Science.gov

Sample records for increases er-mediated transcription

  1. Transcription-replication collision increases recombination efficiency between plasmids.

    PubMed

    Jialiang, Li; Feng, Chen; Zhen, Xu; Jibing, Chen; Xiang, Lv; Lingling, Zhang; Depei, Liu

    2013-11-01

    It has been proposed that the stalling of the replication forks can induce homologous recombination in several organisms, and that arrested replication forks may offer nuclease targets, thereby providing a substrate for proteins involved in double-strand repair. In this article, we constructed a plasmid with the potential for transcription-replication collision (TRC), in which DNA replication and RNA transcription occur on the same DNA template simultaneously. Theoretically, transcription will impede DNA replication and increase homologous recombination. To validate this hypothesis, another plasmid was constructed that contained a homologous sequence with the exception of some mutated sites. Co-transfection of these two plasmids into 293T cells resulted in increased recombination frequency. The ratio of these two plasmids also affected the recombination frequency. Moreover, we found high expression levels of RAD51, which indicated that the increase in the recombination rate was probably via the homologous recombination pathway. These results indicate that mutant genes in plasmids can be repaired by TRC-induced recombination.

  2. Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription

    SciTech Connect

    Waldron, Elaine; Isbert, Simone; Kern, Andreas; Jaeger, Sebastian; Martin, Anne M.; Hebert, Sebastien S.; Behl, Christian; Weggen, Sascha; De Strooper, Bart; Pietrzik, Claus U.

    2008-08-01

    A sequence of amyloid precursor protein (APP) cleavages culminates in the sequential release of the APP intracellular domain (AICD) and the amyloid {beta} peptide (A{beta}) and/or p3 fragment. One of the environmental factors favouring the accumulation of AICD appears to be a rise in intracellular pH. Here we further identified the metabolism and subcellular localization of artificially expressed constructs under such conditions. We also co-examined the mechanistic lead up to the AICD accumulation and explored possible significances for its increased expression. We found that most of the AICD generated under pH neutralized conditions is likely cleaved from C83. While the AICD surplus was unable to further activate transcription of a luciferase reporter via a Gal4-DNA-binding domain, it failed entirely via the endogenous promoter regions of proposed target genes, APP and KAI1. The lack of a specific transactivation potential was also demonstrated by the unchanged levels of target gene mRNA. However, rather than translocating to the nucleus, the AICD surplus remains membrane tethered or free in the cytosol where it interacts with Fe65. Therefore we provide strong evidence that an increase in AICD generation does not directly promote gene activation of previously proposed target 0011gen.

  3. Dexamethasone Enhances 1α,25-Dihydroxyvitamin D3 Effects by Increasing Vitamin D Receptor Transcription*

    PubMed Central

    Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.

    2011-01-01

    Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377

  4. Increased transcription in hydroxyurea-treated root meristem cells of Vicia faba.

    PubMed

    Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2013-02-01

    Hydroxyurea (HU), an inhibitor of ribonucleotide reductase, prevents cells from progressing through S phase by depletion of deoxyribonucleoside triphosphates. Concurrently, disruption of DNA replication leads to double-strand DNA breaks. In root meristems of Vicia faba, HU triggers cell cycle arrest (preferentially in G1/S phase) and changes an overall metabolism by global activation of transcription both in the nucleoplasmic and nucleolar regions. High level of transcription is accompanied by an increase in the content of RNA polymerase II large subunit (POLR2A). Changes in transcription activation and POLR2A content correlate with posttranslational modifications of histones that play a role in opening up chromatin for transcription. Increase in the level of H4 Lys5 acetylation indicates that global activation of transcription following HU treatment depends on histone modifications.

  5. Increased expression of the Hutchinson-Gilford progeria syndrome truncated lamin A transcript during cell aging.

    PubMed

    Rodriguez, Sofia; Coppedè, Fabio; Sagelius, Hanna; Eriksson, Maria

    2009-07-01

    Most cases of the segmental progeroid syndrome, Hutchinson-Gilford progeria syndrome (HGPS), are caused by a de novo dominant mutation within a single codon of the LMNA gene. This mutation leads to the increased usage of an internal splice site that generates an alternative lamin A transcript with an internal deletion of 150 nucleotides, called lamin A Delta 150. The LMNA gene encodes two major proteins of the inner nuclear lamina, lamins A and C, but not much is known about their expression levels. Determination of the overall expression levels of the LMNA gene transcripts is an important step to further the understanding of the HGPS. In this study, we have performed absolute quantification of the lamins A, C and A Delta 150 transcripts in primary dermal fibroblasts from HGPS patients and unaffected age-matched and parent controls. We show that the lamin A Delta 150 transcript is present in unaffected controls but its expression is >160-fold lower than that in samples from HGPS patients. Analysis of transcript expression during in vitro aging shows that although the levels of lamin A and lamin C transcripts remain unchanged, the lamin A Delta 150 transcript increases in late passage cells from HGPS patients and parental controls. This study provides a new method for LMNA transcript analysis and insights into the expression of the LMNA gene in HGPS and normal cells.

  6. Increase of a group of PTC(+) transcripts by curcumin through inhibition of the NMD pathway.

    PubMed

    Feng, Dairong; Su, Ruey-Chyi; Zou, Liping; Triggs-Raine, Barbara; Huang, Shangzhi; Xie, Jiuyong

    2015-08-01

    Nonsense-mediated mRNA decay (NMD), an mRNA surveillance mechanism, eliminates premature termination codon-containing (PTC⁺) transcripts. For instance, it maintains the homeostasis of splicing factors and degrades aberrant transcripts of human genetic disease genes. Here we examine the inhibitory effect on the NMD pathway and consequent increase of PTC+ transcripts by the dietary compound curcumin. We have found that several PTC⁺ transcripts including that of serine/arginine-rich splicing factor 1 (SRSF1) were specifically increased in cells by curcumin. We also observed a similar curcumin effect on the PTC⁺ mutant transcript from a Tay-Sachs-causing HEXA allele or from a beta-globin reporter gene. The curcumin effect was accompanied by significantly reduced expression of the NMD factors UPF1, 2, 3A and 3B. Consistently, in chromatin immunoprecipitation assays, curcumin specifically reduced the occupancy of acetyl-histone H3 and RNA polymerase II at the promoter region (-376 to -247nt) of human UPF1, in a time- and dosage-dependent way. Importantly, knocking down UPF1 abolished or substantially reduced the difference of PTC(+) transcript levels between control and curcumin-treated cells. The disrupted curcumin effect was efficiently rescued by expression of exogenous Myc-UPF1 in the knockdown cells. Together, our data demonstrate that a group of PTC⁺ transcripts are stabilized by a dietary compound curcumin through the inhibition of UPF factor expression and the NMD pathway.

  7. Increased global transcription activity as a mechanism of replication stress in cancer

    PubMed Central

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M.; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-01-01

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. PMID:27725641

  8. Increased global transcription activity as a mechanism of replication stress in cancer.

    PubMed

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-10-11

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRAS(V12) promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRAS(V12), elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer.

  9. The rice Mybleu transcription factor increases tolerance to oxygen deprivation in Arabidopsis plants.

    PubMed

    Mattana, Monica; Vannini, Candida; Espen, Luca; Bracale, Marcella; Genga, Annamaria; Marsoni, Milena; Iriti, Marcello; Bonazza, Veronica; Romagnoli, Francesco; Baldoni, Elena; Coraggio, Immacolata; Locatelli, Franca

    2007-09-01

    Mybleu is a natural incomplete transcription factor of rice (Oryza sativa), consisting of a partial Myb repeat followed by a short leucine zipper. We previously showed its localization to the apical region of rice roots and coleoptiles. Specifically, in coleoptiles, Mybleu is expressed under both aerobic and anaerobic conditions, whereas in roots, it is expressed only under aerobic conditions. Mybleu is able to dimerize with canonical leucine zippers and to activate transcription selectively. To investigate Mybleu function in vivo, we transformed Arabidopsis thaliana and evaluated several morphological, physiological and biochemical parameters. In agreement with a hypothesized role of Mybleu in cell elongation in the differentiation zone, we found that the constitutive expression of this transcription factor in Arabidopsis induced elongation in the primary roots and in the internodal region of the floral stem; we also observed a modification of the root apex morphology in transformed lines. Based on the high expression of Mybleu in anaerobic rice coleoptiles, we studied the role of this transcription factor in transgenic plants grown under low-oxygen conditions. We found that overexpression of this transcription factor increased tolerance to oxygen deficit. In transgenic plants, this effect may depend both on the maintenance of a higher metabolism during stress and on the higher expression levels of certain genes involved in the anaerobic response.

  10. Increases in Retrograde Injury Signaling Complex-Related Transcripts in Central Axons following Injury

    PubMed Central

    Pathak, Gunja K.; Ornstein, Hannah; Aranda-Espinoza, Helim; Karlsson, Amy J.

    2016-01-01

    Axons in the peripheral nervous system respond to injury by activating retrograde injury signaling (RIS) pathways, which promote local axonal protein synthesis (LPS) and neuronal regeneration. RIS is also initiated following injury of neurons in the central nervous system (CNS). However, regulation of the localization of axonal mRNA required for LPS is not well understood. We used a hippocampal explant system to probe the regulation of axonal levels of RIS-associated transcripts following axonal injury. Axonal levels of importin β1 and RanBP1 were elevated biphasically at 1 and 24 hrs after axotomy. Transcript levels for β-actin, a prototypic axonally synthesized protein, were similarly elevated. Our data suggest differential regulation of axonal transcripts. At 1 hr after injury, deployment of actinomycin revealed that RanBP1, but not importin β1, requires de novo mRNA synthesis. At 24 hrs after injury, use of importazole revealed that the second wave of increased axonal mRNA levels required importin β-mediated nuclear import. We also observed increased importin β1 axonal protein levels at 1 and 6 hrs after injury. RanBP1 levels and vimentin levels fluctuated but were unchanged at 3 and 6 hrs after injury. This study revealed temporally complex regulation of axonal transcript levels, and it has implications for understanding neuronal response to injury in the CNS. PMID:27847648

  11. Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii.

    PubMed

    Ibáñez-Salazar, Alejandro; Rosales-Mendoza, Sergio; Rocha-Uribe, Alejandro; Ramírez-Alonso, Jocelín Itzel; Lara-Hernández, Ignacio; Hernández-Torres, Araceli; Paz-Maldonado, Luz María Teresita; Silva-Ramírez, Ana Sonia; Bañuelos-Hernández, Bernardo; Martínez-Salgado, José Luis; Soria-Guerra, Ruth Elena

    2014-08-20

    The high demand for less polluting, newer, and cheaper fuel resources has increased the search of the most innovative options for the production of the so-called biofuels. Chlamydomonas reinhardtii is a photosynthetic unicellular algae with multiple biotechnological advantages such as easy handling in the laboratory, a simple scale-up to industrial levels, as well as a feasible genetic modification at nuclear and chloroplast levels. Besides, its fatty acids can be used to produce biofuels. Previous studies in plants have found that the over expression of DOF-type transcription factor genes increases the synthesis and the accumulation of total lipids in seeds. In this context, the over-expression of a DOF-type transcription factor in C. reinhardtii was applied as approach to increase the amount of lipids. The results indicate higher amounts (around 2-fold) of total lipids, which are mainly fatty acids, in the genetically C. reinhardtii modified strains when compared with the non-genetically modified strain. In order to elucidate the possible function of the introduced Dof-type transcription factor, we performed a transcription profile of 8 genes involved in fatty acid biosynthesis and 6 genes involved in glycerolipid biosynthesis, by quantitative real time (qRT-PCR). Differential expression profile was observed, which can explain the increase in lipid accumulation. However, these strains did not show notable changes in the fatty acid profile. This work represents an early effort in generating a strategy to increase fatty acids production in C. reinhardtii and their use in biofuel synthesis.

  12. Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity.

    PubMed

    Abad, Maria; Hashimoto, Hisayuki; Zhou, Huanyu; Morales, Maria Gabriela; Chen, Beibei; Bassel-Duby, Rhonda; Olson, Eric N

    2017-03-14

    Conversion of fibroblasts into functional cardiomyocytes represents a potential means of restoring cardiac function after myocardial infarction, but so far this process remains inefficient and little is known about its molecular mechanisms. Here we show that DAPT, a classical Notch inhibitor, enhances the conversion of mouse fibroblasts into induced cardiac-like myocytes by the transcription factors GATA4, HAND2, MEF2C, and TBX5. DAPT cooperates with AKT kinase to further augment this process, resulting in up to 70% conversion efficiency. Moreover, DAPT promotes the acquisition of specific cardiomyocyte features, substantially increasing calcium flux, sarcomere structure, and the number of spontaneously beating cells. Transcriptome analysis shows that DAPT induces genetic programs related to muscle development, differentiation, and excitation-contraction coupling. Mechanistically, DAPT increases binding of the transcription factor MEF2C to the promoter regions of cardiac structural genes. These findings provide mechanistic insights into the reprogramming process and may have important implications for cardiac regeneration therapies.

  13. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element.

    PubMed

    Stanley, Frederick M; Linder, Kathryn M; Cardozo, Timothy J

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter.

  14. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  15. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells

    PubMed Central

    OSORIO, LUIS A.; FARFÁN, NANCY M.; CASTELLÓN, ENRIQUE A.; CONTRERAS, HÉCTOR R.

    2016-01-01

    The incidence and mortality rates of prostate cancer (PCa) are increasing, and PCa is almost the second-leading cause of cancer-associated mortality in men. During tumor progression, epithelial cells decrease the number of adhesion molecules, change their polarity and position, rearrange their cytoskeleton and increase their migratory and invasive capacities. These changes are known under the concept of epithelial-mesenchymal transition (EMT). EMT is characterized by an upregulation of certain transcription factors, including SNAIL1, which represses genes that are characteristic of an epithelial phenotype, including E-cadherin, and indirectly increase the expression levels of genes, which are associated with the mesenchymal phenotype. It has been suggested that the transcription factor, SNAIL1, decreases the proliferation and increases the migratory and invasive capacities of PCa cell lines. The present study was performed using LNCaP and PC3 cell lines, in which the expression levels of SNAIL1 were increased or silenced through the use of lentiviral vectors. The expression levels of EMT markers were quantified using reverse transcription-quantitative polymerase chain reaction and western blot analysis. In addition, cell survival was analyzed using an MTS assay; cell proliferation was examined using an antibody targeting Ki-67; migration on plates with 8 µm pores to allow the passage of cells; and invasiveness was analyzed using a membrane chamber covered in dried basement membrane matrix solution. The levels of apoptosis were determined using a Caspase 3/7 assay containing a substrate modified by caspases 3 and 7. The results demonstrated that the overexpression and silencing of SNAIL1 decreased cell proliferation and survival. However, the overexpression of SNAIL1 decreased apoptosis, compared with cells with the SNAIL1-silenced cells, in which cell apoptosis increased. The migration and invasive capacities increased in the cells overexpressing SNAIL1, and

  16. Using Transcriptional Control To Increase Titers of Secreted Heterologous Proteins by the Type III Secretion System

    PubMed Central

    Metcalf, Kevin J.; Finnerty, Casey; Azam, Anum; Valdivia, Elias

    2014-01-01

    The type III secretion system (T3SS) encoded at the Salmonella pathogenicity island 1 (SPI-1) locus secretes protein directly from the cytosol to the culture media in a concerted, one-step process, bypassing the periplasm. While this approach is attractive for heterologous protein production, product titers are too low for many applications. In addition, the expression of the SPI-1 gene cluster is subject to native regulation, which requires culturing conditions that are not ideal for high-density growth. We used transcriptional control to increase the amount of protein that is secreted into the extracellular space by the T3SS of Salmonella enterica. The controlled expression of the gene encoding SPI-1 transcription factor HilA circumvents the requirement of endogenous induction conditions and allows for synthetic induction of the secretion system. This strategy increases the number of cells that express SPI-1 genes, as measured by promoter activity. In addition, protein secretion titer is sensitive to the time of addition and the concentration of inducer for the protein to be secreted and SPI-1 gene cluster. Overexpression of hilA increases secreted protein titer by >10-fold and enables recovery of up to 28 ± 9 mg/liter of secreted protein from an 8-h culture. We also demonstrate that the protein beta-lactamase is able to adopt an active conformation after secretion, and the increase in secreted titer from hilA overexpression also correlates to increased enzyme activity in the culture supernatant. PMID:25038096

  17. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants.

    PubMed

    Bouaziz, Donia; Pirrello, Julien; Charfeddine, Mariam; Hammami, Asma; Jbir, Rania; Dhieb, Amina; Bouzayen, Mondher; Gargouri-Bouzid, Radhia

    2013-07-01

    It has been established that drought-responsive element binding (DREB) proteins correspond to transcription factors which play important regulatory roles in plant response to abiotic and biotic stresses. In this study, a novel cDNA encoding DREB transcription factor, designated StDREB1, was isolated from potato (Solanum tuberosum L.). This protein was classified in the A-4 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Semi-quantitative RT-PCR showed that StDREB1 is expressed in leaves, stems, and roots under stress conditions and it is greatly induced by NaCl, drought, low temperature, and abscisic acid (ABA) treatments. Overexpression of StDREB1 cDNA in transgenic potato plants exhibited an improved salt and drought stress tolerance in comparison to the non-transformed controls. The enhanced stress tolerance may be associated with the increase in P5CS-RNA expression (δ (1)-pyrroline-5-carboxylate synthetase) and the subsequent accumulation of proline osmoprotectant in addition to a better control of water loss. Overexpression of StDREB1 also activated stress-responsive genes, such as those encoding calcium-dependent protein kinases (CDPKs), in transgenic potatoes under standard and high salt conditions. These data suggest that the StDREB1 transcription factor is involved in the regulation of salt stress tolerance in potato by the activation of different downstream gene expression.

  18. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium.

    PubMed

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.

  19. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium

    PubMed Central

    Osanai, Takashi; Shirai, Tomokazu; Iijima, Hiroko; Nakaya, Yuka; Okamoto, Mami; Kondo, Akihiko; Hirai, Masami Y.

    2015-01-01

    Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique. PMID:26500619

  20. Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites

    PubMed Central

    2010-01-01

    Background Recent evidence suggests that Sarcoptes scabiei var. hominis mites collected from scabies endemic communities in northern Australia show increasing tolerance to 5% permethrin and oral ivermectin. Previous findings have implicated detoxification pathways in developing resistance to these acaricides. We investigated the contribution of Glutathione S-transferase (GST) enzymes to permethrin and ivermectin tolerance in scabies mites using biochemical and molecular approaches. Results Increased in vitro survival following permethrin exposure was observed in S. scabiei var. hominis compared to acaricide naïve mites (p < 0.0001). The addition of the GST inhibitor diethyl maleate restored in vitro permethrin susceptibility, confirming GST involvement in permethrin detoxification. Assay of GST enzymatic activity in mites demonstrated that S. scabiei var. hominis mites showed a two-fold increase in activity compared to naïve mites (p < 0.0001). Increased transcription of three different GST molecules was observed in permethrin resistant S. scabiei var. canis- mu 1 (p < 0.0001), delta 1 (p < 0.001), and delta 3 (p < 0.0001). mRNA levels of GST mu 1, delta 3 and P-glycoprotein also significantly increased in S. scabiei var. hominis mites collected from a recurrent crusted scabies patient over the course of ivermectin treatment. Conclusions These findings provide further support for the hypothesis that increased drug metabolism and efflux mediate permethrin and ivermectin resistance in scabies mites and highlight the threat of emerging acaricide resistance to the treatment of scabies worldwide. This is one of the first attempts to define specific genes involved in GST mediated acaricide resistance at the transcriptional level, and the first application of such studies to S. scabiei, a historically challenging ectoparasite. PMID:20482766

  1. O-GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver

    PubMed Central

    Guinez, Céline; Filhoulaud, Gaëlle; Rayah-Benhamed, Fadila; Marmier, Solenne; Dubuquoy, Céline; Dentin, Renaud; Moldes, Marthe; Burnol, Anne-Françoise; Yang, Xiaoyong; Lefebvre, Tony; Girard, Jean; Postic, Catherine

    2011-01-01

    OBJECTIVE Carbohydrate-responsive element–binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked β-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. RESEARCH DESIGN AND METHODS O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBPOG in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. RESULTS Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBPOG in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBPOG levels were elevated compared with controls. Interestingly, reducing ChREBPOG levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice

  2. Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios.

    PubMed

    Hönicke, Daniel; Janssen, Holger; Grimmler, Christina; Ehrenreich, Armin; Lütke-Eversloh, Tina

    2012-05-15

    Artificial electron carriers have been widely used to shift the solvent ratio toward butanol in acetone-butanol-ethanol (ABE) fermentation of solventogenic clostridia according to decreased hydrogen production. In this study, first insights on the molecular level were gained to explore the effect of methyl viologen addition to cultures of Clostridium acetobutylicum. Employing batch fermentation in mineral salts medium, the butanol:acetone ratio was successively increased from 2.3 to 12.4 on a 100-ml scale in serum bottles and from 1.4 to 16.5 on a 1300-ml scale in bioreactors, respectively. The latter cultures were used for DNA microarray analyses to provide new information on the transcriptional changes referring to methyl viologen exposure and thus, exhibit gene expression patterns according to the manipulation of the cellular redox balance. Methyl viologen-exposed cultures revealed lower expression levels of the sol operon (CAP0162-0164) and the adjacent adc gene (CAP0165) responsible for solvent formation as well as iron and sulfate transporters and the CAC0105-encoded ferredoxin. On the contrary, genes for riboflavin biosynthesis, for the butyrate/butanol metabolic pathway and genes coding for sugar transport systems were induced. Interestingly, the adhE2-encoded bifunctional NADH-dependent aldhehyde/alcohol-dehydrogenase (CAP0035) was upregulated up to more than 100-fold expression levels as compared to the control culture without methyl viologen addition. The data presented here indicate a transcriptional regulation for decreased acetone biosynthesis and the redox-dependent substitution of adhE1 (CAP0162) by adhE2.

  3. Increased abundance of ADAM9 transcripts in the blood is associated with tissue damage

    PubMed Central

    Rinchai, Darawan; Kewcharoenwong, Chidchamai; Kessler, Bianca; Lertmemongkolchai, Ganjana; Chaussabel, Damien

    2016-01-01

    Background: Members of the ADAM (a disintegrin and metalloprotease domain) family have emerged as critical regulators of cell-cell signaling during development and homeostasis. ADAM9 is consistently overexpressed in various human cancers, and has been shown to play an important role in tumorigenesis. However, little is known about the involvement of ADAM9 during immune-mediated processes. Results: Mining of an extensive compendium of transcriptomic datasets identified important gaps in knowledge regarding the possible role of ADAM9 in immunological homeostasis and inflammation: 1) The abundance of ADAM9 transcripts in the blood was increased in patients with acute infection but, 2) changed very little after in vitro exposure to a wide range of pathogen-associated molecular patterns (PAMPs). 3) Furthermore it was found to increase significantly in subjects as a result of tissue injury or tissue remodeling, in absence of infectious processes. Conclusions: Our findings indicate that ADAM9 may constitute a valuable biomarker for the assessment of tissue damage, especially in clinical situations where other inflammatory markers are confounded by infectious processes. PMID:27990250

  4. Methylxanthines Increase Expression of the Splicing Factor SRSF2 by Regulating Multiple Post-transcriptional Mechanisms*

    PubMed Central

    Shi, Jia; Pabon, Kirk; Scotto, Kathleen W.

    2015-01-01

    We have previously reported that the methylxanthine caffeine increases expression of the splicing factor SRSF2, the levels of which are normally controlled by a negative autoregulatory loop. In the present study we have investigated the mechanisms by which methylxanthines induce this aberrant overexpression. RT-PCR analyses suggested little impact of caffeine on SRSF2 total mRNA levels. Instead, caffeine induced changes in the levels of SRSF2 3′ UTR splice variants. Although some of these variants were substrates for nonsense-medicated decay (NMD), and could potentially have been stabilized by caffeine-mediated inhibition of NMD, down-regulation of NMD by a genetic approach was not sufficient to reproduce the phenotype. Furthermore, cell-based assays demonstrated that some of the caffeine-induced variants were intrinsically more efficiently translated than others; the addition of caffeine increased the translational efficiency of most SRSF2 transcripts. MicroRNA array analyses revealed a significant caffeine-mediated decrease in the expression of two SRSF2-targeting miRs, both of which were shown to repress translation of specific SRSF2 splice variants. These data support a complex model whereby caffeine down-regulates SRSF2-targeting microRNAs, leading to an increase in SRSF2 translation, which in turn induces SRSF2 splicing. SRSF2 splice variants are then stabilized by caffeine-mediated NMD inhibition, breaking the normal negative feedback loop and allowing the aberrant increase in SRSF2 protein levels. These findings highlight the complexity of SRSF2 gene regulation, and suggest ways in which SRSF2 expression may be dysregulated in disease. PMID:25818199

  5. Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain

    NASA Astrophysics Data System (ADS)

    Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo

    2015-10-01

    Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.

  6. The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3.

    PubMed

    Ma, Kaiwen; Zheng, Shuqiu; Zuo, Zhiyi

    2006-07-28

    Glutamate transporters (excitatory amino acid transporters, EAAT) play an important role in maintaining extracellular glutamate homeostasis and regulating glutamate neurotransmission. However, very few studies have investigated the regulation of EAAT expression. A binding sequence for the regulatory factor X1 (RFX1) exists in the promoter region of the gene encoding for EAAT3, a neuronal EAAT, but not in the promoter regions of the genes encoding for EAAT1 and EAAT2, two glial EAATs. RFX proteins are transcription factors binding to X-boxes of DNA sequences. Although RFX proteins are necessary for the normal function of sensory neurons in Caenorhabditis elegans, their roles in the mammalian brain are not known. We showed that RFX1 increased EAAT3 expression and activity in C6 glioma cells. RFX1 binding complexes were found in the nuclear extracts of C6 cells. The activity of EAAT3 promoter as measured by luciferase reporter activity was increased by RFX1 in C6 cells and the neuron-like SH-SY5Y cells. However, RFX1 did not change the expression of EAAT2 proteins in the NRK52E cells. RFX1 proteins were expressed in the neurons of rat brain. A high expression level of RFX1 proteins was found in the neurons of cerebral cortex and Purkinje cells. Knockdown of the RFX1 expression by RFX1 antisense oligonucleotides decreased EAAT3 expression in rat cortical neurons in culture. These results suggest that RFX1 enhances the activity of EAAT3 promoter to increase the expression of EAAT3 proteins. This study provides initial evidence for the regulation of gene expression in the nervous cells by RFX1.

  7. Transcript Polymorphism Rates in Soybean Seed Tissue Are Increased in a Single Transformant of Glycine max

    PubMed Central

    Whaley, Adam M.; Schlueter, Jessica A.; Piller, Kenneth J.; Bost, Kenneth L.

    2016-01-01

    Transgenic crops have been utilized for decades to enhance agriculture and more recently have been applied as bioreactors for manufacturing pharmaceuticals. Recently, we investigated the gene expression profiles of several in-house transgenic soybean events, finding one transformant group to be consistently different from our controls. In the present study, we examined polymorphisms and sequence variations in the exomes of the same transgenic soybean events. We found that the previously dissimilar soybean line also exhibited markedly increased levels of polymorphisms within mRNA transcripts from seed tissue, many of which are classified as gene expression modifiers. The results from this work will direct future investigations to examine novel SNPs controlling traits of great interest for breeding and improving transgenic soybean crops. Further, this study marks the first work to investigate SNP rates in transgenic soybean seed tissues and demonstrates that while transgenesis may induce abundant unanticipated changes in gene expression and nucleotide variation, phenotypes and overall health of the plants examined remained unaltered. PMID:28025595

  8. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts.

    PubMed

    Ferizi, Mehrije; Aneja, Manish K; Balmayor, Elizabeth R; Badieyan, Zohreh Sadat; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-12-15

    Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5'- and 3'-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5'-UTR and/or downstream 3'-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs.

  9. Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts

    PubMed Central

    Ferizi, Mehrije; Aneja, Manish K.; Balmayor, Elizabeth R.; Badieyan, Zohreh Sadat; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2016-01-01

    Modified nucleotide chemistries that increase the half-life (T1/2) of transfected recombinant mRNA and the use of non-native 5′- and 3′-untranslated region (UTR) sequences that enhance protein translation are advancing the prospects of transcript therapy. To this end, a set of UTR sequences that are present in mRNAs with long cellular T1/2 were synthesized and cloned as five different recombinant sequence set combinations as upstream 5′-UTR and/or downstream 3′-UTR regions flanking a reporter gene. Initial screening in two different cell systems in vitro revealed that cytochrome b-245 alpha chain (CYBA) combinations performed the best among all other UTR combinations and were characterized in detail. The presence or absence of CYBA UTRs had no impact on the mRNA stability of transfected mRNAs, but appeared to enhance the productivity of transfected transcripts based on the measurement of mRNA and protein levels in cells. When CYBA UTRs were fused to human bone morphogenetic protein 2 (hBMP2) coding sequence, the recombinant mRNA transcripts upon transfection produced higher levels of protein as compared to control transcripts. Moreover, transfection of human adipose mesenchymal stem cells with recombinant hBMP2-CYBA UTR transcripts induced bone differentiation demonstrating the osteogenic and therapeutic potential for transcript therapy based on hybrid UTR designs. PMID:27974853

  10. Pathway-Focused Arrays Reveal Increased Matrix Metalloproteinase-7 (Matrilysin) Transcription in Trachomatous Trichiasis

    PubMed Central

    Jeffries, David; Pattison, Michael; Korr, Gerit; Gall, Alevtina; Joof, Hassan; Manjang, Ahmed; Burton, Matthew J.; Mabey, David C. W.; Bailey, Robin L.

    2010-01-01

    Purpose. Several genes that are associated with protection from or susceptibility to trachomatous trichiasis (TT) have been identified through genetic association studies. Yet there have been few studies in which gene expression profiles were assessed in TT cases and disease-free controls. The purpose was to identify genes that are differentially expressed in the upper tarsal conjunctiva of subjects with TT. Method. Pathway-focused gene arrays were used to screen conjunctival RNA expression of 226 gene transcripts of interest. The screening was followed by validation of differentially expressed genes by qRT-PCR on an independent set of samples. Three different techniques were then used to test for quantitative differences in the recovered conjunctival protein fraction. Results. Focused arrays identified a set of 13 differentially expressed genes. Validation by qRT-PCR confirmed differential expression in four of these genes (COL1A1, COL7A1, MMP7, and TLR6). Increased expression of MMP7 was the only consistent differentially regulated gene in the conjunctival samples of trichiasis subjects. MMP7 was present in isolated conjunctival proteins and in the tissue culture supernatants of peripheral blood lymphocytes after stimulation. Conclusions. There is an imbalance in extracellular matrix turnover with minimal contribution of adaptive immune responses at this stage of trichiasis. There was little evidence of broad differential expression in genes characteristic of polar responses of adaptive T cells or macrophages. The control of the MMP7 response and its activity appears significant in the fibrotic changes observed in TT. PMID:20375326

  11. Use of Transcriptional Control to Increase Secretion of Heterologous Proteins in T3S Systems.

    PubMed

    Metcalf, Kevin J; Tullman-Ercek, Danielle

    2017-01-01

    Heterologous proteins can be produced in a bacterial host and purified from the cellular constituents. Secretion of the protein of interest to the extracellular space simplifies the purification process and is thought to alleviate toxicity problems associated with intracellular accumulation of the protein of interest. In this protocol, we describe a strategy to engineer protein secretion in a bacterial culture using transcriptional control. The transcription factor HilA is inducibly produced to control production of the secretion machine, and in turn signals the production and secretion of a protein of interest. This allows for high titer of secreted protein in optimized culturing conditions and the effect is observed with all proteins tested.

  12. Cyclic AMP-responsive expression of the surfactant protein-A gene is mediated by increased DNA binding and transcriptional activity of thyroid transcription factor-1.

    PubMed

    Li, J; Gao, E; Mendelson, C R

    1998-02-20

    Surfactant protein (SP)-A gene transcription is stimulated by factors that increase cyclic AMP. In the present study, we observed that three thyroid transcription factor-1 (TTF-1) binding elements (TBEs) located within a 255 base pair region flanking the 5'-end of the baboon SP-A2 (bSP-A2) gene are required for maximal cyclic AMP induction of bSP-A2 promoter activity. We found that TTF-1 DNA binding activity was increased in nuclear extracts of pulmonary type II cells cultured in the presence of cyclic AMP. By contrast, the levels of immunoreactive TTF-1 protein were similar in nuclear extracts of control and cyclic AMP-treated type II cells. The incorporation of [32P]orthophosphate into immunoprecipitated TTF-1 protein also was markedly increased by cyclic AMP treatment. Moreover, exposure of nuclear extracts from cyclic AMP-treated type II cells either to potato acid phosphatase or alkaline phosphatase abolished the cyclic AMP-induced increase in TTF-1 DNA-binding activity. Interestingly, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), known to activate protein kinase C, also enhanced incorporation of [32P]orthophosphate into TTF-1 protein; however, the DNA binding activity of TTF-1 was decreased in nuclear extracts of TPA-treated type II cells. Expression vectors encoding TTF-1 and the catalytic subunit of protein kinase A (PKA-cat) were cotransfected into A549 lung adenocarcinoma cells together with an SPA:human growth hormone fusion gene (255 base pairs of 5'-flanking DNA from the baboon SP-A2 gene linked to human growth hormone, as reporter) containing TBEs, or with a reporter gene construct containing three tandem TBEs fused upstream of the bSP-A2 gene TATA box and the transcription initiation site. Coexpression of TTF-1 and PKA-cat increased fusion gene expression 3-4-fold as compared with expression of TTF-1 in the absence of PKA-cat. Moreover, the transcriptional activity of TTF-1 was suppressed by cotransfection of a dominant negative form

  13. Leukemia patient-derived lymphoblastoid cell lines exhibit increased induction of leukemia-associated transcripts following high-dose irradiation.

    PubMed

    Spencer, A; Granter, N

    1999-09-01

    Improvement in diagnostic cytogenetic techniques has led to the recognition of an increasing number of leukemia-associated chromosomal translocations and inversions. These genetic lesions frequently are associated with the disruption of putative transcription factors and the production of hybrid transcripts that are implicated in leukemogenesis. Epidemiologic evidence suggests that some, but not all, individuals with a history of gamma-irradiation exposure are at increased risk of developing chronic myeloid leukemia (CML). CML is characterized by the Philadelphia chromosome and transcription of the resulting hybrid BCR-ABL gene. Utilizing the leukemia-associated BCR-ABL p210 transcript as a marker, we sought differences in the induction of illegitimate genetic recombination following high-dose gamma-irradiation of karyotypically normal lymphoblastoid cell lines (LCL) derived from individuals with and without a history of myeloid leukemias. Six LCL [4 leukemia patient derived [2 acute myeloid leukemia and 2 CML] and 2 from normal individuals were analyzed with reverse transcriptase polymerase chain reaction for BCR-ABL under stringent conditions following exposure to 0, 50, or 100 Gy of LET gamma-irradiation delivered via a Varian linear accelerator at 4 MV. Transcripts identical to disease-associated b2a2 and b3a2 transcripts were detected both spontaneously (background illegitimate genetic recombination) and following gamma-irradiation. Background BCR-ABL positivity was demonstrable in 4 of the 6 LCL, with no significant difference in detection between leukemic- and nonleukemic-derived LCL. Overall, increasing gamma-irradiation dose resulted in an increased frequency of BCR-ABL transcript detection (0 Gy vs 50 Gy vs 100 Gy,p = 0.0023, Chi-square test). Within the leukemic- but not the nonleukemic-derived LCL there was significantly greater BCR-ABL positivity after gamma-irradiation compared to unirradiated equivalents. Furthermore, the BCR-ABL positivity of both

  14. RNA polymerase II forms transcription networks in rye and Arabidopsis nuclei and its amount increases with endopolyploidy.

    PubMed

    Schubert, Veit

    2014-01-01

    RNA polymerase II (RNAPII) is responsible for the transcription of most eukaryotic genes. In mammalian nuclei, RNAPII is mainly localized in relatively few distinct transcription factories. In this study--applying super-resolution microscopy--it is shown that in plants, inactive (non-phosphorylated) and active (phosphorylated) RNAPII modifications compose distinct 'transcription networks' within the euchromatin. These reticulate structures sometimes attach to each other, but they are absent from heterochromatin and nucleoli. The global RNAPII distribution within nuclei is not influenced by interphase chromatin organization such as Rabl (rye) versus non-Rabl (Arabidopsis thaliana) orientation. Replication of sister chromatids without cell division causes endopolyploidy, a phenomenon widespread in plants and animals. Endopolyploidy raises the number of gene copies per nucleus. Here, it is shown that the amounts of active and inactive RNAPII enzymes in differentiated 2-32C leaf nuclei of A. thaliana proportionally increase with rising endopolyploidy. Thus, increasing the transcriptional activity of cells and tissues seems to be an important function of endopolyploidy.

  15. Amplification of the Proinflammatory Transcription Factor Cascade Increases with Severity of Uncontrolled Hemorrhage in Swine

    DTIC Science & Technology

    2016-06-07

    the 2-h study period. After euthanasia, the liver was collected and frozen in liquid nitrogen and placed in formalin for histologic analysis...Quantitative Reverse Transcription- Polymerase Chain Reaction (Q-RT-PCR) Liver was flash frozen in liquid nitrogen immediately upon harvest and stored at...Polymerase chain reaction (PCR) conditions were as follows: stage 1, 2 min at 50°C; stage 2, 10 min at 95°C; stage 3, 40 cycles of 15 s of melting at

  16. Increased epigenetic alterations at the promoters of transcriptional regulators following inadequate maternal gestational weight gain

    PubMed Central

    Kawai, Tomoko; Yamada, Takahiro; Abe, Kosei; Okamura, Kohji; Kamura, Hiromi; Akaishi, Rina; Minakami, Hisanori; Nakabayashi, Kazuhiko; Hata, Kenichiro

    2015-01-01

    Epigenetic modifications are thought to serve as a memory of exposure to in utero environments. However, few human studies have investigated the associations between maternal nutritional conditions during pregnancy and epigenetic alterations in offspring. In this study, we report genome-wide methylation profiles for 33 postpartum placentas from pregnancies of normal and foetal growth restriction with various extents of maternal gestational weight gain. Epigenetic alterations accumulate in the placenta under adverse in utero environments, as shown by application of Smirnov-Grubbs’ outlier test. Moreover, hypermethylation occurs frequently at the promoter regions of transcriptional regulator genes, including polycomb targets and zinc-finger genes, as shown by annotations of the genomic and functional features of loci with altered DNA methylation. Aberrant epigenetic modifications at such developmental regulator loci, if occurring in foetuses as well, will elevate the risk of developing various diseases, including metabolic and mental disorders, later in life. PMID:26415774

  17. Insulin-activated Elk-1 recruits the TIP60/NuA4 complex to increase prolactin gene transcription.

    PubMed

    Mahajan, Muktar A; Stanley, Frederick M

    2014-01-25

    Insulin increases prolactin gene expression in GH4 cells through phosphorylation of Elk-1 (Jacob and Stanley, 2001). We preformed a reverse two-hybrid screen using Elk-1-B42 as bait to identify proteins from GH4 cells that might serve as co-activators or co-repressors for insulin-increased prolactin gene expression. A number of the components of the TIP60/NuA4 complex interacted with Elk-1 suggesting that Elk-1 might activate transcription by recruiting the TIP60 chromatin-remodeling complex to the prolactin promoter. Inhibition of insulin-increased prolactin-luciferase expression by wild type and mutant adenovirus E1A protein provided physiological context for these yeast studies. Inhibition of histone deacetylases dramatically increased both basal and insulin-increased prolactin gene transcription. Co-immune precipitation experiments demonstrated Elk-1 and TIP60 associate in vitro. Transient or stable expression of TIP60 activated insulin-increased prolactin gene expression while a mutated TIP60 blocked insulin-increased prolactin gene expression. Analysis of the prolactin mRNA by quantitative RT-PCR showed that insulin-increased prolactin mRNA accumulation and that this was inhibited in GH4 cells that stably expressed mutant TIP60. Finally, ChIP experiments demonstrate the insulin-dependent occupancy of the prolactin promoter by Elk-1 and TIP60. Our studies suggest that insulin activates prolactin gene transcription by activating Elk-1 that recruits the NuA4 complex to the promoter.

  18. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop.

    PubMed

    Kannike, Kaja; Sepp, Mari; Zuccato, Chiara; Cattaneo, Elena; Timmusk, Tõnis

    2014-11-21

    Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh(7/7) (wild type), Hdh(7/109) (heterozygous for HD mutation), and Hdh(109/109) (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh(7/7) cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop.

  19. Forkhead Transcription Factor FOXO3a Levels Are Increased in Huntington Disease Because of Overactivated Positive Autofeedback Loop*

    PubMed Central

    Kannike, Kaja; Sepp, Mari; Zuccato, Chiara; Cattaneo, Elena; Timmusk, Tõnis

    2014-01-01

    Huntington disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by an increased number of CAG repeats in the HTT gene coding for huntingtin. Decreased neurotrophic support and increased mitochondrial and excitotoxic stress have been reported in HD striatal and cortical neurons. The members of the class O forkhead (FOXO) transcription factor family, including FOXO3a, act as sensor proteins that are activated upon decreased survival signals and/or increased cellular stress. Using immunocytochemical screening in mouse striatal Hdh7/7 (wild type), Hdh7/109 (heterozygous for HD mutation), and Hdh109/109 (homozygous for HD mutation) cells, we identified FOXO3a as a differentially regulated transcription factor in HD. We report increased nuclear FOXO3a levels in mutant Hdh cells. Additionally, we show that treatment with mitochondrial toxin 3-nitropropionic acid results in enhanced nuclear localization of FOXO3a in wild type Hdh7/7 cells and in rat primary cortical neurons. Furthermore, mRNA levels of Foxo3a are increased in mutant Hdh cells compared with wild type cells and in 3-nitropropionic acid-treated primary neurons compared with untreated neurons. A similar increase was observed in the cortex of R6/2 mice and HD patient post-mortem caudate tissue compared with controls. Using chromatin immunoprecipitation and reporter assays, we demonstrate that FOXO3a regulates its own transcription by binding to the conserved response element in Foxo3a promoter. Altogether, the findings of this study suggest that FOXO3a levels are increased in HD cells as a result of overactive positive feedback loop. PMID:25271153

  20. Transcript and metabolite alterations increase ganoderic acid content in Ganoderma lucidum using acetic acid as an inducer.

    PubMed

    Ren, Ang; Li, Xiong-Biao; Miao, Zhi-Gang; Shi, Liang; Jaing, Ai-Liang; Zhao, Ming-Wen

    2014-12-01

    Acetic acid at 5-8 mM increased ganoderic acid (GA) accumulation in Ganoderma lucidum. After optimization by the response surface methodology, the GA content reached 5.5/100 mg dry weight, an increase of 105% compared with the control. The intermediate metabolites of GA biosynthesis, lanosterol and squalene also increased to 47 and 15.8 μg/g dry weight, respectively, in response to acetic acid. Acetic acid significantly induced transcription levels of sqs, lano, hmgs and cyp51 in the GA biosynthesis pathway. An acetic acid-unregulated acetyl coenzyme A synthase (acs) gene was selected from ten candidate homologous acs genes. The results indicate that acetic acid alters the expression of genes related to acetic acid assimilation and increases GA biosynthesis and the metabolic levels of lanosterol, squalene and GA-a, thereby resulting in GA accumulation.

  1. [VARIOUS ALLELES OF HSF HEAT-SHOCK TRANSCRIPTION FACTOR OF DROSOPHILA MELANOGASTER INCREASE VIABILITY OF ITS CARRIERS IN UNFAVORABLE ENVIRONMENTS].

    PubMed

    Weisman, N Ya; Evgen'ev, M B; Golubovsky, M D

    2015-01-01

    We found increased viability in heterozygous carriers of hsf heat shock transcription factor n comparison with wild type. The effect depends on temperature, sex and direction of crosses. Viability effect is more evident in conditions of soft temperature stress. The males are more sensitive. The maternal effect is observed: if hsf*allele came from mother, the viability effect is stronger. The survival curves of heterozygotes on hsf-1 and hsf-4 alleles are similar in spite of HSF-4 protein is slightly active on normal temperature.

  2. Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.

    PubMed

    Karamitros, Dimitris; Patmanidi, Alexandra L; Kotantaki, Panoraia; Potocnik, Alexandre J; Bähr-Ivacevic, Tomi; Benes, Vladimir; Lygerou, Zoi; Kioussis, Dimitris; Taraviras, Stavros

    2015-01-01

    Balancing stem cell self-renewal and initiation of lineage specification programs is essential for the development and homeostasis of the hematopoietic system. We have specifically ablated geminin in the developing murine hematopoietic system and observed profound defects in the generation of mature blood cells, leading to embryonic lethality. Hematopoietic stem cells (HSCs) accumulated in the fetal liver following geminin ablation, while committed progenitors were reduced. Genome-wide transcriptome analysis identified key HSC transcription factors as being upregulated upon geminin deletion, revealing a gene network linked with geminin that controls fetal hematopoiesis. In order to obtain mechanistic insight into the ability of geminin to regulate transcription, we examined Hoxa9 as an example of a key gene in definitive hematopoiesis. We demonstrate that in human K562 cells geminin is associated with HOXA9 regulatory elements and its absence increases HOXA9 transcription similarly to that observed in vivo. Moreover, silencing geminin reduced recruitment of the PRC2 component SUZ12 to the HOXA9 locus and resulted in an increase in RNA polymerase II recruitment and H3K4 trimethylation (H3K4me3), whereas the repressive marks H3K9me3 and H3K27me3 were reduced. The chromatin landscape was also modified at the regulatory regions of HOXA10 and GATA1. K562 cells showed a reduced ability to differentiate to erythrocytes and megakaryocytes upon geminin silencing. Our data suggest that geminin is indispensable for fetal hematopoiesis and regulates the generation of a physiological pool of stem and progenitor cells in the fetal hematopoietic system.

  3. Impaired dynamin 2 function leads to increased AP-1 transcriptional activity through the JNK/c-Jun pathway.

    PubMed

    Szymanska, Ewelina; Skowronek, Agnieszka; Miaczynska, Marta

    2016-01-01

    Activation of AP-1 transcription factors, composed of the Jun and Fos proteins, regulates cellular fates, such as proliferation, differentiation or apoptosis. Among other stimuli, the AP-1 pathway can be initiated by extracellular ligands, such as growth factors or cytokines, which undergo internalization in complex with their receptors. Endocytosis has been implicated in the regulation of several signaling pathways; however its possible impact on AP-1 signaling remains unknown. Here we show that inhibition of dynamin 2 (Dyn2), a major regulator of endocytic internalization, strongly stimulates the AP-1 pathway. Specifically, expression of a dominant-negative Dyn2 K44A mutant increases the total levels of c-Jun, its phosphorylation on Ser63/73 and transcription of AP-1 target genes. Interestingly, DNM2 mutations implicated in human neurological disorders exhibit similar effects on AP-1 signaling. Mechanistically, Dyn2 K44A induces AP-1 by increasing phosphorylation of several receptor tyrosine kinases. Their activation is required to initiate a Src- and JNK-dependent signaling cascade converging on c-Jun and stimulating expression of AP-1 target genes. Cumulatively, our data uncover a link between the Dyn2 function and JNK signaling which leads to AP-1 induction.

  4. Increased expression of BDNF transcript with exon VI in hippocampi of patients with pharmaco-resistant temporal lobe epilepsy.

    PubMed

    Martínez-Levy, G A; Rocha, L; Lubin, F D; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Pérez-Molina, R; Briones-Velasco, M; Recillas-Targa, F; Pérez-Molina, A; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S

    2016-02-09

    A putative role of the brain-derived neurotrophic factor (BDNF) in epilepsy has emerged from in vitro and animal models, but few studies have analyzed human samples. We assessed the BDNF expression of transcripts with exons I (BDNFI), II (BDNFII), IV (BDNFIV) and VI (BDNFVI) and methylation levels of promoters 4 and 6 in the hippocampi of patients with pharmaco-resistant temporal lobe epilepsy (TLE) (n=24). Hippocampal sclerosis (HS) and pre-surgical pharmacological treatment were considered as clinical independent variables. A statistical significant increase for the BDNFVI (p<0.05) was observed in TLE patients compared to the autopsy control group (n=8). BDNFVI was also increased in anxiety/depression TLE (N=4) when compared to autopsies or to the remaining group of patients (p<0.05). In contrast, the use of the antiepileptic drug Topiramate (TPM) (N=3) was associated to a decrease in BDNFVI expression (p<0.05) when compared to the remaining group of patients. Methylation levels at the BDNF promoters 4 and 6 were similar between TLE and autopsies and in relation to the use of either Sertraline (SRT) or TPM. These results suggest an up-regulated expression of a specific BDNF transcript in patients with TLE, an effect that seems to be dependent on the use of specific drugs.

  5. The Stepwise Increase in the Number of Transcription Factor Families in the Precambrian Predated the Diversification of Plants On Land.

    PubMed

    Catarino, Bruno; Hetherington, Alexander J; Emms, David M; Kelly, Steven; Dolan, Liam

    2016-11-01

    The colonization of the land by streptophytes and their subsequent radiation is a major event in Earth history. We report a stepwise increase in the number of transcription factor (TF) families and subfamilies in Archaeplastida before the colonization of the land. The subsequent increase in TF number on land was through duplication within existing TF families and subfamilies. Almost all subfamilies of the Homeodomain (HD) and basic Helix-Loop-Helix (bHLH) had evolved before the radiation of extant land plant lineages from a common ancestor. We demonstrate that the evolution of these TF families independently followed similar trends in both plants and metazoans; almost all extant HD and bHLH subfamilies were present in the first land plants and in the last common ancestor of bilaterians. These findings reveal that the majority of innovation in plant and metazoan TF families occurred in the Precambrian before the Phanerozoic radiation of land plants and metazoans.

  6. Skipping of an alternative intron in the srsf1 3' untranslated region increases transcript stability.

    PubMed

    Akaike, Yoko; Kurokawa, Ken; Kajita, Keisuke; Kuwano, Yuki; Masuda, Kiyoshi; Nishida, Kensei; Kang, Seung Wan; Tanahashi, Toshihito; Rokutan, Kazuhito

    2011-08-01

    The srsf1 gene encodes serine/arginine-rich splicing factor 1 (SRSF1) that participates in both constitutive and alternative splicing reactions. This gene possesses two ultraconserved elements in the 3' untranslated region (UTR). Skipping of an alternative intron between the two elements has no effect on the protein-coding sequence, but it generates a premature stop codon (PTC)-containing mRNA isoform, whose degradation is considered to depend on nonsense-mediated mRNA decay (NMD). However, several cell lines (HCT116, RKO, HeLa, and WI38 cells) constitutively expressed significant amounts of the srsf1 PTC variant. HCT116 cells expressed the PTC variant nearly equivalent to the major isoform that includes the alternative intron in the 3' UTR. Inhibition of NMD by silencing a key effecter UPF1 or by treatment with cycloheximide failed to increase amounts of the PTC variant in HCT116 cells, and the PTC variant was rather more stable than the major isoform in the presence of actinomycin D. Our results suggest that the original stop codon may escape from the NMD surveillance even in skipping of the alternative intron. The srsf1 gene may produce an alternative splice variant having truncated 3' UTR to relief the microRNA- and/or RNA-binding protein-mediated control of translation or degradation.

  7. Chromatin Alterations in Response to Forced Swimming Underlie Increased Prodynorphin Transcription

    PubMed Central

    Reed, Brian; Fang, Nancy; Blackwell-Mayer, Brandan; Chen, Shasha; Yuferov, Vadim; Zhou, Yan; Kreek, Mary Jeanne

    2012-01-01

    Antagonism of the kappa opioid receptor (KOR) has been reported to have anti-depressant-like properties. The dynorphin/KOR system is a crucial neurochemical substrate underlying the pathologies of addictive diseases, affective disorders and other disease states. However, the molecular underpinnings and neuroanatomical localization of the dysregulation of this system have not yet been fully elucidated. Utilizing the Porsolt Forced Swim Test (FST), an acute stressor commonly used as in rodent models measuring antidepressant efficacy, male Sprague-Dawley rats were subject to forced swimming for 15 minutes, treated 1 hour with vehicle or nor-BNI (5 or 10 mg/kg), and then 1 day later subject to FST for five minutes. In accordance with previous findings, nor-BNI dose dependently increased climbing time and reduced immobility. In comparison to control animals not exposed to FST, we observed a significant elevation in prodynorphin (pDyn) mRNA levels following FST using real-time optical PCR in the caudate putamen but not in the nucleus accumbens, hypothalamus, amygdala, frontal cortex, or hippocampus. Nor-BNI treatment did not affect pDyn mRNA levels in comparison to animals that received vehicle. The corresponding brain regions from the opposite hemisphere were analyzed for underlying chromatin modifications of the prodynorphin gene promoter region using chromatin immunoprecipitation with antibodies against specifically methylated histones H3K27Me2, H3K27Me3, H3K4Me2, and H3K4Me3, as well as CREB-1 and MeCP2. Significant alterations in proteins bound to DNA in the Cre-3, Cre-4, and Sp1 regions of the prodynorphin promoter were found in the caudate putamen of the FST saline-treated animals compared to control animals, with no changes observed in the hippocampus. Epigenetic changes resulting in elevated dynorphin levels specifically in the caudate putamen may in part underlie the enduring effects of stress. PMID:22698692

  8. Vaginal LPS changed gene transcriptional regulation response to ischemic reperfusion and increased vulnerability of fetal brain hemorrhage.

    PubMed

    Dong, Yupeng; Kimura, Yoshitaka; Ito, Takuya; Velayo, Clarissa; Sato, Takafumi; Sugibayashi, Rika; Funamoto, Kiyoe; Hitomi, Kudo; Iida, Keita; Endo, Miyuki; Sato, Naoaki; Yaegashi, Nobuo

    During pregnancy, both ischemic reperfusion and bacterial agent LPS are known risk factors for fetal brain damage. However, there is a lack of evidence to explain whether vaginal LPS affects the fetus response to ischemic reperfusion. Here we reported that there was more than 2 folds higher vulnerability of fetal brain hemorrhage response to ischemic reperfusion when mother mouse was treated with vaginal LPS. As our previously reported, ischemic reperfusion induces P53-dependent fetal brain damage was based on a molecular mechanism: the transcriptional pattern was changed from HIF-1alpha-dependent to P53-dependent immediately. In the present work, only with vaginal LPS precondition, phosphorylation of activated transcriptional factor (ATF) 2 at Thr71 appeared in response to ischemic reperfusion. Moreover, this phosphorylation was completely blocked by pre-treatment with a P53 inhibitor, pifithrin-α. We concluded that vaginal LPS precondition trigged the p53-dependent phosphorylation of ATF2 in response to ischemic reperfusion, which played an important role of increasing vulnerability to hemorrhage in fetus.

  9. A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean

    PubMed Central

    Zhao, Yuanling; Chang, Xin; Qi, Dongyue; Dong, Lidong; Wang, Guangjin; Fan, Sujie; Jiang, Liangyu; Cheng, Qun; Chen, Xi; Han, Dan; Xu, Pengfei; Zhang, Shuzhen

    2017-01-01

    Phytophthora root and stem rot of soybean caused by the oomycete Phytophthora sojae, is a destructive disease worldwide. Ethylene response factors (ERFs) play important roles in regulating plant biotic and abiotic stress tolerance. In this study, a new ERF gene, GmERF113, was isolated from the highly resistant soybean ‘Suinong 10.’ Sequence analysis suggested that the protein encoded by GmERF113 contained a conserved AP2/ERF domain of 58 amino acid and belonged to the B-4 subgroup of the ERF subfamily. Expression of GmERF113 was significantly induced by P. sojae, ethylene, and methyl jasmonate. GmERF113 protein localized to the nucleus when transiently expressed in Arabidopsis protoplasts, could bind to the GCC-box, and acted as a transcription activator. In addition, a region of the full-length GmERF113, GmERF113-II, interacted with a basic helix-loop-helix transcription factor (GmbHLH) in yeast cells. Full-length GmERF113 also interacted with GmbHLH in planta. GmERF113-overexpressing transgenic plants in susceptible cultivar ‘Dongnong 50’ soybean exhibited increased resistance to P. sojae and positively regulated the expression of the pathogenesis-related genes, PR1 and PR10-1. These results indicate that GmERF113 may play a crucial role in the defense of soybean against P. sojae infection. PMID:28326092

  10. Exposure of Bifidobacterium longum subsp. infantis to Milk Oligosaccharides Increases Adhesion to Epithelial Cells and Induces a Substantial Transcriptional Response

    PubMed Central

    Kavanaugh, Devon W.; O’Callaghan, John; Buttó, Ludovica F.; Slattery, Helen; Lane, Jonathan; Clyne, Marguerite; Kane, Marian; Joshi, Lokesh; Hickey, Rita M.

    2013-01-01

    In this study, we tested the hypothesis that milk oligosaccharides may contribute not only to selective growth of bifidobacteria, but also to their specific adhesive ability. Human milk oligosaccharides (3′sialyllactose and 6′sialyllactose) and a commercial prebiotic (Beneo Orafti P95; oligofructose) were assayed for their ability to promote adhesion of Bifidobacterium longum subsp. infantis ATCC 15697 to HT-29 and Caco-2 human intestinal cells. Treatment with the commercial prebiotic or 3′sialyllactose did not enhance adhesion. However, treatment with 6′sialyllactose resulted in increased adhesion (4.7 fold), while treatment with a mixture of 3′- and 6′-sialyllactose substantially increased adhesion (9.8 fold) to HT-29 intestinal cells. Microarray analyses were subsequently employed to investigate the transcriptional response of B. longum subsp. infantis to the different oligosaccharide treatments. This data correlated strongly with the observed changes in adhesion to HT-29 cells. The combination of 3′- and 6′-sialyllactose resulted in the greatest response at the genetic level (both in diversity and magnitude) followed by 6′sialyllactose, and 3′sialyllactose alone. The microarray data was further validated by means of real-time PCR. The current findings suggest that the increased adherence phenotype of Bifidobacterium longum subsp. infantis resulting from exposure to milk oligosaccharides is multi-faceted, involving transcription factors, chaperone proteins, adhesion-related proteins, and a glycoside hydrolase. This study gives additional insight into the role of milk oligosaccharides within the human intestine and the molecular mechanisms underpinning host-microbe interactions. PMID:23805302

  11. Transcriptional Activation by NFκB Increases Perlecan/HSPG2 Expression in the Desmoplastic Prostate Tumor Microenvironment

    PubMed Central

    Warren, Curtis R.; Grindel, Brian J.; Francis, Lewis; Carson, Daniel D.; Farach-Carson, Mary C.

    2014-01-01

    Perlecan/HSPG2, a heparan sulfate proteoglycan typically found at tissue borders including those separating epithelia and connective tissue, increases near sites of invasion of primary prostatic tumors as previously shown for other proteins involved in desmoplastic tissue reaction. Studies of prostate cancer cells and stromal cells from both prostate and bone, the major site for prostate cancer metastasis, showed that cancer cells and a subset of stromal cells increased production of perlecan in response to cytokines present in the tumor microenvironment. In silico analysis of the HSPG2 promoter revealed two conserved NFκB binding sites, in addition to the previously reported SMAD3 binding sites. By systematically transfecting cells with a variety of reporter constructs including sequences up to 2.6 kb from the start site of transcription, we identified an active cis element in the distal region of the HSPG2 promoter, and showed that it functions in regulating transcription of HSPG2. Treatment with TNF-α and/or TGFβ1 identified TNF-α as a major cytokine regulator of perlecan production. TNF-α treatment also triggered p65 nuclear translocation and binding to the HSPG2 regulatory region in stromal cells and cancer cells. In addition to stromal induction of perlecan production in the prostate, we identified a matrix-secreting bone marrow stromal cell type that may represent the source for increases in perlecan in the metastatic bone marrow environment. These studies implicate perlecan in cytokine-mediated, innate tissue responses to cancer cell invasion, a process we suggest reflects a modified wound healing tissue response co-opted by prostate cancer cells. PMID:24700612

  12. Mice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis.

    PubMed

    Kowalik, Agnes S; Johnson, Charis L; Chadi, Sami A; Weston, Jacqueline Y; Fazio, Elena N; Pin, Christopher L

    2007-04-01

    Several animal models have been developed to investigate the pathobiology of pancreatitis, but few studies have examined the effects that altered pancreatic gene expression have in these models. In this study, the sensitivity to secretagogue-induced pancreatitis was examined in a mouse line that has an altered acinar cell environment due to the targeted deletion of Mist1. Mist1 is an exocrine specific transcription factor important for the complete differentiation and function of pancreatic acinar cells. Mice lacking the Mist1 gene [Mist1 knockout (KO) mice] exhibit cellular disorganization and functional defects in the exocrine pancreas but no gross morphological defects. Following the induction of pancreatitis with caerulein, a CCK analog, we observed elevated serum amylase levels, necrosis, and tissue damage in Mist1 KO mice, indicating increased pancreatic damage. There was also a delay in the regeneration of acinar tissue in Mist1 KO animals. Molecular profiling revealed an altered activation of stress response genes in Mist1 KO pancreatic tissue compared with wild-type (WT) tissue following the induction of pancreatitis. In particular, Western blot analysis for activating transcription factor 3 and phosphorylated eukaryotic initiation factor 2alpha (eIF2alpha), mediators of endoplasmic reticulum (ER) stress, indicated limited activation of this pathway in Mist1 KO animals compared with WT controls. Conversely, Mist1 KO pancreatic tissue exhibits increased expression of growth arrest and DNA damage inducible 34 protein, an inhibitor of eIF2alpha phosphorylation, before and after the induction of pancreatitis. These finding suggest that activation of the ER stress pathway is a protective event in the progression of pancreatitis and highlight the Mist1 KO mouse line as an important new model for studying the molecular events that contribute to the sensitivity to pancreatic injury.

  13. A Wheat CCAAT Box-Binding Transcription Factor Increases the Grain Yield of Wheat with Less Fertilizer Input1

    PubMed Central

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-01-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input. PMID:25489021

  14. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input.

    PubMed

    Qu, Baoyuan; He, Xue; Wang, Jing; Zhao, Yanyan; Teng, Wan; Shao, An; Zhao, Xueqiang; Ma, Wenying; Wang, Junyi; Li, Bin; Li, Zhensheng; Tong, Yiping

    2015-02-01

    Increasing fertilizer consumption has led to low fertilizer use efficiency and environmental problems. Identifying nutrient-efficient genes will facilitate the breeding of crops with improved fertilizer use efficiency. This research performed a genome-wide sequence analysis of the A (NFYA), B (NFYB), and C (NFYC) subunits of Nuclear Factor Y (NF-Y) in wheat (Triticum aestivum) and further investigated their responses to nitrogen and phosphorus availability in wheat seedlings. Sequence mining together with gene cloning identified 18 NFYAs, 34 NFYBs, and 28 NFYCs. The expression of most NFYAs positively responded to low nitrogen and phosphorus availability. In contrast, microRNA169 negatively responded to low nitrogen and phosphorus availability and degraded NFYAs. Overexpressing TaNFYA-B1, a low-nitrogen- and low-phosphorus-inducible NFYA transcript factor on chromosome 6B, significantly increased both nitrogen and phosphorus uptake and grain yield under differing nitrogen and phosphorus supply levels in a field experiment. The increased nitrogen and phosphorus uptake may have resulted from the fact that that overexpressing TaNFYA-B1 stimulated root development and up-regulated the expression of both nitrate and phosphate transporters in roots. Our results suggest that TaNFYA-B1 plays essential roles in root development and in nitrogen and phosphorus usage in wheat. Furthermore, our results provide new knowledge and valuable gene resources that should be useful in efforts to breed crops targeting high yield with less fertilizer input.

  15. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.

  16. Coniferyl Aldehyde Reduces Radiation Damage Through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation

    SciTech Connect

    Kim, Seo-Young; Lee, Hae-June; Nam, Joo-Won; Seo, Eun-Kyoung; Lee, Yun-Sil

    2015-03-15

    Purpose: We previously screened natural compounds and found that coniferyl aldehyde (CA) was identified as an inducer of HSF1. In this study, we further examined the protective effects of CA against ionizing radiation (IR) in normal cell system. Methods and Materials: Western blotting and reverse transcription-polymerase chain reaction tests were performed to evaluate expression of HSF1, HSP27, and HSP70 in response to CA. Cell death and cleavage of PARP and caspase-3 were analyzed to determine the protective effects of CA in the presence of IR or taxol. The protective effects of CA were also evaluated using animal models. Results: CA increased stability of the HSF1 protein by phosphorylation at Ser326, which was accompanied by increased expression of HSP27 and HSP70. HSF1 phosphorylation at Ser326 by CA was mediated by EKR1/2 activation. Cotreatment of CA with IR or taxol in normal cells induced protective effects with phosphorylation- dependent patterns at Ser326 of HSF1. The decrease in bone marrow (BM) cellularity and increase of terminal deoxynucleotidyl transferase dUTP nick end labeling–positive BM cells by IR were also significantly inhibited by CA in mice (30.6% and 56.0%, respectively). A549 lung orthotopic lung tumor model indicated that CA did not affect the IR-mediated reduction of lung tumor nodules, whereas CA protected normal lung tissues from the therapeutic irradiation. Conclusions: These results suggest that CA may be useful for inducing HSF1 to protect against normal cell damage after IR or chemotherapeutic agents.

  17. Post-fusion treatment with MG132 increases transcription factor expression in somatic cell nuclear transfer embryos in pigs.

    PubMed

    You, Jinyoung; Lee, Joohyeong; Kim, Jinyoung; Park, Junhong; Lee, Eunsong

    2010-02-01

    The objective of this study was to examine the effect of post-fusion treatment of somatic cell nuclear transfer (SCNT) oocytes with the proteasomal inhibitor MG132 on maturation promoting factor (MPF) activity, nuclear remodeling, embryonic development, and gene expression of cloned pig embryos. Immediately after electrofusion, SCNT oocytes were treated with MG132 and/or caffeine for 2 hr, vanadate for 0.5 hr, or vanadate for 0.5 hr followed by MG132 for 1.5 hr. Of the MG132 concentrations tested (0-5 microM), the 1 microM concentration showed a higher rate of blastocyst formation (25.9%) than 0 (14.2%), 0.5 (16.9%), and 5 microM (16.9%). Post-fusion treatment with MG132, caffeine, and both MG132 and caffeine improved blastocyst formation (22.1%, 21.4%, and 24.4%, respectively), whereas vanadate treatment inhibited blastocyst formation (6.5%) compared to the control (11.1%). When examined 2 hr after fusion and 1 hr after activation, MPF activity remained at a higher (P < 0.05) level in SCNT oocytes that were treated post-fusion with caffeine and/or MG132, but it was decreased by vanadate. The rate of oocytes showing premature chromosome condensation was not altered by MG132 but was decreased by vanadate treatment. In addition, formation of single pronuclei was increased by MG132 compared to control and vanadate treatment. MG132-treated embryos showed increased expression of POU5F1, DPPA2, DPPA3, DPPA5, and NDP52l1 genes compared to control embryos. Our results demonstrate that post-fusion treatment of SCNT oocytes with MG132 prevents MPF degradation and increases expression of transcription factors in SCNT embryos, which are necessary for normal development of SCNT embryos.

  18. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth.

    PubMed

    Bourdon, Matthieu; Pirrello, Julien; Cheniclet, Catherine; Coriton, Olivier; Bourge, Mickaël; Brown, Spencer; Moïse, Adeline; Peypelut, Martine; Rouyère, Valérie; Renaudin, Jean-Pierre; Chevalier, Christian; Frangne, Nathalie

    2012-10-01

    Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin and nucleolar organisation, nuclear shape and relationship with other cellular organelles such as mitochondria. We demonstrate that endopolyploidy in pericarp leads to the formation of polytene chromosomes and markedly affects nuclear structure. Nuclei manifest a complex shape, with numerous deep grooves that are filled with mitochondria, affording a fairly constant ratio between nuclear surface and nuclear volume. We provide the first direct evidence that endopolyploidy plays a role in increased transcription of rRNA and mRNA on a per-nucleus basis. Overall, our results provide quantitative evidence in favour of the karyoplasmic theory and show that endoreduplication is associated with complex cellular organisation during tomato fruit development.

  19. Phenyl-1-Pyridin-2yl-Ethanone-Based Iron Chelators Increase IκB-α Expression, Modulate CDK2 and CDK9 Activities, and Inhibit HIV-1 Transcription

    PubMed Central

    Kumari, Namita; Iordanskiy, Sergey; Kovalskyy, Dmytro; Breuer, Denitra; Niu, Xiaomei; Lin, Xionghao; Xu, Min; Gavrilenko, Konstantin; Kashanchi, Fatah; Dhawan, Subhash

    2014-01-01

    HIV-1 transcription is activated by the Tat protein, which recruits CDK9/cyclin T1 to the HIV-1 promoter. CDK9 is phosphorylated by CDK2, which facilitates formation of the high-molecular-weight positive transcription elongation factor b (P-TEFb) complex. We previously showed that chelation of intracellular iron inhibits CDK2 and CDK9 activities and suppresses HIV-1 transcription, but the mechanism of the inhibition was not understood. In the present study, we tested a set of novel iron chelators for the ability to inhibit HIV-1 transcription and elucidated their mechanism of action. Novel phenyl-1-pyridin-2yl-ethanone (PPY)-based iron chelators were synthesized and examined for their effects on cellular iron, HIV-1 inhibition, and cytotoxicity. Activities of CDK2 and CDK9, expression of CDK9-dependent and CDK2-inhibitory mRNAs, NF-κB expression, and HIV-1- and NF-κB-dependent transcription were determined. PPY-based iron chelators significantly inhibited HIV-1, with minimal cytotoxicity, in cultured and primary cells chronically or acutely infected with HIV-1 subtype B, but they had less of an effect on HIV-1 subtype C. Iron chelators upregulated the expression of IκB-α, with increased accumulation of cytoplasmic NF-κB. The iron chelators inhibited CDK2 activity and reduced the amount of CDK9/cyclin T1 in the large P-TEFb complex. Iron chelators reduced HIV-1 Gag and Env mRNA synthesis but had no effect on HIV-1 reverse transcription. In addition, iron chelators moderately inhibited basal HIV-1 transcription, equally affecting HIV-1 and Sp1- or NF-κB-driven transcription. By virtue of their involvement in targeting several key steps in HIV-1 transcription, these novel iron chelators have the potential for the development of new therapeutics for the treatment of HIV-1 infection. PMID:25155598

  20. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    PubMed Central

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  1. Increased expression of X-linked genes in mammals is associated with a higher stability of transcripts and an increased ribosome density.

    PubMed

    Faucillion, Marie-Line; Larsson, Jan

    2015-03-18

    Mammalian sex chromosomes evolved from the degeneration of one homolog of a pair of ancestral autosomes, the proto-Y. This resulted in a gene dose imbalance that is believed to be restored (partially or fully) through upregulation of gene expression from the single active X-chromosome in both sexes by a dosage compensatory mechanism. We analyzed multiple genome-wide RNA stability data sets and found significantly longer average half-lives for X-chromosome transcripts than for autosomal transcripts in various human cell lines, both male and female, and in mice. Analysis of ribosome profiling data shows that ribosome density is higher on X-chromosome transcripts than on autosomal transcripts in both humans and mice, suggesting that the higher stability is causally linked to a higher translation rate. Our results and observations are in accordance with a dosage compensatory upregulation of expressed X-linked genes. We therefore propose that differential mRNA stability and translation rates of the autosomes and sex chromosomes contribute to an evolutionarily conserved dosage compensation mechanism in mammals.

  2. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling.

    PubMed

    House, Carrie D; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T; Annunziata, Christina M; Gutkind, J Silvio; Hales, Tim G; Lee, Norman H

    2015-06-22

    Functional expression of voltage-gated Na(+) channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  3. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  4. Human cytomegalovirus induces the endoplasmic reticulum chaperone BiP through increased transcription and activation of translation by using the BiP internal ribosome entry site.

    PubMed

    Buchkovich, Nicholas J; Yu, Yongjun; Pierciey, Francis J; Alwine, James C

    2010-11-01

    The endoplasmic reticulum (ER) chaperone BiP (immunoglobulin binding protein) plays a major role in the control of the unfolded protein response. We have previously shown that BiP levels are dramatically increased during human cytomegalovirus (HCMV) infection, where BiP performs unique roles in viral assembly and egress. We show that BiP mRNA levels increase during infection due to activation of the BiP promoter by the major immediate-early (MIE) proteins. The BiP promoter, like other ER stress-activated promoters, contains endoplasmic reticulum stress elements (ERSEs), which are activated by unfolded protein response (UPR)-induced transcription factors. However, these elements are not needed for MIE protein-mediated transcriptional activation; thus, a virus-specific transcriptional activation mechanism is used. Transcriptional activation results in only a 3- to 4-fold increase in BiP mRNA, suggesting that additional mechanisms for BiP production are utilized. The BiP mRNA contains an internal ribosome entry site (IRES) which increases the level of BiP mRNA translation. We show that utilization of the BiP IRES is dramatically increased in HCMV-infected cells. Utilization of the BiP IRES can be activated by the La autoantigen, also called Sjögren's syndrome antigen B (SSB). We show that SSB/La levels are significantly increased during HCMV infection, and SSB/La depletion causes the loss of BiP IRES utilization and lowers endogenous BiP levels in infected cells. Our data show that BiP levels increase in HCMV-infected cells through the combination of increased BiP gene transcription mediated by the MIE proteins and increased BiP mRNA translation due to SSB/La-induced utilization of the BiP IRES.

  5. TRAF family member-associated NF-kappa B activator (TANK) expression increases in injured sensory neurons and is transcriptionally regulated by Sox11

    PubMed Central

    Salerno, Kathleen M.; Jing, Xiaotang; Diges, Charlotte M.; Davis, Brian M.; Albers, Kathryn M.

    2013-01-01

    Peripheral nerve injury evokes rapid and complex changes in gene transcription and cellular signaling pathways. Understanding how these changes are functionally related is essential for developing new approaches that accelerate and improve nerve regeneration. Towards this goal we found that nerve injury induces a rapid and significant up-regulation of the transcription factor Sox11 in dorsal root ganglia (DRG) neurons. Gain and loss of function studies have shown this increase is essential for normal axon regeneration. To determine how Sox11 impacts neuronal gene expression, DRG neurons were treated with Sox11 siRNA to identify potential transcriptional targets. One gene significantly reduced by Sox11 knockdown was TRAF (tumor necrosis factor (TNF) receptor-associated factor)-associated NF-κB activator (TANK). Here we show that TANK is expressed in DRG neurons, that TANK expression is increased in response to peripheral nerve injury and that Sox11 overexpression in vitro increases TANK expression. Injury and in vitro overexpression were also found to preferentially increase TANK transcript variant 3 and a larger TANK protein isoform. To determine if Sox11 regulates TANK transcription bioinformatic analysis was used to identify potential Sox binding motifs within 5 kbp of the TANK 5’ untranslated region (UTR) across several mammalian genomes. Two sites in the mouse TANK gene were examined. Luciferase expression assays coupled with site-directed mutagenesis showed each site contributes to enhanced TANK promoter activity. In addition, chromatin immunoprecipitation assays showed direct Sox11 binding in regions containing the two identified Sox motifs in the mouse TANK 5’-UTR. These studies are the first to show that TANK is expressed in DRG neurons, that TANK is increased by peripheral nerve injury and that the regulation of TANK expression is, at least in part, controlled by the injury-associated transcription factor Sox11. PMID:23201825

  6. Tamoxifen increases nuclear respiratory factor 1 transcription by activating estrogen receptor beta and AP-1 recruitment to adjacent promoter binding sites.

    PubMed

    Ivanova, Margarita M; Luken, Kristen H; Zimmer, Amber S; Lenzo, Felicia L; Smith, Ryan J; Arteel, Maia W; Kollenberg, Tara J; Mattingly, Kathleen A; Klinge, Carolyn M

    2011-04-01

    Little is known about endogenous estrogen receptor β (ERβ) gene targets in human breast cancer. We reported that estradiol (E(2)) induces nuclear respiratory factor-1 (NRF-1) transcription through ERα in MCF-7 breast cancer cells. Here we report that 4-hydroxytamoxifen (4-OHT), with an EC(50) of ~1.7 nM, increases NRF-1 expression by recruiting ERβ, cJun, cFos, CBP, and RNA polymerase II to and dismissing NCoR from the NRF1 promoter. Promoter deletion and transient transfection studies showed that the estrogen response element (ERE) is essential and that an adjacent AP-1 site contributes to maximal 4-OHT-induced NRF-1 transcription. siRNA knockdown of ERβ revealed that ERβ inhibits basal NRF-1 expression and is required for 4-OHT-induced NRF-1 transcription. An AP-1 inhibitor blocked 4-OHT-induced NRF-1 expression. The 4-OHT-induced increase in NRF-1 resulted in increased transcription of NRF-1 target CAPNS1 but not CYC1, CYC2, or TFAM despite increased NRF-1 coactivator PGC-1α protein. The absence of TFAM induction corresponds to a lack of Akt-dependent phosphorylation of NRF-1 with 4-OHT treatment. Overexpression of NRF-1 inhibited 4-OHT-induced apoptosis and siRNA knockdown of NRF-1 increased apoptosis, indicating an antiapoptotic role for NRF-1. Overall, NRF-1 expression and activity is regulated by 4-OHT via endogenous ERβ in MCF-7 cells.

  7. Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis.

    PubMed

    He, Fei; Liu, Wenshuai; Sun, Di; Luo, Shuai; Chen, Zhi; Wen, Ying; Li, Jilun

    2014-01-01

    Avermectins produced by Streptomyces avermitilis are used commercially for broad-spectrum parasite control in medical, veterinary, and agricultural fields. Our previous comparative transcriptome analysis of wild-type strain ATCC31267 vs. avermectin-overproducing strain 76-02-e revealed that the gene SAV151, which encodes a TetR family transcriptional regulator, was downregulated in 76-02-e. In the present study, we investigated the role of SAV151 in avermectin production. Deletion of SAV151 increased avermectin yield ~1-fold in ATCC31267, and this phenotype was complemented by a single copy of SAV151. Overexpression of SAV151 in ATCC31267 reduced avermectin yield by ~70%. RT-PCR analysis showed that the promoting effect of SAV151 deletion on avermectin production was not due to alteration of ave genes at the transcriptional level. SAV151 negatively regulated the transcription of itself and of the adjacent transcriptional unit SAV152-SAV153-SAV154. In chromatin immunoprecipitation and gel shift assays, purified His6-tagged SAV151 protein bound to the bidirectional SAV151-SAV152 promoter region. SAV151 bound to two palindromic sequences in this region and thereby repressed transcription from both directions. Two of the SAV151 target genes, SAV152 (which encodes a putative dehydrogenase) and SAV154 (which encodes a putative hydrolase), had promoting effects on avermectin production. Our findings provide the basis for a strategy to increase avermectin production by controlling SAV151 and its target genes.

  8. Activating transcription factor 4 is involved in endoplasmic reticulum stress-mediated apoptosis contributing to vascular calcification.

    PubMed

    Duan, Xiao-Hui; Chang, Jin-Rui; Zhang, Jing; Zhang, Bao-Hong; Li, Yu-Lin; Teng, Xu; Zhu, Yi; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2013-09-01

    Our previous work reported that endoplasmic reticulum stress (ERS)-mediated apoptosis was activated during vascular calcification (VC). Activating transcription factor 4 (ATF4) is a critical transcription factor in osteoblastogenesis and ERS-induced apoptosis. However, whether ATF4 is involved in ERS-mediated apoptosis contributing to VC remains unclear. In the present study, in vivo VC was induced in rats by administering vitamin D3 plus nicotine. Vascular smooth muscle cell (VSMC) calcification in vitro was induced by incubation in calcifying media containing β-glycerophosphate and CaCl2. ERS inhibitors taurine or 4-phenylbutyric acid attenuated ERS and VSMC apoptosis in calcified rat arteries, reduced calcification and retarded the VSMC contractile phenotype transforming into an osteoblast-like phenotype in vivo. Inhibition of ERS retarded the VSMC phenotypic transition into an osteoblast-like cell phenotype and reduced VSMC calcification and apoptosis in vitro. Interestingly, ATF4 was activated in calcified aortas and calcified VSMCs in vitro. ATF4 knockdown attenuated ERS-induced apoptosis in calcified VSMCs. ATF4 deficiency blocked VSMC calcification and negatively regulated the osteoblast phenotypic transition of VSMCs in vitro. Our results demonstrate that ATF4 was involved at least in part in the process of ERS-mediated apoptosis contributing to VC.

  9. Increased Accumulation of Carbohydrates and Decreased Photosynthetic Gene Transcript Levels in Wheat Grown at an Elevated CO2 Concentration in the Field.

    PubMed Central

    Nie, G.; Hendrix, D. L.; Webber, A. N.; Kimball, B. A.; Long, S. P.

    1995-01-01

    Repression of photosynthetic genes by increased soluble carbohydrate concentrations may explain acclimation of photosynthesis to elevated CO2 concentration. This hypothesis was examined in a field crop of spring wheat (Triticum aestivum L.) grown at both ambient (approximately 360 [mu]mol mol-1) and elevated (550 [mu]mol mol-1) atmospheric CO2 concentrations using free-air CO2 enrichment at Maricopa, Arizona. The correspondence of steady-state levels of mRNA transcripts (coding for the 83-kD photosystem I apoprotein, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, phosphoglycerokinase, and the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase) with leaf carbohydrate concentrations (glucose-6-phosphate, glucose, fructose, sucrose, fructans, and starch) was examined at different stages of crop and leaf development and through the diurnal cycle. Overall only a weak correspondence between increased soluble carbohydrate concentrations and decreased levels for nuclear gene transcripts was found. The difference in soluble carbohydrate concentration between leaves grown at elevated and current ambient CO2 concentrations diminished with crop development, whereas the difference in transcript levels increased. In the flag leaf, soluble carbohydrate concentrations declined markedly with the onset of grain filling; yet transcript levels also declined. The results suggest that, whereas the hypothesis may hold well in model laboratory systems, many other factors modified its significance in this field wheat crop. PMID:12228521

  10. Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF-κB

    PubMed Central

    Park, Sang Eun; Yi, Hye Jin; Suh, Nayoung; Park, Yun-Yong; Koh, Jae-Young; Jeong, Seong-Yun; Cho, Dong-Hyung; Kim, Choung-Soo; Hwang, Jung Jin

    2016-01-01

    We previously reported that BIX-01294 (BIX), a small molecular inhibitor of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), induces reactive oxygen species (ROS)-dependent autophagy in MCF-7 cells. Herein, we analyzed the epigenetic mechanism that regulates the transcription of Beclin-1, a tumor suppressor and an autophagy-related gene (ATG). Inhibition of EHMT2 reduced dimethylation of lysine 9 on histone H3 (H3K9me2) and dissociated EHMT2 and H3K9me2 from the promoter of Beclin-1. To this promoter, RNA polymerase II and nuclear factor kappa B (NF-κB) were recruited in a ROS-dependent manner, resulting in transcriptional activation. Moreover, treatment with BIX reversed the suppression of Beclin-1 by the cooperative action of EHMT2 and DNA methyltransferase 1 (DNMT1). Accordingly, a combination treatment with BIX and 5-Aza-2′-deoxycytidine (5-Aza-Cd), a DNMT1 inhibitor, exerted a synergistic effect on Beclin-1 expression. Importantly, high levels of EHMT2 expression showed a significant association with low levels of Beclin-1 expression, which was related to a poor prognosis. These findings suggest that EHMT2 can directly repress Beclin-1 and that the inhibition of EHMT2 may be a useful therapeutic approach for cancer prevention by activating autophagy. PMID:27174920

  11. Increased IL17A, IFNG, and FOXP3 Transcripts in Moderate-Severe Psoriasis: A Major Influence Exerted by IL17A in Disease Severity.

    PubMed

    de Oliveira, Priscilla Stela Santana; Pereira, Michelly Cristiny; Silva de Paula, Simão Kalebe; Lima, Emerson Vasconcelos Andrade; Lima, Mariana Modesto de Andrade; de Arruda, Rodrigo Gomes; de Oliveira, Wagner Luís Mendes; Duarte, Ângela Luzia Branco Pinto; Pitta, Ivan da Rocha; Rêgo, Moacyr Jesus Melo Barreto; Galdino da Rocha Pitta, Maira

    2016-01-01

    Psoriasis is a chronic and recurrent dermatitis, mediated by keratinocytes and T cells. Several proinflammatory cytokines contribute to formation and maintenance of psoriatic plaque. The Th1/Th17 pathways and some of IL-1 family members were involved in psoriasis pathogenesis and could contribute to disease activity. Therefore, we sought to analyse skin transcript levels of IL17A, IL22, RORC, IL8, IFNG, IL33, IL36A, FOXP3, and IL10 and correlate with clinic of patients with plaque-type psoriasis. In order to conduct that, we collected punch biopsies from lesional skin and obtained tissue RNA. After reverse transcription, qRT-PCR quantified the relative mRNA expression. The main results revealed increased transcripts levels of IL17A, IFNG, and FOXP3 in moderate-severe patients. Despite this, only IL17A can increase the chance to worsen disease severity. We also observed many significant positive correlations between each transcript. In conclusion, IL17A is elevated in lesional skin from psoriasis patients and plays crucial role in disease severity.

  12. A Mutation in a Saccharomyces Cerevisiae Gene (Rad3) Required for Nucleotide Excision Repair and Transcription Increases the Efficiency of Mismatch Correction

    PubMed Central

    Yang, Y.; Johnson, A. L.; Johnston, L. H.; Siede, W.; Friedberg, E. C.; Ramachandran, K.; Kunz, B. A.

    1996-01-01

    RAD3 functions in DNA repair and transcription in Saccharomyces cerevisiae and particular rad3 alleles confer a mutator phenotype, possibly as a consequence of defective mismatch correction. We assessed the potential involvement of the Rad3 protein in mismatch correction by comparing heteroduplex repair in isogenic rad3-1 and wild-type strains. The rad3-1 allele increased the spontaneous mutation rate but did not prevent heteroduplex repair or bias its directionality. Instead, the efficiency of mismatch correction was enhanced in the rad3-1 strain. This surprising result prompted us to examine expression of yeast mismatch repair genes. We determined that MSH2, but not MLH1, is transcriptionally regulated during the cell-cycle like PMS1, and that rad3-1 does not increase the transcript levels for these genes in log phase cells. These observations suggest that the rad3-1 mutation gives rise to an enhanced efficiency of mismatch correction via a process that does not involve transcriptional regulation of mismatch repair. Interestingly, mismatch repair also was more efficient when error-editing by yeast DNA polymerase δ was eliminated. We discuss our results in relation to possible mechanisms that may link the rad3-1 mutation to mismatch correction efficiency. PMID:8889512

  13. Increased IL17A, IFNG, and FOXP3 Transcripts in Moderate-Severe Psoriasis: A Major Influence Exerted by IL17A in Disease Severity

    PubMed Central

    de Oliveira, Priscilla Stela Santana; Pereira, Michelly Cristiny; Silva de Paula, Simão Kalebe; Lima, Emerson Vasconcelos Andrade; Lima, Mariana Modesto de Andrade; de Arruda, Rodrigo Gomes; Duarte, Ângela Luzia Branco Pinto; Pitta, Ivan da Rocha

    2016-01-01

    Psoriasis is a chronic and recurrent dermatitis, mediated by keratinocytes and T cells. Several proinflammatory cytokines contribute to formation and maintenance of psoriatic plaque. The Th1/Th17 pathways and some of IL-1 family members were involved in psoriasis pathogenesis and could contribute to disease activity. Therefore, we sought to analyse skin transcript levels of IL17A, IL22, RORC, IL8, IFNG, IL33, IL36A, FOXP3, and IL10 and correlate with clinic of patients with plaque-type psoriasis. In order to conduct that, we collected punch biopsies from lesional skin and obtained tissue RNA. After reverse transcription, qRT-PCR quantified the relative mRNA expression. The main results revealed increased transcripts levels of IL17A, IFNG, and FOXP3 in moderate-severe patients. Despite this, only IL17A can increase the chance to worsen disease severity. We also observed many significant positive correlations between each transcript. In conclusion, IL17A is elevated in lesional skin from psoriasis patients and plays crucial role in disease severity. PMID:28042206

  14. Hsp90 inhibition increases SOCS3 transcript and regulates migration and cell death in chronic lymphocytic leukemia

    PubMed Central

    Chen, Timothy L.; Gupta, Nikhil; Lehman, Amy; Ruppert, Amy S.; Yu, Lianbo; Oakes, Christopher C.; Claus, Rainer; Plass, Christoph; Maddocks, Kami J.; Andritsos, Leslie; Jones, Jeffery A.; Lucas, David M.; Johnson, Amy J.; Byrd, John C.; Hertlein, Erin

    2016-01-01

    Epigenetic or transcriptional silencing of important tumor suppressors has been described to contribute to cell survival and tumorigenesis in chronic lymphocytic leukemia (CLL). Using gene expression microarray analysis, we found that thousands of genes are repressed more than 2-fold in CLL compared to normal B cells; however therapeutic approaches to reverse this have been limited in CLL. Following treatment with the Hsp90 inhibitor 17-DMAG, a significant number of these repressed genes were significantly re-expressed. One of the genes significantly repressed in CLL and up-regulated by 17-DMAG was suppressor of cytokine signaling 3, (SOCS3). SOCS3 has been shown to be silenced in solid tumors as well as myeloid leukemia; however little is known about the regulation in CLL. We found that 17-DMAG induces expression of SOCS3 by via the activation of p38 signaling, and subsequently inhibits AKT and STAT3 phosphorylation resulting in downstream effects on cell migration and survival. We therefore suggest that SOCS3 is an important signaling protein in CLL, and Hsp90 inhibitors represent a novel approach to target transcriptional repression in B cell lymphoproliferative disorders which exhibit a substantial degree of gene repression. PMID:27107422

  15. Hsp90 inhibition increases SOCS3 transcript and regulates migration and cell death in chronic lymphocytic leukemia.

    PubMed

    Chen, Timothy L; Gupta, Nikhil; Lehman, Amy; Ruppert, Amy S; Yu, Lianbo; Oakes, Christopher C; Claus, Rainer; Plass, Christoph; Maddocks, Kami J; Andritsos, Leslie; Jones, Jeffery A; Lucas, David M; Johnson, Amy J; Byrd, John C; Hertlein, Erin

    2016-05-10

    Epigenetic or transcriptional silencing of important tumor suppressors has been described to contribute to cell survival and tumorigenesis in chronic lymphocytic leukemia (CLL). Using gene expression microarray analysis, we found that thousands of genes are repressed more than 2-fold in CLL compared to normal B cells; however therapeutic approaches to reverse this have been limited in CLL. Following treatment with the Hsp90 inhibitor 17-DMAG, a significant number of these repressed genes were significantly re-expressed. One of the genes significantly repressed in CLL and up-regulated by 17-DMAG was suppressor of cytokine signaling 3, (SOCS3). SOCS3 has been shown to be silenced in solid tumors as well as myeloid leukemia; however little is known about the regulation in CLL. We found that 17-DMAG induces expression of SOCS3 by via the activation of p38 signaling, and subsequently inhibits AKT and STAT3 phosphorylation resulting in downstream effects on cell migration and survival. We therefore suggest that SOCS3 is an important signaling protein in CLL, and Hsp90 inhibitors represent a novel approach to target transcriptional repression in B cell lymphoproliferative disorders which exhibit a substantial degree of gene repression.

  16. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway.

    PubMed

    Hsu, Shih-Che; Huang, Shih-Ming; Chen, Ann; Sun, Chiao-Yin; Lin, Shih-Hua; Chen, Jin-Shuen; Liu, Shu-Ting; Hsu, Yu-Juei

    2014-08-01

    The Klotho gene functions as an aging suppressor gene. Evidence from animal models suggests that induction of Klotho expression may be a potential treatment for age-associated diseases. However, the molecular mechanism involved in regulating renal Klotho gene expression remains unclear. In this study, we determined that resveratrol, a natural polyphenol, induced renal Klotho expression both in vivo and in vitro. In the mouse kidney, resveratrol administration markedly increased both Klotho mRNA and protein expression. In resveratrol-treated NRK-52E cells, increased Klotho expression was accompanied by the upregulation and nuclear translocation of activating transcription factor 3 (ATF3) and c-Jun. ATF3 or c-Jun overexpression enhanced the transcriptional activation of Klotho. Conversely, resveratrol-induced Klotho expression was attenuated in the presence of dominant-negative ATF3 or c-Jun. Coimmunoprecipitation and a chromatin immunoprecipitation assay revealed that ATF3 physically interacted with c-Jun and that the ATF3/c-Jun complex directly bound to the Klotho promoter through ATF3- and AP-1-binding elements. c-Jun cotransfection augmented the effects of ATF3 on Klotho transcription in vitro. Although Sirtuin 1 mRNA expression was induced by resveratrol and involved in regulating Klotho mRNA expression, it was not the primary cause for the aforementioned ATF3/c-Jun pathway. In summary, resveratrol enhances the renal expression of the anti-aging Klotho gene, and the transcriptional factors ATF3 and c-Jun functionally interact and coordinately regulate the resveratrol-mediated transcriptional activation of Klotho.

  17. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

    PubMed

    Sasano, Yu; Watanabe, Daisuke; Ukibe, Ken; Inai, Tomomi; Ohtsu, Iwao; Shimoi, Hitoshi; Takagi, Hiroshi

    2012-04-01

    Lignocellulosic biomass is a promising source for bioethanol production, because it is abundant worldwide and has few competing uses. However, the treatment of lignocelllulosic biomass with weak acid to release cellulose and hemicellulose generates many kinds of byproducts including furfural and 5-hydroxymethylfurfural, which inhibit fermentation by yeast, because they generate reactive oxygen species (ROS) in cells. In order to acquire high tolerance to oxidative stress in bioethanol yeast strains, we focused on the transcription activator Msn2 of Saccharomyces cerevisiae, which regulates numerous genes involved in antioxidative stress responses, and constructed bioethanol yeast strains that overexpress Msn2 constitutively. The Msn2-overexpressing bioethanol strains showed tolerance to oxidative stress, probably due to the high-level expression of various antioxidant enzyme genes. Unexpectedly, these strains showed ethanol sensitivity compared with the control strain, probably due to imbalance of the expression level between Msn2 and Msn4. In the presence of furfural, the engineered strains exhibited reduced intracellular ROS levels, and showed rapid growth compared with the control strain. The fermentation test in the presence of furfural revealed that the Msn2-overexpressing strains showed improvement of the initial rate of fermentation. Our results indicate that overexpression of the transcription activator Msn2 in bioethanol yeast strains confers furfural tolerance by reducing the intracellular ROS levels and enhances the initial rate of fermentation in the presence of furfural, suggesting that these strains are capable of adapting rapidly to various compounds that inhibit fermentation by inducing ROS accumulation. Our results not only promise to improve bioethanol production from lignocellulosic biomass, but also provide novel insights for molecular breeding of industrial yeast strains.

  18. Heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by increasing protein translation of selected transcripts in cancer cells.

    PubMed

    Chang, Elizabeth T; Parekh, Palak R; Yang, Qingyuan; Nguyen, Duc M; Carrier, France

    2016-03-01

    The heterogenous ribonucleoprotein A18 (hnRNP A18) promotes tumor growth by coordinating the translation of selected transcripts associated with proliferation and survival. hnRNP A18 binds to and stabilizes the transcripts of pro-survival genes harboring its RNA signature motif in their 3'UTRs. hnRNP A18 binds to ATR, RPA, TRX, HIF-1α and several protein translation factor mRNAs on polysomes and increases de novo protein translation under cellular stress. Most importantly, down regulation of hnRNP A18 decreases proliferation, invasion and migration in addition to significantly reducing tumor growth in two mouse xenograft models, melanoma and breast cancer. Moreover, tissue microarrays performed on human melanoma, prostate, breast and colon cancer indicate that hnRNP A18 is over expressed in 40 to 60% of these malignant tissue as compared to normal adjacent tissue. Immunohistochemistry data indicate that hnRNP A18 is over expressed in the stroma and hypoxic areas of human tumors. These data thus indicate that hnRNP A18 can promote tumor growth in in vivo models by coordinating the translation of pro-survival transcripts to support the demands of proliferating cells and increase survival under cellular stress. hnRNP A18 therefore represents a new target to selectively inhibit protein translation in tumor cells.

  19. Effects of Zn Fertilization on Hordein Transcripts at Early Developmental Stage of Barley Grain and Correlation with Increased Zn Concentration in the Mature Grain

    PubMed Central

    Uddin, Mohammad Nasir; Kaczmarczyk, Agnieszka; Vincze, Eva

    2014-01-01

    Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers) which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization. PMID:25250985

  20. Effects of Zn fertilization on hordein transcripts at early developmental stage of barley grain and correlation with increased Zn concentration in the mature grain.

    PubMed

    Uddin, Mohammad Nasir; Kaczmarczyk, Agnieszka; Vincze, Eva

    2014-01-01

    Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers) which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization.

  1. p53 increase mitochondrial copy number via up-regulation of mitochondrial transcription factor A in colorectal cancer

    PubMed Central

    Zhang, Linhao; Zhou, Hongying; Fang, Dingzhi; Feng, Shi

    2016-01-01

    In colorectal cancer, no study has been carried out discovering the relationship among p53, mitochondrial transcription factor A (TFAM) expression and change of mitochondrial DNA (mtDNA) copy number. In our study, co-expression of p53 and TFAM was observed in colon adenocarcinoma tissues, paracancerous tissues and 9 colorectal cancer cell lines. Then, a significant linear correlation was established between either p53 or TFAM expression and advanced TNM stage, positive lymph nodes and low 5-year survival rate in patients with colon adenocarcinoma. Additionally, advanced TNM stage, large tumor burden, presence of distant metastasis, and high TFAM expression were significantly related to poor overall 5-years survival. Moreover, alteration of p53 expression could change TFAM expression but TFAM could not influence p53 expression, and p53 could enhance TFAM expression via binding to TFAM promoter. While, both of p53 and TFAM expression could incrase mtDNA copy number in vitro. In conclusions, p53 might incrase mtDNA copy number through its regulation on TFAM expression via TFAMpromoter. PMID:27732955

  2. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.

    PubMed

    Maloney, James P; Branchford, Brian R; Brodsky, Gary L; Cosmic, Maxwell S; Calabrese, David W; Aquilante, Christina L; Maloney, Kelly W; Gonzalez, Joseph R; Zhang, Weiming; Moreau, Kerrie L; Wiggins, Kerri L; Smith, Nicholas L; Broeckel, Ulrich; Di Paola, Jorge

    2017-03-16

    Ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) degrades the purines ATP and ADP that are key regulators of inflammation and clotting. We hypothesized that NTPDase1 polymorphisms exist and that they regulate this pathway. We sequenced the ENTPD1 gene (encoding NTPDase1) in 216 subjects then assessed genotypes in 2 cohorts comprising 2213 humans to identify ENTPD1 polymorphisms associated with venous thromboembolism (VTE). The G allele of the intron 1 polymorphism rs3176891 was more common in VTE vs. controls (odds ratio 1.26-1.9); it did not affect RNA splicing, but it was in strong linkage disequilibrium with the G allele of the promoter polymorphism rs3814159, which increased transcriptional activity by 8-fold. Oligonucleotides containing the G allele of this promoter region bound nuclear extracts more avidly. Carriers of rs3176891 G had endothelial cells with increased NTPDase1 activity and protein expression, and had platelets with enhanced aggregation. Thus, the G allele of rs3176891 marks a haplotype associated with increased clotting and platelet aggregation attributable to a promoter variant associated with increased transcription, expression, and activity of NTPDase1. We term this gain-of-function phenotype observed with rs3814159 G "CD39 Denver."-Maloney, J. P., Branchford, B. R., Brodsky, G. L., Cosmic, M. S., Calabrese, D. W., Aquilante, C. L., Maloney, K. W., Gonzalez, J. R., Zhang, W., Moreau, K. L., Wiggins, K. L., Smith, N. L., Broeckel, U., Di Paola, J. The ENTPD1 promoter polymorphism -860 A > G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk.

  3. Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid-dependent mechanism.

    PubMed

    Smith, Ira J; Alamdari, Nima; O'Neal, Patrick; Gonnella, Patricia; Aversa, Zaira; Hasselgren, Per-Olof

    2010-05-01

    Sepsis-induced muscle wasting has severe clinical consequences, including muscle weakness, need for prolonged ventilatory support and stay in the intensive care unit, and delayed ambulation with risk for pulmonary and thromboembolic complications. Understanding molecular mechanisms regulating loss of muscle mass in septic patients therefore has significant clinical implications. Forkhead Box O (FOXO) transcription factors have been implicated in muscle wasting, partly reflecting upregulation of the ubiquitin ligases atrogin-1 and MuRF1. The influence of sepsis on FOXO transcription factors in skeletal muscle is poorly understood. We tested the hypothesis that sepsis upregulates expression and activity of FOXO transcription factors in skeletal muscle by a glucocorticoid-dependent mechanism. Sepsis in rats increased muscle FOXO1 and 3a mRNA and protein levels but did not influence FOXO4 expression. Nuclear FOXO1 levels and DNA binding activity were increased in septic muscle whereas FOXO3a nuclear levels were not increased during sepsis. Sepsis-induced expression of FOXO1 was reduced by the glucocorticoid receptor antagonist RU38486 and treatment of rats with dexamethasone increased FOXO1 mRNA levels suggesting that the expression of FOXO1 is regulated by glucocorticoids. Reducing FOXO1, but not FOXO3a, expression by siRNA in cultured L6 myotubes inhibited dexamethasone-induced atrogin-1 and MuRF1 expression, further supporting a role of FOXO1 in glucocorticoid-regulated muscle wasting. Results suggest that sepsis increases FOXO1 expression and activity in skeletal muscle by a glucocorticoid-dependent mechanism and that glucocorticoid-dependent upregulation of atrogin-1 and MuRF1 in skeletal muscle is regulated by FOXO1. The study is significant because it provides novel information about molecular mechanisms involved in sepsis-induced muscle wasting.

  4. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  5. The Transcriptional Heat Shock Response of Salmonella Typhimurium Shows Hysteresis and Heated Cells Show Increased Resistance to Heat and Acid Stress

    PubMed Central

    Pin, Carmen; Hansen, Trine; Muñoz-Cuevas, Marina; de Jonge, Rob; Rosenkrantz, Jesper T.; Löfström, Charlotta; Aarts, Henk; Olsen, John E.

    2012-01-01

    We investigated if the transcriptional response of Salmonella Typhimurium to temperature and acid variations was hysteretic, i.e. whether the transcriptional regulation caused by environmental stimuli showed memory and remained after the stimuli ceased. The transcriptional activity of non-replicating stationary phase cells of S. Typhimurium caused by the exposure to 45°C and to pH 5 for 30 min was monitored by microarray hybridizations at the end of the treatment period as well as immediately and 30 minutes after conditions were set back to their initial values, 25°C and pH 7. One hundred and two out of 120 up-regulated genes during the heat shock remained up-regulated 30 minutes after the temperature was set back to 25°C, while only 86 out of 293 down regulated genes remained down regulated 30 minutes after the heat shock ceased. Thus, the majority of the induced genes exhibited hysteresis, i.e., they remained up-regulated after the environmental stress ceased. At 25°C the transcriptional regulation of genes encoding for heat shock proteins was determined by the previous environment. Gene networks constructed with up-regulated genes were significantly more modular than those of down-regulated genes, implying that down-regulation was significantly less synchronized than up-regulation. The hysteretic transcriptional response to heat shock was accompanied by higher resistance to inactivation at 50°C as well as cross-resistance to inactivation at pH 3; however, growth rates and lag times at 43°C and at pH 4.5 were not affected. The exposure to pH 5 only caused up-regulation of 12 genes and this response was neither hysteretic nor accompanied of increased resistance to inactivation conditions. Cellular memory at the transcriptional level may represent a mechanism of adaptation to the environment and a deterministic source of variability in gene regulation. PMID:23236453

  6. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes

    PubMed Central

    Soomro, Asim; Waye, John S.; Paterson, Andrew D.; Rivard, Georges E.; Wilson, Michael D.

    2017-01-01

    Quebec Platelet disorder (QPD) is a unique bleeding disorder that markedly increases urokinase plasminogen activator (uPA) in megakaryocytes and platelets but not in plasma or urine. The cause is tandem duplication of a 78 kb region of chromosome 10 containing PLAU (the uPA gene) and C10orf55, a gene of unknown function. QPD increases uPA in platelets and megakaryocytes >100 fold, far more than expected for a gene duplication. To investigate the tissue-specific effect that PLAU duplication has on gene expression and transcript structure in QPD, we tested if QPD leads to: 1) overexpression of normal or unique PLAU transcripts; 2) increased uPA in leukocytes; 3) altered levels of C10orf55 mRNA and/or protein in megakaryocytes and leukocytes; and 4) global changes in megakaryocyte gene expression. Primary cells and cultured megakaryocytes from donors were prepared for quantitative reverse polymerase chain reaction analyses, RNA-seq and protein expression analyses. Rapidly isolated blood leukocytes from QPD subjects showed only a 3.9 fold increase in PLAU transcript levels, in keeping with the normal to minimally increased uPA in affinity purified, QPD leukocytes. All subjects had more uPA in granulocytes than monocytes and minimal uPA in lymphocytes. QPD leukocytes expressed PLAU alleles in proportions consistent with an extra copy of PLAU on the disease chromosome, unlike QPD megakaryocytes. QPD PLAU transcripts were consistent with reference gene models, with a much higher proportion of reads originating from the disease chromosome in megakaryocytes than granulocytes. QPD and control megakaryocytes contained minimal reads for C10orf55, and C10orf55 protein was not increased in QPD megakaryocytes or platelets. Finally, our QPD megakaryocyte transcriptome analysis revealed a global down regulation of the interferon type 1 pathway. We suggest that the low endogenous levels of uPA in blood are actively regulated, and that the regulatory mechanisms are disrupted in QPD

  7. NF-κB signaling pathway is inhibited by heat shock independently of active transcription factor HSF1 and increased levels of inducible heat shock proteins.

    PubMed

    Janus, Patryk; Pakuła-Cis, Małgorzata; Kalinowska-Herok, Magdalena; Kashchak, Natalia; Szołtysek, Katarzyna; Pigłowski, Wojciech; Widlak, Wieslawa; Kimmel, Marek; Widlak, Piotr

    2011-12-01

    NF-κB transcription factor regulates numerous genes important for inflammation, immune responses and cell survival. HSF1 is the primary transcription factor activated under stress conditions that is responsible for induction of genes encoding heat shock proteins. Previous studies have shown that the NF-κB activation pathway is blocked by heat shock possibly involving heat shock proteins. Here, we investigate whether active HSF1 inhibited this pathway in the absence of stress conditions. Activation of the NF-κB pathway and expression of NF-κB-dependent genes were analyzed in TNFα-stimulated U-2 OS human osteosarcoma cells that were either heat-shocked or engineered to express a constitutively active form of HSF1 in the absence of heat shock. As expected, heat shock resulted in a general blockade in the degradation of the IκBα inhibitor, nuclear translocation of NF-κB and expression of NF-κB-dependent target genes. In marked contrast, the presence of constitutively active HSF1 did not block TNFα-induced activation of the NF-κB pathway or expression of a set of the NF-κB-dependent genes. We conclude that in the absence of heat shock, the NF-κB activation pathway is inhibited by neither active HSF1 transcription factor nor by increased levels of HSF1-induced heat shock proteins.

  8. Requirement of Histone Methyltransferase SMYD3 for Estrogen Receptor-mediated Transcription*

    PubMed Central

    Kim, Hyunjung; Heo, Kyu; Kim, Jeong Hoon; Kim, Kyunghwan; Choi, Jongkyu; An, Woojin

    2009-01-01

    SMYD3 is a SET domain-containing protein with histone methyltransferase activity on histone H3–K4. Recent studies showed that SMYD3 is frequently overexpressed in different types of cancer cells, but how SMYD3 regulates the development and progression of these malignancies remains unknown. Here, we report the previously unrecognized role of SMYD3 in estrogen receptor (ER)-mediated transcription via its histone methyltransferase activity. We demonstrate that SMYD3 functions as a coactivator of ERα and potentiates ERα activity in response to ligand. SMYD3 directly interacts with the ligand binding domain of ER and is recruited to the proximal promoter regions of ER target genes upon gene induction. Importantly, our chromatin immunoprecipitation analyses provide compelling evidence that SMYD3 is responsible for the accumulation of di- and trimethylation of H3–K4 at the induced ER target genes. Furthermore, RNA interference-directed down-regulation of SMYD3 reveals that SMYD3 is required for ER-regulated gene transcription in estrogen signaling pathway. Thus, our results identify SMYD3 as a new coactivator for ER-mediated transcription, providing a possible link between SMYD3 overexpression and breast cancer. PMID:19509295

  9. High yields and soluble expression of superoxide dismutases in Escherichia coli due to the HIV-1 Tat peptide via increases in mRNA transcription

    PubMed Central

    Sun, Yangdong; Ye, Qiao; Wu, Min; Wu, Yonghong; Zhang, Chenggang; Yan, Weiqun

    2016-01-01

    This study aimed to validate the high yield and soluble expression of proteins carrying the transactivator of transcription (Tat) peptide tag, and further explored the potential mechanism by which the Tat tag increases expression. Escherichia coli superoxide dismutase (SOD) proteins, including SodA, SodB and SodC, were selected for analysis. As expected, the yields and the solubility of Tat-tagged proteins were higher than those of Tat-free proteins, and similar results were observed for the total SOD enzyme activity. Bacterial cells that overexpressed Tat-tagged proteins exhibited increased anti-paraquat activity compared with those expressing Tat-free proteins that manifested as SodA>SodC>SodB. When compared with an MG1655 wild-type strain, the growth of a ΔSodA mutant strain was found to be inhibited after paraquat treatment; the growth of ΔSodB and ΔSodC mutant strains was also slightly inhibited. The mRNA transcript level of genes encoding Tat-tagged proteins was higher than that of genes encoding Tat-free proteins. Furthermore, the α-helix and turn of Tat-tagged proteins were higher than those of Tat-free proteins, but the β-sheet and random coil content was lower. These results indicated that the incorporation of the Tat core peptide as a significant basic membrane transduction peptide in fusion proteins could increase mRNA transcripts and promote the high yield and soluble expression of heterologous proteins in E. coli. PMID:27741225

  10. Increased readthrough transcription across the simian virus 5 M-F gene junction leads to growth defects and a global inhibition of viral mRNA synthesis.

    PubMed

    Parks, G D; Ward, K R; Rassa, J C

    2001-03-01

    Recombinant simian virus 5 (rSV5) mutants containing substitutions in the M-F intergenic region were generated to determine the effect of increased readthrough transcription on the paramyxovirus growth cycle. We have previously shown, using an SV5 dicistronic minigenome, that replacement of the 22-base M-F intergenic region with a foreign sequence results in a template (Rep22) that directs very high levels of M-F readthrough transcription. An rSV5 containing the Rep22 substitution grew slower and to final titers that were 50- to 80-fold lower than those of wild-type (WT) rSV5. Cells infected with the Rep22 virus produced very low levels of monocistronic M and F mRNA, consistent with the M-F readthrough phenotype. Surprisingly, Rep22 virus-infected cells also displayed a global decrease in the accumulation of viral mRNA from genes located upstream and downstream of the M-F junction, and overall viral protein synthesis was reduced. Second-site revertants of the Rep22 virus that had regained WT transcription and growth properties contained a single base substitution that increased the M gene end U tract from four to eight residues, suggesting that the growth defects originated from higher-than-normal M-F readthrough transcription. Thus, the primary growth defect for the Rep22 virus appears to be in viral RNA synthesis and not in morphogenesis. A second rSV5 virus (G14), which contained a different foreign M-F intergenic sequence, grew to similar or slightly higher titers than WT rSV5 in some cell types and produced ~1.5- to 2-fold more mRNA and viral protein. The data support the hypothesis that inhibition of Rep22 virus growth is due to increased access by the polymerase to the 5' end of the genome and to the resulting overexpression of L protein. We propose that the elevated naturally occurring M-F readthrough which is characteristic of many paramyxoviruses serves as a mechanism to fine-tune the level of polymerase that is optimal for virus growth.

  11. Hepatitis B virus X protein induces RNA polymerase III-dependent gene transcription and increases cellular TATA-binding protein by activating the Ras signaling pathway.

    PubMed

    Wang, H D; Trivedi, A; Johnson, D L

    1997-12-01

    Our previous studies have shown that the hepatitis B virus protein, X, activates all three classes of RNA polymerase III (pol III)-dependent promoters by increasing the cellular level of TATA-binding protein (TBP) (H.-D. Wang et al., Mol. Cell. Biol. 15:6720-6728, 1995), a limiting transcription component (A. Trivedi et al., Mol. Cell. Biol. 16:6909-6916, 1996). We have investigated whether these X-mediated events are dependent on the activation of the Ras/Raf-1 signaling pathway. Transient expression of a dominant-negative mutant Ras gene (Ras-ala15) in a Drosophila S-2 stable cell line expressing X (X-S2), or incubation of the cells with a Ras farnesylation inhibitor, specifically blocked both the X-dependent activation of a cotransfected tRNA gene and the increase in cellular TBP levels. Transient expression of a constitutively activated form of Ras (Ras-val12) in control S2 cells produced both an increase in tRNA gene transcription and an increase in cellular TBP levels. These events are not cell type specific since X-mediated gene induction was also shown to be dependent on Ras activation in a stable rat 1A cell line expressing X. Furthermore, increases in RNA pol III-dependent gene activity and TBP levels could be restored in X-S2 cells expressing Ras-ala15 by coexpressing a constitutively activated form of Raf-1. These events are serum dependent, and when the cells are serum deprived, the X-mediated effects are augmented. Together, these results demonstrate that the X-mediated induction of RNA pol III-dependent genes and increase in TBP are both dependent on the activation of the Ras/Raf-1 signaling cascade. In addition, these studies define two new and important consequences mediated by the activation of the Ras signal transduction pathway: an increase in the central transcription factor, TBP, and the induction of RNA pol III-dependent gene activity.

  12. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability.

    PubMed

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant'Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-11-23

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity.

  13. Rice and Bean Targets for Biofortification Combined with High Carotenoid Content Crops Regulate Transcriptional Mechanisms Increasing Iron Bioavailability

    PubMed Central

    Dias, Desirrê Morais; de Castro Moreira, Maria Eliza; Gomes, Mariana Juste Contin; Lopes Toledo, Renata Celi; Nutti, Marilia Regini; Pinheiro Sant’Ana, Helena Maria; Martino, Hércia Stampini Duarte

    2015-01-01

    Iron deficiency affects thousands of people worldwide. Biofortification of staple food crops aims to support the reduction of this deficiency. This study evaluates the effect of combinations of common beans and rice, targets for biofortification, with high carotenoid content crops on the iron bioavailability, protein gene expression, and antioxidant effect. Iron bioavailability was measured by the depletion/repletion method. Seven groups were tested (n = 7): Pontal bean (PB); rice + Pontal bean (R + BP); Pontal bean + sweet potato (PB + SP); Pontal bean + pumpkin (PB + P); Pontal bean + rice + sweet potato (PB + R + P); Pontal bean + rice + sweet potato (PB + R + SP); positive control (Ferrous Sulfate). The evaluations included: hemoglobin gain, hemoglobin regeneration efficiency (HRE), gene expression of divalente metal transporter 1 (DMT-1), duodenal citocromo B (DcytB), ferroportin, hephaestin, transferrin and ferritin and total plasma antioxidant capacity (TAC). The test groups, except the PB, showed higher HRE (p < 0.05) than the control. Gene expression of DMT-1, DcytB and ferroportin increased (p < 0.05) in the groups fed with high content carotenoid crops (sweet potato or pumpkin). The PB group presented lower (p < 0.05) TAC than the other groups. The combination of rice and common beans, and those with high carotenoid content crops increased protein gene expression, increasing the iron bioavailability and antioxidant capacity. PMID:26610564

  14. Increased expression of bHLH Transcription Factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    PubMed Central

    Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/ influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer. PMID:22564737

  15. Disruption of 3D MCF-12A Breast Cell Cultures by Estrogens – An In Vitro Model for ER-Mediated Changes Indicative of Hormonal Carcinogenesis

    PubMed Central

    Marchese, Stephanie; Silva, Elisabete

    2012-01-01

    Introduction Estrogens regulate the proliferation of normal and neoplastic breast epithelium. Although the intracellular mechanisms of estrogens in the breast are largely understood, little is known about how they induce changes in the structure of the mammary epithelium, which are characteristic of breast cancer. In vitro three dimensional (3D) cultures of immortalised breast epithelial cells recapitulate features of the breast epithelium in vivo, including formation of growth arrested acini with hollow lumen and basement membrane. This model can also reproduce features of malignant transformation and breast cancer, such as increased cellular proliferation and filling of the lumen. However, a system where a connection between estrogen receptor (ER) activation and disruption of acini formation can be studied to elucidate the role of estrogens is still missing. Methods/Principal Findings We describe an in vitro 3D model for breast glandular structure development, using breast epithelial MCF-12A cells cultured in a reconstituted basement membrane matrix. These cells are estrogen receptor (ER)α, ERβ and G-protein coupled estrogen receptor 1 (GPER) competent, allowing the investigation of the effects of estrogens on mammary gland formation and disruption. Under normal conditions, MCF-12A cells formed organised acini, with deposition of basement membrane and hollow lumen. However, treatment with 17β-estradiol, and the exogenous estrogens bisphenol A and propylparaben resulted in deformed acini and filling of the acinar lumen. When these chemicals were combined with ER and GPER inhibitors (ICI 182,780 and G-15, respectively), the deformed acini recovered normal features, such as a spheroid shape, proliferative arrest and luminal clearing, suggesting a role for the ER and GPER in the estrogenic disruption of acinar formation. Conclusion This new model offers the opportunity to better understand the role of the ER and GPER in the morphogenesis of breast glandular

  16. Hereditary cutaneous mucinosis in shar pei dogs is associated with increased hyaluronan synthase-2 mRNA transcription by cultured dermal fibroblasts.

    PubMed

    Zanna, Giordana; Docampo, María J; Fondevila, Dolors; Bardagí, Mar; Bassols, Anna; Ferrer, Lluís

    2009-10-01

    Shar pei dogs are known for the distinctive feature of thick, wrinkled skin as a consequence of high dermal mucin content. Excessive dermal deposition of mucinous substance leading to severe skin folding, and/or to the more severe vesicular form characterized by dermal vesicles or bullae, is highly prevalent in this breed and is known as idiopathic mucinosis. Hyaluronic acid (HA) is the main component that accumulates in the dermis, and high levels of HA have also been detected in the serum of shar pei dogs. In this study, the cellular and molecular mechanisms underlying cutaneous mucinosis of shar pei dogs were investigated. Thirteen shar pei dogs and four control dogs of other breeds were included. In primary dermal fibroblast cultures, transcription of the family of hyaluronan synthases (HAS) involved in HA synthesis, and of hyaluronidases (HYAL) involved in HA degradation, were studied by reverse transcriptase polymerase chain reaction. The location of HA in cell cultures was studied by immunofluorescence and confocal laser microscopy. Dermal fibroblasts transcribed HAS2, HAS3, HYAL1 and HYAL2, but no amplification for HAS1 was found. A higher transcription of HAS2 was demonstrated in shar pei dogs compared with control dogs. By confocal microscopy, HA was detected as a more diffuse and intense network-like pattern of green fluorescence in the fibroblast cells of shar pei dogs in comparison with control dogs. Together, these results provide additional evidence that hereditary cutaneous mucinosis in shar pei dogs may be a consequence of over-transcription or increased activity of HAS2.

  17. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Chen, Honglin; Liu, Liping; Wang, Lixia; Wang, Suhua; Cheng, Xuzhen

    2016-03-01

    Mung bean (Vigna radiata L.) is commonly grown in Asia as an important nutritional dry grain legume, as it can survive better in arid conditions than other crops. Abiotic stresses, such as drought and high-salt contents, negatively impact its growth and production. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors play a significant role in the response to these stress stimuli via transcriptional regulation of downstream genes containing the cis-element dehydration-responsive element (DRE). However, the molecular mechanisms involved in the drought tolerance of this species remain elusive, with very few reported candidate genes. No DREB2 ortholog has been reported for mung bean, and the function of mung bean DREB2 is not clear. In this study, a novel VrDREB2A gene with conserved AP2 domains and transactivation ability was isolated from mung bean. A modified VrDREB2A protein lacking the putative negative regulatory domain encoded by nucleotides 394-543 was shown to be localized in the nucleus. Expression of the VrDREB2A gene was induced by drought, high salt concentrations and abscisic acid treatment. Furthermore, comparing with the wild type Arabidopsis, the overexpression of VrDREB2A activated the expression of downstream genes in transgenic Arabidopsis, resulting in enhanced tolerance to drought and high-salt stresses and no growth retardation. The results from this study indicate that VrDREB2A functions as an important transcriptional activator and may help increase the abiotic stress tolerance of the mung bean plant.

  18. Increased levels of NOTCH1, NF-kappaB, and other interconnected transcription factors characterize primitive sets of hematopoietic stem cells.

    PubMed

    Panepucci, Rodrigo Alexandre; Oliveira, Lucila Habib B; Zanette, Dalila Luciola; Viu Carrara, Rita de Cassia; Araujo, Amélia Goes; Orellana, Maristela Delgado; Bonini de Palma, Patrícia Vianna; Menezes, Camila C B O; Covas, Dimas Tadeu; Zago, Marco Antonio

    2010-03-01

    As previously shown, higher levels of NOTCH1 and increased NF-kappaB signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow (BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells (CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency (than expected by chance) of NF-kappaB-binding sites (BS), including potentially novel NF-kappaB targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappaB, and other important TFs on more primitive HSC sets.

  19. Increased transforming growth factor β and interleukin 10 transcripts in peripheral blood mononuclear cells of colorectal cancer patients

    PubMed Central

    Stanilov, Noyko S.; Miteva, Lyuba; Cirovski, Geo

    2017-01-01

    Aim of the study The ability of immune cells in peripheral blood to produce certain cytokines affects tumour-elicited inflammation. The aim of this study was to investigate the gene expression of interleukin 12A (IL-12A), IL-12B, IL-23A, IL-10, IL-6, transforming growth factor β (TGF-β), HDAC3, and iNOS in peripheral blood mononuclear cells (PBMC) from colorectal cancer (CRC) patients. Material and methods The venous blood for PBMC isolation was collected preoperatively and 10 days after surgery, from CRC patients. After isolation of total RNA and synthesis of cDNA, quantitative real-time PCR assays were performed. Results Our results demonstrated that among investigated cytokine genes IL-10 and TGF-β were significantly upregulated in patients with CRC compared to the control group, while the expression of IL-23 mRNA was significantly decreased in CRC patients. We observed significantly increased mRNA levels in CRC patients’ PBMC before surgery for IL-10 and TGF-β compared to both postoperative and control groups. We also found a significant upregulation of iNOS in early compared to advanced CRC. Conclusions Based on the results we can assume that PBMC gene expression programming in CRC patients drives local differentiation of Th cells towards Treg instead of the Th1 anti-tumour subpopulation. PMID:28239283

  20. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata.

    PubMed

    Halitschke, Rayko; Baldwin, Ian T

    2003-12-01

    Inhibition of jasmonic acid (JA) signaling has been shown to decrease herbivore resistance, but the responsible mechanisms are largely unknown because insect resistance is poorly understood in most model plant systems. We characterize three members of the lipoxygenase (LOX) gene family in the native tobacco plant Nicotiana attenuata and manipulate, by antisense expression, a specific, wound- and herbivory-induced isoform (LOX3) involved in JA biosynthesis. In three independent lines, antisense expression reduced wound-induced JA accumulation but not the release of green leaf volatiles (GLVs). The impaired JA signaling reduced two herbivore-induced direct defenses, nicotine and trypsin protease inhibitors (TPI), as well as the potent indirect defense, the release of volatile terpenes that attract generalist predators to feeding herbivores. All these defenses could be fully restored by methyl-JA (MeJA) treatment, with the exception of the increase in TPI activity, which was partially restored, suggesting the involvement of additional signals. The impaired ability to produce chemical defenses resulted in lower resistance to Manduca sexta attack, which could also be restored by MeJA treatment. Expression analysis using a cDNA microarray, specifically designed to analyze M. sexta-induced gene expression in N. attenuata, revealed a pivotal role for LOX3-produced oxylipins in upregulating defense genes (protease inhibitor, PI; xyloglucan endotransglucosylase/hydrolase, XTH; threonine deaminase, TD; hydroperoxide lyase, HPL), suppressing both downregulated growth genes (RUBISCO and photosystem II, PSII) and upregulated oxylipin genes (alpha-dioxygenase, alpha-DOX). By genetically manipulating signaling in a plant with a well-characterized ecology, we demonstrate that the complex phenotypic changes that mediate herbivore resistance are controlled by a specific part of the oxylipin cascade.

  1. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  2. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase.

    PubMed

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10μg/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  3. Toxoplasma gondii Inhibits gamma interferon (IFN-γ)- and IFN-β-induced host cell STAT1 transcriptional activity by increasing the association of STAT1 with DNA.

    PubMed

    Rosowski, Emily E; Nguyen, Quynh P; Camejo, Ana; Spooner, Eric; Saeij, Jeroen P J

    2014-02-01

    The gamma interferon (IFN-γ) response, mediated by the STAT1 transcription factor, is crucial for host defense against the intracellular pathogen Toxoplasma gondii, but prior infection with Toxoplasma can inhibit this response. Recently, it was reported that the Toxoplasma type II NTE strain prevents the recruitment of chromatin remodeling complexes containing Brahma-related gene 1 (BRG-1) to promoters of IFN-γ-induced secondary response genes such as Ciita and major histocompatibility complex class II genes in murine macrophages, thereby inhibiting their expression. We report here that a type I strain of Toxoplasma inhibits the expression of primary IFN-γ response genes such as IRF1 through a distinct mechanism not dependent on the activity of histone deacetylases. Instead, infection with a type I, II, or III strain of Toxoplasma inhibits the dissociation of STAT1 from DNA, preventing its recycling and further rounds of STAT1-mediated transcriptional activation. This leads to increased IFN-γ-induced binding of STAT1 at the IRF1 promoter in host cells and increased global IFN-γ-induced association of STAT1 with chromatin. Toxoplasma type I infection also inhibits IFN-β-induced interferon-stimulated gene factor 3-mediated gene expression, and this inhibition is also linked to increased association of STAT1 with chromatin. The secretion of proteins into the host cell by a type I strain of Toxoplasma without complete parasite invasion is not sufficient to block STAT1-mediated expression, suggesting that the effector protein responsible for this inhibition is not derived from the rhoptries.

  4. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris.

    PubMed

    Cámara, Elena; Landes, Nils; Albiol, Joan; Gasser, Brigitte; Mattanovich, Diethard; Ferrer, Pau

    2017-03-15

    The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to reduce cell growth, lipase production and substrate consumption in high-copy strains. To better assess that physiological response, transcriptomics analysis was performed of a subset of strains with 1 to 15 ROL copies. The macroscopic physiological parameters confirm that growth yield and carbon uptake rate are gene dosage dependent, and were supported by the transcriptomic data, showing the impact of increased dosage of AOX1 promoter-regulated expression cassettes on P. pastoris physiology under steady methanolic growth conditions. Remarkably, increased number of cassettes led to transcription attenuation of the methanol metabolism and peroxisome biogenesis in P. pastoris, concomitant with reduced secretion levels of the heterologous product. Moreover, our data also point to a block in ROL mRNA translation in the higher ROL-copies constructs, while the low productivities of multi-copy strains under steady growth conditions do not appear to be directly related to UPR and ERAD induction.

  5. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris

    PubMed Central

    Cámara, Elena; Landes, Nils; Albiol, Joan; Gasser, Brigitte; Mattanovich, Diethard; Ferrer, Pau

    2017-01-01

    The methanol-regulated alcohol oxidase promoter (PAOX1) of Pichia pastoris is one of the strongest promoters for heterologous gene expression in this methylotrophic yeast. Although increasing gene dosage is one of the most common strategies to increase recombinant protein productivities, the increase of gene dosage of Rhizopus oryzae lipase (ROL) in P. pastoris has been previously shown to reduce cell growth, lipase production and substrate consumption in high-copy strains. To better assess that physiological response, transcriptomics analysis was performed of a subset of strains with 1 to 15 ROL copies. The macroscopic physiological parameters confirm that growth yield and carbon uptake rate are gene dosage dependent, and were supported by the transcriptomic data, showing the impact of increased dosage of AOX1 promoter-regulated expression cassettes on P. pastoris physiology under steady methanolic growth conditions. Remarkably, increased number of cassettes led to transcription attenuation of the methanol metabolism and peroxisome biogenesis in P. pastoris, concomitant with reduced secretion levels of the heterologous product. Moreover, our data also point to a block in ROL mRNA translation in the higher ROL-copies constructs, while the low productivities of multi-copy strains under steady growth conditions do not appear to be directly related to UPR and ERAD induction. PMID:28295011

  6. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    PubMed

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders.

  7. An unusual case of splenomegaly and increased lactate dehydrogenase heralding acute myeloid leukemia with eosinophilia and RUNX1–MECOM fusion transcripts

    PubMed Central

    Forghieri, Fabio; Bigliardi, Sara; Morselli, Monica; Potenza, Leonardo; Fantuzzi, Valeria; Faglioni, Laura; Nasillo, Vincenzo; Messerotti, Andrea; Paolini, Ambra; Luppi, Mario

    2014-01-01

    We report the first case of acute myeloid leukemia (AML) with RUNX1–MECOM fusion transcripts, showing marked eosinophilia. A 63-year old man admitted in August 2013, had previously been observed in April 2013, because of persisting homogeneous splenomegaly and increased LDH, which were initially attributed to both minor β-thalassemia and previous acute myocardial infarction. However, based upon the retrospective analysis of clinical features combined with the documentation of both JAK2 V617F and c-KIT D816V mutations at AML diagnosis, an aggressive leukemic transformation with eosinophilia of a previously unrecognized myeloproliferative neoplasm, rather than the occurrence of de novo AML, may be hypothesized. PMID:25379409

  8. Increase in gene-transcript levels as indicators of up-regulation of the unfolded protein response in spontaneous canine tumors.

    PubMed

    Elliot, Kirsten; MacDonald-Dickinson, Valerie; Linn, Kathleen; Simko, Elemir; Misra, Vikram

    2014-07-01

    The unfolded protein response (UPR), a conserved cellular response to stressors such as hypoxia and nutrient deprivation, is associated with angiogenesis and metastasis in tumor cells. This article discusses a pilot study conducted to determine whether components of the UPR could be identified in spontaneous canine tumors and whether they were up-regulated within tumor tissue compared with adjacent normal tissue. Tissue samples of various spontaneous canine neoplasms were taken from 13 dogs shortly after surgical excision or euthanasia; control samples were taken from adjacent normal tissue. RNA purification and real-time quantitative reverse-transcription polymerase chain reaction were done to measure the expression of 4 genes associated with the UPR (HERP, CHOP, GRP78, and XBP1s). The results indicated that UPR gene expression can be identified in spontaneous canine tumors and that the UPR is up-regulated, as indicated by significantly increased expression of CHOP and GRP78 within the tumor.

  9. Diammonium phosphate stimulates transcription of L-lactate dehydrogenase leading to increased L-lactate production in the thermotolerant Bacillus coagulans strain.

    PubMed

    Sun, Lifan; Li, Yanfeng; Wang, Limin; Wang, Yanping; Yu, Bo

    2016-08-01

    Exploration of cost-effective fermentation substrates for efficient lactate production is an important economic objective. Although some organic nitrogen sources are also cheaper, inorganic nitrogen salts for lactate fermentation have additional advantages in facilitating downstream procedures and significantly improving the commercial competitiveness of lactate production. In this study, we first established an application of diammonium phosphate to replace yeast extract with a reduced 90 % nitrogen cost for a thermotolerant Bacillus coagulans strain. In vivo enzymatic and transcriptional analyses demonstrated that diammonium phosphate stimulates the gene expression of L-lactate dehydrogenase, thus providing higher specific enzyme activity in vivo and increasing L-lactic acid production. This new information provides a foundation for establishing a cost-effective process for polymer-grade L-lactic acid production in an industrial setting.

  10. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin.

    PubMed

    Hurteau, Gregory J; Carlson, J Andrew; Spivack, Simon D; Brock, Graham J

    2007-09-01

    MicroRNAs are approximately 22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, deltaEF1, Nil-2-alpha) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in non-small-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal.

  11. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    PubMed

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain.

  12. The transcription of MGAT4A glycosyl transferase is increased in white cells of peripheral blood of Type 2 Diabetes patients

    PubMed Central

    López-Orduña, Eduardo; Cruz, Miguel; García-Mena, Jaime

    2007-01-01

    Background Human glycosylase IV is involved in GLUT2 transporter regulation in pancreatic β cells. A KO of this gene along with a high fat diet in a mice model has been associated with the development of type 2 diabetes (T2D). The aims of this study were to measure and compare the MGAT4A mRNA levels in white blood cells (WBC) from T2D subjects and healthy subjects (T2NB), and to measure the half-life of the MGAT4A mRNA. Results We studied a sample of 73 individuals, 40 T2D subjects and 33 T2NB subjects. Anthropometrical and biochemical profiles were registered. The MGAT4A mRNA levels in WBC and the transcript half-life in Jurkat T cells were determined by Real-Time PCR. A blood differential cell counting was made for each individual. Cell counting showed T2D subjects exhibited an increased number of WBC compared to T2NB subjects (P = 0.0001). Biochemical parameters such as fasting glucose (P = 0.0001), and triglycerides (P = 0.002) were statistically significant. T2D subjects had 4.2-fold more MGAT4A transcript compared to T2NB subjects (P = 0.002). The MGAT4A mRNA had a half-life of 2.04 h in Jurkat T cells. Conclusion The results of this work suggest that in T2D subjects, high levels of glucose and triglycerides are accompanied by an increase on MGAT4A mRNA levels and WBC count; condition that suggests a pro-inflammatory state due to a chronic metabolic stress. PMID:17953760

  13. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    SciTech Connect

    Patel, Divya; Chaudhary, Jaideep

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer E2A, considered as a tumor suppressor is highly expressed in prostate cancer. Black-Right-Pointing-Pointer Silencing of E2A attenuates cell proliferation and promotes apoptosis. Black-Right-Pointing-Pointer E2A regulates c-myc, Id1, Id3 and CDKN1A expression. Black-Right-Pointing-Pointer Loss of E2A promotes doxorubicin dependent apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Results suggest that E2A acts as a tumor promoter at least in prostate cancer. -- Abstract: E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

  14. Co-evolution between Grapevine rupestris stem pitting-associated virus and Vitis vinifera L. leads to decreased defence responses and increased transcription of genes related to photosynthesis.

    PubMed

    Gambino, Giorgio; Cuozzo, Danila; Fasoli, Marianna; Pagliarani, Chiara; Vitali, Marco; Boccacci, Paolo; Pezzotti, Mario; Mannini, Franco

    2012-10-01

    Grapevine rupestris stem pitting-associated virus (GRSPaV) is a widespread virus infecting Vitis spp. Although it has established a compatible viral interaction in Vitis vinifera without the development of phenotypic alterations, it can occur as distinct variants that show different symptoms in diverse Vitis species. The changes induced by GRSPaV in V. vinifera cv 'Bosco', an Italian white grape variety, were investigated by combining agronomic, physiological, and molecular approaches, in order to provide comprehensive information about the global effects of GRSPaV. In two years, this virus caused a moderate decrease in physiological efficiency, yield performance, and sugar content in berries associated with several transcriptomic alterations. Transcript profiles were analysed by a microarray technique in petiole, leaf, and berry samples collected at véraison and by real-time RT-PCR in a time course carried out at five grapevine developmental stages. Global gene expression analyses showed that transcriptomic changes were highly variable among the different organs and the different phenological phases. GRSPaV triggers some unique responses in the grapevine at véraison, never reported before for other plant-virus interactions. These responses include an increase in transcripts involved in photosynthesis and CO(2) fixation, a moderate reduction in the photosynthesis rate and some defence mechanisms, and an overlap with responses to water and salinity stresses. It is hypothesized that the long co-existence of grapevine and GRSPaV has resulted in the evolution of a form of mutual adaptation between the virus and its host. This study contributes to elucidating alternative mechanisms used by infected plants to contend with viruses.

  15. MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions.

    PubMed

    Schwinn, Kathy E; Boase, Murray R; Bradley, J Marie; Lewis, David H; Deroles, Simon C; Martin, Cathie R; Davies, Kevin M

    2014-01-01

    Petunia line Mitchell [MP, Petunia axillaris × (P. axillaris × P. hybrida)] and Eustoma grandiflorum (lisianthus) plants were produced containing a transgene for over-expression of the R2R3-MYB transcription factor [TF; ROSEA1 (ROS1)] that up-regulates flavonoid biosynthesis in Antirrhinum majus. The petunia lines were also crossed with previously produced MP lines containing a Zea mays flavonoid-related basic helix-loop-helix TF transgene (LEAF COLOR, LC), which induces strong vegetative pigmentation when these 35S:LC plants are exposed to high-light levels. 35S:ROS1 lisianthus transgenics had limited changes in anthocyanin pigmentation, specifically, precocious pigmentation of flower petals and increased pigmentation of sepals. RNA transcript levels for two anthocyanin biosynthetic genes, chalcone synthase and anthocyanidin synthase, were increased in the 35S:ROS1 lisianthus petals compared to those of control lines. With MP, the 35S:ROS1 calli showed novel red pigmentation in culture, but this was generally not seen in tissue culture plantlets regenerated from the calli or young plants transferred to soil in the greenhouse. Anthocyanin pigmentation was enhanced in the stems of mature 35S:ROS1 MP plants, but the MP white-flower phenotype was not complemented. Progeny from a 35S:ROS1 × 35S:LC cross had novel pigmentation phenotypes that were not present in either parental line or MP. In particular, there was increased pigment in the petal throat region, and the anthers changed from yellow to purple pigmentation. An outdoor field trial was conducted with the 35S:ROS1, 35S:LC, 35S:ROS1 × 35S:LC and control MP lines. Field conditions rapidly induced intense foliage pigmentation in 35S:LC plants, a phenotype not observed in control MP or equivalent 35S:LC plants maintained in a greenhouse. No difference in plant stature, seed germination, or plant survival was observed between transgenic and control plants.

  16. The overexpression of the pine transcription factor PpDof5 in Arabidopsis leads to increased lignin content and affects carbon and nitrogen metabolism.

    PubMed

    Rueda-López, Marina; Cañas, Rafael A; Canales, Javier; Cánovas, Francisco M; Ávila, Concepción

    2015-12-01

    PpDof 5 is a regulator of the expression of glutamine synthetase (GS; EC 6.3.1.2) genes in photosynthetic and non-photosynthetic tissues of maritime pine. We have used Arabidopsis thaliana as a model system to study PpDof 5 function in planta, generating transgenic lines overexpressing the pine transcription factor. The overexpression of PpDof 5 resulted in a substantial increase of lignin content with a simultaneous regulation of carbon and nitrogen key genes. In addition, partitioning in carbon and nitrogen compounds was spread via various secondary metabolic pathways. These results suggest pleiotropic effects of PpDof 5 expression on various metabolic pathways of carbon and nitrogen metabolism. Plants overexpressing PpDof 5 exhibited upregulation of genes encoding enzymes for sucrose and starch biosynthesis, with a parallel increase in the content of soluble sugars. When the plants were grown under nitrate as the sole nitrogen source, they exhibited a significant regulation of the expression of genes involved mainly in signaling, but similar growth rates to wild-type plants. However, plants grown under ammonium exhibited major induction of the expression of photosynthetic genes and differential expression of ammonium and nitrate transporters. All these data suggest that in addition to controlling ammonium assimilation, PpDof 5 could be also involved in the regulation of other pathways in carbon and nitrogen metabolism in pine trees.

  17. Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90α (HSPC1) gene transcripts.

    PubMed

    Tuttle, James A; Castle, Paul C; Metcalfe, Alan J; Midgley, Adrian W; Taylor, Lee; Lewis, Mark P

    2015-04-15

    Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases.

  18. Loss of ULK1 increases RPS6KB1-NCOR1 repression of NR1H/LXR-mediated Scd1 transcription and augments lipotoxicity in hepatic cells

    PubMed Central

    Sinha, Rohit Anthony; Singh, Brijesh K.; Zhou, Jin; Xie, Sherwin; Farah, Benjamin L.; Lesmana, Ronny; Ohba, Kenji; Tripathi, Madhulika; Ghosh, Sujoy; Hollenberg, Anthony N.; Yen, Paul M.

    2017-01-01

    ABSTRACT Lipotoxicity caused by saturated fatty acids (SFAs) induces tissue damage and inflammation in metabolic disorders. SCD1 (stearoyl-coenzyme A desaturase 1) converts SFAs to mono-unsaturated fatty acids (MUFAs) that are incorporated into triglycerides and stored in lipid droplets. SCD1 thus helps protect hepatocytes from lipotoxicity and its reduced expression is associated with increased lipotoxic injury in cultured hepatic cells and mouse models. To further understand the role of SCD1 in lipotoxicity, we examined the regulation of Scd1 in hepatic cells treated with palmitate, and found that NR1H/LXR (nuclear receptor subfamily 1 group H) ligand, GW3965, induced Scd1 expression and lipid droplet formation to improve cell survival. Surprisingly, ULK1/ATG1 (unc-51 like kinase) played a critical role in protecting hepatic cells from SFA-induced lipotoxicity via a novel mechanism that did not involve macroautophagy/autophagy. Specific loss of Ulk1 blocked the induction of Scd1 gene transcription by GW3965, decreased lipid droplet formation, and increased apoptosis in hepatic cells exposed to palmitate. Knockdown of ULK1 increased RPS6KB1 (ribosomal protein S6 kinase, polypeptide 1) signaling that, in turn, induced NCOR1 (nuclear receptor co-repressor 1) nuclear uptake, interaction with NR1H/LXR, and recruitment to the Scd1 promoter. These events abrogated the stimulation of Scd1 gene expression by GW3965, and increased lipotoxicity in hepatic cells. In summary, we have identified a novel autophagy-independent role of ULK1 that regulates NR1H/LXR signaling, Scd1 expression, and intracellular lipid homeostasis in hepatic cells exposed to a lipotoxic environment. PMID:27846372

  19. Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I.

    PubMed

    Ozyamak, Ertan; de Almeida, Camila; de Moura, Alessandro P S; Miller, Samantha; Booth, Ian R

    2013-06-01

    Methylglyoxal (MG) elicits activation of K(+) efflux systems to protect cells against the toxicity of the electrophile. ChIP-chip targeting RNA polymerase, supported by a range of other biochemical measurements and mutant creation, was used to identify genes transcribed in response to MG and which complement this rapid response. The SOS DNA repair regulon is induced at cytotoxic levels of MG, even when exposure to MG is transient. Glyoxalase I alone among the core MG protective systems is induced in response to MG exposure. Increased expression is an indirect consequence of induction of the upstream nemRA operon, encoding an enzyme system that itself does not contribute to MG detoxification. Moreover, this induction, via nemRA only occurs when cells are exposed to growth inhibitory concentrations of MG. We show that the kdpFABCDE genes are induced and that this expression occurs as a result of depletion of cytoplasmic K(+) consequent upon activation of the KefGB K(+) efflux system. Finally, our analysis suggests that the transcriptional changes in response to MG are a culmination of the damage to DNA and proteins, but that some integrate specific functions, such as DNA repair, to augment the allosteric activation of the main protective system, KefGB.

  20. A missense mutation in the transcription factor ETV5 leads to sterility, increased embryonic and perinatal death, postnatal growth restriction, renal asymmetry and polydactyly in the mouse.

    PubMed

    Jamsai, Duangporn; Clark, Brett J; Smith, Stephanie J; Whittle, Belinda; Goodnow, Christopher C; Ormandy, Christopher J; O'Bryan, Moira K

    2013-01-01

    ETV5 (Ets variant gene 5) is a transcription factor that is required for fertility. In this study, we demonstrate that ETV5 plays additional roles in embryonic and postnatal developmental processes in the mouse. Through a genome-wide mouse mutagenesis approach, we generated a sterile mouse line that carried a nonsense mutation in exon 12 of the Etv5 gene. The mutation led to the conversion of lysine at position 412 into a premature termination codon (PTC) within the ETS DNA binding domain of the protein. We showed that the PTC-containing allele produced a highly unstable mRNA, which in turn resulted in an undetectable level of ETV5 protein. The Etv5 mutation resulted in male and female sterility as determined by breeding experiments. Mutant males were sterile due to a progressive loss of spermatogonia, which ultimately resulted in a Sertoli cell only phenotype by 8 week-of-age. Further, the ETV5 target genes Cxcr4 and Ccl9 were significantly down-regulated in mutant neonate testes. CXCR4 and CCL9 have been implicated in the maintenance and migration of spermatogonia, respectively. Moreover, the Etv5 mutation resulted in several developmental abnormalities including an increased incidence of embryonic and perinatal lethality, postnatal growth restriction, polydactyly and renal asymmetry. Thus, our data define a physiological role for ETV5 in many aspects of development including embryonic and perinatal survival, postnatal growth, limb patterning, kidney development and fertility.

  1. Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I

    PubMed Central

    Ozyamak, Ertan; Almeida, Camila; de Moura, Alessandro P S; Miller, Samantha; Booth, Ian R

    2013-01-01

    Methylglyoxal (MG) elicits activation of K+ efflux systems to protect cells against the toxicity of the electrophile. ChIP-chip targeting RNA polymerase, supported by a range of other biochemical measurements and mutant creation, was used to identify genes transcribed in response to MG and which complement this rapid response. The SOS DNA repair regulon is induced at cytotoxic levels of MG, even when exposure to MG is transient. Glyoxalase I alone among the core MG protective systems is induced in response to MG exposure. Increased expression is an indirect consequence of induction of the upstream nemRA operon, encoding an enzyme system that itself does not contribute to MG detoxification. Moreover, this induction, via nemRA only occurs when cells are exposed to growth inhibitory concentrations of MG. We show that the kdpFABCDE genes are induced and that this expression occurs as a result of depletion of cytoplasmic K+ consequent upon activation of the KefGB K+ efflux system. Finally, our analysis suggests that the transcriptional changes in response to MG are a culmination of the damage to DNA and proteins, but that some integrate specific functions, such as DNA repair, to augment the allosteric activation of the main protective system, KefGB. PMID:23646895

  2. Absence of the Birt-Hogg-Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility.

    PubMed

    Preston, R S; Philp, A; Claessens, T; Gijezen, L; Dydensborg, A B; Dunlop, E A; Harper, K T; Brinkhuizen, T; Menko, F H; Davies, D M; Land, S C; Pause, A; Baar, K; van Steensel, M A M; Tee, A R

    2011-03-10

    Under conditions of reduced tissue oxygenation, hypoxia-inducible factor (HIF) controls many processes, including angiogenesis and cellular metabolism, and also influences cell proliferation and survival decisions. HIF is centrally involved in tumour growth in inherited diseases that give rise to renal cell carcinoma (RCC), such as Von Hippel-Lindau syndrome and tuberous sclerosis complex. In this study, we examined whether HIF is involved in tumour formation of RCC in Birt-Hogg-Dubé syndrome. For this, we analysed a Birt-Hogg-Dubé patient-derived renal tumour cell line (UOK257) that is devoid of the Birt-Hogg-Dubé protein (BHD) and observed high levels of HIF activity. Knockdown of BHD expression also caused a threefold activation of HIF, which was not as a consequence of more HIF1α or HIF2α protein. Transcription of HIF target genes VEGF, BNIP3 and CCND1 was also increased. We found nuclear localization of HIF1α and increased expression of VEGF, BNIP3 and GLUT1 in a chromophobe carcinoma from a Birt-Hogg-Dubé patient. Our data also reveal that UOK257 cells have high lactate dehydrogenase, pyruvate kinase and 3-hydroxyacyl-CoA dehydrogenase activity. We observed increased expression of pyruvate dehydrogenase kinase 1 (a HIF gene target), which in turn leads to increased phosphorylation and inhibition of pyruvate dehydrogenase. Together with increased protein levels of GLUT1, our data reveal that UOK257 cells favour glycolytic rather than lipid metabolism (a cancer phenomenon termed the 'Warburg effect'). UOK257 cells also possessed a higher expression level of the L-lactate influx monocarboxylate transporter 1 and consequently utilized L-lactate as a metabolic fuel. As a result of their higher dependency on glycolysis, we were able to selectively inhibit the growth of these UOK257 cells by treatment with 2-deoxyglucose. This work suggests that targeting glycolytic metabolism may be used therapeutically to treat Birt-Hogg-Dubé-associated renal lesions.

  3. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus × domestica) results in short-day induced dormancy and increased cold hardiness.

    PubMed

    Wisniewski, Michael; Norelli, John; Bassett, Carole; Artlip, Timothy; Macarisin, Dumitru

    2011-05-01

    Low, non-freezing temperatures and/or short daylength (SD) regulates cold acclimation and dormancy in fruit trees. Regarding cold acclimation, C-repeat binding factor (CBF/DREB) transcriptional activator genes have the well-documented ability to induce the expression of a suite of genes associated with increased cold tolerance. We isolated a full-length cDNA of a peach CBF gene, designated PpCBF1 (GenBank Accession HM992943), and constitutively expressed it using an enhanced 35S promoter in apple. Unexpectedly, constitutive overexpression of the PpCBF1 in apple resulted in strong sensitivity to short daylength. Growth cessation and leaf senescence were induced in transgenic lines exposed to SD and optimal growth temperatures of 25°C over a 4-week period. Following 1-4 weeks of SD and 25°C trees were returned to LD and 25°C in the greenhouse. Control (untransformed) plants continued to grow while transgenic lines receiving two or more weeks of SD remained dormant and began to drop leaves. Constitutive overexpression of the PpCBF1 in apple resulted in a 4-6°C increase in freezing tolerance in both the non-acclimated and acclimated states, respectively, compared with untransformed M.26 trees. This is the first instance that constitutive overexpression of a CBF gene has resulted in SD-induction of dormancy and to our knowledge the first time apple has been shown to strongly respond to short daylength as a result of the insertion of a transgene.

  4. Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the hippocampus of female rats.

    PubMed

    Sivanathan, Shathveekan; Thavartnam, Kabriya; Arif, Shahneen; Elegino, Trisha; McGowan, Patrick O

    2015-06-01

    The consumption of diets high in saturated fats and obesity have been associated with impaired physical and mental health. Previous studies indicate that chronic high fat diet consumption leads to systemic inflammation in humans and non-human animal models. Studies in non-human animals suggest that altered physiological responses to stress are also a consequence of high fat diet consumption. Glucocorticoid signalling mechanisms may link immune and stress-related pathways in the brain, and were shown to be significantly altered in the brains of female rat offspring of mothers exposed to chronic high fat diet during pregnancy and lactation. For adult females, the consequence of chronic high fat diet consumption on these signalling pathways and their relationship to stress-related behaviour is not known. In this study, we examined the effects of chronic consumption of a high fat diet compared to a low fat control diet among adult female Long Evans rats. We found significant differences in weight gain, caloric intake, anxiety-related behaviours, and glucocorticoid-related gene expression over a 10-week exposure period. As expected, rats in the high fat diet group gained the most weight and consumed the greatest number of calories. Rats in the high fat diet group showed significantly greater levels of anxiety-related behaviour in the Light Dark and Open Field tasks compared to rats in the low fat diet group. Rats consuming high fat diet also exhibited reduced transcript abundance in the hippocampus of stress-related mineralocorticoid receptor and glucocorticoid receptor genes, as well as nuclear factor kappa beta gene expression, implicated in inflammatory processes. Together, these data indicate that chronic high fat diet consumption may increase anxiety-like behaviour at least in part via alterations in glucocorticoid signalling mechanisms in limbic brain regions.

  5. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter

    PubMed Central

    Atlas, Ella; Pope, Louise; Wade, Mike G; Kawata, Alice; Boudreau, Adele; Boucher, Jonathan G

    2014-01-01

    Environmental pollutants, such as bisphenol A (BPA), have the potential to affect the differentiation processes and the biology of the adipose tissue. The 3T3-L1 model is one of the murine cell models used extensively for the investigation of the molecular events that govern the differentiation of adipocytes from a committed preadipocyte to a mature, lipid laden adipocyte. Most of the studies investigating the effects of BPA on preadipocyte differentiation have investigated the effects of this chemical in the presence of an optimal differentiation cocktail containing high concentrations of the synthetic glucocorticoid dexamethasone, conditions that result in 90% to 100% of differentiated adipocytes. Our studies employed the 3T3-L1 cell model in the absence of exogenous glucocorticoids. We show that BPA is able to increase the differentiation of the 3T3-L1 cells under these conditions. Furthermore, the effect of BPA was observed in the absence of the synthetic glucocorticoid (dexamethasone), a hormone known to be required for the differentiation of the 3T3-L1 cells. In addition, BPA upregulated the mRNA expression and protein levels of the terminal marker of adipogenesis the fatty acid binding protein (aP2) in these cells. Interestingly, the known modulators of adipogenesis such as the peroxisome proliferator-activated receptor (PPAR) γ or CCAAT enhancer binding protein (C/EBP) α were not elevated at the mRNA or protein level in response to BPA. Furthermore, BPA upregulated the expression levels of the marker of adipogenesis aP2, through an effect on the transcriptional activity of C/EBPδ and the glucocorticoid receptor (GR) at its promoter. PMID:25068083

  6. Ectopic Overexpression of SlHsfA3, a Heat Stress Transcription Factor from Tomato, Confers Increased Thermotolerance and Salt Hypersensitivity in Germination in Transgenic Arabidopsis

    PubMed Central

    Li, Zhenjun; Zhang, Lili; Wang, Aoxue; Xu, Xiangyang; Li, Jingfu

    2013-01-01

    Plant heat stress transcription factors (Hsfs) are the critical components involved in mediating responses to various environmental stressors. However, the detailed roles of many plant Hsfs are far from fully understood. In this study, an Hsf (SlHsfA3) was isolated from the cultivated tomato (Solanum lycopersicum, Sl) and functionally characterized at the genetic and developmental levels. The nucleus-localized SlHsfA3 was basally and ubiquitously expressed in different plant organs. The expression of SlHsfA3 was induced dramatically by heat stress, moderately by high salinity, and slightly by drought, but was not induced by abscisic acid (ABA). The ectopic overexpression of SlHsfA3 conferred increased thermotolerance and late flowering phenotype to transgenic Arabidopsis plants. Moreover, SlHsfA3 played a negative role in controlling seed germination under salt stress. RNA-sequencing data demonstrated that a number of heat shock proteins (Hsps) and stress-associated genes were induced in Arabidopsis plants overexpressing SlHsfA3. A gel shift experiment and transient expression assays in Nicotiana benthamiana leaves demonstrated that SlHsfA3 directly activates the expression of SlHsp26.1-P and SlHsp21.5-ER. Taken together, our results suggest that SlHsfA3 behaves as a typical Hsf to contribute to plant thermotolerance. The late flowering and seed germination phenotypes and the RNA-seq data derived from SlHsfA3 overexpression lines lend more credence to the hypothesis that plant Hsfs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23349984

  7. MCG101-induced cancer anorexia-cachexia features altered expression of hypothalamic Nucb2 and Cartpt and increased plasma levels of cocaine- and amphetamine-regulated transcript peptides.

    PubMed

    Burgos, Jonathan R; Iresjö, Britt-Marie; Smedh, Ulrika

    2016-04-01

    The aim of the present study was to explore central and peripheral host responses to an anorexia-cachexia producing tumor. We focused on neuroendocrine anorexigenic signals in the hypothalamus, brainstem, pituitary and from the tumor per se. Expression of mRNA for corticotropin-releasing hormone (CRH), cocaine- and amphetamine-regulated transcript (CART), nesfatin-1, thyrotropin (TSH) and the TSH receptor were explored. In addition, we examined changes in plasma TSH, CART peptides (CARTp) and serum amyloid P component (SAP). C57BL/6 mice were implanted with MCG101 tumors or sham-treated. A sham-implanted, pair‑fed (PF) group was included to delineate between primary tumor and secondary effects from reduced feeding. Food intake and body weight were measured daily. mRNA levels from microdissected mouse brain samples were assayed using qPCR, and plasma levels were determined using ELISA. MCG101 tumors expectedly induced anorexia and loss of body weight. Tumor-bearing (TB) mice exhibited an increase in nesfatin-1 mRNA as well as a decrease in CART mRNA in the paraventricular area (PVN). The CART mRNA response was secondary to reduced caloric intake whereas nesfatin-1 mRNA appeared to be tumor-specifically induced. In the pituitary, CART and TSH mRNA were upregulated in the TB and PF animals compared to the freely fed controls. Plasma levels for CARTp were significantly elevated in TB but not PF mice whereas levels of TSH were unaffected. The plasma CARTp response was correlated to the degree of inflammation represented by SAP. The increase in nesfatin-1 mRNA in the PVN highlights nesfatin-1 as a plausible candidate for causing tumor-induced anorexia. CART mRNA expression in the PVN is likely an adaptation to reduced caloric intake secondary to a cancer anorexia-cachexia syndrome (CACS)‑inducing tumor. The MCG101 tumor did not express CART mRNA, thus the elevation of plasma CARTp is host derived and likely driven by inflammation.

  8. A Forum To Expand Advanced Placement Opportunities: Increasing Access and Improving Preparation in High Schools. Transcript of Proceedings (Washington, D.C., February 11, 2000).

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This transcript reproduces a Department of Education/College Board-sponsored discussion on ways to expand advanced-placement (AP) opportunities in high schools. The deliberations opened with a presentation by Terry Peterson, Senior Advisor to Education Secretary Richard Riley, in which he focused on the importance of AP courses for minority and…

  9. Opposing Control by Transcription Factors MYB61 and MYB3 Increases Freezing Tolerance by Relieving C-Repeat Binding Factor Suppression1[OPEN

    PubMed Central

    Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao

    2016-01-01

    Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551

  10. Cloning of a long HIV-1 readthrough transcript and detection of an increased level of early growth response protein-1 (Egr-1) mRNA in chronically infected U937 cells.

    PubMed

    Dron, M; Hameau, L; Benboudjema, L; Guymarho, J; Cajean-Feroldi, C; Rizza, P; Godard, C; Jasmin, C; Tovey, M G; Lang, M C

    1999-01-01

    To identify the pathways involved in HIV-1 modification of cellular gene expression, chronically infected U937 cells were screened by mRNA differential display. A chimeric transcript consisting of the 3' end of the LTR of a HIV-1 provirus, followed by 3.7 kb of cellular RNA was identified suggesting that long readthrough transcription might be one of the mechanisms by which gene expression could be modified in individual infected cells. Such a phenomenon may also be the first step towards the potential transduction of cellular sequences. Furthermore, the mRNA encoding for the transcription factor Egr-1 was detected as an over-represented transcript in infected cells. Northern blot analysis confirmed the increase of Egr-1 mRNA content in both HIV-1 infected promonocytic U937 cells and T cell lines such as Jurkat and CEM. Interestingly a similar increase of Egr-1 mRNA has previously been reported to occur in HTLV-1 and HTLV-2 infected T cell lines. Despite the consistent increase in the level of Egr-1 mRNA, the amount of the encoded protein did not appear to be modified in HIV-1 infected cells, suggesting an increased turn over of the protein in chronically infected cells.

  11. Transcription Regulation in Archaea

    PubMed Central

    Gehring, Alexandra M.; Walker, Julie E.

    2016-01-01

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  12. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling.

  13. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes

    PubMed Central

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  14. Stochastic and nonstochastic post-transcriptional silencing of chitinase and beta-1,3-glucanase genes involves increased RNA turnover-possible role for ribosome-independent RNA degradation.

    PubMed Central

    Holtorf, H; Schöb, H; Kunz, C; Waldvogel, R; Meins, F

    1999-01-01

    Stochastic and nonstochastic post-transcriptional gene silencing (PTGS) in Nicotiana sylvestris plants carrying tobacco class I chitinase (CHN) and beta-1,3-glucanase transgenes differs in incidence, stability, and pattern of expression. Measurements with inhibitors of RNA synthesis (cordycepin, actinomycin D, and alpha-amanitin) showed that both forms of PTGS are associated with increased sequence-specific degradation of transcripts, suggesting that increased RNA turnover may be a general feature of PTGS. The protein synthesis inhibitors cycloheximide and verrucarin A did not inhibit degradation of CHN RNA targeted for PTGS, confirming that PTGS-related RNA degradation does not depend on ongoing protein synthesis. Because verrucarin A, unlike cycloheximide, dissociates mRNA from ribosomes, our results also suggest that ribosome-associated RNA degradation pathways may not be involved in CHN PTGS. PMID:10072405

  15. Increased transcript level of poly(ADP-ribose) polymerase (PARP-1) in human tricuspid compared with bicuspid aortic valves correlates with the stenosis severity

    SciTech Connect

    Nagy, Edit; Caidahl, Kenneth; Franco-Cereceda, Anders; Baeck, Magnus

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Oxidative stress has been implicated in the pathomechanism of calcific aortic valve stenosis. Black-Right-Pointing-Pointer We assessed the transcript levels for PARP-1 (poly(ADP-ribose) polymerase), acts as a DNA damage nick sensor in stenotic valves. Black-Right-Pointing-Pointer Early stage of diseased tricuspid valves exhibited higher mRNA levels for PARP-1 compared to bicuspid valves. Black-Right-Pointing-Pointer The mRNA levels for PARP-1 inversely correlated with the clinical stenosis severity in tricuspid valves. Black-Right-Pointing-Pointer Our data demonstrated that DNA damage pathways might be associated with stenosis severity only in tricuspid valves. -- Abstract: Oxidative stress may contribute to the hemodynamic progression of aortic valve stenosis, and is associated with activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) 1. The aim of the present study was to assess the transcriptional profile and the topological distribution of PARP-1 in human aortic valves, and its relation to the stenosis severity. Human stenotic aortic valves were obtained from 46 patients undergoing aortic valve replacement surgery and used for mRNA extraction followed by quantitative real-time PCR to correlate the PARP-1 expression levels with the non invasive hemodynamic parameters quantifying the stenosis severity. Primary isolated valvular interstitial cells (VICs) were used to explore the effects of cytokines and leukotriene C{sub 4} (LTC{sub 4}) on valvular PARP-1 expression. The thickened areas of stenotic valves with tricuspid morphology expressed significantly higher levels of PARP-1 mRNA compared with the corresponding part of bicuspid valves (0.501 vs 0.243, P = 0.01). Furthermore, the quantitative gene expression levels of PARP-1 were inversely correlated with the aortic valve area (AVA) (r = -0.46, P = 0.0469) and AVA indexed for body surface area (BSA) (r = -0.498; P = 0.0298) only in tricuspid aortic valves

  16. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α.

    PubMed

    Real Hernandez, Luis M; Fan, Junfeng; Johnson, Michelle H; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  17. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α

    PubMed Central

    Real Hernandez, Luis M.; Fan, Junfeng; Johnson, Michelle H.; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  18. E2F transcription factor-1 deficiency reduces pathophysiology in the mouse model of Duchenne muscular dystrophy through increased muscle oxidative metabolism.

    PubMed

    Blanchet, Emilie; Annicotte, Jean-Sébastien; Pradelli, Ludivine A; Hugon, Gérald; Matecki, Stéfan; Mornet, Dominique; Rivier, François; Fajas, Lluis

    2012-09-01

    E2F1 deletion leads to increased mitochondrial number and function, increased body temperature in response to cold and increased resistance to fatigue with exercise. Since E2f1-/- mice show increased muscle performance, we examined the effect of E2f1 genetic inactivation in the mdx background, a mouse model of Duchenne muscular dystrophy (DMD). E2f1-/-;mdx mice demonstrated a strong reduction of physiopathological signs of DMD, including preservation of muscle structure, decreased inflammatory profile, increased utrophin expression, resulting in better endurance and muscle contractile parameters, comparable to normal mdx mice. E2f1 deficiency in the mdx genetic background increased the oxidative metabolic gene program, mitochondrial activity and improved muscle functions. Interestingly, we observed increased E2F1 protein levels in DMD patients, suggesting that E2F1 might represent a promising target for the treatment of DMD.

  19. RNA editing of mat-r transcripts in maize and soybean increases similarity of the encoded protein to fungal and bryophyte group II intron maturases: evidence that mat-r encodes a functional protein.

    PubMed Central

    Thomson, M C; Macfarlane, J L; Beagley, C T; Wolstenholme, D R

    1994-01-01

    We present evidence that transcripts of the mat-r (maturase-related) genes of maize and soybean contain 15 and 14 uridines (U), respectively, at positions occupied by cytosines (C) in the mat-r gene sequences. Eleven and twelve of these C-->U edits result in an amino acid replacement. Ten C-->U edits are at corresponding nucleotides in the maize and soybean transcripts and, except for a single silent edit, the remainder are at positions in one species that are Us in the other species. This results in an increase in amino acid sequence similarity of the maize and soybean MAT-R proteins. Further, of those amino acids in maize and soybean MAT-R proteins specified by edited codons, ten are conserved in the reverse transcriptase-associated and RNA splicing-associated sequences of the cox1-I2 and/or the cox1-I1 maturases of the fungus Saccharomyces cerevisiae and the bryophyte, Marchantia polymorpha, respectively. The implied strong selection for amino acid sequence conservation indicates that the MAT-R protein is functional. The possibility is discussed that initiation of translation of the mat-r transcripts is at a four nucleotide codon, ATAA or ATGA. PMID:7838731

  20. Adiponectin promotes hyaluronan synthesis along with increases in hyaluronan synthase 2 transcripts through an AMP-activated protein kinase/peroxisome proliferator-activated receptor-{alpha}-dependent pathway in human dermal fibroblasts

    SciTech Connect

    Yamane, Takumi; Kobayashi-Hattori, Kazuo; Oishi, Yuichi

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis along with an increase in HAS2 transcripts. Black-Right-Pointing-Pointer Adiponectin also increases the phosphorylation of AMPK. Black-Right-Pointing-Pointer A pharmacological activator of AMPK increases mRNA levels of PPAR{alpha} and HAS2. Black-Right-Pointing-Pointer Adiponectin-induced HAS2 mRNA expression is blocked by a PPAR{alpha} antagonist. Black-Right-Pointing-Pointer Adiponectin promotes hyaluronan synthesis via an AMPK/PPAR{alpha}-dependent pathway. -- Abstract: Although adipocytokines affect the functions of skin, little information is available on the effect of adiponectin on the skin. In this study, we investigated the effect of adiponectin on hyaluronan synthesis and its regulatory mechanisms in human dermal fibroblasts. Adiponectin promoted hyaluronan synthesis along with an increase in the mRNA levels of hyaluronan synthase 2 (HAS2), which plays a primary role in hyaluronan synthesis. Adiponectin also increased the phosphorylation of AMP-activated protein kinase (AMPK). A pharmacological activator of AMPK, 5-aminoimidazole-4-carboxamide-1{beta}-ribofuranoside (AICAR), increased mRNA levels of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}), which enhances the expression of HAS2 mRNA. In addition, AICAR increased the mRNA levels of HAS2. Adiponectin-induced HAS2 mRNA expression was blocked by GW6471, a PPAR{alpha} antagonist, in a concentration-dependent manner. These results show that adiponectin promotes hyaluronan synthesis along with increases in HAS2 transcripts through an AMPK/PPAR{alpha}-dependent pathway in human dermal fibroblasts. Thus, our study suggests that adiponectin may be beneficial for retaining moisture in the skin, anti-inflammatory activity, and the treatment of a variety of cutaneous diseases.

  1. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency associated transcript (LAT) negative mutant dLAT2903 with a disrupted LAT miR-H2

    PubMed Central

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; BenMohamed, Lbachir; Wechsler, Steven L.

    2015-01-01

    At least six microRNAs (miRNAs) appear to be encoded by the latency associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is antisense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency-reactivation cycle of a LAT negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant induced reactivation model of HSV-1 compared to its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared to its parental wt virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared to its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype. PMID:26069184

  2. Increased Stability and DNA Site Discrimination of Single Chain Variants of the Dimeric beta-Barrel DNA Binding Domain of the Human Papillomavirus E2 Transcriptional Regulator

    SciTech Connect

    Dellarole,M.; Sanchez, I.; Freire, E.; de Prat-Gay, G.

    2007-01-01

    Human papillomavirus infects millions of people worldwide and is a causal agent of cervical cancer in women. The HPV E2 protein controls the expression of all viral genes through binding of its dimeric C-terminal domain (E2C) to its target DNA site. We engineered monomeric versions of the HPV16 E2C, in order to probe the link of the dimeric {beta}-barrel fold to stability, dimerization, and DNA binding. Two single-chain variants, with 6 and 12 residue linkers (scE2C-6 and scE2C-12), were purified and characterized. Spectroscopy and crystallography show that the native structure is unperturbed in scE2C-12. The single chain variants are stabilized with respect to E2C, with effective concentrations of 0.6 to 6 mM. The early folding events of the E2C dimer and scE2C-12 are very similar and include formation of a compact species in the submillisecond time scale and a non-native monomeric intermediate with a half-life of 25 ms. However, monomerization changes the unfolding mechanism of the linked species from two-state to three-state, with a high-energy intermediate. Binding to the specific target site is up to 5-fold tighter in the single chain variants. Nonspecific DNA binding is up to 7-fold weaker in the single chain variants, leading to an overall 10-fold increased site discrimination capacity, the largest described so far for linked DNA binding domains. Titration calorimetric binding analysis, however, shows almost identical behavior for dimer and single-chain species, suggesting very subtle changes behind the increased specificity. Global analysis of the mechanisms probed suggests that the dynamics of the E2C domain, rather than the structure, are responsible for the differential properties. Thus, the plastic and dimeric nature of the domain did not evolve for a maximum affinity, specificity, and stability of the quaternary structure, likely because of regulatory reasons and for roles other than DNA binding played by partly folded dimeric or monomeric conformers.

  3. High tumor necrosis factor alpha (TNF-alpha) production in Trypanosoma cruzi-infected pregnant mice and increased TNF-alpha gene transcription in their offspring.

    PubMed Central

    Rivera, M T; Marques de Araujo, S; Lucas, R; Deman, J; Truyens, C; Defresne, M P; de Baetselier, P; Carlier, Y

    1995-01-01

    Since tumor necrosis factor alpha (TNF-alpha) is known to be involved in the feto-maternal relationship, this cytokine was studied in Trypanosoma cruzi-infected pregnant BALB/c mice and their fetuses and offspring. Pregnant chronically infected mice displayed significantly higher levels of circulating TNF-alpha than animals either only infected or only pregnant. TNF-alpha was undetectable in sera of uninfected and nonpregnant mice as well as in breast milk obtained from infected and uninfected animals. Fetuses from infected mice exhibited significantly more cells containing TNF-alpha mRNA in their thymus than fetuses from uninfected mothers. When infected 2 months after birth, offspring born to infected and uninfected mothers displayed similar amounts of circulating TNF-alpha during chronic infection, whereas this cytokine was only weakly detectable during the acute phase of the disease. An intravenous injection of lipopolysaccharide during acute infection strongly increased the production of TNF-alpha in offspring born to infected mothers to levels higher than those in progeny from uninfected mice. These results suggest that TNF-alpha is an important cytokine in the feto-maternal relationship during T. cruzi infection and that fetuses and offspring of infected mothers are primed to produce elevated levels of TNF-alpha. PMID:7822027

  4. Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1

    PubMed Central

    Kumsta, R; Marzi, S J; Viana, J; Dempster, E L; Crawford, B; Rutter, M; Mill, J; Sonuga-Barke, E J S

    2016-01-01

    Exposure to adverse rearing environments including institutional deprivation and severe childhood abuse is associated with an increased risk for mental and physical health problems across the lifespan. Although the mechanisms mediating these effects are not known, recent work in rodent models suggests that epigenetic processes may be involved. We studied the impact of severe early-life adversity on epigenetic variation in a sample of adolescents adopted from the severely depriving orphanages of the Romanian communist era in the 1980s. We quantified buccal cell DNA methylation at ~400 000 sites across the genome in Romanian adoptees exposed to either extended (6–43 months; n=16) or limited duration (<6 months; n=17) of severe early-life deprivation, in addition to a matched sample of UK adoptees (n=16) not exposed to severe deprivation. Although no probe-wise differences remained significant after controlling for the number of probes tested, we identified an exposure-associated differentially methylated region (DMR) spanning nine sequential CpG sites in the promoter-regulatory region of the cytochrome P450 2E1 gene (CYP2E1) on chromosome 10 (corrected P=2.98 × 10−5). Elevated DNA methylation across this region was also associated with deprivation-related clinical markers of impaired social cognition. Our data suggest that environmental insults of sufficient biological impact during early development are associated with long-lasting epigenetic changes, potentially reflecting a biological mechanism linking the effects of early-life adversity to cognitive and neurobiological phenotypes. PMID:27271856

  5. Pervasive transcription: detecting functional RNAs in bacteria.

    PubMed

    Lybecker, Meghan; Bilusic, Ivana; Raghavan, Rahul

    2014-01-01

    Pervasive, or genome-wide, transcription has been reported in all domains of life. In bacteria, most pervasive transcription occurs antisense to protein-coding transcripts, although recently a new class of pervasive RNAs was identified that originates from within annotated genes. Initially considered to be non-functional transcriptional noise, pervasive transcription is increasingly being recognized as important in regulating gene expression. The function of pervasive transcription is an extensively debated question in the field of transcriptomics and regulatory RNA biology. Here, we highlight the most recent contributions addressing the purpose of pervasive transcription in bacteria and discuss their implications.

  6. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression.

    PubMed

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106-a R2R3-MYB transcription factor-upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis.

  7. Increased neurovirulence and reactivation of the herpes simplex virus type 1 latency-associated transcript (LAT)-negative mutant dLAT2903 with a disrupted LAT miR-H2.

    PubMed

    Jiang, Xianzhi; Brown, Don; Osorio, Nelson; Hsiang, Chinhui; BenMohamed, Lbachir; Wechsler, Steven L

    2016-02-01

    At least six microRNAs (miRNAs) appear to be encoded by the latency-associated transcript (LAT) of herpes simplex virus type 1 (HSV-1). The gene for ICP0, an important immediate early (IE) viral protein, is anti-sense to, and overlaps with, the region of LAT from which miRNA H2 (miR-H2) is derived. We recently reported that a mutant (McK-ΔH2) disrupted for miR-H2 on the wild-type HSV-1 strain McKrae genomic background has increased ICP0 expression, increased neurovirulence, and slightly more rapid reactivation. We report here that HSV-1 mutants deleted for the LAT promoter nonetheless make significant amounts of miR-H2 during lytic tissue culture infection, presumably via readthrough transcription from an upstream promoter. To determine if miR-H2 might also play a role in the HSV-1 latency/reactivation cycle of a LAT-negative mutant, we constructed dLAT-ΔH2, in which miR-H2 is disrupted in dLAT2903 without altering the predicted amino acid sequence of the overlapping ICP0 open reading frame. Similar to McK-ΔH2, dLAT-ΔH2 expressed more ICP0, was more neurovirulent, and had increased reactivation in the mouse TG explant-induced reactivation model of HSV-1 compared with its parental virus. Interestingly, although the increased reactivation of McK-ΔH2 compared with its parental wild-type (wt) virus was subtle and only detected at very early times after explant TG induced reactivation, the increased reactivation of dLAT-ΔH2 compared with its dLAT2903 parental virus appeared more robust and was significantly increased even at late times after induction. These results confirm that miR-H2 plays a role in modulating the HSV-1 reactivation phenotype.

  8. Improved Methods for Teaching Machine Transcription.

    ERIC Educational Resources Information Center

    Smith, Clara J.

    1980-01-01

    The increased use of machine transcription in business and industry demands that business educators attract and train more highly skilled machine transcriptionists. Realistic production measurement and appropriate vocabulary should be taught to link machine transcription to word processing. (Author)

  9. Estrogen Signaling Multiple Pathways to Impact Gene Transcription

    PubMed Central

    Marino, Maria; Galluzzo, Paola; Ascenzi, Paolo

    2006-01-01

    Steroid hormones exert profound effects on cell growth, development, differentiation, and homeostasis. Their effects are mediated through specific intracellular steroid receptors that act via multiple mechanisms. Among others, the action mechanism starting upon 17β-estradiol (E2) binds to its receptors (ER) is considered a paradigmatic example of how steroid hormones function. Ligand-activated ER dimerizes and translocates in the nucleus where it recognizes specific hormone response elements located in or near promoter DNA regions of target genes. Behind the classical genomic mechanism shared with other steroid hormones, E2 also modulates gene expression by a second indirect mechanism that involves the interaction of ER with other transcription factors which, in turn, bind their cognate DNA elements. In this case, ER modulates the activities of transcription factors such as the activator protein (AP)-1, nuclear factor-κB (NF-κB) and stimulating protein-1 (Sp-1), by stabilizing DNA-protein complexes and/or recruiting co-activators. In addition, E2 binding to ER may also exert rapid actions that start with the activation of a variety of signal transduction pathways (e.g. ERK/MAPK, p38/MAPK, PI3K/AKT, PLC/PKC). The debate about the contribution of different ER-mediated signaling pathways to coordinate the expression of specific sets of genes is still open. This review will focus on the recent knowledge about the mechanism by which ERs regulate the expression of target genes and the emerging field of integration of membrane and nuclear receptor signaling, giving examples of the ways by which the genomic and non-genomic actions of ERs on target genes converge. PMID:18369406

  10. Silencing the Menkes copper-transporting ATPase (Atp7a) gene in rat intestinal epithelial (IEC-6) cells increases iron flux via transcriptional induction of ferroportin 1 (Fpn1).

    PubMed

    Gulec, Sukru; Collins, James F

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron ((59)Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished.

  11. A spontaneous deletion of α-synuclein is associated with an increase in CB1 mRNA transcript and receptor expression in the hippocampus and amygdala: effects on alcohol consumption

    PubMed Central

    López-Jiménez, Alejandro; Walter, Nicole A. R.; Giné, Elena; Santos, Ángel; Echeverry-Alzate, Victor; Bühler, Kora-Mareen; Olmos, Pedro; Giezendanner, Stéphanie; Moratalla, Rosario; Montoliu, Lluis; Buck, Kari J.; López-Moreno, Jose Antonio

    2014-01-01

    α-Synuclein (α-syn) protein and endocannabinoid CB1 receptors are primarily located in presynaptic terminals. An association between α-syn and CB1 receptors has recently been established in Parkinson’s disease, but it is completely unknown whether there is an association between these two proteins in alcohol addiction. Therefore, we aimed to examine the α-syn mRNA transcript and protein expression levels in the prefrontal cortex, striatum, amygdala and hippocampus. These brain regions are the most frequently implicated in alcohol and other drug addiction. In these studies, we used C57BL/6 mice carrying a spontaneous deletion of the α-syn gene (C57BL/6Snca−/−) and their respective controls (C57BL/6Snca+/+). These animals were monitored for spontaneous alcohol consumption (3–10%) and their response to a hypnotic-sedative dose of alcohol (3 g/kg) was also assessed. Compared with the C57BL/6Snca+/+ mice, we found that the C57BL/6Snca−/− mice exhibited a higher expression level of the CB1 mRNA transcript and CB1 receptor in the hippocampus and amygdala. Furthermore, C57BL/6Snca−/− mice showed an increase in alcohol consumption when offered a 10% alcohol solution. There was no significant difference in sleep time after the injection of 3 g/kg alcohol. These results are the first to reveal an association between α-syn and the CB1 receptor in the brain regions that are most frequently implicated in alcohol and other drug addictions. PMID:23345080

  12. A Novel R2R3-MYB Transcription Factor BpMYB106 of Birch (Betula platyphylla) Confers Increased Photosynthesis and Growth Rate through Up-regulating Photosynthetic Gene Expression

    PubMed Central

    Zhou, Chenguang; Li, Chenghao

    2016-01-01

    We isolated a R2R3-MYB transcription factor BpMYB106, which regulates photosynthesis in birch (Betula platyphylla Suk.). BpMYB106 mainly expresses in the leaf and shoot tip of birch, and its protein is localized in the nucleus. We further fused isolated a 1588 bp promoter of BpMYB106 and analyzed it by PLACE, which showed some cis-acting elements related to photosynthesis. BpMYB106 promoter β-glucuronidase (GUS) reporter fusion studies gene, the result, showed the GUS reporter gene in transgenic birch with BpMYB106 promoter showed strong activities in shoot tip, cotyledon margins, and mature leaf trichomes. The overexpression of BpMYB106 in birch resulted in significantly increased trichome density, net photosynthetic rate, and growth rate as compared with the wild-type birch. RNA-Seq profiling revealed the upregulation of several photosynthesis-related genes in the photosynthesis and oxidative phosphorylation pathways in the leaves of transgenic plants. Yeast one-hybrid analysis, coupled with transient assay in tobacco, revealed that BpMYB106 binds a MYB binding site MYB2 in differentially expressed gene promoters. Thus, BpMYB106 may directly activate the expression of a range of photosynthesis related genes through interacting with the MYB2 element in their promoters. Our study demonstrating the overexpression of BpMYB106—a R2R3-MYB transcription factor—upregulates the genes of the photosynthesis and oxidative phosphorylation pathways to improve photosynthesis. PMID:27047502

  13. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain

    PubMed Central

    Fluteau, Adeline; Ince, Paul G.; Minett, Thais; Matthews, Fiona E.; Brayne, Carol; Garwood, Claire J.; Ratcliffe, Laura E.; Morgan, Sarah; Heath, Paul R.; Shaw, Pamela J.; Wharton, Stephen B.; Simpson, Julie E.

    2015-01-01

    The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council’s Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment. PMID:26455863

  14. Expression pattern of transcription factors and intracellular cytokines reveals that clinically cured tuberculosis is accompanied by an increase in Mycobacterium-specific Th1, Th2, and Th17 cells.

    PubMed

    da Silva, Marcos V; Massaro Junior, Vladimir J; Machado, Juliana R; Silva, Djalma A A; Castellano, Lúcio R; Alexandre, Patricia B D; Rodrigues, Denise B R; Rodrigues, Virmondes

    2015-01-01

    Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis.

  15. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain.

    PubMed

    Fluteau, Adeline; Ince, Paul G; Minett, Thais; Matthews, Fiona E; Brayne, Carol; Garwood, Claire J; Ratcliffe, Laura E; Morgan, Sarah; Heath, Paul R; Shaw, Pamela J; Wharton, Stephen B; Simpson, Julie E

    2015-11-16

    The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council's Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment.

  16. TBX21-1993T/C (rs4794067) polymorphism is associated with increased risk of chronic periodontitis and increased T-bet expression in periodontal lesions, but does not significantly impact the IFN-g transcriptional level or the pattern of periodontophatic bacterial infection

    PubMed Central

    Cavalla, Franco; Biguetti, Claudia Cristina; Colavite, Priscila Maria; Silveira, Elcia Varise; Martins, Walter; Letra, Ariadne; Trombone, Ana Paula Favaro; Silva, Renato Menezes; Garlet, Gustavo Pompermaier

    2015-01-01

    Th1-polarized host response, mediated by IFN-γ, has been associated with increased severity of periodontal disease as well as control of periodontal infection. The functional polymorphism TBX21-1993T/C (rs4794067) increases the transcriptional activity of the TBX21 gene (essential for Th1 polarization) resulting in a predisposition to a Th-1 biased immune response. Thus, we conducted a case-control study, including a population of healthy controls (H, n = 218), chronic periodontitis (CP, n = 197), and chronic gingivitis patients (CG, n = 193), to investigate if genetic variations in TBX21 could impact the development of Th1 responses, and consequently influence the pattern of bacterial infection and periodontitis outcome. We observed that the polymorphic allele T was significantly enriched in the CP patients compared to CG subjects, while the H controls demonstrated and intermediate genotype. Also, investigating the putative functionality TBX21-1993T/C in the modulation of local response, we observed that the transcripts levels of T-bet, but not of IFN-γ, were upregulated in homozygote and heterozygote polymorphic subjects. In addition, TBX21-1993T/C did not influence the pattern of bacterial infection or the clinical parameters of disease severity, being the presence/absence of red complex bacteria the main factor associated with the disease status and the subrogate variable probing depth (PD) in the logistic regression analysis. PMID:25832120

  17. Glyceollin I Enantiomers Distinctly Regulate ER-Mediated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyceollins (GLYs) are pterocarpan, phytoalexins elicited in high concentrations when soybeans are stressed. We have previously reported that the three most common glyceollin isomers (GLY I, II, and III) exhibit antiestrogenic properties, which may have significant biological effects following human...

  18. Association of MMP7 -181A→G Promoter Polymorphism with Gastric Cancer Risk: INFLUENCE OF NICOTINE IN DIFFERENTIAL ALLELE-SPECIFIC TRANSCRIPTION VIA INCREASED PHOSPHORYLATION OF cAMP-RESPONSE ELEMENT-BINDING PROTEIN (CREB).

    PubMed

    Kesh, Kousik; Subramanian, Lakshmi; Ghosh, Nillu; Gupta, Vinayak; Gupta, Arnab; Bhattacharya, Samir; Mahapatra, Nitish R; Swarnakar, Snehasikta

    2015-06-05

    Elevated expression of matrix metalloproteinase7 (MMP7) has been demonstrated to play a pivotal role in cancer invasion. The -181A→G (rs11568818) polymorphism in the MMP7 promoter modulates gene expression and possibly affects cancer progression. Here, we evaluated the impact of -181A→G polymorphism on MMP7 promoter activity and its association with gastric cancer risk in eastern Indian case-control cohorts (n = 520). The GG genotype as compared with the AA genotype was predisposed (p = 0.02; odds ratio = 1.9, 95% confidence interval = 1.1-3.3) to gastric cancer risk. Stratification analysis showed that tobacco addiction enhanced gastric cancer risk in GG subjects when compared with AA subjects (p = 0.03, odds ratio = 2.46, and 95% confidence interval = 1.07-5.68). Meta-analysis revealed that tobacco enhanced the risk for cancer more markedly in AG and GG carriers. Activity and expression of MMP7 were significantly higher in GG than in AA carriers. In support, MMP7 promoter-reporter assays showed greater transcriptional activity toward A to G transition under basal/nicotine-induced/cAMP-response element-binding protein (CREB) overexpressed conditions in gastric adenocarcinoma cells. Moreover, nicotine (a major component of tobacco) treatment significantly up-regulated MMP7 expression due to enhanced CREB phosphorylation followed by its nuclear translocation in gastric adenocarcinoma cells. Furthermore, chromatin immunoprecipitation experiments revealed higher binding of phosphorylated CREB with the -181G than the -181A allele. Altogether, specific binding of phosphorylated CREB to the G allele-carrying promoter enhances MMP7 gene expression that is further augmented by nicotine due to increased CREB phosphorylation and thereby increases the risk for gastric cancer.

  19. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    PubMed Central

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  20. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    SciTech Connect

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  1. AthaMap, integrating transcriptional and post-transcriptional data

    PubMed Central

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  2. The Absence of the Transcription Factor Yrr1p, Identified from Comparative Genome Profiling, Increased Vanillin Tolerance Due to Enhancements of ABC Transporters Expressing, rRNA Processing and Ribosome Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Wang, Xinning; Liang, Zhenzhen; Hou, Jin; Shen, Yu; Bao, Xiaoming

    2017-01-01

    Enhancing the tolerance of Saccharomyces cerevisiae to inhibitors derived from lignocellulose is conducive to producing biofuel and chemicals using abundant lignocellulosic materials. Vanillin is a major type of phenolic inhibitor in lignocellulose hydrolysates for S. cerevisiae. In the present work, the factors beneficial to vanillin resistance in yeast were identified from the vanillin-resistant strain EMV-8, which was derived from strain NAN-27 by adaptive evolution. We found 450 SNPs and 44 genes with InDels in the vanillin-tolerant strain EMV-8 by comparing the genome sequences of EMV-8 and NAN-27. To investigate the effects of InDels, InDels were deleted in BY4741, respectively. We demonstrated that the deletion of YRR1 improved vanillin tolerance of strain. In the presence of 6 mM vanillin, deleting YRR1 increase the maximum specific growth rate and the vanillin consumption rate by 142 and 51%, respectively. The subsequent transcriptome analysis revealed that deleting YRR1 resulted in changed expression of over 200 genes in the presence of 5 mM vanillin. The most marked changes were the significant up-regulation of the dehydrogenase ADH7, several ATP-binding cassette (ABC) transporters, and dozens of genes involved in ribosome biogenesis and rRNA processing. Coincidently, the crude enzyme solution of BY4741(yrr1Δ) exhibited higher NADPH-dependent vanillin reduction activity than control. In addition, overexpressing the ABC transporter genes PDR5, YOR1, and SNQ2, as well as the RNA helicase gene DBP2, increased the vanillin tolerance of strain. Interestingly, unlike the marked changes we mentioned above, under vanillin-free conditions, there are only limited transcriptional differences between wildtype and yrr1Δ. This indicated that vanillin might act as an effector in Yrr1p-related regulatory processes. The new findings of the relationship between YRR1 and vanillin tolerance, as well as the contribution of rRNA processing and ribosome biogenesis to

  3. A Forum To Expand Advanced Placement Opportunities: Increasing Access and Improving Preparation in High Schools. Strategies To Overcome Challenges in Rural and Small Schools. Transcript of Proceedings (Washington, D.C., February 11, 2000).

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This transcript reproduces a Department of Education/College Board sponsored discussion on ways to expand advanced placement (AP) opportunities in high schools. The deliberations opened with a presentation by Phil Chavez, an assistant principal in San Antonio, Texas, who outlined the genesis and development of the AP program in his predominantly…

  4. Isolation and characterization of transcription fidelity mutants.

    PubMed

    Strathern, Jeffrey N; Jin, Ding Jun; Court, Donald L; Kashlev, Mikhail

    2012-07-01

    Accurate transcription is an essential step in maintaining genetic information. Error-prone transcription has been proposed to contribute to cancer, aging, adaptive mutagenesis, and mutagenic evolution of retroviruses and retrotransposons. The mechanisms controlling transcription fidelity and the biological consequences of transcription errors are poorly understood. Because of the transient nature of mRNAs and the lack of reliable experimental systems, the identification and characterization of defects that increase transcription errors have been particularly challenging. In this review we describe novel genetic screens for the isolation of fidelity mutants in both Saccharomyces cerevisiae and Escherichia coli RNA polymerases. We obtained and characterized two distinct classes of mutants altering NTP misincorporation and transcription slippage both in vivo and in vitro. Our study not only validates the genetic schemes for the isolation of RNA polymerase mutants that alter fidelity, but also sheds light on the mechanism of transcription accuracy. This article is part of a Special Issue entitled: Chromatin in time and space.

  5. Effects of elongation delay in transcription dynamics.

    PubMed

    Zhang, Xuan; Jin, Huiqin; Yang, Zhuoqin; Lei, Jinzhi

    2014-12-01

    In the transcription process, elongation delay is induced by the movement of RNA polymerases (RNAP) along the DNA sequence, and can result in changes in the transcription dynamics. This paper studies the transcription dynamics that involved the elongation delay and effects of cell division and DNA replication. The stochastic process of gene expression is modeled with delay chemical master equation with periodic coefficients, and is studied numerically through the stochastic simulation algorithm with delay. We show that the average transcription level approaches to a periodic dynamics over cell cycles at homeostasis, and the elongation delay can reduce the transcription level and increase the transcription noise. Moreover, the transcription elongation can induce bimodal distribution of mRNA levels that can be measured by the techniques of flow cytometry.

  6. Transcriptional enhancers: Transcription, function and flexibility.

    PubMed

    Melamed, Philippa; Yosefzon, Yahav; Rudnizky, Sergei; Pnueli, Lilach

    2016-01-01

    Active transcriptional enhancers are often transcribed to eRNAs, whose changing levels mirror those of the target gene mRNA. We discuss some of the reported functions of these eRNAs and their likely diversity to allow utilization of distinct cis regulatory regions to enhance transcription in diverse developmental and cellular contexts.

  7. Widespread Inducible Transcription Downstream of Human Genes

    PubMed Central

    Vilborg, Anna; Passarelli, Maria C.; Yario, Therese A.; Tycowski, Kazimierz T.; Steitz, Joan A.

    2015-01-01

    Summary Pervasive transcription of the human genome generates RNAs whose mode of formation and functions are largely uncharacterized. Here, we combine RNA-Seq with detailed mechanistic studies to describe a transcript type derived from protein-coding genes. The resulting RNAs, which we call DoGs for downstream of gene containing transcripts, possess long non-coding regions (often >45 kb) and remain chromatin bound. DoGs are inducible by osmotic stress through an IP3 receptor signaling-dependent pathway, indicating active regulation. DoG levels are increased by decreased termination of the upstream transcript, a previously undescribed mechanism for rapid transcript induction. Relative depletion of polyA signals in DoG regions correlates with increased levels of DoGs after osmotic stress. We detect DoG transcription in several human cell lines and provide evidence for thousands of DoGs genome-wide. PMID:26190259

  8. Transcription in archaea

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  9. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis.

    PubMed

    Li, Ai; Zhou, Yanan; Jin, Chuan; Song, Wenqin; Chen, Chengbin; Wang, Chunguo

    2013-11-01

    In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.

  10. Theoretical analysis of transcription process with polymerase stalling

    NASA Astrophysics Data System (ADS)

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  11. Theoretical analysis of transcription process with polymerase stalling.

    PubMed

    Li, Jingwei; Zhang, Yunxin

    2015-05-01

    Experimental evidence shows that in gene transcription RNA polymerase has the possibility to be stalled at a certain position of the transcription template. This may be due to the template damage or protein barriers. Once stalled, polymerase may backtrack along the template to the previous nucleotide to wait for the repair of the damaged site, simply bypass the barrier or damaged site and consequently synthesize an incorrect messenger RNA, or degrade and detach from the template. Thus, the effective transcription rate (the rate to synthesize correct product mRNA) and the transcription effectiveness (the ratio of the effective transcription rate to the effective transcription initiation rate) are both influenced by polymerase stalling events. So far, no theoretical model has been given to discuss the gene transcription process including polymerase stalling. In this study, based on the totally asymmetric simple exclusion process, the transcription process including polymerase stalling is analyzed theoretically. The dependence of the effective transcription rate, effective transcription initiation rate, and transcription effectiveness on the transcription initiation rate, termination rate, as well as the backtracking rate, bypass rate, and detachment (degradation) rate when stalling, are discussed in detail. The results showed that backtracking restart after polymerase stalling is an ideal mechanism to increase both the effective transcription rate and the transcription effectiveness. Without backtracking, detachment of stalled polymerase can also help to increase the effective transcription rate and transcription effectiveness. Generally, the increase of the bypass rate of the stalled polymerase will lead to the decrease of the effective transcription rate and transcription effectiveness. However, when both detachment rate and backtracking rate of the stalled polymerase vanish, the effective transcription rate may also be increased by the bypass mechanism.

  12. Significantly increased expression of beta-glucuronidase in the central nervous system of mucopolysaccharidosis type VII mice from the latency-associated transcript promoter in a nonpathogenic herpes simplex virus type 1 vector.

    PubMed

    Zhu, J; Kang, W; Wolfe, J H; Fraser, N W

    2000-07-01

    Herpes simplex virus (HSV) has the ability to establish life-long latent infections in postmitotic neurons and to remain transcriptionally active, continuously expressing latency-associated transcripts (LAT) while producing minimal disease. These properties have made HSV an excellent candidate for neuronal gene transfer. Previously, we have shown that in mucopolysaccharidosis type VII mice (MPS VII, beta-glucuronidase deficiency) the LAT promoter is capable of expressing beta-glucuronidase (GUSB) in the trigeminal ganglion and the brainstem after latency is established. However, the number of neurons expressing GUSB is much lower than the number expressing 2-kb LAT following a wild-type virus infection. In this study, we have evaluated the effect of the position of the coding sequence relative to the LAT promoter on beta-glucuronidase gene expression in the central nervous system (CNS). Non-neurovirulent (ICP-34.5-deleted HSV-1) vectors were used, allowing direct intracranial injection. Significantly more GUSB activity was detected in brains of MPS VII mice inoculated with a recombinant virus (HSV-LAT-GUSB-JS) in which the GUSB cDNA was inserted near the LAT promoter, compared to viruses where it was inserted farther downstream in either the LAT exon 1 or overlapping exon 1 and the 2-kb LAT intron. This vector produced more than 100 times the number of positive cells than the other constructs. During acute infection, the distribution of viral replication differed from the distribution of GUSB enzyme expression. Viral antigen was predominately present in cells around the site of injection in the caudate putamen and in ependymal cells lining the ventricles. In contrast, GUSB expression was present mainly in cells of the thalamus and hypothalamus, which did not exhibit viral antigen, suggesting that GUSB enzyme activity was expressed from latently but not acutely infected neuronal cells. This vector design should be useful for high-level expression of various genes in

  13. Stochastic Model of Supercoiling-Dependent Transcription

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Bentivoglio, A.; Corless, S.; Gilbert, N.; Gonnella, G.; Marenduzzo, D.

    2016-07-01

    We propose a stochastic model for gene transcription coupled to DNA supercoiling, where we incorporate the experimental observation that polymerases create supercoiling as they unwind the DNA helix and that these enzymes bind more favorably to regions where the genome is unwound. Within this model, we show that when the transcriptionally induced flux of supercoiling increases, there is a sharp crossover from a regime where torsional stresses relax quickly and gene transcription is random, to one where gene expression is highly correlated and tightly regulated by supercoiling. In the latter regime, the model displays transcriptional bursts, waves of supercoiling, and up regulation of divergent or bidirectional genes. It also predicts that topological enzymes which relax twist and writhe should provide a pathway to down regulate transcription.

  14. Transcription and Recombination: When RNA Meets DNA

    PubMed Central

    Aguilera, Andrés; Gaillard, Hélène

    2014-01-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription–replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. PMID:25085910

  15. On schemes of combinatorial transcription logic.

    PubMed

    Buchler, Nicolas E; Gerland, Ulrich; Hwa, Terence

    2003-04-29

    Cells receive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate specific genetic responses. Here we explore theoretically the potentials and limitations of combinatorial signal integration at the level of cis-regulatory transcription control. Our analysis suggests that many complex transcription-control functions of the type encountered in higher eukaryotes are already implementable within the much simpler bacterial transcription system. Using a quantitative model of bacterial transcription and invoking only specific protein-DNA interaction and weak glue-like interaction between regulatory proteins, we show explicit schemes to implement regulatory logic functions of increasing complexity by appropriately selecting the strengths and arranging the relative positions of the relevant protein-binding DNA sequences in the cis-regulatory region. The architectures that emerge are naturally modular and evolvable. Our results suggest that the transcription regulatory apparatus is a "programmable" computing machine, belonging formally to the class of Boltzmann machines. Crucial to our results is the ability to regulate gene expression at a distance. In bacteria, this can be achieved for isolated genes via DNA looping controlled by the dimerization of DNA-bound proteins. However, if adopted extensively in the genome, long-distance interaction can cause unintentional intergenic cross talk, a detrimental side effect difficult to overcome by the known bacterial transcription-regulation systems. This may be a key factor limiting the genome-wide adoption of complex transcription control in bacteria. Implications of our findings for combinatorial transcription control in eukaryotes are discussed.

  16. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.

    PubMed

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira

    2015-05-07

    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity.

  17. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  18. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  19. Thyrotropin controls transcription of the thyroglobulin gene.

    PubMed

    Van Heuverswyn, B; Streydio, C; Brocas, H; Refetoff, S; Dumont, J; Vassart, G

    1984-10-01

    The availability of rat thyroglobulin cDNA clones was exploited to study the regulation of thyroglobulin gene transcription by thyrotropin (TSH). Groups of rats were subjected to treatments leading to reduction or increase in the rat serum TSH (rTSH) levels. Thyroid gland nuclei were isolated, incubated in vitro in the presence of 32P-labeled uridine triphosphate, and thyroglobulin transcripts were quantitated by hybridization to immobilized rat thyroglobulin cDNA clones. Transcription of the thyroglobulin gene was found to be very active in thyroid nuclei from control animals. It represented about 10% of total RNA polymerase II activity. Chronic hyperstimulation of the thyroid glands with endogenous rTSH was achieved in rats treated with the goitrogen propylthiouracil. No significant increase of thyroglobulin gene transcription could be measured in thyroid nuclei from these animals. On the contrary, a dramatic decrease in thyroglobulin gene transcription was observed in those animals in which endogenous rTSH levels had been suppressed by hypophysectomy or by the administration of triiodothyronine. Injection of exogenous bovine TSH in such animals readily restored transcriptional activity of the gene. Our results identify transcription as an important regulatory step involved in TSH action. They suggest that normal TSH levels induce close to maximal expression of the thyroglobulin gene but that continuous presence of TSH is required in order to maintain the gene in an activated state.

  20. DNA supercoiling during transcription

    PubMed Central

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  1. Transcription termination maintains chromosome integrity.

    PubMed

    Washburn, Robert S; Gottesman, Max E

    2011-01-11

    DNA replication fork movement is impeded by collisions with transcription elongation complexes (TEC). We propose that a critical function of transcription termination factors is to prevent TEC from blocking DNA replication and inducing replication fork arrest, one consequence of which is DNA double-strand breaks. We show that inhibition of Rho-dependent transcription termination by bicyclomycin in Escherichia coli induced double-strand breaks. Cells deleted for Rho-cofactors nusA and nusG were hypersensitive to bicyclomycin, and had extensive chromosome fragmentation even in the absence of the drug. An RNA polymerase mutation that destabilizes TEC (rpoB*35) increased bicyclomycin resistance >40-fold. Double-strand break formation depended on DNA replication, and can be explained by replication fork collapse. Deleting recombination genes required for replication fork repair (recB and ruvC) increased sensitivity to bicyclomycin, as did loss of the replication fork reloading helicases rep and priA. We propose that Rho responds to a translocating replisome by releasing obstructing TEC.

  2. Transcription and cancer.

    PubMed Central

    Cox, P. M.; Goding, C. R.

    1991-01-01

    The normal growth, development and function of an organism requires precise and co-ordinated control of gene expression. A major part of this control is exerted by regulating messenger RNA (mRNA) production and involves complex interactions between an array of transcriptionally active proteins and specific regulatory DNA sequences. The combination of such proteins and DNA sequences is specific for given gene or group of genes in a particular cell type and the proteins regulating the same gene may vary between cell types. In addition the expression or activity of these regulatory proteins may be modified depending on the state of differentiation of a cell or in response to an external stimulus. Thus, the differentiation of embryonic cells into diverse tissues is achieved and the mature structure and function of the organism is maintained. This review focusses on the role of perturbations of these transcriptional controls in neoplasia. Deregulation of transcription may result in the failure to express genes responsible for cellular differentiation, or alternatively, in the transcription of genes involved in cell division, through the inappropriate expression or activation of positively acting transcription factors and nuclear oncogenes. Whether the biochemical abnormalities that lead to the disordered growth and differentiation of a malignant tumour affect cell surface receptors, membrane or cytoplasmic signalling proteins or nuclear transcription factors, the end result is the inappropriate expression of some genes and failure to express others. Current research is starting to elucidate which of the elements of this complicated system are important in neoplasia. PMID:1645561

  3. Increases in CYP3A Expression and Glucocorticoid-Inducibility in Liver of Rats Fed Soy Protein Isolate (SPI) Involves Post-Transcriptional Effects on mRNA Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed a time course of dexamethasone (DEX)-induction at PND25 and PND60 in male and female rats fed soy protein isolate (SPI) or casein (CAS) based AIN93G diets throughout development to examine molecular mechanisms underlying increased CYP3A expression and inducibility after SPI-feeding. At ...

  4. Transcriptional activation of ribosomal RNA genes during compensatory renal hypertrophy

    SciTech Connect

    Ouellette, A.J.; Moonka, R.; Zelenetz, A.; Malt, R.A.

    1986-05-01

    The overall rate of rDNA transcription increases by 50% during the first 24 hours of compensatory renal hypertrophy in the mouse. To study mechanisms of ribosome accumulation after uninephrectomy, transcription rates were measured in isolated kidneys by transcriptional runoff. /sup 32/P-labeled nascent transcripts were hybridized to blots containing linearized, denatured cloned rDNA, and hybridization was quantitated autoradiographically and by direct counting. Overall transcriptional activity of rDNA was increased by 30% above control levels at 6 hrs after nephrectomy and by 50% at 12, 18, and 24 hrs after operation. Hybridizing RNA was insensitive to inhibiby alpha-amanitin, and no hybridization was detected to vector DNA. Thus, accelerated rDNA transcription is one regulatory element in the accretion of ribosomes in renal growth, and the regulatory event is an early event. Mechanisms of activation may include enhanced transcription of active genes or induction of inactive DNA.

  5. Mitochondrial biology. Replication-transcription switch in human mitochondria.

    PubMed

    Agaronyan, Karen; Morozov, Yaroslav I; Anikin, Michael; Temiakov, Dmitry

    2015-01-30

    Coordinated replication and expression of the mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mitochondrial DNA copy number can be regulated by the transcription machinery. We found that interaction of human transcription elongation factor TEFM with mitochondrial RNA polymerase and nascent transcript prevents the generation of replication primers and increases transcription processivity and thereby serves as a molecular switch between replication and transcription, which appear to be mutually exclusive processes in mitochondria. TEFM may allow mitochondria to increase transcription rates and, as a consequence, respiration and adenosine triphosphate production without the need to replicate mitochondrial DNA, as has been observed during spermatogenesis and the early stages of embryogenesis.

  6. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    PubMed Central

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  7. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    PubMed

    Qeska, Visar; Barthel, Yvonne; Herder, Vanessa; Stein, Veronika M; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  8. Regulation of Transcript Elongation

    PubMed Central

    Belogurov, Georgiy A.; Artsimovitch, Irina

    2015-01-01

    Bacteria lack subcellular compartments and harbor a single RNA polymerase that synthesizes both structural and protein-coding RNAs, which are cotranscriptionally processed by distinct pathways. Nascent rRNAs fold into elaborate secondary structures and associate with ribosomal proteins, whereas nascent mRNAs are translated by ribosomes. During elongation, nucleic acid signals and regulatory proteins modulate concurrent RNA-processing events, instruct RNA polymerase where to pause and terminate transcription, or act as roadblocks to the moving enzyme. Communications among complexes that carry out transcription, translation, repair, and other cellular processes ensure timely execution of the gene expression program and survival under conditions of stress. This network is maintained by auxiliary proteins that act as bridges between RNA polymerase, ribosome, and repair enzymes, blurring boundaries between separate information-processing steps and making assignments of unique regulatory functions meaningless. Understanding the regulation of transcript elongation thus requires genome-wide approaches, which confirm known and reveal new regulatory connections. PMID:26132790

  9. Transcriptional response of Enterococcus faecalis to sunlight.

    PubMed

    Sassoubre, Lauren M; Ramsey, Matthew M; Gilmore, Michael S; Boehm, Alexandria B

    2014-01-05

    Microarrays were used to investigate the transcriptional response of Enterococcus faecalis to photostress. E. faecalis are Gram-positive bacteria used as indicators of water quality and have been shown to vary diurnally in response to sunlight. E. faecalis in filtered seawater microcosms were exposed to artificial sunlight for 12h and then placed in the dark for 12h. Transcript abundance was measured at 0, 2, 6, 12, and 24h in the sunlit microcosm and a dark control using microarrays. Culturable E. faecalis concentrations decreased 6-7 orders of magnitude within the first 6h of light exposure. After 12h in the dark, no evidence of dark-repair was observed. Expression data collected after 12h of sunlight exposure revealed a difference in transcript abundance in the light relative to dark microcosms for 35 unique ORFs, 33 ORFs showed increased transcript abundance and 2 ORFs showed reduced transcript abundance. A majority (51%) of the ORFs with increased transcript abundance in the sunlit relative to dark microcosms encoded hypothetical proteins; others were associated with protein synthesis, oxidative stress and DNA repair. Results suggest that E. faecalis exposed to sunlight actively transcribe RNA in response to photostress.

  10. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  11. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  12. Mapping yeast transcriptional networks.

    PubMed

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  13. Transcription of mitochondrial DNA.

    PubMed

    Tabak, H F; Grivell, L A; Borst, P

    1983-01-01

    While mitochondrial DNA (mtDNA) is the simplest DNA in nature, coding for rRNAs and tRNAs, results of DNA sequence, and transcript analysis have demonstrated that both the synthesis and processing of mitochondrial RNAs involve remarkably intricate events. At one extreme, genes in animal mtDNAs are tightly packed, both DNA strands are completely transcribed (symmetric transcription), and the appearance of specific mRNAs is entirely dependent on processing at sites signalled by the sequences of the tRNAs, which abut virtually every gene. At the other extreme, gene organization in yeast (Saccharomyces) is anything but compact, with long stretches of AT-rich DNA interspaced between coding sequences and no obvious logic to the order of genes. Transcription is asymmetric and several RNAs are initiated de novo. Nevertheless, extensive RNA processing occurs due largely to the presence of split genes. RNA splicing is complex, is controlled by both mitochondrial and nuclear genes, and in some cases is accompanied by the formation of RNAs that behave as covalently closed circles. The present article reviews current knowledge of mitochondrial transcription and RNA processing in relation to possible mechanisms for the regulation of mitochondrial gene expression.

  14. Fungal CSL transcription factors

    PubMed Central

    Převorovský, Martin; Půta, František; Folk, Petr

    2007-01-01

    Background The CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factor family members are well-known components of the transmembrane receptor Notch signaling pathway, which plays a critical role in metazoan development. They function as context-dependent activators or repressors of transcription of their responsive genes, the promoters of which harbor the GTG(G/A)GAA consensus elements. Recently, several studies described Notch-independent activities of the CSL proteins. Results We have identified putative CSL genes in several fungal species, showing that this family is not confined to metazoans. We have analyzed their sequence conservation and identified the presence of well-defined domains typical of genuine CSL proteins. Furthermore, we have shown that the candidate fungal protein sequences contain highly conserved regions known to be required for sequence-specific DNA binding in their metazoan counterparts. The phylogenetic analysis of the newly identified fungal CSL proteins revealed the existence of two distinct classes, both of which are present in all the species studied. Conclusion Our findings support the evolutionary origin of the CSL transcription factor family in the last common ancestor of fungi and metazoans. We hypothesize that the ancestral CSL function involved DNA binding and Notch-independent regulation of transcription and that this function may still be shared, to a certain degree, by the present CSL family members from both fungi and metazoans. PMID:17629904

  15. Focus on Refugees. Transcript.

    ERIC Educational Resources Information Center

    Brandel, Sarah; And Others

    This is the transcript of the "Focus on Refugees," proqram conducted by the Overseas Development Council. Remarks from the following participants are included: (1) Sarah Brandel, Associate Fellow at the Overseas Development Council; (2) Gary Perkins, Chief of Mission of the Washington Office of the United Nations High Commissioner for Refugees…

  16. Using both strands: The fundamental nature of antisense transcription.

    PubMed

    Murray, Struan C; Mellor, Jane

    2016-01-01

    Non-coding transcription across the antisense strands of genes is an abundant, pervasive process in eukaryotes from yeast to humans, however its biological function remains elusive. Here, we provide commentary on a recent study of ours, which demonstrates a genome-wide role for antisense transcription: establishing a unique, dynamic chromatin architecture over genes. Antisense transcription increases the level of nucleosome occupancy and histone acetylation at the promoter and body of genes, without necessarily modulating the level of protein-coding sense transcription. It is also associated with high levels of histone turnover. By allowing genes to sample a wider range of chromatin configurations, antisense transcription could serve to make genes more sensitive to changing signals, priming them for responses to developmental programs or stressful cellular environments. Given the abundance of antisense transcription and the breadth of these chromatin changes, we propose that antisense transcription represents a fundamental, canonical feature of eukaryotic genes.

  17. Modulation of RNA polymerase assembly dynamics in transcriptional regulation

    PubMed Central

    Gorski, Stanislaw A.; Snyder, Sara K.; John, Sam; Grummt, Ingrid; Misteli, Tom

    2008-01-01

    The interaction of transcription factors with target genes is highly dynamic. Whether the dynamic nature of these interactions is merely an intrinsic property of transcriptions factors or serves a regulatory role is unknown. Here, we have used single cell fluorescence imaging combined with computational modeling and chromatin immunoprecipitation to analyze transcription complex dynamics in gene regulation during the cell cycle in living cells. We demonstrate a link between the dynamics of RNA polymerase I (RNA pol I) assembly and transcriptional output. We show that transcriptional upregulation is accompanied by prolonged retention of RNA pol I components at the promoter, resulting in longer promoter dwell time, and an increase in the steady state population of assembling polymerase. As a consequence, polymerase assembly efficiency, and ultimately, an rate of entry into processive elongation are elevated. Our results show that regulation of rDNA transcription in vivo occurs via modulation of the efficiency of transcription complex subunit capture and assembly. PMID:18498750

  18. Transcription errors induce proteotoxic stress and shorten cellular lifespan.

    PubMed

    Vermulst, Marc; Denney, Ashley S; Lang, Michael J; Hung, Chao-Wei; Moore, Stephanie; Moseley, M Arthur; Mosely, Arthur M; Thompson, J Will; Thompson, William J; Madden, Victoria; Gauer, Jacob; Wolfe, Katie J; Summers, Daniel W; Schleit, Jennifer; Sutphin, George L; Haroon, Suraiya; Holczbauer, Agnes; Caine, Joanne; Jorgenson, James; Cyr, Douglas; Kaeberlein, Matt; Strathern, Jeffrey N; Duncan, Mara C; Erie, Dorothy A

    2015-08-25

    Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitor yeast cells that are genetically engineered to display error-prone transcription. We discover that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease phenotypes. We further find that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer's disease, and shorten the lifespan of cells. These experiments reveal a previously unappreciated role for transcriptional fidelity in cellular health and aging.

  19. Proofreading of misincorporated nucleotides in DNA transcription

    NASA Astrophysics Data System (ADS)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B.

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighboring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.

  20. Proofreading of misincorporated nucleotides in DNA transcription

    NASA Astrophysics Data System (ADS)

    Voliotis, Margaritis; Cohen, Netta; Molina-París, Carmen; Liverpool, Tanniemola B.

    2012-06-01

    The accuracy of DNA transcription is crucial for the proper functioning of the cell. Although RNA polymerases demonstrate selectivity for correct nucleotides, additional active mechanisms of transcriptional error correction are required to achieve observed levels of fidelity. Recent experimental findings have shed light on a particular mechanism of transcriptional error correction involving: (i) diffusive translocation of the RNA polymerase along the DNA (backtracking) and (ii) irreversible RNA cleavage. This mechanism achieves preferential cleavage of misincorporated nucleotides by biasing the local rates of translocation. Here, we study how misincorporated nucleotides affect backtracking dynamics and how this effect determines the level of transcriptional fidelity. We consider backtracking as a diffusive process in a periodic, one-dimensional energy landscape, which at a coarse-grained level gives rise to a hopping process between neighbouring local minima. We propose a model for how misincorporated nucleotides deform this energy landscape and hence affect the hopping rates. In particular, we show that this model can be used to derive both the theoretical limit on the fidelity (i.e. the minimum fraction of misincorporated nucleotides) and the actual fidelity relative to this optimum, achieved for specific combinations of the cleavage and polymerization rates. Finally, we study how external factors influencing backtracking dynamics affect transcriptional fidelity. We show that biologically relevant loads, similar to those exerted by nucleosomes or other transcriptional barriers, increase error correction.

  1. Transcriptional proofreading in dense RNA polymerase traffic

    NASA Astrophysics Data System (ADS)

    Sahoo, Mamata; Klumpp, Stefan

    2011-12-01

    The correction of errors during transcription involves the diffusive backward translocation (backtracking) of RNA polymerases (RNAPs) on the DNA. A trailing RNAP on the same template can interfere with backtracking as it progressively restricts the space that is available for backward translocation and thereby ratchets the backtracked RNAP forward. We analyze the resulting negative impact on proofreading theoretically using a driven lattice gas model of transcription under conditions of dense RNAP traffic. The fraction of errors that are corrected is calculated exactly for the case of a single RNAP; for multi-RNAP transcription, we use simulations and an analytical approximation and find a decrease with increasing traffic density. Moreover, we ask how the parameters of the system have to be set to keep down the impact of the interference of a trailing RNAP. Our analysis uncovers a surprisingly simple picture of the design of the error correction system: its efficiency is essentially determined by the rate for the initial backtracking step, while the value of the cleavage rate ensures that the correction mechanism remains efficient at high transcription rates. Finally, we argue that our analysis can also be applied to cases with transcription-translation coupling where the leading ribosome on the transcript assumes the role of the trailing RNAP.

  2. Machine Transcription--Practically Speaking.

    ERIC Educational Resources Information Center

    Clippinger, Dorinda A.

    1984-01-01

    Draws transcription teaching principles from Gagne's theories about learning. Recommends 12-16 weeks of instruction, pre-transcription development of related skills, frequent feedback, and use of teaching materials that are arranged to take advantage of learning cycles. (SK)

  3. Non-transcriptional regulatory processes shape transcriptional network dynamics.

    PubMed

    Ray, J Christian J; Tabor, Jeffrey J; Igoshin, Oleg A

    2011-10-11

    Information about the extra- or intracellular environment is often captured as biochemical signals that propagate through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programmes in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. Cellular response dynamics are ultimately determined by interactions between transcriptional and non-transcriptional networks, with dramatic implications for physiology and evolution. Here, we provide an overview of non-transcriptional interactions that can affect the performance of natural and synthetic bacterial regulatory networks.

  4. Gene transcription and electromagnetic fields

    SciTech Connect

    Henderson, A.S.

    1992-01-01

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  5. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  6. Natural antisense and noncoding RNA transcripts as potential drug targets.

    PubMed

    Wahlestedt, Claes

    2006-06-01

    Information on the complexity of mammalian RNA transcription has increased greatly in the past few years. Notably, thousands of sense transcripts (conventional protein-coding genes) have antisense transcript partners, most of which are noncoding. Interestingly, a number of antisense transcripts regulate the expression of their sense partners, either in a discordant (antisense knockdown results in sense-transcript elevation) or concordant (antisense knockdown results in concomitant sense-transcript reduction) manner. Two new pharmacological strategies based on the knockdown of antisense RNA transcripts by siRNA (or another RNA targeting principle) are proposed in this review. In the case of discordant regulation, knockdown of antisense transcript elevates the expression of the conventional (sense) gene, thereby conceivably mimicking agonist-activator action. In the case of concordant regulation, knockdown of antisense transcript, or concomitant knockdown of antisense and sense transcripts, results in an additive or even synergistic reduction of the conventional gene expression. Although both strategies have been demonstrated to be valid in cell culture, it remains to be seen whether they provide advantages in other contexts.

  7. The Smad3 linker region contains a transcriptional activation domain.

    PubMed

    Wang, Guannan; Long, Jianyin; Matsuura, Isao; He, Dongming; Liu, Fang

    2005-02-15

    Transforming growth factor-beta (TGF-beta)/Smads regulate a wide variety of biological responses through transcriptional regulation of target genes. Smad3 plays a key role in TGF-beta/Smad-mediated transcriptional responses. Here, we show that the proline-rich linker region of Smad3 contains a transcriptional activation domain. When the linker region is fused to a heterologous DNA-binding domain, it activates transcription. We show that the linker region physically interacts with p300. The adenovirus E1a protein, which binds to p300, inhibits the transcriptional activity of the linker region, and overexpression of p300 can rescue the linker-mediated transcriptional activation. In contrast, an adenovirus E1a mutant, which cannot bind to p300, does not inhibit the linker-mediated transcription. The native Smad3 protein lacking the linker region is unable to mediate TGF-beta transcriptional activation responses, although it can be phosphorylated by the TGF-beta receptor at the C-terminal tail and has a significantly increased ability to form a heteromeric complex with Smad4. We show further that the linker region and the C-terminal domain of Smad3 synergize for transcriptional activation in the presence of TGF-beta. Thus our findings uncover an important function of the Smad3 linker region in Smad-mediated transcriptional control.

  8. The Transcription Unit Architecture of the Escherichia Coli Genome

    SciTech Connect

    Cho, Byung-Kwan; Zengler, Karsten; Qiu, Yu; Park, Young S.; Knight, Eric M.; Barrett, Christian; Gao, Yuan; Palsson, Bernhard O.

    2009-11-01

    Under EMSL User Proposal 25660, the authors reported that bacterial genomes are organized by structural and functional elements, including promoters, transcription start and termination sites, open reading frames, regulatory noncoding regions, untranslated regions and transcription units. Here, we iteratively integrate high-throughput, genome-wide measurements of RNA polymerase binding locations and mRNA transcript abundance, 5' sequences and translation into proteins to determine the organizational structure of the Escherichia coli K-12 MG1655 genome. Integration of the organizational elements provides an experimentally annotated transcription unit architecture, including alternative transcription start sites, 5' untranslated region, boundaries and open reading frames of each transcription unit. A total of 4,661 transcription units were identified, representing an increase of >530% over current knowledge. This comprehensive transcription unit architecture allows for the elucidation of condition-specific uses of alternative sigma factors at the genome scale. Furthermore, the transcription unit architecture provides a foundation on which to construct genome-scale transcriptional and translational regulatory networks.

  9. reSETting chromatin during transcription elongation

    PubMed Central

    Smolle, Michaela; Workman, Jerry L.; Venkatesh, Swaminathan

    2013-01-01

    Maintenance of ordered chromatin structure over the body of genes is vital for the regulation of transcription. Increased access to the underlying DNA sequence results in the recruitment of RNA polymerase II to inappropriate, promoter-like sites within genes, resulting in unfettered transcription. Two new papers show how the Set2-mediated methylation of histone H3 on Lys36 (H3K36me) maintains chromatin structure by limiting histone dynamics over gene bodies, either by recruiting chromatin remodelers that preserve ordered nucleosomal distribution or by lowering the binding affinity of histone chaperones for histones, preventing their removal. PMID:23257840

  10. Transcriptional and Epigenetic Mechanisms of Addiction

    PubMed Central

    Robison, Alfred J.; Nestler, Eric J.

    2012-01-01

    Preface Investigations of long-term changes in brain structure and function that accompany chronic exposure to drugs of abuse suggest that alterations in gene regulation contribute importantly to the addictive phenotype. We review multiple mechanisms by which drugs alter the transcriptional potential of genes, from the mobilization or repression of the transcriptional machinery to epigenetics — including alterations in the accessibility of genes within their native chromatin structure and the regulation of gene expression by non-coding RNAs. Increasing evidence implicates these various mechanisms of gene regulation in the lasting changes that drugs of abuse induce in brain, and offer novel inroads for addiction therapy. PMID:21989194

  11. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death.

    PubMed

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-03-28

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3' ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase.

  12. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death

    PubMed Central

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-01-01

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3′ ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase. PMID:28348398

  13. Transcriptional Regulatory Elements in Fungal Secondary Metabolism

    PubMed Central

    Yin, Wenbing; Keller, Nancy P.

    2013-01-01

    Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes encoding the enzymatic machinery required to make these metabolites are typically clustered in fungal genomes. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of secondary metabolism regulatory elements could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of ‘silent’ natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated on transcriptional regulatory elements from a broad view as well as tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining in the basis of this knowledge. PMID:21717315

  14. Epigenetic regulation of transcription in intermediate heterochromatin.

    PubMed

    Habu, Yoshiki; Mathieu, Olivier; Tariq, Muhammad; Probst, Aline V; Smathajitt, Chotika; Zhu, Tong; Paszkowski, Jerzy

    2006-12-01

    Constitutive heterochromatin is a compact, transcriptionally inert structure formed in gene-poor and repeat- and transposon-rich regions. In Arabidopsis, constitutive heterochromatin is characterized by hypermethylated DNA and histone H3 dimethylated at lysine (K) 9 (H3K9me2) together with depletion of histone H3 dimethylated at lysine 4 (H3K4me2). Here, we describe loci with intermediate properties of heterochromatin in which transcription downregulation is inherited in a manner similar to constitutive heterochromatin, although the loci are associated with opposing histone marks--H3K4me2 and H3K9me2. In the ddm1 (decrease in DNA methylation 1) mutants, their transcriptional activation is accompanied by the expected shift in the H3 modifications--depletion of H3K9me2 and enrichment in H3K4me2. In mom1 (Morpheus' molecule 1) mutants, however, a marked increase in transcription is not accompanied by detectable changes in the levels of H3K4me2 and H3K9me2. Therefore, transcriptional regulation in the intermediate heterochromatin involves two distinct epigenetic mechanisms. Interestingly, silent transgenic inserts seem to acquire properties characteristic of the intermediate heterochromatin.

  15. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  16. Home Study Academic Transcripts. NHSC Occasional Paper Number 10.

    ERIC Educational Resources Information Center

    Welch, Sally R.

    Academic transcripts are becoming increasingly important in home study environments because they are gaining wider use as "sales tools" by home study program graduates seeking acceptance of their home study work by employers and registrars. Well-designed transcripts have become an excellent alumni service and subtle marketing device that all…

  17. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  18. Transcriptional regulation of the uncoupling protein-1 gene.

    PubMed

    Villarroya, Francesc; Peyrou, Marion; Giralt, Marta

    2017-03-01

    Regulated transcription of the uncoupling protein-1 (UCP1) gene, and subsequent UCP1 protein synthesis, is a hallmark of the acquisition of the differentiated, thermogenically competent status of brown and beige/brite adipocytes, as well as of the responsiveness of brown and beige/brite adipocytes to adaptive regulation of thermogenic activity. The 5' non-coding region of the UCP1 gene contains regulatory elements that confer tissue specificity, differentiation dependence, and neuro-hormonal regulation to UCP1 gene transcription. Two main regions-a distal enhancer and a proximal promoter region-mediate transcriptional regulation through interactions with a plethora of transcription factors, including nuclear hormone receptors and cAMP-responsive transcription factors. Co-regulators, such as PGC-1α, play a pivotal role in the concerted regulation of UCP1 gene transcription. Multiple interactions of transcription factors and co-regulators at the promoter region of the UCP1 gene result in local chromatin remodeling, leading to activation and increased accessibility of RNA polymerase II and subsequent gene transcription. Moreover, a commonly occurring A-to-G polymorphism in close proximity to the UCP1 gene enhancer influences the extent of UCP1 gene transcription. Notably, it has been reported that specific aspects of obesity and associated metabolic diseases are associated with human population variability at this site. On another front, the unique properties of the UCP1 promoter region have been exploited to develop brown adipose tissue-specific gene delivery tools for experimental purposes.

  19. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression

    PubMed Central

    Rosa, Stefanie; Duncan, Susan; Dean, Caroline

    2016-01-01

    Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription. PMID:27713408

  20. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  1. Adaptation with transcriptional regulation

    NASA Astrophysics Data System (ADS)

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  2. Adaptation with transcriptional regulation.

    PubMed

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-02-24

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics.

  3. Adaptation with transcriptional regulation

    PubMed Central

    Shi, Wenjia; Ma, Wenzhe; Xiong, Liyang; Zhang, Mingyue; Tang, Chao

    2017-01-01

    Biochemical adaptation is one of the basic functions that are widely implemented in biological systems for a variety of purposes such as signal sensing, stress response and homeostasis. The adaptation time scales span from milliseconds to days, involving different regulatory machineries in different processes. The adaptive networks with enzymatic regulation (ERNs) have been investigated in detail. But it remains unclear if and how other forms of regulation will impact the network topology and other features of the function. Here, we systematically studied three-node transcriptional regulatory networks (TRNs), with three different types of gene regulation logics. We found that the topologies of adaptive gene regulatory networks can still be grouped into two general classes: negative feedback loop (NFBL) and incoherent feed-forward loop (IFFL), but with some distinct topological features comparing to the enzymatic networks. Specifically, an auto-activation loop on the buffer node is necessary for the NFBL class. For IFFL class, the control node can be either a proportional node or an inversely-proportional node. Furthermore, the tunability of adaptive behavior differs between TRNs and ERNs. Our findings highlight the role of regulation forms in network topology, implementation and dynamics. PMID:28233824

  4. Effect of selenium deficiency on gene transcription

    SciTech Connect

    Christensen, M.J.; Burgener, K.W. )

    1991-03-11

    To investigate the general effects of dietary selenium (Se) deficiency on gene transcription, weanling male Sprague-Dawley rats were fed a basal Se-deficient Torula yeast-based diet or the same diet supplemented with 0.5 ppm Se as sodium selenite for 40 days. At that time three rats in each dietary group were sacrificed. Livers were excised and divided into two portions for isolation of nuclei and for assay of cytosolic Se-glutathione peroxidase (Se-GPX) activity. Se-GPX activity was 279 {plus minus} 4 (mean {plus minus} SEM) mUnits/mg protein in Se-adequate livers, and 10 {plus minus} 2 mUnits/mg protein in Se-deficient livers. One aliquot of nuclei from each dietary group was used in a run-on transcription assay, employing {alpha}-{sup 32}P-UTP to label nascent transcripts. Equal quantities of radioactivity from these nuclei were hybridized with cDNA probes bound to nitrocellulose. Message bound to each probe was quantitated by laser densitometry of autoradiographs, and by scintillation counting of dot blotted nitrocellulose. Transcription of most genes tested, including Se-GPX, was not significantly affected by dietary Se intake. However, the amount of hybridization to a murine oncogene probe (v-fos) was increased in Se deficiency.

  5. Transcriptional regulation of plant phosphate transporters

    PubMed Central

    Muchhal, Umesh S.; Raghothama, K. G.

    1999-01-01

    Phosphorus is acquired by plant roots primarily via the high-affinity inorganic phosphate (Pi) transporters. The transcripts for Pi transporters are highly inducible upon Pi starvation, which also results in enhanced Pi uptake when Pi is resupplied. Using antibodies specific to one of the tomato Pi transporters (encoded by LePT1), we show that an increase in the LePT1 transcript under Pi starvation leads to a concurrent increase in the transporter protein, suggesting a transcriptional regulation for Pi acquisition. LePT1 protein accumulates rapidly in tomato roots in response to Pi starvation. The level of transporter protein accumulation depends on the Pi concentration in the medium, and it is reversible upon resupply of Pi. LePT1 protein accumulates all along the roots under Pi starvation and is localized primarily in the plasma membranes. These results clearly demonstrate that plants increase their capacity for Pi uptake during Pi starvation by synthesis of additional transporter molecules. PMID:10318976

  6. Nascent transcription affected by RNA polymerase IV in Zea mays.

    PubMed

    Erhard, Karl F; Talbot, Joy-El R B; Deans, Natalie C; McClish, Allison E; Hollick, Jay B

    2015-04-01

    All eukaryotes use three DNA-dependent RNA polymerases (RNAPs) to create cellular RNAs from DNA templates. Plants have additional RNAPs related to Pol II, but their evolutionary role(s) remain largely unknown. Zea mays (maize) RNA polymerase D1 (RPD1), the largest subunit of RNA polymerase IV (Pol IV), is required for normal plant development, paramutation, transcriptional repression of certain transposable elements (TEs), and transcriptional regulation of specific alleles. Here, we define the nascent transcriptomes of rpd1 mutant and wild-type (WT) seedlings using global run-on sequencing (GRO-seq) to identify the broader targets of RPD1-based regulation. Comparisons of WT and rpd1 mutant GRO-seq profiles indicate that Pol IV globally affects transcription at both transcriptional start sites and immediately downstream of polyadenylation addition sites. We found no evidence of divergent transcription from gene promoters as seen in mammalian GRO-seq profiles. Statistical comparisons identify genes and TEs whose transcription is affected by RPD1. Most examples of significant increases in genic antisense transcription appear to be initiated by 3'-proximal long terminal repeat retrotransposons. These results indicate that maize Pol IV specifies Pol II-based transcriptional regulation for specific regions of the maize genome including genes having developmental significance.

  7. Transcription of Trypanosoma brucei maxicircles

    SciTech Connect

    Michelotti, E.F.; Hajduk, S.L.

    1987-05-01

    Trypanosoma brucei is a protozoan parasite which developmentally regulates mitochondrial activity. In the mammal T. brucei produces ATP entirely by glycolysis while cytochrome mediated respiration resumes in the life-stage in the midgut of the insect vector. Using quantitative S1 nuclease protection assays two types of regulation of the steady state levels of the mitochondrial transcripts were found. Transcription of cytochrome b, cytochrome oxidase, and the rRNA genes is repressed in early bloodstream developmental stages, undergoes dramatic activation in later bloodstream stages, and finally a lesser activation in the insect developmental stage. Transcription of NADH dehydrogenase genes, however, is unregulated. Mitochondrial transcripts with a 5' triphosphate terminus, representing the site of transcription initiation, were capped using guanylyl transferase. The in vitro capped RNA hybridized to only one of eight mitochondrial restriction fragments on a Southern blot, however, hybridization of Southern blots with RNA from ..cap alpha..-/sup 32/P-UTP pulsed mitochondria labelled all restriction fragments equally. These results suggest that each DNA strand has a single promoter which directs the transcription of a full-length RNA which is subsequently processed. Different mitochondrial genes, despite being expressed on the same precursor RNA molecule, are independently regulated by both transcription initiation and RNA processing.

  8. Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides.

    PubMed

    Seligmann, Hervé

    2016-06-21

    Stem-loop hairpins punctuate mitochondrial post-transcriptional processing. Regulation of mitochondrial swinger transcription, transcription producing RNAs matching the mitogenome only assuming systematic exchanges between nucleotides (23 bijective transformations along 9 symmetric exchanges X<>Y, e.g. A<>G, and 14 asymmetric exchanges X>Y>Z>X, e.g. A>G>C>A) remains unknown. Does swinger RNA self-hybridization regulate swinger, as regular, transcription? Groups of 8 swinger transformations share canonical self-hybridization properties within each group, group 0 includes identity (regular) transcription. The human mitogenome has more stem-loop hairpins than randomized sequences for all groups. Group 2 transformations reveal complementarity of the light strand replication origin (OL) loop and a neighboring tRNA gene, detecting the longtime presumed OL/tRNA homology. Non-canonical G=U pairings in hairpins increases with swinger RNA detection. These results confirm biological relevancy of swinger-transformed DNA/RNA, independently of, and in combination with, previously detected swinger DNA/RNA and swinger peptides. Swinger-transformed mitogenomes include unsuspected multilayered information.

  9. Appetite - increased

    MedlinePlus

    ... Have you noticed any other symptoms such as anxiety, palpitations , increased thirst , vomiting , frequent urination , or unintentional weight gain? Tests that may be done include: Blood tests, ...

  10. Transcription regulation mechanisms of bacteriophages

    PubMed Central

    Yang, Haiquan; Ma, Yingfang; Wang, Yitian; Yang, Haixia; Shen, Wei; Chen, Xianzhong

    2014-01-01

    Phage diversity significantly contributes to ecology and evolution of new bacterial species through horizontal gene transfer. Therefore, it is essential to understand the mechanisms underlying phage-host interactions. After initial infection, the phage utilizes the transcriptional machinery of the host to direct the expression of its own genes. This review presents a view on the transcriptional regulation mechanisms of bacteriophages, and its contribution to phage diversity and classification. Through this review, we aim to broaden the understanding of phage-host interactions while providing a reference source for researchers studying the regulation of phage transcription. PMID:25482231

  11. Effects of hemorrhage on cytokine gene transcription.

    PubMed

    Shenkar, R; Abraham, E

    1993-08-01

    Injury and blood loss are often followed by infection and the rapid development of organ system dysfunction, frequently involving mucosal sites, such as the lung and intestine. To examine possible mechanisms contributing to these conditions, we used semiquantitative polymerase chain reactions to determine cytokine mRNA expression among cellular populations isolated from mucosal and systemic anatomic sites of mice at predetermined time points following 30% blood volume hemorrhage with resuscitation 1 hr later. Within 1 hr after hemorrhage, significant increases were observed in mRNA levels for IL-1 alpha, IL-1 beta, IL-5, and TGF-beta in intraparenchymal pulmonary mononuclear cells. The levels of TGF-beta transcripts among alveolar macrophages were increased 1 hr following blood loss, and increase in IL-1 alpha transcripts was found starting 2 hr posthemorrhage. Cells from Peyer's patches showed significant increases in mRNA levels for IL-1 beta, IL-2, IL-5, IL-6, IFN-gamma, and TGF-beta during the 4 hr following hemorrhage. Significant increases in mRNA levels for IL-1 beta, TNF-alpha, and TGF-beta were present within 4 hr of blood loss among cells isolated from mesenteric lymph nodes. The expression of mRNA for most cytokines was not significantly altered in splenocytes or peripheral blood mononuclear cells at any time point following hemorrhage. These experiments demonstrate that blood loss, even if resuscitated, produces significant increases in proinflammatory and immunoregulatory cytokine gene transcription as early as 1 hr following hemorrhage. These posthemorrhage alterations in cytokine mRNA expression were particularly prominent at mucosal sites, suggesting a mechanism for the increased incidence of pulmonary and intestinal involvement in organ system failure following severe blood loss and injury.

  12. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives

    PubMed Central

    Charlier, Jean-Benoit; Polese, Catherine; Nouet, Cécile; Carnol, Monique; Bosman, Bernard; Krämer, Ute; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation. PMID:25900619

  13. ER-mediated control for abundance, quality, and signaling of transmembrane immune receptors in plants

    PubMed Central

    Tintor, Nico; Saijo, Yusuke

    2014-01-01

    Plants recognize a wide range of microbes with cell-surface and intracellular immune receptors. Transmembrane pattern recognition receptors (PRRs) initiate immune responses upon recognition of cognate ligands characteristic of microbes or aberrant cellular states, designated microbe-associated molecular patterns or danger-associated molecular patterns (DAMPs), respectively.Pattern-triggered immunity provides a first line of defense that restricts the invasion and propagation of both adapted and non-adapted pathogens. Receptor kinases (RKs) and receptor-like proteins (RLPs) with an extracellular leucine-rich repeat or lysine-motif (LysM) domain are extensively used as PRRs. The correct folding of the extracellular domain of these receptors is under quality control (QC) in the endoplasmic reticulum (ER), which thus provides a critical step in plant immunity. Genetic and structural insight suggests that ERQC regulates not only the abundance and quality of transmembrane receptors but also affects signal sorting between multi-branched pathways downstream of the receptor. However, ERQC dysfunction can also positively stimulate plant immunity, possibly through cell death and DAMP signaling pathways. PMID:24616730

  14. Coupling transcription and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2007-01-01

    Alternative splicing regulation not only depends on the interaction of splicing factors with splicing enhancers and silencers in the pre-mRNA, but also on the coupling between transcription and splicing. This coupling is possible because splicing is often cotranscriptional and promoter identity and occupation may affect alternative splicing. We discuss here the different mechanisms by which transcription regulates alternative splicing. These include the recruitment of splicing factors to the transcribing polymerase and "kinetic coupling", which involves changes in the rate of transcriptional elongation that in turn affect the timing in which splice sites are presented to the splicing machinery. The recruitment mechanism may depend on the particular features of the carboxyl terminal domain of RNA polymerase II, whereas kinetic coupling seems to be linked to how changes in chromatin structure and other factors affect transcription elongation.

  15. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  16. Nucleolar localization of myc transcripts.

    PubMed Central

    Bond, V C; Wold, B

    1993-01-01

    In situ hybridization has revealed a striking subnuclear distribution of c-myc RNA transcripts. A major fraction of the sense-strand nuclear c-myc transcripts was localized to the nucleoli. myc intron 1-containing RNAs were noticeably absent from nucleoli, accumulating instead in the nucleoplasm. The localization of myc RNA to nucleoli was shown to be common to a number of diverse cell types, including primary Sertoli cells and several cell lines. Furthermore, nucleolar localization was not restricted to c-myc and N-myc and myoD transcripts also displayed this phenomenon. In contrast, gamma-actin or lactate dehydrogenase transcripts did not display nucleolar localization. These observations suggest a new role for the nucleolus in transport and/or turnover of potential mRNAs. Images PMID:7684491

  17. SUMOylation of ROR{alpha} potentiates transcriptional activation function

    SciTech Connect

    Hwang, Eun Ju; Lee, Ji Min; Jeong, Jiyeong; Park, Joo Hyeon; Yang, Young; Lim, Jong-Seok; Kim, Jung Hwa; Baek, Sung Hee; Kim, Keun Il

    2009-01-16

    SUMOylation regulates a variety of cellular processes, including control of transcriptional activities of nuclear receptors. Here, we present SUMOylation of orphan nuclear receptor, ROR{alpha} by both SUMO-1 and SUMO-2. SUMOylation of ROR{alpha} occurred on the 240th lysine residue at the hinge region of human protein. PIAS family members, PIASx{alpha}, PIAS3, and PIASy, increased SUMOylation of ROR{alpha}, whereas SENP2 specifically removed SUMO from ROR{alpha}. SUMOylation-defective mutant form of ROR{alpha} exhibited decreased transcriptional activity on ROR{alpha}-responsive promoters indicating that SUMOylation may positively regulate transcriptional function of ROR{alpha}.

  18. Transcriptional regulation of epithelial-mesenchymal transition.

    PubMed

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-02-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome.

  19. Transcriptional regulation of epithelial-mesenchymal transition

    PubMed Central

    Teng, Yingqi; Zeisberg, Michael; Kalluri, Raghu

    2007-01-01

    It has become increasingly obvious that the notion of a terminally differentiated cell is likely a simplified concept. Epithelial-mesenchymal transition (EMT), during which epithelial cells assume a mesenchymal phenotype, is a key event occurring during normal development and pathological processes. Multiple extracellular stimuli and transcriptional regulators can trigger EMT, but how such distinct signaling pathways orchestrate the complex cellular events that facilitate EMT is not well understood. In this issue of the JCI, Venkov et al. report on their examination of fibroblasts resulting from EMT and describe a novel protein-DNA complex that is essential for transcription of fibroblast-specific protein 1 (FSP1) and sufficient to induce early EMT events (see the related article beginning on page 482). Collectively, their results suggest that this complex is an important regulator of the EMT transcriptome. PMID:17273552

  20. GOLDEN 2-LIKE Transcription Factors of Plants

    PubMed Central

    Chen, Min; Ji, Meiling; Wen, Binbin; Liu, Li; Li, Shaoxuan; Chen, Xiude; Gao, Dongsheng; Li, Ling

    2016-01-01

    Golden2-like (GLK) transcription factors are members of the GARP family of Myb transcription factors with an established relationship to chloroplast development in the plant kingdom. In the last century, Golden2 was proposed as a second golden producing factor and identified as controlling cellular differentiation in maize leaves. Then, GLKs were also found to play roles in disease defense and their function is conserved in regulating chloroplast development. Recently, research on GLKs has rapidly increased and shown that GLKs control chloroplast development in green and non-green tissues. Moreover, links between phytohormones and GLKs were verified. In this mini-review, we summarize the history, conservation, function, potential targets and degradation of GLKs. PMID:27757121

  1. The transcriptional landscape of the mammalian genome.

    PubMed

    Carninci, P; Kasukawa, T; Katayama, S; Gough, J; Frith, M C; Maeda, N; Oyama, R; Ravasi, T; Lenhard, B; Wells, C; Kodzius, R; Shimokawa, K; Bajic, V B; Brenner, S E; Batalov, S; Forrest, A R R; Zavolan, M; Davis, M J; Wilming, L G; Aidinis, V; Allen, J E; Ambesi-Impiombato, A; Apweiler, R; Aturaliya, R N; Bailey, T L; Bansal, M; Baxter, L; Beisel, K W; Bersano, T; Bono, H; Chalk, A M; Chiu, K P; Choudhary, V; Christoffels, A; Clutterbuck, D R; Crowe, M L; Dalla, E; Dalrymple, B P; de Bono, B; Della Gatta, G; di Bernardo, D; Down, T; Engstrom, P; Fagiolini, M; Faulkner, G; Fletcher, C F; Fukushima, T; Furuno, M; Futaki, S; Gariboldi, M; Georgii-Hemming, P; Gingeras, T R; Gojobori, T; Green, R E; Gustincich, S; Harbers, M; Hayashi, Y; Hensch, T K; Hirokawa, N; Hill, D; Huminiecki, L; Iacono, M; Ikeo, K; Iwama, A; Ishikawa, T; Jakt, M; Kanapin, A; Katoh, M; Kawasawa, Y; Kelso, J; Kitamura, H; Kitano, H; Kollias, G; Krishnan, S P T; Kruger, A; Kummerfeld, S K; Kurochkin, I V; Lareau, L F; Lazarevic, D; Lipovich, L; Liu, J; Liuni, S; McWilliam, S; Madan Babu, M; Madera, M; Marchionni, L; Matsuda, H; Matsuzawa, S; Miki, H; Mignone, F; Miyake, S; Morris, K; Mottagui-Tabar, S; Mulder, N; Nakano, N; Nakauchi, H; Ng, P; Nilsson, R; Nishiguchi, S; Nishikawa, S; Nori, F; Ohara, O; Okazaki, Y; Orlando, V; Pang, K C; Pavan, W J; Pavesi, G; Pesole, G; Petrovsky, N; Piazza, S; Reed, J; Reid, J F; Ring, B Z; Ringwald, M; Rost, B; Ruan, Y; Salzberg, S L; Sandelin, A; Schneider, C; Schönbach, C; Sekiguchi, K; Semple, C A M; Seno, S; Sessa, L; Sheng, Y; Shibata, Y; Shimada, H; Shimada, K; Silva, D; Sinclair, B; Sperling, S; Stupka, E; Sugiura, K; Sultana, R; Takenaka, Y; Taki, K; Tammoja, K; Tan, S L; Tang, S; Taylor, M S; Tegner, J; Teichmann, S A; Ueda, H R; van Nimwegen, E; Verardo, R; Wei, C L; Yagi, K; Yamanishi, H; Zabarovsky, E; Zhu, S; Zimmer, A; Hide, W; Bult, C; Grimmond, S M; Teasdale, R D; Liu, E T; Brusic, V; Quackenbush, J; Wahlestedt, C; Mattick, J S; Hume, D A; Kai, C; Sasaki, D; Tomaru, Y; Fukuda, S; Kanamori-Katayama, M; Suzuki, M; Aoki, J; Arakawa, T; Iida, J; Imamura, K; Itoh, M; Kato, T; Kawaji, H; Kawagashira, N; Kawashima, T; Kojima, M; Kondo, S; Konno, H; Nakano, K; Ninomiya, N; Nishio, T; Okada, M; Plessy, C; Shibata, K; Shiraki, T; Suzuki, S; Tagami, M; Waki, K; Watahiki, A; Okamura-Oho, Y; Suzuki, H; Kawai, J; Hayashizaki, Y

    2005-09-02

    This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.

  2. Transcriptional pausing at the translation start site operates as a critical checkpoint for riboswitch regulation

    PubMed Central

    Chauvier, Adrien; Picard-Jean, Frédéric; Berger-Dancause, Jean-Christophe; Bastet, Laurène; Naghdi, Mohammad Reza; Dubé, Audrey; Turcotte, Pierre; Perreault, Jonathan; Lafontaine, Daniel A.

    2017-01-01

    On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation. PMID:28071751

  3. Repairing RNA Transcripts that Mediate Breast Cancer Susceptibility

    DTIC Science & Technology

    2005-08-01

    is actually the yield of TES product plus the yield of cryptic is in contrast to hammerhead and hairpin ribozymes , which products. This increases the...therapeutics. To this end, we have developed a novel biomolecule (a ribozyme ) that can specifically excise regions from RNA transcripts. In this work, we...designed a ribozyme that excises an insertion mutation that is linked to breast cancer predisposition from a short mimic of the p53 transcript in a

  4. Transcriptional regulation by post-transcriptional modification--role of phosphorylation in Sp1 transcriptional activity.

    PubMed

    Chu, Shijian

    2012-10-15

    Sp1 is a ubiquitously expressed transcription factor involved in the regulation of a large number of genes including housekeeping genes as well as actively regulated genes. Although Sp1 was discovered nearly three decades ago, its functional diversity is still not completely understood. One of the ways that make Sp1 versatile in transcriptional regulation is its post-transcriptional modification, which alters Sp1 structure in different cells and at different times. Compared to other types of modifications of the Sp1 protein, phosphorylation has been studied far more extensively. This review focuses on the inducers, pathways, enzymes, and biological effects of Sp1 phosphorylation. Recent data are beginning to reveal the biological significance and universal presence of Sp1 phosphorylation-related cell/molecular responses. Studies in this field provide a quick glance at how a simple chemical modification of a transcription factor could produce significant functional diversity of the protein.

  5. Transcriptional effects on double-strand break-induced gene conversion tracts.

    PubMed

    Weng, Y S; Xing, D; Clikeman, J A; Nickoloff, J A

    2000-10-16

    Transcription stimulates spontaneous homologous recombination, but prior studies have not investigated the effects of transcription on double-strand break (DSB)-induced recombination in yeast. We examined products of five ura3 direct repeat substrates in yeast using alleles that were transcribed at low or high levels. In each strain, recombination was stimulated by DSBs created in vivo at an HO site in one copy of ura3. Increasing transcription levels in donor or recipient alleles did not further stimulate DSB-induced recombination, nor did it alter the relative frequencies of conversion and deletion (pop-out) events. This result is consistent with the idea that transcription enhances spontaneous recombination by increasing initiation. Gene conversion tracts were measured using silent restriction fragment length polymorphisms (RFLPs) at approximately 100bp intervals. Transcription did not alter average tract lengths, but increased transcription in donor alleles increased both the frequency of promoter-proximal (5') unidirectional tracts and conversion of 5' markers. Increased transcription in recipient alleles increased the frequency of bidirectional tracts. We demonstrate that these effects are due to transcription per se, and not just transcription factor binding. These results suggest that transcription influences aspects of gene conversion after initiation, such as strand invasion and/or mismatch repair (MMR).

  6. Opposing Transcriptional Mechanisms Regulate Toxoplasma Development

    PubMed Central

    Hong, Dong-Pyo; Radke, Joshua B.

    2017-01-01

    ABSTRACT The Toxoplasma biology that underlies human chronic infection is developmental conversion of the acute tachyzoite stage into the latent bradyzoite stage. We investigated the roles of two alkaline-stress-induced ApiAP2 transcription factors, AP2IV-3 and AP2IX-9, in bradyzoite development. These factors were expressed in two overlapping waves during bradyzoite development, with AP2IX-9 increasing expression earlier than AP2IV-3, which peaked as AP2IX-9 expression was declining. Disruption of the AP2IX-9 gene enhanced, while deletion of AP2IV-3 gene decreased, tissue cyst formation, demonstrating that these factors have opposite functions in bradyzoite development. Conversely, conditional overexpression of FKBP-modified AP2IX-9 or AP2IV-3 with the small molecule Shield 1 had a reciprocal effect on tissue cyst formation, confirming the conclusions of the knockout experiments. The AP2IX-9 repressor and AP2IV-3 activator tissue cyst phenotypes were borne out in gene expression studies that determined that many of the same bradyzoite genes were regulated in an opposite manner by these transcription factors. A common gene target was the canonical bradyzoite marker BAG1, and mechanistic experiments determined that, like AP2IX-9, AP2IV-3 regulates a BAG1 promoter-luciferase reporter and specifically binds the BAG1 promoter in parasite chromatin. Altogether, these results suggest that the AP2IX-9 transcriptional repressor and the AP2IV-3 transcriptional activator likely compete to control bradyzoite gene expression, which may permit Toxoplasma to better adapt to different tissue environments and select a suitable host cell for long-term survival of the dormant tissue cyst. IMPORTANCE Toxoplasma infections are lifelong because of the development of the bradyzoite tissue cyst, which is effectively invisible to the immune system. Despite the important clinical consequences of this developmental pathway, the molecular basis of the switch mechanisms that control tissue

  7. Genetic Regulation of Transcriptional Variation in Natural Arabidopsis thaliana Accessions

    PubMed Central

    Zan, Yanjun; Shen, Xia; Forsberg, Simon K. G.; Carlborg, Örjan

    2016-01-01

    An increased knowledge of the genetic regulation of expression in Arabidopsis thaliana is likely to provide important insights about the basis of the plant’s extensive phenotypic variation. Here, we reanalyzed two publicly available datasets with genome-wide data on genetic and transcript variation in large collections of natural A. thaliana accessions. Transcripts from more than half of all genes were detected in the leaves of all accessions, and from nearly all annotated genes in at least one accession. Thousands of genes had high transcript levels in some accessions, but no transcripts at all in others, and this pattern was correlated with the genome-wide genotype. In total, 2669 eQTL were mapped in the largest population, and 717 of them were replicated in the other population. A total of 646 cis-eQTL-regulated genes that lacked detectable transcripts in some accessions was found, and for 159 of these we identified one, or several, common structural variants in the populations that were shown to be likely contributors to the lack of detectable RNA transcripts for these genes. This study thus provides new insights into the overall genetic regulation of global gene expression diversity in the leaf of natural A. thaliana accessions. Further, it also shows that strong cis-acting polymorphisms, many of which are likely to be structural variations, make important contributions to the transcriptional variation in the worldwide A. thaliana population. PMID:27226169

  8. Vespucci: a system for building annotated databases of nascent transcripts

    PubMed Central

    Allison, Karmel A.; Kaikkonen, Minna U.; Gaasterland, Terry; Glass, Christopher K.

    2014-01-01

    Global run-on sequencing (GRO-seq) is a recent addition to the series of high-throughput sequencing methods that enables new insights into transcriptional dynamics within a cell. However, GRO-sequencing presents new algorithmic challenges, as existing analysis platforms for ChIP-seq and RNA-seq do not address the unique problem of identifying transcriptional units de novo from short reads located all across the genome. Here, we present a novel algorithm for de novo transcript identification from GRO-sequencing data, along with a system that determines transcript regions, stores them in a relational database and associates them with known reference annotations. We use this method to analyze GRO-sequencing data from primary mouse macrophages and derive novel quantitative insights into the extent and characteristics of non-coding transcription in mammalian cells. In doing so, we demonstrate that Vespucci expands existing annotations for mRNAs and lincRNAs by defining the primary transcript beyond the polyadenylation site. In addition, Vespucci generates assemblies for un-annotated non-coding RNAs such as those transcribed from enhancer-like elements. Vespucci thereby provides a robust system for defining, storing and analyzing diverse classes of primary RNA transcripts that are of increasing biological interest. PMID:24304890

  9. Retroactivity effects dependency on the transcription factors binding mechanisms.

    PubMed

    Pantoja-Hernández, Libertad; Álvarez-Buylla, Elena; Aguilar-Ibáñez, Carlos F; Garay-Arroyo, Adriana; Soria-López, Alberto; Martínez-García, Juan Carlos

    2016-12-07

    Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.

  10. Cockayne syndrome: defective repair of transcription?

    PubMed Central

    van Gool, A J; van der Horst, G T; Citterio, E; Hoeijmakers, J H

    1997-01-01

    In the past years, it has become increasingly evident that basal metabolic processes within the cell are intimately linked and influenced by one another. One such link that recently has attracted much attention is the close interplay between nucleotide excision DNA repair and transcription. This is illustrated both by the preferential repair of the transcribed strand of active genes (a phenomenon known as transcription-coupled repair, TCR) as well as by the distinct dual involvement of proteins in both processes. The mechanism of TCR in eukaryotes is still largely unknown. It was first discovered in mammals by the pioneering studies of Hanawalt and colleagues, and subsequently identified in yeast and Escherichia coli. In the latter case, one protein, the transcription repair-coupling factor, was found to accomplish this function in vitro, and a plausible model for its activity was proposed. While the E. coli model still functions as a paradigm for TCR in eukaryotes, recent observations prompt us to believe that the situation in eukaryotes is much more complex, involving dual functionality of multiple proteins. PMID:9250659

  11. Innate immunity and inflammation: a transcriptional paradigm.

    PubMed

    Hawiger, J

    2001-01-01

    The innate immune response and the process of inflammation are interwoven. Excessive and continuing cytokine production in response to bacterial lipopolysacharides (LPS) or superantigens is a hallmark of the systemic inflammatory response (IR), which can be life-threatening. Dissemination of these bacterial products induces waves of proinflammatory cytokines that cause vascular injury and multiple organ dysfunction. Both LPS and superantigens induce signaling to the nucleus in mononuclear phagocytes and T cells, respectively. These signaling pathways are mediated by NF-kappaB and other stress-responsive transcription factors (SRTFs), which play a critical role in reprogramming gene expression. The nuclear import of NF-kappaB allows transcriptional activation of over 100 genes that encode mediators of inflammatory and immune responses. We have developed a novel method to block nuclear import of NF-kappaB through cell-permeable peptide transduction in monocytes, macrophages, T lymphocytes, and endothelial cells. Strikingly, a cell-permeable peptide that antagonizes nuclear import of NF-kappaB and other SRTFs, suppressed the systemic production of proinflammatory cytokines (TNFalpha and interferon gamma) in mice challenged with a lethal dose of LPS, and increased their survival by at least 90%. Thus, systemic inflammatory responses are critically dependent on the transcriptional activation ofcytokine genes that are controlled by NF-kappaB and other SRTFs.

  12. Modulation of transcription factors by curcumin.

    PubMed

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  13. Demonstration of transcriptional regulation of specific genes by phytochrome action

    PubMed Central

    Silverthorne, Jane; Tobin, Elaine M.

    1984-01-01

    We have developed an in vitro transcription system that uses nuclei isolated from Lemna gibba G-3. The in vitro transcripts include sequences homologous to hybridization probes for the small subunit of ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39], the light-harvesting chlorophyll a/b-protein, and rRNA. Light-harvesting chlorophyll a/b-protein sequences are transcribed to a greater extent in nuclei isolated from plants grown in darkness with 2 min of red light every 8 hr than in nuclei isolated from dark-treated plants. Furthermore, the amount of these transcripts measured in plants given a single minute of red light after dark treatment is increased over the amount measured in dark-treated plants. The effect of red light is at least partially reversible by 10 min of far-red light given immediately after the red light pulse. Transcription of both rRNA and small subunit sequences is also stimulated by a single minute of red light as compared to dark-treated tissue. However, the relative magnitudes of the increases compared to the dark levels are smaller than the increase seen for the chlorophyll a/b-protein, possibly because of the higher level of transcription of these sequences in the dark. The effect of red light on the transcription of small subunit and rRNA sequences is also reversible by immediate treatment with 10 min of far-red light. Pulse chase studies of dark-treated nuclei for up to 110 min do not show substantial turnover of in vitro labeled small subunit and chlorophyll a/b-protein transcripts. We therefore conclude that phytochrome action has induced specific changes in transcription of these genes. Images PMID:16593420

  14. Transcriptional Signatures in Huntington's Disease

    PubMed Central

    2007-01-01

    While selective neuronal death has been an influential theme in Huntington's disease (HD), there is now a preponderance of evidence that significant neuronal dysfunction precedes frank neuronal death. The best evidence for neuronal dysfunction is the observation that gene expression is altered in HD brain, suggesting that transcriptional dysregulation is a central mechanism. Studies of altered gene expression began with careful observations of post-mortem human HD brain and subsequently were accelerated by the development of transgenic mouse models. The application of DNA microarray technology has spurred tremendous progress with respect to the altered transcriptional processes that occur in HD, through gene expression studies of both transgenic mouse models as well as cellular models of HD. Gene expression profiles are remarkably comparable across these models, bolstering the idea that transcriptional signatures reflect an essential feature of disease pathogenesis. Finally, gene expression studies have been applied to human HD, thus not only validating the approach of using model systems, but also solidifying the idea that altered transcription is a key mechanism in HD pathogenesis. In the future, gene expression profiling will be used as a readout in clinical trials aimed at correcting transcriptional dysregulation in Huntington's disease. PMID:17467140

  15. Kinetic Modelling of Transcription Elongation

    NASA Astrophysics Data System (ADS)

    O'Maoileidigh, Daibhid; Tadigotla, Vasisht; Sengupta, Anirvan; Epshtein, Vitaly; Ebright, Richard; Nudler, Evgeny; Ruckenstein, Andrei

    2006-03-01

    Transcription is the first step in gene expression and it is at this stage that most of genetic regulation occurs. The enzyme RNA polymerase (RNAP) walks along DNA creating an RNA transcript at a highly non-uniform rate. We discuss how many non-intuitive features of the system may be experimentally and physically motivated and present first a model, which agrees qualitatively with a host of experimental evidence. We also examine intrinsic pauses where it is thought that the RNAP will move backwards along the DNA template without changing the length of the RNA transcript. We describe a simplified kinetic scheme for the recovery of intrinsic pauses with the same degree of predictive power as our thermodynamic model (presented separately). The separation of timescales between the movement of the RNAP and global changes in the RNA secondary structure is seen to be crucial for the function of RNAP. This is essentially a model of a Brownian ratchet where RNAP executes a 1D random walk in a sequence dependent potential over a range determined by the co-transcriptional RNA fold for each transcript length

  16. Transcriptional gene silencing in humans

    PubMed Central

    Weinberg, Marc S.; Morris, Kevin V.

    2016-01-01

    It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents. PMID:27060137

  17. Rad51 activates polyomavirus JC early transcription.

    PubMed

    White, Martyn K; Kaminski, Rafal; Khalili, Kamel; Wollebo, Hassen S

    2014-01-01

    The human neurotropic polyomavirus JC (JCV) causes the fatal CNS demyelinating disease progressive multifocal leukoencephalopathy (PML). JCV infection is very common and after primary infection, the virus is able to persist in an asymptomatic state. Rarely, and usually only under conditions of immune impairment, JCV re-emerges to actively replicate in the astrocytes and oligodendrocytes of the brain causing PML. The regulatory events involved in the reactivation of active viral replication in PML are not well understood but previous studies have implicated the transcription factor NF-κB acting at a well-characterized site in the JCV noncoding control region (NCCR). NF-κB in turn is regulated in a number of ways including activation by cytokines such as TNF-α, interactions with other transcription factors and epigenetic events involving protein acetylation--all of which can regulate the transcriptional activity of JCV. Active JCV infection is marked by the occurrence of rapid and extensive DNA damage in the host cell and the induction of the expression of cellular proteins involved in DNA repair including Rad51, a major component of the homologous recombination-directed double-strand break DNA repair machinery. Here we show that increased Rad51 expression activates the JCV early promoter. This activation is co-operative with the stimulation caused by NF-κB p65, abrogated by mutation of the NF-κB binding site or siRNA to NFκB p65 and enhanced by the histone deacetylase inhibitor sodium butyrate. These data indicate that the induction of Rad51 resulting from infection with JCV acts through NF-κB via its binding site to stimulate JCV early transcription. We suggest that this provides a novel positive feedback mechanism to enhance viral gene expression during the early stage of JCV infection.

  18. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  19. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  20. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  1. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  2. 46 CFR 502.165 - Official transcript.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... incremental cost of transcription above the regular copy transcription cost borne by the Commission, in... full cost of transcription being borne by the Commission. (B) In the event a request for daily copy is... of transcription over and above that borne by the Commission, i.e., the incremental cost between...

  3. Transcription and splicing: when the twain meet.

    PubMed

    Brody, Yehuda; Shav-Tal, Yaron

    2011-01-01

    Splicing can occur co-transcriptionally. What happens when the splicing reaction lags after the completed transcriptional process? We found that elongation rates are independent of ongoing splicing on the examined genes and suggest that when transcription has completed but splicing has not, the splicing machinery is retained at the site of transcription, independently of the polymerase.

  4. Transcriptional response of nitrifying communities to wetting of dry soil.

    PubMed

    Placella, Sarah A; Firestone, Mary K

    2013-05-01

    The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers.

  5. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-05

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  6. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model

    PubMed Central

    Isenberg, Jeffrey S.; Popel, Aleksander S.

    2017-01-01

    Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia. PMID:28045898

  7. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript.

    PubMed Central

    Martignetti, J A; Brosius, J

    1995-01-01

    Rodent BC1 RNA represents the first example of a neural cell-specific RNA polymerase III (Pol III) transcription product. By developing a rat brain in vitro system capable of supporting Pol III-directed transcription, we showed that the rat BC1 RNA intragenic promoter elements, comprising an A box element and a variant B box element, as well as its upstream region, containing octamer-binding consensus sequences and functional TATA and proximal sequence element sites, are necessary for transcription. The BC1 B box, lacking the invariant A residue found in the consensus B boxes of tRNAs, represents a functionally related and possibly distinct promoter element. The transcriptional activity of the BC1 B box element is greatly increased, in both a BC1 RNA and a chimeric tRNA(Leu) gene construct, when the BC1 5' flanking region is present and is appropriately spaced. Moreover, a tRNA consensus B-box sequence can efficiently replace the BC1 B box only if the BC1 upstream region is removed. These interactions, identified only in a homologous in vitro system, between upstream Pol II and intragenic Pol III promoters suggest a mechanism by which the tissue-specific BC1 RNA gene and possibly other Pol III-transcribed genes can be regulated. PMID:7862155

  8. Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53

    PubMed Central

    Venkata Narayanan, Ishwarya; Paulsen, Michelle T.; Bedi, Karan; Berg, Nathan; Ljungman, Emily A.; Francia, Sofia; Veloso, Artur; Magnuson, Brian; di Fagagna, Fabrizio d’Adda; Wilson, Thomas E.; Ljungman, Mats

    2017-01-01

    In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells. PMID:28256581

  9. Sequence requirements for transcriptional arrest in exon 1 of the murine adenosine deaminase gene.

    PubMed Central

    Ramamurthy, V; Maa, M C; Harless, M L; Wright, D A; Kellems, R E

    1990-01-01

    We have previously shown that a transcription arrest site near the 5' end of the murine adenosine deaminase (ADA) gene is significantly involved in the regulation of ADA gene expression. To facilitate the analysis of this transcription arrest site, we have analyzed the transcription products from cloned ADA gene fragments injected into Xenopus laevis oocytes. When genomic fragments spanning the 5' end of the ADA gene were injected into oocytes, a 96-nucleotide (nt) ADA RNA was the major transcription product. The 5' end of this RNA mapped to the transcription initiation site for the ADA gene, and its 3' terminus mapped 7 nt downstream of the translation initiation codon within exon 1. A 300-base-pair fragment of genomic DNA spanning the 5' end of the ADA gene was sufficient to generate the 96-nt transcript which accounted for approximately one-half of the transcription products from injected templates. Deletion of a segment of approximately 65 base pairs, located immediately downstream of the 3' terminus of the 96-nt transcript, resulted in a substantial reduction in the synthesis of the 96-nt transcript and a corresponding increase in the production of larger transcripts. These studies show that the transcriptional apparatus of X. laevis oocytes responds to the transcription arrest site associated with exon 1 of the murine ADA gene and that oocyte injections provide a convenient functional assay for additional mechanistic studies. Images PMID:1690842

  10. The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase.

    PubMed

    Banerjee, Susana; Zvelebil, Marketa; Furet, Pascal; Mueller-Vieira, Ursula; Evans, Dean B; Dowsett, Mitch; Martin, Lesley-Ann

    2009-06-01

    Endocrine therapy is well established for the treatment of breast cancer, and antiangiogenic agents are showing considerable promise. Targeting the vascular endothelial growth factor (VEGF) and estrogen receptor (ER) signaling pathways concomitantly may provide enhanced therapeutic benefit in ER-positive breast cancer. Therefore, the effects of the VEGF receptor (VEGFR) tyrosine kinase inhibitor PTK787/ZK222584 (PTK/ZK) were investigated using human breast cancer cell lines engineered to express aromatase. As expected in this system, estrogen (E2) or androstenedione induced a proliferative response and increased ER-mediated transcription in ER-positive cell lines expressing aromatase. However, surprisingly, in the presence of androstenedione, PTK/ZK suppressed both the androstenedione-stimulated proliferation and ER-mediated transcription. PTK/ZK alone and in the presence of E2 had no observable effect on proliferation or ER-mediated transcription. These effects result from PTK/ZK having previously unrecognized antiaromatase activity and PTK/ZK being a competitive aromatase inhibitor. Computer-assisted molecular modeling showed that PTK/ZK could potentially bind directly to aromatase. The demonstration that PTK/ZK inhibits aromatase and VEGFR indicates that agents cross-inhibiting two important classes of targets in breast cancer could be developed.

  11. Subventricular zone microglia transcriptional networks.

    PubMed

    Starossom, Sarah C; Imitola, Jaime; Wang, Yue; Cao, Li; Khoury, Samia J

    2011-07-01

    Microglia play an important role in inflammatory diseases of the central nervous system. There is evidence of microglial diversity with distinct phenotypes exhibiting either neuroprotection and repair or neurotoxicity. However the precise molecular mechanisms underlying this diversity are still unknown. Using a model of experimental autoimmune encephalomyelitis (EAE) we performed transcriptional profiling of isolated subventricular zone microglia from the acute and chronic disease phases of EAE. We found that microglia exhibit disease phase specific gene expression signatures, that correspond to unique gene ontology functions and genomic networks. Our data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that suggests a role as mediators of injury or repair.

  12. Chromatin and Transcription in Yeast

    PubMed Central

    Rando, Oliver J.; Winston, Fred

    2012-01-01

    Understanding the mechanisms by which chromatin structure controls eukaryotic transcription has been an intense area of investigation for the past 25 years. Many of the key discoveries that created the foundation for this field came from studies of Saccharomyces cerevisiae, including the discovery of the role of chromatin in transcriptional silencing, as well as the discovery of chromatin-remodeling factors and histone modification activities. Since that time, studies in yeast have continued to contribute in leading ways. This review article summarizes the large body of yeast studies in this field. PMID:22345607

  13. Transcription, translation, and the evolution of specialists and generalists.

    PubMed

    Zhong, Shaobin; Miller, Stephen P; Dykhuizen, Daniel E; Dean, Antony M

    2009-12-01

    We used DNA microarrays to measure transcription and iTRAQ 2D liquid chromatography-mass spectrometry/mass spectrometry (a mass-tag labeling proteomic technique) to measure protein expression in 14 strains of Escherichia coli adapted for hundreds of generations to growth-limiting concentrations of either lactulose, methylgalactoside, or a 72:28 mixture of the two. The two ancestors, TD2 and TD10, differ only in their lac operons and have similar transcription and protein expression profiles. Changes in transcription and protein expression are observed at 30-250 genes depending on the evolved strain. Lactulose specialists carry duplications of the lac operon and show increased transcription and translation at lac. Methylgalactoside specialists are galS(-) and so constitutively transcribe and translate mgl, which encodes a transporter of methylgalactoside. However, there are two strains that carry lac duplications, are galS(-), and show increased transcription and translation at both operons. One is a generalist, the other a lactulose specialist. The generalist fails to sweep to fixation because its lac(+), galS(+) competitor expresses the csg adhesin and sticks to the chemostat wall, thereby preventing complete washout. Transcription and translation are sometimes decoupled. Lactulose-adapted strains show increased protein expression at fru, a fructose transporter, without evidence of increased transcription. This suggests that fructose, produced by the action of beta-galactosidase on lactulose, may leach from cells before being recouped. Reduced expression, at "late" flagella genes and the constitutive gat operon, is an adaptation to starvation. A comparison with two other long-term evolution experiments suggests that certain aspects of adaptation are predictable, some are characteristic of an experimental system, whereas others seem erratic.

  14. Tracing the dynamics of gene transcripts after organismal death

    PubMed Central

    2017-01-01

    In life, genetic and epigenetic networks precisely coordinate the expression of genes—but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations. PMID:28123054

  15. Transcription factor-based biosensor

    DOEpatents

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  16. Transcriptional networks in plant immunity.

    PubMed

    Tsuda, Kenichi; Somssich, Imre E

    2015-05-01

    Next to numerous abiotic stresses, plants are constantly exposed to a variety of pathogens within their environment. Thus, their ability to survive and prosper during the course of evolution was strongly dependent on adapting efficient strategies to perceive and to respond to such potential threats. It is therefore not surprising that modern plants have a highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways. This signaling network is intricate and deeply interconnected, probably reflecting the diverse lifestyles and infection strategies used by the multitude of invading phytopathogens. Moreover it allows signal communication between developmental and defense programs thereby ensuring that plant growth and fitness are not significantly retarded. How plants integrate and prioritize the incoming signals and how this information is transduced to enable appropriate immune responses is currently a major research area. An important finding has been that pathogen-triggered cellular responses involve massive transcriptional reprogramming within the host. Additional key observations emerging from such studies are that transcription factors (TFs) are often sites of signal convergence and that signal-regulated TFs act in concert with other context-specific TFs and transcriptional co-regulators to establish sensory transcription regulatory networks required for plant immunity.

  17. Regulating transcription traffic around DSBs.

    PubMed

    Plosky, Brian S

    2015-05-07

    If a double-strand break (DSB) occurs and either a DNA polymerase or RNA polymerase is coming along, how do we save the train? In this issue of Molecular Cell, Ui et al. (2015) describe a connection between an elongation factor and a repressive complex to prevent transcription in proximity to a DSB.

  18. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  19. Light control of hliA transcription and transcript stability in the cyanobacterium Synechococcus elongatus strain PCC 7942.

    PubMed

    Salem, Kavitha; van Waasbergen, Lorraine G

    2004-03-01

    The high-light-inducible proteins (HLIPs) of cyanobacteria are polypeptides involved in protecting the cells from high-intensity light (HL). The hliA gene encoding the HLIP from Synechococcus elongatus strain PCC 7942 is expressed in response to HL or low-intensity blue or UV-A light. In this study, we explore via Northern analysis details of the transcriptional regulation and transcript stability of the hliA gene under various light conditions. Transcript levels of the hliA gene increased dramatically upon a shift to HL or UV-A light to similar levels, followed by a rapid decrease in UV-A light, but not in HL, consistent with blue/UV-A light involvement in early stages of HL-mediated expression. A 3-min pulse of low-intensity UV-A light was enough to trigger hliA mRNA accumulation, indicating that a blue/UV-A photoreceptor is involved in upregulation of the gene. Low-intensity red light was found to cause a slight, transient increase in transcript levels (raising the possibility of red-light photoreceptor involvement), while light of other qualities had no apparent effect. No evidence was found for wavelength-specific attenuation of hliA transcript levels induced by HL or UV-A light. Transcript decay was slowed somewhat in darkness, and when photosynthetic electron transport was inhibited by darkness or treatment with DCMU, there appeared a smaller mRNA species that may represent a decay intermediate that accumulates when mRNA decay is slowed. Evidence suggests that upregulation of hliA by light is primarily a transcriptional response but conditions that cause ribosomes to stall on the transcript (e.g., a shift to darkness) can help stabilize hliA mRNA and affect expression levels.

  20. Genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30

    PubMed Central

    Taylor, John M; Ghorbel, Sofiane; Nicot, Christophe

    2009-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-I) is a human retrovirus that is etiologically linked to adult T-cell leukemia (ATL), an aggressive and fatal lymphoproliferative disease. The viral transactivator, Tax, is thought to play an important role during the initial stages of CD4+ T-cell immortalization by HTLV-1. Tax has been shown to activate transcription through CREB/ATF and NF-KB, and to alter numerous signaling pathways. These pleiotropic effects of Tax modify the expression of a wide array of cellular genes. Another viral protein encoded by HTLV-I, p30, has been shown to affect virus replication at the transcriptional and posttranscriptional levels. Little is currently known regarding the effect of p30 on the expression and nuclear export of cellular host mRNA transcripts. Identification of these RNA may reveal new targets and increase our understanding of HTLV-I pathogenesis. In this study, using primary peripheral blood mononuclear cells, we report a genome wide analysis of human genes transcriptionally and post-transcriptionally regulated by the HTLV-I protein p30. Results Using microarray analysis, we analyzed total and cytoplasmic cellular mRNA transcript levels isolated from PBMCs to assess the effect of p30 on cellular RNA transcript expression and their nuclear export. We report p30-dependent transcription resulting in the 2.5 fold up-regulation of 15 genes and the down-regulation of 65 human genes. We further tested nuclear export of cellular mRNA and found that p30 expression also resulted in a 2.5 fold post-transcriptional down-regulation of 90 genes and the up-regulation of 33 genes. Conclusion Overall, our study describes that expression of the HTLV-I protein p30 both positively and negatively alters the expression of cellular transcripts. Our study identifies for the first time the cellular genes for which nuclear export is affected by p30. These results suggest that p30 may possess a more global function with respect to m

  1. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  2. Leveraging transcript quantification for fast computation of alternative splicing profiles

    PubMed Central

    Alamancos, Gael P.; Pagès, Amadís; Trincado, Juan L.; Bellora, Nicolás; Eyras, Eduardo

    2015-01-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. PMID:26179515

  3. Transcriptional control of DNA replication licensing by Myc

    NASA Astrophysics Data System (ADS)

    Valovka, Taras; Schönfeld, Manuela; Raffeiner, Philipp; Breuker, Kathrin; Dunzendorfer-Matt, Theresia; Hartl, Markus; Bister, Klaus

    2013-12-01

    The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to the Myc protein, notably direct interaction with the pre-replicative complex (pre-RC) controlling the initiation of DNA replication. A key component of the pre-RC is the Cdt1 protein, an essential factor in origin licensing. Here we present data suggesting that the CDT1 gene is a transcriptional target of the Myc-Max complex. Expression of the CDT1 gene in v-myc-transformed cells directly correlates with myc expression. Also, human tumor cells with elevated c-myc expression display increased CDT1 expression. Occupation of the CDT1 promoter by Myc-Max is demonstrated by chromatin immunoprecipitation, and transactivation by Myc-Max is shown in reporter assays. Ectopic expression of CDT1 leads to cell transformation. Our results provide a possible direct mechanistic link of Myc's canonical function as a transcription factor to DNA replication. Furthermore, we suggest that aberrant transcriptional activation of CDT1 by deregulated myc alleles contributes to the genomic instabilities observed in tumor cells.

  4. Functionality of soybean CBF/DREB1 transcription factors.

    PubMed

    Yamasaki, Yuji; Randall, Stephen K

    2016-05-01

    Soybean (Glycine max) is considered to be cold intolerant and is not able to significantly acclimate to cold/freezing stress. In most cold tolerant plants, the C-repeat/DRE Binding Factors (CBF/DREBs) are critical contributors to successful cold-responses; rapidly increasing following cold treatment and regulating the induction of many cold responsive genes. In soybean vegetative tissue, we found strong, transient accumulation of CBF transcripts in response to cold stress; however, the soybean transcripts of typical cold responsive genes (homologues to Arabidopsis genes such as dehydrins, ADH1, RAP2.1, and LEA14) were not significantly altered. Soybean CBFs were found to be functional, as when expressed constitutively in Arabidopsis they increased the levels of AtCOR47 and AtRD29a transcripts and increased freezing tolerance as measured by a decrease in leaf freezing damage and ion leakage. Furthermore the constitutive expression of GmDREB1A;2 and GmDREB1B;1 in Arabidopsis led to stronger up-regulation of downstream genes and more freezing tolerance than GmDREB1A;1, the gene whose transcript is the major contributor to total CBF/DREB1 transcripts in soybean. The inability for the soybean CBFs to significantly up regulate the soybean genes that contribute to cold tolerance is consistent with poor acclimation capability and the cold intolerance of soybean.

  5. Investigating transcription reinitiation through in vitro approaches.

    PubMed

    Dieci, Giorgio; Fermi, Beatrice; Bosio, Maria Cristina

    2014-01-01

    By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.

  6. RNA polymerase II transcription: structure and mechanism.

    PubMed

    Liu, Xin; Bushnell, David A; Kornberg, Roger D

    2013-01-01

    A minimal RNA polymerase II (pol II) transcription system comprises the polymerase and five general transcription factors (GTFs) TFIIB, -D, -E, -F, and -H. The addition of Mediator enables a response to regulatory factors. The GTFs are required for promoter recognition and the initiation of transcription. Following initiation, pol II alone is capable of RNA transcript elongation and of proofreading. Structural studies reviewed here reveal roles of GTFs in the initiation process and shed light on the transcription elongation mechanism. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  7. A novel yeast gene, THO2, is involved in RNA pol II transcription and provides new evidence for transcriptional elongation-associated recombination.

    PubMed Central

    Piruat, J I; Aguilera, A

    1998-01-01

    We have identified two novel yeast genes, THO1 and THO2, that partially suppress the transcription defects of hpr1Delta mutants by overexpression. We show by in vivo transcriptional and recombinational analysis of tho2Delta cells that THO2 plays a role in RNA polymerase II (RNA pol II)-dependent transcription and is required for the stability of DNA repeats, as previously shown for HPR1. The tho2Delta mutation reduces the transcriptional efficiency of yeast DNA sequences down to 25% of the wild-type levels and abolishes transcription of the lacZ sequence. In addition, tho2Delta causes a strong increase in the frequency of recombination between direct repeats (>2000-fold above wild-type levels). Some DNA repeats cannot even be maintained in the cell. This hyper-recombination phenotype is dependent on transcription and is not observed in DNA repeats that are not transcribed. The higher the impairment of transcription caused by tho2Delta, the higher the frequency of recombination of a particular DNA region. The tho2Delta mutation also increases the frequency of plasmid loss. Our work not only identifies a novel yeast gene, THO2, with similar function to HPR1, but also provides new evidence for transcriptional blocks as a source of recombination. We propose that there is a set of proteins including Hpr1p and Tho2p, in the absence of which RNA pol II transcription is stalled or blocked, causing genetic instability. PMID:9707445

  8. Transcriptional Regulation of TMP21 by NFAT

    PubMed Central

    2011-01-01

    Background TMP21 is a member of the p24 cargo protein family, which is involved in protein transport between the Golgi apparatus and ER. Alzheimer's Disease (AD) is the most common neurodegenerative disorder leading to dementia and deposition of amyloid β protein (Aβ) is the pathological feature of AD pathogenesis. Knockdown of TMP21 expression by siRNA causes a sharp increase in Aβ production; however the underlying mechanism by which TMP21 regulates Aβ generation is unknown, and human TMP21 gene expression regulation has not yet been studied. Results In this report we have cloned a 3.3-kb fragment upstream of the human TMP21 gene. The transcription start site (TSS) of the human TMP21 gene was identified. A series of nested deletions of the 5' flanking region of the human TMP21 gene were subcloned into the pGL3-basic luciferase reporter plasmid. We identified the -120 to +2 region as containing the minimal sequence necessary for TMP21 gene promoter activity. Gel shift assays revealed that the human TMP21 gene promoter contains NFAT response elements. Expression of NFAT increased TMP21 gene expression and inhibition of NFAT by siRNA reduced TMP21 gene expression. Conclusion NFAT plays a very important role in the regulation of human TMP21 gene expression. This study demonstrates that the human TMP21 gene expression is transcriptionally regulated by NFAT signaling. PMID:21375783

  9. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response.

    PubMed

    Fornara, Fabio; Panigrahi, Kishore C S; Gissot, Lionel; Sauerbrunn, Nicolas; Rühl, Mark; Jarillo, José A; Coupland, George

    2009-07-01

    Flowering of Arabidopsis is induced by long summer days (LDs). The transcriptional regulator CONSTANS (CO) promotes flowering, and its transcription is increased under LDs. We systematically misexpressed transcription factors in companion cells and identified several DOF proteins that delay flowering by repressing CO transcription. Combining mutations in four of these, including CYCLING DOF FACTOR 2 (CDF2), caused photoperiod-insensitive early flowering by increasing CO mRNA levels. CO transcription is promoted to differing extents by GIGANTEA (GI) and the F-box protein FKF1. We show that GI stabilizes FKF1, thereby reducing CDF2 abundance and allowing transcription of CO. Despite the crucial function of GI in wild-type plants, introducing mutations in the four DOF-encoding genes into gi mutants restored the diurnal rhythm and light inducibility of CO. Thus, antagonism between GI and DOF transcription factors contributes to photoperiodic flowering by modulating an underlying diurnal rhythm in CO transcript levels.

  10. The transcription analysis of duck enteritis virus UL49.5 gene using real-time quantitative reverse transcription PCR.

    PubMed

    Lin, Meng; Jia, Renyong; Wang, Mingshu; Gao, Xinghong; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Wang, Yin; Chen, Xiaoyue; Cheng, Anchun

    2013-10-01

    Duck enteritis virus (DEV) UL49.5 encoding glycoprotein N was a conserved gene. The transcription dynamic process of UL49.5 homologous genes in herpesviruses was reported. However, the transcription dynamic process of DEV UL49.5 gene has not yet been established. In this study, a real-time quantitative reverse transcription PCR (real-time qRT-PCR) assay was established to test the transcription dynamic process of DEV UL49.5 gene, and the recombinant plasmid pUCm-T/UL49.5 was constructed as the standard DNA. The samples prepared from DEV-infected (at different time points) and uninfected cell were detected and calculated. The results demonstrated that the real-time qRT-PCR assay was successfully established. The transcription product of DEV UL49.5 gene was first detected at 0.5 h post infection (p.i.), increased at 8 h p.i. and reached a peak at 60 h p.i. Our results illustrated that DEV UL49.5 gene could be regarded as a late gene. The transcription dynamic process of DEV UL49.5 gene may provide a significant clue for further studies of DEV UL49.5 gene.

  11. Rcs signalling-activated transcription of rcsA induces strong anti-sense transcription of upstream fliPQR flagellar genes from a weak intergenic promoter: regulatory roles for the anti-sense transcript in virulence and motility.

    PubMed

    Wang, Qingfeng; Harshey, Rasika M

    2009-10-01

    In Salmonella enterica, an activated Rcs signalling system inhibits initiation of transcription of the flhD master operon. Under these conditions, where motility is shut down, microarray experiments showed an increased RNA signal for three flagellar genes -fliPQR- located upstream of rcsA. We show here that it is the anti-sense (AS) strand of these genes that is transcribed, originating at a weak promoter in the intergenic region between fliR and rcsA. RcsA is an auxiliary regulator for the Rcs system, whose transcription is dependent on the response regulator RcsB. Rcs-activated rightward transcription, but not translation, of rcsA is required for stimulation of leftward AS transcription. Our results implicate a combined action of RcsB and rcsA transcription in activating the AS promoter, likely by modulating DNA superhelicity in the intergenic region. We show that the AS transcript regulates many genes in the Rcs regulon, including SPI-1 and SPI-2 virulence and stress-response genes. In the wild-type strain the AS transcript is present in low amounts, independent of Rcs signalling. Here, AS transcription modulates complementary sense RNA levels and impacts swarming motility. It appears that the flagellar AS transcript has been co-opted by the Rcs system to regulate virulence.

  12. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.

    PubMed

    Liu, Zhi-Ping; Wu, Canglin; Miao, Hongyu; Wu, Hulin

    2015-01-01

    Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named 'RegNetwork', of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org.

  13. Maternal transfer and transcriptional onset of immune genes during ontogenesis in Atlantic cod.

    PubMed

    Seppola, Marit; Johnsen, Hanne; Mennen, Saskia; Myrnes, Bjørnar; Tveiten, Helge

    2009-11-01

    The immune system in teleosts is not completely developed during embryonic and larval stages and immune competence is assumed to be restricted. This study is the first to address whether immune transcripts are maternally transferred to offspring and when immune genes are transcriptionally active in Atlantic cod (Gadus morhua). In unfertilised eggs, transcripts encoding lysozyme and cathelicidin were found indicating maternal transfer of antibacterial transcripts. Lysozyme activity was also present at this stage suggesting the presence of a functional protein. Transcripts of two other putative antibacterial genes (hepcidin and pentraxin) and antiviral genes (ISG15 and LGP2) were absent in unfertilised eggs. The transcriptional onset of these genes occurred during the gastrula period. Transcripts of the heavy chain constant regions of the immunoglobulin (Ig) D, membrane-associated and secreted form of IgM were absent in unfertilised eggs. Transcription of the heavy chain locus commenced at low levels during the segmentation period indicating the onset of B-cell development. Most innate immune genes showed an increase in transcription around hatch and first feeding, indicating a preparation for increased pathogen exposure at this time. Prior to and during metamorphosis all genes showed a pronounced elevation in transcript levels indicating a further maturation of the immune system during this period.

  14. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity.

  15. Chromatin Dynamics of Circadian Transcription

    PubMed Central

    Aguilar-Arnal, Lorena; Sassone-Corsi, Paolo

    2015-01-01

    The molecular circadian clock orchestrates the daily cyclical expression of thousands of genes. Disruption of this transcriptional program leads to a variety of pathologies, including insomnia, depression and metabolic disorders. Circadian rhythms in gene expression rely on specific chromatin transitions which are ultimately coordinated by the molecular clock. As a consequence, a highly plastic and dynamic circadian epigenome can be delineated across different tissues and cell types. Intriguingly, genome topology appears to coordinate cyclic transcription at circadian interactomes, in which circadian genes are in physical contact within the cell nucleus in a time-specific manner. Moreover, the clock machinery shows functional interplays with key metabolic regulators, thereby connecting the circadian epigenome to cellular metabolism. Unraveling the molecular aspects of such interplays is likely to reveal new therapeutic strategies towards the treatment of metabolic disorders. PMID:27014564

  16. Transcriptional autoregulation of the Salmonella typhimurium phoPQ operon.

    PubMed

    Soncini, F C; Véscovi, E G; Groisman, E A

    1995-08-01

    The Salmonella typhimurium PhoP-PhoQ two-component regulatory system controls the expression of several genes, some of which are necessary for virulence. During a screening for PhoP-regulated genes, we identified the phoPQ operon as a PhoP-activated locus. beta-Galactosidase activity originating from phoPQ-lac transcriptional fusions required the presence of both the transcriptional regulator PhoP and its cognate sensor-kinase PhoQ. At low concentrations, PhoQ stimulated expression of phoPQ-lac transcriptional fusions. However, larger amounts of PhoQ protein without a concomitant increase in PhoP failed to activate phoPQ-lac fusions. Two different transcripts are produced from the phoPQ operon during exponential growth. These transcripts define two promoters: phoPp1, which requires both PhoP and PhoQ for activity and which is environmentally regulated, and phoPp2, which remains active in the absence of PhoP and PhoQ but which is slightly stimulated by these proteins. The pattern of transcriptional autoregulation was also observed at the protein level with anti-PhoP antibodies. In sum, autoregulation of the phoPQ operon provides several levels of control for the PhoP-PhoQ regulon. First, environmental signals would stimulate PhoQ to phosphorylate the PhoP protein that is produced at basal levels from the PhoP-PhoQ-independent promoter. Then, phospho-PhoP would activate transcription of phoPp1, resulting in larger amounts of PhoP and PhoQ and increased expression of PhoP-activated genes. A return to basal levels could be mediated by a posttranscriptional mechanism by which translation of the mRNA produced from phoPp1 is inhibited.

  17. Epigenetics regulates transcription and pathogenesis in the parasite Trichomonas vaginalis.

    PubMed

    Pachano, Tomas; Nievas, Yesica R; Lizarraga, Ayelen; Johnson, Patricia J; Strobl-Mazzulla, Pablo H; de Miguel, Natalia

    2017-01-05

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogenital tract. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Different T. vaginalis strains vary greatly in their adherence and cytolytic capacities. These phenotypic differences might be attributed to differentially expressed genes as a consequence of extra-genetic variation, such as epigenetic modifications. In this study, we explored the role of histone acetylation in regulating gene transcription and pathogenesis in T. vaginalis. Here, we show that histone 3 lysine acetylation (H3KAc) is enriched in nucleosomes positioned around the transcription start site of active genes (BAP1 and BAP2) in a highly adherent parasite strain; compared with the low acetylation abundance in contrast to that observed in a less-adherent strain that expresses these genes at low levels. Additionally, exposition of less-adherent strain with a specific histone deacetylases inhibitor, trichostatin A, upregulated the transcription of BAP1 and BAP2 genes in concomitance with an increase in H3KAc abundance and chromatin accessibility around their transcription start sites. Moreover, we demonstrated that the binding of initiator binding protein, the transcription factor responsible for the initiation of transcription of ~75% of known T. vaginalis genes, depends on the histone acetylation state around the metazoan-like initiator to which initiator binding protein binds. Finally, we found that trichostatin A treatment increased parasite aggregation and adherence to host cells. Our data demonstrated for the first time that H3KAc is a permissive histone modification that functions to mediate both transcription and pathogenesis of the parasite T. vaginalis.

  18. Drugging the Undruggable: Transcription Therapy for Cancer

    PubMed Central

    Yan, Chunhong; Higgins, Paul J.

    2012-01-01

    Transcriptional regulation is often the convergence point of oncogenic signaling. It is not surprising, therefore, that aberrant gene expression is a hallmark of cancer. Transformed cells often develop a dependency on such a reprogramming highlighting the therapeutic potential of rectifying cancer-associated transcriptional abnormalities in malignant cells. Although transcription is traditionally considered as undruggable, agents have been developed that target various levels of transcriptional regulation including DNA binding by transcription factors, protein-protein interactions, and epigenetic alterations. Some of these agents have been approved for clinical use or entered clinical trials. While artificial transcription factors have been developed that can theoretically modulate expression of any given gene, the emergence of reliable reporter assays greatly facilitate the search for transcription-targeted agents. This review provides a comprehensive overview of these developments, and discusses various strategies applicable for developing transcription-targeted therapeutic agents. PMID:23147197

  19. Transcriptional profiling of imbibed Brassica napus seed.

    PubMed

    Li, Fengling; Wu, Xianzhong; Tsang, Edward; Cutler, Adrian J

    2005-12-01

    Using an Arabidopsis microarray, we compared gene expression between germinating Brassica napus seeds and seeds in which germination was inhibited either by polyethylene glycol (PEG) or by the abscisic acid (ABA) analog PBI429, which produces stronger and longer lasting ABA-like effects. A total of 40 genes were induced relative to the germinating control by both treatments. Conspicuous among these were genes associated with late seed development. We identified 36 genes that were downregulated by both PEG and PBI429. Functions of these genes included carbohydrate metabolism, cell wall-related processes, detoxification of reactive oxygen, and triacylglycerol breakdown. The PBI429 treatment produced an increase in endogenous ABA and increased ABA catabolism. However, PEG treatment did not result in similar effects. The transcription factor ABI5 was consistently upregulated by both treatments and PKL was downregulated. These results suggest a greater importance of ABA signaling and reduced importance of GA signaling in nongerminating seeds.

  20. Ketone ester effects on metabolism and transcription.

    PubMed

    Veech, Richard L

    2014-10-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value.

  1. Ketone ester effects on metabolism and transcription

    PubMed Central

    Veech, Richard L.

    2014-01-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value. PMID:24714648

  2. Sry is a transcriptional activator.

    PubMed

    Dubin, R A; Ostrer, H

    1994-09-01

    The SRY gene functions as a genetic switch in gonadal ridge initiating testis determination. The mouse Sry and human SRY open reading frames (ORFs) share a conserved DNA-binding domain (the HMG-box) yet exhibit no additional homology outside this region. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and mouse SRY ORFs contain a nuclear localization signal. The mouse Sry HMG-box domain selectively binds the sequence NACAAT in vitro when challenged with a random pool of oligonucleotides and binds AACAAT with the highest affinity. When put under the control of a heterologous promotor, the mouse Sry gene activated transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was likewise observed for a GAL4-responsive reporter gene, when the mouse Sry gene was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a glutamine/histidine-rich domain. In addition, LexA-mouse Sry fusion genes activated a LexA-responsive reporter gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and the mouse SRY ORFs encode nuclear, DNA-binding proteins and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  3. Linking Smads and transcriptional activation.

    PubMed

    Inman, Gareth J

    2005-02-15

    TGF-beta1 (transforming growth factor-beta1) is the prototypical member of a large family of pleiotropic cytokines that regulate diverse biological processes during development and adult tissue homoeostasis. TGF-beta signals via membrane bound serine/threonine kinase receptors which transmit their signals via the intracellular signalling molecules Smad2, Smad3 and Smad4. These Smads contain conserved MH1 and MH2 domains separated by a flexible linker domain. Smad2 and Smad3 act as kinase substrates for the receptors, and, following phosphorylation, they form complexes with Smad4 and translocate to the nucleus. These Smad complexes regulate gene expression and ultimately determine the biological response to TGF-beta. In this issue of the Biochemical Journal, Wang et al. have shown that, like Smad4, the linker domain of Smad3 contains a Smad transcriptional activation domain. This is capable of recruiting the p300 transcriptional co-activator and is required for Smad3-dependent transcriptional activation. This study raises interesting questions about the nature and regulation of Smad-regulated gene activation and elevates the status of the linker domain to rival that of the much-lauded MH1 and MH2 domains.

  4. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  5. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  6. Transcriptional Regulation by Hypoxia Inducible Factors

    PubMed Central

    Espinosa, Joaquín M.

    2015-01-01

    The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their post-translational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia. PMID:24099156

  7. Transcription blockage by stable H-DNA analogs in vitro.

    PubMed

    Pandey, Shristi; Ogloblina, Anna M; Belotserkovskii, Boris P; Dolinnaya, Nina G; Yakubovskaya, Marianna G; Mirkin, Sergei M; Hanawalt, Philip C

    2015-08-18

    DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed.

  8. The bile acid sensor FXR regulates insulin transcription and secretion.

    PubMed

    Renga, Barbara; Mencarelli, Andrea; Vavassori, Piero; Brancaleone, Vincenzo; Fiorucci, Stefano

    2010-03-01

    Farnesoid X Receptor plays an important role in maintaining bile acid, cholesterol homeostasis and glucose metabolism. Here we investigated whether FXR is expressed by pancreatic beta-cells and regulates insulin signaling in pancreatic beta-cell line and human islets. We found that FXR activation induces positive regulatory effects on glucose-induced insulin transcription and secretion by genomic and non-genomic activities. Genomic effects of FXR activation relay on the induction of the glucose regulated transcription factor KLF11. Indeed, results from silencing experiments of KLF11 demonstrate that this transcription factor is essential for FXR activity on glucose-induced insulin gene transcription. In addition FXR regulates insulin secretion by non-genomic effects. Thus, activation of FXR in betaTC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. In vivo experiments on Non Obese Diabetic (NOD) mice demonstrated that FXR activation delays development of signs of diabetes, hyperglycemia and glycosuria, by enhancing insulin secretion and by stimulating glucose uptake by the liver. These data established that an FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose.

  9. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  10. The great repression: chromatin and cryptic transcription.

    PubMed

    Hennig, Bianca P; Fischer, Tamás

    2013-01-01

    The eukaryotic chromatin structure is essential in correctly defining transcription units. Impairing this structure can activate cryptic promoters, and lead to the accumulation of aberrant RNA transcripts. Here we discuss critical pathways that are responsible for the repression of cryptic transcription and the maintenance of genome integrity.

  11. 40 CFR 1610.4 - Deposition Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Deposition Transcripts. 1610.4 Section 1610.4 Protection of Environment CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD ADMINISTRATIVE INVESTIGATIONS § 1610.4 Deposition Transcripts. (a) Transcripts of depositions of witnesses compelled by...

  12. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  13. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  14. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  15. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  16. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  17. A unified model for yeast transcript definition.

    PubMed

    de Boer, Carl G; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D; Nislow, Corey; Greenblatt, Jack F; Hughes, Timothy R

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.

  18. A unified model for yeast transcript definition

    PubMed Central

    de Boer, Carl G.; van Bakel, Harm; Tsui, Kyle; Li, Joyce; Morris, Quaid D.; Nislow, Corey; Greenblatt, Jack F.; Hughes, Timothy R.

    2014-01-01

    Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution. PMID:24170600

  19. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions

    PubMed Central

    Zhang, Chen; Jiang, Hui; Wang, Pin; Liu, Heng; Sun, Xiulian

    2017-01-01

    Mitochondria are intracellular organelles involved in cell survival and death, and dysfunctions of mitochondria are related to neurodegenerative diseases. As the most abundant protein in the mitochondrial inner membrane, adenine nucleotide translocator 1 (ANT1) plays a critical role in mitochondrial function, including the exchange of adenosine triphosphate/adenosine diphosphate (ATP/ADP) in mitochondria, basal proton leak and mitochondrial permeability transition pore (mPTP). Here, we show that ANT1 transcription is regulated by transcription factor NF-kappa B (NF-κB). NF-κB is bound to two NF-κB responsive elements (NREs) located at +1 to +20 bp and +41 to +61 bp in the ANT1 promoter. An NF-κB signalling stimulator, tumour necrosis factor alpha (TNFα), suppresses ANT1 mRNA and protein expression. Activation of NF-κB by TNFα impairs ATP/ADP exchange and decreases ATP production in mitochondria. Activation of NF-κB by TNFα decreases calcium induced mPTP opening, elevates mitochondrial potential and increases reactive oxygen species (ROS) production in both T98G human glioblastoma cells and rat cortical neurons. These results demonstrate that NF-κB signalling may repress ANT1 gene transcription and impair mitochondrial functions. PMID:28317877

  20. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots

    PubMed Central

    Lee, Ji-Young; Colinas, Juliette; Wang, Jean Y.; Mace, Daniel; Ohler, Uwe; Benfey, Philip N.

    2006-01-01

    Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF’s upstream noncoding sequence (including the 5′UTR) fused to the GFP reporter gene alone or together with the TF’s coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map. An automated image analysis method for quantifying GFP signals in different tissues was developed and used to validate our visual comparison method. From these combined analyses, we found that (i) the upstream noncoding sequence was sufficient to recapitulate the mRNA expression pattern for 80% (35/44) of the TFs, and (ii) 25% of the TFs undergo posttranscriptional regulation via microRNA-mediated mRNA degradation (2/24) or via intercellular protein movement (6/24). The results suggest that, for Arabidopsis TFs, upstream noncoding sequences are major contributors to mRNA expression pattern establishment, but modulation of transcription factor protein expression pattern after transcription is relatively frequent. This study provides a systematic overview of regulation of TF expression at a cellular level. PMID:16581911

  1. Transcription of ribosomal RNA: the role of antitermination of RNA polymerase

    NASA Astrophysics Data System (ADS)

    Klumpp, Stefan; Hwa, Terry

    2007-03-01

    The genes encoding ribosomal RNA are transcribed at high rates of 1-2 transcripts per second. These high transcription rates are crucial to maintain the large concentration of ribosomes necessary in fast growing bacteria. To understand how transcription is regulated under these conditions, we developed a model for the traffic of transcribing RNA polymerases (RNAP). Our simulations show that the transcription rate is limited by the elongation stage of transcription rather than by transcript initiation. The maximal transcription rate is severly impaired by RNAP pausing with pause durations in the second range which is ubiquitous under single-molecule conditions. We propose that ribosomal antitermination reduces pauses and thereby increases the transcription rate. This idea is in quantitative agreement with the observed increase of the elongation rate due to antitermination and predicts a two-fold increase of the transcription rate. Antitermination must be highly efficient, since incomplete antitermination with only a few percent of non-antiterminated, i.e. slow, RNAPs completely abolishes its effect. This result suggests that rho-dependent termination may selectively terminate slow RNAPs.

  2. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.

    PubMed

    Lewis, Daniel R; Ramirez, Melissa V; Miller, Nathan D; Vallabhaneni, Prashanthi; Ray, W Keith; Helm, Richard F; Winkel, Brenda S J; Muday, Gloria K

    2011-05-01

    Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.

  3. Modulation of Elk-dependent-transcription by Gene33.

    PubMed

    Keeton, Adam B; Messina, Joseph L

    2005-04-15

    Gene33 is a cytoplasmic protein expressed in many cell types, including those of renal and hepatic origin. Its expression is regulated by a large number of mitogenic and stressful stimuli, both in cultured cells and in vivo. Gene33 protein possesses binding domains for ErbB receptors, 14-3-3 proteins, SH-3 domains, and GTP bound Cdc42, suggesting that it may play a role in signal transduction. Indeed, these regions of Gene33 have been reported to modulate signaling through the ERK, JNK, and NFkappaB pathways. In the present work, epitope-tagged full-length and truncation mutants, as well as wild-type Gene33, were overexpressed in 293 cells. The expression of these proteins was compared to the level of endogenous Gene33 by Western blot using a newly developed polyclonal antibody. As proxies for activity of the ERK and JNK pathways, Elk- and c-Jun-dependent transcription were measured by a luciferase reporter gene. Moderate expression levels of full-length Gene33 caused a twofold increase in Elk-dependent transcription, while at higher levels, c-Jun-dependent transcription was partially inhibited. The C-terminal half of Gene33 significantly increased both Elk- and c-Jun-dependent transcription when expressed at approximately threefold above control levels. This effect on Elk-dependent transcription was lost at higher levels of Gene33 expression. In contrast, higher levels of the C-terminal half of Gene33 caused a progressively greater effect on c-Jun-dependent transcription. These findings suggest that Gene33 may increase ERK activity, and that the C-terminal half of Gene33 may act less specifically in the absence of the N-terminal half, inducing JNK activity.

  4. Contributions of in vitro transcription to the understanding of human RNA polymerase III transcription.

    PubMed

    Dumay-Odelot, Hélène; Durrieu-Gaillard, Stéphanie; El Ayoubi, Leyla; Parrot, Camila; Teichmann, Martin

    2014-01-01

    Human RNA polymerase III transcribes small untranslated RNAs that contribute to the regulation of essential cellular processes, including transcription, RNA processing and translation. Analysis of this transcription system by in vitro transcription techniques has largely contributed to the discovery of its transcription factors and to the understanding of the regulation of human RNA polymerase III transcription. Here we review some of the key steps that led to the identification of transcription factors and to the definition of minimal promoter sequences for human RNA polymerase III transcription.

  5. Contribution of transcription to animal early development.

    PubMed

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  6. Switch Transcripts in Immunoglobulin Class Switching

    NASA Astrophysics Data System (ADS)

    Lorenz, Matthias; Jung, Steffen; Radbruch, Andreas

    1995-03-01

    B cells can exchange gene segments for the constant region of the immunoglobulin heavy chain, altering the class and effector function of the antibodies that they produce. Class switching is directed to distinct classes by cytokines, which induce transcription of the targeted DNA sequences. These transcripts are processed, resulting in spliced "switch" transcripts. Switch recombination can be directed to immunoglobulin G1 (IgG1) by the heterologous human metallothionein II_A promoter in mutant mice. Induction of the structurally conserved, spliced switch transcripts is sufficient to target switch recombination to IgG1, whereas transcription alone is not.

  7. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition

    PubMed Central

    Hussey, Steven G.; Mizrachi, Eshchar; Creux, Nicky M.; Myburg, Alexander A.

    2013-01-01

    The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein–DNA and protein–protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms. PMID:24009617

  8. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease.

    PubMed

    Watson, Gregory; Ronai, Ze'ev; Lau, Eric

    2017-02-15

    Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.

  9. Intergenic and Repeat Transcription in Human, Chimpanzee and Macaque Brains Measured by RNA-Seq

    PubMed Central

    Xu, Ying; Li, Mingfeng; Fu, Xing; Yan, Zheng; Yuan, Yuan; Menzel, Corinna; Li, Na; Somel, Mehmet; Hu, Hao; Chen, Wei; Pääbo, Svante; Khaitovich, Philipp

    2010-01-01

    Transcription is the first step connecting genetic information with an organism's phenotype. While expression of annotated genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of transcripts located outside of the known genes' boundaries is limited. Here, we use high-throughput transcriptome sequencing (RNA-Seq) to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque brain. In all species, only 20–28% of non-ribosomal transcripts correspond to annotated exons and 20–23% to introns. By contrast, transcripts originating within intronic and intergenic repetitive sequences constitute 40–48% of the total brain transcriptome. Notably, some repeat families show elevated transcription. In non-repetitive intergenic regions, we identify and characterize 1,093 distinct regions highly expressed in the human brain. These regions are conserved at the RNA expression level across primates studied and at the DNA sequence level across mammals. A large proportion of these transcripts (20%) represents 3′UTR extensions of known genes and may play roles in alternative microRNA-directed regulation. Finally, we show that while transcriptome divergence between species increases with evolutionary time, intergenic transcripts show more expression differences among species and exons show less. Our results show that many yet uncharacterized evolutionary conserved transcripts exist in the human brain. Some of these transcripts may play roles in transcriptional regulation and contribute to evolution of human-specific phenotypic traits. PMID:20617162

  10. Intergenic and repeat transcription in human, chimpanzee and macaque brains measured by RNA-Seq.

    PubMed

    Xu, Augix Guohua; He, Liu; Li, Zhongshan; Xu, Ying; Li, Mingfeng; Fu, Xing; Yan, Zheng; Yuan, Yuan; Menzel, Corinna; Li, Na; Somel, Mehmet; Hu, Hao; Chen, Wei; Pääbo, Svante; Khaitovich, Philipp

    2010-07-01

    Transcription is the first step connecting genetic information with an organism's phenotype. While expression of annotated genes in the human brain has been characterized extensively, our knowledge about the scope and the conservation of transcripts located outside of the known genes' boundaries is limited. Here, we use high-throughput transcriptome sequencing (RNA-Seq) to characterize the total non-ribosomal transcriptome of human, chimpanzee, and rhesus macaque brain. In all species, only 20-28% of non-ribosomal transcripts correspond to annotated exons and 20-23% to introns. By contrast, transcripts originating within intronic and intergenic repetitive sequences constitute 40-48% of the total brain transcriptome. Notably, some repeat families show elevated transcription. In non-repetitive intergenic regions, we identify and characterize 1,093 distinct regions highly expressed in the human brain. These regions are conserved at the RNA expression level across primates studied and at the DNA sequence level across mammals. A large proportion of these transcripts (20%) represents 3'UTR extensions of known genes and may play roles in alternative microRNA-directed regulation. Finally, we show that while transcriptome divergence between species increases with evolutionary time, intergenic transcripts show more expression differences among species and exons show less. Our results show that many yet uncharacterized evolutionary conserved transcripts exist in the human brain. Some of these transcripts may play roles in transcriptional regulation and contribute to evolution of human-specific phenotypic traits.

  11. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila.

    PubMed

    Luo, Weifei; Li, Yue; Tang, Chih-Hang Anthony; Abruzzi, Katharine C; Rodriguez, Joseph; Pescatore, Stefan; Rosbash, Michael

    2012-11-15

    A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interaction as well as CLK/CYC phosphorylation. We describe here the role of ubiquitin-specific protease 8 (USP8) in circadian transcriptional repression as well as the importance of CLK ubiquitylation in CLK/CYC transcription activity. usp8 loss of function (RNAi) or expression of a dominant-negative form of the protein (USP8-DN) enhances CLK/CYC transcriptional activity and alters fly locomotor activity rhythms. Clock protein and mRNA molecular oscillations are virtually absent within circadian neurons of USP8-DN flies. Furthermore, CLK ubiquitylation cycles robustly in wild-type flies and peaks coincident with maximal CLK/CYC transcription. As USP8 interacts with CLK and expression of USP8-DN increases CLK ubiquitylation, the data indicate that USP8 deubiquitylates CLK, which down-regulates CLK/CYC transcriptional activity. Taken together with the facts that usp8 mRNA cycles and that its transcription is activated directly by CLK/CYC, USP8, like PER and TIM, contributes to the transcriptional feedback loop cycle that underlies circadian rhythms.

  12. Mammalian transcription-coupled excision repair.

    PubMed

    Vermeulen, Wim; Fousteri, Maria

    2013-08-01

    Transcriptional arrest caused by DNA damage is detrimental for cells and organisms as it impinges on gene expression and thereby on cell growth and survival. To alleviate transcriptional arrest, cells trigger a transcription-dependent genome surveillance pathway, termed transcription-coupled nucleotide excision repair (TC-NER) that ensures rapid removal of such transcription-impeding DNA lesions and prevents persistent stalling of transcription. Defective TC-NER is causatively linked to Cockayne syndrome, a rare severe genetic disorder with multisystem abnormalities that results in patients' death in early adulthood. Here we review recent data on how damage-arrested transcription is actively coupled to TC-NER in mammals and discuss new emerging models concerning the role of TC-NER-specific factors in this process.

  13. Transcriptional Memory in the Drosophila Embryo.

    PubMed

    Ferraro, Teresa; Esposito, Emilia; Mancini, Laure; Ng, Sam; Lucas, Tanguy; Coppey, Mathieu; Dostatni, Nathalie; Walczak, Aleksandra M; Levine, Michael; Lagha, Mounia

    2016-01-25

    Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.

  14. Increased expression of AT-1/SLC33A1 causes an autistic-like phenotype in mice by affecting dendritic branching and spine formation

    PubMed Central

    Hullinger, Rikki; Li, Mi; Wang, Jingxin; Peng, Yajing; Dowell, James A.; Bomba-Warczak, Ewa; Mitchell, Heather A.; Burger, Corinna; Chapman, Edwin R.; Denu, John M.; Li, Lingjun

    2016-01-01

    The import of acetyl-CoA into the lumen of the endoplasmic reticulum (ER) by AT-1/SLC33A1 regulates Nε-lysine acetylation of ER-resident and -transiting proteins. Specifically, lysine acetylation within the ER appears to influence the efficiency of the secretory pathway by affecting ER-mediated quality control. Mutations or duplications in AT-1/SLC33A1 have been linked to diseases such as familial spastic paraplegia, developmental delay with premature death, and autism spectrum disorder with intellectual disability. In this study, we generated an AT-1 Tg mouse model that selectively overexpresses human AT-1 in neurons. These animals demonstrate cognitive deficits, autistic-like social behavior, aberrations in synaptic plasticity, an increased number of dendritic spines and branches, and widespread proteomic changes. We also found that AT-1 activity regulates acetyl-CoA flux, causing epigenetic modulation of the histone epitope H3K27 and mitochondrial adaptation. In conclusion, our results indicate that increased expression of AT-1 can cause an autistic-like phenotype by affecting key neuronal metabolic pathways. PMID:27242167

  15. Transcriptional networks in leaf senescence.

    PubMed

    Schippers, Jos H M

    2015-10-01

    Plant senescence is a natural phenomenon known for the appearance of beautiful autumn colors and the ripening of cereals in the field. Senescence is a controlled process that plants utilize to remobilize nutrients from source leaves to developing tissues. While during the past decades, molecular components underlying the onset of senescence have been intensively studied, knowledge remains scarce on the age-dependent mechanisms that control the onset of senescence. Recent advances have uncovered transcriptional networks regulating the competence to senesce. Here, gene regulatory networks acting as internal timing mechanisms for the onset of senescence are highlighted, illustrating that early and late leaf developmental phases are highly connected.

  16. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  17. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond.

    PubMed

    Castel, Stephane E; Martienssen, Robert A

    2013-02-01

    A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.

  18. Active transcription and essential role of RNA polymerase II at the centromere during mitosis

    PubMed Central

    Chan, F. Lyn; Marshall, Owen J.; Saffery, Richard; Won Kim, Bo; Earle, Elizabeth; Choo, K. H. Andy; Wong, Lee H.

    2012-01-01

    Transcription of the centromeric regions has been reported to occur in G1 and S phase in different species. Here, we investigate whether transcription also occurs and plays a functional role at the mammalian centromere during mitosis. We show the presence of actively transcribing RNA polymerase II (RNAPII) and its associated transcription factors, coupled with the production of centromere satellite transcripts at the mitotic kinetochore. Specific inhibition of RNAPII activity during mitosis leads to a decrease in centromeric α-satellite transcription and a concomitant increase in anaphase-lagging cells, with the lagging chromosomes showing reduced centromere protein C binding. These findings demonstrate an essential role of RNAPII in the transcription of α-satellite DNA, binding of centromere protein C, and the proper functioning of the mitotic kinetochore. PMID:22308327

  19. Partitioning Variability of a Compartmentalized In Vitro Transcriptional Thresholding Circuit.

    PubMed

    Kapsner, Korbinian; Simmel, Friedrich C

    2015-10-16

    Encapsulation of in vitro biochemical reaction circuits into small, cell-sized compartments can result in considerable variations in the dynamical properties of the circuits. As a model system, we here investigate a simple in vitro transcriptional reaction circuit, which generates an ultrasensitive fluorescence response when the concentration of an RNA transcript reaches a preset threshold. The reaction circuit is compartmentalized into spherical water-in-oil microemulsion droplets, and the reaction progress is monitored by fluorescence microscopy. A quantitative statistical analysis of thousands of individual droplets ranging in size from a few up to 20 μm reveals a strong variability in effective RNA production rates, which by computational modeling is traced back to a larger-than-Poisson variability in RNAP activities in the droplets. The noise level in terms of the noise strength (the Fano factor) is strongly dependent on the ratio between transcription templates and polymerases, and increases for higher template concentrations.

  20. Definition of transcriptional pause elements in fission yeast.

    PubMed

    Aranda, A; Proudfoot, N J

    1999-02-01

    Downstream elements (DSEs) with transcriptional pausing activity play an important role in transcription termination of RNA polymerase II. We have defined two such DSEs in Schizosaccharomyces pombe, one for the ura4 gene and a new one in the 3'-end region of the nmt2 gene. Although these DSEs do not have sequence homology, both are orientation specific and are composed of multiple and redundant sequence elements that work together to achieve full pausing activity. Previous studies on the nmt1 and nmt2 genes revealed that transcription extends several kilobases past the genes' poly(A) sites. We show that the insertion of either DSE immediately downstream of the nmt1 poly(A) site induces more immediate termination. nmt2 termination efficiency can be increased by moving the DSE closer to the poly(A) site. These results suggest that DSEs may be a common feature in yeast genes.

  1. Engineering yeast transcription machinery for improved ethanol tolerance and production.

    PubMed

    Alper, Hal; Moxley, Joel; Nevoigt, Elke; Fink, Gerald R; Stephanopoulos, Gregory

    2006-12-08

    Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.

  2. Stochastic Proofreading Mechanism Alleviates Crosstalk in Transcriptional Regulation

    NASA Astrophysics Data System (ADS)

    Cepeda-Humerez, Sarah A.; Rieckh, Georg; Tkačik, Gašper

    2015-12-01

    Gene expression is controlled primarily by interactions between transcription factor proteins (TFs) and the regulatory DNA sequence, a process that can be captured well by thermodynamic models of regulation. These models, however, neglect regulatory crosstalk: the possibility that noncognate TFs could initiate transcription, with potentially disastrous effects for the cell. Here, we estimate the importance of crosstalk, suggest that its avoidance strongly constrains equilibrium models of TF binding, and propose an alternative nonequilibrium scheme that implements kinetic proofreading to suppress erroneous initiation. This proposal is consistent with the observed covalent modifications of the transcriptional apparatus and predicts increased noise in gene expression as a trade-off for improved specificity. Using information theory, we quantify this trade-off to find when optimal proofreading architectures are favored over their equilibrium counterparts. Such architectures exhibit significant super-Poisson noise at low expression in steady state.

  3. Mis-Spliced Lr34 Transcript Events in Winter Wheat

    PubMed Central

    Fang, Tilin; Carver, Brett F.; Hunger, Robert M.; Yan, Liuling

    2017-01-01

    Lr34 in wheat is a non-race-specific gene that confers resistance against multiple fungal pathogens. The resistant allele Lr34 and the susceptible allele Lr34s can be distinguished by three polymorphisms that cause alternation of deduced amino acid sequences of Lr34 at the protein level. In seedlings of a cultivar carrying the resistant Lr34r allele, only a portion (35%) of its transcripts was correctly spliced and the majority (65%) of its transcripts were incorrectly spliced due to multiple mis-splicing events. Lr34 mis-splicing events were also observed at adult plant age when this gene exerts its function. All of the mis-spliced Lr34r cDNA transcripts observed in this study resulted in a premature stop codon due to a shift of the open reading frame; hence, the mis-spliced Lr34r cDNAs were deduced to encode incomplete proteins. Even if a cultivar has a functional Lr34 gene, its transcripts might not completely splice in a correct pattern. These findings suggested that the partial resistance conferred by a quantitative gene might be due to mis-splicing events in its transcripts; hence, the resistance of the gene could be increased by eliminating or mutating regulators that cause mis-splicing events in wheat. PMID:28135317

  4. Evolution of a transcriptional regulator from a transmembrane nucleoporin.

    PubMed

    Franks, Tobias M; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C N; Young, Janet M; Malik, Harmit S; Gage, Fred H; Hetzer, Martin W

    2016-05-15

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components.

  5. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  6. A transcriptional network underlies susceptibility to kidney disease progression

    PubMed Central

    Laouari, Denise; Burtin, Martine; Phelep, Aurélie; Bienaime, Frank; Noel, Laure-Hélène; Lee, David C; Legendre, Christophe; Friedlander, Gérard; Pontoglio, Marco; Terzi, Fabiola

    2012-01-01

    The molecular networks that control the progression of chronic kidney diseases (CKD) are poorly defined. We have recently shown that the susceptibility to development of renal lesions after nephron reduction is controlled by a locus on mouse chromosome 6 and requires epidermal growth factor receptor (EGFR) activation. Here, we identified microphthalmia-associated transcription factor A (MITF-A), a bHLH-Zip transcription factor, as a modifier of CKD progression. Sequence analysis revealed a strain-specific mutation in the 5′ UTR that decreases MITF-A protein synthesis in lesion-prone friend virus B NIH (FVB/N) mice. More importantly, we dissected the molecular pathway by which MITF-A modulates CKD progression. MITF-A interacts with histone deacetylases to repress the transcription of TGF-α, a ligand of EGFR, and antagonizes transactivation by its related partner, transcription factor E3 (TFE3). Consistent with the key role of this network in CKD, Tgfa gene inactivation protected FVB/N mice from renal deterioration after nephron reduction. These data are relevant to human CKD, as we found that the TFE3/MITF-A ratio was increased in patients with damaged kidneys. Our study uncovers a novel transcriptional network and unveils novel potential prognostic and therapeutic targets for preventing human CKD progression. PMID:22711280

  7. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes

    PubMed Central

    Ruggiero, Carmen; Lalli, Enzo

    2016-01-01

    The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes. PMID:27065945

  8. Transcriptional Regulatory Cascades in Runx2-Dependent Bone Development

    PubMed Central

    2013-01-01

    The development of the musculoskeletal system is a complex process that involves very precise control of bone formation and growth as well as remodeling during postnatal life. Although the understanding of the transcriptional mechanisms of osteogenesis has increased considerably, the molecular regulatory basis, especially the gene regulatory network of osteogenic differentiation, is still poorly understood. This review provides the reader with an overview of the key transcription factors that govern bone formation, highlighting their function and regulation linked to Runt-related transcription factor 2 (Runx2). Runx2 as the master transcription factor of osteoblast differentiation, Twist, Msh homeobox 2 (Msx2), and promyelocytic leukemia zinc-finger protein (PLZF) acting upstream of Runx2, Osterix (Osx) acting downstream of Runx2, and activating transcription factor 4 (ATF4) and zinc-finger protein 521 (ZFP521) acting as cofactors of Runx2 are discussed, and their relevance for tissue engineering is presented. References are provided for more in-depth personal study. PMID:23150948

  9. Evolution of a transcriptional regulator from a transmembrane nucleoporin

    PubMed Central

    Franks, Tobias M.; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C.N.; Young, Janet M.; Malik, Harmit S.; Gage, Fred H.; Hetzer, Martin W.

    2016-01-01

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo–cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for “soluble Pom121”) that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components. PMID:27198230

  10. A transcriptional network underlies susceptibility to kidney disease progression.

    PubMed

    Laouari, Denise; Burtin, Martine; Phelep, Aurélie; Bienaime, Frank; Noel, Laure-Hélène; Lee, David C; Legendre, Christophe; Friedlander, Gérard; Pontoglio, Marco; Terzi, Fabiola

    2012-08-01

    The molecular networks that control the progression of chronic kidney diseases (CKD) are poorly defined. We have recently shown that the susceptibility to development of renal lesions after nephron reduction is controlled by a locus on mouse chromosome 6 and requires epidermal growth factor receptor (EGFR) activation. Here, we identified microphthalmia-associated transcription factor A (MITF-A), a bHLH-Zip transcription factor, as a modifier of CKD progression. Sequence analysis revealed a strain-specific mutation in the 5' UTR that decreases MITF-A protein synthesis in lesion-prone friend virus B NIH (FVB/N) mice. More importantly, we dissected the molecular pathway by which MITF-A modulates CKD progression. MITF-A interacts with histone deacetylases to repress the transcription of TGF-α, a ligand of EGFR, and antagonizes transactivation by its related partner, transcription factor E3 (TFE3). Consistent with the key role of this network in CKD, Tgfa gene inactivation protected FVB/N mice from renal deterioration after nephron reduction. These data are relevant to human CKD, as we found that the TFE3/MITF-A ratio was increased in patients with damaged kidneys. Our study uncovers a novel transcriptional network and unveils novel potential prognostic and therapeutic targets for preventing human CKD progression.

  11. The transcription factor SOX17 is involved in the transcriptional control of the uteroglobin gene in rabbit endometrium.

    PubMed

    Garcia, Carlos; Calvo, Enrique; Nieto, Antonio

    2007-10-15

    The transcription of the uteroglobin gene (ug) is induced by progesterone in the rabbit endometrium, primarily through the binding of the progesterone receptor to the distal region of the ug promoter. However, other transcription factors participate in the progesterone action. The proximal ug promoter contains several putative consensus sequences for the binding of various progesterone-dependent endometrial nuclear factors (Perez Martinez et al. [1996] Arch Biochem Biophys 333: 12-18), suggesting that several transcription factors might be implicated in the hormonal induction of ug. We report here that one of these progesterone-dependent factors specifically binds to the sequence CACAATG (-183/-177) of the rabbit ug promoter. This sequence (hereafter called element G') is very similar to the consensus sequence for binding of the SOX family of transcription factors. Mutation of the element G' reduced transcription from the ug promoter in transient expression experiments. The endometrial factor was purified and analyzed by nano-liquid chromatography and ion trap coupled mass spectrometry yielding two partial amino acid sequences corresponding to a region of SOX17 that is highly conserved inter-species. This identification was confirmed by immunological techniques using a specific anti-SOX17 antibody. In agreement with the above findings, overexpression of SOX17 in transfected endometrial cells increased transcription from the ug promoter. SOX17 gradually accumulated in the nucleus in vivo concomitant with the induction of ug expression by progesterone in the endometrium. Thus, these findings implicate, for the first time, SOX17 in the transcriptional control of rabbit ug.

  12. Transcription-associated recombination is dependent on replication in Mammalian cells.

    PubMed

    Gottipati, Ponnari; Cassel, Tobias N; Savolainen, Linda; Helleday, Thomas

    2008-01-01

    Transcription can enhance recombination; this is a ubiquitous phenomenon from prokaryotes to higher eukaryotes. However, the mechanism of transcription-associated recombination in mammalian cells is poorly understood. Here we have developed a construct with a recombination substrate in which levels of recombination can be studied in the presence or absence of transcription. We observed a direct enhancement in recombination when transcription levels through the substrate were increased. This increase in homologous recombination following transcription is locus specific, since homologous recombination at the unrelated hprt gene is unaffected. In addition, we have shown that transcription-associated recombination involves both short-tract and long-tract gene conversions in mammalian cells, which are different from double-strand-break-induced recombination events caused by endonucleases. Transcription fails to enhance recombination in cells that are not in the S phase of the cell cycle. Furthermore, inhibition of transcription suppresses induction of recombination at stalled replication forks, suggesting that recombination may be involved in bypassing transcription during replication.

  13. Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers

    PubMed Central

    Bloom, Chloe I.; Graham, Christine M.; Berry, Matthew P. R.; Rozakeas, Fotini; Redford, Paul S.; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A.; Wilkinson, Robert J.; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-pei; Lipman, Marc; O’Garra, Anne

    2013-01-01

    Rationale New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. Objectives To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. Methods We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. Measurements and Main Results An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Conclusions Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the

  14. Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In skeletal muscle, transcript levels of proteins regulating the ubiquitin proteasome system (UPS) increase with atrophy and decrease with hypertrophy. Whether the same is true for heart muscle is not known. We set out to characterize the transcriptional profile of regulators of the UPS during atrop...

  15. Thyroid hormone stimulates the renal Na/H exchanger NHE3 by transcriptional activation

    PubMed Central

    CANO, ADRIANA; BAUM, MICHEL; MOE, ORSON W.

    2014-01-01

    Thyroid hormone stimulates renal proximal tubule NaCl and NaHCO3 absorption in part by activating the apical membrane Na/H exchanger NHE3. We used a renal epithelial cell line, the opossum kidney (OK) cell, to define the mechanism by which 3,5,3′-triiodothyronine (T3) increases NHE3 activity. T3 stimulated NHE3 activity, an effect that was blocked by inhibition of cellular transcription or translation. The increase in activity was associated with increases in steady-state cell surface and total cellular NHE3 protein and NHE3 transcript abundance. T3 stimulated transcription of the NHE3 gene and had no effect on NHE3 transcript stability. The transcriptional activity of the 5′-flanking region of the rat NHE3 gene was stimulated by T3 when expressed in OK cells. When heterologously expressed rat NHE3 transcript levels were clamped constant with a constitutive promoter in OK cells, T3 has no effect on rat NHE3 protein abundance, suggesting the absence of regulation of NHE3 protein stability or translation. These studies demonstrate that T3 stimulates NHE3 activity by activating NHE3 gene transcription and increasing NHE3 transcript and protein abundance. PMID:9886925

  16. Sumoylation and transcription regulation at nuclear pores.

    PubMed

    Texari, Lorane; Stutz, Françoise

    2015-03-01

    Increasing evidence indicates that besides promoters, enhancers, and epigenetic modifications, nuclear organization is another parameter contributing to optimal control of gene expression. Although differences between species exist, the influence of gene positioning on expression seems to be a conserved feature from yeast to Drosophila and mammals. The nuclear periphery is one of the nuclear compartments implicated in gene regulation. It consists of the nuclear envelope (NE) and the nuclear pore complexes (NPC), which have distinct roles in the control of gene expression. The NPC has recently been shown to tether proteins involved in the sumoylation pathway. Here, we will focus on the importance of gene positioning and NPC-linked sumoylation/desumoylation in transcription regulation. We will mainly discuss observations made in the yeast Saccharomyces cerevisiae model system and highlight potential parallels in metazoan species.

  17. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1

    PubMed Central

    van Loo, Karen M. J.; Schaub, Christina; Pitsch, Julika; Kulbida, Rebecca; Opitz, Thoralf; Ekstein, Dana; Dalal, Adam; Urbach, Horst; Beck, Heinz; Yaari, Yoel; Schoch, Susanne; Becker, Albert J.

    2015-01-01

    Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca2+-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn2+ that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn2+-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE. PMID:26498180

  18. 10 CFR 9.108 - Certification, transcripts, recordings and minutes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...). Copies of such transcript, or minutes, or a transcription of such recording disclosing the identity of... transcription as provided in § 9.14. The Secretary shall maintain a complete verbatim copy of the transcript,...

  19. Informational Requirements for Transcriptional Regulation

    PubMed Central

    O'Neill, Patrick K.; Forder, Robert

    2014-01-01

    Abstract Transcription factors (TFs) regulate transcription by binding to specific sites in promoter regions. Information theory provides a useful mathematical framework to analyze the binding motifs associated with TFs but imposes several assumptions that limit their applicability to specific regulatory scenarios. Explicit simulations of the co-evolution of TFs and their binding motifs allow the study of the evolution of regulatory networks with a high degree of realism. In this work we analyze the impact of differential regulatory demands on the information content of TF-binding motifs by means of evolutionary simulations. We generalize a predictive index based on information theory, and we validate its applicability to regulatory scenarios in which the TF binds significantly to the genomic background. Our results show a logarithmic dependence of the evolved information content on the occupancy of target sites and indicate that TFs may actively exploit pseudo-sites to modulate their occupancy of target sites. In regulatory networks with differentially regulated targets, we observe that information content in TF-binding motifs is dictated primarily by the fraction of total probability mass that the TF assigns to its target sites, and we provide a predictive index to estimate the amount of information associated with arbitrarily complex regulatory systems. We observe that complex regulatory patterns can exert additional demands on evolved information content, but, given a total occupancy for target sites, we do not find conclusive evidence that this effect is because of the range of required binding affinities. PMID:24689750

  20. Complementary quantitative proteomics reveals that transcription factor AP-4 mediates E-box-dependent complex formation for transcriptional repression of HDM2.

    PubMed

    Ku, Wei-Chi; Chiu, Sung-Kay; Chen, Yi-Ju; Huang, Hsin-Hung; Wu, Wen-Guey; Chen, Yu-Ju

    2009-09-01

    Transcription factor activating enhancer-binding protein 4 (AP-4) is a basic helix-loop-helix protein that binds to E-box elements. AP-4 has received increasing attention for its regulatory role in cell growth and development, including transcriptional repression of the human homolog of murine double minute 2 (HDM2), an important oncoprotein controlling cell growth and survival, by an unknown mechanism. Here we demonstrate that AP-4 binds to an E-box located in the HDM2-P2 promoter and represses HDM2 transcription in a p53-independent manner. Incremental truncations of AP-4 revealed that the C-terminal Gln/Pro-rich domain was essential for transcriptional repression of HDM2. To further delineate the molecular mechanism(s) of AP-4 transcriptional control and its potential implications, we used DNA-affinity purification followed by complementary quantitative proteomics, cICAT and iTRAQ labeling methods, to identify a previously unknown E-box-bound AP-4 protein complex containing 75 putative components. The two labeling methods complementarily quantified differentially AP-4-enriched proteins, including the most significant recruitment of DNA damage response proteins, followed by transcription factors, transcriptional repressors/corepressors, and histone-modifying proteins. Specific interaction of AP-4 with CCCTC binding factor, stimulatory protein 1, and histone deacetylase 1 (an AP-4 corepressor) was validated using AP-4 truncation mutants. Importantly, inclusion of trichostatin A did not alleviate AP-4-mediated repression of HDM2 transcription, suggesting a previously unidentified histone deacetylase-independent repression mechanism. In contrast, the complementary quantitative proteomics study suggested that transcription repression occurs via coordination of AP-4 with other transcription factors, histone methyltransferases, and/or a nucleosome remodeling SWI.SNF complex. In addition to previously known functions of AP-4, our data suggest that AP-4 participates in a

  1. DBD: a transcription factor prediction database.

    PubMed

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2006-01-01

    Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.

  2. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  3. Nuclear mRNA quality control in yeast is mediated by Nrd1 co-transcriptional recruitment, as revealed by the targeting of Rho-induced aberrant transcripts

    PubMed Central

    Honorine, Romy; Mosrin-Huaman, Christine; Hervouet-Coste, Nadège; Libri, Domenico; Rahmouni, A. Rachid

    2011-01-01

    The production of mature export-competent transcripts is under the surveillance of quality control steps where aberrant mRNP molecules resulting from inappropriate or inefficient processing and packaging reactions are subject to exosome-mediated degradation. Previously, we have shown that the heterologous expression of bacterial Rho factor in yeast interferes in normal mRNP biogenesis leading to the production of full-length yet aberrant transcripts that are degraded by the nuclear exosome with ensuing growth defect. Here, we took advantage of this new tool to investigate the molecular mechanisms by which an integrated system recognizes aberrancies at each step of mRNP biogenesis and targets the defective molecules for destruction. We show that the targeting and degradation of Rho-induced aberrant transcripts is associated with a large increase of Nrd1 recruitment to the transcription complex via its CID and RRM domains and a concomitant enrichment of exosome component Rrp6 association. The targeting and degradation of the aberrant transcripts is suppressed by the overproduction of Pcf11 or its isolated CID domain, through a competition with Nrd1 for recruitment by the transcription complex. Altogether, our results support a model in which a stimulation of Nrd1 co-transcriptional recruitment coordinates the recognition and removal of aberrant transcripts by promoting the attachment of the nuclear mRNA degradation machinery. PMID:21113025

  4. Catching transcriptional regulation by thermostatistical modeling

    NASA Astrophysics Data System (ADS)

    Frank, Till D.; Cheong, Alex; Okada-Hatakeyama, Mariko; Kholodenko, Boris N.

    2012-08-01

    Gene expression is frequently regulated by multiple transcription factors (TFs). Thermostatistical methods allow for a quantitative description of interactions between TFs, RNA polymerase and DNA, and their impact on the transcription rates. We illustrate three different scales of the thermostatistical approach: the microscale of TF molecules, the mesoscale of promoter energy levels and the macroscale of transcriptionally active and inactive cells in a cell population. We demonstrate versatility of combinatorial transcriptional activation by exemplifying logic functions, such as AND and OR gates. We discuss a metric for cell-to-cell transcriptional activation variability known as Fermi entropy. Suitability of thermostatistical modeling is illustrated by describing the experimental data on transcriptional induction of NFκB and the c-Fos protein.

  5. INSIGHTS FROM GENOMIC PROFILING OF TRANSCRIPTION FACTORS

    PubMed Central

    Farnham, Peggy

    2010-01-01

    A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-Seq. This review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome, and also suggests future experiments to further our understanding of the causes and consequences of transcription factor-genome interactions. PMID:19668247

  6. Transcriptional control of plant defence responses.

    PubMed

    Buscaill, Pierre; Rivas, Susana

    2014-08-01

    Mounting of efficient plant defence responses depends on the ability to trigger a rapid defence reaction after recognition of the invading microbe. Activation of plant resistance is achieved by modulation of the activity of multiple transcriptional regulators, both DNA-binding transcription factors and their regulatory proteins, that are able to reprogram transcription in the plant cell towards the activation of defence signalling. Here we provide an overview of recent developments on the transcriptional control of plant defence responses and discuss defence-related hormone signalling, the role of WRKY transcription factors during the regulation of plant responses to pathogens, nuclear functions of plant immune receptor proteins, as well as varied ways by which microbial effectors subvert plant transcriptional reprogramming to promote disease.

  7. Mechanisms of mutational robustness in transcriptional regulation

    PubMed Central

    Payne, Joshua L.; Wagner, Andreas

    2015-01-01

    Robustness is the invariance of a phenotype in the face of environmental or genetic change. The phenotypes produced by transcriptional regulatory circuits are gene expression patterns that are to some extent robust to mutations. Here we review several causes of this robustness. They include robustness of individual transcription factor binding sites, homotypic clusters of such sites, redundant enhancers, transcription factors, redundant transcription factors, and the wiring of transcriptional regulatory circuits. Such robustness can either be an adaptation by itself, a byproduct of other adaptations, or the result of biophysical principles and non-adaptive forces of genome evolution. The potential consequences of such robustness include complex regulatory network topologies that arise through neutral evolution, as well as cryptic variation, i.e., genotypic divergence without phenotypic divergence. On the longest evolutionary timescales, the robustness of transcriptional regulation has helped shape life as we know it, by facilitating evolutionary innovations that helped organisms such as flowering plants and vertebrates diversify. PMID:26579194

  8. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  9. Transcription in Archaea: in vitro transcription assays for mjRNAP.

    PubMed

    Smollett, Katherine; Blombach, Fabian; Werner, Finn

    2015-01-01

    The fully recombinant Methanocaldococcus jannaschii RNA polymerase allows for a detailed dissection of the different stages of the transcription. In the previous chapter, we discussed how to purify the different components of the M. jannaschii transcription system, the RNA polymerase subunits, and general transcription factors and how to assemble a functional M. jannaschii enzyme. Standard in vitro transcription assays can be used to examine the different stages of transcription. In this chapter, we describe how some of these assays have been optimized for M. jannaschii RNA polymerase, which transcribes at much higher temperatures than many other transcription complexes.

  10. Balanced Branching in Transcription Termination

    NASA Technical Reports Server (NTRS)

    Harrington, K. J.; Laughlin, R. B.; Liang, S.

    2000-01-01

    The theory of stochastic transcription termination based on free-energy competition requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle but many troubling inconsistencies, most notably anomalous memory effects. These suggest that term ination has a deterministic component and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von Hippel allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.

  11. Balanced Branching in Transcription Termination

    NASA Technical Reports Server (NTRS)

    Harrington, K. J.; Laughlin, R. B.; Liang, S.

    2001-01-01

    The theory of stochastic transcription termination based on free-energy competition requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle but many troubling inconsistencies, most notably anomalous memory effects. These suggest that termination has a deterministic component and may conceivably be not stochastic at all. We find that a key experiment by Wilson and von Hippel allegedly refuting deterministic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.

  12. Transcriptional Regulation and Macrophage Differentiation.

    PubMed

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  13. Transcriptional regulation of cuticle biosynthesis.

    PubMed

    Borisjuk, Nikolai; Hrmova, Maria; Lopato, Sergiy

    2014-01-01

    Plant cuticle is the hydrophobic protection layer that covers aerial plant organs and plays a pivotal role during plant development and interactions of plants with the environment. The mechanical structure and chemical composition of cuticle lipids and other secondary metabolites vary considerably between plant species, and in response to environmental stimuli and stresses. As the cuticle plays an important role in responses of plants to major abiotic stresses such as drought and high salinity, close attention has been paid to molecular processes underlying the stress-induced biosynthesis of cuticle components. This review addresses the genetic networks responsible for cuticle formation and in particular highlights the role of transcription factors that regulate cuticle formation in response to abiotic stresses.

  14. Learning, memory, and transcription factors.

    PubMed

    Johnston, Michael V; Alemi, Lily; Harum, Karen H

    2003-03-01

    Cognitive disorders in children have traditionally been described in terms of clinical phenotypes or syndromes, chromosomal lesions, metabolic disorders, or neuropathology. Relatively little is known about how these disorders affect the chemical reactions involved in learning and memory. Experiments in fruit flies, snails, and mice have revealed some highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. These can be divided into short-term memory storage through local changes in synapses, and long-term storage mediated by activation of transcription to translate new proteins that modify synaptic function. This review summarizes evidence that disruptions in these pathways are involved in human cognitive disorders, including neurofibromatosis type I, Coffin-Lowry syndrome, Rubinstein-Taybi syndrome, Rett syndrome, tuberous sclerosis-2, Down syndrome, X-linked alpha-thalassemia/mental retardation, cretinism, Huntington disease, and lead poisoning.

  15. Topography of the euryarchaeal transcription initiation complex.

    PubMed

    Bartlett, Michael S; Thomm, Michael; Geiduschek, E Peter

    2004-02-13

    Transcription in the Archaea is carried out by RNA polymerases and transcription factors that are highly homologous to their eukaryotic counterparts, but little is known about the structural organization of the archaeal transcription complex. To address this, transcription initiation complexes have been formed with Pyrococcus furiosus transcription factors (TBP and TFB1), RNA polymerase, and a linear DNA fragment containing a strong promoter. The arrangement of proteins from base pair -35 to +20 (relative to the transcriptional start site) has been analyzed by photochemical protein-DNA cross-linking. TBP cross-links to the TATA box and TFB1 cross-links both upstream and downstream of the TATA box, as expected, but the sites of most prominent TFB1 cross-linking are located well downstream of the TATA box, reaching as far as the start site of transcription, suggesting a role for TFB1 in initiation of transcription that extends beyond polymerase recruitment. These cross-links indicate the transcription factor orientation in the initiation complex. The pattern of cross-linking of four RNA polymerase subunits (B, A', A", and H) to the promoter suggests a path for promoter DNA relative to the RNA polymerase surface in this archaeal transcription initiation complex. In addition, an unidentified protein approximately the size of TBP cross-links to the non-transcribed DNA strand near the upstream edge of the transcription bubble. Cross-linking is specific to the polymerase-containing initiation complex and requires the gdh promoter TATA box. The location of this protein suggests that it, like TFB1, could also have a role in transcription initiation following RNA polymerase recruitment.

  16. A highly sensitive and multiplexed method for focused transcript analysis.

    PubMed

    Kataja, Kari; Satokari, Reetta M; Arvas, Mikko; Takkinen, Kristiina; Söderlund, Hans

    2006-10-01

    We describe a novel, multiplexed method for focused transcript analysis of tens to hundreds of genes. In this method TRAC (transcript analysis with aid of affinity capture) mRNA targets, a set of amplifiable detection probes of distinct sizes and biotinylated oligo(dT) capture probe are hybridized in solution. The formed sandwich hybrids are collected on magnetic streptavidin-coated microparticles and washed. The hybridized probes are eluted, optionally amplified by a PCR using a universal primer pair and detected with laser-induced fluorescence and capillary electrophoresis. The probes were designed by using a computer program developed for the purpose. The TRAC method was adapted to 96-well format by utilizing an automated magnetic particle processor. Here we demonstrate a simultaneous analysis of 18 Saccharomyces cerevisiae transcripts from two experimental conditions and show a comparison with a qPCR system. The sensitivity of the method is significantly increased by the PCR amplification of the hybridized and eluted probes. Our data demonstrate a bias-free use of at least 16 cycles of PCR amplification to increase probe signal, allowing transcript analysis from 2.5 ng of the total mRNA sample. The method is fast and simple and avoids cDNA conversion. These qualifications make it a potential, new means for routine analysis and a complementing method for microarrays and high density chips.

  17. The Transcriptional Control of Female Puberty

    PubMed Central

    Ojeda, Sergio R.; Lomniczi, Alejandro; Loche, Alberto; Matagne, Valerie; Kaidar, Gabi; Sandau, Ursula S.; Dissen, Gregory A.

    2010-01-01

    The initiation of mammalian puberty requires a sustained increase in pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication, consisting of an increase in neuronal and glial stimulatory inputs to the GnRH neuronal network and the loss of transsynaptic inhibitory influences. GnRH secretion is stimulated by transsynaptic inputs provided by excitatory amino acids (glutamate) and at least one peptide (kisspeptin), and by glial inputs provided by growth factors and small bioactive molecules. The inhibitory input to GnRH neurons is mostly transsynaptic and provided by GABAergic and opiatergic neurons; however, GABA has also been shown to directly excite GnRH neurons. There are many genes involved in the control of these cellular networks, and hence in the control of the pubertal process as a whole. Our laboratory has proposed the concept that these genes are arranged in overlapping networks internally organized in a hierarchical fashion. According to this concept, the highest level of intra-network control is provided by transcriptional regulators that, by directing expression of key subordinate genes, impose genetic coordination to the neuronal and glial subsets involved in initiating the pubertal process. More recently, we have begun to explore the concept that a more dynamic and encompassing level of integrative coordination is provided by epigenetic mechanisms. PMID:20851111

  18. Fox transcription factors: from development to disease.

    PubMed

    Golson, Maria L; Kaestner, Klaus H

    2016-12-15

    Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.

  19. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    PubMed

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.

  20. [Identification and analysis of the NAC transcription factor family in Triticum urartu].

    PubMed

    Jianhui, Ma; Doudou, Tong; Wenli, Zhang; Daijing, Zhang; Yun, Shao; Yun, Yang; Lina, Jiang

    2016-03-01

    NAC transcription factors are one of plant-specific gene families with diverse functions, and they regulate plant development, organ formation and stress responses. Currently, the researches about NAC transcription factors mainly focus on model plants, Arabidopsis and rice, whereas such studies are hardly reported in wheat and other plants. In this study, the full-length coding sequences (CDS) of NAC transcription factors from Triticum urartu (TuNAC) were identified through bioinformatic analysis. Their biological function, evolutionary relationship, gene duplication and chromosomal locations were further predicted and analyzed. The quantitative real-time PCR (qRT-PCR) assay was used to verify the expression pattern of abiotic-related TuNAC transcription factors. A total of 87 TuNAC transcription factors with full-length CDS were identified, which were divided into seven subgroups through phylogenetic analysis. Thirty-nine TuNAC transcription factors were located on seven chromosomes, and five pairs of TuNAC transcription factors were duplicated. The expression of four TuNAC transcription factors was consistently increased under diverse abiotic stress by qRT-PCR assay. Our study thus provides basis for further functional investigations of TuNAC transcription factors.

  1. Transcription of Satellite III non-coding RNAs is a general stress response in human cells

    PubMed Central

    Valgardsdottir, Rut; Chiodi, Ilaria; Giordano, Manuela; Rossi, Antonio; Bazzini, Silvia; Ghigna, Claudia; Riva, Silvano; Biamonti, Giuseppe

    2008-01-01

    In heat-shocked human cells, heat shock factor 1 activates transcription of tandem arrays of repetitive Satellite III (SatIII) DNA in pericentromeric heterochromatin. Satellite III RNAs remain associated with sites of transcription in nuclear stress bodies (nSBs). Here we use real-time RT-PCR to study the expression of these genomic regions. Transcription is highly asymmetrical and most of the transcripts contain the G-rich strand of the repeat. A low level of G-rich RNAs is detectable in unstressed cells and a 104-fold induction occurs after heat shock. G-rich RNAs are induced by a wide range of stress treatments including heavy metals, UV-C, oxidative and hyper-osmotic stress. Differences exist among stressing agents both for the kinetics and the extent of induction (>100- to 80.000-fold). In all cases, G-rich transcripts are associated with nSBs. On the contrary, C-rich transcripts are almost undetectable in unstressed cells and modestly increase after stress. Production of SatIII RNAs after hyper-osmotic stress depends on the Tonicity Element Binding Protein indicating that activation of the arrays is triggered by different transcription factors. This is the first example of a non-coding RNA whose transcription is controlled by different transcription factors under different growth conditions. PMID:18039709

  2. Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: Case studies.

    PubMed

    Seligmann, Hervé

    2015-09-01

    During RNA transcription, DNA nucleotides A,C,G, T are usually matched by ribonucleotides A, C, G and U. However occasionally, this rule does not apply: transcript-DNA homologies are detectable only assuming systematic exchanges between ribonucleotides. Nine symmetric (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric (X ↔ Y ↔ Z, e.g. A ↔ C ↔ G) exchanges exist, called swinger transcriptions. Putatively, polymerases occasionally stabilize in unspecified swinger conformations, possibly similar to transient conformations causing punctual misinsertions. This predicts chimeric transcripts, part regular, part swinger-transformed, reflecting polymerases switching to swinger polymerization conformation(s). Four chimeric Genbank transcripts (three from human mitochondrion and one murine cytosolic) are described here: (a) the 5' and 3' extremities reflect regular polymerization, the intervening sequence exchanges systematically between ribonucleotides (swinger rule G ↔ U, transcript (1), with sharp switches between regular and swinger sequences; (b) the 5' half is 'normal', the 3' half systematically exchanges ribonucleotides (swinger rule C ↔ G, transcript (2), with an intercalated sequence lacking homology; (c) the 3' extremity fits A ↔ G exchanges (10% of transcript length), the 5' half follows regular transcription; the intervening region seems a mix of regular and A ↔ G transcriptions (transcript 3); (d) murine cytosolic transcript 4 switches to A ↔ U + C ↔ G, and is fused with A ↔ U + C ↔ G swinger transformed precursor rRNA. In (c), each concomitant transcript 5' and 3' extremities match opposite genome strands. Transcripts 3 and 4 combine transcript fusions with partial swinger transcriptions. Occasional (usually sharp) switches between regular and swinger transcriptions reveal greater coding potential than detected until now, suggest stable polymerase swinger conformations.

  3. Transcriptional regulation of IGF-I expression in skeletal muscle

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.

    2003-01-01

    The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

  4. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.

    PubMed

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.

  5. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila.

    PubMed

    Neuman, Sarah D; Ihry, Robert J; Gruetzmacher, Kelly M; Bashirullah, Arash

    2014-03-15

    Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor βFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved.

  6. Protein kinase NII and the regulation of rDNA transcription in mammalian cells.

    PubMed Central

    Belenguer, P; Baldin, V; Mathieu, C; Prats, H; Bensaid, M; Bouche, G; Amalric, F

    1989-01-01

    Transcription of ribosomal RNA genes is generally accepted to correlate with cell growth. Using primary cultures of adult bovine aortic endothelial (ABAE) cells, we have shown that transcription of rDNA in confluent cells falls to 5% of the transcription level in growing cells. Protein kinase NII appears to be a limiting factor to promote rDNA transcription in isolated nuclei of confluent cells. Protein kinase NII was detected by immunocytochemistry in the cytoplasm, nuclei and nucleoli of growing cells while it was no longer present in nucleoli of confluent cells. The kinase activity, in isolated nuclei, was estimated by endogenous phosphorylation of a specific substrate, nucleolin. A 10% residual activity was present in confluent cell nuclei compared to growing cell nuclei. Concomitantly, the transcription 'in vitro' of rDNA in the corresponding nuclei was also highly reduced (by 85%). Addition of exogenous protein kinase NII to confluent cell nuclei induced a strong increase in the phosphorylation of specific proteins including nucleolin. In parallel, the transcription of rDNA was increased by a factor of 5, to nearly the level observed in nuclei prepared from growing cells. These data suggest that, in confluent cells, factors necessary for rDNA transcription machinery are present but inactive in the nucleolus and that the phosphorylation of one or several of these factors (nucleolin, topoisomerase I,...) by protein kinase NII is a key event in the regulation of rDNA transcription. Images PMID:2780290

  7. Recruitment of Transcription Complexes to Enhancers and the Role of Enhancer Transcription

    PubMed Central

    Stees, Jared S.; Varn, Fred; Huang, Suming; Strouboulis, John; Bungert, Jörg

    2012-01-01

    Enhancer elements regulate the tissue- and developmental-stage-specific expression of genes. Recent estimates suggest that there are more than 50,000 enhancers in mammalian cells. At least a subset of enhancers has been shown to recruit RNA polymerase II transcription complexes and to generate enhancer transcripts. Here, we provide an overview of enhancer function and discuss how transcription of enhancers or enhancer-generated transcripts could contribute to the regulation of gene expression during development and differentiation. PMID:23919179

  8. DYRK1A Controls HIV-1 Replication at a Transcriptional Level in an NFAT Dependent Manner

    PubMed Central

    Booiman, Thijs; Loukachov, Vladimir V.; van Dort, Karel A.; van ’t Wout, Angélique B.; Kootstra, Neeltje A.

    2015-01-01

    Background Transcription of the HIV-1 provirus is regulated by both viral and host proteins and is very important in the context of viral latency. In latently infected cells, viral gene expression is inhibited as a result of the sequestration of host transcription factors and epigenetic modifications. Results In our present study we analyzed the effect of host factor dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) on HIV-1 replication. We show that DYRK1A controls HIV-1 replication by regulating provirus transcription. Downregulation or inhibition of DYRK1A increased LTR-driven transcription and viral replication in cell lines and primary PBMC. Furthermore, inhibition of DYRK1A resulted in reactivation of latent HIV-1 provirus to a similar extent as two commonly used broad-spectrum HDAC inhibitors. We observed that DYRK1A regulates HIV-1 transcription via the Nuclear Factor of Activated T-cells (NFAT) by promoting its translocation from the nucleus to the cytoplasm. Therefore, inhibition of DYRK1A results in increased nuclear levels of NFAT and increased NFAT binding to the viral LTR and thus increasing viral transcription. Conclusions Our data indicate that host factor DYRK1A plays a role in the regulation of viral transcription and latency. Therefore, DYRK1A might be an attractive candidate for therapeutic strategies targeting the viral reservoir. PMID:26641855

  9. To Your Health: NLM update transcript - High costs of health care

    MedlinePlus

    ... Your Health: NLM update Transcript High costs of health care : 02/27/2017 To use the sharing features ... up on weekly topics. U.S. national spending on health care increased between 1996-2013, now exceeds $3 trillion ...

  10. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    PubMed

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  11. Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference.

    PubMed

    Ard, Ryan; Allshire, Robin C

    2016-12-15

    Long non-coding RNA (lncRNA) transcription into a downstream promoter frequently results in transcriptional interference. However, the mechanism of this repression is not fully understood. We recently showed that drug tolerance in fission yeast Schizosaccharomyces pombe is controlled by lncRNA transcription upstream of the tgp1(+) permease gene. Here we demonstrate that transcriptional interference of tgp1(+) involves several transcription-coupled chromatin changes mediated by conserved elongation factors Set2, Clr6CII, Spt6 and FACT. These factors are known to travel with RNAPII and establish repressive chromatin in order to limit aberrant transcription initiation from cryptic promoters present in gene bodies. We therefore conclude that conserved RNAPII-associated mechanisms exist to both suppress intragenic cryptic promoters during genic transcription and to repress gene promoters by transcriptional interference. Our analyses also demonstrate that key mechanistic features of transcriptional interference are shared between S. pombe and the highly divergent budding yeast Saccharomyces cerevisiae Thus, transcriptional interference is an ancient, conserved mechanism for tightly controlling gene expression. Our mechanistic insights allowed us to predict and validate a second example of transcriptional interference involving the S. pombe pho1(+) gene. Given that eukaryotic genomes are pervasively transcribed, transcriptional interference likely represents a more general feature of gene regulation than is currently appreciated.

  12. Exploiting Transcriptions of Identical Subject Content Lessons

    ERIC Educational Resources Information Center

    Harfitt, Gary James

    2008-01-01

    This article describes a strategy employed on a teacher training course in Hong Kong involving the use of lesson transcriptions. Transcriptions from two course participants' English lessons were used to arouse greater classroom language awareness and promote reflection in one of the teachers, who was initially very reluctant to accept comments and…

  13. Transcripts, like Shadows on a Wall

    ERIC Educational Resources Information Center

    Duranti, Alessandro

    2006-01-01

    Over the last 50 years the process of producing transcripts of all kinds of interactions has become an important practice for researchers in a wide range of disciplines. Only rarely, however, has transcription been analyzed as a cultural practice. It is here argued that it is precisely the lack of understanding of what is involved in transcribing…

  14. Examining Transcription: A Theory-Laden Methodology.

    ERIC Educational Resources Information Center

    Lapadat, Judith C.; Lindsay, Anne C.

    Transcription is an integral process in the qualitative analysis of language data, and is widely employed in basic and applied research across a number of disciplines and in professional practice fields. Yet methodological and theoretical issues associated with the transcription process have received scant attention in the research literature. The…

  15. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  16. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  17. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  18. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  19. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  20. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  1. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  2. 39 CFR 959.21 - Transcript.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... therefor. (b) Changes in the official transcript may be made only when they involve errors affecting substance, and then only in the manner herein provided. No physical changes shall be made in or upon the... corrections to be made in the transcript with prompt notice to the parties of the proceeding. Any...

  3. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  4. 39 CFR 957.19 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... librarian of the Postal Service or the Recorder. (b) Changes in the official transcript may be made only when they involve errors affecting substance and then only in the manner herein provided. No physical changes shall be made in or upon the official transcript, or copies thereof, which have been filed...

  5. DNA dynamically directs its own transcription initiation

    SciTech Connect

    Rasmussen, K. O.; Kalosakas, G.; Bishop, A. R.; Choi, C. H.; Usheva, A.

    2004-01-01

    Initiation of DNA gene transcription requires a transient opening in the double helix at the transcriptional start site. It is generally assumed that the location of this 'transcriptional bubble' is determined by sequence-specific protein binding, and that the energy required for unwinding the double helix comes from torsional strain. Physical twisting should cause DNA to open consistently in weakly bonded A/T rich stretches, however, simple base-pairing energetics alone can not account for the variety of observed transcriptional start sites. Applying the Peyrard-Bishop nonlinear cooperativity model to DNA, we are able to predict that thermally-induced DNA bubbles, similar in size to transcription bubbles, form at specific locations on DNA promoters. These predicted openings agree remarkably well with experiment, and that they correlate exactly with known transcription start sites and important regulatory sites on three different promoters. We propose that the sequence-specific location of the transcriptional start site is predetermined by the inherent opening patterns of specific DNA sequences. As DNA bubble formation is independent of protein binding, it appears that DNA is not only a passive carrier of information, but its dynamics plays an important role in directing the transcription and regulation of the genes it contains.

  6. Team Tune-Up: Examining Team Transcripts

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2010

    2010-01-01

    This article presents a worksheet that can be used to examine documentation of team meetings in light of goals the team has established. Materials for this worksheet include copies of team transcripts, yellow and pink highlighters, and pencils. Directions for examining team transcripts are presented.

  7. Using Virtual Reference Transcripts for Staff Training.

    ERIC Educational Resources Information Center

    Ward, David

    2003-01-01

    Describes a method of library staff training based on chat transcript analysis in which graduate student workers at a university reference desk examined transcripts of actual virtual reference desk transactions to analyze reference interviews. Discusses reference interview standards, reference desk behavior, and reference interview skills in…

  8. 42 CFR 430.94 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Official transcript. 430.94 Section 430.94 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... official transcripts of testimony, together with any stipulations, briefs, or memoranda of law, are...

  9. 42 CFR 430.94 - Official transcript.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Official transcript. 430.94 Section 430.94 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... official transcripts of testimony, together with any stipulations, briefs, or memoranda of law, are...

  10. 29 CFR 1912a.11 - Minutes; transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Minutes; transcript. 1912a.11 Section 1912a.11 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL ADVISORY COMMITTEE ON OCCUPATIONAL SAFETY AND HEALTH § 1912a.11 Minutes; transcript....

  11. A Weighted Reliability Measure for Phonetic Transcription

    ERIC Educational Resources Information Center

    Oller, D. Kimbrough; Ramsdell, Heather L.

    2006-01-01

    Purpose: The purpose of the present work is to describe and illustrate the utility of a new tool for assessment of transcription agreement. Traditional measures have not characterized overall transcription agreement with sufficient resolution, specifically because they have often treated all phonetic differences between segments in transcriptions…

  12. 39 CFR 963.16 - Transcript.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Transcript. 963.16 Section 963.16 Postal Service UNITED STATES POSTAL SERVICE PROCEDURES RULES OF PRACTICE IN PROCEEDINGS RELATIVE TO VIOLATIONS OF THE PANDERING ADVERTISEMENTS STATUTE, 39 U.S.C. 3008 § 963.16 Transcript. Testimony and argument at...

  13. Transcriptional firing helps to drive NETosis

    PubMed Central

    Khan, Meraj A.; Palaniyar, Nades

    2017-01-01

    Neutrophils are short-lived innate immune cells. These cells respond quickly to stimuli, and die within minutes to hours; the relevance of DNA transcription in dying neutrophils remains an enigma for several decades. Here we show that the transcriptional activity reflects the degree of DNA decondensation occurring in both NADPH oxidase 2 (Nox)-dependent and Nox-independent neutrophil extracellular trap (NET) formation or NETosis. Transcriptomics analyses show that transcription starts at multiple loci in all chromosomes earlier in the rapid Nox-independent NETosis (induced by calcium ionophore A23187) than Nox-dependent NETosis (induced by PMA). NETosis-specific kinase cascades differentially activate transcription of different sets of genes. Inhibitors of transcription, but not translation, suppress both types of NETosis. In particular, promoter melting step is important to drive NETosis (induced by PMA, E. coli LPS, A23187, Streptomyces conglobatus ionomycin). Extensive citrullination of histones in multiple loci occurs only during calcium-mediated NETosis, suggesting that citrullination of histone contributes to the rapid DNA decondensation seen in Nox-independent NETosis. Furthermore, blocking transcription suppresses both types of NETosis, without affecting the reactive oxygen species production that is necessary for antimicrobial functions. Therefore, we assign a new function for transcription in neutrophils: Transcriptional firing, regulated by NETosis-specific kinases, helps to drive NETosis. PMID:28176807

  14. 45 CFR 99.27 - Official transcript.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Official transcript. 99.27 Section 99.27 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION PROCEDURE FOR HEARINGS FOR THE CHILD CARE AND DEVELOPMENT FUND Hearing Procedures § 99.27 Official transcript. The Department...

  15. Transcript Fraud and Handling Fraudulent Documents

    ERIC Educational Resources Information Center

    Ezell, Allen

    2005-01-01

    Transcript fraud is a common problem for colleges and universities, businesses, employers, governmental licensing boards, and other agencies, with some experiencing it more so than others. The only difference between a large and small institution is the volume of degree and transcript fraud it experiences. This article discusses the types and…

  16. Genomics, Transcriptional Profiling and Heart Failure

    PubMed Central

    Margulies, Kenneth B.; Bednarik, Daniel P.; Dries, Daniel L.

    2009-01-01

    Associated with technological progress in DNA and mRNA profiling, advances in basic biology have led to a more complete and sophisticated understanding of interactions between genes, environment and affected tissues in the setting of complex and heterogeneous conditions like heart failure (HF). Ongoing identification of mutations causing hereditary hypertrophic and dilated cardiomyopathies has provided both pathophysiological insights and clinically applicable diagnostics for these relatively rare conditions. Genotyping clinical trial participants and genome wide association studies (GWAS) have accelerated the identification of much more common disease-modifying and treatment modifying genes that explain patient-to-patient differences that have long been recognized by practicing clinicians. At the same time, increasingly detailed characterization of gene expression within diseased tissues and circulating cells from animal models and patients are providing new insights into pathophysiology of HF that permit identification of novel diagnostic and therapeutic targets. In this rapidly evolving field, there is already ample support for the concept that genetic and expression profiling can enhance diagnostic sensitivity and specificity while providing a rational basis for prioritizing alternative therapeutic options in patients with cardiomyopathies and HF. Though the extensive characterizations provided by genomic and transcriptional profiling will increasingly challenge clinicians’ abilities to utilize complex and diverse information, advances in clinical information technology and user interfaces will permit greater individualization of prevention and treatment strategies to address the HF epidemic. PMID:19422981

  17. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    SciTech Connect

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  18. Histone variants in plant transcriptional regulation.

    PubMed

    Jiang, Danhua; Berger, Frédéric

    2017-01-01

    Chromatin based organization of eukaryotic genome plays a profound role in regulating gene transcription. Nucleosomes form the basic subunits of chromatin by packaging DNA with histone proteins, impeding the access of DNA to transcription factors and RNA polymerases. Exchange of histone variants in nucleosomes alters the properties of nucleosomes and thus modulates DNA exposure during transcriptional regulation. Growing evidence indicates the important function of histone variants in programming transcription during developmental transitions and stress response. Here we review how histone variants and their deposition machineries regulate the nucleosome stability and dynamics, and discuss the link between histone variants and transcriptional regulation in plants. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.

  19. Yeast Gal4: a transcriptional paradigm revisited

    PubMed Central

    Traven, Ana; Jelicic, Branka; Sopta, Mary

    2006-01-01

    During the past two decades, the yeast Gal4 protein has been used as a model for studying transcriptional activation in eukaryotes. Many of the properties of transcriptional regulation first demonstrated for Gal4 have since been shown to be reiterated in the function of several other eukaryotic transcriptional regulators. Technological advances based on the transcriptional properties of this factor—such as the two-hybrid technology and Gal4-inducible systems for controlled gene expression—have had far-reaching influences in fields beyond transcription. In this review, we provide an updated account of Gal4 function, including data from new technologies that have been recently applied to the study of the GAL network. PMID:16670683

  20. Combinatorial Regulation in Yeast Transcription Networks

    NASA Astrophysics Data System (ADS)

    Li, Hao

    2006-03-01

    Yeast has evolved a complex network to regulate its transcriptional program in response to changes in environment. It is quite common that in response to an external stimulus, several transcription factors will be activated and they work in combinations to control different subsets of genes in the genome. We are interested in how the promoters of genes are designed to integrate signals from multiple transcription factors and what are the functional and evolutionary constraints. To answer how, we have developed a number of computational algorithms to systematically map the binding sites and target genes of transcription factors using sequence and gene expression data. To analyze the functional constraints, we have employed mechanistic models to study the dynamic behavior of genes regulated by multiple factors. We have also developed methods to trace the evolution of transcriptional networks via comparative analysis of multiple species.

  1. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  2. Balanced Branching in Transcription Termination

    NASA Technical Reports Server (NTRS)

    Harrington, K. J.; Laughlin, R. B.; Liang, S.

    2000-01-01

    The theory of stochastic transcription termination based on free-energy competition [von Hippel, P. H. & Yager, T. D. (1992) Science 255,809-812 and van Hippel, P. H. & Yager, T. D. (1991) Proc. Natl. Acad. Sci. USA 88, 2307-2311] requires two or more reaction rates to be delicately balanced over a wide range of physical conditions. A large body of work on glasses and large molecules suggests that this balancing should be impossible in such a large system in the absence of a new organizing principle of matter. We review the experimental literature of termination and find no evidence for such a principle, but do find many troubling Inconsistencies, most notably, anomalous memory effects. These effects suggest that termination has a deterministic component and may conceivably not be stochastic at all. We find that a key experiment by Wilson and von Hippel [Wilson, K. S. & von Hippel, P. H. (1994) J. Mol. Biol. 244,36-51] thought to demonstrate stochastic termination was an incorrectly analyzed regulatory effect of Mg(2+) binding.

  3. Nickel-responsive transcriptional regulators.

    PubMed

    Musiani, Francesco; Zambelli, Barbara; Bazzani, Micaela; Mazzei, Luca; Ciurli, Stefano

    2015-09-01

    Nickel is an essential micronutrient for a large number of living organisms, but it is also a toxic metal ion when it accumulates beyond the sustainable level as it may result if and when its cellular trafficking is not properly governed. Therefore, the homeostasis and metabolism of nickel is tightly regulated through metal-specific protein networks that respond to the available Ni(II) concentration. These are directed by specific nickel sensors, able to couple Ni(II) binding to a change in their DNA binding affinity and/or specificity, thus translating the cellular level of Ni(II) into a modification of the expression of the proteins devoted to modulating nickel uptake, efflux and cellular utilization. This review describes the Ni(II)-dependent transcriptional regulators discovered so far, focusing on their structural features, metal coordination modes and metal binding thermodynamics. Understanding these properties is essential to comprehend how these sensors correlate nickel availability to metal coordination and functional responses. A broad and comparative study, described here, reveals some general traits that characterize the binding stoichiometry and Ni(II) affinity of these metallo-sensors.

  4. Transcriptional profiling of epidermal differentiation.

    PubMed

    Radoja, Nada; Gazel, Alix; Banno, Tomohiro; Yano, Shoichiro; Blumenberg, Miroslav

    2006-10-03

    In epidermal differentiation basal keratinocytes detach from the basement membrane, stop proliferating, and express a new set of structural proteins and enzymes, which results in an impermeable protein/lipid barrier that protects us. To define the transcriptional changes essential for this process, we purified large quantities of basal and suprabasal cells from human epidermis, using the expression of beta4 integrin as the discriminating factor. The expected expression differences in cytoskeletal, cell cycle, and adhesion genes confirmed the effective separation of the cell populations. Using DNA microarray chips, we comprehensively identify the differences in genes expressed in basal and differentiating layers of the epidermis, including the ECM components produced by the basal cells, the proteases in both the basal and suprabasal cells, and the lipid and steroid metabolism enzymes in suprabasal cells responsible for the permeability barrier. We identified the signaling pathways specific for the two populations and found two previously unknown paracrine and one juxtacrine signaling pathway operating between the basal and suprabasal cells. Furthermore, using specific expression signatures, we identified a new set of late differentiation markers and mapped their chromosomal loci, as well as a new set of melanocyte-specific markers. The data represent a quantum jump in understanding the mechanisms of epidermal differentiation.

  5. Purification & Characterization of Transcription Factors

    PubMed Central

    Nagore, LI; Nadeau, RJ; Guo, Q; Jadhav, YLA; Jarrett, HW; Haskins, WE

    2013-01-01

    Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular response elements has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome. PMID:23832591

  6. Transcriptional regulation of voltage-gated Ca(2+) channels.

    PubMed

    González-Ramírez, Ricardo; Felix, Ricardo

    2017-03-31

    The transcriptional regulation of voltage-gated Ca(2+) (CaV ) channels is an emerging research area that promises to improve our understanding of how many relevant physiological events are shaped in the central nervous system, the skeletal muscle, and other tissues. Interestingly, a picture of how transcription of CaV channel subunit genes is controlled is evolving with the identification of the promoter regions required for tissue-specific expression, and the identification of transcription factors that control their expression. These promoters share several characteristics that include multiple transcriptional start sites, lack of a TATA box, and the presence of elements conferring tissue-selective expression. Likewise, changes in CaV channel expression occur throughout development, following ischemia, seizures, or chronic drug administration. This review focuses on insights achieved regarding the control of CaV channel gene expression. To further understand the complexities of expression and to increase the possibilities of detecting CaV channel alterations causing human disease, a deeper knowledge on the structure of the 5' upstream regions of the genes encoding these remarkable proteins will be necessary. This article is protected by copyright. All rights reserved.

  7. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes.

    PubMed

    Matys, V; Kel-Margoulis, O V; Fricke, E; Liebich, I; Land, S; Barre-Dirrie, A; Reuter, I; Chekmenev, D; Krull, M; Hornischer, K; Voss, N; Stegmaier, P; Lewicki-Potapov, B; Saxel, H; Kel, A E; Wingender, E

    2006-01-01

    The TRANSFAC database on transcription factors, their binding sites, nucleotide distribution matrices and regulated genes as well as the complementing database TRANSCompel on composite elements have been further enhanced on various levels. A new web interface with different search options and integrated versions of Match and Patch provides increased functionality for TRANSFAC. The list of databases which are linked to the common GENE table of TRANSFAC and TRANSCompel has been extended by: Ensembl, UniGene, EntrezGene, HumanPSD and TRANSPRO. Standard gene names from HGNC, MGI and RGD, are included for human, mouse and rat genes, respectively. With the help of InterProScan, Pfam, SMART and PROSITE domains are assigned automatically to the protein sequences of the transcription factors. TRANSCompel contains now, in addition to the COMPEL table, a separate table for detailed information on the experimental EVIDENCE on which the composite elements are based. Finally, for TRANSFAC, in respect of data growth, in particular the gain of Drosophila transcription factor binding sites (by courtesy of the Drosophila DNase I footprint database) and of Arabidopsis factors (by courtesy of DATF, Database of Arabidopsis Transcription Factors) has to be stressed. The here described public releases, TRANSFAC 7.0 and TRANSCompel 7.0, are accessible under http://www.gene-regulation.com/pub/databases.html.

  8. Snail Family Transcription Factors Are Implicated in Thyroid Carcinogenesis

    PubMed Central

    Hardy, Robert G.; Vicente-Dueñas, Carolina; González-Herrero, Ines; Anderson, Catriona; Flores, Teresa; Hughes, Sharon; Tselepis, Chris; Ross, James A.; Sánchez-García, Isidro

    2007-01-01

    E-Cadherin (CDH1) expression is reduced in thyroid carcinomas by primarily unknown mechanisms. In several tissues, SNAIL (SNAI1) and SLUG (SNAI2) induce epithelial-mesenchymal transition by altering target gene transcription, including CDH1 repression, but these transcription factors have not been studied in thyroid carcinoma. Recently, our group has provided direct evidence that ectopic SNAI1 expression induces epithelial and mesenchymal mouse tumors. SNAI1, SNAI2, and CDH1 expression were analyzed in thyroid-derived cell lines and samples of human follicular and papillary thyroid carcinoma by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. The effect of SNAI1 expression on CDH1 transcription was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting in ori-3 cells. Thyroid carcinoma development was analyzed in CombitTA-Snail mice, in which SNAI1 levels are up-regulated. SNAI1 and SNAI2 were not expressed in cells derived from normal thyroid tissue, or in normal human thyroid samples, but were highly expressed in cell lines derived from thyroid carcinomas, in human thyroid carcinoma samples, and their metastases. SNAI1 expression in ori-3 cells repressed CDH1 transcription. Combi-TA mice developed papillary thyroid carcinomas, the incidence of which was increased by concomitant radiotherapy. In conclusion, SNAI1 and SNAI2 are ectopically expressed in thyroid carcinomas, and aberrant expression in mice is associated with papillary carcinoma development. PMID:17724139

  9. Inhibition of cell proliferation by the Mad1 transcriptional repressor.

    PubMed Central

    Roussel, M F; Ashmun, R A; Sherr, C J; Eisenman, R N; Ayer, D E

    1996-01-01

    Mad1 is a basic helix-loop-helix-leucine zipper protein that is induced upon differentiation of a number of distinct cell types. Mad1 dimerizes with Max and recognizes the same DNA sequences as do Myc:Max dimers. However, Mad1 and Myc appear to have opposing functions. Myc:Max heterodimers activate transcription while Mad:Max heterodimers repress transcription from the same promoter. In addition Mad1 has been shown to block the oncogenic activity of Myc. Here we show that ectopic expression of Mad1 inhibits the proliferative response of 3T3 cells to signaling through the colony-stimulating factor-1 (CSF-1) receptor. The ability of over-expressed Myc and cyclin D1 to complement the mutant CSF-1 receptor Y809F (containing a Y-to-F mutation at position 809) is also inhibited by Mad1. Cell cycle analysis of proliferating 3T3 cells transfected with Mad1 demonstrates a significant decrease in the fraction of cells in the S and G2/M phases and a concomitant increase in the fraction of G1 phase cells, indicating that Mad1 negatively influences cell cycle progression from the G1 to the S phase. Mutations in Mad1 which inhibit its activity as a transcription repressor also result in loss of Mad1 cell cycle inhibitory activity. Thus, the ability of Mad1 to inhibit cell cycle progression is tightly coupled to its function as a transcriptional repressor. PMID:8649388

  10. Yorkie promotes transcription by recruiting a Histone methyltransferase complex

    PubMed Central

    Oh, Hyangyee; Slattery, Matthew; Ma, Lijia; White, Kevin P.; Mann, Richard S.

    2014-01-01

    SUMMARY Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation, and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex, through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie’s ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie’s mammalian homologue YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification. PMID:25017066

  11. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels.

    PubMed

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-12-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels.

  12. Gene expression in plant mitochondria: transcriptional and post-transcriptional control.

    PubMed Central

    Binder, Stefan; Brennicke, Axel

    2003-01-01

    The informational content of the mitochondrial genome in plants is, although small, essential for each cell. Gene expression in these organelles involves a number of distinct transcriptional and post-transcriptional steps. The complex post-transcriptional processes of plant mitochondria such as 5' and 3' RNA processing, intron splicing, RNA editing and controlled RNA stability extensively modify individual steady-state RNA levels and influence the mRNA quantities available for translation. In this overview of the processes in mitochondrial gene expression, we focus on confirmed and potential sites of regulatory interference and discuss the evolutionary origins of the transcriptional and post-transcriptional processes. PMID:12594926

  13. Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli.

    PubMed

    Arbel-Goren, Rinat; Tal, Asaf; Parasar, Bibudha; Dym, Alvah; Costantino, Nina; Muñoz-García, Javier; Court, Donald L; Stavans, Joel

    2016-08-19

    Post-transcriptional regulatory processes may change transcript levels and affect cell-to-cell variability or noise. We study small-RNA downregulation to elucidate its effects on noise in the iron homeostasis network of Escherichia coli In this network, the small-RNA RyhB undergoes stoichiometric degradation with the transcripts of target genes in response to iron stress. Using single-molecule fluorescence in situ hybridization, we measured transcript numbers of the RyhB-regulated genes sodB and fumA in individual cells as a function of iron deprivation. We observed a monotonic increase of noise with iron stress but no evidence of theoretically predicted, enhanced stoichiometric fluctuations in transcript numbers, nor of bistable behavior in transcript distributions. Direct detection of RyhB in individual cells shows that its noise is much smaller than that of these two targets, when RyhB production is significant. A generalized two-state model of bursty transcription that neglects RyhB fluctuations describes quantitatively the dependence of noise and transcript distributions on iron deprivation, enabling extraction of in vivo RyhB-mediated transcript degradation rates. The transcripts' threshold-linear behavior indicates that the effective in vivo interaction strength between RyhB and its two target transcripts is comparable. Strikingly, the bacterial cell response exhibits Fur-dependent, switch-like activation instead of a graded response to iron deprivation.

  14. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    SciTech Connect

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-04-25

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  15. The active site of RNA polymerase II participates in transcript cleavage within arrested ternary complexes.

    PubMed Central

    Rudd, M D; Izban, M G; Luse, D S

    1994-01-01

    RNA polymerase II may become arrested during transcript elongation, in which case the ternary complex remains intact but further RNA synthesis is blocked. To relieve arrest, the nascent transcript must be cleaved from the 3' end. RNAs of 7-17 nt are liberated and transcription continues from the newly exposed 3' end. Factor SII increases elongation efficiency by strongly stimulating the transcript cleavage reaction. We show here that arrest relief can also occur by the addition of pyrophosphate. This generates the same set of cleavage products as factor SII, but the fragments produced with pyrophosphate have 5'-triphosphate termini. Thus, the active site of RNA polymerase II, in the presence of pyrophosphate, appears to be capable of cleaving phosphodiester linkages as far as 17 nt upstream of the original site of polymerization, leaving the ternary complex intact and transcriptionally active. Images PMID:8058756

  16. Development of an efficient in vitro transcription system for bloodstream form Trypanosoma brucei reveals life cycle-independent functionality of class I transcription factor A.

    PubMed

    Park, Sung Hee; Nguyen, Tu N; Günzl, Arthur

    2012-01-01

    Trypanosomatid parasites possess extremely divergent transcription factors whose identification typically relied on biochemical, structural and functional analyses because they could not be identified by standard sequence analysis. For example, subunits of the Trypanosoma brucei mediator and class I transcription factor A (CITFA) have no sequence resemblance to putative counterparts in higher eukaryotes. Therefore, homologous in vitro transcription systems have been crucial in evaluating the transcriptional roles of T. brucei proteins but so far such systems have been restricted to the insect-stage, procyclic form (PF) of the parasite. Here, we report the development of a homologous system for the mammalian-infective, bloodstream form (BF) of T. brucei which supports accurately initiated transcription from three different RNA polymerase (pol) I promoters as well as from the RNA pol II-recruiting spliced leader RNA gene promoter. The system is based on a small scale extract preparation procedure which accommodates the low cell densities obtainable in BF culture. BF and PF systems behave surprisingly similar and we show that the CITFA complex purified from procyclic extract is fully functional in the BF system indicating that the transcriptional machinery in general is equivalent in both life cycle stages. A notable difference, however, was observed with the RNA pol I-recruiting GPEET procyclin promoter whose reduced promoter strength and increased sensitivity to manganese ions in the BF system suggests the presence of a specific transcriptional activator in the PF system.

  17. Phanerochaete chrysosporium Cellobiohydrolase and Cellobiose Dehydrogenase Transcripts in Wood

    PubMed Central

    Vallim, Marcelo A.; Janse, Bernard J. H.; Gaskell, Jill; Pizzirani-Kleiner, Aline A.; Cullen, Daniel

    1998-01-01

    The transcripts of structurally related cellobiohydrolase genes in Phanerochaete chrysosporium-colonized wood chips were quantified. The transcript patterns obtained were dramatically different from the transcript patterns obtained previously in defined media. Cellobiose dehydrogenase transcripts were also detected, which is consistent with the hypothesis that such transcripts play an important role in cellulose degradation. PMID:9572973

  18. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of...

  19. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and...

  20. 5 CFR 1632.10 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintain a complete transcript or electronic recording or transcription thereof adequate to record fully.... Transcriptions of recordings will disclose the identity of each speaker. (b) The Board will maintain either such a transcript, recording or transcription thereof, or a set of minutes that will fully and...

  1. 12 CFR 261b.11 - Transcripts, recordings, and minutes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minutes. (a) The agency will maintain a complete transcript or electronic recording or transcription... § 261b.5 of this part. Transcriptions of recordings will disclose the identity of each speaker. (b) The agency will maintain either such a transcript, recording or transcription thereof, or a set of...

  2. Transcriptional regulation of steroid hydroxylase genes by corticotropin.

    PubMed Central

    John, M E; John, M C; Boggaram, V; Simpson, E R; Waterman, M R

    1986-01-01

    Maintenance of optimal steroidogenic capacity in the adrenal cortex is the result of a cAMP-dependent response to the peptide hormone corticotropin (ACTH). The molecular mechanism of this action of ACTH has been examined by using five recombinant DNA clones specific for enzymes of the steroidogenic pathway (P-450scc, P-45011 beta, P-450C21, P-45017 alpha, and adrenodoxin). The presence of nuclear precursors in steady-state RNA samples derived from cultured bovine adrenocortical cells and moderate increases in the number of RNA chain initiations, as determined by in vitro nuclear run-off assays, indicate that ACTH controls the expression of the gene(s) for each of these proteins at the transcriptional level. The ACTH-mediated increase in accumulation of transcripts specific for steroid hydroxylases in nuclear RNA can be specifically blocked by inhibiting protein synthesis in bovine adrenocortical cell cultures. The steady-state concentrations of nuclear RNA for control genes show no decrease upon cycloheximide treatment. These studies suggest that a primary action of ACTH in the adrenal cortex is to activate (via cAMP) the synthesis of rapidly turning over protein factors that in turn mediate increased initiation of transcription of steroid hydroxylase genes. We propose that these protein factors impart specificity of induction to genes encoding components of this pathway in steroidogenic tissues. Images PMID:3014507

  3. Transcription factor Fli-1 positively regulates lipopolysaccharide-induced interleukin-27 production in macrophages.

    PubMed

    Gao, Peng; Yuan, Ming; Ma, Xianwei; Jiang, Wei; Zhu, Lingxi; Wen, Mingyue; Xu, Jing; Liu, Qiuyan; An, Huazhang

    2016-03-01

    IL-27 is an important regulator of TLR4-activated innate immune. The mechanism by which IL-27 production is regulated in TLR4-activated innate immune remains largely unclear. Here we show that expression of transcription factor Fli-1 at protein level is increased in macrophages following LPS stimulation. Fli-1 overexpression increases LPS-activated IL-27 production in macrophages. Consistently, Fli-1 knockdown inhibits LPS-induced IL-27 production in macrophages. Chromatin immunoprecipitation (ChIP) assay reveals that Fli-1 binds the promoter of IL-27 p28 subunit. Further experiments manifest that Fli-1 binds the region between -250 and -150 bp upstream of the transcriptional start site of p28 gene and increases p28 gene promoter-controlled transcription. These results demonstrate that Fli-1 positively regulates IL-27 production in TLR4-activated immune response by promoting transcription of IL-27 p28 gene.

  4. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  5. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription.

    PubMed Central

    Chen, H. T.; Legault, P.; Glushka, J.; Omichinski, J. G.; Scott, R. A.

    2000-01-01

    Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet. PMID:11045620

  6. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  7. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings.

    PubMed

    Cookson, Sarah Jane; Yadav, Umesh Prasad; Klie, Sebastian; Morcuende, Rosa; Usadel, Björn; Lunn, John Edward; Stitt, Mark

    2016-04-01

    To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover.

  8. Characterization of the rapid transcriptional response to long-term sensitization training in Aplysia californica

    PubMed Central

    Herdegen, Samantha; Holmes, Geraldine; Cyriac, Ashly; Calin-Jageman, Irina E.; Calin-Jageman, Robert J.

    2014-01-01

    We used a custom-designed microarray and quantitative PCR to characterize the rapid transcriptional response to long-term sensitization training in the marine mollusk Aplysia californica. Aplysia were exposed to repeated noxious shocks to one side of the body, a procedure known to induce a longlasting, transcription-dependent increase in reflex responsiveness that is restricted to the side of training. One hour after training, pleural ganglia from the trained and untrained sides of the body were harvested; these ganglia contain the sensory nociceptors which help mediate the expression of longterm sensitization memory. Microarray analysis from 8 biological replicates suggests that long-term sensitization training rapidly regulates at least 81 transcripts. We used qPCR to test a subset of these transcripts and found that 83% were confirmed in the same samples, and 86% of these were again confirmed in an independent sample. Thus, our new microarray design shows strong convergent and predictive validity for analyzing the transcriptional correlates of memory in Aplysia. Fully validated transcripts include some previously identified as regulated in this paradigm (ApC/EBP and ApEgr) but also include novel findings. Specifically, we show that long-term sensitization training rapidly upregulates the expression of transcripts which may encode Aplysia homologs of a C/EBPγ transcription factor, a glycine transporter (GlyT2), and a vacuolar-protein-sorting-associated protein (VPS36). PMID:25117657

  9. Characterization of the rapid transcriptional response to long-term sensitization training in Aplysia californica.

    PubMed

    Herdegen, Samantha; Holmes, Geraldine; Cyriac, Ashly; Calin-Jageman, Irina E; Calin-Jageman, Robert J

    2014-12-01

    We used a custom-designed microarray and quantitative PCR to characterize the rapid transcriptional response to long-term sensitization training in the marine mollusk Aplysia californica. Aplysia were exposed to repeated noxious shocks to one side of the body, a procedure known to induce a long-lasting, transcription-dependent increase in reflex responsiveness that is restricted to the side of training. One hour after training, pleural ganglia from the trained and untrained sides of the body were harvested; these ganglia contain the sensory nociceptors which help mediate the expression of long-term sensitization memory. Microarray analysis from 8 biological replicates suggests that long-term sensitization training rapidly regulates at least 81 transcripts. We used qPCR to test a subset of these transcripts and found that 83% were confirmed in the same samples, and 86% of these were again confirmed in an independent sample. Thus, our new microarray design shows strong convergent and predictive validity for analyzing the transcriptional correlates of memory in Aplysia. Fully validated transcripts include some previously identified as regulated in this paradigm (ApC/EBP and ApEgr) but also include novel findings. Specifically, we show that long-term sensitization training rapidly up-regulates the expression of transcripts which may encode Aplysia homologs of a C/EBPγ transcription factor, a glycine transporter (GlyT2), and a vacuolar-protein-sorting-associated protein (VPS36).

  10. A novel transcriptional element in circular DNA monomers of the duck hepatitis B virus.

    PubMed Central

    Beckel-Mitchener, A; Summers, J

    1997-01-01

    We report the presence of two elements, pet and net, that are required for proper transcription of the duck hepatitis B virus (DHBV). These regions were previously identified by using plasmid clones of the virus in transient expression assays (M. Huang and J. Summers, J. Virol. 68:1564-1572, 1994). In this study, we further analyzed these regions by using in vitro-synthesized circular DHBV DNA monomers to mimic the authentic transcriptional template. We observed that pet was required for pregenome transcription from circular viral monomers, and in the absence of pet-dependent transcription, expression of the viral envelope genes was increased. We found that deletion of net in circularized DNA monomers led to the production of abnormally long transcripts due to a failure to form 3' ends during transcription. In addition, we report the presence of a net-like region in the mammalian hepadnavirus woodchuck hepatitis virus. These results are consistent with a model that net is a region involved in transcription termination and that in DHBV, pet is required for transcription complexes to read through this region during the first pass through net. PMID:9311882

  11. Transcription factor profiling shows new ways towards new treatment options of cutaneous T cell lymphomas.

    PubMed

    Döbbeling, Udo

    2007-06-01

    Most oncogenes encode activators of transcription factors or transcription factors themselves. Transcription factors that are induced by growth stimuli are, in contrast to transcription factors that regulate house keeping genes, tightly regulated and only active, when a stimulus (e.g. cytokines or other growth factors) is given. Examples of such transcription factors are members of the jun, fos, myc, NFkB and STAT gene families. In cancer cells this regulation is interrupted, resulting in constitutive activities of transcription factors that are normally silent. This in turn results in the increased expression of target genes that are necessary for growth and protection from apoptosis. Since inducible transcription factors are activated by specific pathways, the identification of unusual constitutively active transcription factors also identifies the involved signal transduction pathway. Inhibitors of the components of these pathways may be effective anti-cancer agents, as they interrupt the abnormal signalling and in cancer cells. We applied this strategy for two forms of cutaneous T cell lymphomas and identified several groups of agents that may be the prototypes of new drugs to fight these diseases.

  12. Fractional Dynamics of Globally Slow Transcription and Its Impact on Deterministic Genetic Oscillation

    PubMed Central

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models – the Goodwin oscillator and the Rössler oscillator. By constructing a “dual memory” oscillator – the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically. PMID:22679500

  13. Nuclear Actin in Development and Transcriptional Reprogramming.

    PubMed

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  14. Nuclear Actin in Development and Transcriptional Reprogramming

    PubMed Central

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin’s roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation. PMID:28326098

  15. Imaging Transcription: Past, Present, and Future

    PubMed Central

    Coleman, Robert A.; Liu, Zhe; Darzacq, Xavier; Tjian, Robert; Singer, Robert H.; Lionnet, Timothée

    2016-01-01

    Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation. PMID:26763984

  16. Overlapping Antisense Transcription in the Human Genome

    PubMed Central

    Fahey, M. E.; Moore, T. F.

    2002-01-01

    Accumulating evidence indicates an important role for non-coding RNA molecules in eukaryotic cell regulation. A small number of coding and non-coding overlapping antisense transcripts (OATs) in eukaryotes have been reported, some of which regulate expression of the corresponding sense transcript. The prevalence of this phenomenon is unknown, but there may be an enrichment of such transcripts at imprinted gene loci. Taking a bioinformatics approach, we systematically searched a human mRNA database (RefSeq) for complementary regions that might facilitate pairing with other transcripts. We report 56 pairs of overlapping transcripts, in which each member of the pair is transcribed from the same locus. This allows us to make an estimate of 1000 for the minimum number of such transcript pairs in the entire human genome. This is a surprisingly large number of overlapping gene pairs and, clearly, some of the overlaps may not be functionally significant. Nonetheless, this may indicate an important general role for overlapping antisense control in gene regulation. EST databases were also investigated in order to address the prevalence of cases of imprinted genes with associated non-coding overlapping, antisense transcripts. However, EST databases were found to be completely inappropriate for this purpose. PMID:18628857

  17. Transcriptional control of spermatogonial maintenance and differentiation.

    PubMed

    Song, Hye-Won; Wilkinson, Miles F

    2014-06-01

    Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.

  18. Angiotensin II-regulated transcription regulatory genes in adrenal steroidogenesis.

    PubMed

    Romero, Damian G; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E

    2010-11-29

    Transcription regulatory genes are crucial modulators of cell physiology and metabolism whose intracellular levels are tightly controlled in response to extracellular stimuli. We previously reported a set of 29 transcription regulatory genes modulated by angiotensin II in H295R human adrenocortical cells and their roles in regulating the expression of the last and unique enzymes of the glucocorticoid and mineralocorticoid biosynthetic pathways, 11β-hydroxylase and aldosterone synthase, respectively, using gene expression reporter assays. To study the effect of this set of transcription regulatory genes on adrenal steroidogenesis, H295R cells were transfected by high-efficiency nucleofection and aldosterone and cortisol were measured in cell culture supernatants under basal and angiotensin II-stimulated conditions. BCL11B, BHLHB2, CITED2, ELL2, HMGA1, MAFF, NFIL3, PER1, SERTAD1, and VDR significantly stimulated aldosterone secretion, while EGR1, FOSB, and ZFP295 decreased aldosterone secretion. BTG2, HMGA1, MITF, NR4A1, and ZFP295 significantly increased cortisol secretion, while BCL11B, NFIL3, PER1, and SIX2 decreased cortisol secretion. We also report the effect of some of these regulators on the expression of endogenous aldosterone synthase and 11β-hydroxylase under basal and angiotensin II-stimulated conditions. In summary, this study reports for the first time the effects of a set of angiotensin II-modulated transcription regulatory genes on aldosterone and cortisol secretion and the expression levels of the last and unique enzymes of the mineralocorticoid and glucocorticoid biosynthetic pathways. Abnormal regulation of mineralocorticoid or glucocorticoid secretion is involved in several pathophysiological conditions. These transcription regulatory genes may be involved in adrenal steroidogenesis pathologies; thus they merit additional study as potential candidates for therapeutic intervention.

  19. Aerobic glycolysis tunes YAP/TAZ transcriptional activity

    PubMed Central

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-01-01

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ. PMID:25796446

  20. Transcript RNA supports precise repair of its own DNA gene.

    PubMed

    Keskin, Havva; Meers, Chance; Storici, Francesca

    2016-01-01

    The transfer of genetic information from RNA to DNA is considered an extraordinary process in molecular biology. Despite the fact that cells transcribe abundant amount of RNA with a wide range of functions, it has been difficult to uncover whether RNA can serve as a template for DNA repair and recombination. An increasing number of experimental evidences suggest a direct role of RNA in DNA modification. Recently, we demonstrated that endogenous transcript RNA can serve as a template to repair a DNA double-strand break (DSB), the most harmful DNA lesion, not only indirectly via formation of a DNA copy (cDNA) intermediate, but also directly in a homology driven mechanism in budding yeast. These results point out that the transfer of genetic information from RNA to DNA is more general than previously thought. We found that transcript RNA is more efficient in repairing a DSB in its own DNA (in cis) than in a homologous but ectopic locus (in trans). Here, we summarize current knowledge about the process of RNA-driven DNA repair and recombination, and provide further data in support of our model of DSB repair by transcript RNA in cis. We show that a DSB is precisely repaired predominately by transcript RNA and not by residual cDNA in conditions in which formation of cDNA by reverse transcription is inhibited. Additionally, we demonstrate that defects in ribonuclease (RNase) H stimulate precise DSB repair by homologous RNA or cDNA sequence, and not by homologous DNA sequence carried on a plasmid. These results highlight an antagonistic role of RNase H in RNA-DNA recombination. Ultimately, we discuss several questions that should be addressed to better understand mechanisms and implications of RNA-templated DNA repair and recombination.

  1. The transcriptional regulation of the human CYP2C genes

    PubMed Central

    Chen, Yuping; Goldstein, Joyce A.

    2010-01-01

    In humans, four members of the CYP2C subfamily (CYP2C8, CYP2C9, CYP2C18, and CYP2C19) metabolize more than 20% of all therapeutic drugs as well as a number of endogenous compounds. The CYP2C enzymes are found predominantly in the liver, where they comprise ∼20% of the total cytochrome P450. A variety of xenobiotics such as phenobarbital, rifampicin, and hyperforin have been shown to induce the transcriptional expression of CYP2C genes in primary human hepatocytes and to increase the metabolism of CYP2C substrates in vivo in man. This induction can result in drug-drug interactions, drug tolerance, and therapeutic failure. Several drug-activated nuclear receptors including CAR, PXR, VDR, and GR recognize drug responsive elements within the 5′ flanking promoter region of CYP2C genes to mediate the transcriptional upregulation of these genes in response to xenobiotics and steroids. Other nuclear receptors and transcriptional factors including HNF4α, HNF3γ, C/EBPα and more recently RORs, have been reported to regulate the constitutive expression of CYP2C genes in liver. The maximum transcriptional induction of CYP2C genes appears to be achieved through a coordinative cross-talk between drug responsive nuclear receptors, hepatic factors, and coactivators. The transcriptional regulatory mechanisms of the expression of CYP2C genes in extrahepatic tissues has received less study, but these may be altered by perturbations from pathological conditions such as ischemia as well as some of the receptors mentioned above. PMID:19702536

  2. Transcriptional response to 131I exposure of rat thyroid gland

    PubMed Central

    Spetz, Johan; Schüler, Emil; Parris, Toshima Z.; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2017-01-01

    Humans are exposed to 131I in medical diagnostics and treatment but also from nuclear accidents, and better knowledge of the molecular response in thyroid is needed. The aim of the study was to examine the transcriptional response in thyroid tissue 24 h after 131I administration in rats. The exposure levels were chosen to simulate both the clinical situation and the case of nuclear fallout. Thirty-six male rats were i.v. injected with 0–4700 kBq 131I, and killed at 24 h after injection (Dthyroid = 0.0058–3.0 Gy). Total RNA was extracted from individual thyroid tissue samples and mRNA levels were determined using oligonucleotide microarray technique. Differentially expressed transcripts were determined using Nexus Expression 3.0. Hierarchical clustering was performed in the R statistical computing environment. Pathway analysis was performed using the Ingenuity Pathway Analysis tool and the Gene Ontology database. T4 and TSH plasma concentrations were measured using ELISA. Totally, 429 differentially regulated transcripts were identified. Downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified in some groups, and an impact on thyroid function was supported by the pathway analysis. Recurring downregulation of Dbp and Slc47a2 was found. Dbp exhibited a pattern with monotonous reduction of downregulation with absorbed dose at 0.0058–0.22 Gy. T4 plasma levels were increased and decreased in rats whose thyroids were exposed to 0.057 and 0.22 Gy, respectively. Different amounts of injected 131I gave distinct transcriptional responses in the rat thyroid. Transcriptional response related to thyroid function and changes in T4 plasma levels were found already at very low absorbed doses to thyroid. PMID:28222107

  3. Aerobic glycolysis tunes YAP/TAZ transcriptional activity.

    PubMed

    Enzo, Elena; Santinon, Giulia; Pocaterra, Arianna; Aragona, Mariaceleste; Bresolin, Silvia; Forcato, Mattia; Grifoni, Daniela; Pession, Annalisa; Zanconato, Francesca; Guzzo, Giulia; Bicciato, Silvio; Dupont, Sirio

    2015-05-12

    Increased glucose metabolism and reprogramming toward aerobic glycolysis are a hallmark of cancer cells, meeting their metabolic needs for sustained cell proliferation. Metabolic reprogramming is usually considered as a downstream consequence of tumor development and oncogene activation; growing evidence indicates, however, that metabolism on its turn can support oncogenic signaling to foster tumor malignancy. Here, we explored how glucose metabolism regulates gene transcription and found an unexpected link with YAP/TAZ, key transcription factors regulating organ growth, tumor cell proliferation and aggressiveness. When cells actively incorporate glucose and route it through glycolysis, YAP/TAZ are fully active; when glucose metabolism is blocked, or glycolysis is reduced, YAP/TAZ transcriptional activity is decreased. Accordingly, glycolysis is required to sustain YAP/TAZ pro-tumorigenic functions, and YAP/TAZ are required for the full deployment of glucose growth-promoting activity. Mechanistically we found that phosphofructokinase (PFK1), the enzyme regulating the first committed step of glycolysis, binds the YAP/TAZ transcriptional cofactors TEADs and promotes their functional and biochemical cooperation with YAP/TAZ. Strikingly, this regulation is conserved in Drosophila, where phosphofructokinase is required for tissue overgrowth promoted by Yki, the fly homologue of YAP. Moreover, gene expression regulated by glucose metabolism in breast cancer cells is strongly associated in a large dataset of primary human mammary tumors with YAP/TAZ activation and with the progression toward more advanced and malignant stages. These findings suggest that aerobic glycolysis endows cancer cells with particular metabolic properties and at the same time sustains transcription factors with potent pro-tumorigenic activities such as YAP/TAZ.

  4. Proteasome Regulation of ULBP1 Transcription

    PubMed Central

    Butler, James E.; Moore, Mikel B.; Presnell, Steven R.; Chan, Huei-Wei; Chalupny, N. Jan; Lutz, Charles T.

    2009-01-01

    Killer lymphocytes recognize stress-activated NKG2D ligands on tumors. We examined NKG2D ligand expression in head and neck squamous cell carcinoma (HNSCC) cells and other cell lines. HNSCC cells typically expressed MHC class I chain-related gene A (MICA), MICB, UL16-binding protein (ULBP)2, and ULBP3, but they were uniformly negative for cell surface ULBP1 and ULBP4. We then studied how cancer treatments affected NKG2D ligand expression. NKG2D ligand expression was not changed by most cancer-relevant treatments. However, bortezomib and other proteasome inhibitor drugs with distinct mechanisms of action dramatically and specifically up-regulated HNSCC ULBP1 mRNA and cell surface protein. Proteasome inhibition also increased RNA for ULBP1 and other NKG2D ligands in nontransformed human keratinocytes. Proteasome inhibitor drugs increased ULBP1 transcription by acting at a site in the 522-bp ULBP1 promoter. Although the DNA damage response pathways mediated by ATM (ataxia-telangiectasia, mutated) and ATR (ATM and Rad3-related) signaling had been reported to up-regulate NKG2D ligand expression, we found that ULBP1 up-regulation was not inhibited by caffeine and wortmannin, inhibitors of ATM/ATR signaling. ULBP1 expression in HNSCC cells was not increased by several ATM/ATR activating treatments, including bleomycin, cisplatin, aphidicolin, and hydroxyurea. Ionizing radiation caused ATM activation in HNSCC cells, but high-level ULBP1 expression was not induced by gamma radiation or UV radiation. Thus, ATM/ATR signaling was neither necessary nor sufficient for high-level ULBP1 expression in human HNSCC cell lines and could not account for the proteasome effect. The selective induction of ULBP1 expression by proteasome inhibitor drugs, along with variable NKG2D ligand expression by human tumor cells, indicates that NKG2D ligand genes are independently regulated. PMID:19414815

  5. Priming of transcriptional memory responses via the chromatin accessibility landscape in T cells

    PubMed Central

    Tu, Wen Juan; Hardy, Kristine; Sutton, Christopher R.; McCuaig, Robert; Li, Jasmine; Dunn, Jenny; Tan, Abel; Brezar, Vedran; Morris, Melanie; Denyer, Gareth; Lee, Sau Kuen; Turner, Stephen J.; Seddiki, Nabila; Smith, Corey; Khanna, Rajiv; Rao, Sudha

    2017-01-01

    Memory T cells exhibit transcriptional memory and “remember” their previous pathogenic encounter to increase transcription on re-infection. However, how this transcriptional priming response is regulated is unknown. Here we performed global FAIRE-seq profiling of chromatin accessibility in a human T cell transcriptional memory model. Primary activation induced persistent accessibility changes, and secondary activation induced secondary-specific opening of previously less accessible regions associated with enhanced expression of memory-responsive genes. Increased accessibility occurred largely in distal regulatory regions and was associated with increased histone acetylation and relative H3.3 deposition. The enhanced re-stimulation response was linked to the strength of initial PKC-induced signalling, and PKC-sensitive increases in accessibility upon initial stimulation showed higher accessibility on re-stimulation. While accessibility maintenance was associated with ETS-1, accessibility at re-stimulation-specific regions was linked to NFAT, especially in combination with ETS-1, EGR, GATA, NFκB, and NR4A. Furthermore, NFATC1 was directly regulated by ETS-1 at an enhancer region. In contrast to the factors that increased accessibility, signalling from bHLH and ZEB family members enhanced decreased accessibility upon re-stimulation. Interplay between distal regulatory elements, accessibility, and the combined action of sequence-specific transcription factors allows transcriptional memory-responsive genes to “remember” their initial environmental encounter. PMID:28317936

  6. Priming of transcriptional memory responses via the chromatin accessibility landscape in T cells.

    PubMed

    Tu, Wen Juan; Hardy, Kristine; Sutton, Christopher R; McCuaig, Robert; Li, Jasmine; Dunn, Jenny; Tan, Abel; Brezar, Vedran; Morris, Melanie; Denyer, Gareth; Lee, Sau Kuen; Turner, Stephen J; Seddiki, Nabila; Smith, Corey; Khanna, Rajiv; Rao, Sudha

    2017-03-20

    Memory T cells exhibit transcriptional memory and "remember" their previous pathogenic encounter to increase transcription on re-infection. However, how this transcriptional priming response is regulated is unknown. Here we performed global FAIRE-seq profiling of chromatin accessibility in a human T cell transcriptional memory model. Primary activation induced persistent accessibility changes, and secondary activation induced secondary-specific opening of previously less accessible regions associated with enhanced expression of memory-responsive genes. Increased accessibility occurred largely in distal regulatory regions and was associated with increased histone acetylation and relative H3.3 deposition. The enhanced re-stimulation response was linked to the strength of initial PKC-induced signalling, and PKC-sensitive increases in accessibility upon initial stimulation showed higher accessibility on re-stimulation. While accessibility maintenance was associated with ETS-1, accessibility at re-stimulation-specific regions was linked to NFAT, especially in combination with ETS-1, EGR, GATA, NFκB, and NR4A. Furthermore, NFATC1 was directly regulated by ETS-1 at an enhancer region. In contrast to the factors that increased accessibility, signalling from bHLH and ZEB family members enhanced decreased accessibility upon re-stimulation. Interplay between distal regulatory elements, accessibility, and the combined action of sequence-specific transcription factors allows transcriptional memory-responsive genes to "remember" their initial environmental encounter.

  7. Transcription factor Reb1 is required for proper transcriptional start site usage at the divergently transcribed TFC6-ESC2 locus in Saccharomyces cerevisiae.

    PubMed

    Wang, Qing; Donze, David

    2016-12-05

    Eukaryotic promoters generally contain nucleosome depleted regions near their transcription start sites. In the model organism Saccharomyces cerevisiae, these regions are adjacent to binding sites for general regulatory transcription factors, and the Reb1 protein is commonly bound to promoter DNA near such regions. The yeast TFC6 promoter is a unique RNA polymerase II promoter in that it is autoregulated by its own gene product Tfc6p, which is part of the RNA polymerase III transcription factor complex TFIIIC. We previously demonstrated that mutation of a potential Reb1 binding site adjacent to the TFIIIC binding site in the TFC6 promoter modestly reduces transcript levels, but leads to a severe decrease in Tfc6 protein levels due to an upstream shift in the TFC6 transcription start site. Here we confirm that Reb1p indeed binds to the TFC6 promoter, and is important for proper transcription start site selection and protein expression. Interestingly, loss of Reb1p association at this site has a similar effect on the adjacent divergently transcribed ESC2 promoter, resulting in a significant increase of 5'-extended ESC2 transcripts and reduction of Esc2 protein levels. This altered divergent transcription may be the result of changes in nucleosome positioning at this locus in the absence of Reb1p binding. We speculate that an important function of general regulatory factors such as Reb1p is to establish and maintain proper transcription start sites at promoters, and that when binding of such factors is compromised, resulting effects on mRNA translation may be an underappreciated aspect of gene regulation studies.

  8. CHD chromatin remodelers and the transcription cycle.

    PubMed

    Murawska, Magdalena; Brehm, Alexander

    2011-01-01

    It is well established that ATP-dependent chromatin remodelers modulate DNA access of transcription factors and RNA polymerases by "opening" or "closing" chromatin structure. However, this view is far too simplistic. Recent findings have demonstrated that these enzymes not only set the stage for the transcription machinery to act but are actively involved at every step of the transcription process. As a consequence, they affect initiation, elongation, termination and RNA processing. In this review we will use the CHD family as a paradigm to illustrate the progress that has been made in revealing these new concepts.

  9. Our evolving knowledge of the transcriptional landscape.

    PubMed

    Hume, David A

    2008-01-01

    The development of a genome-scale approach to identification of the 5' ends of capped mRNAs (CAGE) has given new insights into many aspects of mammalian RNApolII transcription control. They include the identification of the minimal initiator motif, the different types of proximal promoter architecture, the promoters of noncoding RNAs, the transcription of retrotransposons, and the extensive impact of alternative promoters on the proteome. CAGE also offers applications as a form of expression profiling that measures promoter use, allowing more precise development of transcriptional network models.

  10. Creating cellular diversity through transcription factor competition

    PubMed Central

    Göttgens, Berthold

    2015-01-01

    The development of blood cells has long served as a model system to study the generation of diverse mature cells from multipotent progenitors. The article by Org et al (2015) reveals how transcription factor competition on primed DNA templates may contribute to embryonic blood cell specification during the early stages of mesoderm development. The study not only provides new insights into the functionality of the key haematopoietic transcription factor Scl/Tal1, but also provides a potentially widely applicable framework for transcription factor-mediated cell fate specification. PMID:25680687

  11. Cell-free transcription at 95 degrees: thermostability of transcriptional components and DNA topology requirements of Pyrococcus transcription.

    PubMed Central

    Hethke, C; Bergerat, A; Hausner, W; Forterre, P; Thomm, M

    1999-01-01

    Cell-free transcription of archaeal promoters is mediated by two archaeal transcription factors, aTBP and TFB, which are orthologues of the eukaryotic transcription factors TBP and TFIIB. Using the cell-free transcription system described for the hyperthermophilic Archaeon Pyrococcus furiosus by Hethke et al., the temperature limits and template topology requirements of archaeal transcription were investigated. aTBP activity was not affected after incubation for 1 hr at 100 degrees. In contrast, the half-life of RNA polymerase activity was 23 min and that of TFB activity was 3 min. The half-life of a 328-nt RNA product was 10 min at 100 degrees. Best stability of RNA was observed at pH 6, at 400 mm K-glutamate in the absence of Mg(2+) ions. Physiological concentrations of K-glutamate were found to stabilize protein components in addition, indicating that salt is an important extrinsic factor contributing to thermostability. Both RNA and proteins were stabilized by the osmolyte betaine at a concentration of 1 m. The highest activity for RNA synthesis at 95 degrees was obtained in the presence of 1 m betaine and 400 mm K-glutamate. Positively supercoiled DNA, which was found to exist in Pyrococcus cells, can be transcribed in vitro both at 70 degrees and 90 degrees. However, negatively supercoiled DNA was the preferred template at all temperatures tested. Analyses of transcripts from plasmid topoisomers harboring the glutamate dehydrogenase promoter and of transcription reactions conducted in the presence of reverse gyrase indicate that positive supercoiling of DNA inhibits transcription from this promoter. PMID:10430563

  12. Mechanisms of transcription factor evolution in Metazoa

    PubMed Central

    Schmitz, Jonathan F.; Zimmer, Fabian; Bornberg-Bauer, Erich

    2016-01-01

    Transcriptions factors (TFs) are pivotal for the regulation of virtually all cellular processes, including growth and development. Expansions of TF families are causally linked to increases in organismal complexity. Here we study the evolutionary dynamics, genetic causes and functional implications of the five largest metazoan TF families. We find that family expansions dominate across the whole metazoan tree; however, some branches experience exceptional family-specific accelerated expansions. Additionally, we find that such expansions are often predated by modular domain rearrangements, which spur the expansion of a new sub-family by separating it from the rest of the TF family in terms of protein–protein interactions. This separation allows for radical shifts in the functional spectrum of a duplicated TF. We also find functional differentiation inside TF sub-families as changes in expression specificity. Furthermore, accelerated family expansions are facilitated by repeats of sequence motifs such as C2H2 zinc fingers. We quantify whole genome duplications and single gene duplications as sources of TF family expansions, implying that some, but not all, TF duplicates are preferentially retained. We conclude that trans-regulatory changes (domain rearrangements) are instrumental for fundamental functional innovations, that cis-regulatory changes (affecting expression) accomplish wide-spread fine tuning and both jointly contribute to the functional diversification of TFs. PMID:27288445

  13. The transcriptional activity of human Chromosome 22

    PubMed Central

    Rinn, John L.; Euskirchen, Ghia; Bertone, Paul; Martone, Rebecca; Luscombe, Nicholas M.; Hartman, Stephen; Harrison, Paul M.; Nelson, F. Kenneth; Miller, Perry; Gerstein, Mark; Weissman, Sherman; Snyder, Michael

    2003-01-01

    A DNA microarray representing nearly all of the unique sequences of human Chromosome 22 was constructed and used to measure global-transcriptional activity in placental poly(A)+ RNA. We found that many of the known, related and predicted genes are expressed. More importantly, our study reveals twice as many transcribed bases as have been reported previously. Many of the newly discovered expressed fragments were verified by RNA blot analysis and a novel technique called differential hybridization mapping (DHM). Interestingly, a significant fraction of these novel fragments are expressed antisense to previously annotated introns. The coding potential of these novel expressed regions is supported by their sequence conservation in the mouse genome. This study has greatly increased our understanding of the biological information encoded on a human chromosome. To facilitate the dissemination of these results to the scientific community, we have developed a comprehensive Web resource to present the findings of this study and other features of human Chromosome 22 at http://array.mbb.yale.edu/chr22. PMID:12600945

  14. ABA signaling is necessary but not sufficient for RD29B transcriptional memory during successive dehydration stresses in Arabidopsis thaliana.

    PubMed

    Virlouvet, Laetitia; Ding, Yong; Fujii, Hiroaki; Avramova, Zoya; Fromm, Michael

    2014-07-01

    Plants subjected to a prior dehydration stress were seen to have altered transcriptional responses during a subsequent dehydration stress for up to 5 days after the initial stress. The abscisic acid (ABA) inducible RD29B gene of Arabidopsis thaliana was strongly induced after the first stress and displayed transcriptional memory with transcript levels nine-fold higher during the second dehydration stress. These increased transcript levels were due to an increased rate of transcription and are associated with an altered chromatin template during the recovery interval between the dehydration stresses. Here we use a combination of promoter deletion/substitutions, mutants in the trans-acting transcription factors and their upstream protein kinases, and treatments with exogenous ABA or dehydration stress to advance our understanding of the features required for transcriptional memory of RD29B. ABA Response Elements (ABREs) are sufficient to confer transcriptional memory on a minimal promoter, although there is a context effect from flanking sequences. Different mutations in Snf1 Related Protein Kinase 2 (SnRK2) genes positively and negatively affected the response, suggesting that this effect is important for transcriptional memory. Although exogenous ABA treatments could prime transcriptional memory, a second ABA treatment was not sufficient to activate transcriptional memory. Therefore, we concluded that transcriptional memory requires ABA and an ABA-independent factor that is induced or activated by a subsequent dehydration stress and directly or indirectly results in a more active RD29B chromatin template. These results advance our knowledge of the cis- and trans-acting factors that are required for transcriptional memory of RD29B.

  15. Transcription promotes guanine to thymine mutations in the non-transcribed strand of an Escherichia coli gene.

    PubMed

    Klapacz, Joanna; Bhagwat, Ashok S

    2005-07-12

    Transcription of DNA opens the chromatin, causes topological changes in DNA and transiently exposes the two strands to different biochemical environments. Consequently, it has long been argued that transcription may promote damage to DNA and there are data in Escherichia coli and yeast supporting a correlation between high transcription and mutations. We examined the transcription-dependence of the reversion of a nonsense codon (TGA) in E. coli and found that there was a strong dependence of mutations on transcription in strains defective in the repair of 8-oxoguanine in DNA. Under conditions of high transcription there was a three to five-fold increase in mutations that changed TGA in the non-transcribed strand to a sense codon. Furthermore, in both mutY and mutM mutY backgrounds the mutations were overwhelmingly G:C to T:A. In contrast, when the TGA was in the transcribed strand in relation with the inducible promoter, high transcription decreased the rate of reversion. Similar results were obtained in a strain defective in the transcription-repair coupling factor, Mfd, suggesting that transcription dependent increase in base substitutions does not require transcription-dependent DNA repair. However, Mfd does modulate the magnitude of the mutagenic effect of transcription. These data are consistent with a model in which the non-transcribed strand is more susceptible to oxidative damage during transcription than the transcribed strand. These results suggest that the magnitudes of individual base substitutions and their relative numbers in other studies of mutational spectra may also be affected by transcription.

  16. CrBPF1 overexpression alters