/minute (1 Hz)] in a Flexercell FX-4000 strain unit for up to 12 hours. Immunostaining and confocal microscope were used to detect cytoskeleton organization. Cell cycle progression was checked by flow cytometry. Alkaline phosphatase activity was measured with a Chemiluminescence Assay Kit and was quantified with a histochemical staining assay. Matrix mineralization was examined by Alizarin Red S Staining. Mechanical stretch induces cytoskeleton reorganization and inhibits cell proliferation by preventing cells entry into S phase of the cell cycle. Although mechanical stretch alone does not induce the osteogenic differentiation of C3H10T1/2 MSCs, co-stimulation with mechanical stretch and BMP9 enhances alkaline phosphatase activity. The expression of key lineage-specific regulators (e.g., osteocalcin (OCN), SRY-related HMG-box 9, and runt-related transcription factor 2) is also increased after the co-stimulation, compared to the mechanical stretch stimulation along. Furthermore, mechanical stretch augments the BMP9-mediated bone matrix mineralization of C3H10T1/2 MSCs. Our results suggest that mechanical stretch enhances BMP9-induced osteoblastic lineage specification in C3H10T1/2 MSCs.

  12. Pharmacologic Calcitriol Inhibits Osteoclast Lineage Commitment via the BMP-Smad1 and IκB-NF-κB Pathways.

    PubMed

    Li, Anna; Cong, Qian; Xia, Xuechun; Leong, Wai Fook; Yeh, James; Miao, Dengshun; Mishina, Yuji; Liu, Huijuan; Li, Baojie

    2017-07-01

    Vitamin D is involved in a range of physiological processes and its active form and analogs have been used to treat diseases such as osteoporosis. Yet how vitamin D executes its function remains unsolved. Here we show that the active form of vitamin D calcitriol increases the peak bone mass in mice by inhibiting osteoclastogenesis and bone resorption. Although calcitriol modestly promoted osteoclast maturation, it strongly inhibited osteoclast lineage commitment from its progenitor monocyte by increasing Smad1 transcription via the vitamin D receptor and enhancing BMP-Smad1 activation, which in turn led to increased IκBα expression and decreased NF-κB activation and NFATc1 expression, with IκBα being a Smad1 target gene. Inhibition of BMP type I receptor or ablation of Bmpr1a in monocytes alleviated the inhibitory effects of calcitriol on osteoclast commitment, bone resorption, and bone mass augmentation. These findings uncover crosstalk between the BMP-Smad1 and RANKL-NF-κB pathways during osteoclastogenesis that underlies the action of active vitamin D on bone health. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  13. Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis

    PubMed Central

    HaDuong, Josephine H.; Blavier, Laurence; Baniwal, Sanjeev K.; Frenkel, Baruch; Malvar, Jemily; Punj, Vasu; Sposto, Richard; DeClerck, Yves A.

    2017-01-01

    The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of bone marrow-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven towards osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA-mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated co-cultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis. PMID:25648303

  14. Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis.

    PubMed

    HaDuong, Josephine H; Blavier, Laurence; Baniwal, Sanjeev K; Frenkel, Baruch; Malvar, Jemily; Punj, Vasu; Sposto, Richard; DeClerck, Yves A

    2015-08-15

    The potential role of osteoblasts in bone and bone marrow (BM) metastases in neuroblastoma (NBL) remains unclear. In this study, we examined the effect of NBL cells on the osteoblastic differentiation of BM-derived mesenchymal stromal cells (BMMSC). We show that the presence of NBL cells enhanced the osteoblastic differentiation of BMMSC driven by bone morphogenetic protein (BMP)-4, in the absence of any effect on NBL cell proliferation. Expression profiles of BMMSC driven toward osteoblastic differentiation revealed an increase in vascular endothelial growth factor A (Vegfa) expression in the presence of NBL cells. We demonstrated that NBL cells increased BMMSC-derived VEGFA mRNA and protein and that this was enhanced by BMP-4. However, in similar conditions, neither the addition of an mVEGFA blocking antibody nor exogenous recombinant (r) mVEGFA affected osteoblastic differentiation. In contrast, siRNA- mediated knock-down of VEGFA in BMMSC prevented osteoblastic differentiation in BMP-4-treated cocultures, an effect that was not reversed in the presence of rmVEGFA. An analysis of murine bones injected with hNBL cells revealed an increase of mVEGFA producing cells near tumor cells concomitantly with an increase in Vegfa and Runx2 mRNA. This coincided with an increase in osteoclasts, in Rankl/Opg mRNA ratio and with the formation of osteolytic lesions. Thus NBL cells promote osteoblastogenesis in the BM by increasing VEGFA expression in BMMSC. Our study provides a new insight into the role of VEGFA in NBL metastases by pointing to the role of stroma-derived intracrine VEGFA in osteoblastogenesis. © 2015 UICC.

  15. Uncoupled iron homeostasis in type 2 diabetes mellitus.

    PubMed

    Altamura, Sandro; Kopf, Stefan; Schmidt, Julia; Müdder, Katja; da Silva, Ana Rita; Nawroth, Peter; Muckenthaler, Martina U

    2017-12-01

    Diabetes mellitus is frequently associated with iron overload conditions, such as primary and secondary hemochromatosis. Conversely, patients affected by type 2 diabetes mellitus (T2DM) show elevated ferritin levels, a biomarker for increased body iron stores. Despite these documented associations between dysregulated iron metabolism and T2DM, the underlying mechanisms are poorly understood. Here, we show that T2DM patients have reduced serum levels of hepcidin, the iron-regulated hormone that maintains systemic iron homeostasis. Consistent with this finding, we also observed an increase in circulating iron and ferritin levels. Our analysis of db/db mice demonstrates that this model recapitulates the systemic alterations observed in patients. Interestingly, db/db mice show an overall hepatic iron deficiency despite unaltered expression of ferritin and the iron importer TfR1. In addition, the liver correctly senses increased circulating iron levels by activating the BMP/SMAD signaling pathway even though hepcidin expression is decreased. We show that increased AKT phosphorylation may override active BMP/SMAD signaling and decrease hepcidin expression in 10-week old db/db mice. We conclude that the metabolic alterations occurring in T2DM impact on the regulation of iron homeostasis on multiple levels. As a result, metabolic perturbations induce an "iron resistance" phenotype, whereby signals that translate increased circulating iron levels into hepcidin production, are dysregulated. T2DM patients show increased circulating iron levels. T2DM is associated with inappropriately low hepcidin levels. Metabolic alterations in T2DM induce an "iron resistance" phenotype.

  16. Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling.

    PubMed

    Ying, Xiaozhou; Sun, Liaojun; Chen, Xiaowei; Xu, Huazi; Guo, Xiaoshan; Chen, Hua; Hong, Jianjun; Cheng, Shaowen; Peng, Lei

    2013-12-05

    Silibinin is the major active constituent of the natural compound silymarin; several studies suggest that silibinin possesses antihepatotoxic properties and anticancer effects against carcinoma cells. However, no study has yet investigated the effect of silibinin on osteogenic differentiation of human bone marrow stem cells (hBMSCs). The aim of this study was to evaluate the effect of silibinin on osteogenic differentiation of hBMSCs. In this study, the hBMSCs were cultured in an osteogenic medium with 0, 1, 10 or 20 μmol/l silibinin respectively. hBMSCs viability was analyzed by cell number quantification assay and cells osteogenic differentiation was evaluated by alkaline phosphatas (ALP) activity assay, Von Kossa staining and real time-polymerase chain reaction (RT-PCR). We found that silibinin promoted ALP activity in hBMSCs without affecting their proliferation. The mineralization of hBMSCs was enhanced by treatment with silibinin. Silibinin also increased the mRNA expressions of Collagen type I (COL-I), ALP, Osteocalcin (OCN), Osterix, bone morphogenetic protein-2 (BMP-2) and Runt-related transcription factor 2 (RUNX2). The BMP antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated silibinin-promoted ALP activity. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by silibinin treatment. These results indicate that silibinin enhances osteoblast differentiation probably by inducing the expressions of BMPs and activating BMP and RUNX2 pathways. Thus, silibinin may play an important therapeutic role in osteoporosis patients by improving osteogenic differentiation of BMSCs. © 2013 Elsevier B.V. All rights reserved.

  17. Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling.

    PubMed

    Sailer, Martin H M; Gerber, Alexandra; Tostado, Cristóbal; Hutter, Gregor; Cordier, Dominik; Mariani, Luigi; Ritz, Marie-Françoise

    2013-08-15

    Neural stem cells (NSCs) typically show efficient self-renewal and selective differentiation. Their invasion potential, however, is not well studied. In this study, Sox2-positive NSCs from the E14.5 rat cortex were found to be non-invasive and showed only limited migration in vitro. By contrast, FGF2-expanded NSCs showed a strong migratory and invasive phenotype in response to the combination of FGF2 and BMP4. Invasive NSCs expressed Podoplanin (PDPN) and p75NGFR (Ngfr) at the plasma membrane after exposure to FGF2 and BMP4. FGF2 and BMP4 together upregulated the expression of Msx1, Snail1, Snail2, Ngfr, which are all found in neural crest (NC) cells during or after epithelial-mesenchymal transition (EMT), but not in forebrain stem cells. Invasive cells downregulated the expression of Olig2, Sox10, Egfr, Pdgfra, Gsh1/Gsx1 and Gsh2/Gsx2. Migrating and invasive NSCs had elevated expression of mRNA encoding Pax6, Tenascin C (TNC), PDPN, Hey1, SPARC, p75NGFR and Gli3. On the basis of the strongest upregulation in invasion-induced NSCs, we defined a group of five key invasion-related genes: Ngfr, Sparc, Snail1, Pdpn and Tnc. These genes were co-expressed and upregulated in seven samples of glioblastoma multiforme (GBM) compared with normal human brain controls. Induction of invasion and migration led to low expression of differentiation markers and repressed proliferation in NSCs. Our results indicate that normal forebrain stem cells have the inherent ability to adopt a glioma-like invasiveness. The results provide a novel in vitro system to study stem cell invasion and a novel glioma invasion model: tumoral abuse of the developmental dorsoventral identity regulation.

  18. Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties.

    PubMed

    Raina, Deepak Bushan; Larsson, David; Mrkonjic, Filip; Isaksson, Hanna; Kumar, Ashok; Lidgren, Lars; Tägil, Magnus

    2018-02-28

    In this study, a novel macroporous composite biomaterial consisting of gelatin-hydroxyapatite-calcium sulphate for delivery of bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) has been developed. The biomaterial scaffold has a porous structure and functionalization of the scaffold with rhBMP-2 induces osteogenic differentiation of MC3T3-e1 cells seen by a significant increase in biochemical and genetic markers of osteoblastic differentiation. In-vivo muscle pouch experiments showed higher mineralization using scaffold+rhBMP-2 when compared to an approved absorbable collagen sponge (ACS)+rhBMP-2 as verified by micro-CT. Co-delivery of rhBMP-2+ZA via the novel scaffold enabled a reduction in the effective rhBMP-2 doses. The presence of tartrate resistant acid phosphatase staining in the rhBMP-2 group indicates osteoclastic resorption, which could be stalled by adding ZA, which by speculation could explain the net increase in mineralization. The new scaffold allowed for slow release of rhBMP-2 in-vitro (3.3±0.1%) after 4weeks. Using single photon emission computed tomography (SPECT), the release kinetics of 125 I-rhBMP-2 in-vivo was followed for 4weeks and a total of 65.3±15.2% 125 I-rhBMP-2 was released from the scaffolds. In-vitro 14 C-ZA release curve shows an initial burst release on day 1 (8.8±0.7%) followed by a slow release during the following 4weeks (13±0.1%). In-vivo, an initial release of 43.2±7.6% of 14 C-ZA was detected after 1day, after which the scaffold retained the remaining ZA during 4-weeks. Taken together, our results show that the developed biomaterial is an efficient carrier for spatio-temporal delivery of rhBMP-2 and ZA leading to increased bone formation compared to commercially available carrier for rhBMP-2. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. E-cadherin can replace N-cadherin during secretory-stage enamel development.

    PubMed

    Guan, Xiaomu; Bidlack, Felicitas B; Stokes, Nicole; Bartlett, John D

    2014-01-01

    N-cadherin is a cell-cell adhesion molecule and deletion of N-cadherin in mice is embryonic lethal. During the secretory stage of enamel development, E-cadherin is down-regulated and N-cadherin is specifically up-regulated in ameloblasts when groups of ameloblasts slide by one another to form the rodent decussating enamel rod pattern. Since N-cadherin promotes cell migration, we asked if N-cadherin is essential for ameloblast cell movement during enamel development. The enamel organ, including its ameloblasts, is an epithelial tissue and for this study a mouse strain with N-cadherin ablated from epithelium was generated. Enamel from wild-type (WT) and N-cadherin conditional knockout (cKO) mice was analyzed. μCT and scanning electron microscopy showed that thickness, surface structure, and prism pattern of the cKO enamel looked identical to WT. No significant difference in hardness was observed between WT and cKO enamel. Interestingly, immunohistochemistry revealed the WT and N-cadherin cKO secretory stage ameloblasts expressed approximately equal amounts of total cadherins. Strikingly, E-cadherin was not normally down-regulated during the secretory stage in the cKO mice suggesting that E-cadherin can compensate for the loss of N-cadherin. Previously it was demonstrated that bone morphogenetic protein-2 (BMP2) induces E- and N-cadherin expression in human calvaria osteoblasts and we show that the N-cadherin cKO enamel organ expressed significantly more BMP2 and significantly less of the BMP antagonist Noggin than did WT enamel organ. The E- to N-cadherin switch at the secretory stage is not essential for enamel development or for forming the decussating enamel rod pattern. E-cadherin can substitute for N-cadherin during these developmental processes. Bmp2 expression may compensate for the loss of N-cadherin by inducing or maintaining E-cadherin expression when E-cadherin is normally down-regulated. Notably, this is the first demonstration of a natural endogenous increase in E-cadherin expression due to N-cadherin ablation in a healthy developing tissue.

  20. Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice

    PubMed Central

    Whittlesey, Rebecca L.; Andrews, Nancy C.

    2011-01-01

    The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe−/− mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6−/− mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe−/− mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder. PMID:21355094

  1. Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration.

    PubMed

    Wertheimer, Tobias; Velardi, Enrico; Tsai, Jennifer; Cooper, Kirsten; Xiao, Shiyun; Kloss, Christopher C; Ottmüller, Katja J; Mokhtari, Zeinab; Brede, Christian; deRoos, Paul; Kinsella, Sinéad; Palikuqi, Brisa; Ginsberg, Michael; Young, Lauren F; Kreines, Fabiana; Lieberman, Sophia R; Lazrak, Amina; Guo, Peipei; Malard, Florent; Smith, Odette M; Shono, Yusuke; Jenq, Robert R; Hanash, Alan M; Nolan, Daniel J; Butler, Jason M; Beilhack, Andreas; Manley, Nancy R; Rafii, Shahin; Dudakov, Jarrod A; van den Brink, Marcel R M

    2018-01-12

    The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1 , a key transcription factor involved in TEC development, maintenance, and regeneration, and its downstream targets such as Dll4 , a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices.

    PubMed

    Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T

    2003-06-13

    Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.

  3. Cuscuta chinensis extract promotes osteoblast differentiation and mineralization in human osteoblast-like MG-63 cells.

    PubMed

    Yang, Hyun Mo; Shin, Hyun-Kyung; Kang, Young-Hee; Kim, Jin-Kyung

    2009-02-01

    The aim of the present study was to investigate whether the aqueous extract of To-Sa-Za (TSZ-AE), the seed of Cuscuta chinensis Lam., which is a traditional medicinal herb commonly used in Korea and other oriental countries, could induce osteogenic activity in human osteoblast-like MG-63 cells. TSZ-AE treatment mildly promoted the proliferation of MG-63 cells at doses of 500 and 1,000 microg/mL in the 24-hour culture period. Dose-dependent increases in alkaline phosphatase (ALP) activity and collagen synthesis were shown at 48 and 72 hours of incubation. The release of bone morphogenetic protein (BMP)-2 but not osteocalcin in the MG-63 cells was induced by TSZ-AE at 72 hours (100-1,000 microg/mL). In addition, TSZ-AE markedly increased mRNA expression of ALP, collagen, and BMP-2 in the MG-63 cells in a dose-dependent manner. Mineralization in the culture of MG-63 cells was significantly induced at 500 and 1,000 microg/mL TSZ-AE treatment. In conclusion, this study shows that TSZ-AE enhanced ALP activity, collagen synthesis, BMP-2 expression, and mineralization in MG-63 cells. These results strongly suggest that C. chinensis can play an important role in osteoblastic bone formation and may possibly lead to the development of bone-forming drugs.

  4. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    PubMed

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Physiological Challenges of Bone Repair

    DTIC Science & Technology

    2012-12-01

    expression, in general, followed the same pattern in both groups, but significantly, lower levels of mRNA for Indian Hedgehog (ihh) and BMP-2 were detected in...the fracture calluses of the older rats. Indian Hedgehog is thought to be involved in chondrogenesis and bone repair, whereas BMP-2 stimulates bone

  6. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].

    PubMed

    Jiang, W R; Zhang, X; Liu, Y S; Wu, G; Ge, Y J; Zhou, Y S

    2017-02-18

    To construct a novel biomimetic calcium phosphate (BioCaP) scaffold loaded with bone morphogenetic protein-2 (BMP-2), and to investigate its role in the osteogenesis of human adipose-derived stem cells (hASCs) in vitro and in vivo. The BioCaP scaffold coprecipitated with BMP-2 (BMP-2-BioCaP) was constructed in this study. Field emission scanning electron microscopy (SEM) was used to analyze the morphology of the surfaces. The release kinetics was measured to evaluate the slow-release characteristics in vitro. BMP-2-BioCaP was immersed in proliferation medium (PM) or osteogenic medium (OM), respectively. The supernatants were collected and used to culture hASCs in vitro. Cell numbers were determined using the cell-counting kit-8 (CCK-8) to assess the cell proliferation. After 7 and 14 days, alkaline phosphatase (ALP) staining and quantification were performed to test the activity of ALP. After 14 and 21 days, the calcification deposition was determined by alizarin red S (ARS) staining and quantification. The expressions of the osteoblast-related genes were tested on day 4 and day 14. In the in vivo study, 6 nude mice were used and implanted subcutaneously into the back of the nude mice for 4 groups: (1) BioCaP scaffold only, (2) BioCaP scaffold+hASCs, (3) BMP-2-BioCaP scaffold, (4) BMP-2-BioCaP scaffold+hASCs (test group). After 4 weeks of implantation, hematoxylin-eosin (HE) staining was performed to evaluate the in vivo osteogenesis of hASCs. SEM observations showed that BioCaP and BMP-2-BioCaP scaffold were entirely composed of straight, plate-like and sharp-edged crystal units, and the length of the crystal units varied between 5 and 10 μm. Release kinetics analysis demonstrated that BMP-2 incorporated with BioCaP could be released at certain concentration and last for more than 21 days, and the accumulative protein release could reach 20%. CCK-8 assays showed that cell proliferation was not significantly affected by BMP-2-BioCaP. ALP activity was higher by the induction of OM+BMP-2-BioCaP than of the other groups (P<0.01). More mineralization deposition and more expressions of osteoblast-related genes such as Runt-related transcription factor 2 (RUNX2), ALP, osteopontin (OPN) and osteocalcin (OC) were determined in the OM+BMP-2-BioCaP group at different time points (P<0.01). HE staining showed that, in the test group and BMP-2-BioCaP scaffold group, the extracellular matrix (ECM) with eosinophilic staining were observed around hASCs, and newly-formed bone-like tissues could be found in ECM around the scaffold materials. Moreover, compared with the BMP-2-BioCaP scaffold group, more bone-like tissues could be observed in ECM with typical structure of bone tissue in the test groups. No obvious positive results were found in the other groups. BMP-2-BioCaP scaffold could achieve slow-release of BMP-2 and promote the osteogenic differentiation of hASCs in vitro and in vivo. The novel tissue-engineered bone composed of hASCs and BMP-2-BioCaPis promising for the repair of bone defect.

  7. Therapeutic effects of naringin on degenerative human nucleus pulposus cells for discogenic low back pain.

    PubMed

    Li, Nianhu; Whitaker, Camden; Xu, Zhanwang; Heggeness, Michael; Yang, Shang-You

    2016-10-01

    Over half the population of the world will suffer from moderate or severe low back pain (LBP) during their life span. Studies have shown that naringin, a major flavonoid in grapefruit and an active compound extracted from a Chinese herbal medicine (Rhizoma Drynariae) possesses many pharmacological effects. The aim of this study was to evaluate the influence of naringin on the growth of degenerative human nucleus pulposus (NP) cells, and its repair effects on protein and gene expressions of the cells. This was an in vitro investigation of the human NP cells isolated from degenerated intervertebral discs that were interacted with various concentrated of naringin. This study was exempted by the institutional Human Subjects Committee-2, University of Kansas School of Medicine-Wichita. Degenerative human NP cells were isolated from intervertebral discs of patients with discogenic LBP and cultured at 37°C with 5% CO 2 . The proliferation of NP cells was determined following treatment with various concentrations of naringin. The protein expressions of tumor necrosis factor-α (TNF-α) and Bone morphogenetic protein 2 (BMP-2) were tested using enzyme-linked immunosorbent assay. Aggrecan and type II collagen levels were measured by immunohistological staining. Further examination of the gene expression of aggrecan, Sox6, and MMP3 was performed after intervention with naringin for 3 days. The human NP cells were successfully propagated in culture and stained positive with toluidine blue staining. Naringin effectively enhanced the cell proliferation at an optimal concentration of 20 µg/mL. Naringin treatment resulted in significant inhibition of TNF-α, but elevated protein expressions of BMP-2, collagen II, and aggrecan. Naringin also increased disc matrix gene activity including aggrecan and Sox6, and decreased the gene expression of MMP3. Naringin effectively promotes the proliferation of degenerative human NP cells and improves the recuperation of the cells from degeneration by increasing expression of aggrecan, BMP-2, and Sox6 while inhibiting the expression of TNF-α and MMP3. This study suggests that naringin may represent an alternative therapeutic agent for disc degeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.

    PubMed

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis.

  9. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo

    PubMed Central

    Haillot, Emmanuel; Molina, Maria Dolores; Lapraz, François; Lepage, Thierry

    2015-01-01

    Specification of the dorsal-ventral axis in the highly regulative sea urchin embryo critically relies on the zygotic expression of nodal, but whether maternal factors provide the initial spatial cue to orient this axis is not known. Although redox gradients have been proposed to entrain the dorsal-ventral axis by acting upstream of nodal, manipulating the activity of redox gradients only has modest consequences, suggesting that other factors are responsible for orienting nodal expression and defining the dorsal-ventral axis. Here we uncover the function of Panda, a maternally provided transforming growth factor beta (TGF-β) ligand that requires the activin receptor-like kinases (Alk) Alk3/6 and Alk1/2 receptors to break the radial symmetry of the embryo and orient the dorsal-ventral axis by restricting nodal expression. We found that the double inhibition of the bone morphogenetic protein (BMP) type I receptors Alk3/6 and Alk1/2 causes a phenotype dramatically more severe than the BMP2/4 loss-of-function phenotype, leading to extreme ventralization of the embryo through massive ectopic expression of nodal, suggesting that an unidentified signal acting through BMP type I receptors cooperates with BMP2/4 to restrict nodal expression. We identified this ligand as the product of maternal Panda mRNA. Double inactivation of panda and bmp2/4 led to extreme ventralization, mimicking the phenotype caused by inactivation of the two BMP receptors. Inhibition of maternal panda mRNA translation disrupted the early spatial restriction of nodal, leading to persistent massive ectopic expression of nodal on the dorsal side despite the presence of Lefty. Phylogenetic analysis indicates that Panda is not a prototypical BMP ligand but a member of a subfamily of TGF-β distantly related to Inhibins, Lefty, and TGF-β that includes Maverick from Drosophila and GDF15 from vertebrates. Indeed, overexpression of Panda does not appear to directly or strongly activate phosphoSmad1/5/8 signaling, suggesting that although this TGF-β may require Alk1/2 and/or Alk3/6 to antagonize nodal expression, it may do so by sequestering a factor essential for Nodal signaling, by activating a non-Smad pathway downstream of the type I receptors, or by activating extremely low levels of pSmad1/5/8. We provide evidence that, although panda mRNA is broadly distributed in the early embryo, local expression of panda mRNA efficiently orients the dorsal-ventral axis and that Panda activity is required locally in the early embryo to specify this axis. Taken together, these findings demonstrate that maternal panda mRNA is both necessary and sufficient to orient the dorsal-ventral axis. These results therefore provide evidence that in the highly regulative sea urchin embryo, the activity of spatially restricted maternal factors regulates patterning along the dorsal-ventral axis. PMID:26352141

  10. Increased avidity for Dpp/BMP2 maintains the proliferation of progenitors-like cells in the Drosophila eye.

    PubMed

    Neto, Marta; Aguilar-Hidalgo, Daniel; Casares, Fernando

    2016-10-01

    During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. In Vitro Evaluation of an Injectable Chitosan Gel for Sustained Local Delivery of BMP-2 for Osteoblastic Differentiation

    DTIC Science & Technology

    2011-11-01

    Res Part B: Appl Biomater 99B: 380–390, 2011. Key Words: injectable gel, chitosan, b- glycerophosphate (b- GP), BMP-2, biocompatibility, release...supplemented with 100 ng/mL BMP-2, 50 l/mL ascorbic acid, and 7 mM b- glycerophosphate for up to 10 days.44 However, W-20-17 cells expressed osteocalcin...mineralization is rapidly initiated and enhanced to form apatite-like calcium mineral depositions. It has been suggested that ascorbic acid, b- glycerophosphate

  12. Trends and Cost of Posterior Cervical Fusions With and Without Recombinant Human Bone Morphogenetic Protein-2 in the US Medicare Population.

    PubMed

    Myhre, Sue Lynn; Buser, Zorica; Meisel, Hans-Joerg; Brodke, Darrel S; Yoon, S Tim; Wang, Jeffrey C; Park, Jong-Beom; Youssef, Jim A

    2017-06-01

    Retrospective database review. To analyze and report the trends and cost of posterior cervical fusions (PCFs) with and without off-label recombinant human bone morphogenetic protein-2 (rhBMP-2) in the Medicare population. Patient records from the PearlDiver database were retrospectively reviewed from January 1, 2005, to December 31, 2012, to distinguish individuals who underwent a PCF with or without rhBMP-2. Total numbers, incidence, age, gender, geographic region, reimbursement, and length of stay were analyzed and summarized. The combined total of non-rhBMP-2 (n = 39 479; 85.51%) and rhBMP-2 PCF (n = 6692; 14.49%) procedures performed between 2005 and 2012 was 46 171. In general, the number of PCFs without rhBMP-2 consistently increased over time, while the number of PCFs with rhBMP-2 had only a slight increase from 2005 to 2012. On average, PCFs without rhBMP-2 were associated with $1197 higher cost than those with rhBMP-2, but the average length of stay was similar (6 days). From 2005 to 2012, the average cost for procedures with and without rhBMP-2 increased by $12 605 and $7291, respectively. The percentage of rhBMP-2 use peaked in 2007 and dwindled until 2010, and declined an additional 2.84% from 2011 to 2012. Multiple age, region, and gender tendencies were observed. To our knowledge, this was the first study to use the PearlDiver database to report incidence and cost trends of PCF procedures. This article provides meaningful trend data on PCFs to surgeons and clinicians, researchers, and patients, as well as functions as a beacon for future research questions.

  13. Comparison of Two Porcine Collagen Membranes Combined with rhBMP-2 and rhBMP-9 on Osteoblast Behavior In Vitro.

    PubMed

    Fujioka-Kobayashi, Masako; Schaler, Benoit; Shirakata, Yoshinori; Nakamura, Toshiaki; Noguchi, Kazuyuki; Zhang, Yufeng; Miron, Richard J

    To investigate the bone-inducing properties of two types of collagen membranes in combination with recombinant human bone morphogenetic protein (rhBMP)-2 and rhBMP-9 on osteoblast behavior. Porcine pericardium collagen membranes (PPCM) and porcine dermis-derived collagen membranes (PDCM) were coated with either rhBMP-2 or rhBMP-9. The adsorption and release abilities were first investigated via enzyme-linked immunosorbent assay up to 10 days. Moreover, murine bone stromal ST2 cell adhesion, proliferation, and osteoblast differentiation were assessed by MTS assay; real-time polymerase chain reaction for genes encoding runt-related transcription factor 2 (Runx2); alkaline phosphatase (ALP); and osteocalcin, ALP assay, and alizarin red staining. Both rhBMP-2 and rhBMP-9 adsorbed to collagen membranes and were gradually released over time up to 10 days. PPCM showed significantly less cell attachment, whereas PDCM demonstrated comparable cell attachment with the control tissue culture plastic at 8 hours. While both rhBMPs were shown not to affect cell proliferation, collagen membranes combined with rhBMP-9 significantly increased ALP activity at 7 days and ALP mRNA levels at either 3 or 14 days compared with the control tissue culture plastic. Furthermore, rhBMP-9 increased osteocalcin mRNA levels and alizarin red staining at 14 days compared with the control tissue culture plastic. The results from this study suggest that both porcine-derived collagen membranes combined with rhBMP-9 accelerated the osteopromotive potential of ST2 cells. Interestingly, rhBMP-9 demonstrated additional osteogenic differentiation compared with rhBMP-2 and may serve as a suitable growth factor for future clinical use.

  14. Role of bone morphogenetic protein-7 in renal fibrosis

    PubMed Central

    Li, Rui Xi; Yiu, Wai Han; Tang, Sydney C. W.

    2015-01-01

    Renal fibrosis is final common pathway of end stage renal disease. Irrespective of the primary cause, renal fibrogenesis is a dynamic process which involves a large network of cellular and molecular interaction, including pro-inflammatory cell infiltration and activation, matrix-producing cell accumulation and activation, and secretion of profibrogenic factors that modulate extracellular matrix (ECM) formation and cell-cell interaction. Bone morphogenetic protein-7 is a protein of the TGF-β super family and increasingly regarded as a counteracting molecule against TGF-β. A large variety of evidence shows an anti-fibrotic role of BMP-7 in chronic kidney disease, and this effect is largely mediated via counterbalancing the profibrotic effect of TGF-β. Besides, BMP-7 reduced ECM formation by inactivating matrix-producing cells and promoting mesenchymal-to-epithelial transition (MET). BMP-7 also increased ECM degradation. Despite these observations, the anti-fibrotic effect of BMP-7 is still controversial such that fine regulation of BMP-7 expression in vivo might be a great challenge for its ultimate clinical application. PMID:25954203

  15. PfSMAD4 plays a role in biomineralization and can transduce bone morphogenetic protein-2 signals in the pearl oyster Pinctada fucata.

    PubMed

    Zhao, Mi; Shi, Yu; He, Maoxian; Huang, Xiande; Wang, Qi

    2016-04-26

    Mollusca is the second largest phylum in nature. The shell of molluscs is a remarkable example of a natural composite biomaterial. Biomineralization and how it affects mollusks is a popular research topic. The BMP-2 signaling pathway plays a canonical role in biomineralization. SMAD4 is an intracellular transmitter in the BMP signaling pathway in mammals, and some genomic data show SMAD4's involvement in BMP signaling in invertebrates, but whether SMAD4 plays a conservative role in pearl oyster, Pinctada fucata, still need to be tested. In this study, we identified a SMAD4 gene (hereafter designated PfSMAD4) in pearl oyster Pinctada fucata. Bioinformatics analysis of PfSMAD4 showed high identity with its orthologs. PfSMAD4 was located in the cytoplasm in immunofluorescence assays and analyses of PfSMAD4 mRNA in tissues and developmental stages showed high expression in ovaries and D-shaped larvae. An RNA interference experiment, performed by PfSMAD4 double-stranded RNA (dsRNA) injection, demonstrated inhibition not only of nacre growth but also organic sheet formation with a decrease in PfSMAD4 expression. A knockdown experiment using PfBMP2 dsRNA showed decreased PfBMP2 and PfSMAD4 mRNA and irregular crystallization of the nacreous layer using scanning electron microscopy. In co-transfection experiments, PfBMP2-transactivated reporter constructs contained PfSMAD4 promoter sequences. Our results suggest that PfSMAD4 plays a role in biomineralization and can transduce BMP signals in P. fucata. Our data provides important clues about the molecular mechanisms that regulate biomineralization in pearl oyster.

  16. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  17. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants

    PubMed Central

    2011-01-01

    Background The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors. Results Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation. Conclusion Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism. PMID:21645366

  18. BMP15 Mutations Associated With Primary Ovarian Insufficiency Reduce Expression, Activity, or Synergy With GDF9.

    PubMed

    Patiño, Liliana C; Walton, Kelly L; Mueller, Thomas D; Johnson, Katharine E; Stocker, William; Richani, Dulama; Agapiou, David; Gilchrist, Robert B; Laissue, Paul; Harrison, Craig A

    2017-03-01

    Bone morphogenetic protein (BMP)15 is an oocyte-specific growth factor, which, together with growth differentiation factor (GDF) 9, regulates folliculogenesis and ovulation rate. Multiple mutations in BMP15 have been identified in women with primary ovarian insufficiency (POI), supporting a pathogenic role; however, the underlying biological mechanism of many of these mutants remains unresolved. To determine how mutations associated with ovarian dysfunction alter the biological activity of human BMP15. The effects of 10 mutations in BMP15 on protein production, activation of granulosa cells, and synergy with GDF9 were assessed. Sequencing of 35 patients with POI identified both an unrecognized BMP15 variant (c.986G>A, R329H) and a variant (c.581T>C, F194S) previously associated with the condition. Assessing expression and activity of these and 8 other BMP15 mutants identified: (1) multiple variants, including L148P, F194S, and Y235C, with reduced mature protein production; (2) three variants (R138H, A180T, and R329H) with ∼fourfold lower activity than wild-type BMP15; and (3) 3 variants (R68W, F194S, and N196K) with a significantly reduced ability to synergize with GDF9. Mutations in BMP15 associated with POI reduce mature protein production, activity, or synergy with GDF9. The latter effect is perhaps most interesting given that interactions with GDF9 most likely underlie the physiology of BMP15 in the human ovary. Copyright © 2017 by the Endocrine Society

  19. Tbx20 Transcription Factor Is a Downstream Mediator for Bone Morphogenetic Protein-10 in Regulating Cardiac Ventricular Wall Development and Function*

    PubMed Central

    Zhang, Wenjun; Chen, Hanying; Wang, Yong; Yong, Weidong; Zhu, Wuqiang; Liu, Yunlong; Wagner, Gregory R.; Payne, R. Mark; Field, Loren J.; Xin, Hongbo; Cai, Chen-Leng; Shou, Weinian

    2011-01-01

    Bone morphogenetic protein 10 (BMP10) belongs to the TGFβ-superfamily. Previously, we had demonstrated that BMP10 is a key regulator for ventricular chamber formation, growth, and maturation. Ablation of BMP10 leads to hypoplastic ventricular wall formation, and elevated levels of BMP10 are associated with abnormal ventricular trabeculation/compaction and wall maturation. However, the molecular mechanism(s) by which BMP10 regulates ventricle wall growth and maturation is still largely unknown. In this study, we sought to identify the specific transcriptional network that is potentially mediated by BMP10. We analyzed and compared the gene expression profiles between α-myosin heavy chain (αMHC)-BMP10 transgenic hearts and nontransgenic littermate controls using Affymetrix mouse exon arrays. T-box 20 (Tbx20), a cardiac transcription factor, was significantly up-regulated in αMHC-BMP10 transgenic hearts, which was validated by quantitative RT-PCR and in situ hybridization. Ablation of BMP10 reduced Tbx20 expression specifically in the BMP10-expressing region of the developing ventricle. In vitro promoter analysis demonstrated that BMP10 was able to induce Tbx20 promoter activity through a conserved Smad binding site in the Tbx20 promoter proximal region. Furthermore, overexpression of Tbx20 in myocardium led to dilated cardiomyopathy that exhibited ventricular hypertrabeculation and an abnormal muscular septum, which phenocopied genetically modified mice with elevated BMP10 levels. Taken together, our findings demonstrate that the BMP10-Tbx20 signaling cascade is important for ventricular wall development and maturation. PMID:21890625

  20. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering.

    PubMed

    Gonzalez-Fernandez, Tomas; Tierney, Erica G; Cunniffe, Grainne M; O'Brien, Fergal J; Kelly, Daniel J

    2016-05-01

    Incorporating therapeutic genes into three-dimensional biomaterials is a promising strategy for enhancing tissue regeneration. Alginate hydrogels have been extensively investigated for cartilage and bone tissue engineering, including as carriers of transfected cells to sites of injury, making them an ideal gene delivery platform for cartilage and osteochondral tissue engineering. The objective of this study was to develop gene-activated alginate hydrogels capable of supporting nanohydroxyapatite (nHA)-mediated nonviral gene transfer to control the phenotype of mesenchymal stem cells (MSCs) for either cartilage or endochondral bone tissue engineering. To produce these gene-activated constructs, MSCs and nHA complexed with plasmid DNA (pDNA) encoding for transforming growth factor-beta 3 (pTGF-β3), bone morphogenetic protein 2 (pBMP2), or a combination of both (pTGF-β3-pBMP2) were encapsulated into alginate hydrogels. Initial analysis using reporter genes showed effective gene delivery and sustained overexpression of the transgenes were achieved. Confocal microscopy demonstrated that complexing the plasmid with nHA before hydrogel encapsulation led to transport of the plasmid into the nucleus of MSCs, which did not happen with naked pDNA. Gene delivery of TGF-β3 and BMP2 and subsequent cell-mediated expression of these therapeutic genes resulted in a significant increase in sulfated glycosaminoglycan and collagen production, particularly in the pTGF-β3-pBMP2 codelivery group in comparison to the delivery of either pTGF-β3 or pBMP2 in isolation. In addition, stronger staining for collagen type II deposition was observed in the pTGF-β3-pBMP2 codelivery group. In contrast, greater levels of calcium deposition were observed in the pTGF-β3- and pBMP2-only groups compared to codelivery, with a strong staining for collagen type X deposition, suggesting these constructs were supporting MSC hypertrophy and progression along an endochondral pathway. Together, these results suggest that the developed gene-activated alginate hydrogels were able to support transfection of encapsulated MSCs and directed their phenotype toward either a chondrogenic or an osteogenic phenotype depending on whether TGF-β3 and BMP2 were delivered in combination or isolation.

  1. Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy.

    PubMed

    García-López, Ángel; Sánchez-Amaya, María Isabel; Halm, Silke; Astola, Antonio; Prat, Francisco

    2011-12-01

    Vertebrate oocytes actively contribute to follicle development by secreting a variety of growth factors, among which bone morphogenetic protein 15 (BMP15/Bmp15) and growth differentiation factor 9 (GDF9/Gdf9) have been paid particular attention. In the present study, we describe the cellular localization, the developmental profiles, and the response to unilateral ovariectomy (a procedure implying the surgical removal of one of the ovaries) of protein and mRNA steady-state levels of Bmp15 and Gdf9 in the ovary of European sea bass, an important fish species for marine aquaculture industry. In situ hybridization and immunohistochemistry demonstrated that the oocyte is the main production site of Bmp15 and Gdf9 in European sea bass ovary. During oocyte development, Bmp15 protein expression started to be detected only from the lipid vesicle stage onwards but not in primary pre-vitellogenic (i.e. perinucleolar) oocytes as the bmp15 mRNA already did. Gdf9 protein and gdf9 mRNA expression were both detected in primary perinucleolar oocytes and followed similar decreasing patterns thereafter. Unilateral ovariectomy induced a full compensatory growth of the remaining ovary in the 2-month period following surgery (Á. García-López, M.I. Sánchez-Amaya, C.R. Tyler, F. Prat 2011). The compensatory growth elicited different changes in the expression levels of mRNA and protein of both factors, although the involvement of Bmp15 and Gdf9 in the regulatory network orchestrating such process remains unclear at present. Altogether, our results establish a solid base for further studies focused on elucidating the specific functions of Bmp15 and Gdf9 during primary and secondary oocyte growth in European sea bass. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Bone morphogenetic protein-binding endothelial regulator of liver sinusoidal endothelial cells induces iron overload in a fatty liver mouse model.

    PubMed

    Hasebe, Takumu; Tanaka, Hiroki; Sawada, Koji; Nakajima, Shunsuke; Ohtake, Takaaki; Fujiya, Mikihiro; Kohgo, Yutaka

    2017-03-01

    Non-alcoholic fatty liver disease (NAFLD) is frequently accompanied by iron overload. However, because of the complex hepcidin-regulating molecules, the molecular mechanism underlying iron overload remains unknown. To identify the key molecule involved in NAFLD-associated iron dysregulation, we performed whole-RNA sequencing on the livers of obese mice. Male C57BL/6 mice were fed a regular or high-fat diet for 16 or 48 weeks. Internal iron was evaluated by plasma iron, ferritin or hepatic iron content. Whole-RNA sequencing was performed by transcriptome analysis using semiconductor high-throughput sequencer. Mouse liver tissues or isolated hepatocytes and sinusoidal endothelial cells were used to assess the expression of iron-regulating molecules. Mice fed a high-fat diet for 16 weeks showed excess iron accumulation. Longer exposure to a high-fat diet increased hepatic fibrosis and intrahepatic iron accumulation. A pathway analysis of the sequencing data showed that several inflammatory pathways, including bone morphogenetic protein (BMP)-SMAD signaling, were significantly affected. Sequencing analysis showed 2314 altered genes, including decreased mRNA expression of the hepcidin-coding gene Hamp. Hepcidin protein expression and SMAD phosphorylation, which induces Hamp, were found to be reduced. The expression of BMP-binding endothelial regulator (BMPER), which inhibits BMP-SMAD signaling by binding BMP extracellularly, was up-regulated in fatty livers. In addition, immunohistochemical and cell isolation analyses showed that BMPER was primarily expressed in the liver sinusoidal endothelial cells (LSECs) rather than hepatocytes. BMPER secretion by LSECs inhibits BMP-SMAD signaling in hepatocytes and further reduces hepcidin protein expression. These intrahepatic molecular interactions suggest a novel molecular basis of iron overload in NAFLD.

  3. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo.

    PubMed

    Maeda, R; Kobayashi, A; Sekine, R; Lin, J J; Kung, H; Maéno, M

    1997-07-01

    This study analyzes the expression and the function of Xenopus msx-1 (Xmsx-1) in embryos, in relation to the ventralizing activity of bone morphogenetic protein-4 (BMP-4). Expression of Xmsx-1 was increased in UV-treated ventralized embryos and decreased in LiCl-treated dorsalized embryos at the neurula stage (stage 14). Whole-mount in situ hybridization analysis showed that Xmsx-1 is expressed in marginal zone and animal pole areas, laterally and ventrally, but not dorsally, at mid-gastrula (stage 11) and late-gastrula (stage 13) stages. Injection of BMP-4 RNA, but not activin RNA, induced Xmsx-1 expression in the dorsal marginal zone at the early gastrula stage (stage 10+), and introduction of a dominant negative form of BMP-4 receptor RNA suppressed Xmsx-1 expression in animal cap and ventral marginal zone explants at stage 14. Thus, Xmsx-1 is a target gene specifically regulated by BMP-4 signaling. Embryos injected with Xmsx-1 RNA in dorsal blastomeres at the 4-cell stage exhibited a ventralized phenotype, with microcephaly and swollen abdomen. Histological observation and immunostaining revealed that these embryos had a large block of muscle tissue in the dorsal mesodermal area instead of notochord. On the basis of molecular marker analysis, however, the injection of Xmsx-1 RNA did not induce the expression of alpha-globin, nor reduce cardiac alpha-actin in dorsal marginal zone explants. Furthermore, a significant amount of alpha-actin was induced and alpha-globin was turned off in the ventral marginal zone explants injected with Xmsx-1. These results indicated that Xmsx-1 is a target gene of BMP-4 signaling, but possesses a distinct activity on dorsal-ventral patterning of mesodermal tissues.

  4. 9-cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons

    PubMed Central

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2013-01-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H2O2 and oxygen-glucose deprivation in vitro as well as infarction and TUNEL labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4x) one day later. Locomotor behavior was measured two days after surgery for a period of 48 hours. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA -mediated neurodegeneration in dopaminergic neurons via upregulation of BMP. PMID:23884514

  5. Rapamycin inhibits BMP-7-induced osteogenic and lipogenic marker expressions in fetal rat calvarial cells.

    PubMed

    Yeh, Lee-Chuan C; Ma, Xiuye; Ford, Jeffery J; Adamo, Martin L; Lee, John C

    2013-08-01

    Bone morphogenetic proteins (BMPs) promote osteoblast differentiation and bone formation in vitro and in vivo. BMPs canonically signal through Smad transcription factors, but BMPs may activate signaling pathways traditionally stimulated by growth factor tyrosine kinase receptors. Of these, the mTOR pathway has received considerable attention because BMPs activate P70S6K, a downstream effector of mTOR, suggesting that BMP-induced osteogenesis is mediated by mTOR activation. However, contradictory effects of the mTOR inhibitor rapamycin (RAPA) on bone formation have been reported. Since bone formation is thought to be inversely related to lipid accumulation and mTOR is also important for lipid synthesis, we postulated that BMP-7 may stimulate lipogenic enzyme expression in a RAPA-sensitive mechanism. To test this hypothesis, we determined the effects of RAPA on BMP-7-stimulated expression of osteogenic and lipogenic markers in cultured fetal rat calvarial cells. Our study showed that BMP-7 promoted the expression of osteogenic and lipogenic markers. The effect of BMP-7 on osteogenic markers was greater in magnitude than on lipogenic markers and was temporally more sustained. RAPA inhibited basal and BMP-7-stimulated osteogenic and lipogenic marker expression and bone nodule mineralization. The acetyl CoA carboxylase inhibitor TOFA stimulated the expression of osteoblast differentiation markers, whereas palmitate suppressed their expression. We speculate that the BMP-7-stimulated adipogenesis is part of the normal anabolic response to BMPs, but that inappropriate activation of the lipid biosynthetic pathway by mTOR could have deleterious effects on bone formation and could explain paradoxical effects of RAPA to promote bone formation. Copyright © 2013 Wiley Periodicals, Inc.

  6. MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells

    PubMed Central

    Ying, Xuexiang; Sun, Yunpo; He, Pingqing

    2017-01-01

    Bone morphogenetic protein-7 (BMP7) is known to antagonize transforming growth factor β 1 (TGFβ1)-mediated fibrosis through suppressing epithelial-mesenchymal transition (EMT). We recently reported that BMP7 also antagonizes the effects of TGFβ1 in breast cancer (BC) tumorigenesis-related EMT. Nevertheless, the control of BMP7 expression in BC remains ill-defined. Here, we detected significantly lower levels of BMP7 and significantly higher levels of microRNA-137 (miR-137) in the BC specimens, relative to paired adjacent non-tumor breast tissue. BMP7 and miR-137 levels were correlated inversely. Additionally, the high miR-137 levels in BC specimens were correlated with reduced patient survival. In vitro, overexpression of miR-137 significantly increased cell EMT and invasion, while depletion of miR-137 significantly decreased cell EMT and invasion in BC cells. The increases in BC cell invasiveness by miR-137 appeared to result from its suppression of BMP7, through direct binding of miR-137 to the 3'-UTR of BMP7 mRNA, thereby blocking its protein translation in BC cells. This study sheds light on miR-137 as a crucial factor that enhances BC cell EMT and invasiveness, and points to miR-137 as a promising innovative therapeutic target for BC treatment. PMID:28407692

  7. IL-1beta, but not BMP-7 leads to a dramatic change in the gene expression pattern of human adult articular chondrocytes--portraying the gene expression pattern in two donors.

    PubMed

    Saas, J; Haag, J; Rueger, D; Chubinskaya, S; Sohler, F; Zimmer, R; Bartnik, E; Aigner, T

    2006-10-01

    Anabolic and catabolic cytokines and growth factors such as BMP-7 and IL-1beta play a central role in controlling the balance between degradation and repair of normal and (osteo)arthritic articular cartilage matrix. In this report, we investigated the response of articular chondrocytes to these factors IL-1beta and BMP-7 in terms of changes in gene expression levels. Large scale analysis was performed on primary human adult articular chondrocytes isolated from two human, independent donors cultured in alginate beads (non-stimulated and stimulated with IL-1beta and BMP-7 for 48 h) using Affymetrix gene chips (oligo-arrays). Biostatistical and bioinformatic evaluation of gene expression pattern was performed using the Resolver software (Rosetta). Part of the results were confirmed using real-time PCR. IL-1beta modulated significantly 909 out of 3459 genes detectable, whereas BMP-7 influenced only 36 out of 3440. BMP-7 induced mainly anabolic activation of chondrocytes including classical target genes such as collagen type II and aggrecan, while IL-1beta, both, significantly modulated the gene expression levels of numerous genes; namely, IL-1beta down-regulated the expression of anabolic genes and induced catabolic genes and mediators. Our data indicate that BMP-7 has only a limited effect on differentiated cells, whereas IL-1beta causes a dramatic change in gene expression pattern, i.e. induced or repressed much more genes. This presumably reflects the fact that BMP-7 signaling is effected via one pathway only (i.e. Smad-pathway) whereas IL-1beta is able to signal via a broad variety of intracellular signaling cascades involving the JNK, p38, NFkB and Erk pathways and even influencing BMP signaling.

  8. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    PubMed

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin.

  9. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice

    PubMed Central

    Billington, Charles J.; Schmidt, Brian; Marcucio, Ralph S.; Hallgrimsson, Benedikt; Gopalakrishnan, Rajaram; Petryk, Anna

    2015-01-01

    Holoprosencephaly (HPE) is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP) antagonist twisted gastrulation (Twsg1), which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA) teratogenesis. Pregnant Twsg1+/− dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight). Embryos were analyzed between embryonic day (E)9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs), 100% of Twsg1−/− mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1+/− mutants also showed HPE (23%) or NTDs (7%). The majority of shape variation among Twsg1+/− mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions. PMID:25468951

  10. Low-intensity pulsed ultrasound produced an increase of osteogenic genes expression during the process of bone healing in rats.

    PubMed

    Fávaro-Pípi, Elaine; Bossini, Paulo; de Oliveira, Poliani; Ribeiro, Juliana Uema; Tim, Carla; Parizotto, Nivaldo A; Alves, Jose Marcos; Ribeiro, Daniel Araki; Selistre de Araújo, Heloísa Sobreiro; Renno, Ana Claudia Muniz

    2010-12-01

    The aim of this study was to measure the temporal expression of osteogenic genes during the process of bone healing in low-intensity pulsed ultrasound (LIPUS) treated bone defects by means of histopathologic and real-time polymerase chain reaction (PCR) analysis. Animals were randomly distributed into two groups (n = 30): control group (bone defect without treatment) and LIPUS treated (bone defect treated with LIPUS). On days 7, 13 and 25 postinjury, 10 rats per group were sacrificed. Rats were treated with a 30 mW/cm(2) LIPUS. The results pointed out intense new bone formation surrounded by highly vascularized connective tissue presenting a slight osteogenic activity, with primary bone deposition was observed in the group exposed to LIPUS in the intermediary (13 days) and late stages of repair (25 days) in the treated animals. In addition, quantitative real-time polymerase chain reaction (RT-qPCR) showed an upregulation of bone morphogenetic protein 4 (BMP4), osteocalcin and Runx2 genes 7 days after the surgery. In the intermediary period, there was no increase in the expression. The expression of alkaline phosphatase, BMP4 and Runx2 was significantly increased at the last period. Our results indicate that LIPUS therapy improves bone repair in rats and upregulated osteogenic genes, mainly at the late stages of recovery. Copyright © 2010. Published by Elsevier Inc.

  11. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  12. Gene expression of osteogenic factors following gene therapy in mandibular lengthening.

    PubMed

    Wu, Guoping; Zhou, Bin; Hu, Chunbing; Li, Shaolan

    2015-03-01

    This study investigated the effect of gene therapy on the expression of osteogenic mediators in mandibular distraction osteogenesis rabbits. Bilateral mandibular osteotomies were performed in 45 New-Zealand rabbits. After a latency of 3 days, the mandibles were elongated using distractors with a rate of 0.8 mm/d for 7 days. After the completion of distraction, the rabbits were randomly divided into 5 groups: 2 μg (0.1 μg/μL) of recombinant plasmid pIRES-hVEGF165-hBMP-2, recombinant plasmid pIRES-hBMP2, recombinant plasmid pIRES-hVEGF165, pIRES, and the same volume of normal saline were injected into the distraction gap of groups A, B, C, D, and E, respectively, followed by electroporation. Three animals were killed at the 7th, 14th, and 28th day after gene transfected in different groups, respectively. The lengthened mandibles were harvested and processed for immunohistochemical examinations; the mean optic densities (MODs) and integral optical density of bone morphogenetic protein (BMP-2) and transforming growth factor β1 (TGF-β1)-positive cells were measured by CMIAS-2001A computerized image analyzer. The data were analyzed with SPSS (SPSS Inc, Chicago, IL). Bone morphogenetic protein 2 and TGF-β1 staining was mainly located in inflammatory cells, monocytes, fibroblasts, osteoblasts, osteocytes, and chondrocytes in the distraction zones. Their strongest expression reached to the peak at the seventh day and decreased at the 14th day of consolidation stage; at the 28th day, they expressed weakly. Image analysis results show that, at the seventh day, the expression of BMP-2 in group B (0.26 ± 0.03, 0.36 ± 0.02) was the strongest; there was significant difference among them (P < 0.01), whereas the expression of TGF-β1 in group C (0.38 ± 0.06, 1.05 ± 0.19) is strongest followed by group A (0.34 ± 0.05, 0.95 ± 0.16) and B (0.33 ± 0.07, 0.90 ± 0.19). At every time point, the level of expression of BMP-2 and TGF-β1 in gene therapy groups (groups A, B, and C) was remarkably higher than those in non-gene therapy groups(groups D and E). There were significant differences between gene therapy groups and non-gene therapy groups (P < 0.05 or P < 0.001). These results indicated that local gene transfection can up-regulate the expression of osteogenic mediators (BMP-2 and TGF-β1), which may promote cell differentiation and proliferation and stimulate extracellular matrix synthesis and new bone formation in distraction gap.

  13. Notch Signaling Augments BMP9-Induced Bone Formation by Promoting the Osteogenesis-Angiogenesis Coupling Process in Mesenchymal Stem Cells (MSCs).

    PubMed

    Liao, Junyi; Wei, Qiang; Zou, Yulong; Fan, Jiaming; Song, Dongzhe; Cui, Jing; Zhang, Wenwen; Zhu, Yunxiao; Ma, Chao; Hu, Xue; Qu, Xiangyang; Chen, Liqun; Yu, Xinyi; Zhang, Zhicai; Wang, Claire; Zhao, Chen; Zeng, Zongyue; Zhang, Ruyi; Yan, Shujuan; Wu, Tingting; Wu, Xingye; Shu, Yi; Lei, Jiayan; Li, Yasha; Luu, Hue H; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Wolf, Jennifer Moriatis; He, Tong-Chuan; Huang, Wei

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors that can differentiate into several lineages including bone. Successful bone formation requires osteogenesis and angiogenesis coupling of MSCs. Here, we investigate if simultaneous activation of BMP9 and Notch signaling yields effective osteogenesis-angiogenesis coupling in MSCs. Recently-characterized immortalized mouse adipose-derived progenitors (iMADs) were used as MSC source. Transgenes BMP9, NICD and dnNotch1 were expressed by adenoviral vectors. Gene expression was determined by qPCR and immunohistochem¡stry. Osteogenic activity was assessed by in vitro assays and in vivo ectopic bone formation model. BMP9 upregulated expression of Notch receptors and ligands in iMADs. Constitutively-active form of Notch1 NICD1 enhanced BMP9-induced osteogenic differentiation both in vitro and in vivo, which was effectively inhibited by dominant-negative form of Notch1 dnNotch1. BMP9- and NICD1-transduced MSCs implanted with a biocompatible scaffold yielded highly mature bone with extensive vascularization. NICD1 enhanced BMP9-induced expression of key angiogenic regulators in iMADs and Vegfa in ectopic bone, which was blunted by dnNotch1. Notch signaling may play an important role in BMP9-induced osteogenesis and angiogenesis. It's conceivable that simultaneous activation of the BMP9 and Notch pathways should efficiently couple osteogenesis and angiogenesis of MSCs for successful bone tissue engineering. © 2017 The Author(s)Published by S. Karger AG, Basel.

  14. BmP02 Atypically Delays Kv4.2 Inactivation: Implication for a Unique Interaction between Scorpion Toxin and Potassium Channel

    PubMed Central

    Wu, Bin; Zhu, Yan; Shi, Jian; Tao, Jie; Ji, Yonghua

    2016-01-01

    BmP02, a short-chain peptide with 28 residues from the venom of Chinese scorpion Buthus martensi Karsch, has been reported to inhibit the transient outward potassium currents (Ito) in rat ventricular muscle cells. However, it remains unclear whether BmP02 modulates the Kv4.2 channel, one of the main contributors to Ito. The present study investigated the effects of BmP02 on Kv4.2 kinetics and its underlying molecular mechanism. The electrophysiological recordings showed that the inactivation of Kv4.2 expressed in HEK293T cells was significantly delayed by BmP02 in a dose-response manner with EC50 of ~850 nM while the peak current, activation and voltage-dependent inactivation of Kv4.2 were not affected. Meanwhile, the recovery from inactivation of Kv4.2 was accelerated and the deactivation was slowed after the application of BmP02. The site-directed mutagenesis combined with computational modelling identified that K347 and K353, located in the turret motif of the Kv4.2, and E4/E5, D20/D21 in BmP02 are key residues to interact with BmP02 through electrostatic force. These findings not only reveal a novel interaction between Kv4.2 channel and its peptidyl modulator, but also provide valuable information for design of highly-selective Kv4.2 modulators. PMID:27690098

  15. Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume.

    PubMed

    Grassini, Daniela R; Lagendijk, Anne K; De Angelis, Jessica E; Da Silva, Jason; Jeanes, Angela; Zettler, Nicole; Bower, Neil I; Hogan, Benjamin M; Smith, Kelly A

    2018-05-11

    Atrial natriuretic peptide ( nppa/anf ) and brain natriuretic peptide ( nppb/bnp ) form a gene cluster with expression in the chambers of the developing heart. Despite restricted expression, a function in cardiac development has not been demonstrated by mutant analysis. This is attributed to functional redundancy however their genomic location in cis has impeded formal analysis. Using genome-editing, we generated mutants for nppa and nppb and found single mutants indistinguishable from wildtype whereas nppa / nppb double mutants display heart morphogenesis defects and pericardial oedema. Analysis of atrioventricular canal (AVC) markers show expansion of bmp4 , tbx2b, has2 and versican expression into the atrium of double mutants. This expanded expression correlates with increased extracellular matrix in the atrium. Using a biosensor for Hyaluronic acid to measure the cardiac jelly (cardiac extracellular matrix), we confirm cardiac jelly expansion in nppa / nppb double mutants. Finally, bmp4 knockdown rescues the expansion of has2 expression and cardiac jelly in double mutants. This definitively shows that nppa and nppb function redundantly during cardiac development to restrict gene expression to the AVC, preventing excessive cardiac jelly synthesis in the atrial chamber. © 2018. Published by The Company of Biologists Ltd.

  16. Aggressive melanoma cells escape from BMP7-mediated autocrine growth inhibition through coordinated Noggin upregulation

    PubMed Central

    Hsu, Mei-Yu; Rovinsky, Sherry; Lai, Chiou-Yan; Qasem, Shadi; Liu, Xiaoming; How, Joan; Engelhardt, John F.; Murphy, George F.

    2009-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily responsible for mediating a diverse array of cellular functions both during embryogenesis and in adult life. Previously, we reported that upregulation of BMP7 in human melanoma correlates with tumor progression. However, melanoma cells are either inhibited by or become resistant to BMP7 as a function of tumor progression, with normal melanocytes being most susceptible. Herein, real-time quantitative reverse transcriptase-polymerase chain reactions and Western blotting revealed that the expression of BMP antagonist, Noggin, correlates with resistance to BMP7 in advanced melanoma cells. To test the hypothesis that coordinated upregulation of Noggin protects advanced melanoma cells from autocrine inhibition by BMP7, functional expression of Noggin in susceptible melanoma cells was achieved by adenoviral gene transfer. The Noggin-overexpressing cells exhibited a growth advantage in response to subsequent BMP7 transduction in vitro under anchorage-dependent and -independent conditions, in three-dimensional skin reconstructs, as well as in vivo in severe combined immune-deficiency mice. In concordance, Noggin knockdown by lentiviral shRNA confers sensitivity to BMP7-induced growth inhibition in advanced melanoma cells. Our findings suggest that, like TGF-β, BMP7 acts as an autocrine growth inhibitor in melanocytic cells, and that advanced melanoma cells may escape from BMP7-induced inhibition through concomitant aberrant expression of Noggin. PMID:18560367

  17. Bone morphogenetic protein 7 (BMP-7) influences tendon-bone integration in vitro.

    PubMed

    Schwarting, Tim; Lechler, Philipp; Struewer, Johannes; Ambrock, Marius; Frangen, Thomas Manfred; Ruchholtz, Steffen; Ziring, Ewgeni; Frink, Michael

    2015-01-01

    Successful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration. To study the biological effects of BMP-7 on the process of tendon-bone-integration, two independent in vitro models were used. The first model involved the mono- and coculture of bovine tendon specimens and primary bovine osteoblasts with and without BMP-7 exposure. The second model comprised the mono- and coculture of primary bovine osteoblasts and fibroblasts. Alkaline phosphatase (ALP), lactate dehydrogenase (LDH), lactate and osteocalcin (OCN) were analyzed by ELISA. Histological analysis and electron microscopy of the tendon specimens were performed. In both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures. This study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts. Our findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the importance of the transdifferentiation process of tendinous fibroblasts at the tendon-bone interface.

  18. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    NASA Technical Reports Server (NTRS)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  19. Cell Therapy to Obtain Spinal Fusion

    DTIC Science & Technology

    2006-02-01

    al, 2005). Since our previous studies (first progress report) demonstrated a significant reduction (≥50%) in the amount of BMP2 secreted from human...Ad5eGFP 2,500vp/cell, (3) Ad5eGFP 5,000vp/cell, or (4) Ad5eGFP 10,000vp/cell in the absence (solid columns) or presence ( open columns) of GeneJammer...20-fold reduction in BMP-2 protein compared with the controls (p < 0.001) and the expression was biphasic over the 15 d period with highest expression

  20. DEHP impairs zebrafish reproduction by affecting critical factors in oogenesis.

    PubMed

    Carnevali, Oliana; Tosti, Luca; Speciale, Claudia; Peng, Chun; Zhu, Yong; Maradonna, Francesca

    2010-04-15

    Public concerns on phthalates distributions in the environment have been increasing since they can cause liver cancer, structural abnormalities and reduce sperm counts in male reproductive system. However, few data are actually available on the effects of Di-(2-ethylhexyl)-phthalate (DEHP) in female reproductive system. The aim of this study was to assess the impacts of DEHP on zebrafish oogenesis and embryo production. Female Danio rerio were exposed to environmentally relevant doses of DEHP and a significant decrease in ovulation and embryo production was observed. The effects of DEHP on several key regulators of oocyte maturation and ovulation including bone morphogenetic protein-15 (BMP15), luteinizing hormone receptor (LHR), membrane progesterone receptors (mPRs) and cyclooxygenase (COX)-2 (ptgs2) were determined by real time PCR. The expressions of BMP15 and mPR proteins were further determined by Western analyses to strengthen molecular findings. Moreover, plasma vitellogenin (vtg) titers were assayed by an ELISA procedure to determine the estrogenic effects of DEHP and its effects on oocyte growth. A significant reduction of fecundity in fish exposed to DEHP was observed. The reduced reproductive capacity was associated with an increase in ovarian BMP15 levels. This rise, in turn, was concomitant with a significant reduction in LHR and mPRbeta levels. Finally, ptgs2 expression, the final trigger of ovulation, was also decreased by DEHP. By an in vitro maturation assay, the inhibitory effect of DEHP on germinal vesicle breakdown was further confirmed. In conclusion, DEHP affecting signals involved in oocyte growth (vtg), maturation (BMP15, LHR, mPRs,) and ovulation (ptgs2), deeply impairs ovarian functions with serious consequences on embryo production. Since there is a significant genetic similarity between D.rerio and humans, the harmful effects observed at oocyte level may be relevant for further molecular studies on humans.

  1. Familial occurrence of thymoma and autoimmune diseases with the constitutional translocation t(14;20)(q24.1;p12.3).

    PubMed

    Nicodème, Frédéric; Geffroy, Sandrine; Conti, Massimo; Delobel, Bruno; Soenen, Valérie; Grardel, Nathalie; Porte, Henri; Copin, Marie-Christine; Laï, Jean-Luc; Andrieux, Joris

    2005-10-01

    Thymomas are low-grade epithelial cancers of the thymus whose prevalence varies between 0.1/100,000 and 0.4/100,000. Familial occurrence of thymoma is very rare. We studied a family bearing the constitutional chromosome translocation t(14;20)(q24;p12), 3 of whose members had a thymoma. In this family, among 27 patients, 11 had the translocation: 3 had thymoma and 4 others had 5 different autoimmune diseases: type 1 diabetes mellitus, Graves' disease, pernicious anemia, primitive Sjögren disease, and autoimmune pancytopenia. FISH studies allowed us to be more specific about the translocation breakpoints. The 14q24 breakpoint was in intron 5 of RAD51L1, and the 20p12 breakpoint was 100 kb telomeric to BMP2. RAD51L1 is a tumor-suppressor gene belonging to the RAD51 family, already implicated in many tumors (uterine leiomyomas, pseudo-Meigs syndromes, pulmonary chondroid hamartomas) and involved in recombinational repair of DNA double-strand breaks. BMP2 belongs to the TGFbeta superfamily, and the BMP2-BMP4 genes are involved in thymocyte differentiation by blocking progression from CD4-CD8- to CD4+CD8+ while maintaining a sufficient pool of immature precursors. Dysregulation of RAD51L1 and/or BMP2 may explain this familial occurrence of thymomas and autoimmune diseases. Using QRT-PCR, we studied the expression of BMP2 in 20 sporadic thymomas and found various levels of expression that may be associated with autoimmune diseases.

  2. Locally applied simvastatin improves fracture healing at late period in osteoporotic rat

    NASA Astrophysics Data System (ADS)

    Tian, Faming; Zhang, Liu; Kang, Yuchuan; Zhang, Junshan; Ao, Jiao; Yang, Fang

    effect of simvastatin locally applied from a bioactive polymer coating of implants on osteoporotic fracture healing at late period. Methods:Femur fracture model was established on normal or osteotoporotic mature female SD rats, intramedullary stabilization was achieved with uncoated titanium Kirschnerwires in normal rats(group A),with polymer-only coated vs. polymer plus simvastatin coated titanium Kirschner wires in osteoporotic rats(group B and C, respectively).Femurs were harvested after 12 weeks, and underwent radiographic and histologic analysis, as well as immunohistochemical evaluation for BMP-2 expression. Results:Radiographic results demonstrated progressed callus in the simvastatin-treated groups compared to the uncoated group.The histologic analysis revealed a significantly processed callus with irregular-shaped newly formed bone trabeculae in simvastatin-treated group. Immunohistochemical evaluation showed markedly higher expression levels of B:MP-2 in simvastatin-treated group.Conclusions: The present study revealed a improved fracture healing under local application of simvastatin in osteoporotic rat,which might partially from upregulation of the B:MP-2 expression at fractured site.

  3. Growth plate expression profiling: Large and small breed dogs provide new insights in endochondral bone formation.

    PubMed

    Teunissen, Michelle; Riemers, Frank M; van Leenen, Dik; Groot Koerkamp, Marian J A; Meij, Björn P; Alblas, Jacqueline; Penning, Louis C; Miranda-Bedate, Alberto; Tryfonidou, Marianna A

    2018-01-01

    The difference in the adult height of mammals, and hence in endochondral bone formation, is not yet fully understood and may serve to identify targets for bone and cartilage regeneration. In line with this hypothesis, the intra-species disparity between the adult height of Great Danes and Miniature Poodles was investigated at a transcriptional level. Microarray analysis of the growth plate of five Great Danes and five Miniature Poodles revealed 2,981 unique genes that were differentially expressed, including many genes with an unknown role in skeletal development. A signaling pathway impact analysis indicated activation of the cell cycle, extracellular matrix receptor interaction and the tight junction pathway, and inhibition of pathways associated with inflammation and the complement cascade. In additional validation steps, the gene expression profile of the separate growth plate zones for both dog breeds were determined. Given that the BMP signaling is known for its crucial role in skeletal development and fracture healing, and BMP-2 is used in orthopaedic and spine procedures for bone augmentation, further investigations concentrated on the BMP pathway.The canonical BMP-2 and BMP-6 signaling pathway was activated in the Great Danes compared to Miniature Poodles. In conclusion, investigating the differential expression of genes involved in endochondral bone formation in small and large breed dogs, could be a game changing strategy to provide new insights in growth plate development and identify new targets for bone and cartilage regeneration. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:138-148, 2018. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals Inc. on behalf of the Orthopaedic Research Society.

  4. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling

    PubMed Central

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K.; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity. PMID:24782704

  5. Orphan nuclear receptor TLX regulates astrogenesis by modulating BMP signaling.

    PubMed

    Qin, Song; Niu, Wenze; Iqbal, Nida; Smith, Derek K; Zhang, Chun-Li

    2014-01-01

    Neural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche. Here, we show that TLX modulates bone morphogenetic protein (BMP)-SMAD signaling to control the timing of postnatal astrogenesis. Genes involved in the BMP signaling pathway, such as Bmp4, Hes1, and Id3, are upregulated in postnatal brains lacking Tlx. Chromatin immunoprecipitation and electrophoretic mobility shift assays reveal that TLX can directly bind the enhancer region of Bmp4. In accordance with elevated BMP signaling, the downstream effectors SMAD1/5/8 are activated by phosphorylation in Tlx mutant mice. Consequently, Tlx mutant brains exhibit an early appearance and increased number of astrocytes with marker expression of glial fibrillary acidic protein (GFAP) and S100B. Taken together, these results suggest that TLX tightly controls postnatal astrogenesis through the modulation of BMP-SMAD signaling pathway activity.

  6. Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma

    PubMed Central

    González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.

    2015-01-01

    Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932

  7. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells.

    PubMed

    Adam, Rosalyn M; Eaton, Samuel H; Estrada, Carlos; Nimgaonkar, Ashish; Shih, Shu-Ching; Smith, Lois E H; Kohane, Isaac S; Bägli, Darius; Freeman, Michael R

    2004-12-15

    Application of mechanical stimuli has been shown to alter gene expression in bladder smooth muscle cells (SMC). To date, only a limited number of "stretch-responsive" genes in this cell type have been reported. We employed oligonucleotide arrays to identify stretch-sensitive genes in primary culture human bladder SMC subjected to repetitive mechanical stimulation for 4 h. Differential gene expression between stretched and nonstretched cells was assessed using Significance Analysis of Microarrays (SAM). Expression of 20 out of 11,731 expressed genes ( approximately 0.17%) was altered >2-fold following stretch, with 19 genes induced and one gene (FGF-9) repressed. Using real-time RT-PCR, we tested independently the responsiveness of 15 genes to stretch and to platelet-derived growth factor-BB (PDGF-BB), another hypertrophic stimulus for bladder SMC. In response to both stimuli, expression of 13 genes increased, 1 gene (FGF-9) decreased, and 1 gene was unchanged. Six transcripts (HB-EGF, BMP-2, COX-2, LIF, PAR-2, and FGF-9) were evaluated using an ex vivo rat model of bladder distension. HB-EGF, BMP-2, COX-2, LIF, and PAR-2 increased with bladder stretch ex vivo, whereas FGF-9 decreased, consistent with expression changes observed in vitro. In silico analysis of microarray data using the FIRED algorithm identified c-jun, AP-1, ATF-2, and neurofibromin-1 (NF-1) as potential transcriptional mediators of stretch signals. Furthermore, the promoters of 9 of 13 stretch-responsive genes contained AP-1 binding sites. These observations identify stretch as a highly selective regulator of gene expression in bladder SMC. Moreover, they suggest that mechanical and growth factor signals converge on common transcriptional regulators that include members of the AP-1 family.

  8. Stem cell regulatory gene expression in human adult dental pulp and periodontal ligament cells undergoing odontogenic/osteogenic differentiation.

    PubMed

    Liu, Lu; Ling, Junqi; Wei, Xi; Wu, Liping; Xiao, Yin

    2009-10-01

    During development and regeneration, odontogenesis and osteogenesis are initiated by a cascade of signals driven by several master regulatory genes. In this study, we investigated the differential expression of 84 stem cell-related genes in dental pulp cells (DPCs) and periodontal ligament cells (PDLCs) undergoing odontogenic/osteogenic differentiation. Our results showed that, although there was considerable overlap, certain genes had more differential expression in PDLCs than in DPCs. CCND2, DLL1, and MME were the major upregulated genes in both PDLCs and DPCs, whereas KRT15 was the only gene significantly downregulated in PDLCs and DPCs in both odontogenic and osteogenic differentiation. Interestingly, a large number of regulatory genes in odontogenic and osteogenic differentiation interact or crosstalk via Notch, Wnt, transforming growth factor beta (TGF-beta)/bone morphogenic protein (BMP), and cadherin signaling pathways, such as the regulation of APC, DLL1, CCND2, BMP2, and CDH1. Using a rat dental pulp and periodontal defect model, the expression and distribution of both BMP2 and CDH1 have been verified for their spatial localization in dental pulp and periodontal tissue regeneration. This study has generated an overview of stem cell-related gene expression in DPCs and PDLCs during odontogenic/osteogenic differentiation and revealed that these genes may interact through the Notch, Wnt, TGF-beta/BMP, and cadherin signaling pathways to play a crucial role in determining the fate of dental derived cell and dental tissue regeneration. These findings provided a new insight into the molecular mechanisms of the dental tissue mineralization and regeneration.

  9. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury.

    PubMed

    Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M

    2015-08-01

    Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Biostimulation with diode laser positively regulates cementoblast functions, in vitro.

    PubMed

    Bozkurt, Serife Buket; Hakki, Erdogan E; Kayis, Seyit Ali; Dundar, Niyazi; Hakki, Sema S

    2017-05-01

    The aim of this study was to evaluate the effects of diode laser biostimulation on cementoblasts (OCCM.30). A total of 40 root plates were obtained from healthy third molar teeth and assigned to the following two groups: (1) control group and (2) laser-treated group. Root plates were placed into the cell culture inserts, and OCCM.30 cells were seeded onto root plates. Cells were irradiated with a low level of diode laser (power: 0.3 W in continuous wave, 60 s/cm 2 ). Proliferation and mineralized tissue-associated gene's and BMP's messenger RNA (mRNA) expressions of cementoblasts were evaluated. Total RNAs were isolated on day 3 and integrin-binding sialoprotein (Ibsp), bone gamma-carboxyglutamate protein (Bglap), Type I collagen (Col1a1), osteoblastic transcription factor, runt-related transcription factor (Runx2), and Bone Morphogenetic Protein (BMP)-2, 3, 4, 6, and 7 mRNA expressions were determined using quantitative RT-PCR. von Kossa staining was performed to evaluate biomineralization of OCCM.30 cells. In the proliferation experiment, while there was no significant difference until 96 h, laser irradiation retarded the decrease in cell proliferation trend after 96 h compared to the untreated control group. Statistically significant increase in Ibsp, Bglap, and BMP-2,3,6,7 mRNA expressions were noted in the laser groups when compared to the untreated control group (p < 0.05). Laser irradiation induced mineralized nodule formation of cementoblasts. The results of this study reveal that the biostimulation setting of diode laser modulates the behavior of cementoblasts inducing mineralized tissue-associated gene's mRNA expressions and mineralization. Therefore, biostimulation can be used during regenerative periodontal therapies to trigger cells with periodontal attachment apparatus.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Long; Shi, Songting; Zhang, Juan

    Highlights: Black-Right-Pointing-Pointer Expression of Id3 but not Id1 is induced by Wnt3a stimulation in C2C12 cells. Black-Right-Pointing-Pointer Wnt3a induces Id3 expression via canonical Wnt/{beta}-catenin pathway. Black-Right-Pointing-Pointer Wnt3a-induced Id3 expression does not depend on BMP signaling activation. Black-Right-Pointing-Pointer Induction of Id3 expression is critical determinant in Wnt3a-induced cell proliferation and differentiation. -- Abstract: Canonical Wnt signaling plays important roles in regulating cell proliferation and differentiation. In this study, we report that inhibitor of differentiation (Id)3 is a Wnt-inducible gene in mouse C2C12 myoblasts. Wnt3a induced Id3 expression in a {beta}-catenin-dependent manner. Bone morphogenetic protein (BMP) also potently induced Id3 expression. However,more » Wnt-induced Id3 expression occurred independent of the BMP/Smad pathway. Functional studies showed that Id3 depletion in C2C12 cells impaired Wnt3a-induced cell proliferation and alkaline phosphatase activity, an early marker of osteoblast cells. Id3 depletion elevated myogenin induction during myogenic differentiation and partially impaired Wnt3a suppressed myogenin expression in C2C12 cells. These results suggest that Id3 is an important Wnt/{beta}-catenin induced gene in myoblast cell fate determination.« less

  12. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    PubMed Central

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22α and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription. PMID:17030628

  13. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription.

    PubMed

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-12-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene expression, are detected in calcified vasculature. In this study, we found that the BMP2-, BMP4-, and BMP6-induced expression of Msx transcription factors (Msx1 and Msx2) preceded the down-regulation of SMC marker expression in cultured differentiated VSMCs. Either Msx1 or Msx2 markedly reduced the myocardin-dependent promoter activities of SMC marker genes (SM22alpha and caldesmon). We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays. Our results showed that Msx1 or Msx2 formed a ternary complex with SRF and myocardin and inhibited the binding of SRF or SRF/myocardin to the CArG-box motif, resulting in inhibition of their transcription.

  14. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model.

    PubMed

    Fan, Jiabing; Park, Hyejin; Lee, Matthew K; Bezouglaia, Olga; Fartash, Armita; Kim, Jinku; Aghaloo, Tara; Lee, Min

    2014-08-01

    Reconstructing segmental mandiblular defects remains a challenge in the clinic. Tissue engineering strategies provide an alternative option to resolve this problem. The objective of the present study was to determine the effects of adipose-derived stem cells (ASCs) and bone morphogenetic proteins-2 (BMP-2) in three-dimensional (3D) scaffolds on mandibular repair in a small animal model. Noggin expression levels in ASCs were downregulated by a lentiviral short hairpin RNA strategy to enhance ASC osteogenesis (ASCs(Nog-)). Chitosan (CH) and chondroitin sulfate (CS), natural polysaccharides, were fabricated into 3D porous scaffolds, which were further modified with apatite coatings for enhanced cellular responses and efficient delivery of BMP-2. The efficacy of 3D apatite-coated CH/CS scaffolds supplemented with ASCs(Nog-) and BMP-2 were evaluated in a rat critical-sized mandibular defect model. After 8 weeks postimplantation, the scaffolds treated with ASCs(Nog-) and BMP-2 significantly promoted rat mandibular regeneration as demonstrated by micro-computerized tomography, histology, and immunohistochemistry, compared with the groups treated with ASCs(Nog-) or BMP-2 alone. These results suggest that our combinatorial strategy of ASCs(Nog-)+BMP-2 in 3D apatite microenvironments can significantly promote mandibular regeneration, and these may provide a potential tissue engineering approach to repair large bony defects.

  15. Improved Protocol for Chondrogenic Differentiation of Bone Marrow Derived Mesenchymal Stem Cells -Effect of PTHrP and FGF-2 on TGFβ1/BMP2-Induced Chondrocytes Hypertrophy.

    PubMed

    Nasrabadi, Davood; Rezaeiani, Siamak; Eslaminejad, Mohamadreza Baghaban; Shabani, Aliakbar

    2018-04-24

    Growth factors have a pivotal role in chondrogenic differentiation of stem cells. The differential effects of known growth factors involved in the maintenance and homeostasis of cartilage tissue have been previously studied in vitro. However, there are few reported researches about the interactional effects of growth factors on chondrogenic differentiation of stem cells. The aim of this study is to examine the combined effects of four key growth factors on chondrogenic differentiation of mesenchymal stem cells (MSCs). Isolated and expanded rabbit bone marrow-derived MSCs underwent chondrogenic differentiation in a micromass cell culture system that used a combination of the following growth factors: transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP2), parathyroid hormone related protein (PTHrP), and fibroblast growth factor 2 (FGF2) according to a defined program. The chondrogenic differentiation program was analyzed by histochemistry methods, quantitative RT-PCR (qRT-PCR), and measurement of matrix deposition of sulfated glycosaminoglycan (sGAG) and collagen content at days 16, 23, and 30. The results showed that the short-term combination of TGF-β1 and BMP-2 increased sGAG and collagen content, Alkaline phosphates (ALP) activity, and type X collagen (COL X) expression. Application of either PTHrP or FGF2 simultaneously decreased TGF-β1/BMP-2 induced hypertrophy and chondrogenic markers (at least for FGF2). However, successive application of PTHrP and FGF2 dramatically maintained the synergistic effects of TGF-β1/BMP-2 on the chondrogenic differentiation potential of MSCs and decreased unwanted hypertrophic markers. This new method can be used effectively in chondrogenic differentiation programs.

  16. Calcitonin protects chondrocytes from lipopolysaccharide-induced apoptosis and inflammatory response through MAPK/Wnt/NF-κB pathways.

    PubMed

    Zhang, Lai-Bo; Man, Zhen-Tao; Li, Wei; Zhang, Wei; Wang, Xian-Quan; Sun, Shui

    2017-07-01

    Calcitonin (CT) is an anti-absorbent, which has long been used for treatment of osteoporosis. However, little information is available about the effects of CT on osteoarthritis (OA). This study was mainly aimed to explore the effects of CT on the treatment of OA, as well as the underlying mechanisms. Chondrocytes were isolated from immature mice and then were incubated with lipopolysaccharide (LPS), CT, small interfering (si) RNA against bone morphogenetic protein (BMP)-2, and/or the inhibitors of MAPK/Wnt/NF-κB pathway. Thereafter, cell viability, apoptosis, nitric oxide (NO) and inflammatory factors productions, and expression levels of cartilage synthesis protein key factors, cartilage-derived morphogenetic protein (CDMP) 1, SRY (sex-determining region Y)-box 9 protein (SOX9), and MAPK/Wnt/NF-κB pathways key factors were determined. CT significantly reversed LPS-induced cell viability decrease, apoptosis increase, the inflammatory factors and NO secretion, the abnormally expression of cartilage synthesis proteins and the activation of MAPK/Wnt/NF-κB pathways (P<0.05). In addition, we observed that administration of the inhibitors of MAPK/Wnt/NF-κB pathways statistically further increased the levels of CDMP1 and SOX9 (P<0.05). Suppression of BMP-2 decreased the levels of CDMP1 and SOX9 and activated MAPK/Wnt/NF-κB pathways, and could partially abolish CT-modulated the expression changes in CDMP1 and SOX9, and MAPK/Wnt/NF-κB pathways key factors (P<0.05). The results showed that CT protects chondrocytes from LPS-induced apoptosis and inflammatory response by regulating BMP-2 and thus blocking MAPK/Wnt/NF-κB pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity‡

    PubMed Central

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B.; Titus, Louisa; Boden, Scott D.

    2010-01-01

    The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1ΔSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored. PMID:19862690

  18. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.

    PubMed

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D

    2009-12-01

    The requirement of large amounts of the recombinant human bone morphogenetic protein-2 (BMP-2) produces a huge translational barrier for its routine clinical use due to high cost. This leads to an urgent need to develop alternative methods to lower costs and/or increase efficacies for using BMP-2. In this study, we describe the development and optimization of a cell-based assay that is sensitive, reproducible, and reliable in identifying reagents that potentiate the effects of BMP-2 in inducing transdifferentiation of C2C12 myoblasts into the osteoblastic phenotype. The assay is based on a BMP-responsive Smad1-driven luciferase reporter gene. LIM mineralization protein-1 (LMP-1) is a novel intracellular LIM domain protein that has been shown by our group to enhance cellular responsiveness to BMP-2. Our previous report elucidated that the binding of LMP-1 with the WW2 domain in Smad ubiquitin regulatory factor-1 (Smurf1) rescues the osteogenic Smads from degradation. Here, using the optimized cell-based assay, we first evaluated the activity of the recombinantly prepared proteins, LMP-1, and its mutant (LMP-1DeltaSmurf1) that lacks the Smurf1-WW2 domain-binding motif. Both the wild type and the mutant proteins were engineered to contain an 11-amino acid HIV-TAT protein derived membrane transduction domain to aid the cellular delivery of recombinant proteins. The cell-based reporter assay confirmed that LMP-1 potentiates the BMP-induced stimulation of C2C12 cells towards the osteoblastic phenotype. The potentiating effect of LMP-1 was significantly reduced when a specific-motif known to interact with Smurf1 was mutated. We validated the results obtained in the reporter assay by also monitoring the expression of mRNA for osteocalcin and alkaline phosphatase (ALP) which is widely accepted osteoblast differentiation marker genes. Finally, we provide further confirmation of our results by measuring the activity of alkaline phosphatase in support of the accuracy and reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored.

  19. AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: implications for myocardial differentiation and regional identity.

    PubMed

    Thomas, Penny S; Rajderkar, Sudha; Lane, Jamie; Mishina, Yuji; Kaartinen, Vesa

    2014-06-15

    BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Reprogramming Antagonizes the Oncogenicity of HOXA13-Long Noncoding RNA HOTTIP Axis in Gastric Cancer Cells.

    PubMed

    Wu, Deng-Chyang; Wang, Sophie S W; Liu, Chung-Jung; Wuputra, Kenly; Kato, Kohsuke; Lee, Yen-Liang; Lin, Ying-Chu; Tsai, Ming-Ho; Ku, Chia-Chen; Lin, Wen-Hsin; Wang, Shin-Wei; Kishikawa, Shotaro; Noguchi, Michiya; Wu, Chu-Chieh; Chen, Yi-Ting; Chai, Chee-Yin; Lin, Chen-Lung Steve; Kuo, Kung-Kai; Yang, Ya-Han; Miyoshi, Hiroyuki; Nakamura, Yukio; Saito, Shigeo; Nagata, Kyosuke; Lin, Chang-Shen; Yokoyama, Kazunari K

    2017-10-01

    Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128. © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  1. Two domains in vertebral development: antagonistic regulation by SHH and BMP4 proteins.

    PubMed

    Watanabe, Y; Duprez, D; Monsoro-Burq, A H; Vincent, C; Le Douarin, N M

    1998-07-01

    It has previously been shown that the notochord grafted laterally to the neural tube enhances the differentiation of the vertebral cartilage at the expense of the derivatives of the dermomyotome. In contrast, the dorsomedial graft of a notochord inhibits cartilage differentiation of the dorsal part of the vertebra carrying the spinous process. Cartilage differentiation is preceded by the expression of transcription factors of the Pax family (Pax1/Pax9) in the ventrolateral domain and of the Msx family in the dorsal domain. The proliferation and differentiation of Msx-expressing cells in the dorsal precartilaginous domain of the vertebra are stimulated by BMP4, which acts upstream of Msx genes. It has previously been shown that the SHH protein arising from the notochord (and floor plate) is necessary for the survival and further development of Pax1/Pax9-expressing sclerotomal cells. We show here that SHH acts antagonistically to BMP4. SHH-producing cells grafted dorsally to the neural tube at E2 inhibit expression of Bmp4 and Msx genes and also inhibits the differentiation of the spinous process. We present a model that accounts for cartilage differentiation in the vertebra.

  2. Cyst-Like Osteolytic Formations in Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Augmented Sheep Spinal Fusion.

    PubMed

    Pan, Hsin Chuan; Lee, Soonchul; Ting, Kang; Shen, Jia; Wang, Chenchao; Nguyen, Alan; Berthiaume, Emily A; Zara, Janette N; Turner, A Simon; Seim, Howard B; Kwak, Jin Hee; Zhang, Xinli; Soo, Chia

    2017-07-01

    Multiple case reports using recombinant human bone morphogenetic protein-2 (rhBMP-2) have reported complications. However, the local adverse effects of rhBMP-2 application are not well documented. In this report we show that, in addition to promoting lumbar spinal fusion through potent osteogenic effects, rhBMP-2 augmentation promotes local cyst-like osteolytic formations in sheep trabecular bones that have undergone anterior lumbar interbody fusion. Three months after operation, conventional computed tomography showed that the trabecular bones of the rhBMP-2 application groups could fuse, whereas no fusion was observed in the control group. Micro-computed tomography analysis revealed that the core implant area's bone volume fraction and bone mineral density increased proportionately with rhBMP-2 dose. Multiple cyst-like bone voids were observed in peri-implant areas when using rhBMP-2 applications, and these sites showed significant bone mineral density decreases in relation to the unaffected regions. Biomechanically, these areas decreased in strength by 32% in comparison with noncystic areas. Histologically, rhBMP-2-affected void sites had an increased amount of fatty marrow, thinner trabecular bones, and significantly more adiponectin- and cathepsin K-positive cells. Despite promoting successful fusion, rhBMP-2 use in clinical applications may result in local adverse structural alterations and compromised biomechanical changes to the bone. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis

    PubMed Central

    Vignjević, Sanja; Budeč, Mirela; Marković, Dragana; Đikić, Dragoslava; Mitrović, Olivera; Mojsilović, Slavko; Đurić, Sanja Vranješ; Koko, Vesna; Čokić, Bojana Beleslin; Čokić, Vladan; Jovčić, Gordana

    2014-01-01

    Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation. PMID:24283209

  4. Bone Morphogenetic Proteins, Antagonists and Receptors in Prostate Cancer

    DTIC Science & Technology

    2005-01-01

    expressed in prostate. This work investigates BMP receptors and BMP antagonists to understand the basic mechanisms to inhibit the BMP signaling in...during embryoge- nesis, and prostate cancer metastases to bone. BMP functions can be inhibited by antagonists such as Noggin or DAN. DAN is a protein...protein along with a constant 0-6 -1 10 100 1000 1O0ng/ml of BMP-6, we were able to show a ng/ml BMP-6 dose-dependent inhibition of BMP-6 activity in DU

  5. Molecular characterization, genomic arrangement, and expression of bmpD, a new member of the bmp class of genes encoding membrane proteins of Borrelia burgdorferi.

    PubMed Central

    Ramamoorthy, R; Povinelli, L; Philipp M, T

    1996-01-01

    An expression library made with Borrelia burgdorferi DNA in the vector lambda ZapII was screened with serum from a monkey infected with the Lyme disease agent. This serum killed B. burgdorferi in vitro by an antibody-dependent, complement-mediated mechanism and contained antibodies to at least seven spirochetal antigens, none of which were the major outer surface proteins OspA or OspB. Among several positive clones, a clone containing the B. burgdorferi bmpA gene encoding the immunodominant antigen P39 was obtained. Chromosome walking and DNA sequence analysis permitted the identification of two additional upstream genes homologous to the bmpA gene and its related companion, bmpB. The first of these was the recently characterized bmpC gene, and adjacent to it was the fourth and new member of this class, which has been designated bmpD. The gene product encoded by bmpD is 34l residues long, contains a signal sequence with a potential signal peptidase II cleavage site, and has 26% identity with TmpC of Treponema pallidum. Southern blotting confirmed the tandem arrangement of all four bmp genes in the chromosome of B. burgdorferi JD1. However, Northern (RNA) blotting revealed that bmpD is expressed as a monocistronic transcript, which indicates that it is not part of an operon at the bmp locus. The bmpD gene was found to be conserved in representative members of the three species of the B. burgdorferi sensu lato complex, suggesting that it serves an important biological function in the spirochete. PMID:8606088

  6. Anterior Cruciate Ligament-Derived Stem Cells Transduced With BMP2 Accelerate Graft-Bone Integration After ACL Reconstruction.

    PubMed

    Kawakami, Yohei; Takayama, Koji; Matsumoto, Tomoyuki; Tang, Ying; Wang, Bing; Mifune, Yutaka; Cummins, James H; Warth, Ryan J; Kuroda, Ryosuke; Kurosaka, Masahiro; Fu, Freddie H; Huard, Johnny

    2017-03-01

    Strong graft-bone integration is a prerequisite for successful graft remodeling after reconstruction of the anterior cruciate ligament (ACL) using soft tissue grafts. Novel strategies to accelerate soft tissue graft-bone integration are needed to reduce the need for bone-tendon-bone graft harvest, reduce patient convalescence, facilitate rehabilitation, and reduce total recovery time after ACL reconstruction. The application of ACL-derived stem cells with enhanced expression of bone morphogenetic protein 2 (BMP2) onto soft tissue grafts in the form of cell sheets will both accelerate and improve the quality of graft-bone integration after ACL reconstruction in a rat model. Controlled laboratory study. ACL-derived CD34+ cells were isolated from remnant human ACL tissues, virally transduced to express BMP2, and embedded within cell sheets. In a rat model of ACL injury, bilateral single-bundle ACL reconstructions were performed, in which cell sheets were wrapped around tendon autografts before reconstruction. Four groups containing a total of 48 rats (96 knees) were established (n = 12 rats; 24 knees per group): CD34+BMP2 (100%), CD34+BMP2 (25%), CD34+ (untransduced), and a control group containing no cells. Six rats from each group were euthanized 2 and 4 weeks after surgery, and each graft was harvested for immunohistochemical and histological analyses. The remaining 6 rats in each group were euthanized at 4 and 8 weeks to evaluate in situ tensile load to failure in each femur-graft-tibia complex. In vitro, BMP2 transduction promoted the osteogenic differentiation of ACL-derived CD34+ cells while retaining their intrinsic multipotent capabilities. Osteoblast densities were greatest in the BMP2 (100%) and BMP2 (25%) groups. Bone tunnels in the CD34+BMP2 (100%) and CD34+BMP2 (25%) groups had the smallest cross-sectional areas according to micro-computed tomography analyses. Graft-bone integration occurred most rapidly in the CD34+BMP2 (25%) group. Tensile load to failure was significantly greater in the groups containing stem cells at 4 and 8 weeks after surgery. Tensile strength was greatest in the CD34+BMP2 (100%) group at 4 weeks, and in the CD34+BMP2 (25%) group at 8 weeks. ACL-derived CD34+ cells transduced with BMP2 accelerated graft-bone integration after ACL reconstruction using soft tissue autografts in a rat model, as evidenced by improved histological appearance and graft-bone interface biology along with tensile load to failure at each time point up to 8 weeks after surgery. A primary disadvantage of using soft tissue grafts for ACL reconstruction is the prolonged time required for bony ingrowth, which delays the initiation of midsubstance graft remodeling. The lack of consistent correlation between the appearance of a "healed" ACL on postoperative magnetic resonance imaging and readiness to return to sport results in athletes being released to sport before the graft is ready to handle high-intensity loading. Therefore, it is desirable to identify strategies that accelerate graft-bone integration, which would reduce the time to biologic fixation, improve the reliability of biologic fixation, allow for accelerated rehabilitation, and potentially reduce the incidence of early graft pullout and late midsubstance failure.

  7. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Chieri; Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp; Kitano, Sachie

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murinemore » satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P receptor-mediated signaling plays a crucial role for osteoblast differentiation.« less

  8. Acceleration of Alveolar Ridge Augmentation Using a Low Dose of Recombinant Human Bone Morphogenetic Protein-2 Loaded on a Resorbable Bioactive Ceramic.

    PubMed

    Fahmy, Rania A; Mahmoud, Naguiba; Soliman, Samia; Nouh, Samir R; Cunningham, Larry; El-Ghannam, Ahmed

    2015-12-01

    The aim of the present study was to evaluate the effect of a porous silica-calcium phosphate composite (SCPC50) loaded with and without recombinant human bone morphogenetic protein-2 (rhBMP-2) on alveolar ridge augmentation in saddle-type defects. Micro-granules of SCPC50 resorbable bioactive ceramic were coated with rhBMP-2 10 mg and then implanted into a saddle-type defect (12 × 7 mm) in a dog mandible and covered with a collagen membrane. Control groups included defects grafted with SCPC50 granules without rhBMP-2 and un-grafted defects. Bone healing was evaluated at 8 and 16 weeks using histologic and histomorphometric techniques. The increase in bone height and total defect fill were assessed for each specimen using the ImageJ 1.46 program. The release kinetics of rhBMP-2 was determined in vitro. The height of the bone in the grafted defects and the total defect fill were statistically analyzed. SCPC50 enhanced alveolar ridge augmentation as indicated by the increased vertical bone height, bone surface area, and bone volume after 16 weeks. SCPC50-rhBMP-2 provided a sustained release profile of a low effective dose (BMP-2 4.6 ± 1.34 pg/mL per hour) during the 1- to 21-day period. The slow rate of release of rhBMP-2 from SCPC50 accelerated synchronized complete bone regeneration and graft material resorption in 8 weeks. Successful rapid reconstruction of the alveolar ridge by SCPC50 and SCPC50-rhBMP-2 occurred without any adverse excessive bone formation, inflammation, or fluid-filled voids. Results of this study suggest that SCPC50 is an effective graft material to preserve the alveolar ridge after tooth extraction. Coating SCPC50-rhBMP-2 further accelerated bone regeneration and a considerable increase in vertical bone height. These findings make SCPC50 the primary choice as a carrier for rhBMP-2. SCPC50-rhBMP-2 can serve as an alternative to autologous bone grafting. Published by Elsevier Inc.

  9. Renoprotective effects of asialoerythropoietin in diabetic mice against ischaemia-reperfusion-induced acute kidney injury.

    PubMed

    Nakazawa, Jun; Isshiki, Keiji; Sugimoto, Toshiro; Araki, Shin-Ichi; Kume, Shinji; Yokomaku, Yukiyo; Chin-Kanasaki, Masami; Sakaguchi, Masayoshi; Koya, Daisuke; Haneda, Masakazu; Kashiwagi, Atsunori; Uzu, Takashi

    2010-02-01

    Diabetic patients are at higher risk of failure to recover after acute kidney injury, however, the mechanism and therapeutic strategies remain unclear. Erythropoietin is cytoprotective in a variety of non-haematopoietic cells. The aim of the present study was to clarify the mechanism of diabetes-related acceleration of renal damage after ischaemia-reperfusion injury and to examine the therapeutic potential of asialoerythropoietin, a non-haematopoietic erythropoietin derivative, against ischaemia-reperfusion-induced acute kidney injury in diabetic mice. C57BL/6J mice with and without streptozotocin-induced diabetes were subjected to 30 min unilateral renal ischaemia-reperfusion injury at 1 week after induction of diabetes. They were divided into four group: (i) non-diabetic plus ischaemia-reperfusion injury; (ii) non-diabetic plus ischaemia-reperfusion injury plus asialoerythropoietin (3000 IU/kg bodyweight); (iii) diabetic plus ischaemia-reperfusion injury; and (iv) diabetic plus ischemia-reperfusion injury plus asialoerythropoietin. Experiments were conducted at the indicated time periods after ischaemia-reperfusion injury. Ischaemia-reperfusion injury of diabetic kidney resulted in significantly low protein expression levels of bcl-2, an anti-apoptotic molecule, and bone morphogenetic protein-7 (BMP-7), an anti-fibrotic and pro-regenerative factor, compared with non-diabetic kidneys. Diabetic kidney subsequently showed severe damage including increased tubular cell apoptosis, tubulointerstitial fibrosis and decreased tubular proliferation, compared with non-diabetic kidney. Treatment with asialoerythropoietin induced bcl-2 and BMP-7 expression in diabetic kidney and decreased tubular cell apoptosis, tubulointerstitial fibrosis and accelerated tubular proliferation. Reduced induction bcl-2 and BMP-7 may play a role in the acceleration of renal damage after ischaemia-reperfusion injury in diabetic kidney. The renoprotective effects of asialoerythropoietin on acute kidney injury may be mediated through the induction of bcl-2 and BMP-7.

  10. Nanostructured hydroxyapatite surfaces-mediated adsorption alters recognition of BMP receptor IA and bioactivity of bone morphogenetic protein-2.

    PubMed

    Huang, Baolin; Yuan, Yuan; Ding, Sai; Li, Jianbo; Ren, Jie; Feng, Bo; Li, Tong; Gu, Yuantong; Liu, Changsheng

    2015-11-01

    Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin

  11. Ski represses BMP signaling in Xenopus and mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    kluo@lbl.gov

    2001-05-16

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells bymore » directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-{beta} family members.« less

  12. Differentiation of Odontoblast-Like Cells From Mouse Induced Pluripotent Stem Cells by Pax9 and Bmp4 Transfection.

    PubMed

    Seki, Daisuke; Takeshita, Nobuo; Oyanagi, Toshihito; Sasaki, Shutaro; Takano, Ikuko; Hasegawa, Masakazu; Takano-Yamamoto, Teruko

    2015-09-01

    The field of tooth regeneration has progressed in recent years, and human tooth regeneration could become viable in the future. Because induced pluripotent stem (iPS) cells can differentiate into odontogenic cells given appropriate conditions, iPS cells are a potential cell source for tooth regeneration. However, a definitive method to induce iPS cell-derived odontogenic cells has not been established. We describe a novel method of odontoblast differentiation from iPS cells using gene transfection. We generated mouse iPS cell-derived neural crest-like cells (iNCLCs), which exhibited neural crest markers. Next, we differentiated iNCLCs into odontoblast-like cells by transfection of Pax9 and Bmp4 expression plasmids. Exogenous Pax9 upregulated expression of Msx1 and dentin matrix protein 1 (Dmp1) in iNCLCs but not bone morphogenetic protein 4 (Bmp4) or dentin sialophosphoprotein (Dspp). Exogenous Bmp4 upregulated expression of Msx1, Dmp1, and Dspp in iNCLCs, but not Pax9. Moreover, cotransfection of Pax9 and Bmp4 plasmids in iNCLCs revealed a higher expression of Pax9 than when Pax9 plasmid was used alone. In contrast, exogenous Pax9 downregulated Bmp4 overexpression. Cotransfection of Pax9 and Bmp4 synergistically upregulated Dmp1 expression; however, Pax9 overexpression downregulated exogenous Bmp4-induced Dspp expression. Together, these findings suggest that an interaction between exogenous Pax9- and Bmp4-induced signaling modulated Dmp1 and Dspp expression. In conclusion, transfection of Pax9 and Bmp4 expression plasmids in iNCLCs induced gene expression associated with odontoblast differentiation, suggesting that iNCLCs differentiated into odontoblast-like cells. The iPS cell-derived odontoblast-like cells could be a useful cell source for tooth regeneration. It has been reported that induced pluripotent stem (iPS) cells differentiate into odontogenic cells by administration of recombinant growth factors and coculture with odontogenic cells. Therefore, they can be potential cell sources for tooth regeneration. However, these previous methods still have problems, such as usage of other cell types, heterogeneity of differentiated cells, and tumorigenicity. In the present study, a novel method to differentiate iPS cells into odontoblast-like cells without tumorigenicity using gene transfection was established. It is an important advance in the establishment of efficient methods to generate homogeneous functional odontogenic cells derived from iPS cells. ©AlphaMed Press.

  13. Dura Mater Stimulates Human Adipose-Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects

    PubMed Central

    Levi, Benjamin; Nelson, Emily R.; Li, Shuli; James, Aaron W.; Hyun, Jeong S.; Montoro, Daniel T.; Lee, Min; Glotzbach, Jason P.; Commons, George W.; Longaker, Michael T.

    2015-01-01

    Human adipose-derived stromal cells (hASCs) have a proven capacity to aid in osseous repair of calvarial defects. However, the bone defect microenvironment necessary for osseous healing is not fully understood. In this study, we postulated that the cell-cell interaction between engrafted ASCs and host dura mater (DM) cells is critical for the healing of calvarial defects. hASCs were engrafted into critical sized calvarial mouse defects. The DM-hASC interaction was manipulated surgically by DM removal or by insertion of a semipermeable or nonpermeable membrane between DM and hASCs. Radiographic, histologic, and gene expression analyses were performed. Next, the hASC-DM interaction is assessed by conditioned media (CM) and coculture assays. Finally, bone morphogenetic protein (BMP) signaling from DM was investigated in vivo using novel BMP-2 and anti-BMP-2/4 slow releasing scaffolds. With intact DM, osseous healing occurs both from host DM and engrafted hASCs. Interference with the DM-hASC interaction dramatically reduced calvarial healing with abrogated BMP-2–Smad-1/5 signaling. Using CM and coculture assays, mouse DM cells stimulated hASC osteogenesis via BMP signaling. Through in vivo manipulation of the BMP-2 pathway, we found that BMP-2 plays an important role in DM stimulation of hASC osteogenesis in the context of calvarial bone healing. BMP-2 supplementation to a defect with disrupted DM allowed for bone formation in a nonhealing defect. DM is an osteogenic cell type that both participates in and stimulates osseous healing in a hASC-engrafted calvarial defect. Furthermore, DM-derived BMP-2 paracrine stimulation appears to play a key role for hASC mediated repair. PMID:21656608

  14. Comparative expression analyses of bone morphogenetic protein 4 (BMP4) expressions in muscles of tilapia and common carp indicate that BMP4 plays a role in the intermuscular bone distribution in a dose-dependent manner.

    PubMed

    Su, Shengyan; Dong, Zaijie

    2018-01-01

    Intermuscular bones in fish negatively influence both meet processing and attractiveness to consumers. Tilapia (Oreochromis niloticus) and common carp (Cyprinus carpio) are both major farmed fish species globally, but whereas the former does not possess intermuscular bones, the latter does. Therefore, these two species might present a good model to study the genetic control of distribution of intermuscular bones in fish. Bone morphogenetic protein 4 (BMP4) gene is associated with tissue ossification and bone regeneration in mammals, but in fish its role in ossification remains understudied. To study the relationship between BMP4 and bone distribution in fish, we determined the expression of BMP4 in muscle tissues of common carp and tilapia on transcriptional and translational levels. As the gene has been merely predicted in silico from the genome of common carp, we have cloned and characterized it. The gene (GenBank: HQ446455) contains one intron and two exons, which encode a 400-amino acid protein with high homology to other known BMP4 protein sequences. Phylogenetic analysis showed that common carp clustered within the Cypriniformes clade (zebrafish was the closest ortholog) and tilapia within the Percomorpha clade. Using microCT scanning, we confirmed that intermuscular bones could be observed only in common carp (none in tilapia), but only in dorsal and caudal muscles (none in the ventral muscle). Expression levels of BMP4 in the muscles of common carp were in agreement with this observation both on transcriptional (qPCR) and translational (immunohistochemistry) level: higher in dorsal and caudal muscles, and lower in the ventral muscle. In tilapia, expression of BMP4 gene was also detectable in all three muscles, but expression levels in all three muscles were comparable to the one observed in the ventral muscle of carp, i.e., very low. Therefore, among the six studied muscles, the expression of BMP4 was high only in the two that possess intermuscular bones: dorsal and caudal muscles of common carp. The results of this study suggest that BMP4 is likely to play a key role in the determination of intermuscular bone distribution in fish in a dose-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  16. Bone Morphogenetic Protein-2 Promotes Human Mesenchymal Stem Cell Survival and Resultant Bone Formation When Entrapped in Photocrosslinked Alginate Hydrogels.

    PubMed

    Ho, Steve S; Vollmer, Nina L; Refaat, Motasem I; Jeon, Oju; Alsberg, Eben; Lee, Mark A; Leach, J Kent

    2016-10-01

    There is a substantial need to prolong cell persistence and enhance functionality in situ to enhance cell-based tissue repair. Bone morphogenetic protein-2 (BMP-2) is often used at high concentrations for osteogenic differentiation of mesenchymal stem cells (MSCs) but can induce apoptosis. Biomaterials facilitate the delivery of lower doses of BMP-2, reducing side effects and localizing materials at target sites. Photocrosslinked alginate hydrogels (PAHs) can deliver osteogenic materials to irregular-sized bone defects, providing improved control over material degradation compared to ionically cross-linked hydrogels. It is hypothesized that the delivery of MSCs and BMP-2 from a PAH increases cell persistence by reducing apoptosis, while promoting osteogenic differentiation and enhancing bone formation compared to MSCs in PAHs without BMP-2. BMP-2 significantly decreases apoptosis and enhances survival of photoencapsulated MSCs, while simultaneously promoting osteogenic differentiation in vitro. Bioluminescence imaging reveals increased MSC survival when implanted in BMP-2 PAHs. Bone defects treated with MSCs in BMP-2 PAHs demonstrate 100% union as early as 8 weeks and significantly higher bone volumes at 12 weeks, while defects with MSC-entrapped PAHs alone do not fully bridge. This study demonstrates that transplantation of MSCs with BMP-2 in PAHs achieves robust bone healing, providing a promising platform for bone repair. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1.

    PubMed

    Jaeger, Emma; Leedham, Simon; Lewis, Annabelle; Segditsas, Stefania; Becker, Martin; Cuadrado, Pedro Rodenas; Davis, Hayley; Kaur, Kulvinder; Heinimann, Karl; Howarth, Kimberley; East, James; Taylor, Jenny; Thomas, Huw; Tomlinson, Ian

    2012-05-06

    Hereditary mixed polyposis syndrome (HMPS) is characterized by apparent autosomal dominant inheritance of multiple types of colorectal polyp, with colorectal carcinoma occurring in a high proportion of affected individuals. Here, we use genetic mapping, copy-number analysis, exclusion of mutations by high-throughput sequencing, gene expression analysis and functional assays to show that HMPS is caused by a duplication spanning the 3' end of the SCG5 gene and a region upstream of the GREM1 locus. This unusual mutation is associated with increased allele-specific GREM1 expression. Whereas GREM1 is expressed in intestinal subepithelial myofibroblasts in controls, GREM1 is predominantly expressed in the epithelium of the large bowel in individuals with HMPS. The HMPS duplication contains predicted enhancer elements; some of these interact with the GREM1 promoter and can drive gene expression in vitro. Increased GREM1 expression is predicted to cause reduced bone morphogenetic protein (BMP) pathway activity, a mechanism that also underlies tumorigenesis in juvenile polyposis of the large bowel.

  18. Experimental and Computational Investigation of the Effect of Hydrophobicity on Aggregation and Osteoinductive Potential of BMP-2-Derived Peptide in a Hydrogel Matrix

    PubMed Central

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K.; Karimi, Tahereh

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73–92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005–0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the total concentration. PMID:25051457

  19. * Calvarial Bone Regeneration Is Enhanced by Sequential Delivery of FGF-2 and BMP-2 from Layer-by-Layer Coatings with a Biomimetic Calcium Phosphate Barrier Layer.

    PubMed

    Gronowicz, Gloria; Jacobs, Emily; Peng, Tao; Zhu, Li; Hurley, Marja; Kuhn, Liisa T

    2017-12-01

    A drug delivery coating for synthetic bone grafts has been developed to provide sequential delivery of multiple osteoinductive factors to better mimic aspects of the natural regenerative process. The coating is composed of a biomimetic calcium phosphate (bCaP) layer that is applied to a synthetic bone graft and then covered with a poly-l-Lysine/poly-l-Glutamic acid polyelectrolyte multilayer (PEM) film. Bone morphogenetic protein-2 (BMP-2) was applied before the coating process directly on the synthetic bone graft and then, bCaP-PEM was deposited followed by adsorption of fibroblast growth factor-2 (FGF-2) into the PEM layer. Cells access the FGF-2 immediately, while the bCaP-PEM temporally delays the cell access to BMP-2. In vitro studies with cells derived from mouse calvarial bones demonstrated that Sca-1 and CD-166 positive osteoblast progenitor cells proliferated in response to media dosing with FGF-2. Coated scaffolds with BMP-2 and FGF-2 were implanted in mouse calvarial bone defects and harvested at 1 and 3 weeks. After 1 week in vivo, proliferation of cells, including Sca-1+ progenitors, was observed with low dose FGF-2 and BMP-2 compared to BMP-2 alone, indicating that in vivo delivery of FGF-2 activated a similar population of cells as shown by in vitro testing. At 3 weeks, FGF-2 and BMP-2 delivery increased bone formation more than BMP-2 alone, particularly in the center of the defect, confirming that the proliferation of the Sca-1 positive osteoprogenitors by FGF-2 was associated with increased bone healing. Areas of bone mineralization were positive for double fluorochrome labeling of calcium and alkaline phosphatase staining of osteoblasts, along with increased TRAP+ osteoclasts, demonstrating active bone formation distinct from the bone-like collagen/hydroxyapatite scaffold. In conclusion, the addition of a bCaP layer to PEM delayed access to BMP-2 and allowed the FGF-2 stimulated progenitors to populate the scaffold before differentiating in response to BMP-2, leading to improved bone defect healing.

  20. Activation of Bone Morphogenetic Protein 4 Signaling Leads to Glomerulosclerosis That Mimics Diabetic Nephropathy*

    PubMed Central

    Tominaga, Tatsuya; Abe, Hideharu; Ueda, Otoya; Goto, Chisato; Nakahara, Kunihiko; Murakami, Taichi; Matsubara, Takeshi; Mima, Akira; Nagai, Kojiro; Araoka, Toshikazu; Kishi, Seiji; Fukushima, Naoshi; Jishage, Kou-ichi; Doi, Toshio

    2011-01-01

    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. We have previously reported that Smad1 transcriptionally regulates the expression of extracellular matrix (ECM) proteins in DN. However, little is known about the regulatory mechanisms that induce and activate Smad1. Here, bone morphogenetic protein 4 (Bmp4) was found to up-regulate the expression of Smad1 in mesangial cells and subsequently to phosphorylate Smad1 downstream of the advanced glycation end product-receptor for advanced glycation end product signaling pathway. Moreover, Bmp4 utilized Alk3 and affected the activation of Smad1 and Col4 expressions in mesangial cells. In the diabetic mouse, Bmp4 was remarkably activated in the glomeruli, and the mesangial area was expanded. To elucidate the direct function of Bmp4 action in the kidneys, we generated transgenic mice inducible for the expression of Bmp4. Tamoxifen treatment dramatically induced the expression of Bmp4, especially in the glomeruli of the mice. Notably, in the nondiabetic condition, the mice exhibited not only an expansion of the mesangial area and thickening of the basement membrane but also remarkable albuminuria, which are consistent with the distinct glomerular injuries in DN. ECM protein overexpression and activation of Smad1 in the glomeruli were also observed in the mice. The mesangial expansion in the mice was significantly correlated with albuminuria. Furthermore, the heterozygous Bmp4 knock-out mice inhibited the glomerular injuries compared with wild type mice in diabetic conditions. Here, we show that BMP4 may act as an upstream regulatory molecule for the process of ECM accumulation in DN and thereby reveals a new aspect of the molecular mechanisms involved in DN. PMID:21471216

  1. The effect of TNFα secreted from macrophages activated by titanium particles on osteogenic activity regulated by WNT/BMP signaling in osteoprogenitor cells.

    PubMed

    Lee, Sang-Soo; Sharma, Ashish R; Choi, Byung-Soo; Jung, Jun-Sub; Chang, Jun-Dong; Park, Seonghun; Salvati, Eduardo A; Purdue, Edward P; Song, Dong-Keun; Nam, Ju-Suk

    2012-06-01

    Wear particles are the major cause of osteolysis associated with failure of implant following total joint replacement. During this pathologic process, activated macrophages mediate inflammatory responses to increase osteoclastogenesis, leading to enhanced bone resorption. In osteolysis caused by wear particles, osteoprogenitors present along with macrophages at the implant interface may play significant roles in bone regeneration and implant osteointegration. Although the direct effects of wear particles on osteoblasts have been addressed recently, the role of activated macrophages in regulation of osteogenic activity of osteoblasts has scarcely been studied. In the present study, we examined the molecular communication between macrophages and osteoprogenitor cells that may explain the effect of wear particles on impaired bone forming activity in inflammatory bone diseases. It has been demonstrated that conditioned medium of macrophages challenged with titanium particles (Ti CM) suppresses early and late differentiation markers of osteoprogenitors, including alkaline phosphatase (ALP) activity, collagen synthesis, matrix mineralization and expression of osteocalcin and Runx2. Moreover, bone forming signals such as WNT and BMP signaling pathways were inhibited by Ti CM. Interestingly, TNFα was identified as a predominant factor in Ti CM to suppress osteogenic activity as well as WNT and BMP signaling activity. Furthermore, Ti CM or TNFα induces the expression of sclerostin (SOST) which is able to inhibit WNT and BMP signaling pathways. It was determined that over-expression of SOST suppressed ALP activity, whereas the inhibition of SOST by siRNA partially restored the effect of Ti CM on ALP activity. This study highlights the role of activated macrophages in regulation of impaired osteogenic activity seen in inflammatory conditions and provides a potential mechanism for autocrine regulation of WNT and BMP signaling mediated by TNFα via induction of SOST in osteprogenitor cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells.

    PubMed

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-09-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  3. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells

    PubMed Central

    Liu, Xing; Qin, Jiaqiang; Luo, Qing; Bi, Yang; Zhu, Gaohui; Jiang, Wei; Kim, Stephanie H; Li, Mi; Su, Yuxi; Nan, Guoxin; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Rogers, Mary Rose; Zhang, Hongyu; Shui, Wei; Zhao, Chen; Wang, Ning; Liang, Xi; Wu, Ningning; He, Yunfeng; Luu, Hue H; Haydon, Rex C; Shi, Lewis L; Li, Tingyu; He, Tong-Chuan; Li, Ming

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which give rise to several lineages, including bone, cartilage and fat. Epidermal growth factor (EGF) stimulates cell growth, proliferation and differentiation. EGF acts by binding with high affinity to epidermal growth factor receptor (EGFR) on the cell surface and stimulating the intrinsic protein tyrosine kinase activity of its receptor, which initiates a signal transduction cascade causing a variety of biochemical changes within the cell and regulating cell proliferation and differentiation. We have identified BMP9 as one of the most osteogenic BMPs in MSCs. In this study, we investigate if EGF signalling cross-talks with BMP9 and regulates BMP9-induced osteogenic differentiation. We find that EGF potentiates BMP9-induced early and late osteogenic markers of MSCs in vitro, which can be effectively blunted by EGFR inhibitors Gefitinib and Erlotinib or receptor tyrosine kinase inhibitors AG-1478 and AG-494 in a dose- and time-dependent manner. Furthermore, EGF significantly augments BMP9-induced bone formation in the cultured mouse foetal limb explants. In vivo stem cell implantation experiment reveals that exogenous expression of EGF in MSCs can effectively potentiate BMP9-induced ectopic bone formation, yielding larger and more mature bone masses. Interestingly, we find that, while EGF can induce BMP9 expression in MSCs, EGFR expression is directly up-regulated by BMP9 through Smad1/5/8 signalling pathway. Thus, the cross-talk between EGF and BMP9 signalling pathways in MSCs may underline their important roles in regulating osteogenic differentiation. Harnessing the synergy between BMP9 and EGF should be beneficial for enhancing osteogenesis in regenerative medicine. PMID:23844832

  4. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase.

    PubMed

    Zhu, Hong; Yoshimoto, Tanihiro; Yamashima, Tetsumori

    2014-10-03

    The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Bmp2 and Notch cooperate to pattern the embryonic endocardium.

    PubMed

    Papoutsi, T; Luna-Zurita, L; Prados, B; Zaffran, S; de la Pompa, J L

    2018-05-31

    Signaling interactions between myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects. © 2018. Published by The Company of Biologists Ltd.

  6. Co-evolution of breast-to-brain metastasis and neural progenitor cells.

    PubMed

    Neman, Josh; Choy, Cecilia; Kowolik, Claudia M; Anderson, Athena; Duenas, Vincent J; Waliany, Sarah; Chen, Bihong T; Chen, Mike Y; Jandial, Rahul

    2013-08-01

    Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain metastatic) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling.

  7. Co-evolution of breast-to-brain metastasis and neural progenitor cells

    PubMed Central

    Neman, Josh; Choy, Cecilia; Kowolik, Claudia M.; Anderson, Athena; Duenas, Vincent J.; Waliany, Sarah; Chen, Bihong T.; Chen, Mike Y.

    2013-01-01

    Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain meta-static) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling. PMID:23456474

  8. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    PubMed Central

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (P<0.05) in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  9. cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San

    2009-04-03

    Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less

  10. Zein nanoparticle as a novel BMP6 derived peptide carrier for enhanced osteogenic differentiation of C2C12 cells.

    PubMed

    Hadavi, Mahvash; Hasannia, Sadegh; Faghihi, Shahab; Mashayekhi, Farhad; Homazadeh, Homayoun; Mostofi, Seyed Behrooz

    2018-01-26

    Zein nanoparticles as a carrier system for BMP6-derived peptide were prepared by liquid-liquid phase separation procedure and characterized with SEM, DLS, FTIR and thermogravimetric methods. After peptide encapsulation, nanoparticle size increased from 236.3 ± 92.2 nm to 379.4 ± 116.8 nm. The encapsulation efficiency of peptide was 72.6% and the release of peptide from Zein nanoparticles was partly sustained in trypsin containing phosphate buffered saline (pH 7.4) for up to 14 days. Peptide-loaded nanoparticles showed similar cell viability compared with blank ones. ALP activity of C2C12 cells treated with peptide-loaded nanoparticles (500 µg/mL) was evaluated 7, 14, 21 and 28 days after culture. In peptide-loaded nanoparticles, ALP activity was significantly higher (p < .05) compared with other groups at day 14. Alizarin Red S staining showed, C2C12 cells behind peptide-loaded nanoparticles had significantly (p < .05) higher calcium deposition at day 21. The results of RT-qPCR show that the BMP-6 peptide activated expression of RUNX2 as a transcription factor. In turn, RUNX2 regulates SPP1 and BGLAP gene expression, as osteogenic marker genes. The results confirm that the peptide-loaded Zein nanoparticles, as osteoinductive material, may be used to repair small area of bone defects, with low load bearing.

  11. Upregulation and biological function of transmembrane protein 119 in osteosarcoma

    PubMed Central

    Jiang, Zhen-Huan; Peng, Jun; Yang, Hui-Lin; Fu, Xing-Li; Wang, Jin-Zhi; Liu, Lei; Jiang, Jian-Nong; Tan, Yong-Fei; Ge, Zhi-Jun

    2017-01-01

    Osteosarcoma is suggested to be caused by genetic and molecular alterations that disrupt osteoblast differentiation. Recent studies have reported that transmembrane protein 119 (TMEM119) contributes to osteoblast differentiation and bone development. However, the level of TMEM119 expression and its roles in osteosarcoma have not yet been elucidated. In the present study, TMEM119 mRNA and protein expression was found to be up-regulated in osteosarcoma compared with normal bone cyst tissues. The level of TMEM119 protein expression was strongly associated with tumor size, clinical stage, distant metastasis and overall survival time. Moreover, gene set enrichment analysis (GSEA) of the Gene Expression Omnibus (GEO) GSE42352 dataset revealed TMEM119 expression in osteosarcoma tissues to be positively correlated with cell cycle, apoptosis, metastasis and TGF-β signaling. We then knocked down TMEM119 expression in U2OS and MG63 cells using small interfering RNA, which revealed that downregulation of TMEM119 could inhibit the proliferation of osteosarcoma cells by inducing cell cycle arrest in G0/G1 phase and apoptosis. We also found that TMEM119 knockdown significantly inhibited cell migration and invasion, and decreased the expression of TGF-β pathway-related factors (BMP2, BMP7 and TGF-β). TGF-β application rescued the inhibitory effects of TMEM119 knockdown on osteosarcoma cell migration and invasion. Further in vitro experiments with a TGF-β inhibitor (SB431542) or BMP inhibitor (dorsomorphin) suggested that TMEM119 significantly promotes cell migration and invasion, partly through TGF-β/BMP signaling. In conclusion, our data support the notion that TMEM119 contributes to the proliferation, migration and invasion of osteosarcoma cells, and functions as an oncogene in osteosarcoma. PMID:28496199

  12. Effects of impervious area and BMP implementation and design on storm runoff and water quality in eight small watersheds

    USGS Publications Warehouse

    Aulenbach, Brent T.; Landers, Mark N.; Musser, Jonathan W.; Painter, Jaime A.

    2017-01-01

    The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001-2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.

  13. 3-Dimensional functionalized polycaprolactone-hyaluronic acid hydrogel constructs for bone tissue engineering.

    PubMed

    Hamlet, Stephen M; Vaquette, Cedryck; Shah, Amit; Hutmacher, Dietmar W; Ivanovski, Saso

    2017-04-01

    Alveolar bone regeneration remains a significant clinical challenge in periodontology and dental implantology. This study assessed the mineralized tissue forming potential of 3-D printed medical grade polycaprolactone (mPCL) constructs containing osteoblasts (OB) encapsulated in a hyaluronic acid (HA)-hydrogel incorporating bone morphogenetic protein-7 (BMP-7). HA-hydrogels containing human OB ± BMP-7 were prepared. Cell viability, osteogenic gene expression, mineralized tissue formation and BMP-7 release in vitro, were assessed by fluorescence staining, RT-PCR, histological/μ-CT examination and ELISA respectively. In an athymic rat model, subcutaneous ectopic mineralized tissue formation in mPCL-hydrogel constructs was assessed by μ-CT and histology. Osteoblast encapsulation in HA-hydrogels did not detrimentally effect cell viability, and 3-D culture in osteogenic media showed mineralized collagenous matrix formation after 6 weeks. BMP-7 release from the hydrogel was biphasic, sustained and increased osteogenic gene expression in vitro. After 4 weeks in vivo, mPCL-hydrogel constructs containing BMP-7 formed significantly more volume (mm 3 ) of vascularized bone-like tissue. Functionalized mPCL-HA hydrogel constructs provide a favourable environment for bone tissue engineering. Although encapsulated cells contributed to mineralized tissue formation within the hydrogel in vitro and in vivo, their addition did not result in an improved outcome compared to BMP-7 alone. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Enhanced Bone Formation in Segmental Defects with BMP2 in a Biologically Relevant Molecular Context

    DTIC Science & Technology

    2016-10-16

    gun shots . These do not heal on their own once a ‘critical size’ segment of bone is missing. One strategy to induce healing is to use bone-inducing...accelerate BMP2-induced bone formation by presenting the growth factor in a more biologically relevant context. This is based on our observation...that manganese increases the binding of BMP2 to COMP. The next steps are to validate these observations using BMP2:COMP on HA/PLG scaffolds in-vitro

  15. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly.

    PubMed

    Norrie, Jacqueline L; Lewandowski, Jordan P; Bouldin, Cortney M; Amarnath, Smita; Li, Qiang; Vokes, Martha S; Ehrlich, Lauren I R; Harfe, Brian D; Vokes, Steven A

    2014-09-15

    Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells

    PubMed Central

    Wang, Wei; Mariani, Francesca V.; Harland, Richard M.; Luo, Kunxin

    2000-01-01

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-β family members. PMID:11121043

  17. Ski represses bone morphogenic protein signaling in Xenopus and mammalian cells.

    PubMed

    Wang, W; Mariani, F V; Harland, R M; Luo, K

    2000-12-19

    The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.

  18. Effects of recombinant dentin sialoprotein in dental pulp cells.

    PubMed

    Lee, S-Y; Kim, S-Y; Park, S-H; Kim, J-J; Jang, J-H; Kim, E-C

    2012-04-01

    Dentin sialophosphoprotein (DSPP) is critical for dentin mineralization. However, the function of dentin sialoprotein (DSP), the cleaved product of DSPP, remains unclear. This study aimed to investigate the signal transduction pathways and effects of recombinant human DSP (rh-DSP) on proliferation, migration, and odontoblastic differentiation in human dental pulp cells (HDPCs). The exogenous addition of rh-DSP enhanced the proliferation and migration of HDPCs in dose- and time-dependent manners. rh-DSP markedly increased ALP activity, calcium nodule formation, and levels of odontoblastic marker mRNA. rh-DSP increased BMP-2 expression and Smad1/5/8 phosphorylation, which was blocked by the BMP antagonist, noggin. Furthermore, rh-DSP phosphorylated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), Akt, and IκB-α, and induced the nuclear translocation of the NF-κB p65 subunit. Analysis of these data demonstrates a novel signaling function of rh-DSP for the promotion of growth, migration, and differentiation in HDPCS via the BMP/Smad, JNK, ERK, MAPK, and NF-κB signaling pathways, suggesting that rh-DSP may have therapeutic utility in dentin regeneration or dental pulp tissue engineering.

  19. Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry.

    PubMed

    Siverino, Claudia; Tabisz, Barbara; Lühmann, Tessa; Meinel, Lorenz; Müller, Thomas; Walles, Heike; Nickel, Joachim

    2018-03-29

    Different therapeutic strategies for the treatment of non-healing long bone defects have been intensively investigated. Currently used treatments present several limitations that have led to the use of biomaterials in combination with osteogenic growth factors, such as bone morphogenetic proteins (BMPs). Commonly used absorption or encapsulation methods require supra-physiological amounts of BMP2, typically resulting in a so-called initial burst release effect that provokes several severe adverse side effects. A possible strategy to overcome these problems would be to covalently couple the protein to the scaffold. Moreover, coupling should be performed in a site-specific manner in order to guarantee a reproducible product outcome. Therefore, we created a BMP2 variant, in which an artificial amino acid (propargyl-L-lysine) was introduced into the mature part of the BMP2 protein by codon usage expansion (BMP2-K3Plk). BMP2-K3Plk was coupled to functionalized beads through copper catalyzed azide-alkyne cycloaddition (CuAAC). The biological activity of the coupled BMP2-K3Plk was proven in vitro and the osteogenic activity of the BMP2-K3Plk-functionalized beads was proven in cell based assays. The functionalized beads in contact with C2C12 cells were able to induce alkaline phosphatase (ALP) expression in locally restricted proximity of the bead. Thus, by this technique, functionalized scaffolds can be produced that can trigger cell differentiation towards an osteogenic lineage. Additionally, lower BMP2 doses are sufficient due to the controlled orientation of site-directed coupled BMP2. With this method, BMPs are always exposed to their receptors on the cell surface in the appropriate orientation, which is not the case if the factors are coupled via non-site-directed coupling techniques. The product outcome is highly controllable and, thus, results in materials with homogeneous properties, improving their applicability for the repair of critical size bone defects.

  20. Activation of Bmp2-Smad1 Signal and Its Regulation by Coordinated Alteration of H3K27 Trimethylation in Ras-Induced Senescence

    PubMed Central

    Kaneda, Atsushi; Fujita, Takanori; Anai, Motonobu; Yamamoto, Shogo; Nagae, Genta; Morikawa, Masato; Tsuji, Shingo; Oshima, Masanobu; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence. PMID:22072987

  1. Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice.

    PubMed

    Reyes, Ricardo; Rodríguez, Jose Antonio; Orbe, Josune; Arnau, María Rosa; Évora, Carmen; Delgado, Araceli

    2018-11-01

    The effect of dual delivery of bone morphogenetic protein-2 (BMP-2) and matrix metalloproteinase 10 (MMP10) on bone regeneration was investigated in a murine model of calvarial critical-size defect, hypothesizing that it would result in an enhanced bone formation. Critical-size calvarial defects (4 mm diameter) were created in mice and PLGA microspheres preloaded with either BMP-2, MMP10 or a microsphere combination of both were transplanted into defect sites at different doses. Empty microspheres were used as the negative control. Encapsulation efficiency was assessed and in vivo release kinetics of BMP-2 and MMP10 were examined over 14 days. Histological analyses were used to analyze bone formation after four and eight weeks. Combination with MMP10 (30 ng) significantly enhanced BMP-2 (600 ng)-mediated osteogenesis, as confirmed by the increase in percentage of bone fill (p < .05) at four weeks. Moreover, it also increased mineral apposition rate (p < .05), measured by double labeling with tetracycline and calceine. MMP10 accelerates bone repair by enhancing BMP-2-promoted bone healing and improving the mineralization rate. In conclusion combination of MMP10 and BMP-2 may become a promising strategy for repair and regeneration of bone defects.

  2. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    PubMed

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls.

    PubMed

    Poon, Bonnie; Kha, Tram; Tran, Sally; Dass, Crispin R

    2016-02-01

    Bone morphogenetic proteins (BMPs), more specifically BMP-2, are being increasingly used in orthopaedic surgery due to advanced research into osteoinductive factors that may enhance and improve bone therapy. There are many areas in therapy that BMP-2 is being applied to, including dental treatment, open tibial fractures, cancer and spinal surgery. Within these areas of treatment, there are many reports of successes and pitfalls. This review explores the use of BMP-2 and its successes, pitfalls and future prospects in bone therapy. The PubMed database was consulted to compile this review. With successes in therapy, there were descriptions of a more rapid healing time with no signs of rejection or infection attributed to BMP-2 treatment. Pitfalls included BMP-2 'off-label' use, which lead to various adverse effects. Our search highlighted that optimising treatment with BMP-2 is a direction that many researchers are exploring, with areas of current research interest including concentration and dose of BMP-2, carrier type and delivery. © 2015 Royal Pharmaceutical Society.

  4. Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice.

    PubMed

    Taghiyar, Leila; Hesaraki, Mahdi; Sayahpour, Forough Azam; Satarian, Leila; Hosseini, Samaneh; Aghdami, Naser; Baghaban Eslaminejad, Mohamadreza

    2017-06-23

    Amputation of the proximal region in mammals is not followed by regeneration because blastema cells (BCs) and expression of regenerative genes, such as Msh homeobox ( Msx ) genes, are absent in this animal group. The lack of BCs and positional information in other cells is therefore the main obstacle to therapeutic approaches for limb regeneration. Hence, this study aimed to create blastema-like cells (BlCs) by overexpressing Msx1 and Msx2 genes in mouse bone marrow-derived mesenchymal stem cells (mBMSCs) to regenerate a proximally amputated digit tip. We transduced mBMSCs with Msx1 and Msx2 genes and compared osteogenic activity and expression levels of several Msx -regulated genes ( Bmp4 , Fgf8 , and keratin 14 ( K14 )) in BlC groups, including MSX1, MSX2, and MSX1/2 (in a 1:1 ratio) with those in mBMSCs and BCs in vitro and in vivo following injection into the amputation site. We found that Msx gene overexpression increased expression of specific blastemal markers and enhanced the proliferation rate and osteogenesis of BlCs compared with mBMSCs and BCs via activation of Fgf8 and Bmp4 Histological analyses indicated full regrowth of digit tips in the Msx -overexpressing groups, particularly in MSX1/2, through endochondral ossification 6 weeks post-injection. In contrast, mBMSCs and BCs formed abnormal bone and nail. Full digit tip was regenerated only in the MSX1/2 group and was related to boosted Bmp4, Fgf8 , and K14 gene expression and to limb-patterning properties resulting from Msx1 and Msx2 overexpression. We propose that Msx -transduced cells that can regenerate epithelial and mesenchymal tissues may potentially be utilized in limb regeneration. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1alpha activity.

    PubMed

    Gelse, K; Mühle, C; Knaup, K; Swoboda, B; Wiesener, M; Hennig, F; Olk, A; Schneider, H

    2008-12-01

    To investigate the chondrogenic potential of growth factor-stimulated periosteal cells with respect to the activity of Hypoxia-inducible Factor 1alpha (HIF-1alpha). Scaffold-bound autologous periosteal cells, which had been activated by Insulin-like Growth Factor 1 (IGF-1) or Bone Morphogenetic Protein 2 (BMP-2) gene transfer using both adeno-associated virus (AAV) and adenoviral (Ad) vectors, were applied to chondral lesions in the knee joints of miniature pigs. Six weeks after transplantation, the repair tissues were investigated for collagen type I and type II content as well as for HIF-1alpha expression. The functional role of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling on BMP-2/IGF-1-induced HIF-1alpha expression was assessed in vitro by employing specific inhibitors. Unstimulated periosteal cells formed a fibrous extracellular matrix in the superficial zone and a fibrocartilaginous matrix in deep zones of the repair tissue. This zonal difference was reflected by the absence of HIF-1alpha staining in superficial areas, but moderate HIF-1alpha expression in deep zones. In contrast, Ad/AAVBMP-2-stimulated periosteal cells, and to a lesser degree Ad/AAVIGF-1-infected cells, adopted a chondrocyte-like phenotype with strong intracellular HIF-1alpha staining throughout all zones of the repair tissue and formed a hyaline-like matrix. In vitro, BMP-2 and IGF-1 supplementation increased HIF-1alpha protein levels in periosteal cells, which was based on posttranscriptional mechanisms rather than de novo mRNA synthesis, involving predominantly the MEK/ERK pathway. This pilot experimental study on a relatively small number of animals indicated that chondrogenesis by precursor cells is facilitated in deeper hypoxic zones of cartilage repair tissue and is stimulated by growth factors which enhance HIF-1alpha activity.

  6. BMP7 Induces Dormancy of Prostatic Tumor Stem Cell in Bone

    DTIC Science & Technology

    2013-07-01

    Watabe, Shigeru Hirota, Sudha K. Pai, Wen Liu, Koji Fukuda, Christopher Chambers, Andrew Wilber and Kounosuke Watabe “Bone Figure 7. Expression of BMP7...Hiroshi Okuda,1 Fei Xing,1 Puspa R. Pandey,1 Misako Watabe,1 Shigeru Hirota,2 Sudha K. Pai,1 Wen Liu,1 Koji Fukuda,1 Christopher Chambers,1 Andrew

  7. Chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis.

    PubMed

    Vignjević, Sanja; Budeč, Mirela; Marković, Dragana; Dikić, Dragoslava; Mitrović, Olivera; Mojsilović, Slavko; Durić, Sanja Vranješ; Koko, Vesna; Cokić, Bojana Beleslin; Cokić, Vladan; Jovčić, Gordana

    2014-01-01

    Psychological stress affects different physiological processes including haematopoiesis. However, erythropoietic effects of chronic psychological stress remain largely unknown. The adult spleen contains a distinct microenvironment favourable for rapid expansion of erythroid progenitors in response to stressful stimuli, and emerging evidence suggests that inappropriate activation of stress erythropoiesis may predispose to leukaemic transformation. We used a mouse model to study the influence of chronic psychological stress on erythropoiesis in the spleen and to investigate potential mediators of observed effects. Adult mice were subjected to 2 hrs daily restraint stress for 7 or 14 consecutive days. Our results showed that chronic exposure to restraint stress decreased the concentration of haemoglobin in the blood, elevated circulating levels of erythropoietin and corticosterone, and resulted in markedly increased number of erythroid progenitors and precursors in the spleen. Western blot analysis revealed significantly decreased expression of both erythropoietin receptor and glucocorticoid receptor in the spleen of restrained mice. Furthermore, chronic stress enhanced the expression of stem cell factor receptor in the red pulp. Moreover, chronically stressed animals exhibited significantly increased expression of bone morphogenetic protein 4 (BMP4) in the red pulp as well as substantially enhanced mRNA expression levels of its receptors in the spleen. These findings demonstrate for the first time that chronic psychological stress activates BMP4-dependent extramedullary erythropoiesis and leads to the prolonged activation of stress erythropoiesis pathways. Prolonged activation of these pathways along with an excessive production of immature erythroid cells may predispose chronically stressed subjects to a higher risk of leukaemic transformation. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.

    PubMed

    Lu, Zufu; Wang, Guocheng; Roohani-Esfahani, Iman; Dunstan, Colin R; Zreiqat, Hala

    2014-03-01

    Understanding interactions among the three elements (cells, scaffolds, and bioactive factors) is critical for successful tissue engineering. This study was aimed to investigate how scaffolds would affect osteogenic gene expression in human adipose tissue-derived stem cells (ASCs) or human primary osteoblasts (HOBs), and their cross talk. Either ASCs or HOBs were seeded on Baghdadite (Ca3ZrSi2O9) and hydroxyapatite/tricalcium phosphate (HA/TCP) scaffolds, and osteogenic gene expression was assessed. To further evaluate how substrate affected HOB and ASC cross talk, an indirect co-culture system with semipermeable inserts placed on the culture plate was set up to co-culture ASCs or HOBs, which were grown in monolayer or seeded on Baghdadite or HA/TCP scaffolds, and osteogenic differentiation of the cells was assessed. We found that Baghdadite scaffolds induced a significantly greater increase in RUNX2, osteopontin, bone sialoprotein, and osteocalcin gene expression in HOBs in comparison to HA/TCP scaffolds; Baghdadite scaffolds also significantly induced RUNX2 and osteopontin, but not bone sialoprotein and osteocalcin gene expression in ASCs. In the co-culture system, the HOBs on Baghdadite scaffolds more markedly promoted osteogenic gene expression in ASCs compared to HOBs in monolayer or the HOBs on HA/TCP scaffolds. In addition, the ASCs seeded on Baghdadite scaffolds more markedly promoted osteogenic gene expression in HOBs than did the ASCs on HA/TCP scaffolds. BMP-2 expression in ASCs or HOBs was increased when they were seeded on Baghdadite scaffolds, and adding Noggin into the co-culture medium largely abrogated Baghdadite scaffold-modulated ASC-HOB cross talk. In summary, Baghdadite scaffolds not only promote the osteogenic differentiation of HOBs or ASCs but also modulate the cross talk between ASCs and HOBs, in part via increasing BMP2 expression, thereby promoting their osteogenic differentiation.

  9. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.

    PubMed

    Legendre, Florence; Ollitrault, David; Hervieu, Magalie; Baugé, Catherine; Maneix, Laure; Goux, Didier; Chajra, Hanane; Mallein-Gerin, Frédéric; Boumediene, Karim; Galera, Philippe; Demoor, Magali

    2013-07-01

    Cartilage healing by tissue engineering is an alternative strategy to reconstitute functional tissue after trauma or age-related degeneration. However, chondrocytes, the major player in cartilage homeostasis, do not self-regenerate efficiently and lose their phenotype during osteoarthritis. This process is called dedifferentiation and also occurs during the first expansion step of autologous chondrocyte implantation (ACI). To ensure successful ACI therapy, chondrocytes must be differentiated and capable of synthesizing hyaline cartilage matrix molecules. We therefore developed a safe procedure for redifferentiating human chondrocytes by combining appropriate physicochemical factors: hypoxic conditions, collagen scaffolds, chondrogenic factors (bone morphogenetic protein-2 [BMP-2], and insulin-like growth factor I [IGF-I]) and RNA interference targeting the COL1A1 gene. Redifferentiation of dedifferentiated chondrocytes was evaluated using gene/protein analyses to identify the chondrocyte phenotypic profile. In our conditions, under BMP-2 treatment, redifferentiated and metabolically active chondrocytes synthesized a hyaline-like cartilage matrix characterized by type IIB collagen and aggrecan molecules without any sign of hypertrophy or osteogenesis. In contrast, IGF-I increased both specific and noncharacteristic markers (collagens I and X) of chondrocytes. The specific increase in COL2A1 gene expression observed in the BMP-2 treatment was shown to involve the specific enhancer region of COL2A1 that binds the trans-activators Sox9/L-Sox5/Sox6 and Sp1, which are associated with a decrease in the trans-inhibitors of COL2A1, c-Krox, and p65 subunit of NF-kappaB. Our procedure in which BMP-2 treatment under hypoxia is associated with a COL1A1 siRNA, significantly increased the differentiation index of chondrocytes, and should offer the opportunity to develop new ACI-based therapies in humans.

  10. The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians.

    PubMed

    Molina, M Dolores; Saló, Emili; Cebrià, Francesc

    2007-11-01

    The bone morphogenetic protein (BMP) pathway has been shown to play an important role in the establishment of the dorsoventral axis during development in both vertebrate and invertebrate species. In an attempt to unravel the role of BMPs in pattern formation during planarian regeneration, we studied this signaling pathway in Schmidtea mediterranea. Here, we functionally characterize planarian homologues of two key elements of the pathway: Smed-BMP and Smed-Smad1. Whole-mount in situ hybridization showed that Smed-BMP is expressed at the planarian dorsal midline, suggesting a role in dorsoventral patterning, while Smed-Smad1 is widely expressed throughout the mesenchyme and in the central nervous system. RNA interference (RNAi) knockdowns of Smed-BMP or Smed-Smad1 led to the disappearance of dorsal markers along with the ectopic expression of ventral markers on the dorsal side of the treated animals. In almost all cases, a duplicated central nervous system differentiated dorsally after Smed-BMP or Smed-Smad1 RNAi. These defects were observed not only during regeneration but also in intact non-regenerating animals. Our results suggest that the BMP signaling pathway is conserved in planarians and that it plays a key role in the regeneration and maintenance of the dorsoventral axis.

  11. Trends Analysis of rhBMP2 Utilization in Single-Level Anterior Lumbar Interbody Fusion in the United States

    PubMed Central

    Lao, Lifeng; Cohen, Jeremiah R.; Buser, Zorica; Brodke, Darrel S.; Yoon, S. Tim; Youssef, Jim A.; Park, Jong-Beom; Meisel, Hans-Joerg; Wang, Jeffrey C.

    2017-01-01

    Study Design: Retrospective case study. Objective: To evaluate the trends and demographics of recombinant human bone morphogenetic protein 2 (rhBMP2) utilization in single-level anterior lumbar interbody fusion (ALIF) in the United States. Methods: Patients who underwent single-level ALIF from 2005 to 2011 were identified by searching ICD-9 diagnosis and procedure codes in the PearlDiver Patient Records Database (PearlDiver Technologies, Fort Wayne, IN), a national database of orthopedic insurance records. The year of procedure, age, gender, and region of the United States were analyzed for each patient. Results: A total of 921 patients were identified who underwent a single-level ALIF in this study. The average rate of single-level ALIF with rhBMP2 utilization increased (35%-48%) from 2005 to 2009, but sharply decreased to 16.7% in 2010 and 15.0% in 2011. The overall incidence of single-level ALIF without rhBMP2 (0.20 cases per 100 000 patients) was more than twice of the incidence of single-level ALIF with rhBMP2 (0.09 cases per 100 000 patients). The average rate of single-level ALIF with rhBMP2 utilization is highest in West (41.4%), followed by Midwest (33.3%), South (26.5%) and Northeast (22.2%). The highest incidence of single-level ALIF with rhBMP2 was observed in the group aged less than 65 years (compared with any other age groups, P < .001), with an incidence of 0.21 per 100 000 patients. Conclusions: The incidence of rhBMP2 utilization in single-level ALIF increased from 2006 to 2009, but decreased in 2010 and 2011. The Northeast region had the lowest incidence of rhBMP2 utilization. The group aged less than 65 years trended to have the higher incidence of single-level ALIF with rhBMP2 utilization. PMID:29662743

  12. Trends Analysis of rhBMP2 Utilization in Single-Level Anterior Lumbar Interbody Fusion in the United States.

    PubMed

    Lao, Lifeng; Cohen, Jeremiah R; Buser, Zorica; Brodke, Darrel S; Yoon, S Tim; Youssef, Jim A; Park, Jong-Beom; Meisel, Hans-Joerg; Wang, Jeffrey C

    2018-04-01

    Retrospective case study. To evaluate the trends and demographics of recombinant human bone morphogenetic protein 2 (rhBMP2) utilization in single-level anterior lumbar interbody fusion (ALIF) in the United States. Patients who underwent single-level ALIF from 2005 to 2011 were identified by searching ICD-9 diagnosis and procedure codes in the PearlDiver Patient Records Database (PearlDiver Technologies, Fort Wayne, IN), a national database of orthopedic insurance records. The year of procedure, age, gender, and region of the United States were analyzed for each patient. A total of 921 patients were identified who underwent a single-level ALIF in this study. The average rate of single-level ALIF with rhBMP2 utilization increased (35%-48%) from 2005 to 2009, but sharply decreased to 16.7% in 2010 and 15.0% in 2011. The overall incidence of single-level ALIF without rhBMP2 (0.20 cases per 100 000 patients) was more than twice of the incidence of single-level ALIF with rhBMP2 (0.09 cases per 100 000 patients). The average rate of single-level ALIF with rhBMP2 utilization is highest in West (41.4%), followed by Midwest (33.3%), South (26.5%) and Northeast (22.2%). The highest incidence of single-level ALIF with rhBMP2 was observed in the group aged less than 65 years (compared with any other age groups, P < .001), with an incidence of 0.21 per 100 000 patients. The incidence of rhBMP2 utilization in single-level ALIF increased from 2006 to 2009, but decreased in 2010 and 2011. The Northeast region had the lowest incidence of rhBMP2 utilization. The group aged less than 65 years trended to have the higher incidence of single-level ALIF with rhBMP2 utilization.

  13. Comparison of the effects of recombinant human bone morphogenetic protein-2 and -9 on bone formation in rat calvarial critical-size defects.

    PubMed

    Nakamura, Toshiaki; Shirakata, Yoshinori; Shinohara, Yukiya; Miron, Richard J; Hasegawa-Nakamura, Kozue; Fujioka-Kobayashi, Masako; Noguchi, Kazuyuki

    2017-12-01

    Among bone morphogenetic protein (BMP) family members, BMP-2 and BMP-9 have demonstrated potent osteoinductive potential. However, in vivo differences in their potential for bone regeneration remain unclear. The present study aimed to compare the effects of recombinant human (rh) BMP-2 and rhBMP-9 on bone formation in rat calvarial critical-size defects (CSD). Twenty-eight Wistar rats surgically received two calvarial defects bilaterally in each parietal bone. Defects (n = 56) were allocated into four groups: absorbable collagen sponge (ACS) alone, rhBMP-2 with ACS (rhBMP-2/ACS), rhBMP-9/ACS, or sham surgery (control), on the condition that the treatments of rhBMP-2/ACS and rhBMP-9/ACS, or the same treatments were not included in the same animal. Animals were sacrificed at 2 and 8 weeks post-surgery. The calvarial defects were analyzed for bone volume (BV) by micro-computed tomography and for percentages of defect closure (DC/DL), newly formed bone area (NBA/TA), bone marrow area (BMA/NBA), adipose tissue area (ATA/NBA), central bone height (CBH), and marginal bone height (MBH) by histomorphometric analysis. The BV in the rhBMP-2/ACS group (5.44 ± 3.65 mm 3 , n = 7) was greater than the other groups at 2 weeks post-surgery, and the rhBMP-2/ACS and rhBMP-9/ACS groups (18.17 ± 2.51 and 16.30 ± 2.46 mm 3 , n = 7, respectively) demonstrated significantly greater amounts of BV compared with the control and ACS groups (6.02 ± 2.90 and 9.30 ± 2.75 mm 3 , n = 7, respectively) at 8 weeks post-surgery. The rhBMP-2/ACS and rhBMP-9/ACS groups significantly induced new bone formation compared to the control and ACS groups at 8 weeks post-surgery. However, there were no statistically significant differences found between the rhBMP-2/ACS and rhBMP-9/ACS groups in any of the histomorphometric parameters. The ATA/NBA in the rhBMP-2/ACS group (9.24 ± 3.72%, n = 7) was the highest among the treatment groups at 8 weeks post-surgery. Within the limits of this study, it can be concluded that rhBMP-2/ACS induced a slight early increase in new bone formation at 2 weeks and that rhBMP-9/ACS provided comparable new bone formation to rhBMP-2/ACS with less adipose tissues after a healing period of 8 weeks in rat CSD. RhBMP-9/ACS treatment provided new bone formation with less adipose tissues compared with rhBMP-2/ACS.

  14. Mangiferin inhibits apoptosis and oxidative stress via BMP2/Smad-1 signaling in dexamethasone-induced MC3T3-E1 cells.

    PubMed

    Ding, Ling-Zhi; Teng, Xiao; Zhang, Zhao-Bo; Zheng, Chang-Jun; Chen, Shi-Hong

    2018-05-01

    Mangiferin is a xanthone glucoside, which possesses antioxidant, antiviral, antitumor and anti-inflammatory functions, and is associated with gene regulation. However, it remains unknown whether mangiferin protects osteoblasts, such as the MC3T3-E1 cell line, against glucocorticoid-induced damage. In the present study, MC3T3-E1 cells were treated with dexamethasone (Dex), which is a well-known synthetic glucocorticoid, in order to establish a glucocorticoid-induced cell injury model. After Dex and/or mangiferin treatment, cell viability, apoptosis and reactive oxygen species (ROS) production was measured by Cell Counting kit-8 (CCK-8) and flow cytometry, respectively, and the concentration of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and macrophage colony-stimulating factor (M-CSF) was measured by ELISA. The expression of bone morphogenetic protein 2 (BMP2), phosphorylated‑SMAD family member 1 (p-Smad-1), t-Smad-1, osterix (OSX), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), B‑cell lymphoma 2 (Bcl-2) and Bcl‑2‑associated X protein (Bax) was measured by real-time PCR and/or western blot analysis. The results indicated that pretreatment of MC3T3-E1 cells with mangiferin for 3 h prior to exposure to Dex for 48 h significantly attenuated Dex-induced injury and inflammation, as demonstrated by increased cell viability, and decreases in apoptosis, ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In addition, pretreatment with mangiferin markedly reduced Dex-induced BMP2 and p‑Smad-1 downregulation, and corrected the expression of differentiation‑ and apoptosis‑associated markers, including alkaline phosphatase, OSX, OCN, OPG, RANK, RANKL, Bcl-2 and Bax, which were altered by Dex treatment. Similar to the protective effects of mangiferin, overexpression of BMP2 suppressed not only Dex-induced cytotoxicity, but also ROS generation, and the secretion of TNF-α, IL-6 and M-CSF. In conclusion, the results of the present study are the first, to the best of our knowledge, to demonstrate that mangiferin protects MC3T3-E1 cells against Dex-induced apoptosis and oxidative stress by activating the BMP2/Smad-1 signaling pathway.

  15. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    PubMed

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  16. NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowan, Catherine M.; Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, 40833 Le Conte Ave, Los Angeles, CA 90095; Zhang, Xinli

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer NELL-1 accelerates extracellular matrix mineralization in MC3T3-E1 pre-osteoblasts. Black-Right-Pointing-Pointer NELL-1 significantly increases intracellular inorganic phosphate levels. Black-Right-Pointing-Pointer NELL-1 positively regulates osteogenesis but not proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer NELL-1 regulates inorganic phosphate transporter activity. -- Abstract: NELL-1 is a potent osteoinductive molecule that enhances bone formation in multiple animal models through currently unidentified pathways. In the present manuscript, we hypothesized that NELL-1 may regulate osteogenic differentiation accompanied by alteration of inorganic phosphate (Pi) entry into the osteoblast via sodium dependent phosphate (NaPi) transporters. To determine this, MC3T3-E1 pre-osteoblasts were cultured in the presence of recombinant human (rh)NELL-1 ormore » rhBMP-2. Analysis was performed for intracellular Pi levels through malachite green staining, Pit-1 and Pit-2 expression, and forced upregulation of Pit-1 and Pit-2. Results showed rhNELL-1 to increase MC3T3-E1 matrix mineralization and Pi influx associated with activation of both Pit-1 and Pit-2 channels, with significantly increased Pit-2 production. In contrast, Pi transport elicited by rhBMP-2 showed to be associated with increased Pit-1 production only. Next, neutralizing antibodies against Pit-1 and Pit-2 completely abrogated the Pi influx effect of rhNELL-1, suggesting rhNELL-1 is dependent on both transporters. These results identify one potential mechanism of action for rhNELL-1 induced osteogenesis and highlight a fundamental difference between NELL-1 and BMP-2 signaling.« less

  17. Experimental variation of the level and the ratio of angiogenic and osteogenic signaling affects the spatiotemporal expression of bone-specific markers and organization of bone formation in ectopic sites.

    PubMed

    Moser, Norman; Goldstein, Jan; Kauffmann, Phillip; Epple, Matthias; Schliephake, Henning

    2018-04-01

    The aim of the present study was to test the hypothesis that the ratio of angiogenic and osteogenic signaling affects ectopic bone formation when delivered in different amounts. Porous composite PDLLA/CaCO 3 scaffolds were loaded with rhBMP2 and rhVEGF in different dosage combinations and implanted into the gluteal muscles of 120 adult male Wistar rats. Bone formation and expression of alkaline phosphatase and Runx2 were quantified by histomorphometry. Spatial distribution across the scaffolds was assessed by using a grid that discriminated between the periphery and center of the scaffolds. The evaluation showed that the combined delivery of bone morphogenetic protein BMP2 and VEGF in different dosage combinations did not enhance the overall quantity of ectopic bone formation compared to the delivery of BMP2 alone. The addition of VEGF generally upregulated Runx2 after 4 weeks, which may have retarded terminal osteogenic differentiation. However, slow combined delivery of 1.5-2.0 μg BMP2 combined with 50 ng VEGF165 over a period of 5 weeks supported a more even distribution of bone formation across the implanted scaffolds whereas higher amounts of VEGF did not elicit this effect. The findings suggest that structural organization rather than the quantity of ectopic bone formation is affected by the dosage and the ratio of BMP2 and VEGF levels at the observed intervals. The development of carriers for dual growth factor delivery has to take into account the necessity to carefully balance the ratio of growth release.

  18. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo.

    PubMed

    Katsu, Kenjiro; Tokumori, Daisuke; Tatsumi, Norifumi; Suzuki, Atsushi; Yokouchi, Yuji

    2012-03-01

    During left-right (L-R) axis formation, Nodal is expressed in the node and has a central role in the transfer of L-R information in the vertebrate embryo. Bone morphogenetic protein (BMP) signaling also has an important role for maintenance of gene expression around the node. Several members of the Cerberus/Dan family act on L-R patterning by regulating activity of the transforming growth factor-β (TGF-β) family. We demonstrate here that chicken Dan plays a critical role in L-R axis formation. Chicken Dan is expressed in the left side of the node shortly after left-handed Shh expression and before the appearance of asymmetrically expressed genes in the lateral plate mesoderm (LPM). In vitro experiments revealed that DAN inhibited BMP signaling but not NODAL signaling. SHH had a positive regulatory effect on Dan expression while BMP4 had a negative effect. Using overexpression and RNA interference-mediated knockdown strategies, we demonstrate that Dan is indispensable for Nodal expression in the LPM and for Lefty-1 expression in the notochord. In the perinodal region, expression of Dan and Nodal was independent of each other. Nodal up-regulation by DAN required NODAL signaling, suggesting that DAN might act synergistically with NODAL. Our data indicate that Dan plays an essential role in the establishment of the L-R axis by inhibiting BMP signaling around the node. Copyright © 2012. Published by Elsevier Inc.

  19. (−)-Epigallocatechin gallate but not chlorogenic acid upregulates osteoprotegerin synthesis through regulation of bone morphogenetic protein-4 in osteoblasts

    PubMed Central

    Fujita, Kazuhiko; Otsuka, Takanobu; Yamamoto, Naohiro; Kainuma, Shingo; Ohguchi, Reou; Kawabata, Tetsu; Sakai, Go; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2017-01-01

    Chlorogenic acid (CGA) is a primary phenolic component of coffee and (−)-epigallocatechin gallate (EGCG) is a primary flavonoid component of green tea, both of which have been documented to possess beneficial health properties. A previous study by the present authors demonstrated that p38 mitogen-activated protein kinase (MAPK) may be associated with osteoprotegerin synthesis stimulated by bone morphogenetic protein-4 (BMP-4) in osteoblast-like MC3T3-E1 cells. In the present study, the effects of CGA and EGCG on BMP-4-stimulated osteoprotegerin synthesis in MC3T3-E1 cells were investigated. It was observed that CGA had no effect on osteoprotegerin release stimulated by BMP-4, whereas EGCG significantly enhanced BMP-4-stimulated osteoprotegerin release (P=0.003). Levels of osteoprotegerin mRNA expression induced by BMP-4 were also significantly increased by EGCG (P=0.03). By contrast, EGCG had no significant effect on phosphorylation of Smad1 or p38 MAPK induced by BMP-4. In addition, EGCG had little effect on BMP-induced phosphorylation of p70 S6 kinase; however rapamycin, as an inhibitor of p70 S6 kinase, significantly suppressed osteoprotegerin release (P=0.007). These data suggest that EGCG but not CGA may upregulate the synthesis of osteoprotegerin induced by BMP-4 in osteoblasts. PMID:28672948

  20. (-)-Epigallocatechin gallate but not chlorogenic acid upregulates osteoprotegerin synthesis through regulation of bone morphogenetic protein-4 in osteoblasts.

    PubMed

    Fujita, Kazuhiko; Otsuka, Takanobu; Yamamoto, Naohiro; Kainuma, Shingo; Ohguchi, Reou; Kawabata, Tetsu; Sakai, Go; Kuroyanagi, Gen; Matsushima-Nishiwaki, Rie; Kozawa, Osamu; Tokuda, Haruhiko

    2017-07-01

    Chlorogenic acid (CGA) is a primary phenolic component of coffee and (-)-epigallocatechin gallate (EGCG) is a primary flavonoid component of green tea, both of which have been documented to possess beneficial health properties. A previous study by the present authors demonstrated that p38 mitogen-activated protein kinase (MAPK) may be associated with osteoprotegerin synthesis stimulated by bone morphogenetic protein-4 (BMP-4) in osteoblast-like MC3T3-E1 cells. In the present study, the effects of CGA and EGCG on BMP-4-stimulated osteoprotegerin synthesis in MC3T3-E1 cells were investigated. It was observed that CGA had no effect on osteoprotegerin release stimulated by BMP-4, whereas EGCG significantly enhanced BMP-4-stimulated osteoprotegerin release (P=0.003). Levels of osteoprotegerin mRNA expression induced by BMP-4 were also significantly increased by EGCG (P=0.03). By contrast, EGCG had no significant effect on phosphorylation of Smad1 or p38 MAPK induced by BMP-4. In addition, EGCG had little effect on BMP-induced phosphorylation of p70 S6 kinase; however rapamycin, as an inhibitor of p70 S6 kinase, significantly suppressed osteoprotegerin release (P=0.007). These data suggest that EGCG but not CGA may upregulate the synthesis of osteoprotegerin induced by BMP-4 in osteoblasts.

  1. Promising efficacy of Escherichia coli recombinant human bone morphogenetic protein-2 in collagen sponge for ectopic and orthotopic bone formation and comparison with mammalian cell recombinant human bone morphogenetic protein-2.

    PubMed

    Kim, In Sook; Lee, Eui Nam; Cho, Tae Hyung; Song, Yun Mi; Hwang, Soon Jung; Oh, Ji Hye; Park, Eun Kyung; Koo, Tai Young; Seo, Young-Kwon

    2011-02-01

    Nonglycosylated recombinant human bone morphogenetic protein (rhBMP)-2 prepared in Escherichia coli (E. coli rhBMP-2) has recently been considered as an alternative to mammalian cell rhBMP-2. However, its clinical use is still limited owing to lack of evidence for osteogenic activity comparable with that of mammalian cell rhBMP-2 via microcomputed tomography-based analysis. Therefore, this study aimed to evaluate the ability of E. coli rhBMP-2 in absorbable collagen sponge to form ectopic and orthotopic bone and to compare it to that of mammalian rhBMP-2. In vitro investigation was performed to study osteoblast differentiation of human mesenchymal stromal cells. Both types of rhBMP-2 enhanced proliferation, alkaline phosphatase activity, and matrix mineralization of human mesenchymal stromal cells at similar levels. Similar tendencies were observed in microcomputed tomography analysis, which determined bone volume, fractional bone volume, trabecular thickness, trabecular separation, bone mineral density, and other characteristics. Histology from an in vivo osteoinductivity test and from a rat calvarial defect model demonstrated a dose-dependent increase in local bone formation. The E. coli rhBMP-2 group (5 μg) not only induced complete regeneration of an 8-mm critical-sized defect at 4 weeks, but also led to new bone with the same bone mineral density as normal bone at 8 weeks, with the same efficiency as that of mammalian cell rhBMP-2 (5 μg). These uniformly favorable results provide evidence that the osteogenic activity of E. coli rhBMP-2 is not inferior to that of mammalian cell rhBMP-2 despite its low solubility and lack of gylcosylation. These results suggest that the application of E. coli rhBMP-2 in absorbable collagen sponge may be a promising equivalent to mammalian cell rhBMP-2 in bone tissue engineering.

  2. Activin A amplifies dysregulated BMP signaling and induces chondro-osseous differentiation of primary connective tissue progenitor cells in patients with fibrodysplasia ossificans progressiva (FOP).

    PubMed

    Wang, Haitao; Shore, Eileen M; Pignolo, Robert J; Kaplan, Frederick S

    2018-04-01

    Fibrodysplasia ossificans progressiva (FOP), is caused by mutations in the type I BMP receptor ACVR1 that lead to increased activation of the BMP-pSmad1/5/8 signaling pathway. Recent findings suggest that Activin A (Act A) promiscuously stimulates the bone morphogenetic protein (BMP) signaling pathway in vitro and mediates heterotopic ossification (HO) in mouse models of FOP, but primary data from FOP patient cells are lacking. To examine BMP-pSmad1/5/8 pathway signaling and chondro-osseous differentiation in response to endogenous and exogenous Act A in primary connective tissue progenitor cells [CTPCs; also known as stem cells from human exfoliated deciduous teeth (SHED) cells] from patients with FOP. These cells express the common FOP mutation, ACVR1 (R206H). We found that Act A amplifies dysregulated BMP pathway signaling in human FOP primary CTPCs cells through the Smad1/5/8 pathway and induces chondro-osseous differentiation. Amplification of BMP-pSmad1/5/8 signaling was inhibited by Follistatin and by a neutralizing antibody to Activin A. The increased basal pSmad1/5/8 activity, as well as the hypoxia-induced stimulation of FOP CTPCs cells, were BMP4 and Act A independent. Importantly, either BMP4 or Act A stimulated pSmad1/5/8 pathway signaling but BMP4 signaling was not dependent on Activin A and vice versa. Circulating plasma levels of Act A or BMP4 are similar in controls compared to FOP patients, and suggest the potential for an autocrine or paracrine route for pathological signaling. The mutated FOP receptor [ACVR1 (R206H)] is hypersensitive to BMP4 and uniquely sensitive (compared to the wild type receptor) to Act A. Both canonical and non-canonical ligands have a synergistic effect on BMP-pSmad1/5/8 signaling in FOP CTPCs and may cooperate to alter the threshold for HO in FOP. Our findings in primary human FOP CTPCs have important implications for the design of clinical trials to inhibit dysregulated BMP pathway signaling in humans who have FOP. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Si-Wu-tang extract stimulates bone formation through PI3K/Akt/NF-κB signaling pathways in osteoblasts.

    PubMed

    Wu, Chi-Ming; Chen, Po-Chun; Li, Te-Mao; Fong, Yi-Chin; Tang, Chih-Hsin

    2013-10-24

    Si-Wu-Tang (SWT), a Traditional Chinese Medicine (TCM) formula, is widely used for the treatment of gynopathies diseases such as menstrual discomfort, climacteric syndrome, dysmenorrhea, and other estrogen-related diseases. Recent studies have shown that SWT can treat primary dysmenorrhea, have anti-pruritic anti-inflammatory effects, and protect against radiation-induced bone marrow damage in an animal model. It has been reported that anti-inflammatory and anti-oxidant agents have the potential to treat osteoporosis by increasing bone formation and/or suppressing bone resorption. However, the effect of SWT on bone cell function has not yet been reported. Alkaline phosphatase (ALP), bone morphogenetic proteins (BMP)-2, and osteopontin (OPN) mRNA expression was analyzed by qPCR. The mechanism of action of SWT extract was investigated using western blotting. The in vivo anti-osteoporotic effect of SWT extract was assessed in ovariectomized mice. Here, we report that SWT increases ALP, BMP-2, and OPN expression as well as bone mineralization. In addition, we show that the PI3K, Akt, and NF-κB signaling pathways may be involved in the SWT-mediated increase in gene expression and bone mineralization. Notably, treatment of mice with SWT extract prevented bone loss induced by ovariectomy in vivo. SWT may be used to stimulate bone formation for the treatment of osteoporosis.

  4. A Heart-Hand Syndrome Gene: Tfap2b Plays a Critical Role in the Development and Remodeling of Mouse Ductus Arteriosus and Limb Patterning

    PubMed Central

    Zhao, Feng; Bosserhoff, Anja-Katrin; Buettner, Reinhard; Moser, Markus

    2011-01-01

    Background Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. Methodology/Principal Findings Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b −/− mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. Conclusions/Significance Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA. PMID:21829553

  5. Fussel-15, a novel Ski/Sno homolog protein, antagonizes BMP signaling.

    PubMed

    Arndt, Stephanie; Poser, Ina; Moser, Markus; Bosserhoff, Anja-Katrin

    2007-04-01

    The Ski family of nuclear oncoproteins represses transforming growth factor-beta (TGF-beta) signaling through inhibition of transcriptional activity of Smad proteins. In this study, we identified a novel gene, fussel-15 (functional smad suppressing element on chromosome 15) with high homology to the recently discovered Fussel-18 protein. Both, Fussel-15 and Fussel-18, share important structural features, significant homology and similar genomic organization with the homolog Ski family members, Ski and SnoN. Unlike Ski and SnoN, which are ubiquitously expressed in human tissues, Fussel-15 expression, like Fussel-18, is much more restricted in its expression and is principally found in the nervous system of mouse and humans. Interestingly, Fussel-15 expression is even more restricted in adulthood to Purkinje cells of human cerebellum. In contrast to Fussel-18 that interacts with Smad 2, Smad3 and Smad4 and has an inhibitory activity on TGF-beta signaling, Fussel-15 interacts with Smad1, Smad2 and Smad3 molecules and suppresses mainly BMP signaling pathway but has only minor effects on TGF-beta signaling. This new protein expands the family of Ski/Sno proto-oncoproteins and represents a novel molecular regulator of BMP signaling.

  6. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway

    PubMed Central

    Matsushita, Takehiko; Wilcox, William R.; Chan, Yuk Yu; Kawanami, Aya; Bükülmez, Hülya; Balmes, Gener; Krejci, Pavel; Mekikian, Pertchoui B.; Otani, Kazuyuki; Yamaura, Isakichi; Warman, Matthew L.; Givol, David; Murakami, Shunichi

    2009-01-01

    Activating mutations in FGFR3 cause achondroplasia and thanatophoric dysplasia, the most common human skeletal dysplasias. In these disorders, spinal canal and foramen magnum stenosis can cause serious neurologic complications. Here, we provide evidence that FGFR3 and MAPK signaling in chondrocytes promote synchondrosis closure and fusion of ossification centers. We observed premature synchondrosis closure in the spine and cranial base in human cases of homozygous achondroplasia and thanatophoric dysplasia as well as in mouse models of achondroplasia. In both species, premature synchondrosis closure was associated with increased bone formation. Chondrocyte-specific activation of Fgfr3 in mice induced premature synchondrosis closure and enhanced osteoblast differentiation around synchondroses. FGF signaling in chondrocytes increases Bmp ligand mRNA expression and decreases Bmp antagonist mRNA expression in a MAPK-dependent manner, suggesting a role for Bmp signaling in the increased bone formation. The enhanced bone formation would accelerate the fusion of ossification centers and limit the endochondral bone growth. Spinal canal and foramen magnum stenosis in heterozygous achondroplasia patients, therefore, may occur through premature synchondrosis closure. If this is the case, then any growth-promoting treatment for these complications of achondroplasia must precede the timing of the synchondrosis closure. PMID:18923003

  7. FAK and BMP-9 synergistically trigger osteogenic differentiation and bone formation of adipose derived stem cells through enhancing Wnt-β-catenin signaling.

    PubMed

    Yuan, Cheng; Gou, Xiaoli; Deng, Jiang; Dong, Zhijun; Ye, Peng; Hu, Zhenming

    2018-06-14

    Adipose derived stem cells (ADSCs) could undergo osteogenesis via focal adhesion kinase (FAK) and bone morphogenetic protein (BMP) 9 signals, both of which could affect Wnt-β-catenin signal, a signal pathway closely related to ADSCs osteogenesis. It's still enigma whether FAK and BMP-9 contribute to osteogenesis. Here, we examined the effect of FAK on BMP9-inducedosteogenic differentiation, unveiled the possible molecular mechanism underling this process. In the present study, ADSCs were isolated and purified, and cells of passage 3 underwent virus mediated transfection to prepare ADSCs with stable FAK shRNA expression. Cell viability and migration were detected by MTT and transwell assay, respectively. Expression of osteogenic gene, phosphorylation of FAK and GSK were detected by western blot. Osteogenic potential was evaluated by activity of alkaline phosphatase (ALP) and calcium deposition by ALP staining and Alizarin Red S staining. BMP-9 administration promoted ADSCs osteogenesis. Knocking down FAK attenuated this process, inhibited osteogenic proteins expression through Wnt-β-catenin signal. BMP-9 also triggered ADSCs proliferation and migration, and shFAK antagonized such effects too. Although Wnt signal is affected by FAK shRNA, Smad signal remains intact in ADSCs with shFAK. FAK and BMP-9 could cross talk on Wnt signal pathway and promote ADSCs osteogenesis. FAK could participate in BMP-9 induced ADSCs osteogenesis via Wnt signal pathway other than Smads signals (see in graph). Copyright © 2018. Published by Elsevier Masson SAS.

  8. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    PubMed

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  9. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth

    PubMed Central

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment. PMID:26029998

  10. SNW1 Is a Critical Regulator of Spatial BMP Activity, Neural Plate Border Formation, and Neural Crest Specification in Vertebrate Embryos

    PubMed Central

    Wu, Mary Y.; Ramel, Marie-Christine; Howell, Michael; Hill, Caroline S.

    2011-01-01

    Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification. PMID:21358802

  11. Osteogenic potential of the human bone morphogenetic protein 2 gene activated nanobone putty.

    PubMed

    Tian, Xiao-bin; Sun, Li; Yang, Shu-hua; Zhang, Yu-kun; Hu, Ru-yin; Fu, De-hao

    2008-04-20

    Nanobone putty is an injectable and bioresorbable bone substitute. The neutral-pH putty resembles hard bone tissue, does not contain polymers or plasticizers, and is self-setting and nearly isothermic, properties which are helpful for the adhesion, proliferation, and function of bone cells. The aim of this study was to investigate the osteogenic potential of human bone morphogenetic protein 2 (hBMP2) gene activated nanobone putty in inducing ectopic bone formation, and the effects of the hBMP2 gene activated nanobone putty on repairing bone defects. Twenty four Kunming mice were randomly divided into two groups. The nanobone putty + hBMP2 plasmid was injected into the right thigh muscle pouches of the mice (experiment side). The nanobone putty + blank plasmid or nanobone putty was injected into the left thigh muscle pouches of the group 1 (control side 1) or group 2 (control side 2), respectively. The effects of ectopic bone formation were evaluated by radiography, histology, and molecular biology analysis at 2 and 4 weeks after operation. Bilateral 15 mm radial defects were made in forty-eight rabbits. These rabbits were randomly divided into three groups: Group A, nanobone putty + hBMP2 plasmid; Group B, putty + blank plasmid; Group C, nanobone putty only. Six rabbits with left radial defects served as blank controls. The effect of bone repairing was evaluated by radiography, histology, molecular biology, and biomechanical analysis at 4, 8, and 12 weeks after operation. The tissue from the experimental side of the mice expressed hBMP2. Obvious cartilage and island-distributed immature bone formation in implants of the experiment side were observed at 2 weeks after operation, and massive mature bone observed at 4 weeks. No bone formation was observed in the control side of the mice. The ALP activity in the experiment side of the mice was higher than that in the control side. The tissue of Group A rabbits expressed hBMP2 protein and higher ALP level. The new bone formation rate and antibending strength of group A was significantly higher than those of group B and C. The defects in blank control were not healed. The hBMP2 gene activated nanobone putty exhibited osteoinductive ability, and had a better bone defect repair capability than that of nanobone putty only.

  12. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus.

    PubMed

    Soukup, Vladimir; Kozmik, Zbynek

    2018-02-01

    Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Spatio-Temporal Distribution of Smads and Role of Smads/TGF-β/BMP-4 in the Regulation of Mouse Bladder Organogenesis

    PubMed Central

    Islam, Syed S.; Mokhtari, Reza Bayat; Kumar, Sushil; Maalouf, Joe; Arab, Sara; Yeger, Herman; Farhat, Walid A.

    2013-01-01

    Although Shh, TGF-β and BMP-4 regulate radial patterning of the bladder mesenchyme and smooth muscle differentiation, it is not known what transcription factors, local environmental cues or signaling cascades mediate bladder smooth muscle differentiation. We investigated the expression patterns of signaling mediated by Smad2 and Smad3 in the mouse embryonic bladder from E12.5 to E16.5 by using qRT-PCR, in situ hybridization and antibodies specifically recognizing individual Smad proteins. The role of Smad2 and Smad3 during smooth muscle formation was examined by disrupting the Smad2/3 signaling pathway using TβR1 inhibitor SB-431542 in organ culture system. qRT-PCR results showed that R-Smads, Co-Smad and I-Smads were all expressed during bladder development. RNA ISH for BMP-4 and immunostaining of TGF-β1 showed that BMP-4 and TGF-β1 were expressed in the transitional epithelium, lamina propia and muscularis mucosa. Smad1, Smad5 and Smad8 were first expressed in the bladder epithelium and continued to be expressed in the transitional epithelium, muscularis mesenchyme and lamina propia as the bladder developed. Smad2, Smad3 and Smad4 were first detected in the bladder epithelium and subsequently were expressed in the muscularis mesenchyme and lamina propia. Smad6 and Smad7 showed overlapping expression with R-Smads, which are critical for bladder development. In bladder explants (E12.5 to E16.5) culture, Smad2 and Smad3 were found localized within the nuclei, suggesting critical transcriptional regulatory effects during bladder development. E12.5 to E16.5 bladders were cultured with and without TβR1 inhibitor SB-431542 and assessed by qRT-PCR and immunofluorescence. After three days in culture in SB-431542, α-SMA, Smad2 and Smad3 expressions were significantly decreased compared with controls, however, with no significant changes in the expression of smooth muscle myosin heavy chain (SM-Myh. Based on the Smad expression patterns, we suggest that individual or combinations of Smads may be necessary during mouse bladder organogenesis and may be critical mediators for bladder smooth muscle differentiation. PMID:23620745

  14. Effects of neonatal exposure to a glyphosate-based herbicide on female rat reproduction.

    PubMed

    Ingaramo, Paola I; Varayoud, Jorgelina; Milesi, María M; Schimpf, Marlise Guerrero; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2016-11-01

    In this study, we investigated whether neonatal exposure to a glyphosate-based herbicide (GBH) alters the reproductive performance and the molecular mechanisms involved in the decidualization process in adult rats. Newborn female rats received vehicle or 2 mg/kg/day of a GBH on postnatal days (PND) 1, 3, 5 and 7. On PND90, the rats were mated to evaluate (i) the reproductive performance on gestational day (GD) 19 and (ii) the ovarian steroid levels, uterine morphology, endometrial cell proliferation, apoptosis and cell cycle regulators, and endocrine pathways that regulate uterine decidualization (steroid receptors/COUP-TFII/Bmp2/Hoxa10) at the implantation sites (IS) on GD9. The GBH-exposed group showed a significant increase in the number of resorption sites on GD19, associated with an altered decidualization response. In fact, on GD9, the GBH-treated rats showed morphological changes at the IS, associated with a decreased expression of estrogen and progesterone receptors, a downregulation of COUP-TFII (Nr2f2) and Bmp2 mRNA and an increased expression of HOXA10 and the proliferation marker Ki67(Mki67) at the IS. We concluded that alterations in endometrial decidualization might be the mechanism of GBH-induced post-implantation embryo loss. © 2016 Society for Reproduction and Fertility.

  15. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells.

    PubMed

    He, Xuezhong; Ma, Junyu; Jabbari, Esmaiel

    2008-11-04

    Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide- co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62+/-0.37 and 5.2+/-0.6 pmol/cm2, respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization of BMS cells. These findings are potentially useful in developing engineered scaffolds for bone regeneration.

  16. Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth.

    PubMed

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2017-03-16

    Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Potential roles for BMP and Pax genes in the development of iris smooth muscle.

    PubMed

    Jensen, Abbie M

    2005-02-01

    The embryonic optic cup generates four types of tissue: neural retina, pigmented epithelium, ciliary epithelium, and iris smooth muscle. Remarkably little attention has focused on the development of the iris smooth muscle since Lewis ([1903] J. Am. Anat. 2:405-416) described its origins from the anterior rim of the optic cup neuroepithelium. As an initial step toward understanding iris smooth muscle development, I first determined the spatial and temporal pattern of the development of the iris smooth muscle in the chick by using the HNK1 antibody, which labels developing iris smooth muscle. HNK1 labeling shows that iris smooth muscle development is correlated in time and space with the development of the ciliary epithelial folds. Second, because neural crest is the only other neural tissue that has been shown to generate smooth muscle (Le Lievre and Le Douarin [1975] J. Embryo. Exp. Morphol. 34:125-154), I sought to determine whether iris smooth muscle development shares similarities with neural crest development. Two members of the BMP superfamily, BMP4 and BMP7, which may regulate neural crest development, are highly expressed by cells at the site of iris smooth muscle generation. Third, because humans and mice that are heterozygous for Pax6 mutations have no irides (Hill et al. [1991] Nature 354:522-525; Hanson et al. [1994] Nat. Genet. 6:168-173), I determined the expression of Pax6. I also examined the expression of Pax3 in the developing anterior optic cup. The developing iris smooth muscle coexpresses Pax6 and Pax3. I suggest that some of the eye defects caused by mutations in Pax6, BMP4, and BMP7 may be due to abnormal iris smooth muscle. Copyright 2004 Wiley-Liss, Inc.

  18. Inflammation disrupts the LDL receptor pathway and accelerates the progression of vascular calcification in ESRD patients.

    PubMed

    Liu, Jing; Ma, Kun Ling; Gao, Min; Wang, Chang Xian; Ni, Jie; Zhang, Yang; Zhang, Xiao Liang; Liu, Hong; Wang, Yan Li; Liu, Bi Cheng

    2012-01-01

    Chronic inflammation plays a crucial role in the progression of vascular calcification (VC). This study was designed to investigate whether the low-density lipoprotein receptor (LDLr) pathway is involved in the progression of VC in patients with end-stage renal disease (ESRD) during inflammation. Twenty-eight ESRD patients were divided into control and inflamed groups according to plasma C-reactive protein (CRP) level. Surgically removed tissues from the radial arteries of patients receiving arteriovenostomy were used in the experiments. The expression of tumour necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) of the radial artery were increased in the inflamed group. Hematoxylin-eosin and alizarin red S staining revealed parallel increases in foam cell formation and calcium deposit formation in continuous cross-sections of radial arteries in the inflamed group compared to the control, which were closely correlated with increased LDLr, sterol regulatory element binding protein-2 (SREBP-2), bone morphogenetic proteins-2 (BMP-2), and collagen I protein expression, as shown by immunohistochemical and immunofluorescent staining. Confocal microscopy confirmed that inflammation enhanced the translocation of the SREBP cleavage-activating protein (SCAP)/SREBP-2 complex from the endoplasmic reticulum to the Golgi, thereby activating LDLr gene transcription. Inflammation increased alkaline phosphatase protein expression and reduced α-smooth muscle actin protein expression, contributing to the conversion of the vascular smooth muscle cells in calcified vessels from the fibroblastic to the osteogenic phenotype; osteogenic cells are the main cellular components involved in VC. Further analysis showed that the inflammation-induced disruption of the LDLr pathway was significantly associated with enhanced BMP-2 and collagen I expression. Inflammation accelerated the progression of VC in ESRD patients by disrupting the LDLr pathway, which may represent a novel mechanism involved in the progression of both VC and atherosclerosis.

  19. Periodontal regeneration using an injectable bone cement combined with BMP-2 or FGF-2.

    PubMed

    Oortgiesen, Daniël A W; Walboomers, X Frank; Bronckers, Antonius L J J; Meijer, Gert J; Jansen, John A

    2014-03-01

    Periodontitis is a frequently diagnosed oral disease characterized by bone resorption and soft tissue loss around teeth. Unfortunately, currently available therapies only slow or arrest progress of the disease. Ideally, treatment of periodontal defects should be focused on complete regeneration of the lost tissues [(bone and periodontal ligament (PDL)]. As a result, this study used intrabony defects to evaluate the regenerative potential of an injectable macroporous calcium phosphate cement (CaP) in combination with bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2). After creating 30 periodontal defects in 15 Wistar rats, three treatment strategies were conducted: application of CaP only, CaP + BMP-2 and CaP + FGF-2. Animals were euthanized after 12 weeks and processed for histology and histomorphometry. Using CaP alone resulted in limited effects on PDL and bone healing. CaP + BMP-2 showed a good response for bone healing; a significant 2.4 fold increase in bone healing score was observed compared to CaP. However, for PDL healing, CaP + BMP-2 treatment showed no difference compared to the CaP group. The best results were observed with the combined treatment of CaP + FGF-2, which showed a significant 3.3 fold increase in PDL healing score compared to CaP + BMP-2 and a significant 2.6 fold increase compared to CaP. For bone healing, CaP +  FGF-2 showed a significant 1.9 fold increase compared to CaP but no significant difference was noted compared to the CaP + BMP-2 group. The combination of a topical application of FGF-2 and an injectable CaP seems to be a promising treatment modality for periodontal regeneration. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Protective effects of puerarin against tetrabromobisphenol a-induced apoptosis and cardiac developmental toxicity in zebrafish embryo-larvae.

    PubMed

    Yang, Suwen; Wang, Shengrui; Sun, Fengchao; Zhang, Mengmeng; Wu, Fengchang; Xu, Fanfan; Ding, Zhishan

    2015-09-01

    Tetrabromobisphenol A (TBBPA), a brominated flame retardant, is detected commonly in aquatic environments, where it is thought to be highly toxic to the development of aquatic life. In this study, zebrafish embryos and larvae were used to investigate the protective effects of puerarin after exposure to TBBPA. Malformation, blood flow disorders, pericardial edema, and spawn coagulation rates increased, whereas survival decreased significantly after exposure to 0.5 and 1.0 mg L(-1) TBBPA. The measured indices of morphological toxicity improved after treatment with puerarin. TBBPA also induced reactive oxygen species (ROS) production in a dose-dependent manner. Acridine orange staining results revealed that TBBPA exposure caused cardiomyocyte apoptosis and induced the expression of three proapoptotic genes: P53, Bax, and Caspase9. In contrast, the expression of the antiapoptotic gene Bcl2 was down-regulated. When genes related to cardiac development were assessed, the expression of Tbx1, Raldh2, and Bmp2b changed after exposure to the combination of TBBPA and puerarin. These results suggest that TBBPA induces cardiomyocyte apoptosis and ROS production, resulting in cardiac developmental toxicity in zebrafish embryos or larvae. Therefore, puerarin regulates the expression of cardiac developmental genes, such as Tbx1, Bmp2b, and Raldh2 by inhibiting ROS production, and subsequently modulates cardiac development after the exposure of zebrafish larvae to TBBPA. © 2014 Wiley Periodicals, Inc.

  1. Osteogenic differentiation of 3D cultured mesenchymal stem cells induced by bioactive peptides.

    PubMed

    Lukasova, Vera; Buzgo, Matej; Sovkova, Vera; Dankova, Jana; Rampichova, Michala; Amler, Evzen

    2017-08-01

    Bioactive peptides derived from receptor binding motifs of native proteins are a potent source of bioactive molecules that can induce signalling pathways. These peptides could substitute for osteogenesis promoting supplements. The work presented here compares three kinds of bioactive peptides derived from collagen III, bone morphogenetic protein 7 (BMP-7) and BMP-2 with their potential osteogenic activity on the model of porcine mesenchymal stem cells (pMSCs). pMSCs were cultured on electrospun polycaprolactone nanofibrous scaffolds with different concentrations of the bioactive peptides without addition of any osteogenic supplement. Analysis of pMSCs cultures included measurement of the metabolic activity and proliferation, immunofluorescence staining and also qPCR. Results showed no detrimental effect of the bioactive peptides to cultured pMSCs. Based on qPCR analysis, the bioactive peptides are specific for osteogenic differentiation with no detectable expression of collagen II. Our results further indicate that peptide derived from BMP-2 protein promoted the expression of mRNA for osteocalcin (OCN) and collagen I significantly compared to control groups and also supported deposition of OCN as observed by immunostaining method. The data suggest that bioactive peptide with an amino acid sequence of KIPKASSVPTELSAISTLYL derived from BMP-2 protein was the most potent for triggering osteogenic differentiation of pMSCs. © 2017 John Wiley & Sons Ltd.

  2. BMP-2/PLGA delayed-release microspheres composite graft, selection of bone particulate diameters, and prevention of aseptic inflammation for bone tissue engineering.

    PubMed

    Ji, Ye; Xu, Gong Ping; Zhang, Zhi Peng; Xia, Jing Jun; Yan, Jing Long; Pan, Shang Ha

    2010-03-01

    Autogenous bone grafts are widely used in the repair of bone defects. Growth factors such as bone morphogenetic protein 2 (BMP-2) can induce bone regeneration and enhance bone growth. The combination of an autogenous bone graft and BMP-2 may provide a better osteogenic effect than either treatment alone, but BMP-2 is easily inactivated in body fluid. The objective of this study was to develop a technique that can better preserve the in vivo activity of BMP-2 incorporated in bone grafts. In this study, we first prepared BMP-2/poly(lactic-co-glycolic acid) (PLGA) delayed-release microspheres, and then combined collagen, the delayed-release microspheres, and rat autologous bone particulates to form four groups of composite grafts with different combinations: collagen in group A; collagen combined with bone particulates in group B; collagen combined with BMP-2/PLGA delayed-release microspheres in group C; and collagen combined with both bone particulates and BMP-2/PLGA delayed-release microspheres in group D. The four groups of composite grafts were implanted into the gluteus maximus pockets in rats. The ectopic osteogenesis and ALP level in group D (experimental group) were compared with those in groups A, B, and C (control groups) to study whether it had higher osteogenic capability. Results showed that the composite graft design increased the utility of BMP-2 and reduced the required dose of BMP-2 and volume of autologous bone. The selection of bone particulate diameter had an impact on the osteogenetic potential of bone grafts. Collagen prevented the occurrence of aseptic inflammation and improved the osteoinductivity of BMP-2. These results showed that this composite graft design is effective and feasible for use in bone repair.

  3. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis.

    PubMed

    Fu, Rongwei; Selph, Shelley; McDonagh, Marian; Peterson, Kimberly; Tiwari, Arpita; Chou, Roger; Helfand, Mark

    2013-06-18

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is used as a bone graft substitute in spinal fusion, which unites (fuses) bones in the spine. The accuracy and completeness of journal publications of industry-sponsored trials on the effectiveness and harms of rhBMP-2 has been called into question. To independently assess the effectiveness and harms of rhBMP-2 in spinal fusion and reporting bias in industry-sponsored journal publications. Individual-patient data (IPD) from 17 industry-sponsored studies; related internal documents; and searches of MEDLINE (1996 to August 2012), other databases, and reference lists. Randomized, controlled trials (RCTs) and cohort studies of rhBMP-2 versus any control and uncontrolled studies of harms. Effectiveness outcomes in IPD were recalculated using consistent definitions. Study characteristics and results were abstracted by 1 investigator and confirmed by another. Two investigators independently assessed quality using predefined criteria. Thirteen RCTs and 31 cohort studies were included. For lumbar spine fusion, rhBMP-2 and iliac crest bone graft were similar in overall success, fusion, and other effectiveness measures and in risk for any adverse event, although rates were high across interventions (77% to 93% at 24 months from surgery). For anterior lumbar interbody fusion, rhBMP-2 was associated with nonsignificantly increased risk for retrograde ejaculation and urogenital problems. For anterior cervical spine fusion, rhBMP-2 was associated with increased risk for wound complications and dysphagia. At 24 months, the cancer risk was increased with rhBMP-2 (risk ratio, 3.45 [95% CI, 1.98 to 6.00]), but event rates were low and cancer was heterogeneous. Early journal publications misrepresented the effectiveness and harms through selective reporting, duplicate publication, and underreporting. Outcome assessment was not blinded, and ascertainment of harms in trials was poor. No trials were truly independent of industry sponsorship. In spinal fusion, rhBMP-2 has no proven clinical advantage over bone graft and may be associated with important harms, making it difficult to identify clear indications for rhBMP-2. Earlier disclosure of all relevant data would have better informed clinicians and the public than the initial published trial reports did. Yale University and Medtronic.

  4. Bone morphogenetic protein use in spine surgery-complications and outcomes: a systematic review.

    PubMed

    Faundez, Antonio; Tournier, Clément; Garcia, Matthieu; Aunoble, Stéphane; Le Huec, Jean-Charles

    2016-06-01

    Because of significant complications related to the use of autologous bone grafts in spinal fusion surgery, bone substitutes and growth factors such as bone morphogenetic protein (BMP) have been developed. One of them, recombinant human (rh) BMP-2, has been approved by the Food and Drug Administration (FDA) for use under precise conditions. However, rhBMP-2-related side effects have been reported, used in FDA-approved procedures, but also in off-label use.A systematic review of clinical data was conducted to analyse the rhBMP-2-related adverse events (AEs), in order to assess their prevalence and the associated surgery practices. Medline search with keywords "bone morphogenetic protein 2", "lumbar spine", "anterolateral interbody fusion" (ALIF) and the filter "clinical trial". FDA published reports were also included. Study assessment was made by authors (experienced spine surgeons), based on quality of study designs and level of evidence. Extensive review of randomised controlled trials (RCTs) and controlled series published up to the present point, reveal no evidence of a significant increase of AEs related to rhBMP-2 use during ALIF surgeries, provided that it is used following FDA guidelines. Two additional RCTs performed with rhBMP-2 in combination with allogenic bone dowels reported increased bone remodelling in BMP-treated patients. This AE was transient and had no consequence on the clinical outcome of the patients. No other BMP-related AEs were reported in these studies. This literature review confirms that the use of rhBMP-2 following FDA-approved recommendations (i.e. one-level ALIF surgery with an LT-cage) is safe. The rate of complications is low and the AEs had been identified by the FDA during the pre-marketing clinical trials. The clinical efficiency of rhBMP-2 is equal or superior to that of allogenic or autologous bone graft in respect to fusion rate, low back pain disability, patient satisfaction and rate of re-operations. For all other off-label use, the safety and effectiveness of rhBMP-2 have not been established, and further RCTs with high level of evidence are required.

  5. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants

    PubMed Central

    Somsanith, Nithideth; Jang, Young-Seok; Lee, Young-Hee; Yi, Ho-Keun; Kim, Kyoung-A; Bae, Tae-Sung; Lee, Min-Ho

    2018-01-01

    TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased. PMID:29301269

  6. Effect of rhBMP-2 on tibial plateau fractures in a canine model.

    PubMed

    Schaefer, Susan L; Lu, Yan; Seeherman, Howard; Li, X Jian; Lopez, Mandi J; Markel, Mark D

    2009-04-01

    This study was to determine the efficacy of recombinant human bone morphogenetic protien-2 (rhBMP-2)/calcium phosphate matrix (CPX) paste to accelerate healing in a canine articular fracture model with associated subchondral defect. rhBMP-2/CPX (BMP), CPX alone (CPX) or autogenous bone graft (ABG) was administered to a canine articular tibial plateau osteotomy with a subchondral defect in each of 21 female dogs. The unoperated contralateral limbs served as controls. Ground reaction forces, synovial fluid, radiographic changes, mechanical testing, bone density, and histology of bone and synovium were analyzed at 6 weeks after surgery. Radiographic analysis demonstrated that the BMP and CPX groups showed improved bony healing compared to the ABG group at week 6. Histomorphometric analysis demonstrated that the BMP group had significantly increased trabecular bone volume compared to the CPX and ABG groups. Mechanical testing revealed that the BMP group had significantly greater maximum failure loads than the ABG group. Histological analysis demonstrated that the BMP group had significantly less sub-synovial inflammation than CPX group. This study demonstrated that rhBMP-2/CPX accelerated healing of articular fractures with subchondral defect compared to ABG in most of the parameters evaluated, and had less subsynovial inflammation than the CPX alone in a canine model.

  7. Evaluation of a thiolated chitosan scaffold for local delivery of BMP-2 for osteogenic differentiation and ectopic bone formation.

    PubMed

    Bae, In-Ho; Jeong, Byung-Chul; Kook, Min-Suk; Kim, Sun-Hun; Koh, Jeong-Tae

    2013-01-01

    Thiolated chitosan (Thio-CS) is a well-established pharmaceutical excipient for drug delivery. However, its use as a scaffold for bone formation has not been investigated. The aim of this study was to evaluate the potential of Thio-CS in bone morphogenetic protein-2 (BMP-2) delivery and bone formation. In vitro study showed that BMP-2 interacted with the Thio-CS and did not affect the swelling behavior. The release kinetics of BMP-2 from the Thio-CS was slightly delayed (70%) within 7 days compared with that from collagen gel (Col-gel, 85%), which is widely used in BMP-2 delivery. The BMP-2 released from Thio-CS increased osteoblastic cell differentiation but did not show any cytotoxicity until 21 days. Analysis of the in vivo ectopic bone formation at 4 weeks of posttransplantation showed that use of Thio-CS for BMP-2 delivery induced more bone formation to a greater extent (1.8 fold) than that of Col-gel. However, bone mineral density in both bones was equivalent, regardless of Thio-CS or Col-gel carrier. Taken together, Thio-CS system might be useful for delivering osteogenic protein BMP-2 and present a promising bone regeneration strategy.

  8. Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia.

    PubMed

    Scimeca, Manuel; Piccirilli, Eleonora; Mastrangeli, Francesca; Rao, Cecilia; Feola, Maurizio; Orlandi, Augusto; Gasbarra, Elena; Bonanno, Elena; Tarantino, Umberto

    2017-02-15

    Sarcopenia, osteoporosis and osteoarthritis are the most frequent musculoskeletal disorders affecting older people. The main aim of this study was to test the hypothesis that the balance between BMPs and myostatin pathways regulates the age-related muscle degeneration in OP and OA patients. To this end, we investigated the relationship among the expression of BMP-2/4-7, myostatin and phosphorylated Smads1-5-8 and the muscle quality, evaluated in term of fibers atrophy and satellite cells activity. In this retrospective study, we collected 123 biopsies of vastus lateralis: 48 biopsies from patients who underwent hip arthroplasty for subcapital fractures of the femur (OP), 55 biopsies from patients who underwent hip arthroplasty for osteoarthritis (OA) and 20 biopsies from patients who underwent hip arthroplasty for high-energy hip fractures (CTRL). Muscle biopsies were fixed in 4% paraformaldehyde and paraffin embedded. Serial sections were used for morphometrical and immunohistochemical analysis (BMP/2/4-7, myostatin, Smads1-5-8, Pax7 and myogenin). In addition, 1 mm 3 of muscle tissue of each patient was embedded in epon for ultrastructural study. Morphometric data indicated an increase of the number of atrophic fibers in OP patients compare to OA. In line with these data, we found an high regenerative potential in muscle tissues of OA patients due to the significant amount of both Pax7 and myogenin positive satellite cells detected in OA group. In addition, our data showed the decrease of BMP2/4 and -7 expression in OP patients compared to both OA group and CTRL. Conversely, OP patients were characterized by high levels of myostatin expression. A different expression profile was also found for phosphorylated Smad1-5-8 between OP and OA patients. In particular, OP patients showed a low number of positive phosphorylated Smad1-5-8 nuclei. The identification of molecular pathways involved in the pathogenesis of sarcopenia open new prospective for the development of drugs able to prevent/treat the muscle impairment that occur in elderly. Results here reported, highlighting the role of BMPs and myostatin pathways in physio-pathogenesis of human sarcopenia, allow us to propose human recombinant BMP-2/7 and anti-myostatin antibodies as a possible therapeutic option for the sarcopenia.

  9. Protective role of Smad6 in inflammation-induced valvular cell calcification

    PubMed Central

    Li, Xin; Lim, Jina J.; Lu, Jinxiu; Pedego, Taylor M.; Demer, Linda; Tintut, Yin

    2016-01-01

    Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-a) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle alpha actin, and negative for an endothelial cell marker. TNF-a upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-a significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-a-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-a further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-a induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6. PMID:25864564

  10. Protective Role of Smad6 in Inflammation-Induced Valvular Cell Calcification.

    PubMed

    Li, Xin; Lim, Jina; Lu, Jinxiu; Pedego, Taylor M; Demer, Linda; Tintut, Yin

    2015-10-01

    Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-α) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle α actin, and negative for an endothelial cell marker. TNF-α upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-α significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-α-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-α further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-α induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6. © 2015 Wiley Periodicals, Inc.

  11. BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells.

    PubMed

    Zhou, Xiaojun; Feng, Wei; Qiu, Kexin; Chen, Liang; Wang, Weizhong; Nie, Wei; Mo, Xiumei; He, Chuanglong

    2015-07-29

    Bone morphogenetic protein-2 (BMP-2), a growth factor that induces osteoblast differentiation and promotes bone regeneration, has been extensively investigated in bone tissue engineering. The peptides of bioactive domains, corresponding to residues 73-92 of BMP-2 become an alternative to reduce adverse side effects caused by the use of high doses of BMP-2 protein. In this study, BMP-2 peptide functionalized mesoporous silica nanoparticles (MSNs-pep) were synthesized by covalently grafting BMP-2 peptide on the surface of nanoparticles via an aminosilane linker, and dexamethasone (DEX) was then loaded into the channel of MSNs to construct nanoparticulate osteogenic delivery systems (DEX@MSNs-pep). The in vitro cell viability of MSNs-pep was tested with bone mesenchymal stem cells (BMSCs) exposure to different particle concentrations, revealing that the functionalized MSNs had better cytocompatibility than their bare counterparts, and the cellular uptake efficiency of MSNs-pep was remarkably larger than that of bare MSNs. The in vitro results also show that the MSNs-pep promoted osteogenic differentiation of BMSCs in terms of the levels of alkaline phosphatase (ALP) activity, calcium deposition, and expression of bone-related protein. Moreover, the osteogenic differentiation of BMSCs can be further enhanced by incorporating of DEX into MSNs-pep. After intramuscular implantation in rats for 3 weeks, the computed tomography (CT) images and histological examination indicate that this nanoparticulate osteogenic delivery system induces effective osteoblast differentiation and bone regeneration in vivo. Collectively, the BMP-2 peptide and DEX incorporated MSNs can act synergistically to enhance osteogenic differentiation of BMSCs, which have potential applications in bone tissue engineering.

  12. Unsuspected osteochondroma-like outgrowths in the cranial base of Hereditary Multiple Exostoses patients and modeling and treatment with a BMP antagonist in mice

    PubMed Central

    Sgariglia, Federica; Ibrahim, Mazen M.; Koyama, Eiki; Jones, Kevin B.

    2017-01-01

    Hereditary Multiple Exostoses (HME) is a rare pediatric disorder caused by loss-of-function mutations in the genes encoding the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. HME is characterized by formation of cartilaginous outgrowths—called osteochondromas- next to the growth plates of many axial and appendicular skeletal elements. Surprisingly, it is not known whether such tumors also form in endochondral elements of the craniofacial skeleton. Here, we carried out a retrospective analysis of cervical spine MRI and CT scans from 50 consecutive HME patients that included cranial skeletal images. Interestingly, nearly half of the patients displayed moderate defects or osteochondroma-like outgrowths in the cranial base and specifically in the clivus. In good correlation, osteochondromas developed in the cranial base of mutant Ext1f/f;Col2-CreER or Ext1f/f;Aggrecan-CreER mouse models of HME along the synchondrosis growth plates. Osteochondroma formation was preceded by phenotypic alteration of cells at the chondro-perichondrial boundary and was accompanied by ectopic expression of major cartilage matrix genes -collagen 2 and collagen X- within the growing ectopic masses. Because chondrogenesis requires bone morphogenetic protein (BMP) signaling, we asked whether osteochondroma formation could be blocked by a BMP signaling antagonist. Systemic administration with LDN-193189 effectively inhibited osteochondroma growth in conditional Ext1-mutant mice. In vitro studies with mouse embryo chondrogenic cells clarified the mechanisms of LDN-193189 action that turned out to include decreases in canonical BMP signaling pSMAD1/5/8 effectors but interestingly, concurrent increases in such anti-chondrogenic mechanisms as pERK1/2 and Chordin, Fgf9 and Fgf18 expression. Our study is the first to reveal that the cranial base can be affected in patients with HME and that osteochondroma formation is amenable to therapeutic drug intervention. PMID:28445472

  13. Bone Morphogenetic Protein 15 in the Pro-Mature Complex Form Enhances Bovine Oocyte Developmental Competence

    PubMed Central

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; White, Melissa A.; Mottershead, David G.; Thompson, Jeremy G.; Gilchrist, Robert B.

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies. PMID:25058588

  14. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence.

    PubMed

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L; Ritter, Lesley J; White, Melissa A; Mottershead, David G; Thompson, Jeremy G; Gilchrist, Robert B

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/- FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/- FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.

  15. Communication-dependent mineralization of osteoblasts via gap junctions.

    PubMed

    Hashida, Yukihiko; Nakahama, Ken-ichi; Shimizu, Kaori; Akiyama, Masako; Harada, Kiyoshi; Morita, Ikuo

    2014-04-01

    Connexin43 (Cx43) is a major gap junction (GJ) protein in bone and plays a critical role in osteoblast differentiation. Several studies show that osteoblast differentiation is delayed by Cx43 ablation. However, the precise mechanism underlying the role of Cx43 in osteoblast differentiation is not fully understood. Firstly, we analyzed the phenotype of a conditional knockout mouse, which was generated by mating of an osterix promoter-driven Cre expressing mouse with a Cx43-floxed mouse. As expected, delayed ossification was observed. Secondly, we demonstrated that the cell communication via gap junctions played an important role in osteoblast differentiation using a tamoxifen-inducible knockout system in vitro. Genetic ablation of Cx43 resulted in both the disruption of cell-communications and the attenuation of osteoblast mineralization induced by BMP-2, but not by ascorbic acid. Moreover, restoring full-length Cx43 (382aa) expression rescued the impairment of osteoblast cell-communication and osteoblast mineralization; however, the expression of the Cx43 N-terminal mutant (382aaG2V) did not rescue either of them. Comparing the gene expression profiles, the genes directly regulated by BMP-2 were attenuated by Cx43 gene ablation. These results suggested that the cell-communication mediated by gap junctions was indispensable for normal differentiation of osteoblast induced by BMP-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Influence of multilayer rhBMP-2 DNA coating on the proliferation and differentiation of MC3T3-E1 cells seeded on roughed titanium surface.

    PubMed

    Jiang, Qiao-Hong; Liu, Li; Shen, Jian-Wei; Peel, Sean; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2012-10-01

    For bone morphogenetic protein (BMP) gene therapy to be a viable approach for enhancing implant osseointegration clinically, requires the development of efficient nonviral delivery vectors that can coat the implant. This study evaluated a multilayer cationic liposome-DNA complex (LDc) coating as a delivery vehicle for recombinant human BMP-2 (rhBMP-2). Multilayered coatings, comprising hyaluronic acid (HA) and LDc, were fabricated onto titanium using a layer-by-layer (LBL) assembly technique. Preosteoblastic MC3T3-E1 cells were cultured on the roughened titanium surfaces coated with multilayers of HA/LDc, or on uncoated or HA/liposome only surfaces as controls. The amount of rhBMP-2 secreted by the MC3T3-E1 cells and the effect of the various surfaces on cell viability, proliferation, alkaline phosphatase (ALP) activity, osteocalcin (OC) secretion, and calcium deposition were evaluated. Messenger RNA levels of OC, ALP, Runx2, and Osx were also investigated. The results demonstrated that rhBMP-2 protein secreted into culture medium at 3 days was significantly higher than control groups. MC3T3-E1 cells cultured on the HA/LDc coating displayed significantly higher ALP activity and OC secretion at 7 days and 14 days culture, respectively. MC3T3-E1 cells cultured on HA/LDc upregulated expression of the osteoblast differentiation markers, especially on days 12 for OC and on days 6 and 12 for ALP and Osx. In conclusion, MC3T3-E1 cell cultured on the multilayer HA/LDc coating surface can secret rhBMP-2 protein and the protein levels were effective in inducing early osteogenic differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  17. EGF does not induce Msx-1 and Msx-2 in dental mesenchyme.

    PubMed

    Wang, Y H; Kollar, E J; Upholt, W B; Mina, M

    1998-01-01

    Previous heterospecific tissue recombinations indicate that mandibular epithelium exerts the first known inductive signal for odontogenesis in mouse embryos. BMP-4 and EGF are two growth factors implicated as signaling molecules mediating the initial inductive epithelial-mesenchymal interactions during odontogenesis. The purpose of the present study was to examine and compare the effects of these growth factors and mouse mandibular epithelium on expression of Msx-1 and Msx-2 genes in molar-forming mesenchyme. Agarose beads soaked in growth factors or pieces of mouse mandibular epithelium (E11) were placed in contact with E11 molar-forming mesenchyme and cultured for 24 h. Whole-mount in situ hybridization analysis revealed that, in contrast to mouse mandibular epithelium and BMP-4-releasing beads, EGF-releasing beads did not induce the expression of Msx-1 and Msx-2 in E11 molar-forming mesenchyme. These observations suggest that whereas BMP-4 may be involved in activation of Msx-1 and Msx-2 in the underlying mesenchyme, EGF may regulate events involved in the formation of dental lamina.

  18. Influence of Poly(L-Lactic Acid) Nanofibers and BMP-2–Containing Poly(L-Lactic Acid) Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Schofer, Markus D.; Fuchs-Winkelmann, Susanne; Gräbedünkel, Christian; Wack, Christina; Dersch, Roland; Rudisile, Markus; Wendorff, Joachim H.; Greiner, Andreas; Paletta, Jürgen R. J.; Boudriot, Ulrich

    2008-01-01

    The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form. PMID:19112539

  19. Predictive markers of chemoresistance in advanced stages epithelial ovarian carcinoma.

    PubMed

    Bonneau, Claire; Rouzier, Roman; Geyl, Caroline; Cortez, Annie; Castela, Mathieu; Lis, Raphael; Daraï, Emile; Touboul, Cyril

    2015-01-01

    DNA repair mechanisms, environment-mediated drug resistance and cancer initiating cells (CIC) are three major research concepts that can explain the chemoresistance of epithelial ovarian cancer (EOC). The objective was to test if changes in the expression of potential markers associated with drug resistance before and after chemotherapy would correlate with platinum resistance, defined as a recurrence within the first year after chemotherapy cessation, and with survival, in advanced EOC. We included 32 patients with stage IIIC-IV EOC who underwent laparoscopy to evaluate the extent of carcinomatosis, neoadjuvant chemotherapy (carboplatin/taxol) and interval surgery. Biopsies taken during the initial laparoscopies and interval surgeries were evaluated using immunohistochemistry for the expression of 7 proteins: CD117, CD44 and ALDH1 to evaluate CIC; IL-6, IL-8 and BMP2 to evaluate environment-mediated drug resistance; and ERCC1 to evaluate DNA repair. Expression measurements were correlated with platin resistance and survival. The markers' relevance was confirmed in vitro using chemoresistance tests and flow cytometric measurements of the proportion of CD44+ cells. 17 patients were chemoresistant and 15 patients were chemosensitive. We observed increases in CD44, IL-6 and ERCC1 expression and stable ALDH1, CD117, IL-8, and BMP2 expression. Reduced expression of cancer initiating cell markers and increased expression of environment-mediated drug resistance markers were associated with poor prognosis. We also demonstrated that CD44+ cells had survival advantages in vitro. Changes in CD44 and IL-8 expression on tumor cells appeared to correlate with overall survival and should be further tested as predictors of chemoresistance using larger cohort. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with β-catenin

    PubMed Central

    Salazar, Valerie S.; Zarkadis, Nicholas; Huang, Lisa; Watkins, Marcus; Kading, Jacqueline; Bonar, Sheri; Norris, Jin; Mbalaviele, Gabriel; Civitelli, Roberto

    2013-01-01

    Summary Canonical Wnt (cWnt) signaling through β-catenin regulates osteoblast proliferation and differentiation to enhance bone formation. We previously reported that osteogenic action of β-catenin is dependent on BMP signaling. Here, we further examined interactions between cWnt and BMP in bone. In osteoprogenitors stimulated with BMP2, β-catenin localizes to the nucleus, physically interacts with Smad4, and is recruited to DNA-binding transcription complexes containing Smad4, R-Smad1/5 and TCF4. Furthermore, Tcf/Lef-dependent transcription, Ccnd1 expression and proliferation all increase when Smad4, 1 or 5 levels are low, whereas TCF/Lef activities decrease when Smad4 expression is high. The ability of Smad4 to antagonize transcription of Ccnd1 is dependent on DNA-binding activity but Smad4-dependent transcription is not required. In mice, conditional deletion of Smad4 in osterix+ cells increases mitosis of cells on trabecular bone surfaces as well as in primary osteoblast cultures from adult bone marrow and neonatal calvaria. By contrast, ablation of Smad4 delays differentiation and matrix mineralization by primary osteoblasts in response to Wnt3a, indicating that loss of Smad4 perturbs the balance between proliferation and differentiation in osteoprogenitors. We propose that Smad4 and Tcf/Lef transcription complexes compete for β-catenin, thus restraining cWnt-dependent proliferative signals while favoring the matrix synthesizing activity of osteoblasts. PMID:24101723

Top