Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, Soshi; Nitani, Ryota; Murakami, Tatsuhiko
The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 ormore » PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release. - Highlights: • Endoplasmic reticulum (ER) stress induces multivesicular body (MVB) formation. • ER stress transducers IRE1 and PERK mediate MVB formation. • Exosome release is enhanced after ER stress. • IRE1 or PERK deficiency blocks upregulation of ER stress-dependent exosome release.« less
Cho, Soyoun
2014-01-01
Synaptic vesicles release both neurotransmitter and protons during exocytosis, which may result in a transient acidification of the synaptic cleft that can block Ca2+ channels located close to the sites of exocytosis. Evidence for this effect has been reported for retinal ribbon-type synapses, but not for hair cell ribbon synapses. Here, we report evidence for proton release from bullfrog auditory hair cells when they are held at more physiological, in vivo–like holding potentials (Vh = −60 mV) that facilitate multivesicular release. During paired recordings of hair cells and afferent fibers, L-type voltage-gated Ca2+ currents showed a transient block, which was highly correlated with the EPSC amplitude (or the amount of glutamate release). This effect was masked at Vh = −90 mV due to the presence of a T-type Ca2+ current and blocked by strong pH buffering with HEPES or TABS. Increasing vesicular pH with internal methylamine in hair cells also abolished the transient block. High concentrations of intracellular Ca2+ buffer (10 mm BAPTA) greatly reduced exocytosis and abolished the transient block of the Ca2+ current. We estimate that this transient block is due to the rapid multivesicular release of ∼600–1300 H+ ions per synaptic ribbon. Finally, during a train of depolarizing pulses, paired pulse plasticity was significantly changed by using 40 mm HEPES in addition to bicarbonate buffer. We propose that this transient block of Ca2+ current leads to more efficient exocytosis per Ca2+ ion influx and it may contribute to spike adaptation at the auditory nerve. PMID:25429130
Spitzer, Christoph; Li, Faqiang; Buono, Rafael; Roschzttardtz, Hannetz; Chung, Taijoon; Zhang, Min; Osteryoung, Katherine W; Vierstra, Richard D; Otegui, Marisa S
2015-02-01
Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division. The autophagy machinery directed the release of bodies containing plastid material into the cytoplasm, whereas CHMP1A and B were required for delivery of these bodies to the vacuole. Autophagy was upregulated in chmp1 as indicated by an increase in vacuolar green fluorescent protein (GFP) cleavage from the autophagic reporter GFP-ATG8. However, autophagic degradation of the stromal cargo RECA-GFP was drastically reduced in the chmp1 plants upon starvation, suggesting that CHMP1 mediates the efficient delivery of autophagic plastid cargo to the vacuole. Consistent with the compromised degradation of plastid proteins, chmp1 plastids show severe morphological defects and aberrant division. We propose that CHMP1 plays a direct role in the autophagic turnover of plastid constituents. © 2015 American Society of Plant Biologists. All rights reserved.
Luo, Yuling; Liu, Zhongbing; Zhang, Xiaoqin; Huang, Juan; Yu, Xin; Li, Jinwei; Xiong, Dan; Sun, Xiaoduan; Zhong, Zhirong
2016-01-01
The aim of the present study was to develop a novel dosage form of multivesicular liposomes for oleanolic acid (OA) to overcome its poor solubility, prolong therapeutic drug levels in the blood, and enhance the antitumor effect on hepatocellular carcinoma. OA-encapsulated multivesicular liposomes (OA-MVLs) were prepared by a double-emulsion method, and the formulation was optimized by the central composite design. The morphology, particle size, and drug-loading efficiency of OA-MVLs were investigated. Furthermore, OA-MVLs were also characterized both in vitro and in vivo. The results showed that OA-MVLs were spherical particles with an average particle size of 11.57 μm and an encapsulation efficiency of 82.3%±0.61%. OA-MVLs exhibited a sustained-release pattern in vitro, which was fitted to Ritger–Peppas equation. OA-MVLs inhibited the growth of human HepG2 cells which was confirmed by the MTT assay and fluorescence microscopy detection. The in vivo release of OA from OA-MVLs exhibited a sustained manner, indicating a longer circulation time compared to OA solution. The in vivo toxicity study indicated that medium-dose OA-MVLs exerted no toxic effect on the hosts. Importantly, OA-MVLs suppressed the growth of murine H22 hepatoma and prolonged the survival of tumor-bearing mice. In conclusion, the poorly soluble OA could be encapsulated into MVLs to form a novel controlled-release drug delivery system. The present study may hold promise for OA-MVLs as a new dosage form for sustained-release drug delivery in cancer therapy. PMID:27471381
Vascular smooth muscle cell calcification is mediated by regulated exosome secretion.
Kapustin, Alexander N; Chatrou, Martijn L L; Drozdov, Ignat; Zheng, Ying; Davidson, Sean M; Soong, Daniel; Furmanik, Malgorzata; Sanchis, Pilar; De Rosales, Rafael Torres Martin; Alvarez-Hernandez, Daniel; Shroff, Rukshana; Yin, Xiaoke; Muller, Karin; Skepper, Jeremy N; Mayr, Manuel; Reutelingsperger, Chris P; Chester, Adrian; Bertazzo, Sergio; Schurgers, Leon J; Shanahan, Catherine M
2015-04-10
Matrix vesicles (MVs), secreted by vascular smooth muscle cells (VSMCs), form the first nidus for mineralization and fetuin-A, a potent circulating inhibitor of calcification, is specifically loaded into MVs. However, the processes of fetuin-A intracellular trafficking and MV biogenesis are poorly understood. The objective of this study is to investigate the regulation, and role, of MV biogenesis in VSMC calcification. Alexa488-labeled fetuin-A was internalized by human VSMCs, trafficked via the endosomal system, and exocytosed from multivesicular bodies via exosome release. VSMC-derived exosomes were enriched with the tetraspanins CD9, CD63, and CD81, and their release was regulated by sphingomyelin phosphodiesterase 3. Comparative proteomics showed that VSMC-derived exosomes were compositionally similar to exosomes from other cell sources but also shared components with osteoblast-derived MVs including calcium-binding and extracellular matrix proteins. Elevated extracellular calcium was found to induce sphingomyelin phosphodiesterase 3 expression and the secretion of calcifying exosomes from VSMCs in vitro, and chemical inhibition of sphingomyelin phosphodiesterase 3 prevented VSMC calcification. In vivo, multivesicular bodies containing exosomes were observed in vessels from chronic kidney disease patients on dialysis, and CD63 was found to colocalize with calcification. Importantly, factors such as tumor necrosis factor-α and platelet derived growth factor-BB were also found to increase exosome production, leading to increased calcification of VSMCs in response to calcifying conditions. This study identifies MVs as exosomes and shows that factors that can increase exosome release can promote vascular calcification in response to environmental calcium stress. Modulation of the exosome release pathway may be as a novel therapeutic target for prevention. © 2015 American Heart Association, Inc.
Synaptic ribbon. Conveyor belt or safety belt?
Parsons, T D; Sterling, P
2003-02-06
The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.
Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin
2017-05-10
Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release, P/Q-type VGCCs act through microdomain signaling to recruit additional release sites. Copyright © 2017 the authors 0270-6474/17/374913-15$15.00/0.
Spencer, Brian; Kim, Changyoun; Gonzalez, Tania; Bisquertt, Alejandro; Patrick, Christina; Rockenstein, Edward; Adame, Anthony; Lee, Seung-Jae; Desplats, Paula; Masliah, Eliezer
2016-03-15
α-Synuclein (α-syn) has been implicated in neurological disorders with parkinsonism, including Parkinson's disease and Dementia with Lewy body. Recent studies have shown α-syn oligomers released from neurons can propagate from cell-to-cell in a prion-like fashion exacerbating neurodegeneration. In this study, we examined the role of the endosomal sorting complex required for transport (ESCRT) pathway on the propagation of α-syn. α-syn, which is transported via the ESCRT pathway through multivesicular bodies for degradation, can also target the degradation of the ESCRT protein-charged multivesicular body protein (CHMP2B), thus generating a roadblock of endocytosed α-syn. Disruption of the ESCRT transport system also resulted in increased exocytosis of α-syn thus potentially increasing cell-to-cell propagation of synuclein. Conversely, delivery of a lentiviral vector overexpressing CHMP2B rescued the neurodegeneration in α-syn transgenic mice. Better understanding of the mechanisms of intracellular trafficking of α-syn might be important for understanding the pathogenesis and developing new treatments for synucleinopathies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gauthier, Sébastien A; Pérez-González, Rocío; Sharma, Ajay; Huang, Fang-Ke; Alldred, Melissa J; Pawlik, Monika; Kaur, Gurjinder; Ginsberg, Stephen D; Neubert, Thomas A; Levy, Efrat
2017-08-29
A dysfunctional endosomal pathway and abnormally enlarged early endosomes in neurons are an early characteristic of Down syndrome (DS) and Alzheimer's disease (AD). We have hypothesized that endosomal material can be released by endosomal multivesicular bodies (MVBs) into the extracellular space via exosomes to relieve neurons of accumulated endosomal contents when endosomal pathway function is compromised. Supporting this, we found that exosome secretion is enhanced in the brains of DS patients and a mouse model of the disease, and by DS fibroblasts. Furthermore, increased levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Importantly, CD63 knockdown diminished exosome release and worsened endosomal pathology in DS fibroblasts. Taken together, these data suggest that increased CD63 expression enhances exosome release as an endogenous mechanism mitigating endosomal abnormalities in DS. Thus, the upregulation of exosome release represents a potential therapeutic goal for neurodegenerative disorders with endosomal pathology.
The multivesicular body is the major internal site of prion conversion
Yim, Yang-In; Park, Bum-Chan; Yadavalli, Rajgopal; Zhao, Xiaohong; Eisenberg, Evan; Greene, Lois E.
2015-01-01
ABSTRACT The conversion of the properly folded prion protein, PrPc, to its misfolded amyloid form, PrPsc, occurs as the two proteins traffic along the endocytic pathway and PrPc is exposed to PrPsc. To determine the specific site of prion conversion, we knocked down various proteins in the endocytic pathway including Rab7a, Tsg101 and Hrs (also known as HGS). PrPsc was markedly reduced in two chronically infected cell lines by preventing the maturation of the multivesicular body, a process that begins in the early endosome and ends with the sorting of cargo to the lysosome. By contrast, knocking down proteins in the retromer complex, which diverts cargo away from the multivesicular body caused an increase in PrPsc levels. These results suggest that the multivesicular body is the major site for intracellular conversion of PrPc to PrPsc. PMID:25663703
Bänfer, Sebastian; Schneider, Dominik; Dewes, Jenny; Strauss, Maximilian T; Freibert, Sven-A; Heimerl, Thomas; Maier, Uwe G; Elsässer, Hans-Peter; Jungmann, Ralf; Jacob, Ralf
2018-05-08
The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4a E228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.
Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.
Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W
2017-01-01
The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca 2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Soonsawad, Pan; Weerachatyanukul, Wattana; Rintanen, Nina; Espinoza, Juan; McNerney, Gregory; Marjomäki, Varpu; Cheng, R. Holland
2014-01-01
Cellular uptake of clustered α2β1-integrin induces the formation of membrane compartments that subsequently mature into a multivesicular body (MVB). Enhanced internalization mediated by clustered integrins was observed upon infection by the picornavirus echovirus 1 (EVI). We elucidated the structural features of virus-induced MVBs (vMVBs) in comparison to antibody-induced control MVBs (mock infection) by means of high-pressure cryo fixation of cells followed by immuno electron tomography during early entry of the virus. Three-dimensional tomograms revealed a marked increase in the size and complexity of these vMVBs and the intraluminal vesicles (ILVs) at 2 and 3.5 hours post infection (p.i.), in contrast to the control MVBs without virus. Breakages in the membranes of vMVBs were detected from tomograms after 2 and especially after 3.5 h suggesting that these breakages could facilitate the genome release to the cytoplasm. The in situ neutral-red labeling of viral genome showed that virus uncoating starts as early as 30 min p.i., while an increase of permeability was detected in the vMVBs between 1 and 3 hours p.i., based on a confocal microscopy assay. Altogether, the data show marked morphological changes in size and permeability of the endosomes in the infectious entry pathway of this non-enveloped enterovirus and suggest that the formed breakages facilitate the transfer of the genome to the cytoplasm for replication. PMID:25299706
Lucchetti, Donatella; Calapà, Federica; Palmieri, Valentina; Fanali, Caterina; Carbone, Federica; Papa, Alfredo; De Maria, Ruggero; De Spirito, Marco; Sgambato, Alessandro
2017-07-01
Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Death of mitochondria during programmed cell death of leaf mesophyll cells.
Selga, Tūrs; Selga, Maija; Pāvila, Vineta
2005-12-01
The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.
Toxin Pores Endocytosed During Plasma Membrane Repair Traffic into the Lumen of MVBs for Degradation
Corrotte, Matthias; Fernandes, Maria Cecilia; Tam, Christina; Andrews, Norma W.
2012-01-01
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca2+-dependent manner. Resealing involves Ca2+-dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes. PMID:22212686
Salas-Cortes, Laura; Ye, Fei; Tenza, Danièle; Wilhelm, Claire; Theos, Alexander; Louvard, Daniel; Raposo, Graça; Coudrier, Evelyne
2005-10-15
Members of at least four classes of myosin (I, II, V and VI) have been implicated in the dynamics of a large variety of organelles. Despite their common motor domain structure, some of these myosins, however, are non processive and cannot move organelles along the actin tracks. Here, we demonstrate in the human pigmented MNT-1 cell line that, (1) the overexpression of one of these myosins, myosin 1b, or the addition of cytochalasin D affects the morphology of the sorting multivesicular endosomes; (2) the overexpression of myosin 1b delays the processing of Pmel17 (the product of murine silver locus also named GP100), which occurs in these multivesicular endosomes; (3) myosin 1b associated with endosomes coimmunoprecipitates with Pmel17. All together, these observations suggest that myosin 1b controls the traffic of protein cargo in multivesicular endosomes most probably through its ability to modulate with actin the morphology of these sorting endosomes.
Beer, Katharina B; Wehman, Ann Marie
2017-03-04
Cells from bacteria to man release extracellular vesicles (EVs) that contain signaling molecules like proteins, lipids, and nucleic acids. The content, formation, and signaling roles of these conserved vesicles are diverse, but the physiological relevance of EV signaling in vivo is still debated. Studies in classical genetic model organisms like C. elegans and Drosophila have begun to reveal the developmental and behavioral roles for EVs. In this review, we discuss the emerging evidence for the in vivo signaling roles of EVs. Significant effort has also been made to understand the mechanisms behind the formation and release of EVs, specifically of exosomes derived from exocytosis of multivesicular bodies and of microvesicles derived from plasma membrane budding called ectocytosis. In this review, we detail the impact of flies and worms on understanding the proteins and lipids involved in EV biogenesis and highlight the open questions in the field.
Hernáez, Bruno; Guerra, Milagros; Salas, María L.
2016-01-01
African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs. PMID:27110717
Identification and analysis of circulating exosomal microRNA in human body fluids.
Lässer, Cecilia
2013-01-01
Exosomes are 40-100 nm sized vesicles released from cells when multivesicular bodies fuse with the plasma membrane. These vesicles take part in cell-to-cell communication by binding and signalling through membrane receptors on cells or by transferring proteins, RNA, and lipids into the cells. Exosomal RNA in body fluids, such as plasma and urine, has been associated with malignancies, making the exosomal RNA a potential biomarker for early detection of these diseases. This has increased the interest in the field of extracellular RNA and in particular, the interest in exosomal RNA.In this chapter, a well-established exosome isolation method is described, as well as how to characterize the isolated vesicles by electron microscopy. Furthermore, two types of RNA isolation methods are described with a focus on isolating RNA from body fluids, which can be more viscous than cell culture media.
Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M
2014-03-03
Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of DepoFoam(®) bupivacaine for the treatment of postsurgical pain.
Bergese, Sergio D; Onel, Erol; Portillo, Juan
2011-11-01
SUMMARY An extended-release, multivesicular liposome-encapsulated form of the local anesthetic bupivacaine, DepoFoam(®) bupivacaine (proposed proprietary name EXPAREL™), is in development for use as part of a multimodal regimen for the treatment of postsurgical pain. Placebo- and active-controlled clinical trials in patients who have undergone either orthopedic or soft-tissue procedures indicate that a single local administration into the surgical site results in analgesic activity for up to 3-4 days and decreases the use of opioid rescue medication. The safety profile of DepoFoam bupivacaine appears to be similar to that of bupivacaine HCl, and adverse events are dose-related.
Cellular Factors Required for Lassa Virus Budding
Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro
2006-01-01
It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicular body pathway functionally. Our data may provide a clue to develop an effective antiviral strategy for Lassa virus. PMID:16571837
Binding and internalization in vivo of (/sup 125/I)hCG in Leydig cells of the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermo, L.; Lalli, M.
1988-01-01
The present study was performed to demonstrate the binding, mode of uptake, pathway and fate of iodinated human chorionic gonadotropin ((/sup 125/I)hCG) by Leydig cells in vivo using electron microscope radioautography. Following a single injection of (/sup 125/I)hCG into the interstitial space of the testis, the animals were fixed by perfusion with glutaraldehyde at 20 minutes, 1, 3, 6 and 24 hours. The electron microscope radioautographs demonstrated a prominent and qualitatively similar binding of the labeled hCG on the microvillar processes of the Leydig cells at 20 minutes, 1, 3, and 6 hours. The specificity of the (/sup 125/I)hCG bindingmore » was determined by injecting a 100-fold excess of unlabeled hormone concurrently with the labeled hormone. Under these conditions, the surface, including the microvillar processes of Leydig cells, was virtually unlabeled, indicating that the binding was specific and receptor-mediated. In animals injected with labeled hCG and sacrificed 20 minutes later, silver grains were also seen overlying the limiting membrane of large, uncoated surface invaginations and large subsurface vacuoles with an electron-lucent content referred to as endosomes. A radioautographic reaction was also seen within multivesicular bodies with a pale stained matrix. At 1 hour, silver grains appeared over dense multivesicular bodies and occasionally over secondary lysosomes, in addition to the structures mentioned above, while at 3 and 6 hours, an increasing number of secondary lysosomes became labeled. At 24 hours, binding of (/sup 125/I)hCG to the microvillar processes of Leydig cells persisted but was diminished, although a few endosomes, multivesicular bodies and secondary lysosomes still showed a radioautographic reaction. No membranous tubules that were seen in close proximity to, or in continuity with, endosomes and multivesicular bodies were observed to be labeled at any time interval.« less
Adam, Stefanie; Elfeky, Omar; Kinhal, Vyjayanthi; Dutta, Suchismita; Lai, Andrew; Jayabalan, Nanthini; Nuzhat, Zarin; Palma, Carlos; Rice, Gregory E; Salomon, Carlos
2017-06-01
The maternal physiology experiences numerous changes during pregnancy which are essential in controlling and maintaining maternal metabolic adaptations and fetal development. The human placenta is an organ that serves as the primary interface between the maternal and fetal circulation, thereby supplying the fetus with nutrients, blood and oxygen through the umbilical cord. During gestation, the placenta continuously releases several molecules into maternal circulation, including hormones, proteins, RNA and DNA. Interestingly, the presence of extracellular vesicles (EVs) of placental origin has been identified in maternal circulation across gestation. EVs can be categorised according to their size and/or origin into microvesicles (∼150-1000 nm) and exosomes (∼40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosome release is by fusion of multivesicular bodies with the plasmatic membrane. Exosomes released from placental cells have been found to be regulated by oxygen tension and glucose concentration. Furthermore, maternal exosomes have the ability to stimulate cytokine release from endothelial cells. In this review, we will discuss the role of EVs during fetal-maternal communication during gestation with a special emphasis on exosomes. Copyright © 2016. Published by Elsevier Ltd.
Impact of lysosome status on extracellular vesicle content and release.
Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P
2016-12-01
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. Copyright © 2016. Published by Elsevier B.V.
Impact of Lysosome Status on Extracellular Vesicle Content and Release
Eitan, Erez; Suire, Caitlin; Zhang, Shi; Mattson, Mark P.
2016-01-01
Extracellular vesicles (EVs) are nanoscale size bubble-like membranous structures released from cells. EVs contain RNA, lipids and proteins and are thought to serve various roles including intercellular communication and removal of misfolded proteins. The secretion of misfolded and aggregated proteins in EVs may be a cargo disposal alternative to the autophagy-lysosomal and ubiquitin-proteasome pathways. In this review we will discuss the importance of lysosome functionality for the regulation of EV secretion and content. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies (MVB) with the plasma membrane. MVBs can also fuse with lysosomes, and the trafficking pathway of MVBs can therefore determine whether or not exosomes are released from cells. Here we summarize data from studies of the effects of lysosome inhibition on the secretion of EVs and on the possibility that cells compensate for lysosome malfunction by disposal of potentially toxic cargos in EVs. A better understanding of the molecular mechanisms that regulate trafficking of MVBs to lysosomes and the plasma membrane may advance an understanding of diseases in which pathogenic proteins, lipids or infectious agents accumulate within or outside of cells. PMID:27238186
Exosome function: from tumor immunology to pathogen biology.
Schorey, Jeffrey S; Bhatnagar, Sanchita
2008-06-01
Exosomes are the newest family member of 'bioactive vesicles' that function to promote intercellular communication. Exosomes are derived from the fusion of multivesicular bodies with the plasma membrane and extracellular release of the intraluminal vesicles. Recent studies have focused on the biogenesis and composition of exosomes as well as regulation of exosome release. Exosomes have been shown to be released by cells of hematopoietic and non-hematopoietic origin, yet their function remains enigmatic. Much of the prior work has focused on exosomes as a source of tumor antigens and in presentation of tumor antigens to T cells. However, new studies have shown that exosomes might also promote cell-to-cell spread of infectious agents. Moreover, exosomes isolated from cells infected with various intracellular pathogens, including Mycobacterium tuberculosis and Toxoplasma gondii, have been shown to contain microbial components and can promote antigen presentation and macrophage activation, suggesting that exosomes may function in immune surveillance. In this review, we summarize our understanding of exosome biogenesis but focus primarily on new insights into exosome function. We also discuss their possible use as disease biomarkers and vaccine candidates.
Ultrasound wall-sign in pulmonary echinococcosis (new application).
El Fortia, M; El Gatit, A; Bendaoud, M
2006-12-01
We report our experience in diagnosing pulmonary cystic echinococcosis using an ultrasound sign related to the cystic wall. 40 patients with 46 cysts, suspected of pulmonary echinococcosis, based on plain chest radiographs and clinical findings, were examined by ultrasound over a 9-year period (1996 - 2004), and followed up until discharge. We applied our long experience with echinococcal cysts utilising the wall sign (WS) to diagnose pulmonary hydatid disease. All cysts were subject to surgical removal, and postoperative histopathology was the gold standard. There were 34 (74 %) unilocular and 12 (26 %) multivesicular echinococcal cysts. In the univesicular cysts, the WS was found in 20 cases (66.7 %) while it was present in all multivesicular cysts (100 %). Following surgical removal, echinococcosis was confirmed by histopathology in all cases. We conclude that a double layered border in univesicular and double layered internal septum in multivesicular pulmonary echinococcal cysts is a reliable indicator of pulmonary echinococcosis, with a specificity of 66 % and 100 %, respectively.
Caveolin-1 interacts with the Gag precursor of murine leukaemia virus and modulates virus production
Yu, Zheng; Beer, Christiane; Koester, Mario; Wirth, Manfred
2006-01-01
Background Retroviral Gag determines virus assembly at the plasma membrane and the formation of virus-like particles in intracellular multivesicular bodies. Thereby, retroviruses exploit by interaction with cellular partners the cellular machineries for vesicular transport in various ways. Results The retroviral Gag precursor protein drives assembly of murine leukaemia viruses (MLV) at the plasma membrane (PM) and the formation of virus like particles in multivesicular bodies (MVBs). In our study we show that caveolin-1 (Cav-1), a multifunctional membrane-associated protein, co-localizes with Gag in a punctate pattern at the PM of infected NIH 3T3 cells. We provide evidence that Cav-1 interacts with the matrix protein (MA) of the Gag precursor. This interaction is mediated by a Cav-1 binding domain (CBD) within the N-terminus of MA. Interestingly, the CBD motif identified within MA is highly conserved among most other γ-retroviruses. Furthermore, Cav-1 is incorporated into MLV released from NIH 3T3 cells. Overexpression of a GFP fusion protein containing the putative CBD of the retroviral MA resulted in a considerable decrease in production of infectious retrovirus. Moreover, expression of a dominant-negative Cav-1 mutant affected retroviral titres significantly. Conclusion This study demonstrates that Cav-1 interacts with MLV Gag, co-localizes with Gag at the PM and affects the production of infectious virus. The results strongly suggest a role for Cav-1 in the process of virus assembly. PMID:16956408
Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞
Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça
2005-01-01
Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817
Grünvogel, Oliver; Colasanti, Ombretta; Lee, Ji-Young; Klöss, Volker; Belouzard, Sandrine; Reustle, Anna; Esser-Nobis, Katharina; Hesebeck-Brinckmann, Jasper; Mutz, Pascal; Hoffmann, Katrin; Mehrabi, Arianeb; Koschny, Ronald; Vondran, Florian W R; Gotthardt, Daniel; Schnitzler, Paul; Neumann-Haefelin, Christoph; Thimme, Robert; Binder, Marco; Bartenschlager, Ralf; Dubuisson, Jean; Dalpke, Alexander H; Lohmann, Volker
2018-06-01
Hepatitis C virus (HCV) infections most often result in chronic outcomes, although the virus constantly produces replication intermediates, in particular double-stranded RNA (dsRNA), representing potent inducers of innate immunity. We aimed to characterize the fate of HCV dsRNA in hepatocyte cultures to identify mechanisms contributing to viral persistence in presence of an active innate immune response. We analyzed hepatocyte-based culture models for HCV for induction of innate immunity, secretion of virus positive- or negative-strand RNA, and viral replication using different quantification methods and microscopy techniques. Expression of pattern recognition receptors was reconstituted in hepatoma cells by lentiviral transduction. HCV-infected cells secrete substantial amounts of virus positive- and negative-strand RNAs in extracellular vesicles (EVs), toward the apical and basolateral domain of hepatocytes. Secretion of negative-strand RNA was independent from virus production, and viral RNA secreted in EVs contained higher relative amounts of negative-strands, indicating that mostly virus dsRNA is released. A substantial part of viral replication complexes and dsRNA was found in the endosomal compartment and multivesicular bodies, indicating that secretion of HCV replication intermediates is mediated by the exosomal pathway. Block of vesicle release in HCV-positive cells increased intracellular dsRNA levels and increased activation of toll-like receptor 3, inhibiting HCV replication. Using hepatocyte-based culture models for HCV, we found a portion of HCV dsRNA intermediates to be released from infected cells in EVs, which reduces activation of toll-like receptor 3. This represents a novel mechanism how HCV evades host immune responses, potentially contributing to viral persistence. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Stenqvist, Ann-Christin; Nagaeva, Olga; Baranov, Vladimir; Mincheva-Nilsson, Lucia
2013-12-01
Apoptosis is crucially important in mediating immune privilege of the fetus during pregnancy. We investigated the expression and in vitro apoptotic activity of two physiologically relevant death messengers, the TNF family members Fas ligand (FasL) and TRAIL in human early and term placentas. Both molecules were intracellularly expressed, confined to the late endosomal compartment of the syncytiotrophoblast, and tightly associated to the generation and secretion of placental exosomes. Using immunoelectron microscopy, we show that FasL and TRAIL are expressed on the limiting membrane of multivesicular bodies where, by membrane invagination, intraluminal microvesicles carrying membranal bioactive FasL and TRAIL are formed and released in the extracellular space as exosomes. Analyzing exosomes secreted from placental explant cultures, to our knowledge, we demonstrate for the first time that FasL and TRAIL are clustered on the exosomal membrane as oligomerized aggregates ready to form death-inducing signaling complex. Consistently, placental FasL- and TRAIL-carrying exosomes triggered apoptosis in Jurkat T cells and activated PBMC in a dose-dependent manner. Limiting the expression of functional FasL and TRAIL to exosomes comprise a dual benefit: 1) storage of exosomal FasL and TRAIL in multivesicular bodies is protected from proteolytic cleavage and 2) upon secretion, delivery of preformed membranal death molecules by exosomes rapidly triggers apoptosis. Our results suggest that bioactive FasL- and TRAIL-carrying exosomes, able to convey apoptosis, are secreted by the placenta and tie up the immunomodulatory and protective role of human placenta to its exosome-secreting ability.
Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions
VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.
2011-01-01
Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273
The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles
Xu, Bing; Fu, Ying; Liu, Yan; Agvanian, Sosse; Wirka, Robert C.; Baum, Rachel; Zhou, Kang; Shaw, Robin M.
2017-01-01
Microparticles (MPs) are cell–cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17) creates transverse-tubule (t-tubule) membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA), and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT)-III subunit charged multivesicular body protein 4B (CHMP4B) colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR) domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily to the ESCRT pathway for MP biogenesis in mammalian cardiac ventricular cells, identifying elements of a pathway by which cytoplasmic cBIN1 is released into blood. PMID:28806752
The ESCRT-III pathway facilitates cardiomyocyte release of cBIN1-containing microparticles.
Xu, Bing; Fu, Ying; Liu, Yan; Agvanian, Sosse; Wirka, Robert C; Baum, Rachel; Zhou, Kang; Shaw, Robin M; Hong, TingTing
2017-08-01
Microparticles (MPs) are cell-cell communication vesicles derived from the cell surface plasma membrane, although they are not known to originate from cardiac ventricular muscle. In ventricular cardiomyocytes, the membrane deformation protein cardiac bridging integrator 1 (cBIN1 or BIN1+13+17) creates transverse-tubule (t-tubule) membrane microfolds, which facilitate ion channel trafficking and modulate local ionic concentrations. The microfold-generated microdomains continuously reorganize, adapting in response to stress to modulate the calcium signaling apparatus. We explored the possibility that cBIN1-microfolds are externally released from cardiomyocytes. Using electron microscopy imaging with immunogold labeling, we found in mouse plasma that cBIN1 exists in membrane vesicles about 200 nm in size, which is consistent with the size of MPs. In mice with cardiac-specific heterozygous Bin1 deletion, flow cytometry identified 47% less cBIN1-MPs in plasma, supporting cardiac origin. Cardiac release was also evidenced by the detection of cBIN1-MPs in medium bathing a pure population of isolated adult mouse cardiomyocytes. In human plasma, osmotic shock increased cBIN1 detection by enzyme-linked immunosorbent assay (ELISA), and cBIN1 level decreased in humans with heart failure, a condition with reduced cardiac muscle cBIN1, both of which support cBIN1 release in MPs from human hearts. Exploring putative mechanisms of MP release, we found that the membrane fission complex endosomal sorting complexes required for transport (ESCRT)-III subunit charged multivesicular body protein 4B (CHMP4B) colocalizes and coimmunoprecipitates with cBIN1, an interaction enhanced by actin stabilization. In HeLa cells with cBIN1 overexpression, knockdown of CHMP4B reduced the release of cBIN1-MPs. Using truncation mutants, we identified that the N-terminal BAR (N-BAR) domain in cBIN1 is required for CHMP4B binding and MP release. This study links the BAR protein superfamily to the ESCRT pathway for MP biogenesis in mammalian cardiac ventricular cells, identifying elements of a pathway by which cytoplasmic cBIN1 is released into blood.
Multivesicular bodies: co-ordinated progression to maturity
Woodman, Philip G; Futter, Clare E
2008-01-01
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB. PMID:18502633
Controlled exosome release from the retinal pigment epithelium in situ.
Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S
2014-12-01
Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina
2017-01-01
Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1 of lymphocytes was important for inducing the release of sequestered HIV-1 from epithelial cells and facilitating cell-to-cell spread of virus from epithelial cells to lymphocytes. This mechanism may serve as a pathway of HIV-1 mucosal transmission. PMID:28241053
Salivary Exosomes: Emerging Roles in Systemic Disease
Han, Yineng; Jia, Lingfei; Zheng, Yunfei; Li, Weiran
2018-01-01
Saliva, which contains biological information, is considered a valuable diagnostic tool for local and systemic diseases and conditions because, similar to blood, it contains important molecules like DNA, RNA, and proteins. Exosomes are cell-derived vesicles 30-100 nm in diameter with substantial biological functions, including intracellular communication and signalling. These vesicles, which are present in bodily fluids, including saliva, are released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. Salivary diagnosis has notable advantages, which include noninvasiveness, ease of collection, absence of coagulation, and a similar content as plasma, as well as increased patient compliance compared to other diagnostic approaches. However, investigation of the roles of salivary exosomes is still in its early years. In this review, we first describe the characteristics of endocytosis and secretion of salivary exosomes, as well as database and bioinformatics analysis of exosomes. Then, we describe strategies for the isolation of exosomes from human saliva and the emerging role of salivary exosomes as potential biomarkers of oral and other systemic diseases. Given the ever-growing role of salivary exosomes, defining their functions and understanding their specific mechanisms will provide novel insights into possible applications of salivary exosomes in the diagnosis and treatment of systemic diseases. PMID:29904278
Jin, H; Wu, Y; Tan, X
2017-08-01
Pancreatic cancer is one of the most deadly cancers, with dismal prognosis due to its poor early detection rate and high metastatic rate. Thus, elucidation of the molecular mechanisms accounting for its metastasis and discovery of competent biomarkers is required. Exosomes are multivesicular body-derived small extracellular vesicles released by various cell types that serve as important message carriers during intercellular communication. They are also known to play critical roles during cancer-genesis, cancer-related immune reactions, and metastasis. They also possess promising potential as novel biomarkers for cancer early detection. Therefore, extensive studies on pancreatic cancer-derived exosomes are currently being performed because they hold the promising potential of elevating the overall survival rate of patients with pancreatic cancer. In the present review, we focus on the role of exosomes in pancreatic cancer-related immune reactions, metastasis, and complications, and on their potential application as pancreatic cancer biomarkers.
Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J.; Brennan, Gerard P.; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P.; Robinson, Mark W.
2015-01-01
Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular “machinery” required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack. PMID:26486420
Red blood cell vesiculation in hereditary hemolytic anemia
Alaarg, Amr; Schiffelers, Raymond M.; van Solinge, Wouter W.; van Wijk, Richard
2013-01-01
Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias. PMID:24379786
Coonrod, Emily M; Stevens, Tom H
2010-12-01
In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this "class E compartment" contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.
Koenig, Renate; Lesemann, Dietrich-Eckhardt; Pfeilstetter, Ernst
2009-01-01
Five new isolates of carnation Italian ringspot virus (CIRV) from cherry trees, Gypsophila and surface water differ from the original carnation isolate (CIRV-car) and also from Pelargonium necrotic spot virus (PelNSV) by having an ORF 1/ORF1-RT with a typical tombusvirus-like 5'end and by inducing the formation of peroxisome- rather than mitochondrion-derived multivesicular bodies (MVBs). This supports with natural isolates earlier conclusions reached by others with artificially produced hybrid viruses that the 5'end of ORF 1 determines from which organelle the MBVs will be derived. CIRV-car might have resulted from a natural recombination event with genome elements of a PelNSV-like virus.
FERRARI, C. C.; CARMANCHAHI, P. D.; ALDANA MARCOS, H. J.; AFFANNI, J. M.
2000-01-01
The ultrastructure of the olfactory mucosa of the armadillo Dasypus hybridus was studied. A comparison with the olfactory mucosa of another armadillo (Chaetophractus villosus) was made. The olfactory mucosa of D. hybridus shows many features which are similar to those of other mammals. Interestingly, it differs from the olfactory mucosa of the armadillo C. villosus. A suggestion is made that these differences may be due to differences in the digging habits of these species. In Dasypus, the supporting cells (SCs) showed dense vacuoles, multivesicular bodies and lysosome-like bodies probably related with the endocytotic system. The SCs show a dense network of SER presumably associated with xenobiotic mechanisms. The olfactory receptor neurons exhibit lysosome-like bodies and multivesicular bodies in their perikarya. These organelles suggest the presence of an endocytotic system. Duct cells of Bowman's glands exhibit secretory activities. Bowman's glands are compound-branched tubulo-acinar mixed glands with merocrine secretory mechanisms. PMID:10739023
Ultrastructural observations of previtellogenic ovarian follicles of dove.
Zarnescu, Otilia
2004-11-01
Dove ovarian follicle is a complex structure composed of oocyte surrounded by a somatic compartment consisting of theca externa, theca interna and granulosa. The structure of ovarian follicle (1 and 2 mm) of dove was studied by electron microscopy. The granulosa was pseudostratified in the 1-mm-diameter follicles and stratified with two or three irregular rows of cells in the 2-mm-diameter follicles. In the larger follicle indentations between oocyte and granulosa cells become more numerous and the microvilli of granulosa cell elongated to form a zona radiata with similarly elongated oocyte microvilli. Lining bodies were present at the tips of granulosa microvilli and in the cortical region of the oocyte. In the oocyte cortex were observed coated pits, coated vesicles, dense tubules, multivesicular bodies and primordial yolk spheres. Primordial yolk spheres may contain lining bodies and were observed fused with dense tubules and multivesicular bodies or associated with smooth cisternae.
Biogenesis and Function of Multivesicular Bodies
Piper, Robert C.; Katzmann, David J.
2010-01-01
The two major cellular sites for membrane protein degradation are the proteasome and the lysosome. Ubiquitin attachment is a sorting signal for both degradation routes. For lysosomal degradation, ubiquitination triggers the sorting of cargo proteins into the lumen of late endosomal multivesicular bodies (MVBs)/endosomes. MVB formation occurs when a portion of the limiting membrane of an endosome invaginates and buds into its own lumen. Intralumenal vesicles are degraded when MVBs fuse to lysosomes. The proper delivery of proteins to the MVB interior relies on specific ubiquitination of cargo, recognition and sorting of ubiquitinated cargo to endosomal subdomains, and the formation and scission of cargo-filled intralumenal vesicles. Over the past five years, a number of proteins that may directly participate in these aspects of MVB function and biogenesis have been identified. However, major questions remain as to exactly what these proteins do at the molecular level and how they may accomplish these tasks. PMID:17506697
Mullin, Kylie A.; Foth, Bernardo J.; Ilgoutz, Steven C.; Callaghan, Judy M.; Zawadzki, Jody L.; McFadden, Geoffrey I.; McConville, Malcolm J.
2001-01-01
The cell surface of the human parasite Leishmania mexicana is coated with glycosylphosphatidylinositol (GPI)-anchored macromolecules and free GPI glycolipids. We have investigated the intracellular trafficking of green fluorescent protein- and hemagglutinin-tagged forms of dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis in L. mexicana promastigotes. These functionally active chimeras are found in the same subcompartment of the endoplasmic reticulum (ER) as endogenous DPMS but are degraded as logarithmically growing promastigotes reach stationary phase, coincident with the down-regulation of endogenous DPMS activity and GPI biosynthesis in these cells. We provide evidence that these chimeras are constitutively transported to and degraded in a novel multivesicular tubule (MVT) lysosome. This organelle is a terminal lysosome, which is labeled with the endocytic marker FM 4-64, contains lysosomal cysteine and serine proteases and is disrupted by lysomorphotropic agents. Electron microscopy and subcellular fractionation studies suggest that the DPMS chimeras are transported from the ER to the lumen of the MVT via the Golgi apparatus and a population of 200-nm multivesicular bodies. In contrast, soluble ER proteins are not detectably transported to the MVT lysosome in either log or stationary phase promastigotes. Finally, the increased degradation of the DPMS chimeras in stationary phase promastigotes coincides with an increase in the lytic capacity of the MVT lysosome and changes in the morphology of this organelle. We conclude that lysosomal degradation of DPMS may be important in regulating the cellular levels of this enzyme and the stage-dependent biosynthesis of the major surface glycolipids of these parasites. PMID:11514622
Qu, Yan; Dubyak, George R
2009-06-01
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.
Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D; Katsaras, John; Atkinson, Jeffrey
2015-03-01
Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. We examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptist, Matilda; Panagabko, Candace; Nickels, Jonathan D.
2015-01-21
Previous work revealed that α-tocopherol transfer protein (α-TTP) co-localizes with bis(monoacylglycero)phosphate (BMP) in late endosomes. BMP is a lipid unique to late endosomes and is believed to induce membrane curvature and support the multivesicular nature of this organelle. In this paper, we examined the effect of BMP on α-TTP binding to membranes using dual polarization interferometry and vesicle-binding assay. α-TTP binding to membranes is increased by the curvature-inducing lipid BMP. Finally, α-TTP binds to membranes with greater affinity when they contain the 2,2'-BMP versus 3,1'-BMP isomers.
Nabhan, Joseph F; Hu, Ruoxi; Oh, Raymond S; Cohen, Stanley N; Lu, Quan
2012-03-13
Mammalian cells are capable of delivering multiple types of membrane capsules extracellularly. The limiting membrane of late endosomes can fuse with the plasma membrane, leading to the extracellular release of multivesicular bodies (MVBs), initially contained within the endosomes, as exosomes. Budding viruses exploit the TSG101 protein and endosomal sorting complex required for transport (ESCRT) machinery used for MVB formation to mediate the egress of viral particles from host cells. Here we report the discovery of a virus-independent cellular process that generates microvesicles that are distinct from exosomes and which, like budding viruses, are produced by direct plasma membrane budding. Such budding is driven by a specific interaction of TSG101 with a tetrapeptide PSAP motif of an accessory protein, arrestin domain-containing protein 1 (ARRDC1), which we show is localized to the plasma membrane through its arrestin domain. This interaction results in relocation of TSG101 from endosomes to the plasma membrane and mediates the release of microvesicles that contain TSG101, ARRDC1, and other cellular proteins. Unlike exosomes, which are derived from MVBs, ARRDC1-mediated microvesicles (ARMMs) lack known late endosomal markers. ARMMs formation requires VPS4 ATPase and is enhanced by the E3 ligase WWP2, which interacts with and ubiquitinates ARRDC1. ARRDC1 protein discharged into ARMMs was observed in co-cultured cells, suggesting a role for ARMMs in intercellular communication. Our findings reveal an intrinsic cellular mechanism that results in direct budding of microvesicles from the plasma membrane, providing a formal paradigm for the evolutionary recruitment of ESCRT proteins in the release of budding viruses.
Pashkova, Natasha; Gakhar, Lokesh; Winistorfer, Stanley; Sunshine, Anna B.; Rich, Matthew; Dunham, Maitreya J.; Yu, Liping; Piper, Robert
2013-01-01
SUMMARY Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the ESCRT apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargos. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargos. PMID:23726974
MITD1 is recruited to midbodies by ESCRT-III and participates in cytokinesis
Lee, Seongju; Chang, Jaerak; Renvoisé, Benoît; Tipirneni, Anita; Yang, Sarah; Blackstone, Craig
2012-01-01
Diverse cellular processes, including multivesicular body formation, cytokinesis, and viral budding, require the sequential functions of endosomal sorting complexes required for transport (ESCRTs) 0 to III. Of these multiprotein complexes, ESCRT-III in particular plays a key role in mediating membrane fission events by forming large, ring-like helical arrays. A number of proteins playing key effector roles, most notably the ATPase associated with diverse cellular activities protein VPS4, harbor present in microtubule-interacting and trafficking molecules (MIT) domains comprising asymmetric three-helical bundles, which interact with helical MIT-interacting motifs in ESCRT-III subunits. Here we assess comprehensively the ESCRT-III interactions of the MIT-domain family member MITD1 and identify strong interactions with charged multivesicular body protein 1B (CHMP1B), CHMP2A, and increased sodium tolerance-1 (IST1). We show that these ESCRT-III subunits are important for the recruitment of MITD1 to the midbody and that MITD1 participates in the abscission phase of cytokinesis. MITD1 also dimerizes through its C-terminal domain. Both types of interactions appear important for the role of MITD1 in negatively regulating the interaction of IST1 with VPS4. Because IST1 binding in turn regulates VPS4, MITD1 may function through downstream effects on the activity of VPS4, which plays a critical role in the processing and remodeling of ESCRT filaments in abscission. PMID:23015756
Intracellular trafficking of silicon particles and logic-embedded vectors
NASA Astrophysics Data System (ADS)
Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.
2010-08-01
Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments.Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. Electronic supplementary information (ESI) available: Confocal microscopy image showing internalized negative particles, and movie of the intracellular migration of silicon particles. See DOI: 10.1039/c0nr00227e
Ultrastructural pathology of cortical capillary pericytes in human traumatic brain oedema.
Castejón, Orlando J
2011-01-01
In human traumatic brain oedema pericytes exhibit remarkable oedematous changes, increased vacuolar and vesicular transport, transient transpericytal channels, and tubular structures demonstrating pericyte brain barrier dysfunction. They show nuclear invaginations, actin and myosin-like filaments, and coupled interaction with endothelial cells through the macula occludens. Some pericytes display hypertrophic and necrotic changes, and phagocytic capacity. Hypertrophic pericytes induce basement membrane splitting. Degenerated pericytes exhibit lacunar enlargement of endoplasmic reticulum, dense osmiophilic bodies, glycogen granules, vacuolization, oedematous Golgi apparatus, and pleomorphic mitochondria. Certain micropinocytotic vesicles are orientated to the Golgi complex and multivesicular bodies, suggesting that pericytes play some role in oedema resolution.
Wang, Fei; Yang, Yan; Wang, Zhe; Zhou, Jie; Fan, Baofang; Chen, Zhixiang
2015-01-01
Multivesicular bodies (MVBs) are unique endosomes containing vesicles in the lumen and play critical roles in many cellular processes. We have recently shown that Arabidopsis (Arabidopsis thaliana) Lyst-Interacting Protein5 (LIP5), a positive regulator of the Suppressor of K+ Transport Growth Defect1 (SKD1) AAA ATPase in MVB biogenesis, is a critical target of the mitogen-activated protein kinases MPK3 and MPK6 and plays an important role in the plant immune system. In this study, we report that the LIP5-regulated MVB pathway also plays a critical role in plant responses to abiotic stresses. Disruption of LIP5 causes compromised tolerance to both heat and salt stresses. The critical role of LIP5 in plant tolerance to abiotic stresses is dependent on its ability to interact with Suppressor of K+ Transport Growth Defect1. When compared with wild-type plants, lip5 mutants accumulate increased levels of ubiquitinated protein aggregates and NaCl under heat and salt stresses, respectively. Further analysis using fluorescent dye and MVB markers reveals that abiotic stress increases the formation of endocytic vesicles and MVBs in a largely LIP5-dependent manner. LIP5 is also required for the salt-induced increase of intracellular reactive oxygen species, which have been implicated in signaling of salt stress responses. Basal levels of LIP5 phosphorylation by MPKs and the stability of LIP5 are elevated by salt stress, and mutation of MPK phosphorylation sites in LIP5 reduces the stability and compromises the ability to complement the lip5 salt-sensitive mutant phenotype. These results collectively indicate that the MVB pathway is positively regulated by pathogen/stress-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in broad plant responses to biotic and abiotic stresses. PMID:26229051
NASA Astrophysics Data System (ADS)
Poeter, Michaela; Brandherm, Ines; Rossaint, Jan; Rosso, Gonzalo; Shahin, Victor; Skryabin, Boris V.; Zarbock, Alexander; Gerke, Volker; Rescher, Ursula
2014-04-01
To enable leukocyte adhesion to activated endothelium, the leukocyte receptor P-selectin is released from Weibel-Palade bodies (WPB) to the endothelial cell surface where it is stabilized by CD63. Here we report that loss of annexin A8 (anxA8) in human umbilical vein endothelial cells (HUVEC) strongly decreases cell surface presentation of CD63 and P-selectin, with a concomitant reduction in leukocyte rolling and adhesion. We confirm the compromised leukocyte adhesiveness in inflammatory-activated endothelial venules of anxA8-deficient mice. We find that WPB of anxA8-deficient HUVEC contain less CD63, and that this is caused by improper transport of CD63 from late multivesicular endosomes to WPB, with CD63 being retained in intraluminal vesicles. Consequently, reduced CD63 cell surface levels are seen following WPB exocytosis, resulting in enhanced P-selectin re-internalization. Our data support a model in which anxA8 affects leukocyte recruitment to activated endothelial cells by supplying WPB with sufficient amounts of the P-selectin regulator CD63.
Heat shock protein-containing exosomes in mid-trimester amniotic fluids.
Asea, Alexzander; Jean-Pierre, Claudel; Kaur, Punit; Rao, Preethi; Linhares, Iara M; Skupski, Daniel; Witkin, Steven S
2008-10-01
Exosomes are multivesicular bodies formed by inverse membrane budding into the lumen of an endocytic compartment. Fusion with the plasma membrane leads to their release into the external milieu. The incorporation of heat shock proteins into exosomes has been associated with immune regulatory activity. We have examined whether heat shock protein-containing exosomes are present in mid-trimester amniotic fluid. Exosomes were isolated from mid-trimester amniotic fluids by sequential low-speed and high-speed centrifugation followed by sucrose density gradient centrifugation. Biochemical characterization included floatation pattern in sucrose gradients, acetylcholinesterase (AChE) activity and Western blot analysis for exosome-containing proteins. Exosomes were present in each of 23 amniotic fluids tested. They banded at a density of 1.17g/ml in sucrose gradients, were positive for AChE activity and contained tubulin, the inducible 72kDa heat shock protein, Hsp72 and the constitutively expressed heat shock protein, Hsc73; they were negative for calnexin. Exosome concentrations correlated positively with the number of pregnancies. Heat shock protein-containing exosomes are constituents of mid-trimester amniotic fluids and may contribute to immune regulation within the amniotic cavity.
Theos, Alexander C.; Watt, Brenda; Harper, Dawn C.; Janczura, Karolina J.; Theos, Sarah C.; Herman, Kathryn E.; Marks, Michael S.
2013-01-01
SUMMARY Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its PKD domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB, and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis. PMID:23452376
Karim, Mahmoud Abdul; Samyn, Dieter Ronny; Mattie, Sevan; Brett, Christopher Leonard
2018-02-01
When marked for degradation, surface receptor and transporter proteins are internalized and delivered to endosomes where they are packaged into intralumenal vesicles (ILVs). Many rounds of ILV formation create multivesicular bodies (MVBs) that fuse with lysosomes exposing ILVs to hydrolases for catabolism. Despite being critical for protein degradation, the molecular underpinnings of MVB-lysosome fusion remain unclear, although machinery underlying other lysosome fusion events is implicated. But how then is specificity conferred? And how is MVB maturation and fusion coordinated for efficient protein degradation? To address these questions, we developed a cell-free MVB-lysosome fusion assay using Saccharomyces cerevisiae as a model. After confirming that the Rab7 ortholog Ypt7 and the multisubunit tethering complex HOPS (homotypic fusion and vacuole protein sorting complex) are required, we found that the Qa-SNARE Pep12 distinguishes this event from homotypic lysosome fusion. Mutations that impair MVB maturation block fusion by preventing Ypt7 activation, confirming that a Rab-cascade mechanism harmonizes MVB maturation with lysosome fusion. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Intracellular Trafficking of Silicon Particles and Logic-Embedded Vectors
Ferrati, Silvia; Mack, Aaron; Chiappini, Ciro; Liu, Xuewu; Bean, Andrew J.; Ferrari, Mauro; Serda, Rita E.
2010-01-01
Mesoporous silicon particles show great promise for use in drug delivery and imaging applications as carriers for second-stage nanoparticles and higher order particles or therapeutics. Modulation of particle geometry, surface chemistry, and porosity allows silicon particles to be optimized for specific applications such as vascular targeting and avoidance of biological barriers commonly found between the site of drug injection and the final destination. In this study, the intracellular trafficking of unloaded carrier silicon particles and carrier particles loaded with secondary iron oxide nanoparticles was investigated. Following cellular uptake, membrane-encapsulated silicon particles migrated to the perinuclear region of the cell by a microtubule-driven mechanism. Surface charge, shape (spherical and hemispherical) and size (1.6 and 3.2 μm) of the particle did not alter the rate of migration. Maturation of the phagosome was associated with an increase in acidity and acquisition of markers of late endosomes and lysosomes. Cellular uptake of iron oxide nanoparticle-loaded silicon particles resulted in sorting of the particles and trafficking to unique destinations. The silicon carriers remained localized in phagosomes, while the second stage iron oxide nanoparticles were sorted into multi-vesicular bodies that dissociated from the phagosome into novel membrane-bound compartments. Release of iron from the cells may represent exocytosis of iron oxide nanoparticle-loaded vesicles. These results reinforce the concept of multi-functional nanocarriers, in which different particles are able to perform specific tasks, in order to deliver single- or multi-component payloads to specific sub-cellular compartments. PMID:20820744
Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?
Bellingham, Shayne A; Guo, Belinda B; Coleman, Bradley M; Hill, Andrew F
2012-01-01
Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP) which is associated with Alzheimer's disease. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I and alpha-synuclein (involved in amyotrophic lateral sclerosis and Parkinson's disease, respectively) are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics, and diagnostics for these diseases.
Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E; Joshi, Virendra; Salomon, Carlos
2017-03-07
Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (~150-1000 nm) and exosomes (~40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a 'fingerprint' of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression.
Liposomal bupivacaine and clinical outcomes.
Tong, Yi Cai Isaac; Kaye, Alan David; Urman, Richard D
2014-03-01
In the multimodal approach to the management of postoperative pain, local infiltration and regional blocks have been increasingly utilized for pain control. One of the limitations of local anesthetics in the postoperative setting is its relatively short duration of action. Multivesicular liposomes containing bupivacaine have been increasingly utilized for their increased duration of action. Compared with bupivacaine HCl, local infiltration of liposomal bupivacaine has shown to have an increase in duration of action and causes delay in peak plasma concentration. In this article, we attempt to review the clinical literature surrounding liposomal bupivacaine and its evolving role in perioperative analgesia. This new bupivacaine formation may have promising implications in postoperative pain control, resulting in increased patient satisfaction and a decrease in both hospital stay and opioid-induced adverse events (AEs). Although more studies are needed, the preliminary clinical trials suggest that liposomal bupivacaine has predictable pharmacokinetics, a similar side effect profile compared with bupivacaine HCl, and is effective in providing increased postoperative pain control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schauflinger, Martin; Fischer, Daniela; Schreiber, Andreas; Chevillotte, Meike; Walther, Paul; Mertens, Thomas; von Einem, Jens
2011-01-01
Morphogenesis of human cytomegalovirus (HCMV) is still only partially understood. We have characterized the role of HCMV tegument protein pUL71 in viral replication and morphogenesis. By using a rabbit antibody raised against the C terminus of pUL71, we could detect the protein in infected cells, as well as in virions showing a molecular mass of approximately 48 kDa. The expression of pUL71, detected as early as 48 h postinfection, was not blocked by the antiviral drug foscarnet, indicating an early expression. The role of pUL71 during virus replication was investigated by construction and analysis of a UL71 stop mutant (TBstop71). The mutant could be reconstituted on noncomplementing cells proving that pUL71 is nonessential for virus replication in human fibroblasts. However, the inhibition of pUL71 expression resulted in a severe growth defect, as reflected by an up to 16-fold reduced extracellular virus yield after a high-multiplicity infection and a small-plaque phenotype. Ultrastructural analysis of cells infected with TBstop71 virus revealed an increased number of nonenveloped nucleocapsids in the cytoplasm, many of them at different stages of envelopment, indicating that final envelopment of nucleocapsids in the cytoplasm was affected. In addition, enlarged multivesicular bodies (MVBs) were found in close proximity to the viral assembly compartment, suggesting that pUL71 affects MVBs during virus infection. The observation of numerous TBstop71 virus particles attached to MVB membranes and budding processes into MVBs indicated that these membranes can be used for final envelopment of HCMV. PMID:21289123
Gambarte Tudela, Julian; Capmany, Anahi; Romao, Maryse; Quintero, Cristian; Miserey-Lenkei, Stephanie; Raposo, Graca; Goud, Bruno; Damiani, Maria Teresa
2015-08-15
Given their obligate intracellular lifestyle, Chlamydia trachomatis ensure that they have access to multiple host sources of essential lipids by interfering with vesicular transport. These bacteria hijack Rab6-, Rab11- and Rab14-controlled trafficking pathways to acquire sphingomyelin from the Golgi complex. Another important source of sphingolipids, phospholipids and cholesterol are multivesicular bodies (MVBs). Despite their participation in chlamydial inclusion development and bacterial replication, the molecular mechanisms mediating the interaction between MVBs and chlamydial inclusions remain unknown. In the present study, we demonstrate that Rab39a labels a subset of late endocytic vesicles - mainly MVBs - that move along microtubules. Moreover, Rab39a is actively recruited to chlamydial inclusions throughout the pathogen life cycle by a bacterial-driven process that depends on the Rab39a GTP- or GDP-binding state. Interestingly, Rab39a participates in the delivery of MVBs and host sphingolipids to maturing chlamydial inclusions, thereby promoting inclusion growth and bacterial development. Taken together, our findings indicate that Rab39a favours chlamydial replication and infectivity. This is the first report showing that a late endocytic Rab GTPase is involved in chlamydial infection development. © 2015. Published by The Company of Biologists Ltd.
Liang, Sihui; Liang, Ruihong; Zhou, Xiaogang; Chen, Zhixiong; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Yuan, Can; Miyamoto, Koji; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Wang, Wenming; Wu, Xianjun; Yamane, Hisakazu; Zhu, Lihuang; Li, Shigui; Chen, Xuewei
2016-01-01
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. PMID:27618555
NASA Astrophysics Data System (ADS)
Hiraki, Toshiki; Usui, Keiko; Abe, Fumiyoshi
2010-12-01
Tryptophan uptake in yeast Saccharomyces cerevisiae is susceptible to high hydrostatic pressure and it limits the growth of tryptophan auxotrophic (Trp-) strains under pressures of 15-25 MPa. The susceptibility of tryptophan uptake is accounted for by the pressure-induced degradation of tryptophan permease Tat2 occurring in a Rsp5 ubiquitin ligase-dependent manner. Ear1 and Ssh4 are multivesicular body proteins that physically interact with Rsp5. We found that overexpression of either of the EAR1 or SSH4 genes enabled the Trp- cells to grow at 15-25 MPa. EAR1 and SSH4 appeared to provide stability to the Tat2 protein when overexpressed. The result suggests that Ear1 and Ssh4 negatively regulate Rsp5 on ubiquitination of Tat2. Currently, high hydrostatic pressure is widely used in bioscience and biotechnology for structurally perturbing macromolecules such as proteins and lipids or in food processing and sterilizing microbes. We suggest that hydrostatic pressure is an operative experimental parameter to screen yeast genes specifically for regulation of Tat2 through the function of Rsp5 ubiquitin ligase.
Cell-Free Reconstitution of Multivesicular Body Formation and Receptor Sorting
Sun, Wei; Vida, Thomas A.; Sirisaengtaksin, Natalie; Merrill, Samuel A.; Hanson, Phyllis I.; Bean, Andrew J.
2010-01-01
The number of surface membrane proteins and their residence time on the plasma membrane are critical determinants of cellular responses to cues that can control plasticity, growth and differentiation. After internalization, the ultimate fate of many plasma membrane proteins is dependent on whether they are sorted for internalization into the lumenal vesicles of multivesicular bodies (MVBs), an obligate step prior to lysosomal degradation. To help to elucidate the mechanisms underlying MVB sorting, we have developed a novel cell-free assay that reconstitutes the sorting of a prototypical membrane protein, the epidermal growth factor receptor, with which we have probed some of its molecular requirements. The sorting event measured is dependent on cytosol, ATP, time, temperature and an intact proton gradient. Depletion of Hrs inhibited biochemical and morphological measures of sorting that were rescued by inclusion of recombinant Hrs in the assay. Moreover, depletion of signal-transducing adaptor molecule (STAM), or addition of mutated ATPase-deficient Vps4, also inhibited sorting. This assay reconstitutes the maturation of late endosomes, including the formation of internal vesicles and the sorting of a membrane protein, and allows biochemical investigation of this process. PMID:20214752
Hurbain, Ilse; Geerts, Willie J. C.; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J.; Marks, Michael S.; Raposo, Graç
2008-01-01
Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models. PMID:19033461
Hurbain, Ilse; Geerts, Willie J C; Boudier, Thomas; Marco, Sergio; Verkleij, Arie J; Marks, Michael S; Raposo, Graç
2008-12-16
Melanosomes are lysosome-related organelles (LROs) in which melanins are synthesized and stored. Early stage melanosomes are characterized morphologically by intralumenal fibrils upon which melanins are deposited in later stages. The integral membrane protein Pmel17 is a component of the fibrils, can nucleate fibril formation in the absence of other pigment cell-specific proteins, and forms amyloid-like fibrils in vitro. Before fibril formation Pmel17 traffics through multivesicular endosomal compartments, but how these compartments participate in downstream events leading to fibril formation is not fully known. By using high-pressure freezing of MNT-1 melanoma cells and freeze substitution to optimize ultrastructural preservation followed by double tilt 3D electron tomography, we show that the amyloid-like fibrils begin to form in multivesicular compartments, where they radiate from the luminal side of intralumenal membrane vesicles. The fibrils in fully formed stage II premelanosomes organize into sheet-like arrays and exclude the remaining intralumenal vesicles, which are smaller and often in continuity with the limiting membrane. These observations indicate that premelanosome fibrils form in association with intralumenal endosomal membranes. We suggest that similar processes regulate amyloid formation in pathological models.
Bupivacaine Versus Liposomal Bupivacaine For Pain Control.
Beiranvand, Siavash; Moradkhani, Mahmoud Reza
2017-11-06
Local infiltrations and regional blocks have been some of the effective ways employed to manage and control post-operative pain. One of the limitations of administration of local anesthesia drugs in post-operative conditions is its inability to act for a longer period of time. Multi-vesicular liposomes made up of bupivacaine have been progressively used for their increased duration of action. Compared to bupivacaine HCL, local infiltration of liposomal bupivacaine have shown to have a significantly increase the duration and delay in peak plasma concentration. In this article, we attempt to compare liposomal bupivacaine and bupivacaine based on available clinical literatures. Liposomal bupivacaine has been demonstrated to have promising implications in post- operative pain control resulting in increased patient satisfaction; reduced hospital admission and opioid induced adverse events. Clinical studies have identified liposomal bupivacaine to be effective in delivering increased post-operative pain control. The purpose of this review is to give a comprehensive comparison between bupivacaine liposomal and conventional bupivacaine based on reported clinical trials. © Georg Thieme Verlag KG Stuttgart · New York.
Revisiting caveolin trafficking: the end of the caveosome
Howes, Mark T.
2010-01-01
In this issue, a study by Hayer et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003086) provides insights into the trafficking of caveolins, the major membrane proteins of caveolae. As well as providing evidence for ubiquitin-mediated endosomal sorting and degradation of caveolin in multivesicular bodies (MVBs), the new findings question the existence of a unique organelle proposed nine years ago, the caveosome. PMID:21041440
Hu, Baoying; Jiang, Dawei; Chen, Yuyan; Wei, Lixian; Zhang, Shusen; Zhao, Fengbo; Ni, Runzhou; Lu, Cuihua; Wan, Chunhua
2015-04-01
Charged multivesicular body protein 4B (CHMP4B), a subunit of the endosomal sorting complex required for transport (ESCRT)-III complex, plays an important part in cytokinetic membrane abscission and the late stage of mitotic cell division. In this study, we explored the prognostic significance of CHMP4B in human hepatocellular carcinoma (HCC) and its impact on the physiology of HCC cells. Western blot and immunohistochemistrical analyses showed that CHMP4B was significantly upregulated in HCC tissues, compared with adjacent non-tumorous tissues. Meanwhile, clinicopathological analysis revealed that high CHMP4B expression was correlated with multiple clinicopathological variables, including AFP, cirrhosis, AJCC stage, Ki-67 expression, and poor prognosis. More importantly, univariate and multivariate survival analyses demonstrated that CHMP4B served as an independent prognostic factor for survival of HCC patients. Using HCC cell cultures, we found that the expression of CHMP4B was progressively upregulated after the release from serum starvation. To verify whether CHMP4B could regulate the proliferation of HCC cells, CHMP4B was knocked down through the transfection of CHMP4B-siRNA oligos. Flow cytometry and CCK-8 assays indicated that interference of CHMP4B led to cell cycle arrest and proliferative impairment of HCC cells. Additionally, depletion of CHMP4B expression could increase the sensitivity to doxorubicin in HepG2 and Huh7 cells. Taken together, our results implied that CHMP4B could be a promising prognostic biomarker as well as a potential therapeutic target of HCC.
Nuzhat, Zarin; Kinhal, Vyjayanthi; Sharma, Shayna; Rice, Gregory E.; Joshi, Virendra; Salomon, Carlos
2017-01-01
Pancreatic cancer is the fourth most common cause of death due to cancer in the world. It is known to have a poor prognosis, mostly because early stages of the disease are generally asymptomatic. Progress in pancreatic cancer research has been slow, leaving several fundamental questions pertaining to diagnosis and treatment unanswered. Recent studies highlight the putative utility of tissue-specific vesicles (i.e. extracellular vesicles) in the diagnosis of disease onset and treatment monitoring in pancreatic cancer. Extracellular vesicles are membrane-limited structures derived from the cell membrane. They contain specific molecules including proteins, mRNA, microRNAs and non-coding RNAs that are secreted in the extracellular space. Extracellular vesicles can be classified according to their size and/or origin into microvesicles (∼150-1000 nm) and exosomes (∼40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosomes are released via the endocytic pathway by fusion of multivesicular bodies with the plasmatic membrane. This endosomal origin means that exosomes contain an abundance of cell-specific biomolecules which may act as a fingerprint of the cell of origin. In this review, we discuss our current knowledge in the diagnosis and treatment of pancreatic cancer, particularly the potential role of EVs in these facets of disease management. In particular, we suggest that as exosomes contain cellular protein and RNA molecules in a cell type-specific manner, they may provide extensive information about the signature of the tumour and pancreatic cancer progression. PMID:27999198
Chin, Christopher R.; Savidis, George; Brass, Abraham L.; Melikyan, Gregory B.
2014-01-01
Interferon-induced transmembrane proteins (IFITMs) inhibit infection of diverse enveloped viruses, including the influenza A virus (IAV) which is thought to enter from late endosomes. Recent evidence suggests that IFITMs block virus hemifusion (lipid mixing in the absence of viral content release) by altering the properties of cell membranes. Consistent with this mechanism, excess cholesterol in late endosomes of IFITM-expressing cells has been reported to inhibit IAV entry. Here, we examined IAV restriction by IFITM3 protein using direct virus-cell fusion assay and single virus imaging in live cells. IFITM3 over-expression did not inhibit lipid mixing, but abrogated the release of viral content into the cytoplasm. Although late endosomes of IFITM3-expressing cells accumulated cholesterol, other interventions leading to aberrantly high levels of this lipid did not inhibit virus fusion. These results imply that excess cholesterol in late endosomes is not the mechanism by which IFITM3 inhibits the transition from hemifusion to full fusion. The IFITM3's ability to block fusion pore formation at a post-hemifusion stage shows that this protein stabilizes the cytoplasmic leaflet of endosomal membranes without adversely affecting the lumenal leaflet. We propose that IFITM3 interferes with pore formation either directly, through partitioning into the cytoplasmic leaflet of a hemifusion intermediate, or indirectly, by modulating the lipid/protein composition of this leaflet. Alternatively, IFITM3 may redirect IAV fusion to a non-productive pathway, perhaps by promoting fusion with intralumenal vesicles within multivesicular bodies/late endosomes. PMID:24699674
The balance of protein expression and degradation: an ESCRTs point of view.
Babst, Markus; Odorizzi, Greg
2013-08-01
Endosomal sorting complexes required for transport (ESCRTs) execute the biogenesis of late endosomal multivesicular bodies (MVBs). The ESCRT pathway has traditionally been viewed as a means by which transmembrane proteins are degraded in vacuoles/lysosomes. More recent studies aimed at understanding the broader functions of ESCRTs have uncovered unexpected links with pathways that control cellular metabolism. Central to this communication is TORC1, the kinase complex that controls many of the catabolic and anabolic systems. The connection between TORC1 activity and ESCRTs allows cells to quickly adapt to the stress of nutrient limitations until the longer-term autophagic pathway is activated. Increasing evidence also points to ESCRTs regulating RNA interference (RNAi) pathways that control translation. Copyright © 2013 Elsevier Ltd. All rights reserved.
1985-01-01
Hepatocytes of estradiol-treated rats, which express many low density lipoprotein receptors, rapidly accumulate intravenously injected low density lipoprotein in multivesicular bodies (MVBs). We have isolated MVBs and Golgi apparatus fractions from livers of estradiol-treated rats. MVB fractions were composed mainly of large vesicles, approximately 0.55 micron diam, filled with remnantlike very low density lipoproteins, known to be taken up into hepatocytes by receptor- mediated endocytosis. MVBs also contained numerous small vesicles, 0.05- 0.07 micron in diameter, and had two types of appendages: one fingerlike and electron dense and the other saclike and electron lucent. MVBs contained little galactosyltransferase or arylsulfatase activity, and content lipoproteins were largely intact. Very low density lipoproteins from Golgi fractions, which are derived to a large extent from secretory vesicles, were larger than those of MVB fractions and contained newly synthesized triglycerides. Membranes of MVBs contained much more cholesterol and less protein than did Golgi membranes. We conclude that two distinct lipoprotein-filled organelles are located in the bile canalicular pole of hepatocytes. MVBs, a major prelysosomal organelle of low density in the endocytic pathway, contain remnants of triglyceride-rich lipoproteins, whereas secretory vesicles of the Golgi apparatus contain nascent very low density lipoproteins. PMID:3988801
Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala
2014-01-01
Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807
Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.
Prada, Ilaria; Meldolesi, Jacopo
2016-08-09
Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.
Multivesicular liposomal bupivacaine at the sciatic nerve
McAlvin, J. Brian; Padera, Robert F.; Shankarappa, Sahadev A.; Reznor, Gally; Kwon, Albert H.; Chiang, Homer; Yang, Jason; Kohane, Daniel S.
2014-01-01
Clinical translation of sustained release formulations for local anesthetics has been limited by adverse tissue reaction. Exparel™ (DepoFoam bupivacaine) is a new liposomal local anesthetic formulation whose biocompatibility near nerve tissue is not well characterized. Exparel™ injection caused sciatic nerve blockade in rats lasting 240 minutes compared to 120 minutes for 0.5% (w/v) bupivacaine HCl and 210 minutes for 1.31% (w/v) bupivacaine HCl (same bupivacaine content as Exparel™). On histologic sections four days after injection, median inflammation scores in the Exparel™ group (2.5 of 4) were slightly higher than in groups treated with bupivacaine solutions (score 2). Myotoxicity scores in the Exparel™ group (2.5 of 6) were similar to in the 0.5% (w/v) bupivacaine HCl group (3), but significantly less than in the 1.31% (w/v) bupivacaine HCl group (5). After two weeks, inflammation from Exparel™ (score 2 of 6) was greater than from 0.5% (w/v) bupivacaine HCl (1) and similar to that from 1.31% (w/v) bupivacaine HCl (1). Myotoxicity in all three groups was not statistically significantly different. No neurotoxicity was detected in any group. Tissue reaction to Exparel™ was similar to that of 0.5% (w/v) bupivacaine HCl. Surveillance for local tissue injury will be important during future clinical evaluation. PMID:24612918
Regulation of HTLV-1 Gag budding by Vps4A, Vps4B, and AIP1/Alix
Urata, Shuzo; Yokosawa, Hideyoshi; Yasuda, Jiro
2007-01-01
Background HTLV-1 Gag protein is a matrix protein that contains the PTAP and PPPY sequences as L-domain motifs and which can be released from mammalian cells in the form of virus-like particles (VLPs). The cellular factors Tsg101 and Nedd4.1 interact with PTAP and PPPY, respectively, within the HTLV-1 Gag polyprotein. Tsg101 forms a complex with Vps28 and Vps37 (ESCRT-I complex) and plays an important role in the class E Vps pathway, which mediates protein sorting and invagination of vesicles into multivesicular bodies. Nedd4.1 is an E3 ubiquitin ligase that binds to the PPPY motif through its WW motif, but its function is still unknown. In the present study, to investigate the mechanism of HTLV-1 budding in detail, we analyzed HTLV-1 budding using dominant negative (DN) forms of the class E proteins. Results Here, we report that DN forms of Vps4A, Vps4B, and AIP1 inhibit HTLV-1 budding. Conclusion These findings suggest that HTLV-1 budding utilizes the MVB pathway and that these class E proteins may be targets for prevention of mother-to-infant vertical transmission of the virus. PMID:17601348
Wang, Junqi; Li, Yubing; Lo, Sze Wan; Hillmer, Stefan; Sun, Samuel S.M.; Robinson, David G.; Jiang, Liwen
2007-01-01
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination. PMID:17322331
The Na+(K+)/H+ exchanger Nhx1 controls multivesicular body-vacuolar lysosome fusion.
Karim, Mahmoud Abdul; Brett, Christopher Leonard
2018-02-01
Loss-of-function mutations in human endosomal Na + (K + )/H + exchangers (NHEs) NHE6 and NHE9 are implicated in neurological disorders including Christianson syndrome, autism, and attention deficit and hyperactivity disorder. These mutations disrupt retention of surface receptors within neurons and glial cells by affecting their delivery to lysosomes for degradation. However, the molecular basis of how these endosomal NHEs control endocytic trafficking is unclear. Using Saccharomyces cerevisiae as a model, we conducted cell-free organelle fusion assays to show that transport activity of the orthologous endosomal NHE Nhx1 is important for multivesicular body (MVB)-vacuolar lysosome fusion, the last step of endocytosis required for surface protein degradation. We find that deleting Nhx1 disrupts the fusogenicity of the MVB, not the vacuole, by targeting pH-sensitive machinery downstream of the Rab-GTPase Ypt7 needed for SNARE-mediated lipid bilayer merger. All contributing mechanisms are evolutionarily conserved offering new insight into the etiology of human disorders linked to loss of endosomal NHE function. © 2018 Karim and Brett. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.
Longo, Valter D; Nislow, Corey; Fabrizio, Paola
2010-11-01
Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.
Tsuji, Takuma; Fujimoto, Megumi; Tatematsu, Tsuyako; Cheng, Jinglei; Orii, Minami; Takatori, Sho; Fujimoto, Toyoshi
2017-01-01
Niemann-Pick type C is a storage disease caused by dysfunction of NPC proteins, which transport cholesterol from the lumen of lysosomes to the limiting membrane of that compartment. Using freeze fracture electron microscopy, we show here that the yeast NPC orthologs, Ncr1p and Npc2p, are essential for formation and expansion of raft-like domains in the vacuolar (lysosome) membrane, both in stationary phase and in acute nitrogen starvation. Moreover, the expanded raft-like domains engulf lipid droplets by a microautophagic mechanism. We also found that the multivesicular body pathway plays a crucial role in microautophagy in acute nitrogen starvation by delivering sterol to the vacuole. These data show that NPC proteins promote microautophagy in stationary phase and under nitrogen starvation conditions, likely by increasing sterol in the limiting membrane of the vacuole. DOI: http://dx.doi.org/10.7554/eLife.25960.001 PMID:28590904
Unconventional secretion of FABP4 by endosomes and secretory lysosomes.
Villeneuve, Julien; Bassaganyas, Laia; Lepreux, Sebastien; Chiritoiu, Marioara; Costet, Pierre; Ripoche, Jean; Malhotra, Vivek; Schekman, Randy
2018-02-05
An appreciation of the functional properties of the cytoplasmic fatty acid binding protein 4 (FABP4) has advanced with the recent demonstration that an extracellular form secreted by adipocytes regulates a wide range of physiological functions. Little, however, is known about the mechanisms that mediate the unconventional secretion of FABP4. Here, we demonstrate that FABP4 secretion is mediated by a membrane-bounded compartment, independent of the conventional endoplasmic reticulum-Golgi secretory pathway. We show that FABP4 secretion is also independent of GRASP proteins, autophagy, and multivesicular bodies but involves enclosure within endosomes and secretory lysosomes. We highlight the physiological significance of this pathway with the demonstration that an increase in plasma levels of FABP4 is inhibited by chloroquine treatment of mice. These findings chart the pathway of FABP4 secretion and provide a potential therapeutic means to control metabolic disorders associated with its dysregulated secretion. © 2018 Villeneuve et al.
The life cycle of platelet granules.
Sharda, Anish; Flaumenhaft, Robert
2018-01-01
Platelet granules are unique among secretory vesicles in both their content and their life cycle. Platelets contain three major granule types-dense granules, α-granules, and lysosomes-although other granule types have been reported. Dense granules and α-granules are the most well-studied and the most physiologically important. Platelet granules are formed in large, multilobulated cells, termed megakaryocytes, prior to transport into platelets. The biogenesis of dense granules and α-granules involves common but also distinct pathways. Both are formed from the trans -Golgi network and early endosomes and mature in multivesicular bodies, but the formation of dense granules requires trafficking machinery different from that of α-granules. Following formation in the megakaryocyte body, both granule types are transported through and mature in long proplatelet extensions prior to the release of nascent platelets into the bloodstream. Granules remain stored in circulating platelets until platelet activation triggers the exocytosis of their contents. Soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, located on both the granules and target membranes, provide the mechanical energy that enables membrane fusion during both granulogenesis and exocytosis. The function of these core fusion engines is controlled by SNARE regulators, which direct the site, timing, and extent to which these SNAREs interact and consequently the resulting membrane fusion. In this review, we assess new developments in the study of platelet granules, from their generation to their exocytosis.
Cardona-López, Ximena; Cuyas, Laura; Marín, Elena; Irigoyen, María Luisa; Gil, Erica; Puga, María Isabel; Bligny, Richard; Nussaume, Laurent; Geldner, Niko; Paz-Ares, Javier
2015-01-01
Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life. PMID:26342016
Sun, Tao; Guo, Jun; Shallow, Heidi; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Hanson, Christian; Wu, James G.; Li, Xian; Massaeli, Hamid; Zhang, Shetuan
2011-01-01
A reduction in extracellular K+ concentration ([K+]o) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (IKr) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K+ conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K+-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K+ conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K+ conditions. PMID:21177251
ESCRT-II's involvement in HIV-1 genomic RNA trafficking and assembly.
Ghoujal, Bashar; Milev, Miroslav P; Ajamian, Lara; Abel, Karen; Mouland, Andrew J
2012-12-01
Several host proteins play crucial roles in the HIV-1 replication cycle. The endosomal sorting complex required for transport (ESCRT) exemplifies a large, multi-component host machinery that is required by HIV-1 for viral budding. ESCRT promotes the inward budding of vesicles from the membranes of late endosomes to generate multi-vesicular bodies. However, HIV-1 co-opts the ESCRT to enable outwards budding of virus particles from the plasma membrane, a phenomenon that is topologically similar to multi-vesicular body biogenesis. A role for ESCRTII in mRNA trafficking has been established in Drosophila in which the ESCRT-II components, Vps22 and Vps36, promote the localisation of the bicoid mRNA in the fertilised egg. This is achieved via specific interactions with the Staufen protein. In this work, we investigated a possible implication of ESCRT-II in the HIV-1 replication cycle. Co-immunoprecipitation analyses and live cell tri-molecular fluorescence complementation assays revealed that interactions between EAP30 and Gag and another between EAP30 and Staufen1 occur in mammalian cells. We then depleted EAP30 (the orthologue for Vps22) by siRNA to target ESCRT-II in HIV-1 expressing cells. This treatment disrupted ESCRT-II function and leads to the degradation of the two other ESCRT-II complex proteins, EAP45 and EAP20, as well as the associated Rab7-interacting lysosomal protein. The depletion of EAP30 led to dramatically reduced viral structural protein Gag and virus production levels, without any effect on viral RNA levels. On the contrary, the overexpression of EAP30 led to a several-fold increase in virus production. Unexpec-tedly, siRNA-mediated depletion of EAP30 led to a block to HIV-1 genomic RNA trafficking and resulted in the accumulation of genomic RNA in the nucleus and juxtanuclear domains. Our data provide the first evidence that the Staufen1-ESCRT-II interaction is evolutionarily conserved from lower to higher eukaryotes and reveal a novel role for EAP30 in the control of HIV-1 RNA trafficking and gene expression. Copyright © 2012 Wiley-Liss, Inc.
N-terminal Domains Elicit Formation of Functional Pmel17 Amyloid Fibrils*
Watt, Brenda; van Niel, Guillaume; Fowler, Douglas M.; Hurbain, Ilse; Luk, Kelvin C.; Stayrook, Steven E.; Lemmon, Mark A.; Raposo, Graça; Shorter, James; Kelly, Jeffery W.; Marks, Michael S.
2009-01-01
Pmel17 is a transmembrane protein that mediates the early steps in the formation of melanosomes, the subcellular organelles of melanocytes in which melanin pigments are synthesized and stored. In melanosome precursor organelles, proteolytic fragments of Pmel17 form insoluble, amyloid-like fibrils upon which melanins are deposited during melanosome maturation. The mechanism(s) by which Pmel17 becomes competent to form amyloid are not fully understood. To better understand how amyloid formation is regulated, we have defined the domains within Pmel17 that promote fibril formation in vitro. Using purified recombinant fragments of Pmel17, we show that two regions, an N-terminal domain of unknown structure and a downstream domain with homology to a polycystic kidney disease-1 repeat, efficiently form amyloid in vitro. Analyses of fibrils formed in melanocytes confirm that the polycystic kidney disease-1 domain forms at least part of the physiological amyloid core. Interestingly, this same domain is also required for the intracellular trafficking of Pmel17 to multivesicular compartments within which fibrils begin to form. Although a domain of imperfect repeats (RPT) is required for fibril formation in vivo and is a component of fibrils in melanosomes, RPT is not necessary for fibril formation in vitro and in isolation is unable to adopt an amyloid fold in a physiologically relevant time frame. These data define the structural core of Pmel17 amyloid, imply that the RPT domain plays a regulatory role in timing amyloid conversion, and suggest that fibril formation might be physically linked with multivesicular body sorting. PMID:19840945
Cortactin promotes exosome secretion by controlling branched actin dynamics
Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Seiki, Motoharu; Tyska, Matthew J.
2016-01-01
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952
Cortactin promotes exosome secretion by controlling branched actin dynamics.
Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M
2016-07-18
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. © 2016 Sinha et al.
Subra, Caroline; Grand, David; Laulagnier, Karine; Stella, Alexandre; Lambeau, Gérard; Paillasse, Michael; De Medina, Philippe; Monsarrat, Bernard; Perret, Bertrand; Silvente-Poirot, Sandrine; Poirot, Marc; Record, Michel
2010-01-01
Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA2-IVA, the calcium-independent iPLA2-VIA, and the secreted sPLA2-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPγS triggered activation of phospholipase A2 (PLA2)and PLD2. A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E2 (PGE2) and 15-deoxy-Δ12,14-prostaglandinJ2 (15-d PGJ2), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell. PMID:20424270
Exosomal miRNAs as potential biomarkers of cardiovascular risk in children
2014-01-01
Intercellular interactions are essential for basic cellular activities and errors in either receiving or transferring these signals have shown to cause pathological conditions. These signals are not only regulated by membrane surface molecules but also by soluble secreted proteins, thereby allowing for an exquisite coordination of cell functions. Exosomes are released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. Their envelope reflects their cellular origin and their surface and internal contents include important signaling components. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, miRNAs and small RNAs that are representative to their cellular origin and shuttle from donor cells to recipient cells. The exosome formation cargo content and delivery is of immense biological interest because exosomes are believed to play major roles in various pathological conditions, and therefore provide unique opportunities for biomarker discovery and development of non-invasive diagnostics when examined in biological fluids such as urine and blood plasma. For example, circulating miRNAs in exosomes have been applied as functional biomarkers for diagnosis and outcomes prediction, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. This review provides insights into the composition and functional properties of exosomes, and focuses on their potential value as diagnostic markers in the context of cardiovascular disease risk estimates in children who suffer from conditions associated with heightened prevalence of adverse cardiovascular disease, namely obesity and sleep-disordered-breathing. PMID:24912806
Melanosomes – dark organelles enlighten endosomal membrane transport
Raposo, Graça; Marks, Michael S.
2009-01-01
Melanosomes are tissue-specific “lysosome-related” organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light into the molecular machinery that controls specialized endosomal sorting events. PMID:17878918
Bu, Heng-Fu; Wang, Xiao; Tang, Yi; Koti, Viola; Tan, Xiao-Di
2015-01-01
Peptidoglycan is a potent immune adjuvant derived from bacterial cell walls. Previous investigations suggest that intestinal epithelium may absorb peptidoglycan from the lumen. Nonetheless, how peptidoglycan is taken up and crosses intestinal epithelium remains largely unclear. Here, we first characterized peptidoglycan transport in vitro using IEC-18 and HT29-CL19A cells, which represent less mature epithelial cells in intestinal crypts. With fluorescent microscopy, we visualized internalization of dual-labeled peptidoglycan by enterocytes. Engulfed peptidoglycan was found to form a complex with peptidoglycan recognition protein-3, which may facilitate delivering peptidoglycan in vivo. Utilizing electronic microscopy, we revealed that uptake of apical peptidoglycan across intestinal epithelial monolayers was involved in phagocytosis, multivesicular body formation, and exosome secretion. We also studied transport of peptidoglycan using the transwell system. Our data indicated that apically loaded peptidoglycan was exocytosed to the basolateral compartment with exosomes by HT29-CL19A cells. The peptidoglycan-contained basolateral exosome extracts induced macrophage activation. Through gavaging mice with labeled peptidoglycan, we found that luminal peptidoglycan was taken up by columnar epithelial cells in crypts of the small intestine. Furthermore, we showed that pre-confluent immature but not post-confluent mature C2BBe1 cells engulfed peptidoglycan via a toll-like receptor 2-dependent manner. Together, our findings suggest that (1) crypt-based immature intestinal epithelial cells play an important role in transport of luminal peptidoglycan over the intestinal epithelium; and (2) luminal peptidoglycan is transcytosed across intestinal epithelia via a toll-like receptor 2-meciated phagocytosis-multivesicular body-exosome pathway. The absorbed peptidoglycan and its derivatives may facilitate maintenance of intestinal immune homeostasis. PMID:20020500
Yang, Hongli; Liu, Jing; Lin, Jiulu; Deng, Linbin; Fan, Shihang; Guo, Yan; Sun, Fengming; Hua, Wei
2016-10-01
Endosomal sorting complexes required for transport (ESCRT) are well known in mammalians and yeast and plays an essential role in the formation of multi-vesicular bodies. Accumulating evidence has shown that ESCRT proteins contribute to proper plant development. CHMP7 (charged multi-vesicular body protein 7) is an ESCRT-III-related protein and functions in the endosomal sorting pathway in humans. However, its function in plants has not been explored in detail. In this study, we isolate the putative homolog of CHMP7 from rapeseed, BnCHMP7, which contains eight exons and encodes a protein consisting of 423 amino acid residues. Compared with the wild-type, overexpression of BnCHMP7 in Arabidopsis disturbs plant growth and decreases seed yield. Moreover, the transgenic plants also display early leaf senescence and hypersensitivity to dark treatment due to defects in autophagic degradation. Further study showed that BnCHMP7 is highly expressed in leaves and that YFP-BnCHMP7 is predominantly localized in endosome. Compared with human CHMP7, we found that BnCHMP7 not only interacts with ESCRT-III subunits SNF7.2 (CHMP4B), but also with VPS2.2 and CHMP1B. As expected, microarray analysis revealed that the expression of ESCRT transport genes is significantly affected. Additionally, the expression of some genes that are involved in senescence, protein synthesis and protein degradation is also altered in BnCHMP7-overexpressing plants. Taken together, BnCHMP7 encodes an endosome-localized protein, which causes dwarfism and leaf senescence as an ESCRT-III-related component. Copyright © 2016 Elsevier GmbH. All rights reserved.
Tetraspanins and Mouse Oocyte Microvilli Related to Fertilizing Ability.
Benammar, Achraf; Ziyyat, Ahmed; Lefèvre, Brigitte; Wolf, Jean-Philippe
2017-07-01
Our electron microscopy observations demonstrate for the first time that the number of microvilli on the mice oocyte membrane decreases when meiosis progresses from prophase I to metaphase II (MII) stage, and the morphology of the microvilli also changes. Microvilli are significantly shorter and larger on the ovulated oocyte membrane than at the previous stages. Although clathrin vesicles clearly disappear during oocyte maturation, exosome-like vesicles begin to be secreted at the metaphase I stage, more strongly at the MII stage. Multivesicular bodies are visible only at the MII stage. Since several oocyte tetraspanins are involved in the gamete interaction, Cd9 being congregated on the MII oocyte microvilli, we analyzed the effect of tetraspanin deletion on oocyte membrane morphology. The Cd9 -/- and Cd9 -/- Cd81 -/- deletions are associated with a decreased microvilli density on the MII oocyte surface. Microvilli thickness is significantly increased whatever the deleted tetraspanin gene be. Only Cd9 deletion clearly disturbs the vesicular traffic, increasing the number of clathrin and exosome vesicles. Additional investigations are necessary to elucidate how tetraspanins modulate the microvilli morphology, likely in relation with cytoskeleton. The role of oocyte exosomes in gamete adhesion/fusion remains to be further studied.
ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction
Sun, Sheng; Zhou, Xi; Corvera, Joe; Gallick, Gary E; Lin, Sue-Hwa; Kuang, Jian
2015-01-01
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors. PMID:27462417
Bryniarski, Krzysztof; Ptak, Wlodzimierz; Martin, Emilia; Nazimek, Katarzyna; Szczepanik, Marian; Sanak, Marek; Askenase, Philip W
2015-01-01
Lymph node and spleen cells of mice doubly immunized by epicutaneous and intravenous hapten application produce a suppressive component that inhibits the action of the effector T cells that mediate contact sensitivity reactions. We recently re-investigated this phenomenon in an immunological system. CD8+ T lymphocyte-derived exosomes transferred suppressive miR-150 to the effector T cells antigen-specifically due to exosome surface coat of antibody light chains made by B1a lymphocytes. Extracellular RNA (exRNA) is protected from plasma RNases by carriage in exosomes or by chaperones. Exosome transfer of functional RNA to target cells is well described, whereas the mechanism of transfer of exRNA free of exosomes remains unclear. In the current study we describe extracellular miR-150, extracted from exosomes, yet still able to mediate antigen-specific suppression. We have determined that this was due to miR-150 association with antibody-coated exosomes produced by B1a cell companions of the effector T cells, which resulted in antigen-specific suppression of their function. Thus functional cell targeting by free exRNA can proceed by transfecting companion cell exosomes that then transfer RNA cargo to the acceptor cells. This contrasts with the classical view on release of RNA-containing exosomes from the multivesicular bodies for subsequent intercellular targeting. This new alternate pathway for transfer of exRNA between cells has distinct biological and immunological significance, and since most human blood exRNA is not in exosomes may be relevant to evaluation and treatment of diseases.
Bryniarski, Krzysztof; Ptak, Wlodzimierz; Martin, Emilia; Nazimek, Katarzyna; Szczepanik, Marian; Sanak, Marek; Askenase, Philip W.
2015-01-01
Lymph node and spleen cells of mice doubly immunized by epicutaneous and intravenous hapten application produce a suppressive component that inhibits the action of the effector T cells that mediate contact sensitivity reactions. We recently re-investigated this phenomenon in an immunological system. CD8+ T lymphocyte-derived exosomes transferred suppressive miR-150 to the effector T cells antigen-specifically due to exosome surface coat of antibody light chains made by B1a lymphocytes. Extracellular RNA (exRNA) is protected from plasma RNases by carriage in exosomes or by chaperones. Exosome transfer of functional RNA to target cells is well described, whereas the mechanism of transfer of exRNA free of exosomes remains unclear. In the current study we describe extracellular miR-150, extracted from exosomes, yet still able to mediate antigen-specific suppression. We have determined that this was due to miR-150 association with antibody-coated exosomes produced by B1a cell companions of the effector T cells, which resulted in antigen-specific suppression of their function. Thus functional cell targeting by free exRNA can proceed by transfecting companion cell exosomes that then transfer RNA cargo to the acceptor cells. This contrasts with the classical view on release of RNA-containing exosomes from the multivesicular bodies for subsequent intercellular targeting. This new alternate pathway for transfer of exRNA between cells has distinct biological and immunological significance, and since most human blood exRNA is not in exosomes may be relevant to evaluation and treatment of diseases. PMID:25923429
Structure and membrane remodeling activity of ESCRT-III helical polymers
McCullough, John; Clippinger, Amy K.; Talledge, Nathaniel; ...
2015-12-18
The endosomal sorting complexes required for transport (ESCRT) proteins mediate fundamental membrane remodeling events that require stabilizing negative membrane curvature. These include endosomal intralumenal vesicle formation, HIV budding, nuclear envelope closure, and cytokinetic abscission. ESCRT-III subunits perform key roles in these processes by changing conformation and polymerizing into membrane-remodeling filaments. Here, we report the 4 angstrom resolution cryogenic electron microscopy reconstruction of a one-start, double-stranded helical copolymer composed of two different human ESCRT-III subunits, charged multivesicular body protein 1B (CHMP1B) and increased sodium tolerance 1 (IST1). The inner strand comprises “open” CHMP1B subunits that interlock in an elaborate domain-swapped architecturemore » and is encircled by an outer strand of “closed” IST1 subunits. Unlike other ESCRT-III proteins, CHMP1B and IST1 polymers form external coats on positively curved membranes in vitro and in vivo. In conclusion, our analysis suggests how common ESCRT-III filament architectures could stabilize different degrees and directions of membrane curvature.« less
Cutin plays a role in differentiation of endosperm-derived callus of kiwifruit.
Popielarska-Konieczna, Marzena; Kozieradzka-Kiszkurno, Małgorzata; Bohdanowicz, Jerzy
2011-11-01
Cutin fluorescence, after auramine O treatment, was detected on the surface of organogenic areas (protuberances) of endosperm derived callus induced on Murashige and Skoog medium with thidiazuron (0.5 mg l(-1)) in darkness. Electron micrographs of the protuberances revealed cuticle, visible as a dark-staining layer, and amorphous waxes on the cell wall. In some cases the cells of the epidermis-like layer and shoot buds at early stages of development showed thick and characteristically wavy cutin. This waviness corresponds with the wrinkled appearance of the cell wall as observed by scanning electron microscopy. The role of multivesicular bodies in cutin production and transfer to the plasma membrane is discussed.
Nagashima, Shigeo; Takahashi, Masaharu; Kobayashi, Tominari; Nishizawa, Tsutomu; Nishiyama, Takashi; Primadharsini, Putu Prathiwi
2017-01-01
ABSTRACT Our previous studies demonstrated that membrane-associated hepatitis E virus (HEV) particles—now considered “quasi-enveloped particles”—are present in the multivesicular body with intraluminal vesicles (exosomes) in infected cells and that the release of HEV virions is related to the exosomal pathway. In this study, we characterized exosomes purified from the culture supernatants of HEV-infected PLC/PRF/5 cells. Purified CD63-, CD9-, or CD81-positive exosomes derived from the culture supernatants of HEV-infected cells that had been cultivated in serum-free medium were found to contain HEV RNA and the viral capsid (ORF2) and ORF3 proteins, as determined by reverse transcription-PCR (RT-PCR) and Western blotting, respectively. Furthermore, immunoelectron microscopy, with or without prior detergent and protease treatment, revealed the presence of virus-like particles in the exosome fraction. These particles were 39.6 ± 1.0 nm in diameter and were covered with a lipid membrane. After treatment with detergent and protease, the diameter of these virus-like particles was 26.9 ± 0.9 nm, and the treated particles became accessible with an anti-HEV ORF2 monoclonal antibody (MAb). The HEV particles in the exosome fraction were capable of infecting naive PLC/PRF/5 cells but were not neutralized by an anti-HEV ORF2 MAb which efficiently neutralizes nonenveloped HEV particles in cell culture. These results indicate that the membrane-wrapped HEV particles released by the exosomal pathway are copurified with the exosomes in the exosome fraction and suggest that the capsids of HEV particles are individually covered by lipid membranes resembling those of exosomes, similar to enveloped viruses. IMPORTANCE Hepatitis E, caused by HEV, is an important infectious disease that is spreading worldwide. HEV infection can cause acute or fulminant hepatitis and can become chronic in immunocompromised hosts, including patients after organ transplantation. The HEV particles present in feces and bile are nonenveloped, while those in circulating blood and culture supernatants are covered with a cellular membrane, similar to enveloped viruses. Furthermore, these membrane-associated and -unassociated HEV particles can be propagated in cultured cells. The significance of our research is that the capsids of HEV particles are individually covered by a lipid membrane that resembles the membrane of exosomes, similar to enveloped viruses, and are released from infected cells via the exosomal pathway. These data will help to elucidate the entry mechanisms and receptors for HEV infection in the future. This is the first report to characterize the detailed morphological features of membrane-associated HEV particles. PMID:28878075
Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B
1994-08-01
The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.
Mutant Huntingtin Inhibits αB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes.
Hong, Yan; Zhao, Ting; Li, Xiao-Jiang; Li, Shihua
2017-09-27
In the brain, astrocytes secrete diverse substances that regulate neuronal function and viability. Exosomes, which are vesicles produced through the formation of multivesicular bodies and their subsequent fusion with the plasma membrane, are also released from astrocytes via exocytotic secretion. Astrocytic exosomes carry heat shock proteins that can reduce the cellular toxicity of misfolded proteins and prevent neurodegeneration. Although mutant huntingtin (mHtt) affects multiple functions of astrocytes, it remains unknown whether mHtt impairs the production of exosomes from astrocytes. We found that mHtt is not present in astrocytic exosomes, but can decrease exosome secretion from astrocytes in HD140Q knock-in (KI) mice. N-terminal mHtt accumulates in the nuclei and forms aggregates, causing decreased secretion of exosomes from cultured astrocytes. Consistently, there is a significant decrease in secreted exosomes in both female and male HD KI mouse striatum in which abundant nuclear mHtt aggregates are present. Conversely, injection of astrocytic exosomes into the striatum of HD140Q KI mice reduces the density of mHtt aggregates. Further, mHtt in astrocytes decreased the expression of αB-crystallin, a small heat shock protein that is enriched in astrocytes and mediates exosome secretion, by reducing the association of Sp1 with the enhancer of the α B-crystallin gene. Importantly, overexpression of αB-crystallin rescues defective exosome release from HD astrocytes as well as mHtt aggregates in the striatum of HD140Q KI mice. Our results demonstrate that mHtt reduces the expression of αB-crystallin in astrocytes to decrease exosome secretion in the HD brains, contributing to non-cell-autonomous neurotoxicity in HD. SIGNIFICANCE STATEMENT Huntington's disease (HD) is characterized by selective neurodegeneration that preferentially occurs in the striatal medium spiny neurons. Recent studies in different HD mouse models demonstrated that dysfunction of astrocytes, a major type of glial cell, leads to neuronal vulnerability. Emerging evidence shows that exosomes secreted from astrocytes contain neuroprotective cargoes that could support the survival of neighboring neurons. We found that mHtt in astrocytes impairs exosome secretion by decreasing αB-crystallin, a protein that is expressed mainly in glial cells and mediates exosome secretion. Overexpression of αB-crystallin could alleviate the deficient exosome release and neuropathology in HD mice. Our results revealed a new pathological pathway that affects the critical support of glial cells to neurons in the HD brain. Copyright © 2017 the authors 0270-6474/17/379550-14$15.00/0.
Mutant Huntingtin Inhibits αB-Crystallin Expression and Impairs Exosome Secretion from Astrocytes
2017-01-01
In the brain, astrocytes secrete diverse substances that regulate neuronal function and viability. Exosomes, which are vesicles produced through the formation of multivesicular bodies and their subsequent fusion with the plasma membrane, are also released from astrocytes via exocytotic secretion. Astrocytic exosomes carry heat shock proteins that can reduce the cellular toxicity of misfolded proteins and prevent neurodegeneration. Although mutant huntingtin (mHtt) affects multiple functions of astrocytes, it remains unknown whether mHtt impairs the production of exosomes from astrocytes. We found that mHtt is not present in astrocytic exosomes, but can decrease exosome secretion from astrocytes in HD140Q knock-in (KI) mice. N-terminal mHtt accumulates in the nuclei and forms aggregates, causing decreased secretion of exosomes from cultured astrocytes. Consistently, there is a significant decrease in secreted exosomes in both female and male HD KI mouse striatum in which abundant nuclear mHtt aggregates are present. Conversely, injection of astrocytic exosomes into the striatum of HD140Q KI mice reduces the density of mHtt aggregates. Further, mHtt in astrocytes decreased the expression of αB-crystallin, a small heat shock protein that is enriched in astrocytes and mediates exosome secretion, by reducing the association of Sp1 with the enhancer of the αB-crystallin gene. Importantly, overexpression of αB-crystallin rescues defective exosome release from HD astrocytes as well as mHtt aggregates in the striatum of HD140Q KI mice. Our results demonstrate that mHtt reduces the expression of αB-crystallin in astrocytes to decrease exosome secretion in the HD brains, contributing to non–cell-autonomous neurotoxicity in HD. SIGNIFICANCE STATEMENT Huntington's disease (HD) is characterized by selective neurodegeneration that preferentially occurs in the striatal medium spiny neurons. Recent studies in different HD mouse models demonstrated that dysfunction of astrocytes, a major type of glial cell, leads to neuronal vulnerability. Emerging evidence shows that exosomes secreted from astrocytes contain neuroprotective cargoes that could support the survival of neighboring neurons. We found that mHtt in astrocytes impairs exosome secretion by decreasing αB-crystallin, a protein that is expressed mainly in glial cells and mediates exosome secretion. Overexpression of αB-crystallin could alleviate the deficient exosome release and neuropathology in HD mice. Our results revealed a new pathological pathway that affects the critical support of glial cells to neurons in the HD brain. PMID:28893927
Intracellular origin and ultrastructure of platelet-derived microparticles.
Ponomareva, A A; Nevzorova, T A; Mordakhanova, E R; Andrianova, I A; Rauova, L; Litvinov, R I; Weisel, J W
2017-08-01
Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays. © 2017 International Society on Thrombosis and Haemostasis.
Bosque, Alberto; Dietz, Lisa; Gallego-Lleyda, Ana; Sanclemente, Manuel; Iturralde, María; Naval, Javier; Alava, María Angeles; Martínez-Lostao, Luis; Thierse, Hermann-Josef; Anel, Alberto
2016-05-17
We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion.
Protein composition of the hepatitis A virus quasi-envelope.
McKnight, Kevin L; Xie, Ling; González-López, Olga; Rivera-Serrano, Efraín E; Chen, Xian; Lemon, Stanley M
2017-06-20
The Picornaviridae are a diverse family of RNA viruses including many pathogens of medical and veterinary importance. Classically considered "nonenveloped," recent studies show that some picornaviruses, notably hepatitis A virus (HAV; genus Hepatovirus) and some members of the Enterovirus genus, are released from cells nonlytically in membranous vesicles. To better understand the biogenesis of quasi-enveloped HAV (eHAV) virions, we conducted a quantitative proteomics analysis of eHAV purified from cell-culture supernatant fluids by isopycnic ultracentrifugation. Amino acid-coded mass tagging (AACT) with stable isotopes followed by tandem mass spectrometry sequencing and AACT quantitation of peptides provided unambiguous identification of proteins associated with eHAV versus unrelated extracellular vesicles with similar buoyant density. Multiple peptides were identified from HAV capsid proteins (53.7% coverage), but none from nonstructural proteins, indicating capsids are packaged as cargo into eHAV vesicles via a highly specific sorting process. Other eHAV-associated proteins ( n = 105) were significantly enriched for components of the endolysosomal system (>60%, P < 0.001) and included many common exosome-associated proteins such as the tetraspanin CD9 and dipeptidyl peptidase 4 (DPP4) along with multiple endosomal sorting complex required for transport III (ESCRT-III)-associated proteins. Immunoprecipitation confirmed that DPP4 is displayed on the surface of eHAV produced in cell culture or present in sera from humans with acute hepatitis A. No LC3-related peptides were identified by mass spectrometry. RNAi depletion studies confirmed that ESCRT-III proteins, particularly CHMP2A, function in eHAV biogenesis. In addition to identifying surface markers of eHAV vesicles, the results support an exosome-like mechanism of eHAV egress involving endosomal budding of HAV capsids into multivesicular bodies.
Characterization and Comprehensive Proteome Profiling of Exosomes Secreted by Hepatocytes
Conde-Vancells, Javier; Rodriguez-Suarez, Eva; Embade, Nieves; Gil, David; Matthiesen, Rune; Valle, Mikel; Elortza, Felix; Lu, Shelly C.; Mato, Jose M.; Falcon-Perez, Juan M.
2009-01-01
Synopsis Exosomes constitute a discrete population of nanometer-sized (30-150 nm) vesicles formed in endocytic compartments and released to the extracellular environment by different cell types. In this work we demonstrated by electron microscopic, western blotting and proteomic analyses that primary hepatocytes secrete exosome-like vesicles containing proteins involved in metabolizing lipoproteins, endogenous compounds as well as xenobiotics. These new findings contribute to improve our knowledge about biology's hepatocyte and may have important diagnostic, prognosis and therapeutic implications in liver diseases Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins. Remarkably, the protein content of the exosomes is modified upon pathological or stress conditions. Hepatocytes play a central role in the body response to stress metabolizing potentially harmful endogenous substances as well as xenobiotics. In the present study we described and characterized for first time exosome secretion in non-tumoral hepatocytes, and using a systematic proteomic approach, we establish the first extensive proteome of a hepatocyte-derived exosome population which should be useful in furthering our understanding of the hepatic function and in the identification of components that may serve as biomarkers for hepatic alterations. Our analysis identifies a significant number of proteins previously described among exosomes derived from others cell types as well as proteins involved in metabolizing lipoproteins, endogenous compounds and xenobiotics, not previously described in exosomes. Furthermore, we demonstrated that exosomal membrane proteins can constitute an interesting tool to express non-exosomal proteins into exosomes with therapeutic purposes. PMID:19367702
Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking
NASA Astrophysics Data System (ADS)
Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R.; Oker-Blom, Christian; Vattulainen, Ilpo; Vuento, Matti
2009-12-01
In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter SCD as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane.
Acute glandular fever-like illness in a patient with HTLV-III antibody.
McCaul, T F; Tovey, G; Farthing, C F; Gazzard, B; Zuckerman, A J
1985-10-01
A lymph node biopsy obtained from a patient with human T-cell lymphocytotropic virus III/lymphadenopathy-associated virus (HTLV-III/LAV) antibody, presenting with an acute glandular fever-like illness, was examined by electron microscopy. Numerous pathological changes were present in the biopsy, including hypertrophy of smooth endoplasmic reticulum, intracytoplasmic rod-like inclusions within the cisternae of endoplasmic reticulum, multivesicular bodies, test-tube and ring-shaped forms, and tubulo-reticular structures. Intranuclear and intracytoplasmic viral-like particles measuring 105-120 nm in diameter and small cytoplasmic particles measuring 50-70 nm in diameter were found in some degenerating lymph node cells. These pathological findings may reflect a host cell response to various pathological and viral stimuli resulting from immune deficiency owing to infection with HTLV-III/LAV.
A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.
Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H
1999-10-01
Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.
Hu, DeeDee; Onel, Erol; Singla, Neil; Kramer, William G; Hadzic, Admir
2013-02-01
Local anaesthetics are often used as part of multimodal pain management techniques to manage postsurgical pain and lessen the need for opioid analgesics; however, the duration of action of traditional formulations of local anaesthetics is short. Liposome bupivacaine is a novel, multivesicular formulation designed for rapid absorption, prolonged release of bupivacaine, and analgesia following a single intra-operative administration into the surgical wound. This article provides a summary of the pharmacokinetic profile of liposome bupivacaine compared with bupivacaine HCl based on data compiled from four randomized, active- and placebo-controlled trials that included pharmacokinetic assessments following single administrations of study drug. Each study evaluated the safety, efficacy and pharmacokinetic profile of liposome bupivacaine in separate surgical populations (patients undergoing inguinal hernia repair, total knee arthroplasty, haemorrhoidectomy or bunionectomy). Pharmacokinetic parameters included maximum plasma drug concentration (C(max)), area under the curve (AUC) for plasma bupivacaine concentration over time extrapolated to infinity (AUC(∞)), time to observed C(max) (t(max)) and terminal elimination half-life of bupivacaine (t(½)). The studies assessed single administrations of liposome bupivacaine at dose levels ranging from 106 to 532 mg or bupivacaine HCl 100 to 150 mg or placebo (0.9 % sodium chloride) given locally via wound infiltration at the end of surgery prior to wound closure. Male and non-pregnant female patients (n = 253) aged ≥18 years, scheduled to undergo surgery as per the specific protocol for each study, were enrolled. Patient characteristics were stratified by liposome bupivacaine doses ≤266 mg and >266 mg, and bupivacaine HCl treatment arms. Pharmacokinetic parameters for liposome bupivacaine doses of 106, 266, 399 and 532 mg were compared. Plasma concentration versus time profiles were quantitatively similar across these four dose levels of liposome bupivacaine, with an initial peak occurring within 1 h after administration followed by a second peak about 12-36 h later. The overall incidence of adverse events was lower in the liposome bupivacaine ≤266-mg group than the liposome bupivacaine >266-mg and bupivacaine HCl groups (100- or 150-mg doses). In summary, liposome bupivacaine was well tolerated across the four studies and varied surgical models, and exhibited bimodal kinetics with rapid uptake observed during the first few hours and prolonged release through 96 h after administration.
Joshi, Gururaj; Gan, Kok Ann; Johnson, Delinda A; Johnson, Jeffrey A
2015-02-01
The presence of senile plaques is one of the major pathologic hallmarks of the brain with Alzheimer's disease (AD). The plaques predominantly contain insoluble amyloid β-peptide, a cleavage product of the larger amyloid precursor protein (APP). Two enzymes, named β and γ secretase, generate the neurotoxic amyloid-β peptide from APP. Mature APP is also turned over endogenously by autophagy, more specifically by the endosomal-lysosomal pathway. A defective lysosomal system is known to be pathogenic in AD. Modulation of NF-E2 related factor 2 (Nrf2) has been shown in several neurodegenerative disorders, and Nrf2 has become a potential therapeutic target for various neurodegenerative disorders, including AD, Parkinson's disease, and amyotrophic lateral sclerosis. In the current study, we explored the effect of genetic ablation of Nrf2 on APP/Aβ processing and/or aggregation as well as changes in autophagic dysfunction in APP/PS1 mice. There was a significant increase in inflammatory response in APP/PS1 mice lacking Nrf2. This was accompanied by increased intracellular levels of APP, Aβ (1-42), and Aβ (1-40), without a change total full-length APP. There was a shift of APP and Aβ into the insoluble fraction, as well as increased poly-ubiquitin conjugated proteins in mice lacking Nrf2. APP/PS1-mediated autophagic dysfunction is also enhanced in Nrf2-deficient mice. Finally, neurons in the APP/PS1/Nrf2-/- mice had increased accumulation of multivesicular bodies, endosomes, and lysosomes. These outcomes provide a better understanding of the role of Nrf2 in modulating autophagy in an AD mouse model and may help design better Nrf2 targeted therapeutics that could be efficacious in the treatment of AD. Published by Elsevier Inc.
Liang, Feng-Xia; Liao, Yi; Chang, Jennifer; Zhou, Ge; Zheng, Weiyue; Simon, Jean-Pierre; Ding, Mingxiao; Wu, Xue-Ru; Romih, Rok; Kreibich, Gert; Sun, Tung-Tien
2014-01-01
Uroplakins (UP), a group of integral membrane proteins, are major urothelial differentiation products that form 2D crystals of 16-nm particles (urothelial plaques) covering the apical surface of mammalian bladder urothelium. They contribute to the urothelial barrier function and, one of them, UPIa, serves as the receptor for uropathogenic Escherichia coli. It is therefore important to understand the mechanism by which these surface-associated uroplakins are degraded. While it is known that endocytosed uroplakin plaques are targeted to and line the multivesicular bodies (MVBs), it is unclear how these rigid-looking plaques can go to the highly curved membranes of intraluminal vesicles (ILVs). From a cDNA subtraction library, we identified a highly urothelium-specific sorting nexin, SNX31. SNX31 is expressed, like uroplakins, in terminally differentiated urothelial umbrella cells where it is predominantly associated with MVBs. Apical membrane proteins including uroplakins that are surface biotin-tagged are endocytosed and targeted to the SNX31-positive MVBs. EM localization demonstrated that SNX31 and uroplakins are both associated not only with the limiting membranes of MVBs containing uroplakin plaques, but also with ILVs. SNX31 can bind, on one hand, the PtdIns3P-enriched lipids via its N-terminal PX-domain, and, on the other hand, it binds uroplakins as demonstrated by co-immunoprecipitation and proximity ligation assay, and by its reduced membrane association in uroplakin II-deficient urothelium. The fact that in urothelial umbrella cells MVBs are the only major intracellular organelles enriched in both PtdIns3P and uroplakins may explain SNX31's MVB-specificity in these cells. However, in MDCK and other cultured cells transfected SNX31 can bind to early endosomes possibly via lipids. These data support a model in which SNX31 mediates the endocytic degradation of uroplakins by disassembling/collapsing the MVB-associated uroplakin plaques, thus enabling the uroplakin-containing (but ‘softened’) membranes to bud and form the ILVs for lysosomal degradation and/or exosome formation. PMID:24914955
Meltzer, P.; Leibovitz, A.; Dalton, W.; Villar, H.; Kute, T.; Davis, J.; Nagle, R.; Trent, J.
1991-01-01
Two human cell lines (UACC-812 and 893), both containing significant amplification of the HER-2/neu gene, were established from biopsy specimens of breast carcinomas. One patient had Stage II breast carcinoma; the other had metastatic disease. Characterisation of these lines has revealed that both are highly aneuploid containing multiple clonal chromosome alterations, have doubling times near 100 h, and are oestrogen and progesterone receptor negative. Electron microscopy demonstrates that both lines contain numerous microvilli, cytoplasmic filaments, multivesicular bodies, and desmosomes. Immunoblot analysis for P-glycoprotein using the monoclonal antibody C219 was negative for both patient cell lines. These relatively rare cell lines may represent a useful model to investigate human breast carcinomas. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1674877
McLeod, Ian X.; Zhou, Xiang; Li, Qi-Jing; Wang, Fan; He, You-Wen
2011-01-01
IL-7Rα mediated signals are essential for naive T lymphocyte survival. Recent studies show that IL-7Rα is internalized and either recycled to cell surface or degraded. However, how the intracellular process of IL-7Rα trafficking is regulated is unclear. Here we show that Vps34, the class III phosphatidylinositol 3-kinase, plays a critical role in proper IL-7Rα intracellular trafficking. Mice lacking Vps34 in T lymphocytes had a severely reduced T lymphocyte compartment. Vps34-deficient T lymphocytes exhibit increased death and reduced IL-7Rα surface expression, though three major forms of autophagy remain intact. Intracellular IL-7Rα in normal T lymphocytes at steady-state is trafficked through either early endosome/multivesicular bodies (MVB) to the late endosome-Golgi for surface expression or to the lysosome for degradation. However, Vps34-deficient T cells have mislocalized intracellular Eea1, HRS, and Vps36 protein levels, the combined consequence of which is the inability to mobilize internalized IL-7Rα into the retromer pathway for surface display. Our studies reveal that Vps34, though dispensible for autophagy induction, is a critical regulator of naïve T cell homeostasis, modulating IL-7Rα trafficking, signaling, and recycling. PMID:22021616
Exosome secretion by eosinophils: A possible role in asthma pathogenesis.
Mazzeo, Carla; Cañas, José Antonio; Zafra, Maria Paz; Rojas Marco, Ainara; Fernández-Nieto, Mar; Sanz, Veronica; Mittelbrunn, María; Izquierdo, Manuel; Baixaulli, Francesc; Sastre, Joaquín; Del Pozo, Victoria
2015-06-01
Eosinophils secrete several granules that are involved in the propagation of inflammatory responses in patients with pathologies such as asthma. We hypothesized that some of these granules are exosomes, which, when transferred to the recipient cells, could modulate asthma progression. Eosinophils were purified from peripheral blood and cultured with or without IFN-γ or eotaxin. Multivesicular bodies (MVBs) in eosinophils were studied by using fluorescence microscopy, transmission electron microscopy (TEM), and flow cytometry. Exosome secretion was measured and exosome characterization was performed with TEM, Western blotting, and NanoSight analysis. Generation of MVBs in eosinophils was confirmed by using fluorescence microscopy and flow cytometry and corroborated by means of TEM. Having established that eosinophils contain MVBs, our aim was to demonstrate that eosinophils secrete exosomes. To do this, we purified exosomes from culture medium of eosinophils and characterized them. Using Western blot analysis, we demonstrated that eosinophils secreted exosomes and that the discharge of exosomes to extracellular media increases after IFN-γ stimulation. We measured exosome size and quantified exosome production from healthy and asthmatic subjects using nanotracking analysis. We found that exosome production was augmented in asthmatic patients. Our findings are the first to demonstrate that eosinophils contain functional MVBs and secrete exosomes and that their secretion is increased in asthmatic patients. Thus exosomes might play an important role in the progression of asthma and eventually be considered a biomarker. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Toyooka, Kiminori; Sato, Mayuko; Wakazaki, Mayumi; Matsuoka, Ken
2016-01-01
We developed a wide-range and high-resolution transmission electron microscope acquisition system and obtained giga-pixel images of tobacco BY-2 cells during the log and stationary phases of cell growth. We demonstrated that the distribution and ultrastructure of compartments involved in membrane traffic (i.e., Golgi apparatus, multivesicular body, and vesicle cluster) change during the log-to-stationary transition. Mitochondria, peroxisomes, and plastids were also enumerated. Electron densities of mitochondria and peroxisomes were altered during the growth-phase shift, while their numbers were reduced by nearly half. Plastid structure dramatically changed from atypical to spherical with starch granules. Nearly the same number of plastids was observed in both log and stationary phases. These results indicate that mechanisms regulating organelle populations differ from organelle to organelle.
PIKfyve regulates melanosome biogenesis
Jahid, Sohail; Sasaki, Junko; Sasaki, Takehiko; Boissy, Raymond E.; Ganesan, Anand K.
2018-01-01
PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes. PMID:29584722
The Cytoskeleton-Autophagy Connection.
Kast, David J; Dominguez, Roberto
2017-04-24
Actin cytoskeleton dynamics play vital roles in most forms of intracellular trafficking by promoting the biogenesis and transport of vesicular cargoes. Mounting evidence indicates that actin dynamics and membrane-cytoskeleton scaffolds also have essential roles in macroautophagy, the process by which cellular waste is isolated inside specialized vesicles called autophagosomes for recycling and degradation. Branched actin polymerization is necessary for the biogenesis of autophagosomes from the endoplasmic reticulum (ER) membrane. Actomyosin-based transport is then used to feed the growing phagophore with pre-selected cargoes and debris derived from different membranous organelles inside the cell. Finally, mature autophagosomes detach from the ER membrane by an as yet unknown mechanism, undergo intracellular transport and then fuse with lysosomes, endosomes and multivesicular bodies through mechanisms that involve actin- and microtubule-mediated motility, cytoskeleton-membrane scaffolds and signaling proteins. In this review, we highlight the considerable progress made recently towards understanding the diverse roles of the cytoskeleton in autophagy. Published by Elsevier Ltd.
The Cytoskeleton-Autophagy Connection
Kast, David J.; Dominguez, Roberto
2017-01-01
Summary Actin cytoskeleton dynamics plays vital roles in most forms of intracellular trafficking by promoting the biogenesis and transport of vesicular cargoes. Mounting evidence indicates that actin dynamics and membrane-cytoskeleton scaffolds also play essential roles in macroautophagy, the process by which cellular waste is isolated inside specialized vesicles called autophagosomes for recycling and degradation. Thus, branched-actin polymerization is necessary for the biogenesis of autophagosomes from the endoplasmic reticulum (ER) membrane. Actomyosin-based transport is then used to feed the growing phagophore with pre-selected cargoes and debris derived from different membranous organelles inside the cell. Mature autophagosomes then detach from the ER membrane by an unknown mechanism, and are transported and fused with lysosomes, endosomes and multi-vesicular bodies through mechanisms that involve actin- and microtubule-based motility, cytoskeleton-membrane scaffolds and signaling proteins. In this minireview, we highlight the considerable progress made recently towards understanding the diverse roles of the cytoskeleton in autophagy. PMID:28441569
Guerriero, Kathryn A.; Keen, Kim L.
2012-01-01
Kisspeptin (KP) signaling has been proposed as an important regulator in the mechanism of puberty. In this study, to determine the role of KP in puberty, we assessed the in vivo release pattern of KP-54 from the basal hypothalamus/stalk-median eminence in prepubertal and pubertal ovarian-intact female rhesus monkeys. We found that there was a developmental increase in mean KP-54 release, pulse frequency, and pulse amplitude, which is parallel to the developmental changes in GnRH release that we previously reported. Moreover, a nocturnal increase in KP-54 release becomes prominent after the onset of puberty. Because the pubertal increase in GnRH release occurs independent of the pubertal increase in circulating gonadal steroids, we further examined whether ovariectomy (OVX) modifies the release pattern of KP-54. Results show that OVX in pubertal monkeys enhanced mean KP-54 release and pulse amplitude but not pulse frequency, whereas OVX did not alter the release pattern of KP-54 in prepubertal monkeys. Estradiol replacement in OVX pubertal monkeys suppressed mean KP-54 release and pulse amplitude but not pulse frequency. Estradiol replacement in OVX prepubertal monkeys did not alter the KP-54 release pattern. Collectively these results suggest that the pubertal increase in KP release occurs independent of the pubertal increase in circulating estradiol. Nevertheless, the pubertal increase in KP release is not likely responsible for the initiation of the pubertal increase in GnRH release. Rather, after puberty onset, the increase in KP release contributes to further increase GnRH release during the progression of puberty. PMID:22315444
Cheboyina, Sreekhar; Wyandt, Christy M
2008-07-09
A novel freeze pelletization technique was evaluated for the preparation of wax-based sustained release matrix pellets. Pellets containing water-soluble drugs were successfully prepared using a variety of waxes. The drug release significantly depended on the wax type used and the aqueous drug solubility. The drug release decreased as the hydrophobicity of wax increased and the drug release increased as the aqueous drug solubility increased. In glyceryl monostearate (GMS) pellets, drug release rate decreased as the loading of theophylline increased. On the contrary, the release rate increased as the drug loading of diltiazem HCl increased in Precirol pellets. Theophylline at low drug loads existed in a dissolved state in GMS pellets and the release followed desorption kinetics. At higher loads, theophylline existed in a crystalline state and the release followed dissolution-controlled constant release for all the waxes studied. However, with the addition of increasing amounts of Brij 76, theophylline release rate increased and the release mechanism shifted to diffusion-controlled square root time kinetics. But the release of diltiazem HCl from Precirol pellets at all drug loads, followed diffusion-controlled square root time kinetics. Therefore, pellets capable of providing a variety of release profiles for different drugs can be prepared using this freeze pelletization technique by suitably modifying the pellet forming matrix compositions.
Chen, Qun; Wang, Ningning; Zhu, Mingjiang; Lu, Jianhong; Zhong, Huiqin; Xue, Xinli; Guo, Shuoyuan; Li, Min; Wei, Xinben; Tao, Yongzhen; Yin, Huiyong
2018-05-01
Titanium dioxide nanoparticles (TiO 2 NPs) are widely used in food and cosmetics but the health impact of human exposure remains poorly defined. Emerging evidence suggests that TiO 2 NPs may elicit immune responses by acting on macrophages. Our proteomic study showed that treatment of macrophages with TiO 2 NPs led to significant re-organization of cell membrane and activation of inflammation. These observations were further corroborated with transmission electron microscopy (TEM) experiments, which demonstrated that TiO 2 NPs were trapped inside of multi-vesicular bodies (MVB) through endocytotic pathways. TiO 2 NP caused significant mitochondrial dysfunction by increasing levels of mitochondrial reactive oxygen species (ROS), decreasing ATP generation, and decreasing metabolic flux in tricarboxylic acid (TCA) cycle from 13 C-labelled glutamine using GC-MS-based metabolic flux analysis. Further lipidomic analysis showed that TiO 2 NPs significantly decreased levels of cardiolipins, an important class of mitochondrial phospholipids for maintaining proper function of electron transport chains. Furthermore, TiO 2 NP exposure activates inflammatory responses by increasing mRNA levels of TNF-α, iNOS, and COX-2. Consistently, our targeted metabolomic analysis showed significantly increased production of COX-2 metabolites including PGD 2 , PGE 2 , and 15d-PGJ 2 . In addition, TiO 2 NP also caused significant attenuation of phagocytotic function of macrophages. In summary, our studies utilizing multiple powerful omic techniques suggest that human exposure of TiO 2 NPs may have profound impact on macrophage function through activating inflammatory responses and causing mitochondrial dysfunction without physical presence in mitochondria. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Castro-Chavira, Susana Angelica; Aguilar-Vázquez, Azucena Ruth; Martínez-Chávez, Yvonne; Palma, Lourdes; Padilla-Gómez, Euridice; Diaz-Cintra, Sofia
2016-10-01
Malnourishment (M) produces permanent alterations during the development of the CNS and might modify the aging process. In pyramidal neurons (PN) of the hippocampus, which are associated with learning and memory performance, few studies have focused on changes at the subcellular level under chronic malnutrition (ChM) in young (Y, 2 months old) and aged (A, 22 months old) rats. The present work evaluated the extent to which ChM disrupts organelles in PN of the dorsal hippocampus CA1 as compared to controls (C). Ultrastructural analysis was performed at 8000× and 20 000× magnification: Nucleus eccentricity and somatic, cytoplasmic, and nuclear areas were measured; and in the PN perikaryon, density indices (number of organelles/cytoplasmic area) of Golgi membrane systems (GMS, normal, and swollen), mitochondria (normal and abnormal), and vacuolated organelles (lysosomes, lipofuscin granules, and multivesicular bodies (MVB)) were determined. The density of abnormal mitochondria, swollen GMS, and MVB increased significantly in the AChM group compared to the other groups. The amount of lipofuscin was significantly greater in the AChM than in the YChM groups - a sign of oxidative stress due to malnutrition and aging; however, in Y animals, ChM showed no effect on organelle density or the cytoplasmic area. An increased density of lysosomes as well as nucleus eccentricity was observed in the AC group, which also showed an increase in the cytoplasmic area. Malnutrition produces subcellular alterations in vulnerable hippocampal pyramidal cells, and these alterations may provide an explanation for the previously reported deficient performance of malnourished animals in a spatial memory task in which aging and malnutrition were shown to impede the maintenance of long-term memory.
Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection
Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas
2013-01-01
Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison with incubation as well as the limited transfer of quantum dots from vesicles into the cytosol and vice versa support the endocytotic origin of the natural uptake of quantum dots. Quantum dots with proteins adsorbed from the culture medium had a different fate in the final stage of accumulation from that of the protein-free quantum dots, implying different internalization pathways. PMID:23429995
Cell death in the unicellular green alga Micrasterias upon H2O2 induction
Darehshouri, Anza; Affenzeller, Matthias; Lütz-Meindl, Ursula
2010-01-01
In the present study we investigate whether the unicellular green alga Micrasterias denticulata is capable of executing programmed cell death (PCD) upon experimental induction and by which morphological, molecular and physiological hallmarks it is characterized. This is particularly interesting as unicellular fresh water green algae growing in shallow bog ponds are exposed to extreme environmental conditions and the capability to perform PCD may provide an important strategy to guarantee survival of the population. The theoretically “immortal” alga Micrasterias is an ideal object for such investigations as it has served as a cell biological model system since many years and details on its growth properties, physiology and ultrastructure throughout the cell cycle are well known. Treatment with low concentrations of H2O2 known to induce PCD in other organisms resulted in severe ultrastructural changes of organelles as observed in TEM. These include deformation and partly disintegration of mitochondria, abnormal dilatation of cisternal rims of dictyosomes, the occurrence of multivesicular bodies, an increase in the number of ER compartments and slight condensation of chromatin. Additionally, a statistically significant increase in caspase-3-like activity could be detected which was abrogated by a caspase-3 inhibitor. Photosynthetic activity measured by fast chlorophyll fluorescence decreased as a consequence of H2O2 exposure whereas pigment composition, except of a reduction in carotenoids, was the same as in untreated controls. TUNEL positive staining and ladder-like degradation of DNA, both frequently regarded as PCD hallmark in higher plants could only be detected in dead Micrasterias cells. PMID:18950431
Peer, Wendy Ann; Hosein, Fazeeda N.; Bandyopadhyay, Anindita; Makam, Srinivas N.; Otegui, Marisa S.; Lee, Gil-Je; Blakeslee, Joshua J.; Cheng, Yan; Titapiwatanakun, Boosaree; Yakubov, Bahktiyor; Bangari, Bharat; Murphy, Angus S.
2009-01-01
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A–sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA. PMID:19531600
Tang, Zhijian; Hong, Seungkwan; Xiao, Weizhong; Taylor, James
2006-03-01
The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium inhibited lead release to a lesser degree than sulfates. An additional 3-month field study isolated and verified the effects of chlorides and sulfates on lead release. Lead release decreased with increasing pH and increasing alkalinity during the 1-year pilot study; however, the effects of pH and alkalinity on lead release, were not clearly elucidated due to confounding effects. A statistical model was developed using nonlinear regression, which showed that lead release increased with increasing chlorides, alkalinity and temperature, and decreased with increasing pH and sulfates. The model indicated that primary treatment processes such as enhanced coagulation and RO (reverse osmosis membrane) were related to lead release by water quality. Chlorides are high in RO-finished water and increase lead release, while sulfates are high following enhanced coagulation and decrease lead release.
Factors influencing lead and iron release from some Egyptian drinking water pipes.
Lasheen, M R; Sharaby, C M; El-Kholy, N G; Elsherif, I Y; El-Wakeel, S T
2008-12-30
The major objective of this study is to assess the effect of stagnation time, pipe age, pipes material and water quality parameters such as pH, alkalinity and chloride to sulfate mass ratio on lead and iron release from different types of water pipes used in Egypt namely polyvinyl chloride (PVC), polypropylene (PP) and galvanized iron (GI), by using fill and dump method. Low pH increased lead and iron release from pipes. Lead and iron release decreased as pH and alkalinity increased. Lead and iron release increased with increasing chloride to sulfate mass ratio in all pipes. EDTA was used as an example of natural organic matter which may be influence metals release. It is found that lead and iron release increased then this release decreased with time. In general, GI pipes showed to be the most effected by water quality parameters tested and the highest iron release. PVC pipes are the most lead releasing pipes while PP pipes are the least releasing.
Deubiquitylation of Protein Cargo Is Not an Essential Step in Exosome Formation*
Huebner, Alyssa R.; Cheng, Lei; Somparn, Poorichaya; Knepper, Mark A.; Fenton, Robert A.; Pisitkun, Trairak
2016-01-01
Exosomes, derived from multivesicular bodies (MVBs), contain proteins and genetic materials from their cell of origin and are secreted from various cells types, including kidney epithelial cells. In general, it is thought that protein cargo is ubiquitylated but that ubiquitin is cleaved by specific deubiquitylases during the process of cargo incorporation into MVBs. Here, we provide direct evidence that, in vivo, deubiquitylation is not essential. Ubiquitin was detected within human MVBs and urinary exosomes by electron microscopy. Of the >6000 proteins identified in human urinary exosomes was mass spectrometry, 15% were ubiquitylated with various topologies (Lys63>Lys48> Lys11>Lys6>Lys29>Lys33>Lys27). A significant preference for basic amino acids upstream of ubiquitylation sites suggests specific ubiquitylation motifs. The current studies demonstrate that, in vivo, deubiquitylation of proteins is not necessary for their incorporation into MVBs and highlight that urinary exosomes are an enriched source for studying ubiquitin modifications in physiological or disease states. PMID:26884507
Exosome secretion affects social motility in Trypanosoma brucei
Shaked, Hadassa; Arvatz, Gil; Tkacz, Itai Dov; Binder, Lior; Waldman Ben-Asher, Hiba; Okalang, Uthman; Chikne, Vaibhav; Cohen-Chalamish, Smadar; Michaeli, Shulamit
2017-01-01
Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. PMID:28257521
High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine
Fairn, Gregory D.; Schieber, Nicole L.; Ariotti, Nicholas; Murphy, Samantha; Kuerschner, Lars; Webb, Richard I.; Grinstein, Sergio
2011-01-01
Phosphatidylserine (PS) plays a central role in cell signaling and in the biosynthesis of other lipids. To date, however, the subcellular distribution and transmembrane topology of this crucial phospholipid remain ill-defined. We transfected cells with a GFP-tagged C2 domain of lactadherin to detect by light and electron microscopy PS exposed on the cytosolic leaflet of the plasmalemma and organellar membranes. Cytoplasmically exposed PS was found to be clustered on the plasma membrane, and to be associated with caveolae, the trans-Golgi network, and endocytic organelles including intraluminal vesicles of multivesicular endosomes. This labeling pattern was compared with the total cellular distribution of PS as visualized using a novel on-section technique. These complementary methods revealed PS in the interior of the ER, Golgi complex, and mitochondria. These results indicate that PS in the lumenal monolayer of the ER and Golgi complex becomes exposed cytosolically at the trans-Golgi network. Transmembrane flipping of PS may contribute to the exit of cargo from the Golgi complex. PMID:21788369
The characterization of exosome from blood plasma of patients with colorectal cancer
NASA Astrophysics Data System (ADS)
Yunusova, N. V.; Tamkovich, S. N.; Stakheeva, M. N.; Afanas'ev, S. G.; Frolova, A. Y.; Kondakova, I. V.
2016-08-01
Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The clarification of the criteria for exosome isolating and identifying is the purpose of this study. Exosome samples from the plasma of patients with colorectal cancer and healthy donors were examined using transmission electron microscopy and flow cytometry in accordance with the minimum requirements of "International Society for Extracellular Vesicles". The choice of the method for isolation of exosomes from the blood plasma by ultrafiltration and ultracentrifugation allowed obtaining highly purified samples of exosomes, in which all the structural components were clearly seen. The results obtained with flow cytometry suggest that exosomes of blood plasma from patients with colorectal cancer can be produced by epithelial cells. Moreover, cells produce different types of exosomes, which correspond to different mechanisms in sorting macromolecules in the membrane of multivesicular bodies. Determination of significant differences in the expression of specific exosomal proteins from colorectal cancer patients compared to healthy donors suggests a high diagnostic potential significance of circulating exosomes.
Tsai, Wen-Chyan; Rizvi, Syed S H
2017-06-01
A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.
van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça
2011-01-01
Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903
Detonation nanodiamonds are promising nontoxic delivery system for urothelial cells.
Zupančič, Daša; Kreft, Mateja Erdani; Grdadolnik, Maja; Mitev, Dimitar; Iglič, Aleš; Veranič, Peter
2018-01-01
Detonation nanodiamonds (DNDs) are carbon-based nanomaterials that are among the most promising nanoparticles available for biomedical applications so far. This is due to their biocompatibility, which could be contributed to their inert core and conformable surface nature. However, DNDs cytotoxicity for urothelial cells and the routes of their internalization remains an open question in the aspect of nanodiamond surface. We therefore analyzed four types of DNDs for cytotoxicity and internalization with normal urothelial cells and two types of cancer urothelial cell lines in vitro. Viability of any of the cell types we used was not compromised with any of four DNDs we evaluated after 24-, 48- and 72-h incubation in three different concentrations of DNDs. Transmission electron microscopy revealed that all four types of DNDs were endocytosed into all three types of urothelial cells tested here. We observed DNDs in endosomes, as well as in multivesicular bodies and multilamellar bodies. These results propose using of DNDs as a delivery system for urological applications in human nanomedicine.
Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.
Ameye, L; Hermann, R; Dubois, P
2000-08-01
The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. Copyright 2000 Academic Press.
KCl stimulation increases norepinephrine transporter function in PC12 cells.
Mandela, Prashant; Ordway, Gregory A
2006-09-01
The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.
Mullaji, Arun; Sharma, Amit; Marawar, Satyajit; Kanna, Raj
2009-08-01
A novel sequence of posteromedial release consistent with surgical technique of total knee arthroplasty was performed in 15 cadaveric knees. Medial and lateral flexion and extension gaps were measured after each step of the release using a computed tomography-free computer navigation system. A spring-loaded distractor and a manual distractor were used to distract the joint. Posterior cruciate ligament release increased flexion more than extension gap; deep medial collateral ligament release had a negligible effect; semimembranosus release increased the flexion gap medially; reduction osteotomy increased medial flexion and extension gaps; superficial medial collateral ligament release increased medial joint gap more in flexion and caused severe instability. This sequence of release led to incremental and differential effects on flexion-extension gaps and has implications in correcting varus deformity.
Tallury, Padmavathy; Randall, Marcus K; Thaw, Khin L; Preisser, John S.; Kalachandra, Sid
2013-01-01
Objectives This study investigates the effects of surfactants and drug loading on the drug release rate from ethylene vinyl acetate (EVA) copolymer. The release rate of nystatin from EVA was studied with addition of non-ionic surfactants Tween 60 and Cremophor RH 40. In addition, the effect of increasing drug load on the release rates of nystatin, chlorhexidine diacetate and acyclovir is also presented. Method Polymer casting solutions were prepared by stirring EVA copolymer and nystatin (2.5 wt %) in dichloromethane. Nystatin and surfactants were added in ratios of (1:1), (1:2) and (1:3). Drug loading was studied with 2.5, 5.0, 7.5, and 10.0% wt. proportions of nystatin, chlorhexidine diacetate and acyclovir incorporated into a separate polymer. Three drug loaded polymer square films (3cm × 3cm × 0.08 cm) were cut from dry films to follow the kinetics of drug release at 37°C. 10 ml of either distilled water or PBS was used as the extracting medium that was replaced daily. PBS was used for nystatin release with addition of surfactants and water was used for the study on drug loading and surfactant release. The rate of drug release was measured by UV-spectrophotometer. The amount of surfactant released was determined by HPLC. Results The release of nystatin was low in PBS and its release rate increased with the addition of surfactants. Also, increasing surfactant concentrations resulted in increased drug release rates. The release rates of chlorhexidine diacetate (p<0.0001), acyclovir (p<0.0003) and nystatin (p<0.0017) linearly increased with increasing drug loads. The amount of surfactants released was above the CMC. Significance This study demonstrates that the three therapeutic agents show a sustained rate of drug release from EVA copolymer over extended periods of time. Nystatin release in PBS is low owing to its poor solubility. Its release rate is enhanced by addition of surfactants and increasing the drug load as well. PMID:17049593
Effect of Phospholipidosis on the Cellular Pharmacokinetics of ChloroquineS⃞
Zheng, Nan; Zhang, Xinyuan
2011-01-01
In vivo, the weakly basic, lipophilic drug chloroquine (CQ) accumulates in the kidney to concentrations more than a thousand-fold greater than those in plasma. To study the cellular pharmacokinetics of chloroquine in cells derived from the distal tubule, Madin-Darby canine kidney cells were incubated with CQ under various conditions. CQ progressively accumulated without exhibiting steady-state behavior. Experiments failed to yield evidence that known active transport mechanisms mediated CQ uptake at the plasma membrane. CQ induced a phospholipidosis-like phenotype, characterized by the appearance of numerous multivesicular and multilamellar bodies (MLBs/MVBs) within the lumen of expanded cytoplasmic vesicles. Other induced phenotypic changes including changes in the volume and pH of acidic organelles were measured, and the integrated effects of all these changes were computationally modeled to establish their impact on intracellular CQ mass accumulation. Based on the passive transport behavior of CQ, the measured phenotypic changes fully accounted for the continuous, nonsteady-state CQ accumulation kinetics. Consistent with the simulation results, Raman confocal microscopy of live cells confirmed that CQ became highly concentrated within induced, expanded cytoplasmic vesicles that contained multiple MLBs/MVBs. Progressive CQ accumulation was increased by sucrose, a compound that stimulated the phospholipidosis-like phenotype, and was decreased by bafilomycin A1, a compound that inhibited this phenotype. Thus, phospholipidosis-associated changes in organelle structure and intracellular membrane content can exert a major influence on the local bioaccumulation and biodistribution of drugs. PMID:21156819
Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.
2013-01-01
Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410
Mutation of SIMPLE in Charcot–Marie–Tooth 1C alters production of exosomes
Zhu, Hong; Guariglia, Sara; Yu, Raymond Y. L.; Li, Wenjing; Brancho, Deborah; Peinado, Hector; Lyden, David; Salzer, James; Bennett, Craig; Chow, Chi-Wing
2013-01-01
Charcot–Marie–Tooth (CMT) disease is an inherited neurological disorder. Mutations in the small integral membrane protein of the lysosome/late endosome (SIMPLE) account for the rare autosomal-dominant demyelination in CMT1C patients. Understanding the molecular basis of CMT1C pathogenesis is impeded, in part, by perplexity about the role of SIMPLE, which is expressed in multiple cell types. Here we show that SIMPLE resides within the intraluminal vesicles of multivesicular bodies (MVBs) and inside exosomes, which are nanovesicles secreted extracellularly. Targeting of SIMPLE to exosomes is modulated by positive and negative regulatory motifs. We also find that expression of SIMPLE increases the number of exosomes and secretion of exosome proteins. We engineer a point mutation on the SIMPLE allele and generate a physiological mouse model that expresses CMT1C-mutated SIMPLE at the endogenous level. We find that CMT1C mouse primary embryonic fibroblasts show decreased number of exosomes and reduced secretion of exosome proteins, in part due to improper formation of MVBs. CMT1C patient B cells and CMT1C mouse primary Schwann cells show similar defects. Together the data indicate that SIMPLE regulates the production of exosomes by modulating the formation of MVBs. Dysregulated endosomal trafficking and changes in the landscape of exosome-mediated intercellular communications may place an overwhelming burden on the nervous system and account for CMT1C molecular pathogenesis. PMID:23576546
Lubben, Nienke B.; Sahlender, Daniela A.; Motley, Alison M.; Lehner, Paul J.; Benaroch, Philippe
2007-01-01
Major histocompatibility complex class I is down-regulated from the surface of human immunodeficiency virus (HIV)-1-infected cells by Nef, a virally encoded protein that is thought to reroute MHC-I to the trans-Golgi network (TGN) in a phosphofurin acidic cluster sorting protein (PACS) 1, adaptor protein (AP)-1, and clathrin-dependent manner. More recently, an alternative model has been proposed, in which Nef uses AP-1 to direct MHC-I to endosomes and lysosomes. Here, we show that knocking down either AP-1 or clathrin with small interfering RNA inhibits the down-regulation of HLA-A2 (an MHC-I isotype) by Nef in HeLa cells. However, knocking down PACS-1 has no effect, not only on Nef-induced down-regulation of HLA-A2 but also on the localization of other proteins containing acidic cluster motifs. Surprisingly, knocking down AP-2 actually enhances Nef activity. Immuno-electron microscopy labeling of Nef-expressing cells indicates that HLA-A2 is rerouted not to the TGN, but to endosomes. In AP-2–depleted cells, more of the HLA-A2 localizes to the inner vesicles of multivesicular bodies. We propose that depleting AP-2 potentiates Nef activity by altering the membrane composition and dynamics of endosomes and causing increased delivery of HLA-A2 to a prelysosomal compartment. PMID:17581864
Toward Exosome-Based Therapeutics: Isolation, Heterogeneity, and Fit-for-Purpose Potency
Willis, Gareth R.; Kourembanas, Stella; Mitsialis, S. Alex
2017-01-01
Exosomes are defined as submicron (30–150 nm), lipid bilayer-enclosed extracellular vesicles (EVs), specifically generated by the late endosomal compartment through fusion of multivesicular bodies with the plasma membrane. Produced by almost all cells, exosomes were originally considered to represent just a mechanism for jettisoning unwanted cellular moieties. Although this may be a major function in most cells, evolution has recruited the endosomal membrane-sorting pathway to duties beyond mere garbage disposal, one of the most notable examples being its cooption by retroviruses for the generation of Trojan virions. It is, therefore, tempting to speculate that certain cell types have evolved an exosome subclass active in intracellular communication. We term this EV subclass “signalosomes” and define them as exosomes that are produced by the “signaling” cells upon specific physiological or environmental cues and harbor cargo capable of modulating the programming of recipient cells. Our recent studies have established that signalosomes released by mesenchymal stem/stromal cells (MSCs) represent the main vector of MSC immunomodulation and therapeutic action in animal models of lung disease. The efficacy of MSC-exosome treatments in a number of preclinical models of cardiovascular and pulmonary disease supports the promise of application of exosome-based therapeutics across a wide range of pathologies within the near future. However, the full realization of exosome therapeutic potential has been hampered by the absence of standardization in EV isolation, and procedures for purification of signalosomes from the main exosome population. This is mainly due to immature methodologies for exosome isolation and characterization and our incomplete understanding of the specific characteristics and molecular composition of signalosomes. In addition, difficulties in defining metrics for potency of exosome preparations and the challenges of industrial scale-up and good manufacturing practice compliance have complicated smooth and timely transition to clinical development. In this manuscript, we focus on cell culture conditions, exosome harvesting, dosage, and exosome potency, providing some empirical guidance and perspectives on the challenges in bringing exosome-based therapies to clinic. PMID:29062835
Acute fasting increases somatodendritic dopamine release in the ventral tegmental area
2015-01-01
Fasting and food restriction alter the activity of the mesolimbic dopamine system to affect multiple reward-related behaviors. Food restriction decreases baseline dopamine levels in efferent target sites and enhances dopamine release in response to rewards such as food and drugs. In addition to releasing dopamine from axon terminals, dopamine neurons in the ventral tegmental area (VTA) also release dopamine from their soma and dendrites, and this somatodendritic dopamine release acts as an autoinhibitory signal to inhibit neighboring VTA dopamine neurons. It is unknown whether acute fasting also affects dopamine release, including the local inhibitory somatodendritic dopamine release in the VTA. In these studies, I have tested whether fasting affects the inhibitory somatodendritic dopamine release within the VTA by examining whether an acute 24-h fast affects the inhibitory postsynaptic current mediated by evoked somatodendritic dopamine release (D2R IPSC). Fasting increased the contribution of the first action potential to the overall D2R IPSC and increased the ratio of repeated D2R IPSCs evoked at short intervals. Fasting also reduced the effect of forskolin on the D2R IPSC and led to a significantly bigger decrease in the D2R IPSC in low extracellular calcium. Finally, fasting resulted in an increase in the D2R IPSCs when a more physiologically relevant train of D2R IPSCs was used. Taken together, these results indicate that fasting caused a change in the properties of somatodendritic dopamine release, possibly by increasing dopamine release, and that this increased release can be sustained under conditions where dopamine neurons are highly active. PMID:26084913
Development of a novel osmotically driven drug delivery system for weakly basic drugs.
Guthmann, C; Lipp, R; Wagner, T; Kranz, H
2008-06-01
The drug substance SAG/ZK has a short biological half-life and because of its weakly basic nature a strong pH-dependent solubility was observed. The aim of this study was to develop a controlled release (cr) multiple unit pellet formulation for SAG/ZK with pH-independent drug release. Pellets with a drug load of 60% were prepared by extrusion/spheronization followed by cr-film coating with an extended release polyvinyl acetate/polyvinyl pyrrolidone dispersion (Kollidon SR 30 D). To overcome the problem of pH-dependent drug release the pellets were then coated with a second layer of an enteric methacrylic acid and ethyl acrylate copolymer (Kollicoat MAE 30 DP). To increase the drug release rates from the double layered cr-pellets different osmotically active ionic (sodium and potassium chloride) and nonionic (sucrose) additives were incorporated into the pellet core. Drug release studies were performed in media of different osmotic pressure to clarify the main release mechanism. Extended release coated pellets of SAG/ZK demonstrated pH-dependent drug release. Applying a second enteric coat on top of the extended release film coat failed in order to achieve pH-independent drug release. Already low enteric polymer levels on top of the extended release coated pellets decreased drug release rates at pH 1 drastically, thus resulting in a reversal of the pH-dependency (faster release at pH 6.8 than in 0.1N HCl). The addition of osmotically active ingredients (sodium and potassium chloride, and sucrose) increased the imbibing of aqueous fluids into the pellet cores thus providing a saturated drug solution inside the beads and increasing drug concentration gradients. In addition, for these pellets increased formation of pores and cracks in the polymer coating was observed. Hence drug release rates from double layered beads increased significantly. Therefore, pH-independent osmotically driven SAG/ZK release was achieved from pellets containing osmotically active ingredients and coated with an extended and enteric polymer. In contrast, with increasing osmotic pressure of the dissolution medium the in vitro drug release rates decreased significantly.
Lee, Eung Seok; Gupta, Neha
2014-08-01
Slow-release permanganate (MnO4(-)) gel (SRP-G) is a hyper-saline KMnO4 solution that can be used for treating large, dilute, or deep plumes of chlorinated solvents in groundwater. Ideally, the SRP-G injected into aquifers will slowly gelate to form MnO4(-) gel in situ, and the gel will slowly releases MnO4(-). Objectives of this study were to develop SRP-G using colloidal silica as gelling solution, characterize its gelation and release kinetics, and delineate its dynamics in a saturated sandy media. The SRP-G exhibited a two-phase increase in viscosity: a lag phase characterized by little increase in viscosity followed by a short gelation phase. Gelation lag times of SRP-G solutions increased (from 0.5h to 13d) with decreasing KMnO4 concentrations (from 25 to 8 g L(-1)). Permanganate release from gelated SRP-G increased with increasing KMnO4 concentrations, and was characterized as asymptotic release with initial peak (0.9-2.2 mg min(-1)) followed by more attenuated release. Gelation lag times of SRP-G flowing in sands (linear velocity=2.1md(-1)) increased (1, 3, and 6h) with decreasing KMnO4 concentrations (25.0, 23.0, and 22.9 g L(-1)). Permanganate release from gelated SRP-Gs continued for up to 3d and was characterized as asymptotic release with an initial peak release (∼1.2 g min(-1)) followed by more attenuated release over 70h. Dilution of SRP-G by dispersion in porous media affects gelation and release kinetics. Increasing the silica concentration in the SRP-G may facilitate gelation and extend the duration of MnO4(-) release from emplaced SRP-G in porous media. Copyright © 2014. Published by Elsevier Ltd.
Role of gastrin-releasing peptide in pepsinogen secretion from the isolated perfused rat stomach.
Skak-Nielsen, T; Holst, J J; Christensen, J D; Fjalland, B
1988-10-01
We studied the effects of the neuropeptide gastrin-releasing peptide on pepsinogen secretion using an isolated perfused rat stomach with intact vagal innervation. Following electrical stimulation of the vagus nerves, the pepsin output to the luminal effluent increased from 94 +/- 7 to 182 +/- 24 units pepsin/min and the release of immunoreactive gastrin-releasing peptide to the venous effluent increased from 0.059 +/- 0.014 to 0.138 +/- 0.028 pmol/min. Infusion of gastrin-releasing peptide at 10(-8) M significantly increased pepsin output (from 87 +/- 17 to 129 +/- 22 units pepsin/min) and simultaneous infusion of gastrin-releasing peptide and carbachol at 10(-8) and 10(-6) M, respectively, resulted in an increase to almost 4 times the basal values. Atropine reduced but did not abolish the pepsin response to vagal stimulation and to infusion of gastrin-releasing peptide. Our results suggest that gastrin-releasing peptide participates in the vagal control of pepsinogen secretion.
Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress.
Kawakami, Akio; Okada, Nobukazu; Rokkaku, Kumiko; Honda, Kazufumi; Ishibashi, Shun; Onaka, Tatsushi
2008-09-01
Metabolic conditions affect hypothalamo-pituitary-adrenal responses to stressful stimuli. Here we examined effects of food deprivation, leptin and ghrelin upon noradrenaline release in the hypothalamic paraventricular nucleus (PVN) and plasma adrenocorticotropic hormone (ACTH) concentrations after stressful stimuli. Food deprivation augmented both noradrenaline release in the PVN and the increase in plasma ACTH concentration following electrical footshocks (FSs). An intracerebroventricular injection of leptin attenuated the increases in hypothalamic noradrenaline release and plasma ACTH concentrations after FSs, while ghrelin augmented these responses. These data suggest that leptin inhibits and ghrelin facilitates neuroendocrine stress responses via noradrenaline release and indicate that a decrease in leptin and an increase in ghrelin release after food deprivation might contribute to augmentation of stress-induced ACTH release in a fasting state.
Berga, S L; Loucks-Daniels, T L; Adler, L J; Chrousos, G P; Cameron, J L; Matthews, K A; Marcus, M D
2000-04-01
Women with functional hypothalamic amenorrhea are anovulatory because of reduced gonadotropin-releasing hormone drive. Several studies have documented hypercortisolemia, which suggests that functional hypothalamic amenorrhea is stress-induced. Further, with recovery (resumption of ovulation), cortisol decreased and gonadotropin-releasing hormone drive increased. Corticotropin-releasing hormone can increase cortisol and decrease gonadotropin-releasing hormone. To determine its role in functional hypothalamic amenorrhea, we measured corticotropin-releasing hormone in cerebrospinal fluid along with arginine vasopressin, another potent adrenocorticotropic hormone secretagog, and beta-endorphin, which is released by corticotropin-releasing hormone and can inhibit gonadotropin-releasing hormone. Corticotropin-releasing hormone, vasopressin, and beta-endorphin levels were measured in cerebrospinal fluid from 14 women with eumenorrhea and 15 women with functional hypothalamic amenorrhea. Levels of corticotropin-releasing hormone in cerebrospinal fluid and of vasopressin were comparable and beta-endorphin levels were lower in women with functional hypothalamic amenorrhea. In women with established functional hypothalamic amenorrhea, increased cortisol and reduced gonadotropin-releasing hormone are not sustained by elevated cerebrospinal-fluid corticotropin-releasing hormone, vasopressin, or beta-endorphin. These data do not exclude a role for these factors in the initiation of functional hypothalamic amenorrhea.
The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release
Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.
2010-01-01
Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640
de Cassia Pereira, Josiani; Travaini, Rodolfo; Paganini Marques, Natalia; Bolado-Rodríguez, Silvia; Bocchini Martins, Daniela Alonso
2016-03-01
The saccharification of ozonated sugarcane bagasse (SCB) by enzymes from Myceliophthora thermophila JCP 1-4 was studied. Fungal enzymes provided slightly higher sugar release than commercial enzymes, working at 50°C. Sugar release increased with temperature increase. Kinetic studies showed remarkable glucose release (4.99 g/L, 3%w/w dry matter) at 60°C, 8 h of hydrolysis, using an enzyme load of 10 FPU (filter paper unit). FPase and β-glucosidase activities increased during saccharification (284% and 270%, respectively). No further significant improvement on glucose release was observed increasing the enzyme load above 7.5 FPU per g of cellulose. Higher dry matter contents increased sugars release, but not yields. The fermentation of hydrolysates by Saccharomyces cerevisiae provided glucose-to-ethanol conversions around to 63%. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumura, Yasuo; Kawazoe, Shinka; Ichihara, Toshio
Extracellular high potassium inhibits renin release in vitro by increasing calcium concentrations in the juxtaglomerular cells. The authors found that the decreased response of renin release from rat kidney cortical slices in high potassium solution changed to a strikingly increased one in the presence of nifedipine at doses over 10{sup {minus}6} M. They then examined the stimulatory effect of extracellular high potassium in the presence of nifedipine on renin release. The enhancement of release was significantly suppressed either by propranolol or by metoprolol but not by prazosin. High potassium plus nifedipine-induced increase in renin release was markedly attenuated by renalmore » denervation. The enhancing effect was not observed when the slices were incubated in calcium-free medium. Divalent cations such as Cd{sup 2+}, Co{sup 2+}, and Mn{sup 2+} blocked this enhancement in a concentration-dependent manner. High potassium elicited an increase in {sup 3}H efflux from the slices preloaded with ({sup 3}H)-norepinephrine. The increasing effect was not influenced by nifedipine but was abolished by the removal of extracellular calcium or by the addition of divalent cations. These observations suggest to us that the high potassium plus nifedipine-induced increase in renin release from the slices is mediated by norepinephrine derived from renal sympathetic nerves and that this neuronally released norepinephrine stimulates renin release via activation of {beta}-adrenoceptors.« less
Yu, Z J; Wecker, L
1994-07-01
The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]-dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]-serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 mumol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 microM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 microM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 microM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration.(ABSTRACT TRUNCATED AT 250 WORDS)
Maity, Siddhartha; Sa, Biswanath
2014-08-01
The objective of this work was to study the release behavior of prednisolone from calcium-cross-linked carboxymethyl xanthan gum (CMXG) tablets in dissolution medium having different pH values prevailing in the gastrointestinal lumen. Xanthan gum (XG) was derivatized to CMXG which was then cross-linked in situ with Ca(+2) ion during wet massing step of tablet preparation. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry studies did not show any drug-polymer interaction although the drug underwent solid-state transformation during compression as evident from X-ray diffraction analysis. In vitro release study demonstrated that increase in the amount of Ca(+2) ion decreased the drug release, and beyond a certain amount, the drug release increased. While increase in both drug load and tablet crushing strength decreased the drug release, increase in exposure time in acid solution of pH 1.2 increased the overall release of the drug. The mechanism of drug release was non-Fickian/anomalous. The results indicated that variation in the amount of Ca(+2) ion can modulate the drug release from CMXG matrix tablets as needed.
Ishida, Kota; Murata, Mikio; Kato, Masatoshi; Utsunomiya, Iku; Hoshi, Keiko; Taguchi, Kyoji
2005-09-01
Using an in vivo intra-striatal microdialysis technique, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor stimulating trace amine, on striatal acetylcholine release in freely moving rats. Infusion of N-methyl-D-aspartic acid (NMDA; 10(-5) M) significantly increased acetylcholine release. In addition, locally applied amino-3-hydroxy-5-methylisozasole-4-propionic acid (AMPA; 10(-5) M) significantly increased acetylcholine release in the striatum. Intra-striatal application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M), an AMPA-type glutamatergic receptor antagonist, had little effect on acetylcholine release, while application of MK-801 (10(-5) M, 10(-6) M), an NMDA-type glutamatergic receptor antagonist, significantly reduced acetylcholine release. Acetylcholine within striatal perfusate was significantly increased by intraperitoneal administration of beta-PEA in a dose-dependent manner. This increase in acetylcholine release was completely blocked by application of CNQX (10(-5) M) through the microdialysis probe into the striatum. However, increased acetylcholine response to systemic beta-PEA was unaltered by addition of MK-801 to the perfusion medium. These results suggest a regulatory function of beta-PEA, mediated by AMPA-type glutamatergic receptors, on the release of acetylcholine in the rat striatum.
Magnetic modulation of release of macromolecules from polymers.
Hsieh, D S; Langer, R; Folkman, J
1981-01-01
Sustained-release systems were made by incorporating bovine serum albumin and magnetic steel beads in an ethylene-vinyl acetate copolymer matrix. When exposed to aqueous medium, the polymer matrix released the albumin slowly and continuously. Application of an oscillating magnetic field increased the release rate by as much as 100%. Intervals of 6-hr periods of magnetic exposure and nonexposure were alternated over a 5-day period, resulting in corresponding increases and decreases in release and establishing a pattern of modulated sustained release. Images PMID:6940193
Increased distance of shooting on basketball jump shot.
Okazaki, Victor Hugo Alves; Rodacki, André Luiz Félix
2012-01-01
The present study analyzed the effect of increased distance on basketball jump shot outcome and performance. Ten male expert basketball players were filmed and a number of kinematic variables analyzed during jump shot that were performed from three conditions to represent close, intermediate and far distances (2.8, 4.6, and 6.4m, respectively). Shot accuracy decreased from 59% (close) to 37% (far), in function of the task constraints (p < 0.05). Ball release height decreased (p < 0.05) from 2.46 m (close) to 2.38m (intermediate) and to 2.33m (long). Release angle also decreased (p < 0.05) when shot was performed from close (78.92°) in comparison to intermediate distances (65.60°). While, ball release velocity increased (p < 0.05) from 4.39 m/s (close) to 5.75 m·s(-1) (intermediate) to 6.89 m·s(-1) (far). These changes in ball release height, angle and velocity, related to movement performance adaptations were suggested as the main factors that influence jump shot accuracy when distance is augmented. Key pointsThe increased distance leads to greater spatial con-straint over shot movement that demands an adapta-tion of the movement for the regulation of the accu-racy and the impulse generation to release the ball.The reduction in balls release height and release angle, in addition to the increase in balls release ve-locity, were suggested as the main factors that de-creased shot accuracy with the distance increased.Players should look for release angles of shooting that provide an optimal balls release velocity to im-prove accuracy.
Wu, Yong-li; Shi, Bao-you; Sun, Hui-fang; Zhang, Zhi-huan; Gu, Jun-nong; Wang, Dong-sheng
2013-09-01
To understand the processes of corrosion by-product release and the consequent "red water" problems caused by the variation of water chemical composition in drinking water distribution system, the effect of sulphate and dissolved oxygen (DO) concentration on total iron release in corroded old iron pipe sections historically transporting groundwater was investigated in laboratory using small-scale pipe section reactors. The release behaviors of some low-level metals, such as Mn, As, Cr, Cu, Zn and Ni, in the process of iron release were also monitored. The results showed that the total iron and Mn release increased significantly with the increase of sulphate concentration, and apparent red water occurred when sulphate concentration was above 400 mg x L(-1). With the increase of sulfate concentration, the effluent concentrations of As, Cr, Cu, Zn and Ni also increased obviously, however, the effluent concentrations of these metals were lower than the influent concentrations under most circumstances, which indicated that adsorption of these metals by pipe corrosion scales occurred. Increasing DO within a certain range could significantly inhibit the iron release.
McMillan, Brian J; Tibbe, Christine; Jeon, Hyesung; Drabek, Andrew A; Klein, Thomas; Blacklow, Stephen C
2016-08-02
The endosomal sorting complex required for transport (ESCRT) is a conserved protein complex that facilitates budding and fission of membranes. It executes a key step in many cellular events, including cytokinesis and multi-vesicular body formation. The ESCRT-III protein Shrub in flies, or its homologs in yeast (Snf7) or humans (CHMP4B), is a critical polymerizing component of ESCRT-III needed to effect membrane fission. We report the structural basis for polymerization of Shrub and define a minimal region required for filament formation. The X-ray structure of the Shrub core shows that individual monomers in the lattice interact in a staggered arrangement using complementary electrostatic surfaces. Mutations that disrupt interface salt bridges interfere with Shrub polymerization and function. Despite substantial sequence divergence and differences in packing interactions, the arrangement of Shrub subunits in the polymer resembles that of Snf7 and other family homologs, suggesting that this intermolecular packing mechanism is shared among ESCRT-III proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The characterization of exosome from blood plasma of patients with colorectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunusova, N. V., E-mail: Bochkarevanv@oncology.tomsk.ru; Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050; Tamkovich, S. N., E-mail: s.tamk@niboch.nsc.ru
Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The clarification of the criteria for exosome isolating and identifying is the purpose of this study. Exosome samples from the plasma of patients with colorectal cancer and healthy donors were examined using transmission electron microscopy and flow cytometry in accordance with the minimum requirements of “International Society for Extracellular Vesicles”. The choice of the method for isolation of exosomes from the blood plasma by ultrafiltration and ultracentrifugation allowed obtaining highly purified samples of exosomes, in which all the structural components were clearly seen. Themore » results obtained with flow cytometry suggest that exosomes of blood plasma from patients with colorectal cancer can be produced by epithelial cells. Moreover, cells produce different types of exosomes, which correspond to different mechanisms in sorting macromolecules in the membrane of multivesicular bodies. Determination of significant differences in the expression of specific exosomal proteins from colorectal cancer patients compared to healthy donors suggests a high diagnostic potential significance of circulating exosomes.« less
Structural Basis of Vta1 Function in the Multivesicular Body Sorting Pathway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai
The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity, but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domainmore » stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif-containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly.« less
A new fate for old cells: brush cells and related elements
Sbarbati, A; Osculati, F
2005-01-01
Over the past 50 years, hundreds of studies have described those cells that are characterized by a brush of rigid apical microvilli with long rootlets, and which are found in the digestive and respiratory apparatuses. These cells have been given names such as brush cells, tuft cells, fibrillovesicular cells, multivesicular cells and caveolated cells. More recently, it has been realized that all these elements may represent a single cell type, probably with a chemosensory role, even if other functions (e.g. secretory or absorptive) seem to be possible. Very recent developments have permitted a partial definition of the chemical code characterizing these elements, revealing the presence of molecules involved in chemoreceptorial cell signalling. A molecular cascade, similar to those characterizing the gustatory epithelium, seems to be present in these elements. These new data suggest that these elements can be considered solitary chemosensory cells with the presence of the apical ‘brush’ as an inconsistent feature. They seem to comprise a diffuse chemosensory system that covers large areas (probably the whole digestive and respiratory apparatuses) with analogies to chemosensory systems described in aquatic vertebrates. PMID:15817103
Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Dong; Rimanchi, Neggy; Renvoise, Benoit
2009-01-15
The endosomal sorting complex required for transport (ESCRT) machinery, including ESCRT-III, localizes to the midbody and participates in the membrane-abscission step of cytokinesis. The ESCRT-III protein charged multivesicular body protein 1B (CHMP1B) is required for recruitment of the MIT domain-containing protein spastin, a microtubule-severing enzyme, to the midbody. The 2.5-{angstrom} structure of the C-terminal tail of CHMP1B with the MIT domain of spastin reveals a specific, high-affinity complex involving a noncanonical binding site between the first and third helices of the MIT domain. The structural interface is twice as large as that of the MIT domain of the VPS4-CHMP complex,more » consistent with the high affinity of the interaction. A series of unique hydrogen-bonding interactions and close packing of small side chains discriminate against the other ten human ESCRT-III subunits. Point mutants in the CHMP1B binding site of spastin block recruitment of spastin to the midbody and impair cytokinesis.« less
Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Q.; Fisher, R.D.; Chung, H.-Y.
2009-05-28
Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalentmore » contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.« less
The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.
Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise
2016-08-31
Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.
Tomas, Alejandra; Vaughan, Simon O.; Burgoyne, Thomas; Sorkin, Alexander; Hartley, John A.; Hochhauser, Daniel; Futter, Clare E.
2015-01-01
Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance. PMID:26066081
Stringer, Daniel K.
2011-01-01
ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination. PMID:21242292
Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly
Shen, Qing-Tao; Schuh, Amber L.; Zheng, Yuqing; Quinney, Kyle; Wang, Lei; Hanna, Michael; Mitchell, Julie C.; Otegui, Marisa S.; Ahlquist, Paul; Cui, Qiang
2014-01-01
The scission of biological membranes is facilitated by a variety of protein complexes that bind and manipulate lipid bilayers. ESCRT-III (endosomal sorting complex required for transport III) filaments mediate membrane scission during the ostensibly disparate processes of multivesicular endosome biogenesis, cytokinesis, and retroviral budding. However, mechanisms by which ESCRT-III subunits assemble into a polymer remain unknown. Using cryogenic electron microscopy (cryo-EM), we found that the full-length ESCRT-III subunit Vps32/CHMP4B spontaneously forms single-stranded spiral filaments. The resolution afforded by two-dimensional cryo-EM combined with molecular dynamics simulations revealed that individual Vps32/CHMP4B monomers within a filament are flexible and able to accommodate a range of bending angles. In contrast, the interface between monomers is stable and refractory to changes in conformation. We additionally found that the carboxyl terminus of Vps32/CHMP4B plays a key role in restricting the lateral association of filaments. Our findings highlight new mechanisms by which ESCRT-III filaments assemble to generate a unique polymer capable of membrane remodeling in multiple cellular contexts. PMID:25202029
Frontotemporal Dementia: Implications for Understanding Alzheimer Disease
Goedert, Michel; Ghetti, Bernardino; Spillantini, Maria Grazia
2012-01-01
Frontotemporal dementia (FTD) comprises a group of behavioral, language, and movement disorders. On the basis of the nature of the characteristic protein inclusions, frontotemporal lobar degeneration (FTLD) can be subdivided into the common FTLD-tau and FTLD-TDP as well as the less common FTLD-FUS and FTLD-UPS. Approximately 10% of cases of FTD are inherited in an autosomal-dominant manner. Mutations in seven genes cause FTD, with those in tau (MAPT), chromosome 9 open reading frame 72 (C9ORF72), and progranulin (GRN) being the most common. Mutations in MAPT give rise to FTLD-tau and mutations in C9ORF72 and GRN to FTLD-TDP. The other four genes are transactive response–DNA binding protein-43 (TARDBP), fused in sarcoma (FUS), valosin-containing protein (VCP), and charged multivesicular body protein 2B (CHMP2B). Mutations in TARDBP and VCP give rise to FTLD-TDP, mutations in FUS to FTLD-FUS, and mutations in CHMP2B to FTLD-UPS. The discovery that mutations in MAPT cause neurodegeneration and dementia has important implications for understanding Alzheimer disease. PMID:22355793
Structural basis of Vta1 function in the multi-vesicular body sorting pathway
Xiao, Junyu; Xia, Hengchuan; Zhou, Jiahai; Azmi, Ishara; Davies, Brian A.; Katzmann, David J.; Xu, Zhaohui
2009-01-01
Summary The MVB pathway plays essential roles in several eukaryotic cellular processes. Proper function of the MVB pathway requires reversible membrane association of the ESCRTs, a process catalyzed by Vps4 ATPase. Vta1 regulates the Vps4 activity but its mechanism of action was poorly understood. We report the high-resolution crystal structures of the Did2- and Vps60-binding N-terminal domain and the Vps4-binding C-terminal domain of S. cerevisiae Vta1. The C-terminal domain also mediates Vta1 dimerization and both subunits are required for its function as a Vps4 regulator. Emerging from our analysis is a mechanism of regulation by Vta1 in which the C-terminal domain stabilizes the ATP-dependent double ring assembly of Vps4. In addition, the MIT motif containing N-terminal domain, projected by a long disordered linker, allows contact between the Vps4 disassembly machinery and the accessory ESCRT-III proteins. This provides an additional level of regulation and coordination for ESCRT-III assembly and disassembly. PMID:18194651
Arora, Gurpreet; Malik, Karan; Singh, Inderbir; Arora, Sandeep; Rana, Vikas
2011-01-01
The aim of study was to prepare controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum as natural polymer. Tablets were formulated by direct compression technology employing the natural polymer in different concentrations (5, 10, 15 and 20% w/w). The prepared batches were evaluated for drug assay, diameter, thickness, hardness and tensile strength, swelling index, mucoadhesive strength (using texture analyzer) and subjected to in vitro drug release studies. Real-time stability studies were also conducted on prepared batches. In vitro drug release data were fitted in various release kinetic models for studying the mechanism of drug release. Tensile strength was found to increase from 0.808 ± 0.098 to 1.527 ± 0.10 mN/cm2 and mucoadhesive strength increased from 13.673 ± 1.542 to 40.378 ± 2.345 N, with an increase in the polymer concentration from 5 to 20% (A1 to A4). Swelling index was reported to increase with both increase in the concentration of gum and the time duration. The in vitro drug release decreased from 97.76 to 83.4% (A1 to A4) with the increase in polymer concentration. The drug release from the matrix tablets was found to follow zero-order and Higuchi models, indicating the matrix-forming potential of natural polymer. The value of n was found to be between 0.5221 and 0.8992, indicating the involvement of more than one drug release mechanism from the formulation and possibly the combination of both diffusion and erosion. These research findings clearly indicate the potential of S. plebeian gum to be used as binder, release retardant and mucoadhesive natural material in tablet formulations. PMID:22171313
Somogyi, G T; de Groat, W C
1992-02-01
Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.
[Effect on iron release in drinking water distribution systems].
Niu, Zhang-bin; Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Wang, Sheng-hui
2007-10-01
Batch-scale experiments were done to quantitatively study the effect of inorganic chemical parameters on iron release in drinking water distribution systems. The parameters include acid-base condition, oxidation-reduction condition, and neutral ion condition. It was found that the iron release rate decreased with pH, alkalinity, the concentration of dissolved oxygen increasing, and the iron release rate increased with the concentration of chloride increasing. The theoretical critical formula of iron release rate was elucidated. According to the formula, the necessary condition for controlling iron release is that pH is above 7.6, the concentration of alkalinity and dissolved oxygen is more than 150 mg/L and 2 mg/L, and the concentration of chloride is less than 150 mg/L of distributed water.
Kelce, W R; Krause, W J; Ganjam, V K
1987-09-01
The epididymal epithelial ultrastructure has been described in the adult male North American opossum, Didelphis virginiana. Morphological results have suggested that absorptive activity is prominent in the proximal epididymal region by virtue of numerous microvilli, an endocytotic complex, dense granules, and multivesicular bodies in the apical cytoplasm. In contrast, the middle and distal epididymal regions exhibit ultrastructural features indicative of protein synthesis such as large invaginated euchromatic nuclei, large nucleoli, and increased amounts of granular endoplasmic reticulum. It is in the middle and distal epididymal regions where sperm head rotation and sperm pairing take place. Epididymal delta 4-3-ketosteroid-5 alpha-oxidoreductase (5 alpha-reductase) activity also has been measured. It has been found that the level of enzyme activity differs significantly (p less than 0.01) between the proximal, middle, and distal epididymal regions. Enzyme-specific activity has been found to be highest in the middle region (47.6 +/- 5.4 picomoles 5 alpha-reduced androgens formed/b/mg protein), lower in the distal region (18.3 +/- 0.7 picomoles 5 alpha-reduced androgens formed/b/mg protein), with little activity (2.4 +/- 1.2 picomoles 5 alpha-reduced androgens formed/h/mg protein) found in the proximal epididymal region. This regional distribution of enzyme activity differs markedly from that reported for eutherian mammals. Both the suggested epididymal protein synthetic and secretory activity and the level of epididymal 5 alpha-reductase activity appear to correlate regionally with the morphological changes that occur in the opossum spermatozoa as they transit the epididymis.
RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis elegans
Skorobogata, Olga; Rocheleau, Christian E.
2012-01-01
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(−) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans. PMID:22558469
Renvoisé, Benoît; Parker, Rell L.; Yang, Dong; Bakowska, Joanna C.; Hurley, James H.
2010-01-01
Hereditary spastic paraplegias (HSPs, SPG1-46) are inherited neurological disorders characterized by lower extremity spastic weakness. Loss-of-function SPG20 gene mutations cause an autosomal recessive HSP known as Troyer syndrome. The SPG20 protein spartin localizes to lipid droplets and endosomes, and it interacts with tail interacting protein 47 (TIP47) as well as the ubiquitin E3 ligases atrophin-1-interacting protein (AIP)4 and AIP5. Spartin harbors a domain contained within microtubule-interacting and trafficking molecules (MIT) at its N-terminus, and most proteins with MIT domains interact with specific ESCRT-III proteins. Using yeast two-hybrid and in vitro surface plasmon resonance assays, we demonstrate that the spartin MIT domain binds with micromolar affinity to the endosomal sorting complex required for transport (ESCRT)-III protein increased sodium tolerance (Ist)1 but not to ESCRT-III proteins charged multivesicular body proteins 1–7. Spartin colocalizes with Ist1 at the midbody, and depletion of Ist1 in cells by small interfering RNA significantly decreases the number of cells where spartin is present at midbodies. Depletion of spartin does not affect Ist1 localization to midbodies but markedly impairs cytokinesis. A structure-based amino acid substitution in the spartin MIT domain (F24D) blocks the spartin–Ist1 interaction. Spartin F24D does not localize to the midbody and acts in a dominant-negative manner to impair cytokinesis. These data suggest that Ist1 interaction is important for spartin recruitment to the midbody and that spartin participates in cytokinesis. PMID:20719964
RAB-7 antagonizes LET-23 EGFR signaling during vulva development in Caenorhabditis elegans.
Skorobogata, Olga; Rocheleau, Christian E
2012-01-01
The Rab7 GTPase regulates late endosome trafficking of the Epidermal Growth Factor Receptor (EGFR) to the lysosome for degradation. However, less is known about how Rab7 activity, functioning late in the endocytic pathway, affects EGFR signaling. Here we used Caenorhabditis elegans vulva cell fate induction, a paradigm for genetic analysis of EGFR/Receptor Tyrosine Kinase (RTK) signaling, to assess the genetic requirements for rab-7. Using a rab-7 deletion mutant, we demonstrate that rab-7 antagonizes LET-23 EGFR signaling to a similar extent, but in a distinct manner, as previously described negative regulators such as sli-1 c-Cbl. Epistasis analysis places rab-7 upstream of or in parallel to lin-3 EGF and let-23 EGFR. However, expression of gfp::rab-7 in the Vulva Presursor Cells (VPCs) is sufficient to rescue the rab-7(-) VPC induction phenotypes indicating that RAB-7 functions in the signal receiving cell. We show that components of the Endosomal Sorting Complex Required for Transport (ESCRT)-0, and -I, complexes, hgrs-1 Hrs, and vps-28, also antagonize signaling, suggesting that LET-23 EGFR likely transits through Multivesicular Bodies (MVBs) en route to the lysosome. Consistent with RAB-7 regulating LET-23 EGFR trafficking, rab-7 mutants have increased number of LET-23::GFP-positive endosomes. Our data imply that Rab7, by mediating EGFR trafficking and degradation, plays an important role in downregulation of EGFR signaling. Failure to downregulate EGFR signaling contributes to oncogenesis, and thus Rab7 could possess tumor suppressor activity in humans.
Delaney, K R; Zucker, R S
1990-07-01
1. Transmitter release at the squid giant synapse was stimulated by photolytic release of Ca2+ from the 'caged' Ca2+ compound DM-nitrophen (Kaplan & Ellis-Davies, 1988) inserted into presynaptic terminals. 2. Competing binding reactions cause the amount of Ca2+ released by DM-nitrophen photolysis to depend on the concentrations of DM-nitrophen, total Ca2+, Mg+, ATP and native cytoplasmic Ca2+ buffer. Measurements of presynaptic [Ca2+] changes by co-injection of the fluorescent indicator dye Fura-2 show that DM-nitrophen photolysis causes a transient rise in Ca2+ followed by decay within about 150 ms to an increased steady-state level. 3. Rapid photolysis of Ca2(+)-loaded nitrophen within the presynaptic terminal was followed in less than a millisecond by depolarization of the postsynaptic membrane. As with action potential-evoked excitatory postsynaptic potentials (EPSPs), the light-evoked response was partially and reversibly blocked by 1-3 mM-kainic acid which desensitizes postsynaptic glutamate receptors. 4. Release was similar in magnitude and rate to normal action potential-mediated EPSPs. 5. The release of transmitter by photolysis of Ca2(+)-loaded DM-nitrophen was not affected by removal of Ca2+ from the saline or addition of tetrodotoxin. Photolysis of DM-nitrophen injected into presynaptic terminals without added Ca2+ did not stimulate release of transmitter nor did it interfere with normal action potential-mediated release. 6. Stimulation of presynaptic action potentials in Ca2(+)-free saline during the light-evoked response did not elicit increased release of transmitter if the ganglion was bathed in Ca2(+)-free saline, i.e. in the absence of Ca2+ influx. Increasing the intensity of the light or stimulating presynaptic action potentials in Ca2(+)-containing saline increased the release of transmitter. Therefore the failure of presynaptic voltage change to increase transmitter release resulting from release of caged Ca2+ was not due to saturation or inhibition of the release mechanism by light-released Ca2+. 7. Decreasing the temperature of the preparation increased the delay to onset of the light-evoked response and reduced its amplitude and rate of rise to an extent similar to that observed for action potential-evoked EPSPs.
Bonifacino, Tiziana; Musazzi, Laura; Milanese, Marco; Seguini, Mara; Marte, Antonella; Gallia, Elena; Cattaneo, Luca; Onofri, Franco; Popoli, Maurizio; Bonanno, Giambattista
2016-11-01
Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Spontaneously released substance P and bradykinin from isolated guinea-pig bladder.
Saban, R; Franz, J; Bjorling, D E
1997-04-01
To investigate whether the isolated urinary bladder spontaneously releases substance P (SP) or bradykinin (BK), which can act as potent mediators of pain and inflammation of the urinary bladder, and whether peptidase inhibitors enhance peptide release. Urinary bladder segments (2 x 10 x 0.8-1 mm) were isolated from guinea pigs and studied in vitro; tissue contraction was assessed using force-displacement transducers and the release of peptides by specific enzyme immunoassays. In the absence of any exogenous agonists, the inhibition of neutral endopeptidase and angiotensin-converting enzyme by phosphoramidon and captopril, respectively, increased the frequency and magnitude of spontaneous motility of isolated bladder strips. Phosphoramidon increased the net release of SP-like immunoreactivity (SP-LI) and captopril increased the net release of SP-LI and BK-LI, concomitant with contraction. Peptide-LI was recovered primarily from bladder mucosa and to a lesser degree from detrusor smooth muscle. Similarly, peptidase inhibitors primarily affected the bladder mucosa; phosphoramidon induced a fourfold increase in SP-LI and captopril induced a significant increase of SP-LI and BK-LI from the mucosa. Tissues contracted in response to peptidase inhibitors in the presence of atropine and indomethacin, but contraction was reduced significantly by in vitro capsaicin desensitization or removal of bladder mucosa. BK stimulated SP-LI release from mucosa but not detrusor. SP stimulated increased BK-LI release from mucosa and detrusor. These findings indicate the basal release of peptide-like immunoreactivity by isolated bladder and further support the concept that peptidases located in the bladder mucosa are important in terminating the effects of endogenous peptides.
Cartier, Clément; Doré, Evelyne; Laroche, Laurent; Nour, Shokoufeh; Edwards, Marc; Prévost, Michèle
2013-02-01
Release of lead from 80% partially replaced service lines was compared to full lead service lines using harvested-stabilized lead pipes and field brass connectors. After more than a year of stabilization, lead release was consistent with field samples. Over the relatively short duration partial replacement of lead pipe by copper pipe (3 months), generated high lead release, attributed to galvanic corrosion, resulting in a final outcome for lead release that was even worse than for a full lead pipe. Increased lead release was especially evident at higher flow rates. Orthophosphate reduced lead release from full lead pipes by 64%. For partially replaced samples with copper, lead concentrations were unchanged by phosphate dosing at moderate flow (103 ± 265 vs 169 ± 349 μg/L) and were increased to very high levels when sampled at high flow rates (1001 ± 1808 vs 257 ± 224 μg/L). The increase lead release was in the form of particulate lead (>90%). In comparison to the condition without treatment, increased sulfate treatment had little impact on lead release from 100%-Pb rigs but reduced lead release from partially replaced lead pipes with copper. Our results also raise questions concerning protocols based on short 30 min stagnation (as those used in Canada) due to their incapacity to consider particulate lead release generated mostly after longer stagnation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, Haiyan; Li, Mingyi; Zhang, Xiaoran
2013-01-01
The effects of pH, temperature, dissolved oxygen (DO), and flow rate on the phosphorus (P) release processes at the sediment and water interface in rainwater pipes were investigated. The sampling was conducted in a residential storm sewer of North Li Shi Road in Xi Cheng District of Beijing on August 3, 2011. The release rate of P increased with the increase of pH from 8 to 10. High temperature is favorable for the release of P. The concentration of total phosphorus (TP) in the overlying water increased as the concentration of DO decreased. With the increase of flow rate from 0.7 m s−1 to 1.1 m s−1, the concentration of TP in the overlying water increased and then tends to be stable. Among all the factors examined in the present study, the flow rate is the primary influence factor on P release. The cumulative amount of P release increased with the process of pipeline runoff in the rainfall events with high intensities and shorter durations. Feasible measures such as best management practices and low-impact development can be conducted to control the P release on urban sediments by slowing down the flow rate. PMID:24349823
Al-Hanbali, Othman A; Hamed, Rania; Arafat, Mosab; Bakkour, Youssef; Al-Matubsi, Hisham; Mansour, Randa; Al-Bataineh, Yazan; Aldhoun, Mohammad; Sarfraz, Muhammad; Dardas, Abdel Khaleq Yousef
2018-01-01
In this study, hydrophilic hydroxypropyl methylcellulose matrices with various concentrations of Poloxamer 188 were used in the development of oral controlled release tablets containing diclofenac sodium. Four formulations of hydrophilic matrix tablets containing 16.7% w/w HPMC and 0, 6.7, 16.7 and 25.0% w/w Poloxamer 188, respectively, were developed. Tablets were prepared by direct compression and characterized for diameter, hardness, thickness, weight and uniformity of content. The influence of various blends of hydroxypropyl methylcellulose and Poloxamer 188 on the in vitro dissolution profile and mechanism of drug release of was investigated. In the four formulations, the rate of drug release decreased with increasing the concentration of Poloxamer 188 at the initial dissolution stages due to the increase in the apparent viscosity of the gel diffusion layer. However, in the late dissolution stages, the rate of drug release increased with increasing Poloxamer 188 concentration due to the increase in wettability and dissolution of the matrix. The kinetic of drug release from the tablets followed non-Fickian mechanism, as predicted by Korsmeyer-Peppas model, which involves diffusion through the gel layer and erosion of the matrix system.
Davis, Kim A; Samson, Sue E; Wilson, John X; Grover, Ashok K
2006-10-24
In endothelial cells, anion channels open upon osmotic swelling during shear stress and hypotonic shock. Therefore, we examined the effects of hypotonic shock on release of the antioxidant anion ascorbate from pig coronary artery endothelial cells. Hypotonic shock potentiated ascorbate release from freshly isolated or cultured pig coronary artery endothelial cells; subsequently cultured endothelial cells were used. The hypotonic shock-induced increase in Asc release was rapid, depended on the degree of hypotonic shock, and not due to membrane leakiness. Stimulating P2Y2 like receptors in endothelial cells with ATP causes ascorbate release via a Ca2+ -mediated pathway. Hypotonic shock-induced release differed from the Ca2+-mediated Asc release because: (a) the increase in release with hypotonic shock was additive to that with ATP or A23187 (Ca2+ -ionophore), (b) apyrase, suramin or removing extracellular Ca2+ did not affect the hypotonic shock-stimulated release, (c) anion channel blockers inhibited the release by the two pathways differently, and (d) hypotonic shock increased the ascorbate release from endothelial cells and cultured smooth muscle cells whereas the Ca2+ -mediated ascorbate release occurred only in endothelial cells. Accumulation of ascorbate by endothelial cells was examined at extracellular ascorbate concentrations of 10 (Na+ -ascorbate symporter not saturated) and 5000 microM (Na+ -ascorbate symporter saturated). Hypotonic shock and A23187 decreased ascorbate accumulation at 10 microM ascorbate but increased it at 5000 microM. The effects of the two treatments were additive and also differed from each other with substitution of gluconate for extracellular chloride. Thus, ascorbate release from endothelial cells can be potentiated by two distinct pathways - hypotonic shock mediated and ATP/Ca2+ stimulated.
Meng, Lingbin; Teng, Zhongqiu; Zheng, Nannan; Meng, Weiwei; Dai, Rongji; Deng, Yulin
2013-01-01
The aim of this study was to develop a derivative of chitosan as pharmaceutical excipient used in sustained-release matrix tablets of poorly soluble drugs. A water-soluble quaternary ammonium carboxymethylchitosan was synthesized by a two-step reaction with carboxymethylchitosan (CMCTS), decylalkyl dimethyl ammonium and epichlorohydrin. The elemental analysis showed that the target product with 10.27% of the maximum grafting degree was obtained. To assess the preliminary safety of this biopolymer, cell toxicity assay was employed. In order to further investigate quaternary ammonium carboxymethylchitosan application as pharmaceutical excipient, aspirin was chosen as model drug. The effect of quaternary ammonium CMCTS on aspirin release rate from sustained-release matrix tablets was examined by in-vitro dissolution experiments. The results showed that this biopolymer had a great potential in increasing the dissolution of poorly soluble drug. With the addition of CMCTS-CEDA, the final cumulative release rate of drug rose up to 90%. After 12 h, at the grade of 10, 20 and 50 cps, the drug release rate increased from 58.1 to 90.7%, from 64.1 to 93.9%, from 69.3 to 96.1%, respectively. At the same time, aspirin release rate from sustainedrelease model was found to be related to the amount of quaternary ammonium CMCTS employed. With the increase of CMCTS-CEDA content, the accumulated release rate increased from 69.1% to 86.7%. The mechanism of aspirin release from sustained-release matrix tablets was also preliminary studied to be Fick diffusion. These data demonstrated that the chitosan derivative has positive effect on drug release from sustained-release matrix tablets. PMID:24250627
Serotonin release varies with brain tryptophan levels
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1990-01-01
This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.
Zhou, Yingying; Deng, Renjian
2017-01-01
We aimed to study the characteristics and the mechanism of the cumulative release of antimony at an antimony smelting slag stacking area in southern China. A series of dynamic and static leaching experiments to simulate the effects of rainfall were carried out. The results showed that the release of antimony from smelting slag increased with a decrease in the solid-liquid ratio, and the maximum accumulated release was found to be 42.13 mg Sb/kg waste and 34.26 mg Sb/kg waste with a solid/liquid ratio of 1 : 20; the maximum amount of antimony was released within 149–420 μm size fraction with 7.09 mg/L of the cumulative leaching. Also, the antimony release was the greatest and most rapid at pH 7.0 with the minimum release found at pH 4.0. With an increase in rainfall duration, the antimony release increased. The influence of variation in rainfall intensity on the release of antimony from smelting slag was small. PMID:28804669
Changes in brain amino acid content induced by hyposmolar stress and energy deprivation.
Haugstad, T S; Valø, E T; Langmoen, I A
1995-12-01
The changes in endogenous amino acids in brain extracellular and intracellular compartments evoked by hyposmotic stress and energy deprivation were compared. Tissue content and release of ten amino acids were measured simultaneously in rat hippocampal slices by means of high performance liquid chromatography. Hyposmotic stress induced a large release of taurine (25568 pmol mg-1 protein), and a smaller release of glutamate, accompanied by an inverse change in tissue content. Adding mannitol to correct osmolarity, blocked these changes. Energy deprivation caused an increase in the release of all amino acids except glutamine. The release was particularly large for glutamate and GABA (31141 and 13282 pmol mg-1, respectively). The intracellular concentrations were generally reduced, but the total amount of the released amino acids increased In contrast to the effect seen during hyposmolar stress, mannitol enhanced the changes due to energy deprivation. The results show that hyposmolar stress and energy deprivation cause different content and release profiles, suggesting that the mechanisms involved in the two situations are either different or modulated in different ways. The intracellular amino acid depletion seen during energy deprivation shows that increased outward transport is probably a primary event, and increased amino acid formation likely secondary to this release.
Chen, Cuiping; Cowles, Verne E; Hou, Eddie
2011-03-01
The objectives of the 3 phase I studies described herein were (1) to compare the pharmacokinetics of gabapentin delivered from a novel gastric-retentive dosage form vs an immediate-release formulation, (2) to assess the dose proportionality of the gastric-retentive extended-release formulation, and (3) to determine the effect of food on the pharmacokinetics of gabapentin delivered from this formulation. The time to reach maximum plasma concentration (t(max)) was extended for gabapentin delivered from the gastric-retentive extended-release formulation compared with the immediate-release formulation. A dose-related increase in both the maximum plasma concentration (C(max)) and the area under the plasma concentration-time curve (AUC) was observed as the gabapentin dose increased from 600 to 2400 mg. Fed status and increased fat content delayed t(max) and enhanced C(max) and AUC in proportion to the fat content. The pharmacokinetics of gabapentin delivered from this extended-release formulation allows a reduced dosing frequency while maintaining bioavailability and possibly diminishing the occurrence of adverse events attributable to a slower increase to the peak concentration compared with the immediate-release dosage form.
Kwak, Dai-Soon; In, Yong; Kim, Tae Kyun; Cho, Han Suk; Koh, In Jun
2016-01-01
Despite the documented clinical efficacy of the pie-crusting technique for medial collateral ligament (MCL) release in varus total knee arthroplasty, its quantitative effects on medial gaps and safety remain unclear. This study was undertaken to determine the efficacy (quantitative effect and consistency of the number of punctures) and the safety (frequency of early over-release) of the pie-crusting technique for MCL release. From ten pairs of cadaveric knees, one knee from each pair was randomly assigned to undergo pie crusting in extension (group E) or in flexion (group F). Pie crusting was performed in the superficial MCL using a blade until over-release occurred. After every puncture, the incremental medial gap increase was recorded, and the number of punctures required for 2- or 4-mm gap increases was assessed. In group E, the extension gap increased from 0.8 to 5.0 mm and the flexion gap increased from 0.8 to 3.0 mm. In group F, the extension gap increased from 1.0 to 3.0 mm and the flexion gap increased from 2.6 to 6.0 mm. However, the gap increments were inconsistent with those that followed the preceding blade punctures, and the number of punctures required to increase the gaps by 2 or 4 mm was variable. The number of punctures leading to over-release in group E and group F was 6 ± 1 and 3 ± 1 punctures, respectively. Overall, 70% of over-release occurred earlier than the average number of punctures leading to over-release. Pie crusting led to unpredictable gap increments and to frequent early over-release. Surgeons should decide carefully before using the pie-crusting technique for MCL release and should be cautious of performing throughout the procedure, especially when performing in a flexed knee. Therapeutic study, Level I.
Dhillo, W S; Small, C J; Stanley, S A; Jethwa, P H; Seal, L J; Murphy, K G; Ghatei, M A; Bloom, S R
2002-09-01
A number of neuropeptides implicated in the hypothalamic regulation of appetite are synthesized in the arcuate nucleus (Arc). Neuropeptide Y (NPY) and agouti-related protein (Agrp) are orexigenic. The pro-opiomelanocortin (POMC) product alpha-melanocyte-stimulating hormone (alpha-MSH) is anorectic. Intracerebroventricular administration of cocaine- and amphetamine-regulated transcript (CART) decreases food intake. However, recent results show that CART is orexigenic when injected into discrete hypothalamic nuclei. There is almost complete coexpression of NPY and Agrp mRNA in Arc neurones, and the majority of CART-containing neurones in the Arc also contain POMC mRNA. We investigated possible interactions between these neuropeptides in vitro using a rat hypothalamic explant system. Administration of 1, 10 and 100 nm of NPY to hypothalamic explants significantly increased release of Agrp(83-132)-immunoreactivity (IR). NPY (10 and 100 nm) significantly increased the release of CART(55-102)-IR and alpha-MSH-IR from hypothalamic explants. Agrp(83-132) (10 nm) administered to hypothalamic explants significantly increased the release of NPY-IR. Agrp(83-132) (10 and 100 nm) significantly decreased the release of CART(55-102)-IR from hypothalamic explants. Administration of 1, 10 and 100 nm CART(55-102) to hypothalamic explants resulted in a significant increase in NPY-IR release. Administration of 10 nm CART(55-102) to hypothalamic explants significantly increased the release of Agrp(83-132)-IR. NDP-MSH (10 nm) administered to hypothalamic explants significantly increased the release of NPY-IR. NDP-MSH (10 and 100 nm) significantly increased the release of Agrp(83-132)-IR from hypothalamic explants. These data suggest that orexigenic neuropeptides in the arcuate nucleus stimulate the release of each other, perhaps reinforcing orexigenic behaviour via a positive-feedback loop. Our results are also in keeping with the possibility that the melanocortin-3 receptor in the arcuate nucleus may influence the release of arcuate neuropeptides.
Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.
Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A
2017-10-01
Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.
Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials.
Song, Runsheng; Qin, Yuwei; Suh, Sangwon; Keller, Arturo A
2017-11-07
Most existing life-cycle release models for engineered nanomaterials (ENM) are static, ignoring the dynamics of stock and flows of ENMs. Our model, nanoRelease, estimates the annual releases of ENMs from manufacturing, use, and disposal of a product explicitly taking stock and flow dynamics into account. Given the variabilities in key parameters (e.g., service life of products and annual release rate during use) nanoRelease is designed as a stochastic model. We apply nanoRelease to three ENMs (TiO 2 , SiO 2 and FeO x ) used in paints and coatings through seven product applications, including construction and building, household and furniture, and automotive for the period from 2000 to 2020 using production volume and market projection information. We also consider model uncertainties using Monte Carlo simulation. Compared with 2016, the total annual releases of ENMs in 2020 will increase by 34-40%, and the stock will increase by 28-34%. The fraction of the end-of-life release among total release flows will increase from 11% in 2002 to 43% in 2020. As compared to static models, our dynamic model predicts about an order of magnitude lower values for the amount of ENM released from this sector in the near-term while stock continues to build up in the system.
Alprazolam absorption kinetics affects abuse liability.
Mumford, G K; Evans, S M; Fleishaker, J C; Griffiths, R R
1995-03-01
To evaluate the behavioral, subjective, and reinforcing effects of immediate-release (IR) alprazolam and extended-release (XR) alprazolam to assess the effect of release rate on laboratory measures of abuse liability. Fourteen healthy men with histories of sedative abuse participated as subjects in a double-blind crossover study. All subjects received placebo, 1 and 2 mg immediate-release alprazolam, and 2 and 3 mg extended-release alprazolam in random order. Behavioral performance, subjective effects, and alprazolam plasma concentrations were assessed repeatedly 1/2 hour before and 1/2, 1, 3, 5, 7, 9, 12, and 24 hours after drug administration. Mean peak alprazolam plasma concentrations occurred 1.7 and 9.2 hours after immediate-release alprazolam and extended-release alprazolam, respectively. Compared to placebo, 2 mg immediate-release alprazolam impaired all measures of psychomotor and cognitive performance (Digit Symbol Substitution Test), motor coordination (circular lights and balance), and memory (digit entry and recall); 2 mg extended-release alprazolam did not affect any of these measures and 3 mg extended-release alprazolam impaired circular lights only. Immediate-release alprazolam, 2 mg, increased all six measures of positive drug effects (e.g., ratings of liking or good effects); none of these measures were increased by 2 mg extended-release alprazolam and only three of the six measures were increased by 3 mg extended-release alprazolam. A drug versus money multiple-choice procedure designed to assess the relative reinforcing effects of each condition was administered 24 hour after the drug. The amount of money subjects were willing to "pay" to take the drug was significantly greater than placebo for both doses of immediate-release alprazolam but for neither dose of extended-release alprazolam. These data indicate that extended-release alprazolam has less potential for abuse than immediate-release alprazolam.
Calsequestrin mediates changes in spontaneous calcium release profiles.
Tania, Nessy; Keener, James P
2010-08-07
Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ as a buffer and RyR luminal sensor using a mechanistic model of RyR-CSQ interaction. By using various asymptotic approximations and mean first exit time calculation, we derive a minimal model of a calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We show that because of its buffering capability, increasing CSQ increases the spark duration and size. However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and increases the critical SR level for calcium release termination. Finally, we show that with increased bulk cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.
Ciabattoni, G.; Montuschi, P.; Currò, D.; Togna, G.; Preziosi, P.
1993-01-01
1. Exogenous vasoactive intestinal polypeptide (VIP) infused into the pulmonary artery of isolated and ventilated lungs of guinea-pigs decreased, in a dose-dependent fashion (1.0-10.0 nmol), airway resistance and thromboxane B2 (TXB2, the stable hydrolysis product of TXA2) release in the perfusion medium. Prostacyclin (PGI2) synthesis, as reflected by the release of its stable hydrolysis product 6-oxo-PGF1 alpha, was unaffected. Pretreatment with the 5-lipoxygenase inhibitor BWA4c (3.5 x 10(-5) M) did not modify the bronchodilatory effect of VIP or its inhibitory action on TXB2 release. 2. Basal release of immunoreactive VIP from perfused lungs decreased from an initial value of 0.96 +/- 0.10 ng min-1 (mean +/- s.e.mean) in the first 2 min to an average of 0.58 +/- 0.10 ng min-1 in the following 15-20 min. 3. Antigen challenge with ovalbumin (0.1%) in sensitized lungs caused an anaphylactic reaction in 45% of tested lungs, concomitant with a 5 fold increase in both VIP and TXB2 release. Tetrodotoxin pretreatment (10(-6) M) reduced basal VIP release by > 80% and abolished the VIP increase observed during anaphylaxis, without modifying TXB2 release or the bronchoconstrictor response. 4. Indomethacin (10(-6) M) inhibited TXB2 synthesis and release by > 90%, delayed the bronchoconstrictor response and blunted the increased VIP release during lung anaphylaxis, without influencing basal VIP release. 5. The 5-lipoxygenase inhibitor BWA4c (3.5 x 10(-5) M) blunted the increase of TXB2 and VIP release from guinea-pig lung and attenuated the bronchoconstrictor response following ovalbumin challenge.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8495242
Cyclodextrin controlled release of poorly water-soluble drugs from hydrogels.
Woldum, Henriette Sie; Larsen, Kim Lambertsen; Madsen, Flemming
2008-01-01
The effect of 2-hydroxypropyl-beta-cyclodextrin and gamma-cyclodextrin on the release of ibuprofen, ketoprofen and prednisolone was studied. Stability constants calculated for inclusion complexes show size dependence for complexes with both cyclodextrins. Hydrogels were prepared by ultraviolet irradiation and release of each model drug was studied. For drugs formulated using cyclodextrins an increase in the achievable concentration and in the release from hydrogels was obtained due to increased solubility, although the solubility of all gamma-cyclodextrin complexes was limited. The load also was increased by adjusting pH for the acidic drugs and this exceeds the increase obtained with gamma-cyclodextrin addition.
Wills, E. D.; Wilkinson, A. E.
1966-01-01
1. Acid phosphatase, cathepsin and β-glucuronidase are released from rat-liver lysosomes by irradiation in vitro. Enzyme release is detectable after a dose of 1krad and increases with dose up to 100krads. 2. Maximum radiation effects were observed when the lysosomes were kept for 20hr. at 4° or 20° after irradiation. 3. An atmosphere of nitrogen considerably decreases enzyme release from lysosomes. 4. Enzyme release is enhanced by ascorbic acid and decreased by vitamin E. 5. Irradiation causes formation of lipid peroxides in lysosomes, and enzyme release increases with lipid peroxide formation. 6. It is suggested that lipid peroxide formation leads to rupture of the lysosome membrane and allows release of the contained hydrolytic enzymes. PMID:5964962
Larney, Sarah; Lai, Wilson; Dolan, Kate; Zador, Deborah
2016-11-01
Opioid substitution therapy (OST) is an effective treatment for opioid dependence that is provided in many correctional settings, including New South Wales (NSW), Australia. In 2011, changes to the clinical governance of the NSW prison OST program were implemented, including a more comprehensive assessment, additional specialist nurses, and centralization of program management and planning. This study aimed to document the NSW prison OST program, and assess the impact of the enhanced clinical governance arrangements on retention in treatment until release, the provision of an OST prescription to patients at release, and presentation to a community OST clinic within 48 hours of release from custody. Data from the NSW prison OST program were obtained for the calendar years 2007-2013. Outcomes were analyzed quarterly using log binomial segmented regression. 8577 people were treated with OST in NSW correctional centers, 2007-2013. Over the entire study period, patients were retained in OST until release in 82% of treatment episodes; a prescription for OST was able to be arranged prior to release in 90% of releases; and patients presented to a community clinic within 48 hours of release in 94% of releases with prescriptions. Following the introduction of the changes to clinical governance, there was a significant increasing trend in retention in OST until release, and in provision of an OST prescription at release. There was an initial increase, followed by a decreasing trend, in presentation to a community clinic within 48 hours of release. This large prison-based OST program has high rates of retention in treatment and continuity of care as patients transition from custody to the community. Strengthened clinical governance arrangements were associated with increased retention in treatment until release and increased provision of an OST prescription at release, but did not improve clinic attendance following release from custody. Copyright © 2016 Elsevier Inc. All rights reserved.
The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.
Forsyth, Alison M; Braunmüller, Susanne; Wan, Jiandi; Franke, Thomas; Stone, Howard A
2012-05-01
It is known that deformation of red blood cells (RBCs) is linked to ATP release from the cells. Further, membrane cholesterol has been shown to alter properties of the cell membrane such as fluidity and bending stiffness. Membrane cholesterol content is increased in some cardiovascular diseases, for example, in individuals with acute coronary syndromes and chronic stable angina, and therefore, because of the potential clinical relevance, we investigated the influence of altered RBC membrane cholesterol levels on ATP release. Because of the correlation between statins and reduced membrane cholesterol in vivo, we also investigated the effects of simvastatin on RBC deformation and ATP release. We found that reducing membrane cholesterol increases cell deformability and ATP release. We also found that simvastatin increases deformability by acting directly on the membrane in the absence of the liver, and that ATP release was increased for cells with enriched cholesterol after treatment with simvastatin. Copyright © 2012 Elsevier Inc. All rights reserved.
Martínez-González, Ilona; Villafuerte-Robles, Leopoldo
2004-01-01
A weakly basic experimental drug, 4-aminopyridine, was taken as a model to study the influence of enteric-coated lactose (EL) on the release profile from hydroxypropyl methylcellulose matrices. Powder mixtures were wet-granulated with water. The dried granulation was compressed with a hydraulic press at 85 MPa. Dissolution studies were made using HCl 0.1 N and then phosphate buffer pH 7.4. Dissolution curves were described by M(t)/M(inf) = k*t(N). A trend toward increasing exponent (n) and decreasing release constant (k) values is observed with increasing EL concentrations up to 9%; this is attributed to an increasing obstruction of the diffusion path by isolated EL particles that are insoluble in HCl and are surrounded by a water-filled space. After a critical EL concentration, the water-filled spaces surrounding EL particles percolate, producing the opposite effect, increasing the release constant and decreasing the exponent (n) values as the EL proportion increases from 10% to 50%. EL particles (2% to 9%) decrease the drug and water transport in matrices dissolving in HCl. Thereafter, at pH 7.4, the pores formed by dissolution of EL particles produce the opposite. Both processes contribute to flattening the release profile. Release profiles with decreasing release constant values show a logarithmic trend toward increasing values of the exponent (n), changing from diffusion toward relaxation-erosion-controlled processes.
Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak
2008-08-01
A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.
Motor control differs for increasing and releasing force
Park, Seoung Hoon; Kwon, MinHyuk; Solis, Danielle; Lodha, Neha
2016-01-01
Control of the motor output depends on our ability to precisely increase and release force. However, the influence of aging on force increase and release remains unknown. The purpose of this study, therefore, was to determine whether force control differs while increasing and releasing force in young and older adults. Sixteen young adults (22.5 ± 4 yr, 8 females) and 16 older adults (75.7 ± 6.4 yr, 8 females) increased and released force at a constant rate (10% maximum voluntary contraction force/s) during an ankle dorsiflexion isometric task. We recorded the force output and multiple motor unit activity from the tibialis anterior (TA) muscle and quantified the following outcomes: 1) variability of force using the SD of force; 2) mean discharge rate and variability of discharge rate of multiple motor units; and 3) power spectrum of the multiple motor units from 0–4, 4–10, 10–35, and 35–60 Hz. Participants exhibited greater force variability while releasing force, independent of age (P < 0.001). Increased force variability during force release was associated with decreased modulation of multiple motor units from 35 to 60 Hz (R2 = 0.38). Modulation of multiple motor units from 35 to 60 Hz was further correlated to the change in mean discharge rate of multiple motor units (r = 0.66) and modulation from 0 to 4 Hz (r = −0.64). In conclusion, these findings suggest that force control is altered while releasing due to an altered modulation of the motor units. PMID:26961104
Crop-tree release increases growth of 12-year-old yellow-poplar and black cherry
Neil I. Lamson; H. Clay Smith; H. Clay Smith
1989-01-01
Precommercial thinning was done in a 12-year-old Appalachian hardwood sapling stand in West Virginia. Two crop-tree release techniques were used--crown touching and crown touching plus 5 feet. Results indicated that both treatments significantly increased 5-year d.b.h. growth for released yellow-poplar and black cherry crop trees. Although there was a major increase in...
Ni, Yingchun; Parpura, Vladimir
2009-09-01
Vesicular glutamate transporters (VGLUTs) are responsible for vesicular glutamate storage and exocytotic glutamate release in neurons and astrocytes. Here, we selectively and efficiently overexpressed individual VGLUT proteins (VGLUT1, 2, or 3) in solitary astrocytes and studied their effects on mechanical stimulation-induced Ca2+-dependent glutamate release. Neither VGLUT1 nor VGLUT2 overexpression changed the amount of glutamate release, whereas overexpression of VGLUT3 significantly enhanced Ca2+-dependent glutamate release from astrocytes. None of the VGLUT overexpression affected mechanically induced intracellular Ca2+ increase. Inhibition of glutamine synthetase activity by L-methionine sulfoximine in astrocytes, which leads to increased cytosolic glutamate concentration, greatly increased their mechanically induced Ca2+-dependent glutamate release, without affecting intracellular Ca2+ dynamics. Taken together, these data indicate that both VGLUT3 and the cytosolic concentration of glutamate are key limiting factors in regulating the Ca2+-dependent release of glutamate from astrocytes.
Carfagna, N; Di Clemente, A; Cavanus, S; Damiani, D; Gerna, M; Salmoiraghi, P; Cattaneo, B; Post, C
1995-09-15
The effects of nicergoline on basal and K(+)-stimulated release of ACh in the hippocampus of 3- and 19-month old rats has been studied by microdialysis. A significant decrease of basal ACh release (59%) was found in aged vehicle treated rats in comparison to young rats. High-K+ (100 mM) in the perfusate strongly increased the release of ACh by up to 6-fold over the baseline of both young and aged rats. Chronic oral administration of nicergoline to aged rats (5 mg/kg b.i.d. for 6 weeks) significantly reversed (93%) the age-related decrease of basal release of ACh, leaving the increase due to K+ depolarization unchanged. In young animals, nicergoline did not affect the basal output of ACh, but enhanced the K(+)-evoked release of ACh by 39%. Results from this study demonstrate that nicergoline treatment increases the ability of hippocampal cholinergic terminals to release ACh, and suggest that this drug can reset the cholinergic impairement associated with aging.
Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels.
Barr, Travis P; Albrecht, Phillip J; Hou, Quanzhi; Mongin, Alexander A; Strichartz, Gary R; Rice, Frank L
2013-01-01
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.
NASA Technical Reports Server (NTRS)
Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.
1993-01-01
We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P < 0.01) of baseline and was blocked by the addition of tetrodotoxin (TTX). Pulse durations of 2.0 ms or greater were required to increase DA release. Unlike ACh release, DA release showed no frequency dependence above 5 Hz. The maximal evoked releases of ACh and DA were 556 +/- 94% (P < 0.01) and 254 +/- 38% (P < 0.05) of baseline, respectively. Peripheral administration of choline (Ch) chloride (30-120 mg/kg) to anesthetized animals caused dose-related (r = 0.994, P < 0.01) increases in ACh release; basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P < 0.05) and electrically evoked ACh release rose from 386 +/- 38% to 600 +/- 34% (P < 0.01) in rats given 120 mg/kg. However, Ch failed to affect basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P < 0.05). In awake animals, Ch (120 mg/kg) also elevated both basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).
Li, Yongcheng; Lu, Ming; Wu, Chuanbin
2017-11-10
The purpose of this study was to explore poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) as a novel release-modifier to tailor the drug release from ethylcellulose (EC)-based mini-matrices prepared via hot melt extrusion (HME). Quetiapine fumarate (QF) was selected as model drug. QF/EC/PVP VA64 mini-matrices were extruded with 30% drug loading. The physical state of QF in extruded mini-matrices was characterized using differential scanning calorimetry, X-ray powder diffraction, and confocal Raman microscopy. The release-controlled ability of PVP VA64 was investigated and compared with that of xanthan gum, crospovidone, and low-substituted hydroxypropylcellulose. The influences of PVP VA64 content and processing temperature on QF release behavior and mechanism were also studied. The results indicated QF dispersed as the crystalline state in all mini-matrices. The release of QF from EC was very slow as only 4% QF was released in 24 h. PVP VA64 exhibited the best ability to enhance the drug release as compared with other three release-modifiers. The drug release increased to 50-100% in 24 h with the addition of 20-40% PVP VA64. Increasing processing temperature slightly slowed down the drug release by decreasing free volume and pore size. The release kinetics showed good fit with the Ritger-Peppas model. The values of release exponent (n) increased as PVP VA64 is added (0.14 for pure EC, 0.41 for 20% PVP VA64, and 0.61 for 40% PVP VA64), revealing that the addition of PVP VA64 enhanced the erosion mechanism. This work presented a new polymer blend system of EC with PVP VA64 for sustained-release prepared via HME.
The controlled release of tilmicosin from silica nanoparticles.
Song, Meirong; Li, Yanyan; Fai, Cailing; Cui, Shumin; Cui, Baoan
2011-06-01
The aim of this study was to use silica nanoparticles as the carrier for controlled release of tilmicosin. Tilmicosin was selected as a drug model molecule because it has a lengthy elimination half-life and a high concentration in milk after subcutaneous administration. Three samples of tilmicosin-loaded silica nanoparticles were prepared with different drug-loading weight. The drug-loading weight in three samples, as measured by thermal gravimetric analysis, was 29%, 42%, and 64%, respectively. With increased drug-loading weight, the average diameter of the drug-loaded silica nanoparticles was increased from 13.4 to 25.7 nm, and the zeta potential changed from-30.62 to-6.78 mV, indicating that the stability of the drug-loaded particles in the aqueous solution decreases as drug-loading weight increases. In vitro release studies in phosphate-buffered saline showed the sample with 29% drug loading had a slow and sustained drug release, reaching 44% after 72 h. The release rate rose with increased drug-loading weight; therefore, the release of tilmicosin from silica nanoparticles was well-controlled by adjusting the drug loading. Finally, kinetics analysis suggested that drug released from silica nanoparticles was mainly a diffusion-controlled process.
NASA Astrophysics Data System (ADS)
van Ruth, Saskia M.; Buhr, Katja
2004-12-01
The influence of mastication rate on the dynamic release of seven volatile flavour compounds from sunflower oil was evaluated by combined model mouth/proton transfer reaction-mass spectrometry (PTR-MS). Air/oil partition coefficients were measured by static headspace gas chromatography. The dynamic release of the seven volatile flavour compounds from sunflower oil was significantly affected by the compounds' hydrophobicity and the mastication rate employed in the model mouth. The more hydrophobic compounds were released at a higher rate than their hydrophilic counterparts. Increase in mastication rate increased the maximum concentration measured by 36% on average, and the time to reach this maximum by 35% on average. Mastication affected particularly the release of the hydrophilic compounds. The maximum concentration of the compounds correlated significantly with the compounds' air/oil partition coefficients. The initial release rates over the first 15 s were affected by the type of compound, but not by the mastication rate. During the course of release, the proportions of the hydrophilic compounds to the overall flavour mixture in air decreased. The contribution of the hydrophobic compounds increased. Higher mastication rates, however, increased the proportions of the hydrophilic compounds and decreased those of the hydrophobic compounds.
Paracrine Maturation and Migration of SH-SY5Y Cells by Dental Pulp Stem Cells.
Gervois, P; Wolfs, E; Dillen, Y; Hilkens, P; Ratajczak, J; Driesen, R B; Vangansewinkel, T; Bronckaers, A; Brône, B; Struys, T; Lambrichts, I
2017-06-01
Neurological disorders are characterized by neurodegeneration and/or loss of neuronal function, which cannot be adequately repaired by the host. Therefore, there is need for novel treatment options such as cell-based therapies that aim to salvage or reconstitute the lost tissue or that stimulate host repair. The present study aimed to evaluate the paracrine effects of human dental pulp stem cells (hDPSCs) on the migration and neural maturation of human SH-SY5Y neuroblastoma cells. The hDPSC secretome had a significant chemoattractive effect on SH-SY5Y cells as shown by a transwell assay. To evaluate neural maturation, SH-SY5Y cells were first induced toward neuronal cells, after which they were exposed to the hDPSC secretome. In addition, SH-SY5Y cells subjected to the hDPSC secretome showed increased neuritogenesis compared with nonexposed cells. Maturated cells were shown to increase immune reactivity for neuronal markers compared with controls. Ultrastructurally, retinoic acid (RA) signaling and subsequent exposure to the hDPSC secretome induced a gradual rise in metabolic activity and neuronal features such as multivesicular bodies and cytoskeletal elements associated with cellular communication. In addition, electrophysiological recordings of differentiating cells demonstrated a transition toward a neuronal electrophysiological profile based on the maximum tetrodotoxin (TTX)-sensitive, Na + current. Moreover, conditioned medium (CM)-hDPSC-maturated SH-SY5Y cells developed distinct features including, Cd 2+ -sensitive currents, which suggests that CM-hDPSC-maturated SH-SY5Y acquired voltage-gated Ca 2+ channels. The results reported in this study demonstrate the potential of hDPSCs to support differentiation and recruitment of cells with neuronal precursor characteristics in a paracrine manner. Moreover, this in vitro experimental design showed that the widely used SH-SY5Y cell line can improve and simplify the preclinical in vitro research on the molecular mechanisms of stem cell-mediated neuronal regeneration.
ACTH releasing activity of KP-102 (GHRP-2) in rats is mediated mainly by release of CRF.
Hirotani, Chiharu; Oki, Yutaka; Ukai, Kiyoharu; Okuno, Tadashi; Kurasaki, Shigeru; Ohyama, Tadashi; Doi, Naomi; Sasaki, Ken; Ase, Katsuhiko
2005-01-01
KP-102 (GHRP-2: pralmorelin) is a synthetic growth hormone releasing peptide (GHRP) that powerfully stimulates the release of GH by acting (i.v.) at both hypothalamic and pituitary sites. Intravenous (i.v.) administration of KP-102 also elicits slight but significant release of adrenocorticotropic hormone (ACTH) in both animals and humans, as is seen with other GHRPs. GHRPs are thought to stimulate the hypothalamic-pituitary-adrenal axis by releasing endogenous ACTH secretagogues such as arginine vasopressin (AVP) and/or corticotropin releasing factor (CRF), though neither AVP nor CRF has been shown clearly to be involved significantly in GHRP-evoked ACTH release. In the present study, we investigated the effects of KP-102 on ACTH release in conscious rats under improved experimental conditions that minimized the influence of stress. Administration of KP-102 i.v. increased plasma ACTH significantly, but did not stimulate ACTH release from rat primary pituitary cells. Administration of KP-102 together with either AVP or CRF elicited significantly greater increases in plasma ACTH levels than any of the agonists alone. Notably, the combination of KP-102 and AVP produced a much greater increase in ACTH than KP-102 plus CRF, indicating that KP-102 augments the effect of exogenous CRF only weakly. Conversely, a CRF antagonist markedly inhibited KP-102-induced ACTH release in conscious rats, whereas an AVP antagonist or anti-AVP antiserum did not. Taken together, these findings suggest that KP-102 acts via the hypothalamus to stimulate ACTH release in rats, and that these effects are mediated mainly by the release of CRF.
Comparison of metal release from various metallic biomaterials in vitro.
Okazaki, Yoshimitsu; Gotoh, Emiko
2005-01-01
To investigate the metal release of each base and alloying elements in vitro, SUS316L stainless steel, Co-Cr-Mo casting alloy, commercially pure Ti grade 2, and Ti-6Al-4V, V-free Ti-6Al-7Nb and Ti-15Zr-4Nb-4Ta alloys were immersed in various solutions, namely, alpha-medium, PBS(-), calf serum, 0.9% NaCl, artificial saliva, 1.2 mass% L-cysteine, 1 mass% lactic acid and 0.01 mass% HCl for 7d. The difference in the quantity of Co released from the Co-Cr-Mo casting alloy was relatively small in all the solutions. The quantities of Ti released into alpha-medium, PBS(-), calf serum, 0.9% NaCl and artificial saliva were much lower than those released into 1.2% L-cysteine, 1% lactic acid and 0.01% HCl. The quantity of Fe released from SUS316L stainless steel decreased linearly with increasing pH. On the other hand, the quantity of Ti released from Ti materials increased with decreasing pH, and it markedly attenuated at pHs of approximately 4 and higher. The quantity of Ni released from stainless steel gradually decreased with increasing pH. The quantities of Al released from the Ti-6Al-4V and Ti-6Al-7Nb alloys gradually decreased with increasing pH. A small V release was observed in calf serum, PBS(-), artificial saliva, 1% lactic acid, 1.2% l-cysteine and 0.01% HCl. The quantity of Ti released from the Ti-15Zr-4Nb-4Ta alloy was smaller than those released from the Ti-6Al-4V and Ti-6Al-7Nb alloys in all the solutions. In particular, it was approximately 30% or smaller in 1% lactic acid, 1.2% L-cysteine and 0.01% HCl. The quantity of (Zr + Nb + Ta) released was also considerably lower than that of (Al + Nb) or (Al + V) released. Therefore, the Ti-15Zr-4Nb-4Ta alloy with its low metal release in vitro is considered advantageous for long-term implants. Copyright 2004 Elsevier Ltd.
Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste
2005-08-14
We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.
Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release
Zhang, Ling; Weir, Michael D.; Hack, Gary; Fouad, Ashraf F.; Xu, Hockin H. K.
2015-01-01
Objectives The tooth-resin bond is the weak link of restoration, with secondary caries as a main reason for failure. Calcium phosphate-containing resins are promising for remineralization; however, calcium (Ca) and phosphate (P) ion releases last only a couple of months. The objectives of this study were to develop the first rechargeable CaP bonding agent and investigate the key factors that determine CaP ion recharge and re-release. Methods Nanoparticles of amorphous calcium phosphate (NACP) were synthesized. Pyromellitic glycerol dimethacrylate (PMGDM), ethoxylated bisphenol-A dimethacrylate (EBPADMA), 2-hydroxyethyl methacrylate (HEMA), and bisphenol-A glycidyl dimethacrylate (BisGMA) were used to synthesize three adhesives (denoted PE, PEH and PEHB). NACP were mixed into adhesive at 0–30% by mass. Dentin shear bond strengths were measured. Adhesive specimens were tested for Ca and P initial ion release. Then the ion-exhausted specimens were immersed in Ca and P solution to recharge the specimens, and the recharged specimens were then used to measure ion re-release for 7 days as one cycle. Then these specimens were again recharged and the re-release was measured for 7 days as the second cycle. Three recharge/re-release cycles were tested. Results PEHB had the highest dentin bond strength (p<0.05). Increasing NACP content from 0 to 30% did not affect dentin bond strength (p>0.1), but increased CaP release and re-release (p<0.05). PEHB-NACP had the greatest recharge/re-release, and PE-NACP had the least (p<0.05). Ion release remained high and did not decrease with increasing the number of recharge/re-release cycles (p>0.1). After the third cycle, specimens without further recharge had continuous CaP ion release for 2–3 weeks. Significance Rechargeable CaP bonding agents were developed for the first time to provide long-term Ca and P ions to promote remineralization and reduce caries. Incorporation of NACP into adhesive had no negative effect on dentin bond strength. Increasing NACP filler level increased the ion recharge and re-release capability. The new CaP recharge method and PMGDM-EBPAGMA-NACP composition may have wide application in adhesives, composites and cements, to combat caries and remineralize lesions. PMID:26144190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-08-02
Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less
Giannoni, Patrizia; Medhurst, Andrew D.; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della
2010-01-01
After oral administration, the nonimidazole histamine H3 receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H3 receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components. PMID:19815811
Metal lost and found: dissipative uses and releases of copper in the United States 1975-2000.
Lifset, Reid J; Eckelman, Matthew J; Harper, E M; Hausfather, Zeke; Urbina, Gonzalo
2012-02-15
Metals are used in a variety of ways, many of which lead to dissipative releases to the environment. Such releases are relevant from both a resource use and an environmental impact perspective. We present a historical analysis of copper dissipative releases in the United States from 1975 to 2000. We situate all dissipative releases in copper's life cycle and introduce a conceptual framework by which copper dissipative releases may be categorized in terms of intentionality of use and release. We interpret our results in the context of larger trends in production and consumption and government policies that have served as drivers of intentional copper releases from the relevant sources. Intentional copper releases are found to be both significant in quantity and highly variable. In 1975, for example, the largest source of intentional releases was from the application of copper-based pesticides, and this decreased more than 50% over the next 25 years; all other sources of intentional releases increased during that period. Overall, intentional copper releases decreased by approximately 15% from 1975 to 2000. Intentional uses that are unintentionally released such as copper from roofing, increased by the same percentage. Trace contaminant sources such as fossil fuel combustion, i.e., sources where both the use and the release are unintended, increased by nearly 50%. Intentional dissipative uses are equivalent to 60% of unintentional copper dissipative releases and more than five times that from trace sources. Dissipative copper releases are revealed to be modest when compared to bulk copper flows in the economy, and we introduce a metric, the dissipation index, which may be considered an economy-wide measure of resource efficiency for a particular substance. We assess the importance of dissipative releases in the calculation of recycling rates, concluding that the inclusion of dissipation in recycling rate calculations has a small, but discernible, influence, and should be included in such calculations. Copyright © 2011 Elsevier B.V. All rights reserved.
Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra
2013-11-01
The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non-conforming batches that are explicitly "out of specification" under real-time test conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Qume, M; Fowler, L J
1997-10-01
1. The effects of 2, 8 and 21 day oral treatment with the specific gamma-aminobutyric acid transaminase (GABA-T) inhibitors gamma-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. 2. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65-80% compared with control values, with a concomitant increase in brain GABA content of 40-100%. 3. Basal hippocampal GABA release was increased to 250-450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. 4. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. 5. GABA compartmentalization, Na+ and Cl- coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. 6. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content 'leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge.
Qume, M; Fowler, L J
1997-01-01
The effects of 2, 8 and 21 day oral treatment with the specific γ-aminobutyric acid transaminase (GABA-T) inhibitors γ-vinyl GABA (GVG) and ethanolamine O-sulphate (EOS) on brain GABA levels, GABA-T activity, and basal and stimulated GABA release from rat cross-chopped brain hippocampal slices was investigated. Treatment with GABA-T inhibitors lead to a reduction in brain GABA-T activity by 65–80% compared with control values, with a concomitant increase in brain GABA content of 40–100%. Basal hippocampal GABA release was increased to 250–450% of control levels following inhibition of GABA-T activity. No Ca2+ dependence was observed in either control or treated tissues. GVG and EOS administration led to a significant elevation in the potassium stimulated release of GABA from cross-chopped hippocampal slices compared with that of controls. Although stimulated GABA release from control tissues was decreased in the presence of a low Ca2+ medium, GVG and EOS treatment abolished this Ca2+ dependency. GABA compartmentalization, Na+ and Cl− coupled GABA uptake carriers and glial release may provide explanations for the loss of the Ca2+ dependency of stimulated GABA release observed following GVG and EOS treatment. Administration of GABA-T inhibitors led to increases in both basal and stimulated hippocampal GABA release. However, it is not clear which is the most important factor in the anticonvulsant activity of these drugs, the increased GABA content ‘leaking' out of neurones and glia leading to widespread inhibition, or the increase in stimulated GABA release which may occur following depolarization caused by an epileptic discharge. PMID:9351512
Kim, Min-Soo; Jun, Seoung Wook; Lee, Sibeum; Lee, Tae Wan; Park, Jeong-Sook; Hwang, Sung-Joo
2005-06-01
The objective of this study was to prepare controlled-release pellets containing 0.2 mg tamsulosin hydrochloride using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers with Surelease and sodium alginate. The release of tamsulosin HCl from pellets coated with the commercial aqueous ethylcellulose dispersion (Surelease) was investigated at different coating loads. In addition, the effect of sodium alginate on drug release was investigated by varying the ratio of sodium alginate to microcrystalline cellulose (MCC). Dissolution studies were first performed in 500 mL simulated gastric fluid (pH 1.2) containing 0.003% (w/w) polysorbate 80 and then in simulated intestinal fluids (pH 7.2). The morphology of pellet surfaces and cross sections were examined by scanning electron microscopy (SEM). Apparently, the spherical pellets were prepared using a pelletizer-equipped piston extruder and double-arm counter-rotating rollers. The release profiles of tamsulosin HCl from Surelease-coated pellets were significantly affected by changing the content of Surelease, the pH of the dissolution medium and the ratio of sodium alginate to MCC. The drug release rates not only decreased with increase in the coating load, but also increased when the pH of the dissolution medium was increased from 1.2 to 7.2 regardless of the sodium alginate-to-MCC ratio. Moreover, the drug release rate at pH 7.2 was gradually increased by increasing the ratio of sodium alginate to MCC. SEM showed smooth surfaces of Surelease-coated pellets. These results suggest that Surelease and sodium alginate would be useful excipients in the preparation of controlled-release pellets with the desired release profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-09-05
ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less
Fischer, A J; Stell, W K
1997-03-01
The nervus terminalis of teleosts, a cranial nerve anatomically associated with the olfactory system, projects to visual system targets including retina and optic tectum. It is known to contain gonadotropin-releasing hormone and RFamide-like peptides, but its function remains unknown. We have probed nervus terminalis function in goldfish by measuring peptide content in retina and tectum with a radioimmunoassay for A18Famide (neuropeptide AF; bovine morphine-modulating peptide). We found that retinal peptide content increased in the dark and decreased in the light, whereas tectal peptide content decreased in the dark and increased in the light. In addition, RFamide-like peptide content in the retina was transiently decreased by severing both olfactory tracts, increased in light-adapted eyes treated with a GABAergic agonist (isoguvacine), and decreased in dark-adapted eyes treated with GABAergic antagonists (bicuculline and picrotoxin). We also found that RFamide-like peptide release could be induced in dark-adapted isolated-superfused retinas by exposure to light or a high concentration (102.5 mM) of potassium ions. We interpret the increase and decrease in peptide content as reflecting a decrease and increase, respectively, in rate of peptide release. We propose that the release and accumulation of RFamide-like peptides in axon terminals of nervus terminalis processes in the retina are modulated primarily by neurons intrinsic to the retina and regulated by light. Peptide release appears to be inhibited tonically in the dark by GABA acting through GABAA receptors; light facilitates peptide release by disinhibition due to a reduction in GABA release. In addition, we propose that electrical signals originating outside the retina can override these intrinsic release-modulating influences.
White, B D; Du, F; Higginbotham, D A
2003-12-01
Moderately low-protein diets lead to a rapid increase in food intake and body fat. The increase in feeding is associated with a decrease in the concentration of serum urea nitrogen, suggesting that the low-protein-induced increase in food intake may be related to the decreased metabolism of nitrogen from amino acids. We hypothesized that low dietary protein would be associated with a decrease in the synaptic release of two nitrogen-containing neurotransmitters, GABA and glutamate, whose nitrogen can be derived from amino acids. In this study, we examined the effects of a low-protein diet (10% casein) in Sprague-Dawley rats on the in vitro release of 3H-GABA and 14C-glutamate from the lateral and medial hypothalamus. The low-protein diet increased food intake by about 25% after one day. After four days, the in vitro release of radiolabeled GABA and glutamate was assessed. The calcium-dependent, potassium-stimulated release of radiolabeled GABA and glutamate from the lateral hypothalamus was decreased in rats fed the low-protein diet. The magnitude of neurotransmitter release from the lateral hypothalamus inversely correlated with food intake. No dietary differences in the release of neurotransmitters from the medial hypothalamus were observed. These results support the contention that alterations in nitrogen metabolism are associated with low-protein-induced feeding.
Crown Release Increases Diameter Growth and Bole Sprouting of Pole-Size Yellow Birch
Gayne G. Erdmann; Ralph M. Jr. Peterson
1971-01-01
During the second and third years after release, dominant, codominant, and intermediate pole-size yellow birch grew nearly twice as fast in diameter as unreleased poles. Growth rates were also related to foliage density. Epicormic sprouting was increased by crown release but most sprouting occured in the second log.
Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E
2015-09-14
Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.
Seok, Jin Kyung
2015-01-01
Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging. PMID:25954129
Seok, Jin Kyung; Boo, Yong Chool
2015-05-01
Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging.
Upreti, Chirag; Otero, Rafael; Partida, Carlos; Skinner, Frank; Thakker, Ravi; Pacheco, Luis F.; Zhou, Zhen-yu; Maglakelidze, Giorgi; Velíšková, Jana; Velíšek, Libor; Romanovicz, Dwight; Jones, Theresa; Stanton, Patric K.
2012-01-01
In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1–2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies. PMID:22344585
Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels
Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.
2013-01-01
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608
Drug release studies from lipid nanoparticles in physiological media by a new DSC method.
Roese, Elin; Bunjes, Heike
2017-06-28
Lipid nanoparticles are an interesting parenteral delivery system for poorly water-soluble drugs. In order to approach physiological conditions when conducting release studies from such systems the release media should preferentially contain lipophilic acceptor compartments such as lipoproteins or other colloidal lipophilic components. In practice, drug release studies under such close to physiological conditions may be complicated by the small size of lipid nanoparticles, which is in the same range as that of the potential acceptor particles. This study describes a novel differential scanning calorimetry (DSC) method for drug release measurements which works without separation of donor and acceptor particles. The technique is based on measuring the crystallization temperature of trimyristin nanoparticles by DSC. The crystallization temperature of the nanoparticles decreases proportionally with the amount of active ingredient incorporated and thus increases as a result of drug release. Liquid trimyristin nanoparticles loaded with fenofibrate, orlistat, tocopherol acetate and ubidecarenone were studied in three different release media with increasing complexity and comparability to physiological conditions: a rapeseed oil nanoemulsion, porcine serum and porcine blood. Using the new method, a correlation between release behavior and drug lipophilicity was observed: the higher the logP value of the drug, the slower the release. The extent of drug release was influenced by partition equilibrium as indicated by increased drug release in the rapeseed oil nanoemulsion compared to porcine serum and blood. Copyright © 2017 Elsevier B.V. All rights reserved.
El Maghraby, Gamal M; Elzayat, Ehab M; Alanazi, Fars K
2012-08-01
Alternative strategies are being employed to develop liquid oral sustained release formulation. These included ion exchange resin, sustained release suspensions and in situ gelling systems. The later mainly utilizes alginate solutions that form gels upon contact with calcium which may be administered separately or included in the alginate solution as citrate complex. This complex liberates calcium in the stomach with subsequent gellation. The formed gel can break after gastric emptying leading to dose dumping. Development of modified in situ gelling system which sustain dextromethorphan release in the stomach and intestine. Solutions containing alginate with calcium chloride and sodium citrate were initially prepared to select the formulation sustaining the release in the stomach. The best formulation was combined with chitosan. All formulations were characterized with respect to flow, gelling capacity, gelling strength and drug release. Increasing the concentration of alginate increased the gelling capacity and strength and reduced the rate of drug release in gastric conditions with 2% w/v alginate being the best formulation. However, these formulations failed to sustain the release in the intestinal conditions. Incorporation of chitosan with alginate increased the gelling capacity and strength and reduced the rate of drug release compared to alginate only system. The effect was optimum in formulation containing 1.5% w/v chitosan. The sustained release pattern was maintained both in the gastric and intestinal conditions and was comparable to that obtained from the marketed product. Alginate-chitosan based in situ gelling system is promising for developing liquid oral sustained release.
Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E
2018-01-01
Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites toxicity of released nano-clay particles to A594 adenocarcinomic human alveolar basal epithelial cells was observed, which will help with future risk based-formulations of exposure.
Metal release from stainless steel particles in vitro-influence of particle size.
Midander, K; Pan, J; Wallinder, I Odnevall; Leygraf, C
2007-01-01
Human inhalation of airborne metallic particles is important for health risk assessment. To study interactions between metallic particles and the human body, metal release measurements of stainless steel powder particles were performed in two synthetic biological media simulating lung-like environments. Particle size and media strongly influence the metal release process. The release rate of Fe is enhanced compared with Cr and Ni. In artificial lysosomal fluid (ALF, pH 4.5), the accumulated amounts of released metal per particle loading increase drastically with decreasing particle size. The release rate of Fe per unit surface area increases with decreasing particle size. Compared with massive sheet metal, fine powder particles (<4 microm) show similar release rates of Cr and Ni, but a higher release rate of Fe. Release rates in Gamble's solution (pH 7.4), for all powders investigated, are significantly lower compared to ALF. No clear trend is seen related to particle size in Gamble's solution.
Noradrenaline increases the expression and release of Hsp72 by human neutrophils.
Giraldo, E; Multhoff, G; Ortega, E
2010-05-01
The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.
Songbird response to increased willow (Salix spp.) growth in Yellowstone's northern range.
Baril, Lisa M; Hansen, Andrew J; Renkin, Roy; Lawrence, Rick
2011-09-01
After nearly a century of height suppression, willows (Salix spp.) in the northern range of Yellowstone National Park, U.S.A., are increasing in height growth as a possible consequence of wolf (Canis lupus) restoration, climate change, or other factors. Regardless of the drivers, the recent release of this rare but important habitat type could have significant implications for associated songbirds that are exhibiting declines in the region. Our objective was to evaluate bird response to releasing willows by comparing willow structure and bird community composition across three willow growth conditions: height suppressed, recently released, and previously tall (i.e., tall prior to the height increase of released willows). Released and previously tall willows exhibited high and similar vertical structure, but released willows were significantly lower in horizontal structure. Suppressed willows were significantly shorter and lower in horizontal cover than released or previously tall willows. Bird richness increased along a gradient from lowest in suppressed to highest in previously tall willows, but abundance and diversity were similar between released and previously tall willows, despite lower horizontal cover in the released condition. Common Yellowthroat (Geothlypis trichas) and Lincoln's Sparrow (Melospiza lincolnii) were found in all three growth conditions; however, Yellow Warbler (Dendroica petechia), Warbling Vireo (Vireo gilvus), Willow Flycatcher (Empidonax traillii), and Song Sparrow (Melospiza melodii) were present in released and previously tall willows only. Wilson's Warbler (Wilsonia pusilla) was found in previously tall willows only, appearing to specialize on tall, dense willows. The results of our a priori habitat models indicated that foliage height diversity was the primary driver of bird richness, abundance, and diversity. These results indicate that vertical structure was a more important driver of bird community variables than horizontal structure and that riparian and willow-dependent bird species have responded positively to increased willow growth in the region.
Porous magnesium loaded with gentamicin sulphate and in vitro release behavior.
Li, Qiuyan; Jiang, Guofeng; Wang, Dong; Wang, Huang; Ding, Liang; He, Guo
2016-12-01
Our aim was to develop a biocompatible bone repair material that has the advantage of preventing postoperative infections. Finally, the porous magnesium (p-Mg) loaded with gentamicin sulphate (GS-loaded Mg-G) was fabricated. The GS release behavior of the GS-loaded Mg-G in phosphate buffer saline (PBS) was investigated. The effective release time of GS reached to 14days. In addition, the effects of porosity and pore diameter of p-Mg on the GS release behavior of the GS-loaded Mg-G were studied. In the initial burst release stage, the GS release rate of the GS-loaded Mg-G increased with the increasing porosity or the increasing pore diameter of p-Mg. The GS-loaded Mg-G with larger original pore diameter has higher burst release of GS. Moreover, the in vitro antibacterial test of the GS-loaded Mg-G indicated that this biomaterial has obvious antibacterial effect. This study can provide information for p-Mg loaded with drug(s) as functional bone repair materials with drug-delivery capabilities. Copyright © 2016 Elsevier B.V. All rights reserved.
Self-assembling N-(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine hydrogel as novel drug carrier.
Snigdha, Kirti; Singh, Brijesh K; Mehta, Abijeet Singh; Tewari, R P; Dutta, P K
2016-12-01
Supramolecular hydrogel as a novel drug carrier was prepared from N-(9-Fluorenylmethoxycarbonyl) (Fmoc) modified l-phenylalanine. Its different properties like stability at different pH, temperature and rheology were evaluated in reference to salicylic acid (SA) as a model drug, entrapped in the supramolecular hydrogel network. The release behaviour of SA drug in supramolecular hydrogel was investigated by UV-vis spectroscopy. The influence of hydrogelator, pH values of the accepting media, temperature and concentration of SA drug on the release behaviour was investigated under static conditions. The results indicated that the release rate of SA in the supramolecular hydrogels was slightly retarded with an increase of the hydrogelator concentration. Also, the release rates of SA increased with an increase of temperature and its concentration. Furthermore, the release behaviour of SA was found to be different at various pH values in buffers. The study of the release kinetics indicated that the release behaviour of SA from the carrier was in accord with the Peppas model and the diffusion controlled mechanism involved in the Fickian model. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Carpenter, Alexis Wells
Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.
Hu, Jianjun; Sun, Qiang; He, Huan
2018-05-01
The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.
Klasing, K C; Adler, K L; Remus, J C; Calvert, C C
2002-08-01
Betaine is used by cells to defend against changes in osmolarity. We examined relationships among betaine, osmolarity and coccidiosis. In the first experiment, chicks were fed corn-soy diets containing 0.0, 0.5 or 1.0 g/kg betaine; half were challenged with Eimeria acervulina (Cocci). Cocci decreased weight gain and feed efficiency and increased the osmolarity of the duodenal and jejunal mucosa (P < 0.01). Betaine decreased osmolarity of the duodenum (P < 0.01), especially in Cocci-challenged birds. Cocci increased the thickness (P = 0.04) of and number (P < 0.01) of leukocytes in the duodenal lamina propria especially at high betaine levels (interaction P = 0.05). Villi height was decreased by Cocci (P = 0.05) and this was ameliorated by 1.0 g/kg betaine (interaction P = 0.04). Intraepithelial leukocyte numbers were increased by Cocci (P < 0.01) especially at 0.5 and 1 g/kg betaine. Peritoneal macrophages or peripheral blood heterophils were incubated in media with an osmolarity of 200, 310, 600 or 900 mOsmol and 0.0, 0.1, 0.5 or 1.5 mmol/L betaine (4 x 4 factorial) for 6 h and then E. acervulina were added. In general, phagocytosis and NO release were decreased and interleukin (IL)-1 and IL-6 release were increased in hyperosmotic media compared with isosmotic media. Betaine (0.1 mmol/L) increased NO release by heterophils (P = 0.04) and tended to increase (P < 0.1) NO release from macrophages. The chemotaxis of monocytes toward chemotactic factors released by heterophils was increased by betaine. Increased chemotaxis of monocytes and NO release by macrophages may explain the decreased intestinal pathology but increased leukocyte numbers that were observed when betaine was fed during a Cocci infection.
Kamsteeg, Erik-Jan; Stoffels, Monique; Tamma, Grazia; Konings, Irene B M; Deen, Peter M T
2009-10-01
Regulation of body water homeostasis occurs by the vasopressin-dependent sorting of aquaporin-2 (AQP2) water channels to and from the apical membrane of renal principal cells. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease that renders the kidney unresponsive to vasopressin, resulting in polyuria and polydipsia. The AQP2 mutant c.772G>A; p.Glu258Lys (AQP2-E258K) causes dominant NDI by oligomerizing with wild-type AQP2 and missorting of this AQP2 complex to multivesicular bodies instead of the apical membrane. The motif causing this missorting of AQP2-E258K was identified here. Functional analyses and plasma membrane expression studies of truncation mutants in oocytes revealed that AQP2-E258K shortened to Leu259 is still intracellular retained. Alanine scanning and glutamic acid to arginine exchanges revealed increased function and plasma membrane expression for AQP2-E258K mutants with the following additional changes: Leu259Ala, Arg252Glu, Arg253Glu, or Arg252Ala-Arg254Ala, or for the AQP2 mutant p.Glu258Ala, indicating that the motif RRRxxxK(258)L confers AQP2-E258K retention. Fusion of this motif to aquaporin-1 also resulted in missorting of that water channel, indicating that this retention motif is transferable. In conclusion, our data reveal that the RRRxxxKL motif and repulsion between K258 and the arginine-triplet within this motif are the primary cause of missorting of AQP2-E258K in NDI.
Lupo, Francesca; Tibaldi, Elena; Matte, Alessandro; Sharma, Alok K; Brunati, Anna Maria; Alper, Seth L; Zancanaro, Carlo; Benati, Donatella; Siciliano, Angela; Bertoldi, Mariarita; Zonta, Francesca; Storch, Alexander; Walker, Ruth H; Danek, Adrian; Bader, Benedikt; Hermann, Andreas; De Franceschi, Lucia
2016-12-22
Chorea-acanthocytosis is one of the hereditary neurodegenerative disorders known as the neuroacanthocytoses. Chorea-acanthocytosis is characterized by circulating acanthocytes deficient in chorein, a protein of unknown function. We report here for the first time that chorea-acanthocytosis red cells are characterized by impaired autophagy, with cytoplasmic accumulation of active Lyn and of autophagy-related proteins Ulk1 and Atg7. In chorea-acanthocytosis erythrocytes, active Lyn is sequestered by HSP90-70 to form high-molecular-weight complexes that stabilize and protect Lyn from its proteasomal degradation, contributing to toxic Lyn accumulation. An interplay between accumulation of active Lyn and autophagy was found in chorea-acanthocytosis based on Lyn coimmunoprecipitation with Ulk1 and Atg7 and on the presence of Ulk1 in Lyn-containing high-molecular-weight complexes. In addition, chorein associated with Atg7 in healthy but not in chorea-acanthocytosis erythrocytes. Electron microscopy detected multivesicular bodies and membrane remnants only in circulating chorea-acanthocytosis red cells. In addition, reticulocyte-enriched chorea-acanthocytosis red cell fractions exhibited delayed clearance of mitochondria and lysosomes, further supporting the impairment of authophagic flux. Because autophagy is also important in erythropoiesis, we studied in vitro CD34 + -derived erythroid precursors. In chorea-acanthocytosis, we found (1) dyserythropoiesis; (2) increased active Lyn; (3) accumulation of a marker of autophagic flux and autolysososme degradation; (4) accumlation of Lamp1, a lysosmal membrane protein, and LAMP1-positive aggregates; and (5) reduced clearance of lysosomes and mitochondria. Our results uncover in chorea-acanthocytosis erythroid cells an association between accumulation of active Lyn and impaired autophagy, suggesting a link between chorein and autophagic vesicle trafficking in erythroid maturation.
Herrnberger, Leonie; Hennig, Robert; Kremer, Werner; Hellerbrand, Claus; Goepferich, Achim; Kalbitzer, Hans Robert; Tamm, Ernst R.
2014-01-01
Liver sinusoidal endothelial cells (LSEC) are characterized by the presence of fenestrations that are not bridged by a diaphragm. The molecular mechanisms that control the formation of the fenestrations are largely unclear. Here we report that mice, which are deficient in plasmalemma vesicle-associated protein (PLVAP), develop a distinct phenotype that is caused by the lack of sinusoidal fenestrations. Fenestrations with a diaphragm were not observed in mouse LSEC at three weeks of age, but were present during embryonic life starting from embryonic day 12.5. PLVAP was expressed in LSEC of wild-type mice, but not in that of Plvap-deficient littermates. Plvap-/- LSEC showed a pronounced and highly significant reduction in the number of fenestrations, a finding, which was seen both by transmission and scanning electron microscopy. The lack of fenestrations was associated with an impaired passage of macromolecules such as FITC-dextran and quantum dot nanoparticles from the sinusoidal lumen into Disse's space. Plvap-deficient mice suffered from a pronounced hyperlipoproteinemia as evidenced by milky plasma and the presence of lipid granules that occluded kidney and liver capillaries. By NMR spectroscopy of plasma, the nature of hyperlipoproteinemia was identified as massive accumulation of chylomicron remnants. Plasma levels of low density lipoproteins (LDL) were also significantly increased as were those of cholesterol and triglycerides. In contrast, plasma levels of high density lipoproteins (HDL), albumin and total protein were reduced. At around three weeks of life, Plvap-deficient livers developed extensive multivesicular steatosis, steatohepatitis, and fibrosis. PLVAP is critically required for the formation of fenestrations in LSEC. Lack of fenestrations caused by PLVAP deficiency substantially impairs the passage of chylomicron remnants between liver sinusoids and hepatocytes, and finally leads to liver damage. PMID:25541982
Response of Overtopped White Oak to Release
Charles E. McGee
1981-01-01
Pole sized white oaks increase in volume growth following release from overtopping trees, but the response varies by size, age and appearance of the oaks. Significant increases in epicormic sprouting, height loss by some released trees, and highly variable stem volume growth make overtopped white oak a very questionable source of future crop trees. If overtopped trees...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somogyi, G.T.; de Groat, W.C.
Modulation of (3H)NE release was studied in rat urinary bladder strips prelabeled with (3H)NE. (3H)NE uptake occurred in strips from the bladder base and body, but was very prominent in the base where the noradrenergic innervation is most dense. Electrical field stimulation markedly increased (3H)NE outflow from the superfused tissue. The quantity of (3H)NE release was approximately equal during three consecutive periods of stimulation. Activation of presynaptic muscarinic receptors by 1.0 microM oxotremorine reduced (3H)NE release to 46% of the control. Atropine (1 microM) blocked the effect of oxotremorine and increased the release to 147% of predrug control levels. Activationmore » of presynaptic alpha-2 adrenoceptors by 1 microM clonidine reduced (3H)NE release to 55% of control. Yohimbine blocked the action of clonidine and increased the release to 148% of control. The release of (3H)NE from the bladder base and body was increased by both 1 microM atropine (to 167% and 174% of control, respectively) and 1 microM yohimbine (to 286% and 425% of control, respectively). Atropine and yohimbine administered in combination had similar facilitatory effects as when administered alone. We conclude that the release of (3H)NE from adrenergic nerve endings in electrically stimulated bladder strips is modulated via endogenous transmitters acting on both muscarinic and alpha-2 adrenergic presynaptic receptors and that the latter provide the most prominent control.« less
Release of substance P from the cat spinal cord.
Go, V L; Yaksh, T L
1987-01-01
1. The present experiments examine the physiology and pharmacology of the release of substance P-like immunoreactivity (SP-l.i.), from the spinal cord in the halothane-anaesthetized, artificially ventilated cat. 2. Resting release of SP-l.i. was 36 +/- 4 fmol/30 min (mean +/- S.E.; n = 106). Bilateral stimulation of the sciatic nerves at intensities which evoked activity in fibres conducting at A beta conduction velocities (greater than 40 m/s), resulted in no change in blood pressure, pupil diameter or release of SP-l.i. Stimulation intensities which activate fibres conducting at velocities less than 2 m/s resulted in increased blood pressure, miosis and elevated release of SP-l.i. (278 +/- 16% of control). 3. The relationship between nerve-stimulation frequency and release was monotonic up to approximately 20 Hz. Higher stimulation frequencies did not increase the amounts of SP-l.i. released. At 200 Hz there was a reduction. 4. Capsaicin (0.1 mM) increased the release of SP-l.i. from the spinal cord and resulted in an acute desensitization to subsequent nerve stimulation. This acute effect was not accompanied by a reduction in spinal levels of SP-l.i. measured 2 h after stimulation. 5. Cold block of the cervical spinal cord resulted in an increase in the amounts of SP-l.i. released by nerve stimulation. 6. Pre-treatment with intrathecal 5,6-dihydroxytryptamine (300 micrograms) 7 days prior to the experiment caused a reduction in the dorsal and ventral horn stores of SP-l.i., but had no effect on the release of SP-l.i. evoked by nerve stimulation. Similar pre-treatment with intrathecal capsaicin (300 micrograms) resulted in depletion of SP-l.i. in the dorsal but not in the ventral horn of the spinal cord and diminished the release of SP-l.i. evoked by nerve stimulation. 7. Intense thermal stimulation of the flank resulted in small (20-35%), but reliable increases in the release of SP-l.i. above control. 8. Putative agonists for the opioid mu-receptor (morphine, 10-100 microM; sufentanil, 1 microM), and for the delta-receptor (D-Ala2-D-Leu5-enkephalin, 1-10 microM; D-Pen2-D-Pen5-enkephalin, 10 microM), but not the kappa-receptor (U50488H, 100-1000 microM), produced a dose-dependent, naloxone-reversible reduction of the evoked, but not of the resting release of SP-l.i. (-)-Naloxone, but not (+)-naloxone, resulted in a significant increase in evoked but not resting SP-l.i. release.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2451003
Schlicker, Eberhard; Redmer, Agnes; Werner, André; Kathmann, Markus
2003-01-01
We studied whether cannabinoid CB1 receptor gene disruption (to yield CB1−/− mice) affects the electrically evoked tritium overflow from vas deferens and atrial pieces preincubated with [3H]-noradrenaline (NA) (‘noradrenaline release') and from cerebral cortex slices preincubated with [3H]-choline (‘acetylcholine release'). NA release was higher by 37% in vas deferens from CB1−/− mice than in vas deferens from CB1+/+ mice. The cannabinoid receptor agonist WIN 55,212-2 inhibited, and the CB1 receptor inverse agonist/antagonist SR 141716, increased NA release in vas deferens from CB1+/+ mice without affecting it in vas deferens from CB1−/− mice. Atrial NA release did not differ between CB1+/+ and CB1−/− mice nor did WIN 55,212-2 affect NA release in either strain. Cortical acetylcholine (Ach) release did not differ between CB1+/+ and CB1−/− mice. WIN 55,212-2 inhibited, but SR 141716 did not affect, Ach release in the cortex from CB1+/+ mice. Both drugs did not alter Ach release in the cortex from CB1−/− mice. Tritium content did not differ between CB1+/+ and CB1−/− mice in any preparation. In conclusion, the increase in NA release associated with CB1 receptor deficiency in the vas deferens, which cannot be ascribed to an alteration of tritium content of the preparations, suggests an endogenous tone at the CB1 receptors of CB1+/+ mice in this tissue. Furthermore, the effect of WIN 55,212-2 on NA release in the vas deferens and on cortical Ach release involves CB1 receptors, whereas the involvement of non-CB1–non-CB2 receptors can be excluded. PMID:12970076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowyer, J.F.; Scallet, A.C.; Holson, R.R.
1991-04-01
The interactions of MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5,10-imine), glutamate and glutamine with methamphetamine (METH)-evoked release of ({sup 3}H)dopamine were assessed in vitro to determine whether MK-801 inhibition of METH neurotoxicity might be mediated presynaptically, and to evaluate the effects of glutamatergic stimulation on METH-evoked dopamine release. MK-801 inhibition of glutamate- or METH-evoked dopamine release might reduce synaptic dopamine levels during METH exposure and decrease the formation of 6-hydroxydopamine or other related neurotoxins. Without Mg{sup 2}{sup +} present, 40 microM and 1 mM glutamate evoked a N-methyl-D-aspartate receptor-mediated ({sup 3}H)dopamine and ({sup 3}H)metabolite (tritium) release of 3 to 6 and 12 to 16%more » of total tritium stores, respectively, from striatal slices. With 1.50 mM Mg{sup 2}{sup +} present, 10 mM glutamate alone or in combination with the dopamine uptake blocker nomifensine released only 2.1 or 4.2%, respectively, of total tritium stores, and release was only partially dependent on N-methyl-D-aspartate-type glutamate receptors. With or without 1.50 mM Mg{sup 2}{sup +} present, 0.5 or 5 microM METH evoked a substantial release of tritium (5-8 or 12-21% of total stores, respectively). METH-evoked dopamine release was not affected by 5 microM MK-801 but METH-evoked release was additive with glutamate-evoked release. Without Mg{sup 2}{sup +} present, 1 mM glutamine increased glutamate release and induced the release of ({sup 3}H)dopamine and metabolites. Both 0.5 and 5 microM METH also increased tritium release with 1 mM glutamine present. When striatal slices were exposed to 5 microM METH this glutamine-evoked release of glutamate was increased more than 50%.« less
Gurpreetarora; Malik, Karan; Rana, Vikas; Singh, Inderbir
2012-01-01
The objective of this study was to extend the GI residence time of the dosage form and to control the release of domperidone using directly compressible sustained release mucoadhesive matrix (SRMM) tablets. A 2-factor centre composite design (CCD) was employed to study the influence of independent variables like gum ghatti (GG) (X1) and hydroxylpropylmethyl cellulose K 15M (HPMC K 15M) (X2) on dependent variable like mucoadhesive strength, tensile strength, release exponent (n), t50 (time for 50% drug release), rel(10 h) (release after 10 h) and rel(18 h) (release after 18 h). Tablets were prepared by direct compression technology and evaluated for tablet parametric test (drug assay, diameter, thickness, hardness and tensile strength), mucoadhesive strength (using texture analyzer) and in vitro drug release studies. The tensile strength and mucoadhesive strength were found to be increased from 0.665 +/- 0.1 to 1.591 +/- 0.1 MN/cm2 (Z1 to Z9) and 10.789 +/- 0.985 to 50.924 +/- 1.150 N (Z1 to Z9), respectively. The release kinetics follows first order and Hixson Crowell equation indicating drug release following combination of diffusion and erosion. The n varies between 0.834 and 1.273, indicating release mechanism shifts from non fickian (anomalous release) to super case II, which depict that drug follows multiple drug release mechanism. The t50 time was found to increase from 5 +/- 0.12 to 11.4 +/- 0.14 h (Z1 to Z9) and release after 10 and 18 h decreases with increasing concentration of both polymers concluding with release controlling potential of polymers. The accelerated stability studies were performed on optimized formulation as per ICH guideline and the result showed that there was no significant change in tensile strength, mucoadhesive strength and drug assay.
NASA Astrophysics Data System (ADS)
Healy, J. M.
1996-06-01
Spermatozoa of the trigonioid bivalve Neotrigonia margaritacea (Lamarck) (Trigoniidae, Trigonioida) are examined ultrastructurally. A cluster of discoidal, proacrosomal vesicles (between 9 to 15 in number) constitutes the acrosomal complex at the nuclear apex. The nucleus is short (2.4 2.6 μm long, maximum diameter 2.2 μm), blunt-conical in shape, and exhibits irregular lacunae within its contents. Five or sometimes four round mitochondria are impressed into shallow depressions in the base of the nucleus as is a discrete centriolar fossa. The mitochondria surround two orthogonally arranged centrioles to form, collectively, the midpiece region. The distal centriole, anchored by nine satellite fibres to the plasma membrane, acts as a basal body to the sperm flagellum. The presence of numerous proacrosomal vesicles instead of a single, conical acrosomal vesicle sets Neotrigonia (and the Trigonioida) apart from other bivalves, with the exception of the Unionoida which are also known to exhibit this multivesicular condition. Spermatozoa of N. margaritacea are very similar to those of the related species Neotrigonia bednalli (Verco) with the exception that the proacrosomal vesicles of N. margaritacea are noticeably larger than those of N. bednalli.
Organization of organelles within hyphae of Ashbya gossypii revealed by electron tomography.
Gibeaux, Romain; Hoepfner, Dominic; Schlatter, Ivan; Antony, Claude; Philippsen, Peter
2013-11-01
Ashbya gossypii grows as multinucleated and constantly elongating hyphae. Nuclei are in continuous forward and backward motion, also move during mitosis, and frequently bypass each other. Whereas these nuclear movements are well documented, comparatively little is known about the density and morphology of organelles which very likely influence these movements. To understand the three-dimensional subcellular organization of hyphae at high resolution, we performed large-scale electron tomography of the tip regions in A. gossypii. Here, we present a comprehensive space-filling model in which most membrane-limited organelles including nuclei, mitochondria, endosomes, multivesicular bodies, vacuoles, autophagosomes, peroxisomes, and vesicles are modeled. Nuclei revealed different morphologies and protrusions filled by the nucleolus. Mitochondria are very abundant and form a tubular network with a polarized spherical fraction. The organelles of the degradative pathways show a clustered organization. By analyzing vesicle-like bodies, we identified three size classes of electron-dense vesicles (∼200, ∼150, and ∼100 nm) homogeneously distributed in the cytoplasm which most likely represent peroxisomes. Finally, coated and uncoated vesicles with approximately 40-nm diameters show a polarized distribution toward the hyphal tip with the coated vesicles preferentially localizing at the hyphal periphery.
Are there multiple pathways in the pathogenesis of Huntington's disease?
Aronin, N; Kim, M; Laforet, G; DiFiglia, M
1999-01-01
Studies of huntingtin localization in human post-mortem brain offer insights and a framework for basic experiments in the pathogenesis of Huntington's disease. In neurons of cortex and striatum, we identified changes in the cytoplasmic localization of huntingtin including a marked perinuclear accumulation of huntingtin and formation of multivesicular bodies, changes conceivably pointing to an altered handling of huntingtin in neurons. In Huntington's disease, huntingtin also accumulates in aberrant subcellular compartments such as nuclear and neuritic aggregates co-localized with ubiquitin. The site of protein aggregation is polyglutamine-dependent, both in juvenile-onset patients having more aggregates in the nucleus and in adult-onset patients presenting more neuritic aggregates. Studies in vitro reveal that the genesis of these aggregates and cell death are tied to cleavage of mutant huntingtin. However, we found that the aggregation of mutant huntingtin can be dissociated from the extent of cell death. Thus properties of mutant huntingtin more subtle than its aggregation, such as its proteolysis and protein interactions that affect vesicle trafficking and nuclear transport, might suffice to cause neurodegeneration in the striatum and cortex. We propose that mutant huntingtin engages multiple pathogenic pathways leading to neuronal death. PMID:10434298
MOF maintains transcriptional programs regulating cellular stress response
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-01-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537
Osman, Wafaa; Shonouda, Mourad
2017-06-01
X-ray analysis was applied to estimate the percentages of heavy metals in ovarian tissues of the tenebrionid beetle, Blaps polycresta. Calcium, phosphorus, sulfur, cadmium, copper, and zinc were the most common detected metals in ovaries of insects collected from reference and polluted sites. Only cadmium showed significantly higher percentages in the polluted ovaries compared with the reference ones. Ultrastructure investigation revealed severe alterations in polluted ovaries both in the tropharium and in the vitellarium. Contraction of nuclear membrane of trophocytes was observed; therefore, cavities and spaces appeared in the cytoplasm followed by nuclear pyknosis. In the vitellarium, fragmentation of chromatin materials in nuclei of the follicular cells was detected. The cytoplasm was poor in the rough endoplasmic reticulum and mitochondria. Damage of yolk bodies occurred in addition to break off in the layer of microvilli. Accumulation of electron-dense vesicles and multivesicular bodies were observed in both reference and polluted ovaries. These alterations in ovarian ultrastructure of B. polycresta show the severe impact of cadmium pollution on cell organelles of insects and could be used as an interesting tool for monitoring heavy metals inside the body organs due to soil pollution.
Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages
Lou, Jieqiong; Low-Nam, Shalini T.; Kerkvliet, Jason G.; Hoppe, Adam D.
2014-01-01
ABSTRACT Activation of the macrophage colony stimulating factor-1 receptor (CSF-1R) by CSF-1 stimulates pronounced macropinocytosis and drives proliferation of macrophages. Although the role of macropinocytosis in CSF-1R signaling remains unknown, we show here that, despite internalizing large quantities of plasma membrane, macropinosomes contribute little to the internalization of the CSF-1–CSF-1R complex. Rather, internalization of the CSF-1R in small endocytic vesicles that are sensitive to clathrin disruption, outcompetes macropinosomes for CSF-1R endocytosis. Following internalization, small vesicles carrying the CSF-1R underwent homotypic fusion and then trafficked to newly formed macropinosomes bearing Rab5. As these macropinosomes matured, acquiring Rab7, the CSF-1R was transported into their lumen and degraded. Inhibition of macropinocytosis delayed receptor degradation despite no disruption to CSF-1R endocytosis. These data indicate that CSF-1-stimulated macropinosomes are sites of multivesicular body formation and accelerate CSF-1R degradation. Furthermore, we demonstrate that macropinocytosis and cell growth have a matching dose dependence on CSF-1, suggesting that macropinosomes might be a central mechanism coupling CSF-1R signaling and macrophage growth. PMID:25335894
MOF maintains transcriptional programs regulating cellular stress response.
Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A
2016-05-01
MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes.
The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway
Ramos, Irene; Herrera, Mónica; Stamatakis, Konstantinos
2009-01-01
Background Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. Methodology/Principal Findings By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. Conclusions/Significance Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs. PMID:19956591
NASA Astrophysics Data System (ADS)
Hu, Xiaodong; Wu, Sushu; Zhu, Min; Weng, Songgan; Guo, Liuchao
2017-06-01
The changes of nitrogen and phosphorus release with time from sediment in Taihu Lake after ecological dredging were tested in laboratory. Experiment results showed that in a simulated environment of Taihu Lake, dredging was effective to reduce the endogenous pollution release, and the effect weakened gradually along with time. When the velocity of flow increased, nitrogen and phosphorus release intensity increased, so did the largest nitrogen and phosphorus emission. Considered the resedimentation, the release of nitrogen and phosphorus were similar in the area of five years after dredging and just dredging. Re-dredging should be considered.
Impact of RO-desalted water on distribution water qualities.
Taylor, J; Dietz, J; Randall, A; Hong, S
2005-01-01
A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.
Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sata, Yusuke; Turner, Michael James; Fukumitsu, Masafumi; Yamamoto, Hiromi; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru
2017-09-01
This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na + /K + -ATPase inhibitor (ouabain), or an epithelial Na + channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.
Characterization and mosquito repellent activity of citronella oil nanoemulsion.
Sakulku, Usawadee; Nuchuchua, Onanong; Uawongyart, Napaporn; Puttipipatkhachorn, Satit; Soottitantawat, Apinan; Ruktanonchai, Uracha
2009-05-08
Encapsulated citronella oil nanoemulsion prepared by high pressure homogenization at varying amounts of surfactant and glycerol, was studied in terms of the droplet size, stability, release characteristics and in vivo mosquito protection. Transparent nanoemulsion can be obtained at optimal concentration of 2.5% surfactant and 100% glycerol. Physical appearance and the stability of the emulsion were greatly improved through an addition of glycerol, owing to its co-solvent and highly viscous property. The increasing emulsion droplet increased the oil retention. The release behavior could be attributed to the effect of droplet size and concentrations of surfactant and glycerol. By fitting to Higuchi's equation, an increase in glycerol and surfactant concentrations resulted in slow release of the oil. The release rate related well to the protection time where a decrease in release rate can prolong mosquito protection time.
Matos, Teresa J.; Jaleco, Sara P.; Gonçalo, Margarida; Duarte, Carlos B.; Lopes, M. Celeste
2005-01-01
We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1β release and IL-1β receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1β release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1β-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1β evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1β receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1β, without inducing an increase of IL-1β mRNA in FSDC, suggests a posttranslational modification of pro-IL-1β by ICE activity. PMID:16106098
Oléron Evans, Thomas P; Bishop, Steven R
2014-08-01
We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Conditions affecting the release of phosphorus from surface lake sediments.
Christophoridis, Christophoros; Fytianos, Konstantinos
2006-01-01
Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.
Roberts, Deborah D; Pollien, Philippe; Watzke, Brigitte
2003-01-01
The purpose of this work was to study two key parameters of the lipid phase that influence flavor release-lipid level and lipid type-and to relate the results to a mass balance partition coefficient-based mathematical model. Release of 10 volatile compounds from milk-based emulsions at 10, 25, and 50 degrees C was monitored by 1-min headspace sampling with a solid-phase microextraction fiber, followed by GC-MS analysis. As compared to the observations for milk fat, changing to a lipophilic lipid (medium-chain triglycerides, MCT) and adding a monoglyceride-based surfactant did not influence the volatiles release. However, increasing the solid fat content was found to increase the release. At 25 degrees C, and even more so at 10 degrees C, concurrent with an increase in their solid fat content, hydrogenated palm fat emulsions showed increased flavor release over that observed for emulsions made with coconut oil, coconut oil with surfactant, milk fat, and MCT. However, at 50 degrees C, when hydrogenated palm fat emulsions had zero solid fat content, there was no difference in flavor release from that observed for milk fat emulsions. Varying milk fat at nine levels between 0 and 4.5% showed a systematic dependence of the release on the lipid level, dependent on compound lipophilicity. Close correlations were found between the experimental and model predictions with lipid level and percent liquid lipid as variables.
Davy, S K; Cook, C B
2001-06-01
Symbiotic dinoflagellates (zooxanthellae) typically respond to extracts of host tissue with enhanced release of short-term photosynthetic products. We examined this "host release factor" (HRF) response using freshly isolated zooxanthellae of differing nutritional status. The nutritional status was manipulated by either feeding or starving the sea anemone Aiptasia pallida (Verrill). The release of fixed carbon from isolated zooxanthellae was measured using 14C in 30 min experiments. Zooxanthellae in filtered seawater alone released approximately 5% of photosynthate irrespective of host feeding history. When we used a 10-kDa ultrafiltrate of A. pallida host tissue as a source of HRF, approximately 14% of photosynthate was released to the medium. This increased to over 25% for zooxanthellae from anemones starved for 29 days or more. The cell-specific photosynthetic rate declined with starvation in these filtrate experiments, but the decline was offset by the increased percentage release. Indeed, the total amount of released photosynthate remained unchanged, or even increased, as zooxanthellae became more nutrient deficient. Similar trends were also observed when zooxanthellae from A. pallida were incubated in a 3-kDa ultrafiltrate of the coral Montastraea annularis, suggesting that HRF in the different filtrates operated in a similar manner. Our results support the suggestion that HRF diverts surplus carbon away from storage compounds to translocated compounds such as glycerol.
Uribe, Juan S; Smith, Donald A; Dakwar, Elias; Baaj, Ali A; Mundis, Gregory M; Turner, Alexander W L; Cornwall, G Bryan; Akbarnia, Behrooz A
2012-11-01
In the surgical treatment of spinal deformities, the importance of restoring lumbar lordosis is well recognized. Smith-Petersen osteotomies (SPOs) yield approximately 10° of lordosis per level, whereas pedicle subtraction osteotomies result in as much as 30° increased lumbar lordosis. Recently, selective release of the anterior longitudinal ligament (ALL) and placement of lordotic interbody grafts using the minimally invasive lateral retroperitoneal transpsoas approach (XLIF) has been performed as an attempt to increase lumbar lordosis while avoiding the morbidity of osteotomy. The objective of the present study was to measure the effect of the selective release of the ALL and varying degrees of lordotic implants placed using the XLIF approach on segmental lumbar lordosis in cadaveric specimens between L-1 and L-5. Nine adult fresh-frozen cadaveric specimens were placed in the lateral decubitus position. Lateral radiographs were obtained at baseline and after 4 interventions at each level as follows: 1) placement of a standard 10° lordotic cage, 2) ALL release and placement of a 10° lordotic cage, 3) ALL release and placement of a 20° lordotic cage, and 4) ALL release and placement of a 30° lordotic cage. All four cages were implanted sequentially at each interbody level between L-1 and L-5. Before and after each intervention, segmental lumbar lordosis was measured in all specimens at each interbody level between L-1 and L-5 using the Cobb method on lateral radiography. The mean baseline segmental lordotic angles at L1-2, L2-3, L3-4, and L4-5 were -3.8°, 3.8°, 7.8°, and 22.6°, respectively. The mean lumbar lordosis was 29.4°. Compared with baseline, the mean postimplantation increase in segmental lordosis in all levels combined was 0.9° in Intervention 1 (10° cage without ALL release); 4.1° in Intervention 2 (ALL release with 10° cage); 9.5° in Intervention 3 (ALL release with 20° cage); and 11.6° in Intervention 4 (ALL release with 30° cage). Foraminal height in the same sequence of conditions increased by 6.3%, 4.6%, 8.8% and 10.4%, respectively, while central disc height increased by 16.1%, 22.3%, 52.0% and 66.7%, respectively. Following ALL release and placement of lordotic cages at all 4 lumbar levels, the average global lumbar lordosis increase from preoperative lordosis was 3.2° using 10° cages, 12.0° using 20° cages, and 20.3° using 30° cages. Global lumbar lordosis with the cages at 4 levels exhibited a negative correlation with preoperative global lordosis (10°, R = -0.756; 20°, -0.730; and 30°, R = -0.437). Combined ALL release and placement of increasingly lordotic lateral interbody cages leads to progressive gains in segmental lordosis in the lumbar spine. Mean global lumbar lordosis similarly increased with increasingly lordotic cages, although the effect with a single cage could not be evaluated. Greater global lordosis was achieved with smaller preoperative lordosis. The mean maximum increase in segmental lordosis of 11.6° followed ALL release and placement of the 30° cage.
Natural and technologic hazardous material releases during and after natural disasters: a review.
Young, Stacy; Balluz, Lina; Malilay, Josephine
2004-04-25
Natural disasters may be powerful and prominent mechanisms of direct and indirect hazardous material (hazmat) releases. Hazardous materials that are released as the result of a technologic malfunction precipitated by a natural event are referred to as natural-technologic or na-tech events. Na-tech events pose unique environmental and human hazards. Disaster-associated hazardous material releases are of concern, given increases in population density and accelerating industrial development in areas subject to natural disasters. These trends increase the probability of catastrophic future disasters and the potential for mass human exposure to hazardous materials released during disasters. This systematic review summarizes direct and indirect disaster-associated releases, as well as environmental contamination and adverse human health effects that have resulted from natural disaster-related hazmat incidents. Thorough examination of historic disaster-related hazmat releases can be used to identify future threats and improve mitigation and prevention efforts.
NASA Astrophysics Data System (ADS)
Xu, Yingpu; Qu, Fengyu; Wang, Yu; Lin, Huiming; Wu, Xiang; Jin, Yingxue
2011-03-01
A novel pH-sensitive drug release system has been established by coating Eudragit (Eud) on drug-loaded mesoporous silica (MS) tablets. The release rate of ibuprofen (IBU) from the MS was retarded by coating with Eudragit S-100, and the higher retardation was due to the increase of coating concentration and the coating layers. The target position of the release depended on the pH of the release medium, which was confirmed by the drug release from IBU/MS/Eud increasing rapidly with the change of medium pH from 1.2 to 7.4. This drug delivery system could prohibit irritant drug from leaking in the stomach and make it only release in the intestine. The loaded and unloaded drug samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), N 2 adsorption/desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).
Effect of experimental hyperthyroidism on skeletal-muscle proteolysis.
Carter, W J; van der Weijden Benjamin, W S; Faas, F H
1981-03-15
It is not clear whether the muscle wasting commonly observed in hyperthyroidism is due to alteration in the rate of protein synthesis or degradation. The effect of experimental hyperthyroidism on skeletal-muscle proteolysis in the rat was studied by measuring alanine and tyrosine release from isolated skeletal muscles in vitro and 3-methyl-histidine excretion in vivo. Alanine release from the isolated epitrochlaris-muscle preparation was increased as soon as 24h after a 25 microgram dose of L-tri-iodothyronine in vivo. Conversely, alanine release from muscles of hypothyroid rats was decreased, but restored by L-tri-iodothyronine supplementation before death. Furthermore, 3-methylhistidine excretion was increased in hyperthyroid rats throughout an 18-day treatment period. The increased amino acid release from isolated muscles and the increased 3-methylhistidine excretion in vivo strongly suggests that hyperthyroidism increases skeletal-muscle proteolysis. Furthermore, the thyroid-hormone concentration may be an important factor in regulating muscle proteolysis.
Effect of experimental hyperthyroidism on skeletal-muscle proteolysis.
Carter, W J; van der Weijden Benjamin, W S; Faas, F H
1981-01-01
It is not clear whether the muscle wasting commonly observed in hyperthyroidism is due to alteration in the rate of protein synthesis or degradation. The effect of experimental hyperthyroidism on skeletal-muscle proteolysis in the rat was studied by measuring alanine and tyrosine release from isolated skeletal muscles in vitro and 3-methyl-histidine excretion in vivo. Alanine release from the isolated epitrochlaris-muscle preparation was increased as soon as 24h after a 25 microgram dose of L-tri-iodothyronine in vivo. Conversely, alanine release from muscles of hypothyroid rats was decreased, but restored by L-tri-iodothyronine supplementation before death. Furthermore, 3-methylhistidine excretion was increased in hyperthyroid rats throughout an 18-day treatment period. The increased amino acid release from isolated muscles and the increased 3-methylhistidine excretion in vivo strongly suggests that hyperthyroidism increases skeletal-muscle proteolysis. Furthermore, the thyroid-hormone concentration may be an important factor in regulating muscle proteolysis. PMID:7306017
Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim
2018-01-01
In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.
Simplified modeling of blast waves from metalized heterogeneous explosives
NASA Astrophysics Data System (ADS)
Zarei, Z.; Frost, D. L.
2011-09-01
The detonation of a metalized explosive generates a complex multiphase flow field. Modeling the subsequent propagation of the blast front requires a detailed knowledge of the metal particle dynamics and reaction rate. Given the uncertainties in modeling these phenomena, a much simpler, 1D compressible flow model is used to illustrate the general effects of secondary energy release due to particle reaction on the blast front properties. If the total energy release is held constant, the blast pressure and impulse are primarily dependent on the following parameters: the proportion of secondary energy released due to afterburning, the rate of energy release, the location the secondary energy release begins, and the range over which it occurs. Releasing the total energy over a longer time period in general reduces the peak blast overpressure at a given distance. However, secondary energy release reduces the rate of decay of the shock pressure, increases the local gas temperature and hence increases the velocity of the secondary shock front. As a result, for certain values of the above parameters, the peak blast impulse may be increased by a factor of about two in a region near the charge. The largest augmentation to the near-field peak impulse results when the secondary energy is released immediately behind the shock front rather than uniformly within the combustion products.
Release of betaine and dexpanthenol from vitamin E modified silicone-hydrogel contact lenses.
Hsu, Kuan-Hui; de la Jara, Percy Lazon; Ariyavidana, Amali; Watling, Jason; Holden, Brien; Garrett, Qian; Chauhan, Anuj
2015-03-01
To develop a contact lens system that will control the release of an osmoprotectant and a moisturizing agent with the aim to reduce symptoms of ocular dryness. Profiles of the release of osmoprotectant betaine and moisturizing agent dexpanthenol from senofilcon A and narafilcon B contact lenses were determined in vitro under sink conditions. Both types of lenses were also infused with vitamin E to increase the duration of drug release due to the formation of the vitamin E diffusion barriers in the lenses. The release profiles from vitamin E-infused lenses were compared with those from the control lenses. Both dexpanthenol and betaine are released from commercial silicone hydrogel lenses for only about 10 min. Vitamin E loadings into contact lenses at about 20-23% can increase the release times to about 10 h, which is about 60 times larger compared to the control unmodified lenses. Vitamin E-loaded silicone hydrogel contact lenses released betaine and dexpanthenol in a controlled fashion.
Noble Gas Release Signal as a Precursor to Fracture
NASA Astrophysics Data System (ADS)
Bauer, S. J.; Lee, H.; Gardner, W. P.
2017-12-01
We present empirical results of rock strain, microfracturing, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite, basalt, shale and bedded rock salt. Noble gases are released and measured real-time during deformation using mass spectrometry. The gas release represents a precursive signal to macrofracture. Gas release is associated with increased acoustic emissions indicating that microfracturing is required to release gas and create pathways for the gas to be sensed. The gas released depends on initial gas content, pore structure and its evolution during deformation, the deformation amount, matrix permeability, deformation style and the stress/strain history. Gases are released from inter and intracrystalline sites; release rate increases as strain and microfracturing increases. The gas composition depends on lithology, geologic history and age, fluids present, and radioisotope concentrations that affect radiogenic noble gas isotope (e.g. 4He,40Ar) production. Noble gas emission and its relationship to crustal processes such as seismicity and volcanism, tectonic velocities, qualitative estimates of deep permeability, age dating of groundwater, and a signature of nuclear weapon detonation. Our result show that mechanical deformation of crustal materials is an important process controlling gas release from rocks and minerals, and should be considered in techniques which utilize gas release and/or accumulation. We propose using noble gas release to signal rock deformation in boreholes, mines and waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress, strain, and/or permanent deformation dependent. Calibration of such relationships, for example relating gas release per rock unit volume to strain may be used to quantify rock deformation and develop predictive models.Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-7823A
Improved fault tolerance for air bag release in automobiles
NASA Astrophysics Data System (ADS)
Yeshwanth Kumar, C. H.; Prudhvi Prasad, P.; Uday Shankar, M.; Shanmugasundaram, M.
2017-11-01
In order to increase the reliability of the airbag system in automobiles which in turn increase the safety of the automobile we require improved airbag release system, our project deals with Triple Modular Redundancy (TMR) Technique where we use either three Sensors interfaced with three Microcontrollers which given as input to the software voter which produces majority output which is feed to the air compressor for releasing airbag. This concept was being used, in this project we are increasing reliability and safety of the entire system.
Gerner, Peter; Wang, Chi-Fei; Lee, Byung-Sang; Suzuki, Suzuko; Degirolami, Umberto; Gandhi, Ankur; Knaack, David; Strichartz, Gary
2010-07-01
Nerve blocks of long duration are often desirable in perioperative and postoperative situations. The relationship between the duration of such blocks and the rate at which a local anesthetic is released is important to know for developing a localized drug delivery system that will optimize block duration. Lidocaine concentration was varied in 1 series of formulations (OSB-L) containing a constant amount of release rate modifier. In another series (OST-R), the release rate modifier was varied while the lidocaine content was held constant. Release kinetics were measured in vitro and correlated to the in vivo duration of antinociceptive and motor block effects when the formulation was implanted next to the rat sciatic nerve. In parallel studies, rats receiving different formulations of slow-release lidocaine were fixed by intracardiac perfusion with 4% paraformaldehyde and nerve-muscle tissue taken for histopathological analysis. In this study, we have demonstrated that the most important variable for effecting functional nerve block, i.e., the blockade of impulses in the relevant fibers of the sciatic nerve, is the rate of lidocaine release at that time. For the OSB-L formulations (lidocaine concentrations of 1.875%, 3.75%, 7.5%, and 15% at a constant release rate modifier of 5%), the average in vitro release rates at 50% recovery of motor block and nociceptive block were 0.91 +/- 0.28 and 1.75 +/- 0.61 mg/h, respectively. For the OST-R formulations (16% lidocaine with release rate modifier concentrations of 1.875%, 3.75%, 7.5%, and 15%), the average in vitro release rates at 50% recovery of motor block and nociceptive block were 2.33 +/- 1.39 and 4.34 +/- 1.09 mg/h, respectively. The OSB-L formulations showed a dose-dependent increase in block duration proportional to an increase in initial lidocaine concentration, whereas the OST-R formulations showed a nonmonotonic relationship between release rate modifier concentration and block duration. The histopathological studies at 24 hours, 3, 5, or 7 days, and 4 weeks after the implantation revealed inflammatory reactions with degrees correlated with lidocaine content, but limited to the connective tissue and muscle immediately surrounding the implanted material. Despite these observed inflammatory reactions, nociceptive and motor block function returned to normal, preimplantation values in all animals. Increasing initial lidocaine content proportionately increased the duration of functional sciatic nerve block. However, decreasing the release rate per se does not give a proportional increase in block duration. Instead, there seems to be an optimal, intermediate release rate for achieving the maximum duration of block.
1993-01-01
Cut fibers from Rana temporaria and Rana pipiens (striation spacing, 3.9-4.2 microns) were mounted in a double Vaseline-gap chamber and studied at 14 degrees C. The Ca indicator purpurate-3,3' diacetic acid (PDAA) was introduced into the end pools and allowed to diffuse into the optical recording site. When the concentration at the site exceeded 2 mM, step depolarizations to 10 mV were applied and the [Ca] transient measured with PDAA was used to estimate Ca release from the sarcoplasmic reticulum (SR) (Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1983. Journal of Physiology. 344:625-666). With depolarization, the rate of SR Ca release increased to an early peak and then rapidly decreased several-fold to a quasi-steady level. The total amount of Ca released from the SR at the time of peak rate of release appeared to be independent of SR Ca content, consistent with the idea that a single activated channel might pass, on average, a fixed number of ions, independent of the magnitude of the single channel flux. A possible explanation of this property is given in terms of locally induced Ca inactivation of Ca release. The solution in the end pools was then changed to one with PDAA plus fura-2. SR Ca release was estimated from the [Ca] transient, as before, and from the delta [Cafura-2] signal. On average, 2-3 mM fura-2 increased the quasi-steady level of the rate of SR Ca release by factors of 6.6 and 3.8, respectively, in three fibers from Rana temporaria and three fibers from Rana pipiens. The peak rate of release was increased in five of the six fibers but to a lesser extent than the quasi-steady level. In all fibers, the amplitude of the free [Ca] transient was markedly reduced. These increases in the rate of SR Ca release are consistent with the idea that Ca inactivation of Ca release develops during a step depolarization to 10 mV and that 2-3 mM fura-2 is able to reduce this inactivation by complexing Ca and thereby reducing free [Ca]. Once the concentration of fura-2 becomes sufficiently large, a further increase reduces the rate of SR Ca release. On average, 5-6 mM fura-2 increased the quasi-steady rate of release, compared with 0 mM fura-2, by 6.5 and 2.9, respectively, in four fibers from Rana temporaria and three from Rana pipiens.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8228914
Fukugasako, Sanae; Ito, Shinichi; Ikemoto, Yoshimi
2003-01-01
Mechanisms of methyl p-hydroxybenzoate (methyl paraben) action in allergic reactions were investigated by measuring the intracellular Ca2+ concentration ([Ca2+]i) and histamine release in rat peritoneal mast cells (RPMCs). In the presence or absence of extracellular Ca2+, methyl paraben (0.1–10 mM) increased [Ca2+]i, in a concentration-dependent manner. Under both the conditions, methyl paraben alone did not evoke histamine release. In RPMCs pretreated with a protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate (PMA) 3 and 10 nM), methyl paraben (0.3–3 mM) induced histamine release. However, a high concentration (10 mM) of the agent did not increase the histamine release. U73122 (0.1 and 0.5 μM), an inhibitor of phospholipase C (PLC), significantly inhibited the methyl paraben-induced histamine release in PMA-pretreated RPMCs. U73343 (0.5 μM), an inactive analogue of U73122, did not inhibit the histamine release caused by methyl paraben. In Ca2+-free solution, PLC inhibitors (U73122 0.1 and 0.5 μM, D609 1–10 μM) inhibited the methyl paraben-induced increase in [Ca2+]i, whereas U73343 (0.5 μM) did not. Xestospongin C (2–20 μM) and 2 aminoethoxydiphenyl borate (30 and 100 μM), blockers of the inositol 1,4,5-trisphosphate (IP3) receptor, inhibited the methyl paraben-induced increase in [Ca2+]i in Ca2+-free solution. In conclusion, methyl paraben causes an increase in [Ca2+]i, which may be due to release of Ca2+ from storage sites by IP3 via activation of PLC in RPMCs. In addition, methyl paraben possibly has some inhibitory effects on histamine release via unknown mechanisms. PMID:12770943
Renaud, Amandine; Jamart, Aliette; Goossens, Benoit; Ross, Caroline
2013-01-01
Simple Summary Wild chimpanzee populations are dramatically declining due to anthropogenic pressure. One way of increasing wild population numbers and/or repopulating areas where local extinction has occurred is to release captive animals. HELP Congo was the first project to successfully release wild-born orphan chimpanzees in their natural environment. We studied the behaviour of eight released chimpanzees over eight years. Over time, they modified their behaviour, suggesting long-term behavioural and ecological adaptations. This suggests that successful release programmes may reinforce existing populations of endangered species. Abstract Wild chimpanzee populations are still declining due to logging, disease transmission and hunting. The bushmeat trade frequently leads to an increase in the number of orphaned primates. HELP Congo was the first project to successfully release wild-born orphan chimpanzees into an existing chimpanzee habitat. A collection of post monitoring data over 16 years now offers the unique opportunity to investigate possible behavioural adaptations in these chimpanzees. We investigated the feeding and activity patterns in eight individuals via focal observation techniques from 1997–1999 and 2001–2005. Our results revealed a decline in the number of fruit and insect species in the diet of released chimpanzees over the years, whereas within the same period of time, the number of consumed seed species increased. Furthermore, we found a decline in time spent travelling, but an increase in time spent on social activities, such as grooming, as individuals matured. In conclusion, the observed changes in feeding and activity patterns seem to reflect important long-term behavioural and ecological adaptations in wild-born orphan released chimpanzees, demonstrating that the release of chimpanzees can be successful, even if it takes time for full adaptation. PMID:26487416
Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul
2015-12-01
Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.
Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
Schädel, Christina; Bader, Martin K.-F.; Schuur, Edward A.G.; Biasi, Christina; Bracho, Rosvel; Čapek, Petr; De Baets, Sarah; Diáková, Kateřina; Ernakovich, Jessica; Estop-Aragones, Cristian; Graham, David E.; Hartley, Iain P.; Iversen, Colleen M.; Kane, Evan S.; Knoblauch, Christian; Lupascu, Massimo; Martikainen, Pertti J.; Natali, Susan M.; Norby, Richard J.; O'Donnell, Jonathan A.; Roy Chowdhury, Taniya; Šantrůčková, Hana; Shaver, Gaius; Sloan, Victoria L.; Treat, Claire C.; Turetsky, Merritt R.; Waldrop, Mark P.; Wickland, Kimberly P.
2016-01-01
Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.
Jiang, Xia; Jin, Xiangcan; Yao, Yang; Li, Lihe; Wu, Fengchang
2008-04-01
Effects of biological activity, light, temperature and oxygen on the phosphorus (P) release processes at the sediment and water interface of a shallow lake, Taihu Lake, China, were investigated. The results show that organisms at the sediment and water interface can stimulate P release from sediments, and their metabolism can alter the surrounding micro-environmental conditions. The extent of P release and its effects on P concentration in the overlying water were affected by factors such as light, temperature and dissolved oxygen. The organism biomass increased as temperature increased, which was beneficial for P release. Dissolved total phosphorus (DTP) and dissolved inorganic phosphorus (DIP) concentrations in the corresponding overlying water were mainly controlled by light. P release occurred in both aerobic and anoxic conditions with the presence of organisms. However in the presence of light , P release in an anoxic environment was much greater than in an aerobic environment, which may stimulate alga bloom and result in an increase in total phosphorus (TP) in the overlying water. This information aids the understanding of P biogeochemical cycling at the interface and its relationship with eutrophication in shallow lakes.
Tyrosine - Effects on catecholamine release
NASA Technical Reports Server (NTRS)
Acworth, Ian N.; During, Matthew J.; Wurtman, Richard J.
1988-01-01
Tyrosine administration elevates striatal levels of dopamine metabolites in animals given treatments that accelerate nigrostriatal firing, but not in untreated rats. We examined the possibility that the amino acid might actually enhance dopamine release in untreated animals, but that the technique of measuring striatal dopamine metabolism was too insensitive to demonstrate such an effect. Dopamine release was assessed directly, using brain microdialysis of striatal extracellular fluid. Tyrosine administration (50-200 mg/kg IP) did indeed cause a dose related increase in extracellular fluid dopamine levels with minor elevations in levels of DOPAC and HVA, its major metabolites, which were not dose-related. The rise in dopamine was short-lived, suggesting that receptor-mediated feedback mechanisms responded to the increased dopamine release by diminishing neuronal firing or sensitivity to tyrosine. These observations indicate that measurement of changes in striatal DOPAC and HVA, if negative, need not rule out increases in nigrostriatal dopamine release.
Cholinergic Interneurons Underlie Spontaneous Dopamine Release in Nucleus Accumbens
2017-01-01
The release of dopamine from terminals in the NAc is regulated by a number of factors, including voltage-gated ion channels, D2-autoreceptors, and nAChRs. Cholinergic interneurons (CINs) drive dopamine release through activation of nAChRs on dopamine terminals. Using cyclic voltammetry in mouse brain slices, nAChR-dependent spontaneous dopamine transients and the mechanisms underlying the origin were examined in the NAc. Spontaneous events were infrequent (0.3 per minute), but the rate and amplitude were increased after blocking Kv channels with 4-aminopyridine. Although the firing frequency of CINs was increased by blocking glutamate reuptake with TBOA and the Sk blocker apamin, only 4-aminopyridine increased the frequency of dopamine transients. In contrast, inhibition of CIN firing with the μ/δ selective opioid [Met5]enkephalin (1 μm) decreased spontaneous dopamine transients. Cocaine increased the rate and amplitude of dopamine transients, suggesting that the activity of the dopamine transporter limits the detection of these events. In the presence of cocaine, the rate of spontaneous dopamine transients was further increased after blocking D2-autoreceptors. Blockade of muscarinic receptors had no effect on evoked dopamine release, suggesting that feedback inhibition of acetylcholine release was not involved. Thus, although spontaneous dopamine transients are reliant on nAChRs, the frequency was not strictly governed by the activity of CINs. The increase in frequency of spontaneous dopamine transients induced by cocaine was not due to an increase in cholinergic tone and is likely a product of an increase in detection resulting from decreased dopamine reuptake. SIGNIFICANCE STATEMENT The actions of dopamine in the NAc are thought to be responsible for endogenous reward and the reinforcing properties of drugs of abuse, such as psychostimulants. The present work examines the mechanisms underlying nAChR-induced spontaneous dopamine release. This study demonstrates that spontaneous dopamine release is (1) dependent of the activation of nicotinic receptors, (2) independent on the spontaneous activity of cholinergic interneurons, and (3) that cocaine increased the detection of dopamine transients by prolonging the presence and increasing the diffusion of dopamine in the extracellular space. The release of acetylcholine is therefore responsible for spontaneous dopamine transients, and cocaine augments dopamine tone without altering activity of cholinergic interneurons. PMID:28115487
Satoh, Eiki; Tada, Yuichi; Matsuhisa, Fumikazu
2011-11-01
Our previous study showed that acute restraint stress enhances depolarization-induced increases in intrasynaptosomal free calcium (Ca(2+)) concentration ([Ca(2+)](i)) and Ca(2+)-dependent glutamate release in mouse cerebrocortical nerve terminals (synaptosomes). In the present study, we investigated the effects of chronic stress on [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes from mice. Male ddY strain mice were randomly assigned to one of two experimental groups: control group and chronic stressed group. Mice in the chronic stressed group were subjected to immobilization stress for 2 hours daily for a period of 21 days. [Ca(2+)](i) and glutamate release in cerebrocortical synaptosomes isolated from the mice were determined by fura-2 fluorescence assay and enzyme-linked fluorometric assay, respectively. Chronic stress caused a significant increase in resting [Ca(2+)](i) and significantly enhanced the ability of the depolarizing agents K(+) and 4-aminopyridine (4-AP) to increase [Ca(2+)](i). It also brought about a significant increase in spontaneous (unstimulated) glutamate release and significantly enhanced K(+)- and 4-AP-evoked Ca(2+)-dependent glutamate release. Synaptosomes were more sensitive to the depolarizing agents at lower concentrations following chronic stress than after acute stress. The pretreatment of synaptosomes with a combination of omega-agatoxin IVA (a P-type Ca(2+) channel blocker) and omega-conotoxin GVIA (an N-type Ca(2+) channel blocker) completely suppressed the enhancements of [Ca(2+)](i) and Ca(2+)-dependent glutamate release in chronic stressed mice. These results indicate that chronic stress enhances depolarization-evoked glutamate release by increasing [Ca(2+)](i) via stimulation of Ca(2+) entry through P- and N-type Ca(2+) channels, and that chronic stress increases the sensitivity to depolarizing agents.
Can hi-jacking hypoxia inhibit extracellular vesicles in cancer?
Lowry, Michelle C; O'Driscoll, Lorraine
2018-06-01
Increasing evidence indicates that extracellular vesicles (EVs) are key players in undesirable cell-cell communication in cancer. However, the release of EVs is not unique to cancer cells; normal cells release EVs to perform physiological roles. Thus, selective inhibition of EV release from cancer cells is desirable. Hypoxia contributes to tumour development and aggressiveness. EV quantities and thus undesirable communications are substantially increased in hypoxia. Targeting hypoxia could selectively inhibit EV release from tumour cells without disturbing physiologically relevant EVs. The unfavourable association between hypoxia and EV release is evident in multiple tumour types; therefore, targeting hypoxia could have a broad therapeutic benefit. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alati, Rosa; Longo, Marie; Spittal, Matthew J; Boyle, Frances M; Williams, Gail M; Lennox, Nicholas G
2016-01-01
Background The world prison population is large and growing. Poor health outcomes after release from prison are common, but few programmes to improve health outcomes for ex-prisoners have been rigorously evaluated. The aim of this study was to evaluate the impact of individualised case management on contact with health services during the first 6 months post-release. Methods Single-blinded, randomised, controlled trial. Baseline assessment with N=1325 adult prisoners in Queensland, Australia, within 6 weeks of expected release; follow-up interviews 1, 3 and 6 months post-release. The intervention consisted of provision of a personalised booklet (‘Passport’) at the time of release, plus up to four brief telephone contacts in the first 4 weeks post-release. Results Of 1179 eligible participants, 1003 (85%) completed ≥1 follow-up interview. In intention-to-treat analyses, 53% of the intervention group and 41% of the control group reported contacting a general practitioner (GP) at 1 month post-release (difference=12%, 95% CI 5% to 19%). Similar effects were observed for GP contact at 3 months (difference=9%, 95% CI 2% to 16%) and 6 months (difference=8%, 95% CI 1% to 15%), and for mental health (MH) service contact at 6 months post release (difference=8%, 95% CI 3% to 14%). Conclusions Individualised case management in the month after release from prison increases usage of primary care and MH services in adult ex-prisoners for at least 6 months post-release. Given the poor health profile of ex-prisoners, there remains an urgent need to develop and rigorously evaluate interventions to increase health service contact in this profoundly marginalised population. Trial registration number ACTRN12608000232336. PMID:26787201
Calcium regulates vesicle replenishment at the cone ribbon synapse
Babai, Norbert; Bartoletti, Theodore M.; Thoreson, Wallace B.
2010-01-01
Cones release glutamate-filled vesicles continuously in darkness and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording post-synaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady-state between vesicle release and replenishment using trains of test pulses. Increasing Ca2+ currents (ICa) by changing the test step from −30 to −10 mV increased replenishment. Lengthening −30 mV test pulses to match the Ca2+ influx during 25 ms test pulses to −10 mV produced similar replenishment rates. Reducing Ca2+ driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of ICa by nifedipine accelerated replenishment. Increasing [Ca2+]i by flash photolysis of caged Ca2+ also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca2+ buffer of 0.5 mM EGTA rather than 5 mM EGTA, and diminished by 1 mM BAPTA. This suggests that although release and replenishment and release exhibited similar Ca2+-dependencies, release sites are <200 nm from Ca2+ channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca2+ influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse. PMID:21106825
Richardson, I.W.; Szerb, J.C.
1974-01-01
1 In order to establish the origin of the increased efflux of radioactivity caused by electrical stimulation of cerebral cortical slices which had been incubated with [3H]-choline, labelled choline and acetylcholine (ACh) collected by superfusion were separated by gold precipitation. 2 In the presence of physostigmine electrical stimulation (1 Hz, 10 min) increased the release of only [3H]-ACh which was greatly enhanced by the addition of atropine. 3 Continuous stimulation in the presence of physostigmine resulted in an evoked release of [3H]-ACh which declined asymptotically. This evoked release appeared to follow first-order kinetics with a rate constant which remained stable over the course of prolonged stimulation. 4 The rate constant for the evoked release of [3H]-ACh with 1 Hz stimulation was three times greater in the presence of physostigmine and atropine than in the presence of physostigmine alone, while the size of the store from which [3H]-ACh was released was nearly identical under these two conditions. 5 In the absence of physostigmine and atropine, stimulation caused the appearance of only [3H]-choline in the samples. 6 Reduction of [3H]-ACh stores before the application of physostigmine resulted in a reduced evoked release of total radioactivity, both in the absence or presence of physostigmine and atropine, and decreased the evoked release of [3H]-ACh without affecting the release of [3H]-choline. 7 Results suggest that electrical stimulation of cortical slices which had been incubated with [3H]-choline causes the release of only [3H]-ACh, both in the presence or absence of an anticholinesterase. The evoked increase in the efflux of total radioactivity is therefore a good measure of the release of [3H]-ACh. PMID:4455326
K(+)- and temperature-evoked taurine efflux from hypothalamic astrocytes.
Tigges, G A; Philibert, R A; Dutton, G R
1990-10-30
Hypothalamic astrocytes in culture released taurine, a suspected inhibitory amino acid neurotransmitter/neuromodulator/osmoregulator, in response to isoosmotically increasing extracellular K+ in a dose-dependent fashion. In the absence of added Ca2+, basal release levels rose to approach those obtained after exposure to 60 mM K+ in the presence of 2.5 mM Ca2+, and were only partially lowered by the addition of 10 mM Mg2+. Stimulation with K+ (60 mM) did not further increase taurine efflux above the high basal levels seen in the absence of Ca2+. Under standard conditions complete replacement of Na+ with choline Cl had little effect on basal taurine release, but reduced K(+)-evoked (60 mM) efflux by 60%. The temperature dependence of the basal levels of taurine released from hypothalamic astrocytes was similar to that seen for cultured cerebellar astrocytes and neurons over the range 5-50 degrees C. Taurine release increased from 5 to 15 degrees C, remained constant between 15 and 33 degrees C, decreased between 33 and 37 degrees C and increased thereafter. The infection point of increased basal taurine release seen around 37 degrees C (most prominent in astrocytes), may be of physiological significance. Results presented also show that the ion (Na+, Ca2+ and K+) sensitivities of taurine efflux for cultured hypothalamic astrocytes are similar to those previously reported for cultured astrocytes from the cerebellum.
Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.
Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D
2003-03-01
High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.
Tang, Shi-shan; Yang, Wan-qin; Wang, Hai-peng; Xiong, Li; Nie, Fu-yu; Xu, Shen-feng
2015-10-01
In this study, a buried bag experiment was used to investigate mass loss and C, N and P release patterns of fine (≤2 mm), medium (2-5 mm) and coarse (≥ 5 mm) roots of 3 subalpine dominant trees, i. e., Betula albosinensis, Abies faxoniana and Picea asperata in the growing and non-growing seasons. In general, the remaining mass of B. albosinensis was lower than that of A. faxoniana and P. asperata. In addition, root remaining mass increased with the increase of root diameter for the same species. The mass losing rate in the non-growing season was 52.1%-64.4% of a year. The C release of B. albosinensis was the highest, but that of A. faxoniana was the lowest. Also, C release decreased with the increase of root diameter. N of A. faxoniana and P. asperata were enriched in the non-growing season but released in the growing season. However, the opposite pattern was found for B. albosinensis. During the non-growing season, the amount of N enrichment increased with the increase of root diameter. The P release of 3 species was characterized as the enrichment-release pattern. P enrichment of A. faxoniana was significantly greater than that of P. asperata and B. albosinensis. Nevertheless, no significant difference was observed between diameter sizes. In conclusion, diameter size had significant effect on root decomposition in the subalpine forests of western Sichuan, and the diameter effect was dependent on tree species and season.
Kato, M; Ishida, K; Chuma, T; Abe, K; Shigenaga, T; Taguchi, K; Miyatake, T
2001-04-20
We examined the effects of beta-phenylethylamine on striatal acetylcholine release in freely moving rats using in vivo microdialysis. beta-Phenylethylamine at 12.5 mg/kg, i.p. did not affect acetylcholine release in the striatum, whereas 25 and 50 mg/kg, i.p. immediately induced an increase in acetylcholine release in the striatum at 15-45 min. This increase following intraperitoneal administration of beta-phenylethylamine (25 mg/kg) was not affected by locally applied SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, 10 microM), a dopamine D(1) receptor antagonist, nor by raclopride (10 microM), a dopamine D(2) receptor antagonist. The increased release of acetylcholine induced by beta-phenylethylamine was suppressed by local infusion of tetrodotoxin (1 microM). In contrast, the extracellular acetylcholine level in the striatum was significantly decreased by local application of beta-phenylethylamine (10 and 100 microM) in the striatum via a microdialysis probe. The decrease was completely blocked by local co-application of raclopride (10 microM). The beta-phenylethylamine-induced decrease in striatal acetylcholine release was not affected by co-perfusion with SCH-23390 (10 microM). These results indicate that systemic administration of beta-phenylethylamine increases acetylcholine release, whereas locally applied beta-phenylethylamine decreases striatal acetylcholine release in freely moving rats. Furthermore, the dopaminergic system, through the dopamine D(2) receptor, is involved in the locally applied beta-phenylethylamine-induced decrease in acetylcholine in the striatum.
Thomas, E G; Spittal, M J; Heffernan, E B; Taxman, F S; Alati, R; Kinner, S A
2016-02-01
Understanding individual-level changes in mental health status after prison release is crucial to providing targeted and effective mental health care to ex-prisoners. We aimed to describe trajectories of psychological distress following prison discharge and compare these trajectories with mental health service use in the community. The Kessler Psychological Distress Scale (K10) was administered to 1216 sentenced adult prisoners in Queensland, Australia, before prison release and approximately 1, 3 and 6 months after release. We used group-based trajectory modeling to identify K10 trajectories after release. Contact with community mental health services in the year following release was assessed via data linkage. We identified five trajectory groups, representing consistently low (51.1% of the cohort), consistently moderate (29.8%), high increasing (11.6%), high declining (5.5%) and consistently very high (1.9%) psychological distress. Mood disorder, anxiety disorder, history of self-harm and risky drug use were risk factors for the high increasing, very high and high declining trajectory groups. Women were over-represented in the high increasing and high declining groups, but men were at higher risk of very high psychological distress. Within the high increasing and very high groups, 25% of participants accessed community mental health services in the first year post-release, for a median of 4.4 contact hours. For the majority of prisoners with high to very high psychological distress, distress persists after release. However, contact with mental health services in the community appears low. Further research is required to understand barriers to mental health service access among ex-prisoners.
The spontaneous and evoked release of spermine from rat brain in vitro.
Harman, R. J.; Shaw, G. G.
1981-01-01
1 The efflux of previously accumulated [3H]-spermine from brain slices was measured using a continuous perfusion system. The spontaneous efflux was biphasic, consisting of an initial rapid efflux followed by a much slower release. 2 The slices were depolarized by the addition to the medium of high potassium concentrations, ouabain or veratrine. 3 At concentrations greater than 30 mM, potassium evoked a striking increase in the release of [3H]-spermine. Following uptake in the presence of 5.7 x 10(-9)M [3H]-spermine, K+-evoked release was dependent on the presence of calcium ions. Release of spermine after uptake at 5.6 x 10(-8)M or 5.0 x 10(-7)M was not calcium-dependent. 4 The calcium-dependent, K+-stimulated release of spermine was inhibited in the presence of diphenylhydantoin (5 x 10(-5)M) or ruthenium red (10(-5)M). 5 Following uptake of 5.7 x 10(-9)M [3H]-spermine in a sodium-free medium, the calcium-dependent, K+-stimulated release was significantly inhibited. 5 Ouabain (10(-4)M) caused a large but calcium-independent increase in the efflux of [3H]-spermine. 7 Veratrine-induced release was less substantial but was increased in a calcium-free medium. Release evoked by veratrine was abolished in the absence of sodium. 8 These results are discussed with respect to a possible 'neurotransmitter' or 'neuromodulator' role for spermine. PMID:6169383
NASA Technical Reports Server (NTRS)
Sawyer, S. J.; Norvell, S. M.; Ponik, S. M.; Pavalko, F. M.
2001-01-01
Disruption of microfilaments in human umbilical vein endothelial cells (HUVEC) with cytochalasin D (cytD) or latrunculin A (latA) resulted in a 3.3- to 5.7-fold increase in total synthesis of prostaglandin E(2) (PGE(2)) and a 3.4- to 6.5-fold increase in prostacyclin (PGI(2)) compared with control cells. Disruption of the microtubule network with nocodazole or colchicine increased synthesis of PGE(2) 1.7- to 1.9-fold and PGI(2) 1.9- to 2.0-fold compared with control cells. Interestingly, however, increased release of PGE(2) and PGI(2) from HUVEC into the media occurred only when microfilaments were disrupted. CytD treatment resulted in 6.7-fold more PGE(2) and 3.8-fold more PGI(2) released from HUVEC compared with control cells; latA treatment resulted in 17.7-fold more PGE(2) and 11.2-fold more PGI(2) released compared with control cells. Both increased synthesis and release of prostaglandins in response to all drug treatments were completely inhibited by NS-398, a specific inhibitor of cyclooxygenase-2 (COX-2). Disruption of either microfilaments using cytD or latA or of microtubules using nocodazole or colchicine resulted in a significant increase in COX-2 protein levels, suggesting that the increased synthesis of prostaglandins in response to drug treatments may result from increased activity of COX-2. These results, together with studies demonstrating a vasoprotective role for prostaglandins, suggest that the cytoskeleton plays an important role in maintenance of endothelial barrier function by regulating prostaglandin synthesis and release from HUVEC.
Mechanisms determining cholinergic neural responses in airways of young and mature rabbits.
Larsen, Gary L; Loader, Joan; Nguyen, Dee Dee; Fratelli, Cori; Dakhama, Azzeddine; Colasurdo, Giuseppe N
2004-08-01
Neural pathways help control airway caliber and responsiveness. Yet little is known of how neural control changes as a function of development. In rabbits, we found electrical field stimulation (EFS) of airway nerves led to more marked contractile responses in 2- vs. 13-week-old animals. This enhanced response to EFS may be due to prejunctional, junctional, and/or postjunctional neural mechanisms. We assessed these mechanisms in airways of 2- and 13-week-old rabbits. The contractile responses to methacholine did not differ in the groups, suggesting postjunctional neural events are not primarily responsible for differing responses to EFS. To address junctional events, acetylcholinesterase (AChE) was measured (spectrophotometry). AChE was elevated in 2-week-olds. However, this should lead to less and not greater responses. Prejunctionally, EFS-induced acetylcholine (ACh) release was assessed by HPLC. Airways of 2-week-old rabbits released significantly more ACh than airways from mature rabbits. Choline acetyltransferase, a marker of cholinergic nerves, was not different between groups, suggesting that more ACh release in young rabbits was not due to increased nerve density. ACh release in the presence of polyarginine increased significantly in both groups, supporting the presence of functional muscarinic autoreceptors (M2) at both ages. Because substance P (SP) increases release of ACh, SP was measured by ELISA. This neuropeptide was significantly elevated in airways of younger rabbits. Nerve growth factor (NGF) increased SP and was also significantly increased in airways from younger rabbits. This work suggests that increases in EFS-induced responsiveness in young rabbits are likely due to prejunctional events with enhanced release of ACh. Increases in NGF and SP early in life may contribute to this increased responsiveness. Copyright 2004 Wiley-Liss, Inc.
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning
2015-10-01
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.
Hu, Xingyun; Yue, Yuyan; Peng, Xianjia
2018-05-01
Batch experiments were performed to derive the rate laws for the proton-promoted dissolution of the main vanadium (III, IV and V) oxides at pH 3.1-10.0. The release rates of vanadium are closely related to the aqueous pH, and several obvious differences were observed in the release behavior of vanadium from the dissolution of V 2 O 5 and vanadium(III, IV) oxides. In the first 2hr, the release rates of vanadium from V 2 O 3 were r=1.14·([H + ]) 0.269 at pH 3.0-6.0 and r=0.016·([H + ]) -0.048 at pH 6.0-10.0; the release rates from VO 2 were r=0.362·([H + ]) 0.129 at pH 3.0-6.0 and r=0.017·([H + ]) -0.097 at pH 6.0-10.0; and the release rates from V 2 O 5 were r=0.131·([H + ]) -0.104 at pH 3.1-10.0. The release rates of vanadium from the three oxides increased with increasing temperature, and the effect of temperature was different at pH 3.8, pH 6.0 and pH 7.7. The activation energies of vanadium (III, IV and V) oxides (33.4-87.5kJ/mol) were determined at pH 3.8, pH6.0 and pH 7.7, showing that the release of vanadium from dissolution of vanadium oxides follows a surface-controlled reaction mechanism. The release rates of vanadium increased with increasing vanadium oxides dose, albeit not proportionally. This study, as part of a broader study of the release behavior of vanadium, can help to elucidate the pollution problem of vanadium and to clarify the fate of vanadium in the environment. Copyright © 2017. Published by Elsevier B.V.
[Neuroendocrine mechanisms of puberty onset].
Teinturier, C
2002-10-01
An increase in pulsatile release of GnRH is essential for the onset of puberty. However, the mechanism controlling the pubertal increase in GnRH release is still unclear. The GnRH neurosecretory system is already active during the neonatal period but subsequently enters a dormant state by central inhibition in the juvenile period. When this central inhibition is removed or diminished, an increase in GnRH release occurs with increase in synthesis and release of gonadotropins and gonadal steroids, followed by the appearance of secondary sexual characteristics. Recent studies suggest that disinhibition of GnRH neurons from GABA (gamma-aminobutyric acid) appears to be a critical factor in female rhesus monkey. After central inhibition is removed, increases in stimulatory input from glutamatergic neurons as well as new stimulatory input from norepinephrine and NPY neurons and inhibitory input from beta endorphin neurons appear to control pulsatile GnRH release as well as gonadal steroids. Nonetheless, the most important question still remains: what determines the timing to remove central inhibition? Because many genes are turned on or turned off to establish a complex series of events occurring during puberty, the timing of puberty must be regulated by a master gene or genes, as a part of developmental events.
Fenspiride inhibits histamine-induced responses in a lung epithelial cell line.
Quartulli, F; Pinelli, E; Broué-Chabbert, A; Gossart, S; Girard, V; Pipy, B
1998-05-08
Using the human lung epithelial WI26VA4 cell line, we investigated the capacity of fenspiride, an anti-inflammatory drug with anti-bronchoconstrictor properties, to interfere with histamine-induced intracellular Ca2+ increase and eicosanoid formation. Histamine and a histamine H1 receptor agonist elicited a rapid and transient intracellular Ca2+ increase (0-60 s) in fluo 3-loaded WI26VA4 cells. This response was antagonized by the histamine H1 receptor antagonist, diphenhydramine, the histamine H2 receptor antagonist, cimetidine, having no effect. Fenspiride (10(-7)-10(-5) M) inhibited the histamine H1 receptor-induced Ca2+ increase. In addition, histamine induced a biphasic increase in arachidonic acid release. The initial rise (0-30 s), a rapid and transient arachidonic acid release, was responsible for the histamine-induced intracellular Ca2+ increase. In the second phase release (15-60 min), a sustained arachidonic acid release appeared to be associated with the formation of cyclooxygenase and lipoxygenase metabolites. Fenspiride (10(-5) M) abolished both phases of histamine-induced arachidonic acid release. These results suggest that anti-inflammatory and antibronchoconstrictor properties of fenspiride may result from the inhibition of these effects of histamine.
Methotrexate-loaded porous polymeric adsorbents as oral sustained release formulations.
Wang, Xiuyan; Yan, Husheng
2017-09-01
Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents. In vivo pharmacokinetic study showed that the maximal plasma methotrexate concentrations after oral administration of free methotrexate and methotrexate-loaded DA201-H (a commercial porous polymeric adsorbent) to rats occurred at 40min and 5h post-dose, respectively; and the plasma concentrations decreased to 22% after 5h for free methotrexate and 44% after 24h for methotrexate-loaded DA201-H, respectively. The load of methotrexate into the porous polymeric adsorbents not only resulted in obvious sustained release, but also enhanced the oral bioavailability of methotrexate. The areas under the curve, AUC 0-24 and AUC 0-inf , for methotrexate-loaded DA201-H increased 3.3 and 7.7 times, respectively, compared to those for free methotrexate. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thompson, Brianna C.; Chen, Jun; Moulton, Simon E.; Wallace, Gordon G.
2010-04-01
An aligned CNT array membrane electrode has been used as a nanostructured supporting platform for polypyrrole (PPy) films, exhibiting significant improvement in the controlled release of neurotrophin. In terms of linearity of release, stimulated to unstimulated control of NT-3 release and increased mass and % release of incorporated NT-3, the nanostructured material performed more favourably than the flat PPy film.
McLatchie, Linda M; Fry, Christopher H
2015-06-01
To quantify the amount of ATP released from freshly isolated bladder urothelial cells, study its control by intracellular and extracellular calcium and identify the pathways responsible for its release. Urothelial cells were isolated from male guinea-pig urinary bladders and stimulated to release ATP by imposition of drag forces by repeated pipetting. ATP was measured using a luciferin-luciferase assay and the effects of modifying internal and external calcium concentration and blockers of potential release pathways studied. Freshly isolated guinea-pig urothelial cells released ATP at a mean (sem) rate of 1.9 (0.1) pmoles/mm(2) cell membrane, corresponding to about 700 pmoles/g of tissue, and about half [49 (6)%, n = 9) of the available cell ATP. This release was reduced to a mean (sem) of 0.46 (0.08) pmoles/mm(2) (160 pmoles/g) with 1.8 mm external calcium, and was increased about two-fold by increasing intracellular calcium. The release from umbrella cells was not significantly different from a mixed intermediate and basal cell population, suggesting that all three groups of cells release a similar amount of ATP per unit area. ATP release was reduced by ≈ 50% by agents that block pannexin and connexin hemichannels. It is suggested that the remainder may involve vesicular release. A significant fraction of cellular ATP is released from isolated urothelial cells by imposing drag forces that cause minimal loss of cell viability. This release involves multiple release pathways, including hemichannels and vesicular release. © 2014 The Authors BJU International © 2014 BJU International.
Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.
Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto
2006-11-06
Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak Hossain, Muhammad; Suzuki, Tadahiko; United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193
2006-11-15
In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peakmore » effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 {mu}M tetrodotoxin, a Na{sup +} blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 {mu}M nimodipine, an L-type Ca{sup ++} channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I and the two type II pyrethroids indicating that dopaminergic circuitry, striatal DA in particular, may be a pyrethroid target and that pyrethroids may be acting on striatal DA by multiple mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.; Cubeddu, L.
1986-03-05
A is thought to exert its stimulant effects by releasing DA from a newly synthesized transmitter pool. This hypothesis was evaluated directly by measuring the basal efflux and electrically-evoked release of endogenous DA and dihydroxyphenylacetic acid (DOPAC). In striatal slices from reserpine-treated rabbits A increased DA efflux, reduced DOPAC efflux, and inhibited electrically-evoked /sup 3/H-ACh release in a concentration-dependent manner. These effects could not be mimicked by inhibition of neuronal uptake or MAO, but were blocked by inhibition of DA synthesis or neuronal uptake, and were potentiated by inhibition of MAO. In slices with intact vesicular transmitter stores A inducedmore » DA efflux was 2-fold greater than that seen in slices having no vesicular stores. Inhibition of DA synthesis reduced A-induced DA efflux by 60%, but had little effect on the ability of A to inhibit /sup 3/H-ACh release. A also increased the electrical stimulation-evoked overflow of DA (an effect which was attenuated slightly by synthesis inhibition), and potently inhibited DOPAC overflow. These results suggest that: 1) A facilitates efflux of axoplasmic DA by an accelerated exchange diffusion mechanism. The releasable axoplasmic pool is derived from newly synthesized and vesicular transmitter pools; 2) postsynaptic indices of transmitter release may be misleading; and 3) A increases electrically-evoked DA release possibly by inhibiting neuronal uptake.« less
Trinchera, Alessandra; Allegra, Maria; Rea, Elvira; Roccuzzo, Giancarlo; Rinaldi, Simona; Sequi, Paolo; Intrigliolo, Francesco
2011-10-01
A glass-matrix fertiliser (GMF), a by-product from ceramic industries, releases nutrients only in the presence of complexing solutions, similar to those exuded by plant roots. This ensures a slow release of nutrients over time, limiting the risk of their loss in the environment. With the aim to improve fertiliser performance, GMF was mixed with vine vinasse (DVV), pastazzo (a by-product of the citrus processing industry, PAS) or green compost (COMP) and nutrient release was evaluated by citric and chloridric acid extraction, at different concentrations. Theoretical and actual nutrients release were compared to evaluate possible synergistic effects due to the organic component added to the mineral fertiliser: phosphorus (+7.1%), K (+4.8%), Fe (+8.5%) and Zn (+5.5%) were released more efficiently by 2% citric acid from GMF + DVV, while Ca availability was increased (+5.3%) by 2% citric acid from GMF + PAS mixture. Both DVV and COMP increased by 12-18% the Fe release from GFM matrix. Organic biomasses added to GMF increased the release of some macro and micronutrients through an 'activation effect', which suggests the employment of these organo-mineral fertilisers also in short-cycle crops production. Moreover, the re-use of some agro-industrial organic residues gives another 'adding value' to this novel organo-mineral fertilfertilisers. Copyright © 2011 Society of Chemical Industry.
Sintering of wax for controlling release from pellets.
Singh, Reena; Poddar, S S; Chivate, Amit
2007-09-14
The purpose of the present study was to investigate incorporation of hydrophobic (ie, waxy) material into pellets using a thermal sintering technique and to evaluate the pellets in vitro for controlled release. Pellets prepared by extrusion-spheronization technology were formulated with a water-soluble drug, microcrystalline cellulose, and carnauba wax. Powdered carnauba wax (4%-20%) prepared by grinding or by emulsification was studied with an attempt to retard the drug release. The inclusion of ground or emulsified carnauba wax did not sustain the release of theophylline for more than 3 hours. Matrix pellets of theophylline prepared with various concentrations of carnauba wax were sintered thermally at various times and temperatures. In vitro drug release profiles indicated an increase in drug release retardation with increasing carnauba wax concentration. Pellets prepared with ground wax showed a higher standard deviation than did those prepared with emulsified wax. There was incomplete release at the end of 12 hours for pellets prepared with 20% ground or emulsified wax. The sintering temperature and duration were optimized to allow for a sustained release lasting at least 12 hours. The optimized temperature and duration were found to be 100 degrees C and 140 seconds, respectively. The sintered pellets had a higher hydrophobicity than did the unsintered pellets. Scanning electron micrographs indicated that the carnauba wax moved internally, thereby increasing the surface area of wax within the pellets.
Dynamics of shear-induced ATP release from red blood cells.
Wan, Jiandi; Ristenpart, William D; Stone, Howard A
2008-10-28
Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.
[PLA-O-CMC nanoparticles: HGF loading and delivery behaviors in vitro].
Li, Zhifeng; Chen, Zhong; Chang, Ren'an
2011-04-01
This paper is aimed to observe the hepatocyte growth factor (HGF) loading and delivery ability of polylactic acid and oxygen carboxymethylated chitosan copolyer nanoparticles (PLA-O-CMC NPs). We prepared PLA-O-CMC NPs loaded with HGF by ultrasound in combination with magnetic stirring method. The NPs were characterized by transmission electron microscopy, embedding ratio; drug loading and drug delivery behaviors were observed by ELISA. The characteristics of PLA-O-CMC NPs loaded with HGF showed that the mean size was 139. 82 nm, polydispersity was 0.108, maximal HGF-embedding ratio was 76. 32%. The cumulative HGF release gradually increased in the first 24 hours in vitro, with sharp increasing in the first 7 hours, and moderate and steady increasing in the following 17 hours. The HGF had a burst release in the first 24 hours, and in this process the released HGF took up 36.7% of the whole release. From the second day,the HGF release decreased obviously, while it kept on releasing steadily (45-55 ng/d) for quite long time up to 30 days. The experiment proved that PLA-O-CMC NPs is a favourable carrier of HGF. PLA-O-CMC NPs loaded with HGF could rapidly release HGF in vitro. The released HGF reached the effective drug concentration and maintained the certain effective drug concentration for a long time.
Functional significance and control of release of pulmonary surfactant in the lizard lung.
Wood, P G; Daniels, C B; Orgeig, S
1995-10-01
The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern.
Berchane, N S; Carson, K H; Rice-Ficht, A C; Andrews, M J
2007-06-07
The need to tailor release rate profiles from polymeric microspheres is a significant problem. Microsphere size, which has a significant effect on drug release rate, can potentially be varied to design a controlled drug delivery system with desired release profile. In this work the effects of microspheres mean diameter, polydispersity, and polymer degradation on drug release rate from poly(lactide-co-glycolide) (PLG) microspheres are described. Piroxicam containing PLG microspheres were fabricated at 20% loading, and at three different impeller speeds. A portion of the microspheres was then sieved giving five different size distributions. In vitro release kinetics were determined for each preparation. Based on these experimental results, a suitable mathematical theory has been developed that incorporates the effect of microsphere size distribution and polymer degradation on drug release. We show from in vitro release experiments that microsphere size has a significant effect on drug release rate. The initial release rate decreased with an increase in microsphere size. In addition, the release profile changed from first order to concave-upward (sigmoidal) as the microsphere size was increased. The mathematical model gave a good fit to the experimental release data. For highly polydisperse populations (polydispersity parameter b<3), incorporating the microsphere size distribution into the mathematical model gave a better fit to the experimental results than using the representative mean diameter. The validated mathematical model can be used to predict small-molecule drug release from PLG microsphere populations.
Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali
2013-11-01
The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Release of major ions during rigor mortis development in kid Longissimus dorsi muscle.
Feidt, C; Brun-Bellut, J
1999-01-01
Ionic strength plays an important role in post mortem muscle changes. Its increase is due to ion release during the development of rigor mortis. Twelve alpine kids were used to study the effects of chilling and meat pH on ion release. Free ions were measured in Longissimus dorsi muscle by capillary electrophoresis after water extraction. All free ion concentrations increased after death, but there were differences between ions. Temperature was not a factor affecting ion release in contrast to ultimate pH value. Three release mechanisms are believed to coexist: a passive binding to proteins, which stops as pH decreases, an active segregation which stops as ATP disappears and the production of metabolites due to anaerobic glycolysis.
Wang, Yan; Wang, Anqi; Wang, Chunxin; Cui, Bo; Sun, Changjiao; Zhao, Xiang; Zeng, Zhanghua; Shen, Yue; Gao, Fei; Liu, Guoqiang; Cui, Haixin
2017-10-06
Pesticide slow-release formulations provide a way to increase the efficiency of active components by reducing the amount of pesticide that needs to be applied. Slow-release formulations also increase the stability and prolong the control effect of photosensitive pesticides. Surfactants are an indispensable part of pesticide formulations, and the choice of surfactant can strongly affect formulation performance. In this study, emamectin-benzoate (EMB) slow-release microspheres were prepared by the microemulsion polymerization method. We explored the effect of different surfactants on the particle size and dispersity of EMB in slow-release microspheres. The results indicated that the samples had uniform spherical shapes with an average diameter of 320.5 ±5.24 nm and good dispersity in the optimal formulation with the polymeric stabilizer polyvinyl alcohol (PVA) and composite non-ionic surfactant polyoxyethylene castor oil (EL-40). The optimal EMB pesticide slow-release microspheres had excellent anti-photolysis performance, stability, controlled release properties, and good leaf distribution. These results demonstrated that EMB slow-release microspheres are an attractive candidate for improving pesticide efficacy and prolonging the control effect of EMB in the environment.
Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation.
Podaru, George; Ogden, Saralyn; Baxter, Amanda; Shrestha, Tej; Ren, Shenqiang; Thapa, Prem; Dani, Raj Kumar; Wang, Hongwang; Basel, Matthew T; Prakash, Punit; Bossmann, Stefan H; Chikan, Viktor
2014-10-09
Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.
On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release.
Dang, Xugang; Yang, Mao; Shan, Zhihua; Mansouri, Shahnaz; May, Bee K; Chen, Xiaodong; Chen, Hui; Woo, Meng Wai
2017-05-01
Spray-dried gelatin/oxidized corn starch (G/OCS) microcapsules were produced for drug release application. The prepared microcapsules were characterized through a scanning electron microscope (SEM) picture and thermogravimetric analysis (TGA). The swelling characteristics of the G/OCS microcapsules and release properties of vitamin C were then investigated. The results from structural analysis indicated that the presence of miscibility and compatibility between oxidized corn starch and gelatin, and exhibits high thermal stability up to 326°C. The swelling of G/OCS microcapsules increased with increasing pH and reduced with decreasing ionic strength, attributed to the cross-linking between gelatin and oxidized corn starch, ionization of functional groups. Vitamin C release characteristic revealed controlled release behavior in the first 3h of contact with an aqueous medium. This release behavior was independent of the swelling behavior indicating the potential of the encapsulating matrix to produce controlled release across a spectrum of pH environment. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garg, L.C.; McArdle, S.; Crews, F.T.
The release of inositol phosphates (IP) from phosphoinositides (PI) by carbachol was studied in the tissue slices from cortex (C), outer medulla (OM) and inner medulla (IM) of rabbit kidneys. The method involved the incubation of the slices with (/sup 3/H)inositol for its incorporation into the PI and measurement of the release of IP in presence of lithium which prevents dephosphorylation of IP. The results of (/sup 3/H)IP formation are expressed as % of total (/sup 3/H)inositol incorporation in the tissue. No significant effect of carbachol was found on the release of IP in the C. The drug produced amore » 48% increase in IP release in the OM. In the IM, carbachol produced a concentration dependent increase in IP release with a maximum of 772% at 1 mM. The release of IP in the IM by 1 mM carbachol was completely blocked by 1 ..mu..M atropine. Our results indicate that IP release by carbachol is due to activation of muscarinic receptors in the IM of the rabbit kidney.« less
Terada, Takatoshi; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2017-01-01
The purpose of this study was to develop a deeper understanding of the key physicochemical parameters involved in the release profiles of microsphere-encapsulated agrochemicals at different temperatures. Microspheres consisting of different polyurethanes (PUs) were prepared using our previously reported solventless microencapsulation technique. Notably, these microspheres exhibited considerable differences in their thermodynamic characteristics, including their glass transition temperature (T g ), extrapolated onset temperature (T o ) and extrapolated end temperature (T e ). At test temperatures below the T o of the PU, only 5-10% of the agrochemical was rapidly released from the microspheres within 1 d, and none was released thereafter. However, at test temperatures above the T o of the PU, the rate of agrochemical release gradually increased with increasing temperatures, and the rate of release from the microspheres was dependent on the composition of the PU. Taken together, these results show that the release profiles of the microspheres were dependent on their thermodynamic characteristics and changes in their PU composition.
NASA Technical Reports Server (NTRS)
Haber, E.; Re, R. N.; Kourides, I. A.; Weihl, A. C.; Maloof, F.
1978-01-01
Prolactin, thyrotropin and aldosterone were measured by radioimmunoassay and plasma renin activity by the radioimmunoassay of angiotensin I in normal women before and after the intravenous injection of 200 micrograms of thyrotropin releasing hormone. Prolactin increased at 15 minutes following thyrotropin releasing hormone. Plasma renin activity was not different from control levels during the first hour following the administration of thyrotropin releasing hormone, nor did the plasma aldosterone concentration differ significantly from the control levels during this period. However, with upright posture, an increase in aldosterone and in plasma renin activity was noted, demonstrating a normal capacity to secrete aldosterone. Similarly, no change in aldosterone was seen in 9 patients with primary hypothyroidism given thyrotropin releasing hormone, despite the fact that the increase in prolactin was greater than normal. These data demonstrate that acutely or chronically elevated serum prolactin levels do not result in increased plasma aldosterone levels in humans.
Zhao, Chunyi; Quan, Peng; Liu, Chao; Li, Qiaoyun; Fang, Liang
2016-11-01
The purpose of this study was to investigate the effect of isopropyl myristate (IPM), a penetration enhancer, on the viscoelasticity and drug release of a drug-in-adhesive transdermal patch containing blonanserin. The patches were prepared with DURO-TAK ® 87-2287 as a pressure-sensitive adhesive (PSA) containing 5% ( w / w ) of blonanserin and different concentrations of IPM. An in vitro release experiment was performed and the adhesive performance of the drug-in-adhesive patches with different concentrations of IPM was evaluated by a rolling ball tack test and a shear-adhesion test. The glass transition temperature ( T g ) and rheological parameters of the drug-in-adhesive layers were determined to study the effect of IPM on the mechanical properties of the PSA. The results of the in vitro release experiment showed that the release rate of blonanserin increased with an increasing concentration of IPM. The rolling ball tack test and shear-adhesion test showed decreasing values with increasing IPM concentration. The results were interpreted on the basis of the IPM-induced plasticization of the PSA, as evidenced by a depression of the glass transition temperature and a decrease in the elastic modulus. In conclusion, IPM acted as a plasticizer on DURO-TAK ® 87-2287, and it increased the release of blonanserin and affected the adhesive properties of the PSA.
Xu, Wei; Tse, Yiu Chung; Dobie, Frederick A; Baudry, Michel; Craig, Ann Marie; Wong, Tak Pan; Wang, Yu Tian
2013-03-27
Although the contribution of postsynaptic mechanisms to long-term synaptic plasticity has been studied extensively, understanding the contribution of presynaptic modifications to this process lags behind, primarily because of a lack of techniques with which to directly and quantifiably measure neurotransmitter release from synaptic terminals. Here, we developed a method to measure presynaptic activity through the biotinylation of vesicular transporters in vesicles fused with presynaptic membranes during neurotransmitter release. This method allowed us for the first time to selectively quantify the spontaneous or evoked release of glutamate or GABA at their respective synapses. Using this method to investigate presynaptic changes during the expression of group I metabotropic glutamate receptor (mGluR1/5)-mediated long-term depression (LTD) in cultured rat hippocampal neurons, we discovered that this form of LTD was associated with increased presynaptic release of glutamate, despite reduced miniature EPSCs measured with whole-cell recording. Moreover, we found that specific blockade of AMPA receptor (AMPAR) endocytosis with a membrane-permeable GluR2-derived peptide not only prevented the expression of LTD but also eliminated LTD-associated increase in presynaptic release. Thus, our work not only demonstrates that mGluR1/5-mediated LTD is associated with increased endocytosis of postsynaptic AMPARs but also reveals an unexpected homeostatic/compensatory increase in presynaptic release. In addition, this study indicates that biotinylation of vesicular transporters in live cultured neurons is a valuable tool for studying presynaptic function.
NASA Astrophysics Data System (ADS)
Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo
2017-12-01
This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong the lifetime of antifouling coatings.
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
Lauring, Brett; Dishy, Victor; De Kam, Pieter-Jan; Crumley, Tami; Wenning, Larissa; Liu, Fang; Sisk, Christine; Wagner, John; Lai, Eseng
2015-01-01
The use of multiple lipid-modifying agents with different mechanisms of action is often required to regulate lipid levels in patients with dyslipidemia. During combination therapy, alterations in the pharmacokinetics of any of the drugs used and their metabolites may occur. Three separate open-label, randomized, crossover studies evaluated the potential for pharmacokinetic interaction between extended-release niacin (with and without concomitant laropiprant) and simvastatin in healthy subjects. Study 1 used single doses of extended-release niacin and simvastatin; study 2 used multiple-dose coadministration of extended-release niacin/laropiprant and simvastatin in healthy subjects; and study 3 used single doses of both extended-release niacin and the coadministration of extended-release niacin/laropiprant and simvastatin in healthy Chinese subjects. During each treatment period, plasma samples were collected predose and at prespecified postdose time points for pharmacokinetic analyses. The safety and tolerability of simvastatin with and without coadministered extended-release niacin (or extended-release niacin/laropiprant) were assessed by clinical evaluation of adverse experiences. In 2 studies in healthy subjects, modest increases in exposure to simvastatin acid (by ∼60%) by extended-release niacin and extended-release niacin/laropiprant were observed. Based on the clinical experience with simvastatin, these effects are not believed to be clinically meaningful. In the third study on healthy Chinese subjects, no statistically meaningful increases in exposure to simvastatin by extended-release niacin and extended-release niacin/laropiprant were observed. In all populations examined in these studies, the coadministration of extended-release niacin and simvastatin was generally well tolerated.
Evaluation of 2-soft-release techniques to reintroduce black bears
Eastridge, Rick; Clark, Joseph D.
2002-01-01
Black bear (Ursus americanus) were extirpated from most of their range by the early 1900s by habitat destruction and unregulated hunting. Since then, bear habitat has recovered in many areas, but isolation may prevent natural recolonization. Black bear translocations often have limited success because of high mortality rates and low site fidelity. We tested 2 reintroduction techniques designed to overcome those problems. The first technique used a winter release whereby pre- or post-parturient female bears were removed from their dens and placed in new dens at the release area. The second technique involved translocating female bears to the reintroduction area during summer and holding them in pens for a 2-week acclimation period before release. We translocated 8 female bears with cubs with the winter-release technique and 6 female with the summer-release technique. After release, total distance moved, net distance moved, mean daily distance moved, and circuity for winter-released bears (x̄=18.3 km, 7.1 km, 1.4 km, and 0.36, respectively) were less than summer-released bears (x̄=97.6, 63.4 km 5.1 km, and 0.74; P=0.010, 0.040, 0.019, and 0.038, respectively). Also, survival of winter-released bears (0.88) was greater than that for summer-released bears (0.2, P=0.001). Population modeling indicated that the least one additional stocking of 6 adult females with 12 cubs would greatly increase chances of population reestablishment. the winter-release technique has distinct advantages over the summer-release technique, limiting post-release movements and increasing survival of translocated bears.
Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi
2012-10-31
Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Preparation and In Vitro/In Vivo Evaluation of Vinpocetine Elementary Osmotic Pump System
Ning, Meiying; Zhou, Yue; Chen, Guojun; Mei, Xingguo
2011-01-01
Preparation and in vitro and in vivo evaluation of vinpocetine (VIN) elementary osmotic pump (EOP) formulations were investigated. A method for the preparation of VIN elementary osmotic pump tablet was obtained by adding organic acid additives to increase VIN solubility. VIN was used as the active pharmaceutical ingredient, lactose and mannitol as osmotic agent. Citric acid was used as increasing API solubility and without resulting in the API degradation. It is found that the VIN release rate was increasing with the citric acid amount at a constant range. Cellulose acetate 398-3 was employed as semipermeable membrane containing polyethylene glycol 6000 and diethyl-o-phthalate as pore-forming agent and plasticizer for controlling membrane permeability. In addition, a clear difference between the pharmacokinetic patterns of VIN immediate release and VIN elementary osmotic pump formulations was revealed. The area under the plasma concentration-time curve after oral administration of elementary osmotic pump formulations was equivalent to VIN immediate release formulation. Furthermore, significant differences found for mean residence time, elimination half-life, and elimination rate constant values corroborated prolonged release of VIN from elementary osmotic pump formulations. These results suggest that the VIN osmotic pump controlled release tablets have marked controlled release characters and the VIN osmotic pump controlled release tablets and the normal tablets were bioequivalent. PMID:21577257
Tao, Yang; Zhang, Zhihang; Sun, Da-Wen
2014-09-01
The enhancement of release of oak-related compounds from oak chips during wine aging with oak chips may interest the winemaking industry. In this study, the 25-kHz ultrasound waves were used to intensify the mass transfer of phenolics from oak chips into a model wine. The influences of acoustic energy density (6.3-25.8 W/L) and temperature (15-25 °C) on the release kinetics of total phenolics were investigated systematically. The results exhibited that the total phenolic yield released was not affected by acoustic energy density significantly whereas it increased with the increase of temperature during sonication. Furthermore, to describe the mechanism of mass transfer of phenolics in model wine under ultrasonic field, the release kinetics of total phenolics was simulated by both a second-order kinetic model and a diffusion model. The modeling results revealed that the equilibrium concentration of total phenolics in model wine, the initial release rate and effective diffusivity of total phenolics generally increased with acoustic energy density and temperature. In addition, temperature had a negative effect on the second-order release rate constant whereas acoustic energy density had an opposite effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Umeki, Yuka; Saito, Masaaki; Takahashi, Yuki; Takakura, Yoshinobu; Nishikawa, Makiya
2017-10-01
Our previous study indicates that cationization of an antigen is effective for sustained release of both immunostimulatory DNA containing unmethylated cytosine-phosphate-guanine (CpG) dinucleotides, or CpG DNA, and antigen from a DNA hydrogel. Another approach to sustained antigen release would increase the applicability and versatility of the system. In this study, a hydrophobic interaction-based sustained release system of ovalbumin (OVA), a model antigen, from immunostimulatory CpG DNA hydrogel is developed by the use of cholesterol-modified DNA and urea-denatured OVA (udOVA). Cholesterol-modified DNA forms a hydrogel, Dgel(chol), and induces IL-6 mRNA expression in mouse skin after intradermal injection, as DNA without cholesterol does. Cholesterol-modified DNA associated with OVA and denaturation of OVA using urea increases the interaction. The release of udOVA from Dgel(chol) is significantly slower than that from DNA hydrogel with no cholesterol, Dgel. Moreover, intratumoral injections of udOVA/Dgel(chol) significantly inhibit the growth of EG7-OVA tumors in mice. These results indicate that sustained release of antigen from Dgel can be achieved by the combination of urea denaturation and cholesterol modification, and retardation of antigen release is effective to induce antigen-specific cancer immunity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Obrien, T. K.; Raju, I. S.; Garber, D. P.
1985-01-01
A laminated plate theory analysis is developed to calculate the strain energy release rate associated with edge delamination growth in a composite laminate. The analysis includes the contribution of residual thermal and moisture stresses to the strain energy released. The strain energy release rate, G, increased when residual thermal effects were combined with applied mechanical strains, but then decreased when increasing moisture content was included. A quasi-three-dimensional finite element analysis indicated identical trends and demonstrated these same trends for the individual strain energy release rate components, G sub I and G sub II, associated with interlaminar tension and shear. An experimental study indicated that for T300/5208 graphite-epoxy composites, the inclusion of residual thermal and moisture stresses did not significantly alter the calculation of interlaminar fracture toughness from strain energy release rate analysis of edge delamination data taken at room temperature, ambient conditions.
Chang, Ching-Hsien; Liu, Hsia-Wei; Huang, Ching-Cheng
2014-01-01
A series of designed drug-release systems were prepared and established for clear moisture healing. These systems were designed to have an interpenetrating polymer network (IPN) structure, which contained a breathable polyurethane film, hydrocolloidlayer, and polyacrylate adhesive layer. Breathable polyurethane film (2000 g/m(2)/24 hr) with high moisture permeability was employed as a base for new drug-release systems or wound dressings. All drug-release systems having a polyurethane film-backed hydrocolloid acrylated adhesive layer showed an increase of water uptakes with increasing time. After 114 hours, high water uptakes of drug-release systems with 20% hydrocolloid components were observed in the values of 160, 1100, and 1870% for different additional hydrocolloid components of carboxymethylcellulose, sodium alginate, and carbomer U10, respectively. New drug-release systems of polyurethane film-backed hydrocolloid/adhesive layers could be designed and established for wound care managements.
Kinetics and Mechanisms of Chemical and Biological Agents Release from Biopolymeric Microcapsules.
Vinceković, Marko; Jurić, Slaven; Đermić, Edyta; Topolovec-Pintarić, Snježana
2017-11-08
Kinetics and mechanisms of copper cations and Trichoderma viride spores release from uncoated and chitosan coated alginate microcapsules were investigated. The gelation of a fixed amount of sodium alginate at different concentrations of copper ion solutions resulted in distinct kinetics and release mechanisms. The increase in copper cation concentration promoted, but the presence of the chitosan layer on the microcapsule surface and the increase in microcapsule size reduced the rate of active agent release. Fitting to simple Korsmeyer-Peppas empirical model revealed that the underlying release mechanism (Fickian diffusion or a combination of the diffusion and erosion mechanisms) depends on the copper cation concentration and presence of T. viride spores. The investigation pointed out that the proper selection of formulation variables helps in designing microcapsules with the desirable release of copper ions and T. viride for plant protection and nutrition.
Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice.
Takahashi, Aki; Lee, Ray X; Iwasato, Takuji; Itohara, Shigeyoshi; Arima, Hiroshi; Bettler, Bernhard; Miczek, Klaus A; Koide, Tsuyoshi
2015-04-22
Although the dorsal raphe nucleus (DRN) has long been linked to neural control of aggression, little is known about the regulatory influences of the DRN when an animal engages in either adaptive species-typical aggressive behavior or escalated aggression. Therefore it is important to explore which neurotransmitter inputs into the DRN determine the escalation of aggression in male mice. Previously, we observed that microinjection of the GABAB receptor agonist baclofen into the DRN escalates aggressive behavior in male mice. Here, we used a serotonin (5-HT) neuron-specific GABAB receptor knock-out mouse to demonstrate that baclofen acts on nonserotonergic neurons to escalate aggression. Intra-DRN baclofen administration increased glutamate release, but did not alter GABA release, within the DRN. Microinjection of l-glutamate into the DRN escalated dose-dependently attack bites toward an intruder. In vivo microdialysis showed that glutamate release increased in the DRN during an aggressive encounter, and the level of glutamate was further increased when the animal was engaged in escalated aggressive behavior after social instigation. Finally, 5-HT release was increased within the DRN and also in the medial prefrontal cortex when animals were provoked by social instigation, and during escalated aggression after social instigation, but this increase in 5-HT release was not observed when animals were engaged in species-typical aggression. In summary, glutamate input into the DRN is enhanced during escalated aggression, which causes a phasic increase of 5-HT release from the DRN 5-HT neurons. Copyright © 2015 the authors 0270-6474/15/356452-12$15.00/0.
Neal, M. J.; Shah, M. A.
1989-01-01
1. The effects of (-)-baclofen, muscimol and phaclofen on endogenous gamma-aminobutyric acid (GABA) release from rat cortical slices, spinal cord slices and entire retinas were studied. 2. The spontaneous resting release of GABA from the three tissues was 3 to 6 pmol mg-1 wet wt 10 min-1. Depolarization of cortical slices with KCl (50 mM) (high-K) produced an 8 fold increase in GABA release but high-K did not evoke an increased release of GABA from spinal slices or retinas. 3. When rats were injected with gamma-vinyl-GABA (250 mg kg-1 i.p.) (GVG) 18 h before death, the tissue GABA stores were increased 3 to 6 fold and high-K then evoked striking Ca-dependent releases of GABA from all three tissues. Thus, in subsequent experiments, unless otherwise stated, the nervous tissues were taken from GVG-treated rats. 4. (-)-Baclofen (10 microM) significantly reduced the K-evoked release of GABA from cortical and spinal slices but retinal release was not affected, even at a concentration of (+/-)-baclofen of 1 mM. For cortical slices, the IC50 for baclofen was approximately 5.2 microM. The inhibitory effect of baclofen on GABA release from cortical slices also occurred in slices prepared from saline-injected rats, indicating that GVG treatment did not qualitatively affect the results. 5. The inhibitory effect of (-)-baclofen on the K-evoked release of GABA from cortical and spinal slices was antagonised by phaclofen (500 microM), confirming that baclofen was producing its effects by acting at the GABAB-receptor.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2804540
Zhu, Hongmei; Zennadi, Rahima; Xu, Bruce X.; Eu, Jerry P.; Torok, Jordan A.; Telen, Marilyn J.; McMahon, Timothy J.
2011-01-01
Objective Transfusion of red blood cells (RBCs) has been linked to disappointing clinical outcomes in the critically ill, but specific mechanisms of organ dysfunction after transfusion remain poorly understood. We tested the hypothesis that RBC storage impairs the ability of RBCs to release ATP and that impaired ATP-release was injurious in vivo, in part through increased RBC adhesion. Design Prospective, controlled, mechanistic study. Setting University research laboratory. Subjects Human and mouse blood donors; nude mouse transfusion recipients. Interventions Manipulation of ATP release, supplemental ATP, and antibodies to RBC and endothelial adhesion receptors were used in vitro and in vivo to probe the roles of released ATP and adhesion in responses to (transfused) RBCs. Measurements and main results The ability of stored RBCs to release ATP declined markedly within 14 days after collection, despite relatively stable levels of ATP within the RBCs. Inhibiting ATP release promoted the adhesion of stored RBCs to endothelial cells in vitro and RBC sequestration in the lungs of transfused mice in vivo. Unlike transfusion of fresh human RBCs, stored-RBC transfusion in mice decreased blood oxygenation and increased extravasation of RBCs into the lung’s alveolar airspaces. Similar findings were seen with transfusion of fresh RBCs treated with the ATP-release inhibitors glibenclamide and carbenoxolone. These findings were prevented by either co-infusion of an ATP analog or pre-transfusion incubation of the RBCs with an antibody against the erythrocyte adhesion receptor LW (Landsteiner-Wiener; ICAM-4). Conclusions The normal flow of RBCs in pulmonary microvessels depends in part on the release of anti-adhesive ATP from RBCs, and storage-induced deficiency in ATP release from transfused RBCs may promote or exacerbate microvascular pathophysiology in the lung, in part through increased RBC adhesion. PMID:21765360
Risk factors for all-cause, overdose and early deaths after release from prison in Washington state.
Binswanger, Ingrid A; Blatchford, Patrick J; Lindsay, Rebecca G; Stern, Marc F
2011-08-01
High mortality rates after release from prison have been well-documented, particularly from overdose. However, little is known about the risk factors for death after release from prison. Therefore, the objective of this study was to determine the demographic and incarceration-related risk factors for all-cause, overdose and early mortality after release from prison. We conducted a retrospective cohort study of inmates released from a state prison system from 1999 through 2003. The cohort included 30,237 who had a total of 38,809 releases from prison. Potential risk factors included gender, race/ethnicity, age, length of incarceration, and community supervision. Cox proportional hazards regression was used to determine risk factors for all-cause, overdose and early (within 30 days of release) death after release from prison. Age over 50 was associated with an increased risk for all-cause mortality (hazard ratio [HR] 2.67 for each decade increase, 95% confidence interval [CI] 2.23, 3.20) but not for overdose deaths or early deaths. Latinos were at decreased risk of death compared to Whites only for all-cause mortality (HR 0.61, 95% CI 0.42, 0.87). Increasing years of incarceration were associated with a decreased risk of all-cause mortality (HR 0.95, 95% CI 0.91, 0.99) and overdose deaths (HR 0.80, 95% CI 0.68, 0.95), but not early deaths. Gender and type of release were not significantly associated with all-cause, overdose or early deaths. Age, ethnicity and length of incarceration were associated with mortality after release from prison. Interventions to reduce mortality among former inmates are needed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.
Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B
2008-06-23
Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.
Global analysis of translation termination in E. coli.
Baggett, Natalie E; Zhang, Yan; Gross, Carol A
2017-03-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins.
NASA Technical Reports Server (NTRS)
Ulus, I. H.; Buyukuysal, R. L.; Wurtman, R. J.
1992-01-01
We examined the effects of N-methyl-D-aspartate (NMDA), a glutamate agonist, and of glutamate itself, on acetylcholine (ACh) release from superfused rat striatal slices. In a Mg(++)-free medium, NMDA (32-1000 microM) as well as glutamate (1 mM) increased basal ACh release by 35 to 100% (all indicated differences, P less than .05), without altering tissue ACh or choline contents. This augmentation was blocked by Mg++ (1.2 mM) or by MK-801 (10 microM). Electrical stimulation (15 Hz, 75 mA) increased ACh release 9-fold (from 400 to 3660 pmol/mg of protein): this was enhanced (to 4850 pmol/mg of protein) by NMDA (100 microM). ACh levels in stimulated slices fell by 50 or 65% depending on the absence or presence of NMDA. The addition of choline (40 microM) increased ACh release both basally (570 pmol/mg of protein) and with electrical stimulation (6900 pmol/mg of protein). In stimulated slices choline acted synergistically with NMDA, raising ACh release to 10,520 pmol/mg of protein. The presence of choline also blocked the fall in tissue ACh. No treatment affected tissue phospholipid or protein levels. NMDA (32-320 microM) also augmented basal ACh release from cortical but not hippocampal slices. Choline efflux from striatal and cortical (but not hippocampal) slices decreased by 34 to 50% in Mg(++)-free medium. These data indicate that NMDA-like drugs may be useful, particularly in combination with choline, to enhance striatal and cortical cholinergic activity. ACh release from rat hippocampus apparently is not affected by NMDA receptors.
Metal release from simulated fixed orthodontic appliances.
Hwang, C J; Shin, J S; Cha, J Y
2001-10-01
Most orthodontic appliances and archwires are stainless steel or nickel-titanium (NiTi) alloys that can release metal ions, with saliva as the medium. To measure metal released from the fixed orthodontic appliances currently in use, we fabricated simulated fixed orthodontic appliances that corresponded to half of the maxillary arch and soaked them in 50 mL of artificial saliva (pH 6.75 +/- 0.15, 37 degrees C) for 3 months. We used brackets, tubes, and bands made by Tomy (Tokyo, Japan). Four groups were established according to the appliance manufacturer and the type of metal in the .016 x .022-in archwires. Groups A and B were stainless steel archwires from Ormco (Glendora, Calif) and Dentaurum (Ispringen, Germany), respectively, and groups C and D were both NiTi archwires with Ormco's copper NiTi and Tomy's Bioforce sentalloy, respectively. Stainless steel archwires were heat treated in an electric furnace at 500 degrees C for 1 minute and quenched in water. We measured the amount of metal released from each group by immersion time. Our conclusions were as follows: (1) there was no increase in the amount of chromium released after 4 weeks in group A, 2 weeks in group B, 3 weeks in group C, and 8 weeks in group D; (2) there was no increase in the amount of nickel released after 2 weeks in group A, 3 days in group B, 7 days in group C, and 3 weeks in group D; and (3) there was no increase in the amount of iron released after 2 weeks in group A, 3 days in group B, and 1 day in groups C and D. In our 3-month-long investigation, we saw a decrease in metal released as immersion time increased.
Dicken, Matthew S; Hughes, Alexander R; Hentges, Shane T
2015-11-01
The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Dicken, Matthew S.; Hughes, Alexander R.; Hentges, Shane T.
2016-01-01
The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. PMID:26370162
Benedict, Mark Q; Charlwood, J Derek; Harrington, Laura C; Lounibos, L Philip; Reisen, William K; Tabachnick, Walter J
2018-01-01
Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, "experimental releases" means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals.
Heat release effects in a turbulent, reacting shear layer
NASA Astrophysics Data System (ADS)
Hermanson, James Carl
The effects of heat release were studied in a planar, gaseous reacting mixing layer formed between free streams containing hydrogen and fluorine in inert diluents. Sufficiently high concentrations of reactants were employed to produce adiabatic flame temperature rises of up to 940 K (1240 K absolute). The Reynolds number at the measuring station, based on velocity difference, 1% temperature thickness and cold kinematic viscosity was approximately 6x10^4. The temperature field was measured with cold wire resistance thermometers and thermocouples. Flow visualization was accomplished by schlieren spark and motion picture photography. Mean velocity information was extracted from mean pitot probe dynamic pressure measurements.Though the displacement thickness of the layer, for zero streamwise pressure gradient, increased with increasing heat release, the actual growth rate of the layer did not increase, but instead decreased slightly. The overall entrainment into the layer was seen to be substantially reduced as a consequence of heat release. Calculations showed that the decrease in layer growth rate can be accounted for by a corresponding reduction in turbulent shear stress.The mean temperature rise profiles, normalized by the adiabatic flame temperature rise, were not greatly changed in shape by heat release. A small decrease in normalized mean temperature rise with heat release was observed. Large scale coherent structures were observed to persist at all levels of heat release in this investigation. The mean structure spacing decreased with increasing temperature. This decrease exceeded the rate of layer growth rate reduction, and suggests that the mechanisms of vortex amalgamation were, to some extent, inhibited by heat release.Imposition of a favorable pressure gradient resulted in additional thinning of the layer, and caused a slight increase in the mixing and amount of chemical product formation. The change in layer growth rate can be shown to be related to a change in free stream velocity ratio induced by pressure gradient.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
... significantly increase the probability or consequences of accidents. No changes are being made in the types of effluents that may be released offsite. There is no significant increase in the amount of any effluent released offsite. There is no significant increase in occupational or public radiation exposure. Therefore...
Schulz, Martin; Fussnegger, Bernhard; Bodmeier, Roland
2011-02-01
The drug release from medium molecular weight polyisobutene patches containing adsorbates (drug content: 0.2% ethinyl estradiol, 1.0% levonorgestrel; adsorbent content: 20%, w/w) increased in the order of no adsorbent
Preparation and evaluation of sustained release microballoons of propranolol.
Porwal, A; Swami, G; Saraf, Sa
2011-01-01
The purpose of the present investigation was to characterize, optimize and evaluate microballoons of Propranolol hydrochloride and to increase its boioavailability by increasing the retention time of the drug in the gastrointestinal tract. Propranolol hydrochloride-loaded microballoons were prepared by the non-aqueous O/O emulsion solvent diffusion evaporation method using Eudragit RSPO as polymer. It was found that preparation temperature determined the formation of cavity inside the microballoon and this in turn determined the buoyancy. Microballoons were subjected to particle size determination, micromeritic properties, buoyancy, entrapment efficiency, drug loading, in vitro drug release and IR study. The correlation between the buoyancy, bulk density and porosity of microballoons were elucidated. The release rate was determined in simulated gastric fluid (SGF) of pH 1.2 at 37±0.5°C. The microballoons presented spherical and smooth morphologies (SEM) and were porous due to presence of hollow cavity. Microballoons remained buoyant for >12 hrs for the optimized formulation. The formulation demonstrated favorable in vitro floating and release characteristics. The encapsulation efficiency was high. In vitro dissolution kinetics followed the Higuchi model. The drug release from microballoons was mainly controlled by diffusion and showed a biphasic pattern with an initial burst release, followed by sustained release for 12 hrs. The amount of the drug which released up to 12 hrs was 82.05±0.64%. Statistical analysis (ANOVA) showed significant difference (p<0.05) in the cumulative amount of drug released after 30 min, and up to 12 hrs from optimized formulations. The designed system for propanolol would possibly be advantageous in terms of increased bioavailability and patient compliance.
Activation of the mesocortical dopamine system by feeding: lack of a selective response to stress.
Taber, M T; Fibiger, H C
1997-03-01
There is wide agreement that catecholamine systems in the prefrontal cortex are activated by stressful stimuli. To date, however, the extent to which other stimuli can increase the activity of these systems has received little attention. In the present study, the effects of tail pinch stress and feeding on dopamine and noradrenaline release in the prefrontal cortex of rats were examined using in vivo brain microdialysis. Both stimuli increased dopamine release, with peak effects reaching 212% above baseline for tail pinch and 165% above baseline for feeding. The effects of the two stimuli on peak dopamine release were not significantly different. Both stimuli also significantly increased noradrenaline release, with peak effects reaching 128% above baseline for tail pinch and 98% above baseline for feeding. The effects of the two stimuli on peak noradrenaline release were not significantly different. These results indicate that activation of catecholaminergic afferents to the prefrontal cortex is not specific to stress, but also occurs in response to non-stressors with positive motivational valence.
Zhang, Xi; Yi, Yueneng; Qi, Jianping; Lu, Yi; Tian, Zhiqiang; Xie, Yunchang; Yuan, Hailong; Wu, Wei
2013-08-16
It is very important to enhance the absorption simultaneously while designing controlled release delivery systems for poorly water-soluble and poorly permeable drugs (BCS IV). In this study, controlled release of cyclosporine (CyA) was achieved by the osmotic release strategy taking advantage of the absorption-enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDSs). The liquid SNEDDS consisting of Labrafil M 1944CS, Transcutol P and Cremophor EL was absorbed by the osmotic tablet core excipients (sucrose, lactose monohydrate, polyethylene oxide, and partly pregelatinized starch) and then transformed into osmotic tablets. Near zero-order release could be achieved for CyA-loaded nanoemulsions reconstituted from the SNEDDS. In general, the influencing factor study indicated that the release rate increased with increase of inner osmotic pressure, ratio of osmotic agent to suspending agent, content of pore-forming agent, and size of release orifice, whereas the thickness of the membrane impeded the release of CyA nanoemulsion. Pharmacokinetic study showed steady blood CyA profiles with prolonged Tmax and MRT, and significantly reduced Cmax for self-nanoemulsifying osmotic pump tablet (SNEOPT) in comparison with highly fluctuating profiles of the core tablet and Sandimmune Neoral(®). However, similar oral bioavailability was observed for either controlled release or non-controlled release formulations. It was concluded that simultaneous controlling on CyA release and absorption-enhancing had been achieved by a combination of osmotic tablet and SNEDDS. Copyright © 2013 Elsevier B.V. All rights reserved.
Glucose release in mantle tissue of Mytilus: regulation by calcium ions.
Crespo, C A; Espinosa, J
1990-09-01
Glucose release activity in mantle tissue of Mytilus galloprovincialis was studied. Mantle tissue shows a basal glucose releasing activity. The external Ca2+ absence increases 2 to 3-fold the basal glucose release, and when A23187 (10 microM) was simultaneously present the release doubled that obtained in Ca2(+)-absence. EGTA (2 mM), chlorpromazine (200 microM) and lanthanum (3 mM) decreased the glucose release promoted by external Ca2+ absence. This and other data suggest that glucose release activity in mantle tissue might be controlled by Ca2+ ions.
NASA Astrophysics Data System (ADS)
Armoza-Zvuloni, R.; Shaked, Y.
2014-09-01
Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then to slow down and stop by 5-7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.
Astrocyte-Mediated Neuronal Synchronization Properties Revealed by False Gliotransmitter Release
Pirttimaki, Tiina M.; Sims, Robert E.; Saunders, Gregory; Antonio, Serena A.; Codadu, Neela Krushna
2017-01-01
Astrocytes spontaneously release glutamate (Glut) as a gliotransmitter (GT), resulting in the generation of extrasynaptic NMDAR-mediated slow inward currents (SICs) in neighboring neurons, which can increase local neuronal excitability. However, there is a deficit in our knowledge of the factors that control spontaneous astrocyte GT release and the extent of its influence. We found that, in rat brain slices, increasing the supply of the physiological transmitter Glut increased the frequency and signaling charge of SICs over an extended period. This phenomenon was replicated by exogenous preexposure to the amino acid D-aspartate (D-Asp). Using D-Asp as a “false” GT, we determined the extent of local neuron excitation by GT release in ventrobasal thalamus, CA1 hippocampus, and somatosensory cortex. By analyzing synchronized neuronal NMDAR-mediated excitation, we found that the properties of the excitation were conserved in different brain areas. In the three areas, astrocyte-derived GT release synchronized groups of neurons at distances of >;200 μm. Individual neurons participated in more than one synchronized population, indicating that individual neurons can be excited by more than one astrocyte and that individual astrocytes may determine a neuron's synchronized network. The results confirm that astrocytes can act as excitatory nodes that can influence neurons over a significant range in a number of brain regions. Our findings further suggest that chronic elevation of ambient Glut levels can lead to increased GT Glut release, which may be relevant in some pathological states. SIGNIFICANCE STATEMENT Astrocytes spontaneously release glutamate (Glut) and other gliotransmitters (GTs) that can modify neuronal activity. Exposing brain slices to Glut and D-aspartate (D-Asp) before recording resulted in an increase in frequency of GT-mediated astrocyte–neuron signaling. Using D-Asp, it was possible to investigate the effects of specific GT release at neuronal NMDARs. Calcium imaging showed synchronized activity in groups of neurons in cortex, hippocampus, and thalamus. The size of these populations was similar in all areas and some neurons were involved in more than one synchronous group. The findings show that GT release is supply dependent and that the properties of the signaling and activated networks are largely conserved between different brain areas. PMID:28899919
Characterization of substance P release from the intermediate area of rat thoracic spinal cord.
Yang, L; Thomas, N D; Helke, C J
1996-08-01
Substance P (SP) nerve terminals innervate the intermediolateral cell column (IML) of the thoracic spinal cord, where SP coexists with serotonin (5-HT), neurokinin A (NKA) and thyrotropin-releasing hormone (TRH). Neither the depolarization-induced release of SP nor the presence of other neurochemicals in the regulation of SP release has been directly studied in this system. In the present study, basal and K(+)-stimulated release of SP from the microdissected intermediate area (including the IML, intercalated nucleus and central autonomic nucleus) of the rat thoracic spinal cord, and the regulation of SP release by presynaptic autoreceptors and by coexisting neurochemicals (5-HT, NKA and TRH) were studied using an in vitro superfusion system. Potassium evoked a concentration- and extracellular Ca(2+)-dependent release of SP. In rats pretreated with the serotoninergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), both SP content and the absolute amount of SP released were decreased. However, the fraction of the remaining tissue content of SP released by K+ depolarization was not changed subsequent to 5,7-DHT treatment. Moreover, 5-HT, 5-HT1B agonists (CGS-12066B and RU 24969) and a 5-HT3 agonist (2-methyl-5-HT) did not alter the K(+)-evoked release of SP. These data demonstrate that SP is released from the intermediate area of the rat thoracic spinal cord and some of the SP released comes from serotoninergic nerve terminals. Although 5-HT coexists with SP in the IML, neither endogenous 5-HT nor 5-HT receptor ligands appear to regulate the release of SP. Other colocalized neuropeptides (NKA and TRH) are not involved in the regulation of SP release because neither NKA, a NK2 agonist (GR 64349) nor a TRH analog (MK-771) changed the K(+)-evoked release of SP. A neurokinin-1 (NK1) antagonist (GR 82334) dose-dependently (10(-9)-10(-7) M) increased the K(+)-stimulated release of SP. These data suggest the presence of presynaptic inhibitory NK1 autoreceptors. Whereas, NK1 agonists, [GR 73632 (10(-9)-10(-6) M) and [Sar9, Met (O2)11]SP (10(-8)-10(-6) M)], increased the basal and K(+)-stimulated release of SP, the excitatory effects of GR 73632 were not blocked by the NK1 antagonist. Moreover, GR 73632 increased the efflus of SP to a greater extent in the absence of peptidase inhibitors. Thus, the effect of NK1 agonists on the release of SP may be related to an inhibition of peptide degradation rather than activation of NK1 autoreceptors.
Formulation and advantages of furazolidone in liposomal drug delivery systems.
Alam, Muhammad Irfan; Paget, Timothy; Elkordy, Amal Ali
2016-03-10
Furazolidone has proven to have antiprotozoal and antibacterial activity. A number of literature supported its use against Helicobacter pylori. This potential application opens new prospects of its use in clinical settings in triple therapy. In order to avoid side effects associated with this drug, liposomal mucoadhesive drug delivery that can work locally in stomach is considered as an appropriate approach. This study is a focus on formulations and in vitro characterization of liposomes containing furazolidone. Therefore, the effects of variable amounts of drug and cholesterol on encapsulation efficacy and in vitro drug release were evaluated for different liposomal formulations. Mucoadhesive behavior of chitosan coated liposomal at two different pHs was also evaluated and increase in pH from 1.3 to 4.5 increased mucoadhesion from 42% to 60% respectively. Increasing the amount of drug from 4mg to 5mg increased encapsulation activity however, increasing the drug any further decreased encapsulation activity. In contrast, by increasing the amount of cholesterol decrease in encapsulation activity was observed. The optimized formulation with 5mg of drug and 53mg of cholesterol in formulation gave 57% drug release at pH 1.3 but release was increased up to 71% by increasing pH to 4.5 for same amount of drug. However, by using 10.6mg of cholesterol and 5mg of drug the overall release was increased at both pH conditions, at pH 1.3 release was 69% as compared to 77% at pH 4.5. This trend of drug release profile and mucoadhesion that favors pH 4.5 is documented as useful in targeting H. pylori as normal pH of stomach is expected to be higher by the influence of this microbe. Hence, the results of this research can be taken further into a future in vivo study. Copyright © 2016 Elsevier B.V. All rights reserved.
Sasidharan, Salini; Bradford, Scott A; Torkzaban, Saeed; Ye, Xueyan; Vanderzalm, Joanne; Du, Xinqiang; Page, Declan
2017-12-15
Escherichia coli transport and release experiments were conducted to investigate the pore-water velocity (v) dependency of the sticking efficiency (α), the fraction of the solid surface area that contributed to retention (S f ), the percentage of injected cells that were irreversibly retained (M irr ), and cell release under different (10-300mM) ionic strength (IS) conditions. Values of α, S f , and M irr increased with increasing IS and decreasing v, but the dependency on v was greatest at intermediate IS (30 and 50mM). Following the retention phase, successive increases in v up to 100 or 150mday -1 and flow interruption of 24h produced negligible amounts of cell release. However, excavation of the sand from the columns in excess electrolyte solution resulted in the release of >80% of the retained bacteria. These observations were explained by: (i) extended interaction energy calculations on a heterogeneous sand collector; (ii) an increase in adhesive strength with the residence time; and (iii) torque balance consideration on rough surfaces. In particular, α, S f , and M irr increased with IS due to lower energy barriers and stronger primary minima. The values of α, S f , and M irr also increased with decreasing v because the adhesive strength increased with the residence time (e.g., an increased probability to diffuse over the energy barrier) and lower hydrodynamic forces diminished cell removal. The controlling influence of lever arms at microscopic roughness locations and grain-grain contacts were used to explain negligible cell removal with large increases in v and large amounts of cell recovery following sand excavation. Results reveal the underlying causes (interaction energy, torque balance, and residence time) of the velocity dependency of E. coli retention and release parameters (k sw , α, and S f ) that are not accounted for in colloid filtration theory. Copyright © 2017 Elsevier B.V. All rights reserved.
Akhtar, M F; Rabbani, M; Sharif, A; Akhtar, B; Saleem, A; Murtaza, G
2011-01-01
The aim of this work was to develop swellable modified release (MR) isoniazid tablets using different combinations of polyvinyl acetate (PVAc) and sodium-carboxymethylcellulose (Na-CMC). Granules were prepared by moist granulation technique and then compressed into tablets. In vitro release studies for 12 hr were carried out in dissolution media of varying pH i.e. pH 1.2, 4.5, 7.0 and 7.5. Tablets of all formulations were found to be of good physical quality with respect to appearance (width and thickness), content uniformity, hardness, weight variation and friability. In vitro release data showed that increasing total polymer content resulted in more retarding effect. Formulation with 35% polymer content exhibited zero order release profile and it released 35% of the drug in first hr, later on, controlled drug release was observed upto the 12(th) hour. Formulations with PVAc to Na-CMC ratio 20:80 exhibited zero order release pattern at levels of studied concentrations, which suggested that this combination can be used to formulate zero order release tablets of water soluble drugs like isoniazid. Korsmeyer-Peppas modeling of drug release showed that non-Fickian transport is the primary mechanism of isoniazid release from PVAc and Na-CMC based tablets. The value of mean dissolution time decreased with the increase in the release rate of drug clearly showing the retarding behavior of the swellable polymers. The application of a mixture of PVAc to Na-CMC in a specific ratio may be feasible to formulate zero order release tablets of water soluble drugs like isoniazid.
Microiontophoretic release of drugs from micropipettes
Clarke, G.; Hill, R. G.; Simmonds, M. A.
1973-01-01
1. The use of 24Na+ of high specific activity allowed its iontophoretic release from multibarrelled glass micropipettes to be followed over short periods with low currents. 2. When a negative retaining current was passed to reduce diffusional efflux between the periods of positive current expulsion of 24Na+, the rate of release of 24Na+ during the expulsion period progressively increased during the first minute before becoming constant. 3. The currents employed were similar to those normally used to regulate the microiontophoretic release of potent drugs such as γ-aminobutyric acid. It is therefore concluded that, during the usual period of response to such drugs, the rate of release of drug is not constant but increasing. 4. The implications of these observations for the construction of microiontophoretic dose-response relationships is discussed. PMID:4724187
Wang, Ning; Xue, Xi-Mei; Juhasz, Albert L; Chang, Zhi-Zhou; Li, Hong-Bo
2017-01-01
Previous studies have shown that biochar enhances microbial reduction of iron (Fe) oxyhydroxide under anaerobic incubation. However, there is a lack of data on its influence on arsenic (As) release from As-contaminated paddy soils. In this study, paddy soil slurries (120 mg As kg -1 ) were incubated under anaerobic conditions for 60 days with and without the addition of biochar (3%, w/w) prepared from rice straw at 500 °C. Arsenic release, Fe reduction, and As fractionation were determined at 1, 10, 20, 30, and 60 d, while Illumina sequencing and real-time PCR were used to characterize changes in soil microbial community structure and As transformation function genes. During the first month of incubation, As released into soil solution increased sharply from 27.9 and 55.9 to 486 and 630 μg kg -1 in unamended and biochar amended slurries, with inorganic trivalent As (As III ) being the dominant specie (52.7-91.0% of total As). Compared to unamended slurries, biochar addition increased As and ferrous ion (Fe 2+ ) concentrations in soil solution but decreased soil As concentration in the amorphous Fe/Al oxide fraction (F3). Difference in released As between biochar and unamended treatments (ΔAs) increased with incubation time, showing strong linear relationships (R 2 = 0.23-0.33) with ΔFe 2+ and ΔF3, confirming increased As release due to enhanced Fe reduction. Biochar addition increased the abundance of Fe reducing bacteria such as Clostridum (27.3% vs. 22.7%), Bacillus (3.34% vs. 2.39%), and Caloramator (4.46% vs. 3.88%). In addition, copy numbers in biochar amended slurries of respiratory As reducing (arrA) and detoxifying reducing genes (arsC) increased 19.0 and 1.70 fold, suggesting microbial reduction of pentavalent As (As V ) adsorbed on Fe oxides to As III , further contributing to increased As release. Copyright © 2016 Elsevier Ltd. All rights reserved.
Novel cell-cell signaling by microglial transmembrane TNFα with implications for neuropathic pain
Zhou, Zhigang; Peng, Xiangmin; Hagshenas, Jafar; Insolera, Ryan; Fink, David J.; Mata, Marina
2010-01-01
Neuropathic pain is accompanied by neuroimmune activation in dorsal horn of spinal cord. We have observed that in animal models this activation is characterized by increased expression of transmembrane tumor necrosis factor α (mTNFα) without release of soluble (sTNFα). Here we report that the pain-related neurotransmitter peptide substance P (SP) increases expression of mTNFα without release of sTNFα from primary microglial cells. We modeled this interaction using an immortalized microglial cell line; exposure of these cells to SP also resulted in increased expression of mTNFα but without any increase in expression of the TNF-cleaving enzyme (TACE) and no release of sTNFα. In order to evaluate the biological function of uncleaved mTNFα, we transfected COS-7 cells with a mutant full length TNFα construct resistant to cleavage by TACE. Co-culture of COS-7 cells expressing the mutant TNFα with microglial cells led to microglial cell activation indicated by increased OX-42 immunoreactivity and release of macrophage chemoattractant peptide 1 (CCL2) by direct cell-cell contact. These results suggest a novel pathway through which release of SP by primary afferents activates microglial expression of mTNFα, establishing a feed-forward loop that may contribute to the establishment of chronic pain. PMID:20609516
MacDonald, Kathleen; Price, Richard B.; Boyd, Daniel
2017-01-01
We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days. PMID:28708123
Daniels, Richard W; Collins, Catherine A; Gelfand, Maria V; Dant, Jaime; Brooks, Elizabeth S; Krantz, David E; DiAntonio, Aaron
2004-11-17
Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.
MacDonald, Kathleen; Price, Richard B; Boyd, Daniel
2017-07-14
We examine the feasibility and functionality of hydrophilic modifications to a borate glass reinforced resin composite; with the objective of meeting and maintaining therapeutic thresholds for Sr release over time, as a potential method of incorporating antiosteoporotic therapy into a vertebroplasty material. Fifteen composites were formulated with the hydrophilic agent hydroxyl ethyl methacrylate (HEMA, 15, 22.5, 30, 37.5 or 45 wt% of resin phase) and filled with a borate glass (55, 60 or 65 wt% of total cement) with known Sr release characteristics. Cements were examined with respect to degree of cure, water sorption, Sr release, and biaxial flexural strength over 60 days of incubation in phosphate buffered saline. While water sorption and glass degradation increased with increasing HEMA content, Sr release peaked with the 30% HEMA compositions, scanning electron microscope (SEM) imaging confirmed the surface precipitation of a Sr phosphate compound. Biaxial flexural strengths ranged between 16 and 44 MPa, decreasing with increased HEMA content. Degree of cure increased with HEMA content (42 to 81%), while no significant effect was seen on setting times (209 to 263 s). High HEMA content may provide a method of increasing monomer conversion without effect on setting reaction, providing sustained mechanical strength over 60 days.
Hou, Jun; Zhang, Mingzhi; Wang, Peifang; Wang, Chao; Miao, Lingzhan; Xu, Yi; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Liu, Zhilin
2017-10-01
This study investigated the transport and long-term release of stabilized silver nanoparticles (AgNPs), including polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs) and bare AgNPs (Bare-AgNPs), in the presence of natural organic matters (NOMs; both humic acids (HA) and alginate (Alg)) and an electrolyte (Ca 2+ ) in a sand-packed column. Very low breakthrough rate (C/C 0 ) of AgNPs (below 0.04) occurred in the absence of NOM and the electrolyte. Increasing the concentration of NOM and decreasing the influent NOM solution's ionic strength (IS) reduced the retention of AgNPs. The reduced NP retention at high NOM and low IS was mainly attributed to the increased energy barrier between the AgNPs and the sand grain surface. Notably, the retention of PVP-AgNPs was enhanced at high Alg concentration and low IS, which mainly resulted from the improved hydrophobicity that could increase the interaction between the PVP-AgNPs and the collector. The total release amount of PVP-AgNPs (10.03%, 9.50%, 28.42%, 6.37%) and Bare-AgNPs (3.28%, 2.58%, 10.36%, 1.54%) were gained when exposed to four kinds of NOM solutions, including deionized water, an electrolyte solution (1 mM Ca 2+ ), HA with an electrolyte (1 mM Ca 2+ ), and a Alg (40 mg/L) solution with an electrolyte (1 mM Ca 2+ ). The long-term release of retained silver nanoparticles in the quartz sand was mostly through the form of released Ag NPs. The factors that increased the mobility of AgNPs in quartz sand could improve the release of the AgNPs. The release of AgNPs had no significant change in the presence Ca 2+ but were increased in the presence of HA. The Alg slightly decreased the release of AgNPs by increasing the hydrophobicity of AgNPs. The results of the study indicated that all the tested NOM and Ca 2+ have prominent influence on the transport and long-term release behavior of silver nanoparticles in saturated quartz sand. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chizewski, Michael G; Alexander, Marion J L
2015-08-01
Limited previous research was located that examined the technique of the long snap in football. The purpose of the study was to compare the joint movements, joint velocities, and body positions used to perform fast and accurate long snaps in high school (HS) and university (UNI) athletes. Ten HS and 10 UNI subjects were recruited for filming, each performing 10 snaps at a target with the fastest and most accurate trial being selected for subject analysis. Eighty-three variables were measured using Dartfish Team Pro 4.5.2 video analysis software, with statistical analysis performed using Microsoft Excel and SPSS 16.0. Several significant comparisons to long snapping technique between groups were noted during analysis; however, the body position and movement variables at release showed the greatest number of significant differences. The UNI athletes demonstrated significantly higher release velocity and left elbow extension velocity, with significantly lower release height and release angle than the HS group. Total snap time (release time + total flight time) was determined to have the strongest correlation to release velocity for the HS group (r = -0.915) and UNI group (r = -0.918). The study suggests HS long snappers may benefit from less elbow flexion and more knee flexion in the backswing (set position) to increase release velocity. University long snappers may benefit from increased left elbow extension range of motion during force production and decreased shoulder flexion at critical instant to increase long snap release velocity.
Cui, Xiaoying; Lefevre, Emilia; Turner, Karly M; Coelho, Carlos M; Alexander, Suzy; Burne, Thomas H J; Eyles, Darryl W
2015-02-01
Repeated exposure to psychostimulants that either increase dopamine (DA) release or target N-methyl-D-aspartate (NMDA) receptors can induce behavioural sensitisation, a phenomenon that may be important for the processes of addiction and even psychosis. A critical component of behavioural sensitisation is an increase in DA release within mesocorticolimbic circuits. In particular, sensitisation to amphetamine leads to increased DA release within well-known sub-cortical brain regions and also regulatory regions such as prefrontal cortex (PFC). However, it is unknown how DA release within the PFC of animals is altered by sensitisation to NMDA receptor antagonists. The aims of the present study were twofold, firstly to examine whether a single dose of dizocilpine maleate (MK-801) could induce long-term behavioural sensitisation and secondly to examine DA release in the PFC of sensitised rats. Behavioural sensitisation was assessed by measuring locomotion after drug exposure. DA release in the PFC was measured using freely moving microdialysis. We show that a single dose of MK-801 can induce sensitisation to subsequent MK-801 exposure in a high percentage of rats (66 %). Furthermore, rats sensitised to MK-801 have altered DA release and turnover in the PFC compared with non-sensitised rats. Schizophrenia patients have been postulated to have 'endogenous sensitisation' to psychostimulants. MK-801-induced sensitised rats, in particular when compared with non-sensitised rats, provide a useful model for studying PFC dysfunction in schizophrenia.
Rawson, Jack; Goss, Richard L.; Rathbun, Ira G.
1980-01-01
A three-phase study was conducted during July and August 1979 to determine the effects of varying release rates through the power-outlet works at Sam Rayburn Reservoir, eastern Texas, on aeration capacity of a 14-mile reach of the Angelina River below Sam Rayburn Dam. The dominant factors that affected the aeration capacity during the study time were time of travel and the dissolved-oxygen deficit of the releases. Aeration was low throughout the study but increased in response to increases in the dissolved-oxygen deficit and the duration of time that the releases were exposed to the atmosphere (time of travel). The average concentration of dissolved oxygen sustained by release of 8,800 cubic feet per second decreased from 5.0 milligrams per liter at a site near the power outlet to 4.8 milligrams per liter at a site about 14 miles downstream; the time of travel averaged about 8 hours. The average concentration of dissolved oxygen in flow sustained by releases of 2,200 cubic feet per second increased from 5.2 to 5.5 milligrams per liter; the time of travel averaged about 20 hours. (USGS)
Liu, Haizhou; Schonberger, Kenneth D; Korshin, Gregory V; Ferguson, John F; Meyerhofer, Paul; Desormeaux, Erik; Luckenbach, Heidi
2010-07-01
This study examined effects of desalinated water on the corrosion of and metal release from copper and lead-containing materials. A jar test protocol was employed to examine metal release from copper and lead-tin coupons exposed to water chemistries with varying blending ratios of desalinated water, alkalinities, pHs and orthophosphate levels. Increasing fractions of desalinated water in the blends resulted in non-monotonic changes of copper and lead release, with generally lower metal concentrations in the presence of desalinated water, especially when its contribution increased from 80% to 100%. SEM examination showed that the increased fractions of desalinated water were associated with pronounced changes of the morphology of the corrosion scales, likely due to the influence of natural organic matter. This hypothesis was corroborated by the existence of correlations between changes of the zeta-potential of representative minerals (malachite and hydrocerussite) and metal release. For practical applications, maintaining pH at 7.8 and adding 1 mg/L orthophosphate as PO(4) were concluded to be adequate to decrease copper and lead release. Lower alkalinity of desalinated water was beneficial for blends containing 50% or more desalinated water. Copyright 2010 Elsevier Ltd. All rights reserved.
Green, William Reed
1998-01-01
Releases of the Frank Lyon, Jr., Nursery Pond into Lake Maumelle were monitored during 1991 through 1996 to assess the impact that the releases have on the water quality of Lake Maumelle. Results indicated that the water-quality impact of the nursery pond release into Lake Maumelle is variable, and appears to be related to the volume of the nursery pond at release and the amount of fertilizer applied within the nursery pond earlier in the year. In 1991 through 1994 and in 1996, nursery pond release loads for nutrients (except for dissolved nitrite plus nitrate nitrogen), total and dissolved organic carbon, iron, and manganese were greater than what would be expected in the annual area load from that basin. In 1995, only ammonium nitrate was appliec to the nursery pond. As a result, the 1995 phosphorus load was lower than in other years, and was less than what would be expected in the annual areal load. Nutrient enrichment, on average, in Lake Maumelle from the nursery pond release resulted in what would be equivalent to an 8 percent increase in concentration of total phosphorus, 50 percent increase in dissolved orthophosphorus, 0.1 percent increase in dissolved nitrite plus nitrate nitrogen, 2.5 percent increase in total ammonia plus organic nitrogen, and 5.7 percent increase in dissolved ammonia nitrogen, assuming that the nutrient load was conservative and evenly distributed throughout the water body. Evidence of elevated turbidity, nutrient, and chlorphyll a concentrations in the epilimnetic water outside the receiving embayment were apparent for as long as 3 weeks after the 1995 and 1996 releases. In general, highest values were found at the site located where the receiving embayment meets the open water of Lake Maumelle. Much of the released material in the nursery pond originated in the cooler, anoxic hypolimnetic water. The initial release water was seen to plunge beneath the warmer water existing in the receiving embayment and was transported into the open water of Lake Maumelle, under the thermocline. The quantity of water and mass of constituents transported into the open water under the thermocline is unknown and probably remained isolated from the surface water until fall turnover.
Farley, J R; Stilt-Coffing, B
2001-01-01
Although quantitative measurement of skeletal alkaline phosphatase (sALP) activity in serum can provide an index of the rate of bone formation, the metabolic process that determines the release of sALP - from the surface of osteoblasts, into circulation-is unknown. The current studies were intended to examine the hypothesis that the release of sALP from human osteoblasts is a consequence of apoptotic cell death. We measured the release of sALP activity from human osteosarcoma (SaOS-2) cells and normal human bone cells, under basal conditions and in response to agents that increased apoptosis (TNF-a, okadiac acid) and agents that inhibit apoptosis (IGF-I, calpain, and caspase inhibitors). Apoptosis was determined by the presence of nucleosomes (histone-associated DNA) in the cytoplasm of the cells by using a commercial kit. The results of these studies showed that TNF-a and okadiac acid caused dose- and time-dependent increases in apoptosis in the SaOS-2 cells (r = 0.78 for doses of TNF-a and r = 0.93 for doses of okadiac acid, P <0.005 for each), with associated decreases in cell layer protein (P <0.05 for each) and concomitant increases in the release of sALP activity (e.g., r = 0.89 for TNF-a and r = 0.75 for okadiac acid, P <0.001 for each). In contrast, caspase and calpain inhibitors reduced apoptosis, increased cell layer protein, and decreased the release of sALP activity (P <0.05 for each). Exposure to IGF-I also decreased apoptosis, in a time- and dose-dependent manner (e.g., r = 0.93, P <0.001 for IGF-I doses), with associated proportional effects to increase cell layer protein (P <0.001) and decrease the release of sALP activity (P <0.001). IGF-I also inhibited the actions of TNF-a and okadiac acid to increase apoptosis and sALP release. The associations between apoptosis and sALP release were not unique to osteosarcoma (i.e., SaOS-2) cells, but also seen with osteoblast-line cells derived from normal human bone. Together, these data demonstrate that the release of sALP activity from human osteoblast-line cells in vitro is associated with, and may be a consequence of, apoptotic cell death. These findings are consistent with the general hypothesis that the appearance of sALP activity in serum may reflect the turnover of osteoblast-line cells.
Taurine and neural cell damage.
Saransaari, P; Oja, S S
2000-01-01
The inhibitory amino acid taurine is an osmoregulator and neuromodulator, also exerting neuroprotective actions in neural tissue. We review now the involvement of taurine in neuron-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals, metabolic poisons and an excess of ammonia. The brain concentration of taurine is increased in several models of ischemic injury in vivo. Cell-damaging conditions which perturb the oxidative metabolism needed for active transport across cell membranes generally reduce taurine uptake in vitro, immature brain tissue being more tolerant to the lack of oxygen. In ischemia nonsaturable diffusion increases considerably. Both basal and K+-stimulated release of taurine in the hippocampus in vitro is markedly enhanced under cell-damaging conditions, ischemia, free radicals and metabolic poisons being the most potent. Hypoxia, hypoglycemia, ischemia, free radicals and oxidative stress also increase the initial basal release of taurine in cerebellar granule neurons, while the release is only moderately enhanced in hypoxia and ischemia in cerebral cortical astrocytes. The taurine release induced by ischemia is for the most part Ca2+-independent, a Ca2+-dependent mechanism being discernible only in hippocampal slices from developing mice. Moreover, a considerable portion of hippocampal taurine release in ischemia is mediated by the reversal of Na+-dependent transporters. The enhanced release in adults may comprise a swelling-induced component through Cl- channels, which is not discernible in developing mice. Excitotoxic concentrations of glutamate also potentiate taurine release in mouse hippocampal slices. The ability of ionotropic glutamate receptor agonists to evoke taurine release varies under different cell-damaging conditions, the N-methyl-D-aspartate-evoked release being clearly receptor-mediated in ischemia. Neurotoxic ammonia has been shown to provoke taurine release from different brain preparations, indicating that the ammonia-induced release may modify neuronal excitability in hyperammonic conditions. Taurine released simultane ously with an excess of excitatory amino acids in the hippocampus under ischemic and other neuron-damaging conditions may constitute an important protective mechanism against excitotoxicity, counteracting the harmful effects which lead to neuronal death. The release of taurine may prevent excitation from reaching neurotoxic levels.
Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William
2016-09-01
Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.
Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
Schadel, Christina; Bader, Martin K. F.; Schuur, Edward; ...
2016-01-01
Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studiesmore » from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systemsreleasingCO2 andCH4 for a given amount of C.« less
Avgoustakis, K; Beletsi, A; Panagi, Z; Klepetsanis, P; Karydas, A G; Ithakissios, D S
2002-02-19
The in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties of PLGA-mPEG nanoparticles of cisplatin were investigated. The nanoparticles were prepared by a double emulsion method and characterized with regard to their morphology, size, zeta potential and drug loading. The rate of in vitro degradation of the PLGA-mPEG nanoparticles in PBS (pH 7.4) depended on their composition, increasing when the mPEG content (mPEG:PLGA ratio) of the nanoparticles increased. Sustained cisplatin release over several hours from the PLGA-mPEG nanoparticles in vitro (PBS) was observed. The composition of the nanoparticles affected drug release: the rate of release increased when the mPEG content of the nanoparticles increased. Within the range of drug loadings investigated, the drug loading of the nanoparticles did not have any significant effect on drug release. The loading efficiency was low and needs improvement in order to obtain PLGA-mPEG nanoparticles with a satisfactory cisplatin content for therapeutic application. The i.v. administration of PLGA-mPEG nanoparticles of cisplatin in BALB/c mice resulted in prolonged cisplatin residence in systemic blood circulation. The results appear to justify further investigation of the suitability of the PLGA-mPEG nanoparticles for the controlled i.v. delivery and/or targeting of cisplatin.
Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László
2004-03-01
The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine binding to heavy sarcoplasmic reticulum vesicles, with a half-activating concentration of 144 micro M and a Hill coefficient of 1.89, and the open probability of the isolated and reconstituted ryanodine receptors, from 0.09 +/- 0.03 to 0.22 +/- 0.04 at 30 micro M. At higher concentrations the drug induced long-lasting open events on a full conducting state. Elementary calcium release events imaged using laser scanning confocal microscopy in the line-scan mode were reduced in size, 0.92 +/- 0.01 vs. 0.70 +/- 0.01, but increased in duration, 56 +/- 1 vs. 79 +/- 1 ms, by 30 micro M thymol, with an increase in the relative proportion of lone embers. Higher concentrations favored long events, resembling embers in control, with duration often exceeding 500 ms. These findings provide direct experimental evidence that the opening of a single release channel will generate an ember, rather than a spark, in mammalian skeletal muscle.
Modesto, Waleska; Dal Ava, Natália; Monteiro, Ilza; Bahamondes, Luis
2015-12-01
There is scarce information about bone mineral density (BMD) and body composition (BC) among users of the etonogestrel (ENG)-releasing implant. To evaluate BC and BMD in ENG-releasing implant users as compared to copper intrauterine device (Cu-IUD)-users. A prospective study was conducted on 75 users of both contraceptive methods. BMD was evaluated at femoral neck (FN) and lumbar spine (LS) (L1-L4) and BC at baseline and at 12 months after insertion. The mean (±SD) age was 30.4 ± 6.8 and 29.8 ± 8.4 years and body mass index (kg/m(2)) was 24.9 ± 4.1 and 24.6 ± 3.5 in ENG-releasing implant- and Cu-IUD-users, respectively. ENG-releasing implant users did not show significant differences on BMD at the LS and FN at 12 months of use. Furthermore, ENG-implant users had an increase in body weight at 12 months (p < 0.001) and an increase of 2 % in the percentage of body fat, when compared with Cu-IUD users. There was a significant increase in lean mass in ENG-implant users at 12 months (p = 0.020). No significant changes of BMD were seen after the first year of use among the ENG-releasing implant-users, albeit an increase of weight and fat mass was seen when compared to Cu-IUD users.
O'Connor, W T
2001-08-15
Microdialysis was employed to investigate the dopamine, cholecystokinin (CCK) and neurotensin receptor regulation of ventral striopallidal GABA transmission by intra-accumbens perfusion with selective receptor ligands and monitoring local or ipsilateral ventral pallidal GABA release. In the dual probe studies intra-accumbens perfusion with the dopamine D1 and D2 receptor agonists SKF28293 and pergolide had no effect on ventral pallidal GABA, while both the D1 and D2 receptor antagonists SCH23390 and raclopride increased ventral pallidal GABA release. In contrast, intra-accumbens CCK decreased ventral pallidal GABA release and this was reversed by local perfusion with the CCK2 receptor antagonist PD134308 but not the CCK1 receptor antagonist L-364,718. In a single probe study intra-accumbens neurotensin increased local GABA release, which was strongly potentiated when the peptidase inhibitor phosphodiepryl 08 was perfused together with neurotensin. In addition, the neurotensin receptor antagonist SR48692 counteracted this phosphodiepryl 08 induced potentiated increased in GABA release. Taken together, these findings indicate that mesolimbic dopamine and CCK exert a respective tonic and phasic inhibition of ventral pallidal GABA release while the antipsychotic activity associated with D1 and D2 receptor antagonists may be explained by their ability to increase ventral striopallidal GABA transmission. Furthermore, the findings suggest that CCK2 receptor antagonists and neurotensin endopeptidase inhibitors may be useful antipsychotics.
Bjorklund, Nicole L.; Sadagoparamanujam, V.M.; Taglialatela, Giulio
2011-01-01
Aberrant central nervous system zinc homeostasis has been reported in Alzheimer’s disease (AD). However, there are conflicting reports describing zinc concentration either increased or decreased in the brain of AD patients. Such discrepancies may be due to differences in the brain area examined, zinc detection method, and/or tissue composition. Furthermore, detection and measurement of the releasable zinc pool in autopsy tissue is difficult and usually unreliable. Obtaining an adequate assessment of this releasable zinc pool is of particular significance in AD research in that zinc can coordinate with and stabilize toxic amyloid beta oligomers, which are believed to play a key role in AD neuropathology. In addition, zinc released into the synaptic cleft can interact with the postsynaptic neurons causing altered signaling and synaptic dysfunction, which is a well established event in AD. The method presented here combines two approaches, biochemical fractionation and atomic absorption spectrophotometry, to allow, in addition to extracellular zinc concentration, the reliable and quantitative measurement of zinc specifically localized in synaptic vesicles, which contain the majority of the neuronal releasable zinc. Using this methodology, we found that synaptic vesicle zinc concentrations were increased in AD hippocampi compared to age-matched controls and that this increase in releasable zinc matched increased concentration of zinc in the extracellular space. PMID:21945000
Glanowska, Katarzyna M; Moenter, Suzanne M
2015-01-01
GnRH release in the median eminence (ME) is the central output for control of reproduction. GnRH processes in the preoptic area (POA) also release GnRH. We examined region-specific regulation of GnRH secretion using fast-scan cyclic voltammetry to detect GnRH release in brain slices from adult male mice. Blocking endoplasmic reticulum calcium reuptake to elevate intracellular calcium evokes GnRH release in both the ME and POA. This release is action potential dependent in the ME but not the POA. Locally applied kisspeptin induced GnRH secretion in both the ME and POA. Local blockade of inositol triphospate-mediated calcium release inhibited kisspeptin-induced GnRH release in the ME, but broad blockade was required in the POA. In contrast, kisspeptin-evoked secretion in the POA was blocked by local gonadotropin-inhibitory hormone, but broad gonadotropin-inhibitory hormone application was required in the ME. Although action potentials are required for GnRH release induced by pharmacologically-increased intracellular calcium in the ME and kisspeptin-evoked release requires inositol triphosphate-mediated calcium release, blocking action potentials did not inhibit kisspeptin-induced GnRH release in the ME. Kisspeptin-induced GnRH release was suppressed after blocking both action potentials and plasma membrane Ca(2+) channels. This suggests that kisspeptin action in the ME requires both increased intracellular calcium and influx from the outside of the cell but not action potentials. Local interactions among kisspeptin and GnRH processes in the ME could thus stimulate GnRH release without involving perisomatic regions of GnRH neurons. Coupling between action potential generation and hormone release in GnRH neurons is thus likely physiologically labile and may vary with region.
Charlwood, J. Derek; Harrington, Laura C.; Lounibos, L. Philip; Reisen, William K.; Tabachnick, Walter J.
2018-01-01
Abstract Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, “experimental releases” means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals. PMID:29337660
Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruenhagen, Jason Alan
The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activatedmore » a G{sub q}-type protein to initiate ATP release from HUVECs. Ca 2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca 2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K + and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized CdS monocrystals. Aggregates of nanospheres were bathed in imaging solution, and ATP bioluminescence was monitored to investigated the release kinetics of the nanosphere drug delivery systems. Addition of disulfide bond-cleaving molecules induced uncapping of the nanospheres and subsequently, the release of ATP. Increasing the concentration of the uncapping molecule decreased the temporal maximum and increased the magnitude of release of encapsulated ATP from the nanospheres. Furthermore, the release kinetics from the nanospheres varied with the size of the particle aggregates.« less
McAvoy, Kathryn; Jones, David; Thakur, Raghu Raj Singh
2018-01-16
To investigate the sustained ocular delivery of small and large drug molecules from photocrosslinked poly(ethylene glycol) diacrylate (PEGDA) implants with varying pore forming agents. Triamcinolone acetonide and ovalbumin loaded photocrosslinked PEGDA implants, with or without pore-forming agents, were fabricated and characterised for chemical, mechanical, swelling, network parameters, as well as drug release and biocompatibility. HPLC-based analytical methods were employed for analysis of two molecules; ELISA was used to demonstrate bioactivity of ovalbumin. Regardless of PEGDA molecular weight or pore former composition all implants loaded with triamcinolone acetonide released significantly faster than those loaded with ovalbumin. Higher molecular weight PEGDA systems (700 Da) resulted in faster drug release of triamcinolone acetonide than their 250 Da counterpart. All ovalbumin released over the 56-day time period was found to be bioactive. Increasing PEGDA molecular weight resulted in increased system swelling, decreased crosslink density (Ve), increased polymer-water interaction parameter (χ), increased average molecular weight between crosslinks (Mc) and increased mesh size (ε). SEM studies showed the porosity of implants increased with increasing PEGDA molecular weight. Biocompatibility showed both PEGDA molecular weight implants were non-toxic when exposed to retinal epithelial cells over a 7-day period. Photocrosslinked PEGDA implant based systems are capable of controlled drug release of both small and large drug molecules through adaptations in the polymer system network. We are currently continuing evaluation of these systems as potential sustained drug delivery devices.
Exaggerations and Caveats in Press Releases and Health-Related Science News.
Sumner, Petroc; Vivian-Griffiths, Solveiga; Boivin, Jacky; Williams, Andrew; Bott, Lewis; Adams, Rachel; Venetis, Christos A; Whelan, Leanne; Hughes, Bethan; Chambers, Christopher D
2016-01-01
Exaggerated or simplistic news is often blamed for adversely influencing public health. However, recent findings suggested many exaggerations were already present in university press releases, which scientists approve. Surprisingly, these exaggerations were not associated with more news coverage. Here we test whether these two controversial results also arise in press releases from prominent science and medical journals. We then investigate the influence of mitigating caveats in press releases, to test assumptions that caveats harm news interest or are ignored. Using quantitative content analysis, we analyzed press releases (N = 534) on biomedical and health-related science issued by leading peer-reviewed journals. We similarly analysed the associated peer-reviewed papers (N = 534) and news stories (N = 582). Main outcome measures were advice to readers and causal statements drawn from correlational research. Exaggerations in press releases predicted exaggerations in news (odds ratios 2.4 and 10.9, 95% CIs 1.3 to 4.5 and 3.9 to 30.1) but were not associated with increased news coverage, consistent with previous findings. Combining datasets from universities and journals (996 press releases, 1250 news), we found that when caveats appeared in press releases there was no reduction in journalistic uptake, but there was a clear increase in caveats in news (odds ratios 9.6 and 9.5 for caveats for advice and causal claims, CIs 4.1 to 24.3 and 6.0 to 15.2). The main study limitation is its retrospective correlational nature. For health and science news directly inspired by press releases, the main source of both exaggerations and caveats appears to be the press release itself. However we find no evidence that exaggerations increase, or caveats decrease, the likelihood of news coverage. These findings should be encouraging for press officers and scientists who wish to minimise exaggeration and include caveats in their press releases.
Exaggerations and Caveats in Press Releases and Health-Related Science News
Sumner, Petroc; Boivin, Jacky; Bott, Lewis; Adams, Rachel; Whelan, Leanne; Hughes, Bethan; Chambers, Christopher D.
2016-01-01
Background Exaggerated or simplistic news is often blamed for adversely influencing public health. However, recent findings suggested many exaggerations were already present in university press releases, which scientists approve. Surprisingly, these exaggerations were not associated with more news coverage. Here we test whether these two controversial results also arise in press releases from prominent science and medical journals. We then investigate the influence of mitigating caveats in press releases, to test assumptions that caveats harm news interest or are ignored. Methods and Findings Using quantitative content analysis, we analyzed press releases (N = 534) on biomedical and health-related science issued by leading peer-reviewed journals. We similarly analysed the associated peer-reviewed papers (N = 534) and news stories (N = 582). Main outcome measures were advice to readers and causal statements drawn from correlational research. Exaggerations in press releases predicted exaggerations in news (odds ratios 2.4 and 10.9, 95% CIs 1.3 to 4.5 and 3.9 to 30.1) but were not associated with increased news coverage, consistent with previous findings. Combining datasets from universities and journals (996 press releases, 1250 news), we found that when caveats appeared in press releases there was no reduction in journalistic uptake, but there was a clear increase in caveats in news (odds ratios 9.6 and 9.5 for caveats for advice and causal claims, CIs 4.1 to 24.3 and 6.0 to 15.2). The main study limitation is its retrospective correlational nature. Conclusions For health and science news directly inspired by press releases, the main source of both exaggerations and caveats appears to be the press release itself. However we find no evidence that exaggerations increase, or caveats decrease, the likelihood of news coverage. These findings should be encouraging for press officers and scientists who wish to minimise exaggeration and include caveats in their press releases. PMID:27978540
Roland, Jessica J.; Savage, Lisa M.
2009-01-01
Wernicke-Korsakoff syndrome (WKS), a form of diencephalic amnesia caused by thiamine deficiency, results in severe anterograde memory loss. Pyrithiamine-induced thiamine deficiency (PTD), an animal model of WKS, produces cholinergic abnormalities including decreased functional hippocampal acetylcholine (ACh) release and poor spatial memory. Increasing hippocampal ACh levels has increased performance in PTD animals. Intraseptal bicuculline (GABAA antagonist) augments hippocampal ACh release in normal animals and we found it (0.50μg/μl & 0.75μg/μl) also increased in-vivo hippocampal ACh release in PTD animals. However, the 0.75 μg/μl dose produced a greater change in hippocampal ACh release in control animals. The 0.50μg/μl dose of bicuculline was then selected to determine if it could enhance spontaneous alternation performance in PTD animals. This dose of bicuculline significantly increased hippocampal ACh levels above baseline in both PTD and control rats and resulted in complete behavioral recovery in PTD animals, without altering performance in control rats. This suggests that balancing ACh-GABA interactions in the septohippocampal circuit may be an effective therapeutic approach in certain amnestic syndromes. PMID:19463263
Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress?
Contreras-Zentella, Martha Lucinda; Hernández-Muñoz, Rolando
2016-01-01
Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH) in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver.
Zhu, Qiaomei; Zhao, Ling; Zhang, Hui; Saito, Masayoshi; Yin, Lijun
2017-04-01
The objective of present study was to prepare multiple water-in-oil-in-water (W/O/W) emulsions that exhibit different release rates of magnesium ions; and assess their utility as coagulants in improving tofu quality. W/O/W emulsions containing bovine serum albumin (BSA) and magnesium chloride (MgCl 2 ) were developed for controlled release applications. An increasing BSA concentration led to an increase in viscosity and droplet size of W/O/W double emulsions, as well as a decreased release rate of encapsulated Mg 2+ from emulsions. The gelation process of soy protein was simulated by conducting dynamic viscoelastic measurements. The rate constant (k) and saturated storage modulus (G' sat ) values of soy protein gel decreased as BSA concentration increased, suggesting that BSA could slow the release of magnesium ions from double emulsions. Confocal laser scanning microscopy (CLSM) results showed that increased concentration of BSA created a more homogeneous microstructure of soy protein gels with smaller pores within the gel network structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Brichieri-Colombi, Typhenn A; Lloyd, Natasha A; Mcpherson, Jana M; Moehrenschlager, Axel
2018-06-19
With the loss of biodiversity accelerating, conservation translocations such as reintroductions are becoming an increasingly common conservation tool. Conservation translocations must source individuals for release from either wild or captive-bred populations. We asked what proportion of North American conservation translocations rely on captive breeding, and to what extent zoos and aquaria (hereafter zoos) fulfill captive breeding needs. Our comprehensive literature review indicates that North American conservation translocations published before 2014 involved captive breeding for 162 (58%) of the 279 animal species translocated. Fifty-four zoos contributed animals for release; the fourty species of animals bred for release by zoos represents only 14% of all animal species for which conservation translocations were published, and only 25% of all animal species that were bred for releases occurring in North America. Zoo contributions varied by taxon, ranging from zoo-bred animals released in 42% of amphibian conservation translocations to zero contributions for marine invertebrates. Proportional involvement of zoos in captive breeding programs for release has increased over time as has the proportion of translocation-focused scientific papers co-authored by zoo professionals. While zoos also contribute to conservation translocations through education, funding, and professional expertise, increasing the contribution of animals for release in responsible conservation translocation programs presents a future conservation need and opportunity. We especially encourage increased dialogue and planning between the zoo community, academic institutions, and governments to optimize the direct contribution zoos can make to wildlife conservation through conservation translocations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Andrie; Krisanti, Elsa A.
2018-03-01
The problem to overcome in oral drug administration is the significant pH changes present in the human digestive system. In this study, ionotropic gelation method employing 2-8% (w/v) tripolyphosphate solutions were used to crosslink chitosan microspheres for a controlled release of paracetamol as a model drug. The release profiles of paracetamol from chitosan microspheres were determined using simulated gastrointestinal fluids having pH values of 1.2, 6.8, and 7.4. The results showed that the paracetamol loading and the encapsulation efficiency values increased with increasing concentration of tripolyphosphate solutions used in the preparation step. Paracetamol released at pH 1.2 and 6.8 buffer solutions was significantly higher than that at pH 7.4; also, more paracetamol was released in the presence of α-amylase and β-glucosidase enzymes. The release profiles showed zero-order release behaviour up to 8 hours where the highest drug release was 39% of the paracetamol loaded in the chitosan microspheres, indicating a strong crosslinking between chitosan and TPP anions. The relatively low accumulated drug release could be compensated by employing suitable enzymes, lower TPP solution concentration, and addition of other biodegradable polymer to reduce the TPP crosslink.
Fan, Ying-Ying; Zheng, Jian-Lun; Ren, Jing-Hua; Luo, Jun; Cui, Xin-Yi; Ma, Lena Q
2014-09-01
We investigated effects of storage temperature and duration on release of antimony (Sb) and bisphenol A (BPA) from 16 brands of polyethylene terephthalate (PET) drinking water bottles in China. After 1-week storage, Sb release increased from 1.88-8.32 ng/L at 4 °C, to 2.10-18.4 ng/L at 25 °C and to 20.3-2604 ng/L at 70 °C. The corresponding releases for BPA were less at 0.26-18.7, 0.62-22.6, and 2.89-38.9 ng/L. Both Sb and BPA release increased with storage duration up to 4-week, but their releasing rates decreased with storage time, indicating that Sb and BPA release from PET bottles may become stable under long term storage. Human health risk was evaluated based on the worst case, i.e., storage at 70 °C for 4-week. Chronic daily intake (CDI) caused by BPA release was below USEPA regulation, Sb release in one brand exceeded USEPA regulated CDI (400 ng/kg bw/d) with values of 409 and 1430 ng/kg bw/d for adult and children. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predator response to releases of American shad larvae in the Susquehanna River basin
Johnson, James H.; Ringler, N.H.
1998-01-01
Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.
SURVIVAL OF CAPTIVE-REARED PUERTO RICAN PARROTS RELEASED IN THE CARIBBEAN NATIONAL FOREST
THOMAS H. WHITE; JAIME A. COLLAZO; FRANCISCO J. VILELLA
2005-01-01
We report first-year survival for 34 captive-reared Puerto Rican Parrots (Amazona vittata) released in the Caribbean National Forest, Puerto Rico between 2000 and 2002. The purpose of the releases were to increase population size and the potential number of breeding individuals of the sole extant wild population, and to refine release protocols for eventual...
Crown Release Promotes Faster Diameter Growth of Pole-Size Black Walnut
Robert E. Phares; Robert D. Williams
1971-01-01
Complete crown release more than doubles the diameter growth of pole-size black walnut trees in southern Indiana over a 10-year period. Partially released trees gew about 50 percent more than unreleased trees. The faster growth of the released trees was directly related to increases in crown-area expansion. Most of the study trees produced bole sprouts; however, the...
ERIC Educational Resources Information Center
Tansey, E. A.; Roe, S. M.; Johnson, C. J.
2014-01-01
When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the…
Viviani, B; Corsini, E; Pesenti, M; Galli, C L; Marinovich, M
2001-04-15
Exposure of a primary culture of glial cells to the classical neurotoxicant trimethyltin (TMT) results in the release of prostaglandin (PG)E(2) and tumor necrosis factor (TNF)-alpha. Prior treatment of glial cells with either the nonspecific inhibitor of cyclooxygenase and lypoxygenase eicosatetraynoic acid (ETYA) or the cyclooxygenase inhibitor indomethacin completely prevented TMT-induced PGE(2) production and TNF-alpha release, suggesting a role for cyclooxygenase metabolites in TMT-induced TNF-alpha release. Exposure of glial cells to increasing concentrations of PGE(2) or other prostanoids did not increase TNF-alpha synthesis, while the presence of exogenous PGE(2) during treatment of glial cells with TMT actually suppressed TNF-alpha release. The activation of arachidonic acid metabolism produces reactive oxygen species (ROS). Scavenging of ROS by means of the antioxidant trolox prevented the TMT-induced release of TNF-alpha from glial cells, while indomethacin was found to suppress ROS formation induced by 1 microM TMT in glial cells. These results suggest that activation of arachidonic acid metabolism causes TNF-alpha release through the production of ROS rather than PGE(2). Indeed, PGE(2) may exert negative feedback on the release of TNF-alpha. Copyright 2001 Academic Press.
Delivery of fullerene-containing complexes via microgel swelling and shear-induced release.
Tarabukina, Elena; Zoolshoev, Zoolsho; Melenevskaya, Elena; Budtova, Tatiana
2010-01-15
The absorption and release of poly(vinylpyrrolidone)-fullerene C60 complexes (PVP/C60) from a model microgel is studied. A dry microgel based on a chemically cross-linked sodium polyacrylate was swollen in the aqueous solutions of complexes which were afterwards released under shear stress. First, gel swelling degree in static conditions in the excess of PVP/C60 solutions was studied: the degree of swelling decreases with the increase in PVP/C60 concentration. While pure PVP is homogeneously distributed between the gel and the surrounding solution, a slight concentration of complexes outside the gel was recorded. It was attributed to PVP/C60 hydrophobicity leading to the decrease in the thermodynamic quality of fullerene-containing solution being gel solvent. The release of PVP/C60 solutions induced by shear was studied with counter-rotating rheo-optical technique and compared with PVP solution release under the same conditions. The amount of solution released depends on polymer concentration and shear strain. Contrary to pure PVP solutions in which rate of release decreases with the increase in polymer concentration, PVP/C60 complexes are released faster when fullerene concentration inside the gel is higher.
Dan, Nily
2014-11-25
Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures.
Wang, Aiping; Liang, Rongcai; Liu, Wanhui; Sha, Chunjie; Li, Youxin; Sun, Kaoxiang
2016-01-01
The initial burst release is a major obstacle to the development of microsphere-formulated drug products. To investigate the influence of palmitic acid on the characteristics and release profiles of rotigotine-loaded poly(d,l-lactide-co-glycolide) microspheres. Rotigotine-loaded microspheres (RMS) were prepared using the oil-in-water emulsion solvent evaporation technique. The in vitro characteristics of the RMS were evaluated with scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and a particle size analyzer. The in vitro drug release and in vivo pharmacokinetics of the RMS were investigated. The SEM results showed that the addition of palmitic acid changed the surface morphology of the microspheres from smooth to dimpled and then to non-smooth as the palmitic acid content increased. DSC revealed the existence of molecularly dispersed forms of palmitic acid in the microspheres. The in vitro and in vivo release profiles indicated that the addition of 5% and 8% palmitic acid significantly decreased the burst release of rotigotine from the microspheres, and the late-stage release was delayed as the palmitic acid content increased across the investigated range (5-15%). The addition of palmitic acid to the microspheres significantly affects the release profile of rotigotine from RMS.
Huebner, Benjamin R; Moore, Ernest E; Moore, Hunter B; Gonzalez, Eduardo; Kelher, Marguerite R; Sauaia, Angela; Banerjee, Anirban; Silliman, Christopher C
2018-05-01
Plasminogen activator inhibitor-1 (PAI-1) is a major regulator of the fibrinolytic system, covalently binding to tissue plasminogen activator and blocking its activity. Fibrinolysis shutdown is evident in the majority of severely injured patients in the first 24 h and is thought to be due to PAI-1. The source of this PAI-1 is thought to be predominantly endothelial cells, but there are known organ-specific differences, with higher levels thought to be in the liver. Thrombin generation is also elevated in injured patients and is a potent stimulus for PAI-1 release in human umbilical endothelial cells. We hypothesize that thrombin induces liver endothelial cells to release increased amounts of PAI-1, versus pulmonary endothelium, consisting of both stored PAI-1 and a larger contribution from de novo PAI-1 synthesis. Human liver sinusoidal endothelial cells (LSECs) and human microvascular lung endothelial cells (HMVECs) were stimulated in vitro ± thrombin (1 and 5 IU/mL) for 15-240 min, the supernatants were collected, and PAI-1 was measured by enzyme-linked immunosorbent assays. To elucidate the PAI-1 contribution from storage versus de novo synthesis, cycloheximide (10 μg/mL) was added before thrombin in separate experiments. While both LSECs and HMVECs rapidly stimulated PAI-1 release, LSECs released more PAI-1 than HMVECs in response to high-dose thrombin, whereas low-dose thrombin did not provoke immediate release. LSECs continued to release PAI-1 over the ensuing 240 min, whereas HMVECs did not. Cycloheximide did not inhibit early PAI-1 release from LSECs but did at the later time points (30-240 min). Thrombin elicits increased amounts of PAI-1 release from liver endothelium compared with lung, with a small presynthesized stored contribution and a later, larger increase in PAI-1 release via de novo synthesis. This study suggests that the liver may be an important therapeutic target for inhibition of the hypercoagulable surgical patient and the associated complications that result. Copyright © 2017 Elsevier Inc. All rights reserved.
Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree
2016-11-01
The research undertaken exemplifies the effects of hydroxypropyl methylcellulose (HPMC) molecular weight (MW) grades of on lag time of press-coated ethylcellulose (EC) tablets. The formulation comprised an immediate release core (containing prednisone as a model drug) surrounded by compression coating with variegated EC-HPMC blends. Five selected HPMC grades (E5, E15, E50, K100LV and K4M) were explored at three different concentrations (10% w/w, 20% w/w and 30% w/w in outer coat) to understand their effects on lag time and drug release. In vitro drug release testing demonstrated that, with increase in concentration of E5 and E15, up to 30% w/w, the mean lag time decreased progressively; whereas with remaining grades, the mean lag time initially decreased up to 20% w/w level and thereafter increased for 30% w/w level. Importantly, with increase in HPMC concentration in the outer coat, the variability in lag time (%RSD; n = 6) was decreased for each of E5, E15 and E50, whereas increased for K100LV and K4M. In general, the variability in lag time was increased with increase in HPMC MW at studied concentration levels. Markedly, tablets with 30% w/w K4M in outer coat exhibited slight premature release (before the rupture of outer coat) along with high variability in lag time. Overall, the study concluded that low MW HPMCs (E5, E15 and E50) were found rather efficient than higher MW HPMCs for developing robust EC-based press-coated pulsatile release formulations where precise lag time followed by sharp burst release is desired.
L'Heureux, R; Dennis, T; Curet, O; Scatton, B
1986-06-01
The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)
Ca2+-mediated ascorbate release from coronary artery endothelial cells.
Davis, Kim A; Samson, Sue E; Best, Kelly; Mallhi, Kanwaldeep K; Szewczyk, Magdalena; Wilson, John X; Kwan, Chiu-Yin; Grover, Ashok K
2006-01-01
1.--The addition of Ca(2+) ionophore A23187 or ATP to freshly isolated or cultured pig coronary artery endothelial cells (PCEC) potentiated the release of ascorbate (Asc). Cultured PCEC were used to characterize the Ca(2+)-mediated release. An increase in Ca(2+)-mediated Asc release was observed from PCEC preincubated with Asc, Asc-2-phosphate or dehydroascorbic acid (DHAA). 2.--The effects of various ATP analogs and inhibition by suramin were consistent with the ATP-induced release being mediated by P2Y2-like receptors. 3.--ATP-stimulated Asc release was Ca(2+)-mediated because (a) ATP analogs that increased Asc release also elevated cytosolic [Ca(2+)], (b) Ca(2+) ionophore A23187 and cyclopiazonic acid stimulated the Asc release, (c) removing extracellular Ca(2+) and chelating intracellular Ca(2+)inhibited the ATP-induced release, and (d) inositol-selective phospholipase C inhibitor U73122 also inhibited this release. 4.--Accumulation of Asc by PCEC was examined at Asc concentrations of 10 microM (Na(+)-Asc symporter not saturated) and 5 mM (Na(+)-Asc symporter saturated). At 10 microM Asc, A23187 and ATP caused an inhibition of Asc accumulation but at 5 mM Asc, both the agents caused a stimulation. Substituting gluconate for chloride did not affect the basal Asc uptake but it abolished the effects of A23187. 5.--PCEC but not pig coronary artery smooth muscle cells show a Ca(2+)- mediated Asc release pathway that may be activated by agents such as ATP.
Anitua, E; Zalduendo, M M; Prado, R; Alkhraisat, M H; Orive, G
2015-03-01
The potential influence of leukocyte incorporation in the kinetic release of growth factors from platelet-rich plasma (PRP) may explain the conflicting efficiency of leukocyte platelet-rich plasma (L-PRP) scaffolds in tissue regeneration. To assess this hypothesis, leukocyte-free (PRGF-Endoret) and L-PRP fibrin scaffolds were prepared, and both morphogen and proinflammatory cytokine release kinetics were analyzed. Clots were incubated with culture medium to monitor protein release over 8 days. Furthermore, the different fibrin scaffolds were morphologically characterized. Results show that leukocyte-free fibrin matrices were homogenous while leukocyte-containing ones were heterogeneous, loose and cellular. Leukocyte incorporation produced a significant increase in the contents of proinflammatory cytokines interleukin (IL)-1β and IL-16 but not in the platelet-derived growth factors release (<1.5-fold). Surprisingly, the availability of vascular endothelial growth factor suffered an important decrease after 3 days of incubation in the case of L-PRP matrices. While the release of proinflammatory cytokines was almost absent or very low from PRGF-Endoret, the inclusion of leukocytes induced a major increase in these cytokines, which was characterized by the presence of a latent period. The PRGF-Endoret matrices were stable during the 8 days of incubation. The inclusion of leukocytes alters the growth factors release profile and also increased the dose of proinflammatory cytokines. © 2014 Wiley Periodicals, Inc.
Laturnus, F; Giese, B; Wiencke, C; Adams, F C
2000-01-01
The influence of temperature, light, salinity and nutrient availability on the release of volatile halogenated hydrocarbons was investigated in the Antarctic red macroalgal species Gymnogongrus antarcticus Skottsberg. Compared to standard culture condition, an increase in the release rates of iodocompounds was generally found for the exposure of the alga to altered environmental conditions. Macroalgae exhibited higher release rates after adaptation for two months to the changed factors, than after short-term exposure. Monitoring the release rates during a 24 h incubation period (8.25 h light, 15.75 h darkness) showed that changes between light and dark periods had no influence on the release of volatile halocarbons. Compounds like bromoform and 1-iodobutane exhibited constant release rates during the 24 h period. The formation mechanisms and biological role of volatile organohalogens are discussed. Although marine macroalgae are not considered to be the major source of biogenically-produced volatile organohalogens, they contribute significantly to the bromine and iodine cycles in the environment. Under possible environmental changes like global warming and uncontrolled entrophication of the oceans their significance may be increase.
The effect of hydrogen peroxide concentration on metal ion release from dental casting alloys.
Al-Salehi, S K; Hatton, P V; Johnson, A; Cox, A G; McLeod, C
2008-04-01
There are concerns that tooth bleaching agents may adversely affect dental materials. The aim of this study was to test the hypothesis that increasing concentrations of hydrogen peroxide (HP) are more effective than water at increasing metal ion release from two typical dental casting alloys during bleaching. Discs (n = 28 for each alloy) were prepared by casting and heat treated to simulate a typical porcelain-firing cycle. Discs (n = 7) of each alloy were immersed in either 0%, 3%, 10% or 30% (w/v) HP solutions for 24 h at 37 degrees C. Samples were taken for metal ion release determination using inductively coupled plasma-mass spectrometry and the data analysed using a two-way anova followed by a one-way anova. The surface roughness of each disc was measured using a Talysurf contact profilometer before and after bleaching and the data analysed using a paired t-test. With the exception of gold, the differences in metal ion concentration after treatment with 0% (control) and each of 3%, 10% and 30% HP (w/v) were statistically significant (P < 0.05). Metal ion release from the two alloys increased with increasing HP concentrations (over 3000% increase in Ni and 1400% increase in Pd ions were recorded when HP concentration increased from 0% to 30%). Surface roughness values of the samples before and after bleaching were not significantly different (P > 0.05) Exposure of the two dental casting alloys to HP solutions increased metal ion release of all the elements except gold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo
2015-11-01
Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. Published by Elsevier Inc.
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...
2015-07-21
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, Jerrel R.
1989-08-01
The objective of this 7-year National Fisheries Service study, which began is 1982, was to determine if transporting juvenile steelhead (Oncorhynchus mykiss) by truck and barge from Dworshak National Fish Hatchery (NFH), on the Clearwater River, to a release site on the Columbia River below Bonneville Dam would result in increased returns of adults to the various fisheries and to the hatchery homing site. During 1982 and 1983, over 500,000 marked juvenile steelhead were serially released as controls from the hatchery or barged as test fish to below Bonneville Dam. Recoveries of marked adults to various recovery sites are complete.more » Fish released in 1983 showed a stronger homing ability and more rapid upstream migration than test fish released in 1982. Most adults from both control and test releases in 1983 and control releases in 1982 migrated a considerable distance upstream and overwintered in the Snake and Clearwater Rivers--behavior similar to Clearwater River fish previously transported from Lower Granite Dam. In contrast, many of the adults from test releases in 1982 failed to migrate upstream during the fall, overwintered in the Columbia River, and migrated upstream the following spring. Survival of control fish released at Dworshak NFH in late April 1982 was substantially higher than survival of those released in mid-May. Survival and homing of control fish released in late April and early May 1983 were over 10 times that for fish released in late May. Return of adults from normal hatchery releases in 1982 was the highest ever observed at Dworshak NFH.« less
Preparation and evaluation of sustained release microballoons of propranolol
Porwal, A; Swami, G; Saraf, SA
2011-01-01
Background and the purpose of the study The purpose of the present investigation was to characterize, optimize and evaluate microballoons of Propranolol hydrochloride and to increase its boioavailability by increasing the retention time of the drug in the gastrointestinal tract. Methods Propranolol hydrochloride-loaded microballoons were prepared by the non-aqueous O/O emulsion solvent diffusion evaporation method using Eudragit RSPO as polymer. It was found that preparation temperature determined the formation of cavity inside the microballoon and this in turn determined the buoyancy. Microballoons were subjected to particle size determination, micromeritic properties, buoyancy, entrapment efficiency, drug loading, in vitro drug release and IR study. The correlation between the buoyancy, bulk density and porosity of microballoons were elucidated. The release rate was determined in simulated gastric fluid (SGF) of pH 1.2 at 37±0.5°C. Results The microballoons presented spherical and smooth morphologies (SEM) and were porous due to presence of hollow cavity. Microballoons remained buoyant for >12 hrs for the optimized formulation. The formulation demonstrated favorable in vitro floating and release characteristics. The encapsulation efficiency was high. In vitro dissolution kinetics followed the Higuchi model. The drug release from microballoons was mainly controlled by diffusion and showed a biphasic pattern with an initial burst release, followed by sustained release for 12 hrs. The amount of the drug which released up to 12 hrs was 82.05±0.64%. Statistical analysis (ANOVA) showed significant difference (p<0.05) in the cumulative amount of drug released after 30 min, and up to 12 hrs from optimized formulations. Conclusion The designed system for propanolol would possibly be advantageous in terms of increased bioavailability and patient compliance. PMID:22615657
Wang, W. Q.; Song, S. Q.; Li, S. H.; Gan, Y. Y.; Wu, J. H.; Cheng, H. Y.
2009-01-01
The effect of stratification on dormancy release of grape seeds crossing from the sub- to the supraoptimal range of temperatures and water contents was analysed by modified threshold models. The stratification impacted on dormancy release in three different ways: (i) dormancy was consistently released with prolonged stratification time when stratified at temperatures of <15 °C; (ii) at 15 °C and 20 °C, the stratification effect initially increased, and then decreased with extended time; and (iii) stratification at 25 °C only reduced germinable seeds. These behaviours indicated that stratification could not only release primary dormancy but also induce secondary dormancy in grape seed. The rate of dormancy release changed linearly in two phases, while induction increased exponentially with increasing temperature. The thermal time approaches effectively quantified dormancy release only at suboptimal temperature, but a quantitative method to integrate the occurrence of dormancy release and induction at the same time could describe it well at either sub- or supraoptimal temperatures. The regression with the percentage of germinable seeds versus stratification temperature or water content within both the sub- and supraoptimal range revealed how the optimal temperature (Tso) and water content (Wso) for stratification changed. The Tso moved from 10.6 °C to 5.3 °C with prolonged time, while Wso declined from >0.40 g H2O g DW−1 at 5 °C to ∼0.23 g H2O g DW−1 at 30 °C. Dormancy release in grape seeds can occur across a very wide range of conditions, which has important implications for their ability to adapt to a changeable environment in the wild. PMID:19491305
Garcia, James P; Guerriero, Kathryn A; Keen, Kim L; Kenealy, Brian P; Seminara, Stephanie B; Terasawa, Ei
2017-10-01
Loss-of-function or inactivating mutations in the genes coding for kisspeptin and its receptor (KISS1R) or neurokinin B (NKB) and the NKB receptor (NK3R) in humans result in a delay in or the absence of puberty. However, precise mechanisms of kisspeptin and NKB signaling in the regulation of the pubertal increase in gonadotropin-releasing hormone (GnRH) release in primates are unknown. In this study, we conducted a series of experiments infusing agonists and antagonists of kisspeptin and NKB into the stalk-median eminence, where GnRH, kisspeptin, and NKB neuroterminal fibers are concentrated, and measuring GnRH release in prepubertal and pubertal female rhesus monkeys. Results indicate that (1) similar to those previously reported for GnRH stimulation by the KISS1R agonist (i.e., human kisspeptin-10), the NK3R agonist senktide stimulated GnRH release in a dose-responsive manner in both prepubertal and pubertal monkeys; (2) the senktide-induced GnRH release was blocked in the presence of the KISS1R antagonist peptide 234 in pubertal but not prepubertal monkeys; and (3) the kisspeptin-induced GnRH release was blocked in the presence of the NK3R antagonist SB222200 in the pubertal but not prepubertal monkeys. These results are interpreted to mean that although, in prepubertal female monkeys, kisspeptin and NKB signaling to GnRH release is independent, in pubertal female monkeys, a reciprocal signaling mechanism between kisspeptin and NKB neurons is established. We speculate that this cooperative mechanism by the kisspeptin and NKB network underlies the pubertal increase in GnRH release in female monkeys. Copyright © 2017 Endocrine Society.
Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.
Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O
2017-05-30
The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion.
Roblegg, Eva; Jäger, Evelyn; Hodzic, Aden; Koscher, Gerold; Mohr, Stefan; Zimmer, Andreas; Khinast, Johannes
2011-11-01
The objective of this study was the development of retarded release pellets using vegetable calcium stearate (CaSt) as a thermoplastic excipient. The matrix carrier was hot melt extruded and pelletized with a hot-strand cutter in a one step continuous process. Vegetable CaSt was extruded at temperatures between 100 and 130°C, since at these temperatures cutable extrudates with a suitable melt viscosity may be obtained. Pellets with a drug loading of 20% paracetamol released 11.54% of the drug after 8h due to the great densification of the pellets. As expected, the drug release was influenced by the pellet size and the drug loading. To increase the release rate, functional additives were necessary. Therefore, two plasticizers including glyceryl monostearate (GMS) and tributyl citrate (TBC) were investigated for plasticization efficiency and impact on the in vitro drug release. GMS increased the release rate due to the formation of pores at the surface (after dissolution) and showed no influence on the process parameters. The addition of TBC increased the drug release to a higher extent. After dissolving, the pellets exhibited pores at the surface and in the inner layer. Small- and Wide-Angle X-ray Scattering (SWAXS) revealed no major change in crystalline peaks. The results demonstrated that (nearly) spherical CaSt pellets could be successfully prepared by hot melt extrusion using a hot-strand cutter as downstreaming system. Paracetamol did not melt during the process indicating a solid suspension. Due to the addition of plasticizers, the in vitro release rate could be tailored as desired. Copyright © 2011 Elsevier B.V. All rights reserved.
Qiao, Mingxi; Chen, Dawei; Ma, Xichen; Liu, Yanjun
2005-04-27
Injectable biodegradable temperature-responsive poly(DL-lactide-co-glycolide-b-ethylene glycol-b-DL-lactide-co-glycolide) (PLGA-PEG-PLGA) triblock copolymers with DL-lactide/glycolide molar ratio ranging from 6/1 to 15/l were synthesized from monomers of DL-lactide, glycolide and polyethylene glycol and characterized by 1H NMR. The resulting copolymers are soluble in water to form free flowing fluid at room temperature but become hydrogels at body temperature. The hydrophobicity of the copolymer increased with the increasing of DL-lactide/glycolide molar ratio. In vitro dissolution studies with two different hydrophobic drugs (5-fluorouracil and indomethacin) were performed to study the effect of DL-lactide/glycolide molar ratio on drug release and to elucidate drug release mechanism. The release mechanism for hydrophilic 5-fluorouracil was diffusion-controlled, while hydrophobic indomethacin showed an biphasic profile comprising of an initial diffusion-controlled stage followed by the hydrogel erosion-dominated stage. The effect of DL-lactide/glycolide molar ratio on drug release seemed to be dependent on the drug release mechanism. It has less effect on the drug release during the diffusion-controlled stage, but significantly affected drug release during the hydrogel erosion-controlled stage. Compared with ReGel system, the synthesized copolymers showed a higher gelation temperature and longer period of drug release. The copolymers can solubilize the hydrophobic indomethacin and the solubility (13.7 mg/ml) was increased 3425-fold compared to that in water (4 microg/ml, 25 degrees C). Two methods of physical mixing method and solvent evaporation method were used for drug solubilization and the latter method showed higher solubilization efficiency.
Newman, L A; Gold, P E
2016-03-01
Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.
Tang, R; Clark, J M; Bond, T; Graham, N; Hughes, D; Freeman, C
2013-02-01
Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the 'drought' simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. Copyright © 2012 Elsevier Ltd. All rights reserved.
Building sandbars in Grand Canyon
2016-01-01
Now, by implementing a new strategy that calls for repeated releases of large volumes of water from the dam, the U.S. Department of the Interior seeks to increase the size and number of these sandbars. Three years into the “High Flow Experiment” protocol, the releases appear to be achieving the desired effect. Many sandbars have increased in size following each controlled flood and the cumulative results of the first three releases suggests that sandbar declines may be reversed if controlled floods can be implemented frequently enough.
Building sandbars in the Grand Canyon
Grams, Paul E.; Schmidt, John C.; Wright, Scott A.; Topping, David; Melis, Theodore S.; Rubin, David M.
2015-01-01
Now, by implementing a new strategy that calls for repeated releases of large volumes of water from the dam, the U.S. Department of the Interior (DOI) seeks to increase the size and number of these sandbars. Three years into the "high-flow experiment" (HFE) protocol, the releases appear to be achieving the desired effect. Many sandbars have increased in size following each controlled flood, and the cumulative results of the first three releases suggest that sandbar declines may be reversed if controlled floods can be implemented frequently enough.
Stimulatory effects of bombesin on plasma trypsin release and exocrine pancreatic secretion in dogs.
Kiriyama, S; Hayakawa, T; Kondo, T; Shibata, T; Kitagawa, M; Sakai, Y; Sobajima, H; Ikei, N; Kodaira, T; Hamaoka, T
1990-01-01
We examined the effect of bombesin on plasma trypsin release and exocrine pancreatic secretion in dogs. Bombesin significantly increased plasma immunoreactive trypsin (IRT). Atropine significantly inhibited the response of plasma IRT to bombesin. Pancreatic trypsin secretion was also increased by bombesin, as well as bicarbonate and protein outputs. Atropine failed to inhibit pancreatic trypsin secretion. In conclusion, bombesin has a stimulatory effect on plasma trypsin release mediated by a cholinergic mechanism and different from pancreatic secretion.
NASA Astrophysics Data System (ADS)
Tihay, V.; Morandini, F.; Santoni, P. A.; Perez-Ramirez, Y.; Barboni, T.
2012-11-01
A set of experiments using a Large Scale Heat Release Rate Calorimeter was conducted to test the effects of slope and fuel load on the fire dynamics. Different parameters such as the geometry of the flame front, the rate of spread, the mass loss rate and the heat release rate were investigated. Increasing the fuel load or the slope modifies the fire behaviour. As expected, the flame length and the rate of spread increase when fuel load or slope increases. The heat release rate does not reach a quasi-steady state when the propagation takes place with a slope of 20° and a high fuel load. This is due to an increase of the length of the fire front leading to an increase of fuel consumed. These considerations have shown that the heat release can be estimated with the mass loss rate by considering the effective heat of combustion. This approach can be a good alternative to estimate accurately the fireline intensity when the measure of oxygen consumption is not possible.
Ni, Lixiao; Li, Danye; Hu, Shuzhen; Wang, Peifang; Li, Shiyin; Li, Yiping; Li, Yong; Acharya, Kumud
2015-12-01
To safely and effectively apply artemisinin sustained-release granules to control and prevent algal water-blooms, the effects of artemisinin and its sustained-release granules on freshwater alga (Scenedesmus obliquus (S. obliquus) and Microcystis aeruginosa (M. aeruginosa)), as well as the production and release of microcystins (MCs) were studied. The results showed that artemisinin sustained-release granules inhibited the growth of M. aeruginosa (above 95% IR) and S. obliquus (about 90% IR), with M. aeruginosa more sensitive. The artemisinin sustained-release granules had a longer inhibition effect on growth of pure algae and algal coexistence than direct artemisinin dosing. The artemisinin sustained-release granules could decrease the production and release of algal toxins due to the continued stress of artemisinin released from artemisinin sustained-release granules. There was no increase in the total amount of MC-LR in the algal cell culture medium.
Cajaraville, M P; Pal, S G
1995-10-01
In the present work the haemocytes of mussels Mytilus galloprovincialis (Mollusca, Bivalvia) have been studied by light and electron microscopy in order to describe their main morphological features and to relate these to their roles in immune defence. The haemocytes belong to two definitive differentiated types, hyalinocytes and granulocytes. The former shows the presence of several fine pseudopodial protrusions, large nucleus with clumps of dense chromatin, scant cytoplasm, a well developed Golgi apparatus, lysosomes, several mitochondria (some with characteristic inclusions), coated pits and peripherally placed membrane-bound endocytic vesicles, considerable amounts of endoplasmic reticulum and ribosomes. The granulocytes generally possess an organelle-free ectoplasmic zone, numerous membrane-delimited dense granules of various types, coated pits and vesicles, endocytic and phagocytic vesicles, multivesicular bodies, several peroxisome-like organelles, mitochondria with inclusions, scant endoplasmic reticulum and small Golgi apparatus. These cells show the presence of few lipid droplets and variable amounts of glycogen particles. Some of the substructural features of the granules are documented here to indicate their probable biogenesis, growth and relationship with the endolysosomal compartment. In addition, in vitro phagocytosis experiments demonstrate that both hyalinocytes and granulocytes uptake latex and zymosan particles, granulocytes being much more active in phagocytosis than hyalinocytes.
Mineral-bearing vesicle transport in sea urchin embryos.
Vidavsky, Netta; Masic, Admir; Schertel, Andreas; Weiner, Steve; Addadi, Lia
2015-12-01
Sea urchin embryos sequester calcium from the sea water. This calcium is deposited in a concentrated form in granule bearing vesicles both in the epithelium and in mesenchymal cells. Here we use in vivo calcein labeling and confocal Raman spectroscopy, as well as cryo-FIB-SEM 3D structural reconstructions, to investigate the processes occurring in the internal cavity of the embryo, the blastocoel. We demonstrate that calcein stained granules are also present in the filopodial network within the blastocoel. Simultaneous fluorescence imaging and Raman spectroscopy show that these granules do contain a calcium mineral. By tracking the movements of these granules, we show that the granules in the epithelium and primary mesenchymal cells barely move, but those in the filopodial network move long distances. We could however not detect any unidirectional movement of the filopodial granules. We also show the presence of mineral containing multivesicular vesicles that also move in the filopodial network. We conclude that the filopodial network is an integral part of the mineral transport process, and possibly also for sequestering calcium and other ions. Although much of the sequestered calcium is deposited in the mineralized skeleton, a significant amount is used for other purposes, and this may be temporarily stored in these membrane-delineated intracellular deposits. Copyright © 2015 Elsevier Inc. All rights reserved.
Garcés-Ortíz, Maricela; Ledesma-Montes, Constantino; Reyes-Gasga, José
2013-05-01
The aim of this report is to present the results of a scanning electron microscopic study on the presence of matrix vesicles (MVs) found in human dentine. Dentin tissue from 20 human bicuspids was analyzed by means of scanning electron microscopy. MVs were found as outgrowths of the cellular membrane of the odontoblastic body, the more proximal portion of the odontoblastic process before entering the dentinal tubule and in the odontoblastic process within the inner third of the dentin. Size of MVs varied depending on location. In the inner third of dentin, they were seen in diverse positions; as membranal outgrowths, deriving from the odontoblastic process, lying free in the intratubular space and attached to the dentinal wall. Sometimes, they were seen organized forming groups of different sizes and shapes or as multivesicular chains running from the surface of the odontoblastic process to the tubular wall. MVs were present in places never considered: 1) the body of odontoblasts; 2) the most proximal part of the odontoblastic processes before entering the circumpulpal dentine and also: 3) in the inner third of dentinal tissue. According to our results, MVs not only participate during mantle dentin mineralization during early dentinogenesis, they also contribute during the mineralization process of the inner dentin.
Masztalerz, Agnieszka; Zeelenberg, Ingrid S; Wijnands, Yvonne M; de Bruijn, Rosalie; Drager, Angelika M; Janssen, Hans; Roos, Ed
2007-01-15
Synaptotagmins regulate vesicle trafficking and fusion of vesicles with membranes - processes that have been implicated in cell migration. We therefore hypothesized that synaptotagmins play a role in T-cell migration. Amongst synaptotagmins 1-11, we found synaptotagmin 3 (SYT3) to be the only one that is expressed in T cells. CXCR4-triggered migration was inhibited by antisense synaptotagmin 3 mRNA and by the isolated C2B domain, known to impair oligomerization of all synaptotagmins, but not by a C2B mutant that binds Ca(2+) but does not block oligomerization. The C2B domain also blocked CXCR4-triggered actin polymerization and invasion. However, CXCR4-dependent adhesion in flow was not affected. Surprisingly, we found that little or no SYT3 is present near the plasma membrane but that it is mainly localized in multivesicular bodies, which also contained much of the CXCR4. Impaired SYT3 function blocked CXCR4 recycling and thus led to reduced surface levels of CXCR4. Migration was restored by overexpression of CXCR4. We conclude that STT3 is essential for CXCR4 recycling in T cells and thereby for the maintenance of high CXCR4 surface levels required for migration.
Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B
2017-12-01
Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.
Membrane Assembly during the Infection Cycle of the Giant Mimivirus
Mutsafi, Yael; Shimoni, Eyal; Shimon, Amir; Minsky, Abraham
2013-01-01
Although extensively studied, the structure, cellular origin and assembly mechanism of internal membranes during viral infection remain unclear. By combining diverse imaging techniques, including the novel Scanning-Transmission Electron Microscopy tomography, we elucidate the structural stages of membrane biogenesis during the assembly of the giant DNA virus Mimivirus. We show that this elaborate multistage process occurs at a well-defined zone localized at the periphery of large viral factories that are generated in the host cytoplasm. Membrane biogenesis is initiated by fusion of multiple vesicles, ∼70 nm in diameter, that apparently derive from the host ER network and enable continuous supply of lipid components to the membrane-assembly zone. The resulting multivesicular bodies subsequently rupture to form large open single-layered membrane sheets from which viral membranes are generated. Membrane generation is accompanied by the assembly of icosahedral viral capsids in a process involving the hypothetical major capsid protein L425 that acts as a scaffolding protein. The assembly model proposed here reveals how multiple Mimivirus progeny can be continuously and efficiently generated and underscores the similarity between the infection cycles of Mimivirus and Vaccinia virus. Moreover, the membrane biogenesis process indicated by our findings provides new insights into the pathways that might mediate assembly of internal viral membranes in general. PMID:23737745
ELECTRON MICROSCOPY OF ABSORPTION OF TRACER MATERIALS BY TOAD URINARY BLADDER EPITHELIUM
Choi, Jae Kwon
1965-01-01
The absorption of Thorotrast and saccharated iron oxide by the epithelium of the toad urinary bladder was studied by electron microscopy. Whether the toads were hydrated, dehydrated, or given Pitressin, no significant differences in transport of colloidal particles by epithelial cells were observed. This implies that these physiological factors had little effect on the transport of the tracer particles. Tracer particles were encountered in three types of epithelial cells which line the bladder lumen, but most frequently in the mitochondria-rich cells. Tracer materials were incorporated into the cytoplasm of epithelial cells after being adsorbed to the coating layer covering the luminal surface of the cells. In the intermediate stage (1 to 3 hours after introducing tracer) particles were present in small vesicles, tubules, and multivesicular bodies. In the later stages (up to 65 hours), the particles were more commonly seen to be densely packed within large membrane-bounded bodies which were often found near the Golgi region. These large bodies probably were formed by the fusion of small vesicles. Irrespective of the stages of absorption, no particles were found in the intercellular spaces or in the submucosa. Particles apparently did not penetrate the intercellular spaces of the epithelium beyond the level of the tight junction. PMID:14287173
Gagliardi, Maria; Hernandez, Ana; McGough, Ian J; Vincent, Jean-Paul
2014-11-15
A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts. © 2014. Published by The Company of Biologists Ltd.
DYNAMICS OF ACRIDINE ORANGE-CELL INTERACTION
Robbins, Elliott; Marcus, Philip I.
1963-01-01
The in vitro localization of acridine orange (AO) in living cells was monitored by means of fluorescence microscopy, quantitative cell viability studies, and photofluorimetric measurements following dye-cell interaction. The parameters, pH, time, dye concentration, and the metabolic state of the cell were found to exert a profound influence on the time course and distribution of staining. The parameters studied are mutually interdependent, and intracellular dye localization may be predictably altered by their appropriate manipulation. Conditions are defined whereby two morphologically distinct but physiologically interrelated reactions, namely, acridine orange particle (AOP) formation and cytoplasmic reddening (CR) may be caused, prevented, reversed, or modified. These results are explained in terms of the facilitation or inhibition of an intracytoplasmic dye-segregating mechanism, in turn affected by the rate of dye ingress and the physiological state of the cell. Whereas the accumulation of AO in AOP is compatible with cell viability, the appearance of CR is correlated with cell death. It is pointed out that meaningful interpretation of vital staining requires precise regulation of many parameters in the extracellular milieu. A scheme of cell compartmentalization with respect to AO is proposed to satisfactorily account for the effects of environmental variations on the distribution and ultimate fate of intracellular dye. The AOP are viewed as normally present acid phosphatase-positive multivesicular bodies. PMID:14079487
Primary cilia in gastric Gastrointestinal Stromal Tumours (GISTs): an ultrastructural study
Castiella, Tomás; Muñoz, Guillermo; Luesma, María José; Santander, Sonia; Soriano, Mario; Junquera, Concepción
2013-01-01
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal (non-epithelial) neoplasms of the human gastrointestinal (GI) tract. They are thought to derive from interstitial cells of Cajal (ICCs) or an ICC progenitor based on immunophenotypical and ultrastructural similarities. Because ICCs show primary cilium, our hypothesis is based on the possibility that some of these neoplastic cells could also present it. To determine this, an exhaustive ultrastructural study has been developed on four gastric GISTs. Previous studies had demonstrated considerable variability in tumour cells with two dominating phenotypes, spindly and epithelioid. In addition to these two types, we have found another cell type reminiscent of adult ICCs with a voluminous nucleus surrounded by narrow perinuclear cytoplasm with long slender cytoplasmic processes. We have also noted the presence of small undifferentiated cells. In this study, we report for the first time the presence of primary cilia (PCs) in spindle and epithelioid tumour cells, an ultrastructural feature we consider of special interest that has hitherto been ignored in the literature dealing with the ultrastructure of GISTs. We also point out the frequent occurrence of multivesicular bodies (MVBs). The ultrastructural findings described in gastric GISTs in this study appear to be relevant considering the critical roles played by PCs and MVBs recently demonstrated in tumourigenic processes. PMID:23672577
Detke, Siegfried
2007-01-01
TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain which was recognized by TOR in this internalization pathway was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking. PMID:17428463
Detke, Siegfried
2007-05-15
TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain, which was recognized by TOR in this internalization pathway, was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature-sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking.
RABA Members Act in Distinct Steps of Subcellular Trafficking of the FLAGELLIN SENSING2 Receptor[W
Choi, Seung-won; Tamaki, Takayuki; Ebine, Kazuo; Uemura, Tomohiro; Ueda, Takashi; Nakano, Akihiko
2013-01-01
Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo–synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis. PMID:23532067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Amr; Present address: Genomics Facility, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619; Hutchens, Heather M.
2012-11-25
To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed withmore » P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.« less
Sriram, V; Krishnan, K S; Mayor, Satyajit
2003-05-12
Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.
Knowns and unknowns of plasma membrane protein degradation in plants.
Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji
2018-07-01
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.
Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells[W
Reyes, Francisca C.; Chung, Taijoon; Holding, David; Jung, Rudolf; Vierstra, Richard; Otegui, Marisa S.
2011-01-01
Zeins, the prolamin storage proteins found in maize (Zea mays), accumulate in accretions called protein bodies inside the endoplasmic reticulum (ER) of starchy endosperm cells. We found that genes encoding zeins, α-globulin, and legumin-1 are transcribed not only in the starchy endosperm but also in aleurone cells. Unlike the starchy endosperm, aleurone cells accumulate these storage proteins inside protein storage vacuoles (PSVs) instead of the ER. Aleurone PSVs contain zein-rich protein inclusions, a matrix, and a large system of intravacuolar membranes. After being assembled in the ER, zeins are delivered to the aleurone PSVs in atypical prevacuolar compartments that seem to arise at least partially by autophagy and consist of multilayered membranes and engulfed cytoplasmic material. The zein-containing prevacuolar compartments are neither surrounded by a double membrane nor decorated by AUTOPHAGY RELATED8 protein, suggesting that they are not typical autophagosomes. The PSV matrix contains glycoproteins that are trafficked through a Golgi-multivesicular body (MVB) pathway. MVBs likely fuse with the multilayered, autophagic compartments before merging with the PSV. The presence of similar PSVs also containing prolamins and large systems of intravacuolar membranes in wheat (Triticum aestivum) and barley (Hordeum vulgare) starchy endosperm suggests that this trafficking mechanism may be common among cereals. PMID:21343414
Shohdy, Nadim; Efe, Jem A; Emr, Scott D; Shuman, Howard A
2005-03-29
Legionella pneumophila invades and replicates intracellularly in human and protozoan hosts. The bacteria use the Icm/Dot type IVB secretion system to translocate effectors that inhibit phagosome maturation and modulate host vesicle trafficking pathways. To understand how L. pneumophila modulates organelle trafficking in host cells, we carried out pathogen effector protein screening in yeast, identifying L. pneumophila genes that produced membrane trafficking [vacuole protein sorting (VPS)] defects in yeast. We identified four L. pneumophila DNA fragments that perturb sorting of vacuolar proteins. Three encode ORFs of unknown function that are translocated via the Icm/Dot transporter from Legionella into macrophages. VPS inhibitor protein (Vip) A is a coiled-coil protein, VipD is a patatin domain-containing protein, and VipF contains an acetyltransferase domain. Processing studies in yeast indicate that VipA, VipD, and VipF inhibit lysosomal protein trafficking by different mechanisms; overexpressing VipA has an effect on carboxypeptidase Y trafficking, whereas VipD interferes with multivesicular body formation at the late endosome and endoplasmic reticulum-to-Golgi body transport. Such differences highlight the multiple strategies L. pneumophila effectors use to subvert host trafficking processes. Using yeast as an effector gene discovery tool allows for a powerful, genetic approach to both the identification of virulence factors and the study of their function.
Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin.
Duque, Luisa; Körber, Martin; Bodmeier, Roland
2018-03-01
The objectives of this study were to assess the feasibility of hot melt extrusion (HME) for the preparation of PLGA-based ovalbumin-loaded implants as well as to characterize and improve protein release from the implants. Ovalbumin (OVA) was stable during extrusion, which was attributed to a protective effect of the biodegradable matrix. OVA release was characterized by a low burst, a slow release up to day 21, which plateaued thereafter resulting in incomplete release for all evaluated protein loadings. Release incompleteness was accompanied by the formation of an insoluble residual mass. Further characterization of this mass indicated that it consisted of non-covalent protein aggregates and polymer, where ovalbumin was ionically bound as the pH inside the degrading matrix decreased below the pI of the protein. Although higher protein release was obtained with the inclusion of weak bases because of their neutralizing effect, OVA aggregation and release incompleteness were not fully avoided. With the use of shellac, a well-known enteric and biocompatible polymer, as protective excipient, a distinct late release phase occurred and release completeness was increased to more than 75% cumulative release. Shellac apparently protected the protein against the acidic microclimate due to its low solubility at low pH. Protected OVA was thus released once the pH increased due to a declining PLGA-oligomer formation. The result was a triphasic release profile consisting of an initial burst, a slow diffusion phase over about 7 weeks, and an erosion-controlled dissolution phase over the next 3 weeks. An acid-labile protein like OVA was thus feasibly protected from interactions with PLGA and its degradation products, resulting in a controlled delivery of more than 85% of the original payload. Copyright © 2018 Elsevier B.V. All rights reserved.
Droplet Microfluidic Platform for the Determination of Single-Cell Lactate Release.
Mongersun, Amy; Smeenk, Ian; Pratx, Guillem; Asuri, Prashanth; Abbyad, Paul
2016-03-15
Cancer cells release high levels of lactate that has been correlated to increased metastasis and tumor recurrence. Single-cell measurements of lactate release can identify malignant cells and help decipher metabolic cancer pathways. We present here a novel droplet microfluidic method that allows the fast and quantitative determination of lactate release in many single cells. Using passive forces, droplets encapsulated cells are positioned in an array. The single-cell lactate release rate is determined from the increase in droplet fluorescence as the lactate is enzymatically converted to a fluorescent product. The method is used to measure the cell-to-cell variance of lactate release in K562 leukemia and U87 glioblastoma cancer cell lines and under the chemical inhibition of lactate efflux. The technique can be used in the study of cancer biology, but more broadly in cell biology, to capture the full range of stochastic variations in glycolysis activity in heterogeneous cell populations in a repeatable and high-throughput manner.
Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics
Martinez, Jonathan O.; Chiappini, Ciro; Ziemys, Arturas; Faust, Ari M.; Kojic, Milos; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio
2013-01-01
Nanovectors hold substantial promise in abating the off-target effects of therapeutics by providing a means to selectively accumulate payloads at the target lesion, resulting in an increase in the therapeutic index. A sophisticated understanding of the factors that govern the degradation and release dynamics of these nanovectors is imperative to achieve these ambitious goals. In this work, we elucidate the relationship that exists between variations in pore size and the impact on the degradation, loading, and release of multistage nanovectors. Larger pored vectors displayed faster degradation and higher loading of nanoparticles, while exhibiting the slowest release rate. The degradation of these particles was characterized to occur in a multi-step progression where they initially decreased in size leaving the porous core isolated, while the pores gradually increased in size. Empirical loading and release studies of nanoparticles along with diffusion modeling revealed that this prolonged release was modulated by the penetration within the porous core of the vectors regulated by their pore size. PMID:23911070
Long-term primary culture of mouse mammary tumor cells: production of virus.
Young, L J; Cardiff, R D; Ashley, R L
1975-05-01
Long-term primary cultures of mouse mammary tumor cells proved an excellent source of mouse mammary tumor virus (MMTV). Virus purified from these primary cultures had the same morphologic biochemical, immunologic, and biologic characteristics as MMTV. Quantitation of MMTV-protein equivalents released into the medium was measured by the radioimmunoassay for MMTV. Peak production levels were 20-40 mug MMTV protien equivalents/75-cm-2 flask/24 hours. These cultures produced MMTV for as long as 90 days. MMTV cultivation depended on the initial cell-plating density and hormones. Maximal MMTV release was obtained at a plating density of 1 times 10-6 cells/cm-2 in the presence of insulin and hydrocortisone. Insulin alone gave basal levels of MMTV, and hydrocortisone alone increased MMTV release only three-fold, but insulin and hydrocortisone together effected an eightfold increase in MMTV release. This suggested that hydrocortisone had a primary effect on MMTV release and insulin acted synergistically with hydrocortisone to maximize MMTV release.
Enayatifard, Reza; Mahjoob, Aiding; Ebrahimi, Pouneh; Ebrahimnejad, Pedram
2015-01-01
Objective(s): A Box-Behnken design was used for evaluation of Eudragit coated diclofenac pellets. The purpose of this work was to optimize diclofenac pellets to improve the physicochemical properties using experimental design. Materials and Methods: Diclofenac was loaded onto the non-pareil beads using conventional coating pan. Film coating of pellets was done at the same pan. The effect of plasticizer level, curing temperature and curing time was determined on the release of diclofenac from pellets coated with polymethacrylates. Results: Increasing the plasticizer in the coating formula led to decrease in drug release and increasing the curing temperature and time resulted in higher drug release. The optimization process generated an optimum of 35% drug release at 3 hr. The level of plasticizer concentration, curing temperature and time were 20% w/w, 55 °C and 24 hr, respectively. Conclusion: This study showed that by controllinig the physical variables optimum drug release were obtained. PMID:26351563
Aiello-Malmberg, P; Bartolini, A; Bartolini, R; Galli, A
1979-01-01
1. The release of 5-hydroxytryptamine (5-HT) from the cerebral cortex and caudate nucleus of brainstem-transected cats and from the cerebral cortex of rats anaesthetized with urethane was determined by radioenzymatic and biological assay. 2. The stimulation of nucleus linearis intermedius of raphe doubles the basal 5-HT release in the caudate nucleus and increases it 3 fold in the cerebral cortex. The effects of the electrical stimulation of the raphe are potentiated by chlorimipramine. 3. Brain 5-HT release is greatly increased by morphine hydrochloride (6 mg/kg i.v.) and by physostigmine (100 microgram/kg i.v.), but not by DL-DOPA (50 mg/kg i.v.). 4. It is suggested that the 5-HT releasing action of physostigmine can contribute to some of its pharmacological effects such as the analgesic effect so far attributed exclusively to its indirect cholinomimetic activity. 5. The 5-HT releasing action of physostigmine seems unrelated to its anticholinesterase activity. PMID:435680
Renninger H.J.; Meinzer F.C.; B.L. Gartner
2006-01-01
We compared hydraulic architecture, photosynthesis, and growth in Douglas-fir with that of a shade-tolerant western hemlock. The study was conducted in a site that had been thinned to release suppressed trees, and one that remained unthinned. Release seemed to be constrained initially by photosynthetic capacity in both species. After released trees increased their...
Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C
2009-01-01
Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.
Fonte, Pedro; Soares, Sandra; Costa, Ana; Andrade, José Carlos; Seabra, Vítor; Reis, Salette; Sarmento, Bruno
2012-01-01
PLGA nanoparticles are useful to protect and deliver proteins in a localized or targeted manner, with a long-term systemic delivery pattern intended to last for a period of time, depending on polymer bioerosion and biodegradability. However, the principal concern regarding these carriers is the hydrolytic instability of polymer in aqueous suspension. Freeze-drying is a commonly used method to stabilize nanoparticles, and cryoprotectants may be also used, to even increase its physical stability. The aim of the present work was to analyze the influence of cryoprotectants on nanoparticle stability and porosity after freeze-drying, which may influence protein release and stability. It was verified that freeze-drying significantly increased the number of pores on PLGA-NP surface, being more evident when cryoprotectants are added. The presence of pores is important in a lyophilizate to facilitate its reconstitution in water, although this may have consequences to protein release and stability. The release profile of insulin encapsulated into PLGA-NP showed an initial burst in the first 2 h and a sustained release up to 48 h. After nanoparticles freeze-drying the insulin release increased about 18% in the first 2 h due to the formation of pores, maintaining a sustained release during time. After freeze-drying with cryoprotectants, the amount of insulin released was higher for trehalose and lower for sucrose, glucose, fructose and sorbitol comparatively to freeze-dried PLGA-NP with no cryoprotectant added. Besides the porosity, the ability of cryoprotectants to be adsorbed on the nanoparticles surface may also play an important role on insulin release and stability. PMID:23507897
Release parameters at the foul line and the official result in javelin throwing.
Viitasalo, Jukka; Mononen, Harri; Norvapalo, Kare
2003-01-01
Range in javelin throwing is determined by the release parameters and aerodynamic factors. The current study was designed to investigate the effects of release speed, release angle and uncorrected angle of attack measured at the foul line on the official javelin throwing result. The data were collected in international competitions for 26 elite male and 15 elite female javelin throwers (total 248 throws). Multiple regression models were constructed to predict the range of throw for a) individual throwers, b) a group of throwers using the mean value for each thrower in the analysis, and c) all individual throws registered for each gender separately. The data collection was carried out using a computerised photocell gate that consists of two invisible infrared walls two metres apart, perpendicular to the throwing direction. Release speed was found to have the highest correlation with the official throwing result. The three release parameters accounted for 56% of the variance in the official result for the male and 51% for the female throwers. For individual male and female throwers, the variance explained by the model was between 46 and 87%. Among the individual male throwers an increase of 1 m.s-1 in the release speed from 29 to 30 m.s-1 was calculated to increase the official result between 2.12 to 6.14 m while among the female throwers the effect of increase from 24 to 25 m.s-1 in the release speed was from 2.25 to 3.68 m. The study emphasises the importance of investigating javelin throwing biomechanics on an individual thrower basis.
Chiesa, Scott T.; Trangmar, Steven J.; Ali, Leena; Lotlikar, Makrand D.; González‐Alonso, José
2017-01-01
New Findings What is the central question of this study? Skin and muscle blood flow increases with heating and decreases with cooling, but the temperature‐sensitive mechanisms underlying these responses are not fully elucidated. What is the main finding and its importance? We found that local tissue hyperaemia was related to elevations in ATP release from erythrocytes. Increasing intravascular ATP augmented skin and tissue perfusion to levels equal or above thermal hyperaemia. ATP release from isolated erythrocytes was altered by heating and cooling. Our findings suggest that erythrocytes are involved in thermal regulation of blood flow via modulation of ATP release. Local tissue perfusion changes with alterations in temperature during heating and cooling, but the thermosensitivity of the vascular ATP signalling mechanisms for control of blood flow during thermal interventions remains unknown. Here, we tested the hypotheses that the release of the vasodilator mediator ATP from human erythrocytes, but not from endothelial cells or other blood constituents, is sensitive to both increases and reductions in temperature and that increasing intravascular ATP availability with ATP infusion would potentiate thermal hyperaemia in limb tissues. We first measured blood temperature, brachial artery blood flow and plasma [ATP] during passive arm heating and cooling in healthy men and found that they increased by 3.0 ± 1.2°C, 105 ± 25 ml min−1 °C−1 and twofold, respectively, (all P < 0.05) with heating, but decreased or remained unchanged with cooling. In additional men, infusion of ATP into the brachial artery increased skin and deep tissue perfusion to levels equal or above thermal hyperaemia. In isolated erythrocyte samples exposed to different temperatures, ATP release increased 1.9‐fold from 33 to 39°C (P < 0.05) and declined by ∼50% at 20°C (P < 0.05), but no changes were observed in cultured human endothelial cells, plasma or serum samples. In conclusion, increases in plasma [ATP] and skin and deep tissue perfusion with limb heating are associated with elevations in ATP release from erythrocytes, but not from endothelial cells or other blood constituents. Erythrocyte ATP release is also sensitive to temperature reductions, suggesting that erythrocytes may function as thermal sensors and ATP signalling generators for control of tissue perfusion during thermal interventions. PMID:27859767
Dabhi, Mahesh R; Nagori, Stavan A; Gohel, Mukesh C; Parikh, Rajesh K; Sheth, Navin R
2010-01-01
Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.
Hyvönen, L; Linna, M; Tuorila, H; Dijksterhuis, G
2003-04-01
Temporal effects of dairy and vegetable fats (0 to 18%) on perception of strawberry flavor release and melting of ice cream were studied using the time intensity sensory method. Also, aroma and flavor attributes of the ice cream samples were evaluated. Only slight effects of fat on the rate of flavor release and flavor intensity were perceived. A slightly faster flavor release from the vegetable fat compared with dairy fat was noticed. Polydextrose and maltodextrin as bodying agents in the fat-free ice cream significantly increased flavor release and melting rate of the ice cream. Increasing fat content slightly retarded melting of ice cream in the mouth. No significant effect of the fat quality on perceived melting was noticed. Significant differences in aroma and flavor attributes of the fat-free and other samples were perceived. Intensity and sharpness of the strawberry aroma and flavor were greater in fat-free samples and they were perceived as nontypical. Fattiness and creaminess were highly correlated. Maltodextrin and polydextrose increased perceived fattiness and creaminess of fat-free ice cream.
Caffeine potentiates the enhancement by choline of striatal acetylcholine release
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.
1992-01-01
We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.
Defibrotide modulates prostaglandin production in the rat mesenteric vascular bed.
Peredo, H A
2002-10-01
Defibrotide 1 microM, a polydeoxyribonucleotide extracted from mammalian organs, reduced the contractile responses to noradrenaline (NA) in the rat isolated and perfused mesenteric vascular bed, in intact as well as in de-endothelialized preparations. Defibrotide was without effect on the acetylcholine-induced relaxations of U-46619-precontracted mesenteric vascular beds. Moreover, defibrotide increased 6-keto prostaglandin (PG) F(2alpha) (stable metabolite of prostacyclin) release sixfold in the presence, but not in the absence of the endothelium, with no modification on the release of other prostanoids. Defibrotide also inhibited the NA-induced increase in PGF(2alpha) release, in both intact and de-endothelialized mesenteric vascular beds. In conclusion, the present results show that defibrotide modulates PG production in the mesenteric bed and that the observed inhibition of the contractile responses should be due to the impairment of the NA-induced increase in PGF(2alpha) release.
Dwarf mistletoe-infected red fir: growth after release
Robert F. Scharpf
1979-01-01
Release cutting, live crown ratio, diameter-at-breast height, and dwarf mistletoe (Arceuthobium abietinum f. sp. magnificae). acted to affect radial and height growth of red firs (Abies magnifica A. Murr.). Infected and noninfected red firs responded well to release as expressed by increased radial growth: growth...
Short communication: Effect of on-farm feeding practices on rumen protected lysine products.
Ji, P; Tucker, H A; Clark, R E; Miura, M; Ballard, C S
2016-02-01
Two independent studies were conducted to determine whether mechanical mixing of total mixed ration (TMR) or TMR dry matter alters Lys release from 6 rumen-protected Lys (RPL) products (A, B, C, D, E, and F). In the first study, routine mixing procedures were simulated to determine if inclusion of RPL products in TMR altered in situ release of Lys. Following mixing, Dacron bags containing RPL products were ruminally incubated for 0, 6, 12, or 24 h to determine Lys release. The second study occurred independently of the first, in which Lys release from RPL products was evaluated when incorporated into a TMR that differed in dry matter (DM) content. Bags containing TMR and RPL product mixture were stored at room temperature for 0, 6, 18, and 24 h to simulate RPL product exposure to TMR when mixed and delivered once per day. Concentration of free Lys in both studies was determined using ultra-performance liquid chromatography. Following mechanical mixing, ruminal Lys release was significantly greater for C and tended to increase for F. Mechanical mixing did not alter ruminal Lys release from other RPL products evaluated. Hours of ruminal incubation significantly altered Lys release for all products evaluated, and a significant interaction of mechanical mixing and hours of ruminal incubation was observed for A and C. Exposure to lower TMR DM (40.5 versus 51.8%) significantly increased Lys release from B but did not alter Lys release from the other RPL products evaluated. Moreover, time of exposure to TMR significantly increased Lys release from all RPL products evaluated, and a significant interaction of TMR DM and time of exposure to TMR was observed for B and E. These data suggest mechanical mixing and variation in TMR DM may compromise the rumen protection of RPL products; therefore, on-farm feeding practices may alter efficacy of RPL products in dairy rations. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
High-temperature crystallized thin-film PZT on thin polyimide substrates
NASA Astrophysics Data System (ADS)
Liu, Tianning; Wallace, Margeaux; Trolier-McKinstry, Susan; Jackson, Thomas N.
2017-10-01
Flexible piezoelectric thin films on polymeric substrates provide advantages in sensing, actuating, and energy harvesting applications. However, direct deposition of many inorganic piezoelectric materials such as Pb(Zrx,Ti1-x)O3 (PZT) on polymers is challenging due to the high temperature required for crystallization. This paper describes a transfer process for PZT thin films. The PZT films are first grown on a high-temperature capable substrate such as platinum-coated silicon. After crystallization, a polymeric layer is added, and the polymer-PZT combination is removed from the high-temperature substrate by etching away a release layer, with the polymer layer then becoming the substrate. The released PZT on polyimide exhibits enhanced dielectric response due to reduction in substrate clamping after removal from the rigid substrate. For Pb(Zr0.52,Ti0.48)0.98Nb0.02O3 films, release from Si increased the remanent polarization from 17.5 μC/cm2 to 26 μC/cm2. In addition, poling led to increased ferroelastic/ferroelectric realignment in the released films. At 1 kHz, the average permittivity was measured to be around 1160 after release from Si with a loss tangent below 3%. Rayleigh measurements further confirmed the correlation between diminished substrate constraint and increased domain wall mobility in the released PZT films on polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Shinichi, E-mail: junryuhei@yahoo.co.jp; Nitta, Norihisa; Sonoda, Akinaga
2010-08-15
This study was designed to evaluate the optimal conditions for binding cisplatin and porous gelatin particles (PGPs) and to establish in vivo drug release pharmacokinetics. PGPs were immersed in cisplatin solutions under different conditions: concentration, immersion time, and temperature. Thereafter, PGPs were washed in distilled water to remove uncombined cisplatin and were then freeze-dried. The platinum concentration (PC) in the PGPs was then measured. For the in vivo release test, 50 mg/kg of the cisplatin-conjugated PGPs was implanted subcutaneously in the abdominal region of two rabbits. PCs in the blood were measured at different time intervals. PCs significantly increased inmore » direct proportion to the concentration and immersion time (p < 0.01). Although PC increased at higher solution temperature, it was not a linear progression. For the in vivo release test, platinum was released from cisplatin-conjugated PGPs after 1 day, and the peak PC was confirmed 2 days after implantation. Platinum in the blood was detected until 7 days after implantation in one rabbit and 15 days after administration in the other rabbit. Platinum binding with PGPs increased with a higher concentration of cisplatin solution at a higher temperature over a longer duration of time. Release of cisplatin from cisplatin-conjugated PGPs was confirmed in vivo.« less
High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem
NASA Astrophysics Data System (ADS)
Brocke, Hannah J.; Wenzhoefer, Frank; de Beer, Dirk; Mueller, Benjamin; van Duyl, Fleur C.; Nugues, Maggy M.
2015-03-01
Benthic cyanobacterial mats (BCMs) are increasing in abundance on coral reefs worldwide. However, their impacts on biogeochemical cycling in the surrounding water and sediment are virtually unknown. By measuring chemical fluxes in benthic chambers placed over sediment covered by BCMs and sediment with BCMs removed on coral reefs in Curaçao, Southern Caribbean, we found that sediment covered by BCMs released 1.4 and 3.5 mmol C m-2 h-1 of dissolved organic carbon (DOC) during day and night, respectively. Conversely, sediment with BCMs removed took up DOC, with day and night uptake rates of 0.9 and 0.6 mmol C m-2 h-1. DOC release by BCMs was higher than reported rates for benthic algae (turf and macroalgae) and was estimated to represent 79% of the total DOC released over a 24 h diel cycle at our study site. The high nocturnal release of DOC by BCMs is most likely the result of anaerobic metabolism and degradation processes, as shown by high respiration rates at the mat surface during nighttime. We conclude that BCMs are significant sources of DOC. Their increased abundance on coral reefs will lead to increased DOC release into the water column, which is likely to have negative implications for reef health.
High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem.
Brocke, Hannah J; Wenzhoefer, Frank; de Beer, Dirk; Mueller, Benjamin; van Duyl, Fleur C; Nugues, Maggy M
2015-03-09
Benthic cyanobacterial mats (BCMs) are increasing in abundance on coral reefs worldwide. However, their impacts on biogeochemical cycling in the surrounding water and sediment are virtually unknown. By measuring chemical fluxes in benthic chambers placed over sediment covered by BCMs and sediment with BCMs removed on coral reefs in Curaçao, Southern Caribbean, we found that sediment covered by BCMs released 1.4 and 3.5 mmol C m(-2) h(-1) of dissolved organic carbon (DOC) during day and night, respectively. Conversely, sediment with BCMs removed took up DOC, with day and night uptake rates of 0.9 and 0.6 mmol C m(-2) h(-1). DOC release by BCMs was higher than reported rates for benthic algae (turf and macroalgae) and was estimated to represent 79% of the total DOC released over a 24 h diel cycle at our study site. The high nocturnal release of DOC by BCMs is most likely the result of anaerobic metabolism and degradation processes, as shown by high respiration rates at the mat surface during nighttime. We conclude that BCMs are significant sources of DOC. Their increased abundance on coral reefs will lead to increased DOC release into the water column, which is likely to have negative implications for reef health.
Preparation of buccal patch composed of carbopol, poloxamer and hydroxypropyl methylcellulose.
Chun, Myung-Kwan; Kwak, Byoung-Tae; Choi, Hoo-Kyun
2003-11-01
A polymeric film composed of Carbopol, Poloxamer and hydroxypropyl methylcellulose was prepared to develop a buccal patch and the effects of composition of the film on adhesion time, swelling ratio, and dissolution of the film were studied. The effects of plasticizers or penetration enhancers on the release of triamcinolone acetonide (TAA) were also studied. The hydrogen bonding between Carbopol and Poloxamer played important role in reducing swelling ratio and dissolution rate of polymer film and increasing adhesion time. The swelling ratio of the composite film was significantly reduced and the adhesion time was increased when compared with Carbopol film. As the ratio of Poloxamer to hydroxypropyl methylcellulose increased from 0/66 to 33/33, the release rate of TAA decreased. However, no further significant decrease of release rate was observed beyond the ratio of 33/33. The release rate of TAA in the polymeric film containing polyethylene glycol 400, a plasticizer, showed the highest release rate followed by triethyl citrate, and castor oil. The release rate of TAA from the polymeric film containing permeation enhancers was slower than that from the control without enhancers. Therefore, these observations indicated that a preparation of a buccal patch is feasible with the polymeric film composed of Cabopol, Poloxamer and hydropropyl methylcellulose.
Saito, Takashi; Tabata, Yasuhiko
2014-08-01
The objective of this study is to design biodegradable hydrogels for the controlled release of deferoxiamine (DFO) and evaluate their biological activity. When the DFO was added to human umbilical vein endothelial cells cultured in 5.0% O2, the level of hypoxia-inducible factor-1α and vascular endothelial growth factor significantly increased compared with that without DFO. The expression of angiogenesis-related genes was accordingly increased by the DFO addition. An aqueous solution of mixed gelatin and DFO was freeze-dried, and dehydrothermally treated at 140°C for 24h to prepare a gelatin hydrogel incorporating DFO. In the release test with phosphate-buffered saline solution (PBS) at 37°C, an initial DFO release of 60% was observed, followed by no release. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded with time, and consequently released DFO in a degradation-dependent manner. After the hydrogel incorporating DFO was injected intramuscularly into a mouse model of hind limb ischemia, the number of new blood vessels formed was significantly higher than that with free DFO and DFO-free hydrogel. It is concluded that the DFO-containing hydrogel shows promising for inducing angiogenesis locally. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Shapiro, E; Castellucci, V F; Kandel, E R
1980-01-01
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica. The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca(2+) current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K(+) channels so that depolarizing command pulses recruit a smaller K(+) current. In unclamped cells the decreased K(+) conductance causes spike-broadening and increased influx of Ca(2+) during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca(2+) current that also contributes to the modulation of transmitter release, because, even with most presynaptic K(+) currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca(2+) current, the transient inward Ca(2+) current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.
Regulator of G-protein signaling 2 (RGS2) suppresses premature calcium release in mouse eggs
Bernhardt, Miranda L.; Lowther, Katie M.; Padilla-Banks, Elizabeth; McDonough, Caitlin E.; Lee, Katherine N.; Evsikov, Alexei V.; Uliasz, Tracy F.; Chidiac, Peter; Williams, Carmen J.; Mehlmann, Lisa M.
2015-01-01
During oocyte maturation, capacity and sensitivity of Ca2+ signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca2+ release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca2+ oscillations that drive egg activation and initiate early embryo development. Premature Ca2+ release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca2+ signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca2+ release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca2+ release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca2+ increases that were sufficient to cause premature zona pellucida conversion. Rgs2−/− females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2−/− eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca2+ release in eggs that are poised on the brink of development. PMID:26160904
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.
Malave, Lauren B; Broderick, Patricia A
2014-06-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE ® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo , in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine
Malave, Lauren B.
2014-01-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079
Matsumura, Y; Tsukahara, Y; Kojima, T; Murata, S; Murakami, A; Takada, K; Takaoka, M; Morimoto, S
1995-03-01
Using cultured human aortic endothelial cells, we examined the effects of phosphoramidon, an endothelin converting enzyme (ECE) inhibitor, on the release of endogenous endothelin-1 (ET-1) and big endothelin-1 (big ET-1), and on the generation of ET-1 from exogenously applied big ET-1. Phosphoramidon, at concentrations of 10(-6) to 2 x 10(-4) M, caused a biphasic alteration of the ET-1 release, i.e., at lower concentrations of the drug, there were slight but unexpected increases of the release, whereas higher concentrations led to a decrease which is due to the drug-induced inhibition of ECE. The former effect appears to be based on the inhibition of ET-1 degradation by neutral endopeptidase 24.11 (NEP), since kelatorphan, a specific NEP inhibitor, produced a similar increasing effect on ET-1 release. Phosphoramidon enhanced the big ET-1 release from the cells in a concentration-dependent manner. When high concentrations of phosphoramidon were added, there was a dramatic increase in the release of big ET-1, which cannot be explained only by the drug-induced inhibition of ECE. This increase in big ET-1 release appeared to be partly due to a transient stimulation of the expression of prepro ET-1 mRNA. The amount of ET-1 generated from exogenously applied big ET-1 was markedly decreased by phosphoramidon in a concentration-dependent manner. In a similar fashion, phosphoramidon markedly inhibited ECE activity of the membrane fraction of cultured cells. Thus, ET-1 generation from exogenously applied big ET-1 reflects the functional phosphoramidon-sensitive ECE activities in human aortic endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossa, Nathan; Chaurand, Perrine; Levard, Clément
Nanomaterials are increasingly being used to improve the properties and functions of common building materials. A new type of self-cleaning cement incorporating TiO 2 nanomaterials (TiO 2-NMs) with photocatalytic properties is now marketed. This promising cement might provide air pollution-reducing properties but its environmental impact must be validated. During cement use and aging, an altered surface layer is formed that exhibits increased porosity. The surface layer thickness alteration and porosity increase with the cement degradation rate. The hardened cement paste leaching behavior has been fully documented, but the fate of incorporated TiO 2-NMs and their state during/after potential release ismore » currently unknown. In this study, photocatalytic cement pastes with increasing initial porosity were leached at a lab-scale to produce a range of degradation rates concerning the altered layer porosity and thickness. No dissolved Ti was released during leaching, only particulate TiO 2-NM release was detected. The extent of release from this batch test simulating accelerated worst-case scenario was limited and ranged from 18.7 ± 2.1 to 33.5 ± 5.1 mg of Ti/m 2 of cement after 168 h of leaching. TiO 2-NMs released into neutral aquatic media (simulate pH of surface water) were not associated or coated by cement minerals. The TiO 2-NM release mechanism is suspected to start from freeing of TiO 2-NMs in the altered layer pore network due to partial cement paste dissolution followed by diffusion into the bulk pore solution to the surface. The extent of TiO 2-NM release was not solely related to the cement degradation rate.« less
An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.
Dreher, Jean-Claude; Burnod, Yves
2002-01-01
This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.
Duan, Jian J; Bauer, Leah S; Abell, Kristopher J; Lelito, Jonathan P; Van Driesche, Roy
2013-06-01
Tetrastichus planipennisi Yang is a gregarious larval endoparasitoid native to China and has been introduced to the United States since 2007 for classical biological control of the invasive emerald ash borer, Agrilus planipennis Fairmaire, an exotic beetle responsible for widespread ash mortality. Between 2007-2010, T. planipennisi adults (3,311-4,597 females and approximately 1,500 males per site) were released into each of six forest sites in three counties (Ingham, Gratiot, and Shiawassee) of southern Michigan. By the fall of 2012, the proportion of sampled trees with one or more broods of T. planipennisi increased to 92 and 83% in the parasitoid-release and control plots, respectively, from 33 and 4% in the first year after parasitoid releases (2009 fall for Ingham county sites and 2010 for other sites). Similarly, the mean number of T. planipennisi broods observed from sampled trees increased from less than one brood per tree in the first year after parasitoid releases to 2.46 (at control plots) to 3.08 (at release plots) broods by the fall of 2012. The rates of emerald ash borer larval parasitism by T. planipennisi also increased from 1.2% in the first year after parasitoid releases to 21.2% in the parasitoid-release plots, and from 0.2 to 12.8% for the control plots by the fall of 2012. These results demonstrate that T. planipennisi is established in southern Michigan and that its populations are increasing and expanding. This suggests that T. planipennisi will likely play a critical role in suppressing emerald ash borer populations in Michigan.
Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall
2011-12-01
Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.
O'Connor, J J; O'Boyle, K M; Lowry, J P
2018-04-15
It is well documented that caffeine exacerbates the hyperthermia associated with acute exposure to 3,4-methylenedioxymethamphetamine (MDMA) in rats. Previous reports have also indicated that MDMA-related enhancement of dopamine release is exacerbated in the presence of caffeine. In the present study we have examined whether the effects of MDMA on real-time stimulated dopamine release, in the absence of uptake inhibition, are accentuated in the presence of caffeine. Isolated striatal slices from adult male Wistar rats were treated acutely with MDMA, caffeine, or a combination, and their effects on single and 5pulse stimulated dopamine release monitored using the technique of fast cyclic voltammetry. Caffeine at 10 or 100μM had no significant effect on single pulse stimulated dopamine release. However 100μM caffeine caused a significant peak increase in 5pulse stimulated dopamine release. Both 1 and 30μM MDMA gave rise to a significant increase in both single and 5-pulse dopamine release and reuptake. A combination of 100μM caffeine and 1 or 30μM MDMA did not significantly enhance the effects of MDMA on single or 5pulse dopamine release and reuptake when compared to that applied alone. Utilizing single action potential dependent dopamine release, these results do not demonstrate a caffeine-enhanced MDMA-induced dopamine release. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Tzu Yu; Lu, Cheng Wei; Huang, Wei-Jan; Wang, Su-Jane
2012-03-01
Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway. Copyright © 2011 Wiley Periodicals, Inc.
Al-Zoubi, Nizar; Al-Obaidi, Ghada; Tashtoush, Bassam; Malamataris, Stavros
2016-01-01
In this work, aqueous diltiazem HCl and polyvinyl-pyrrolidone (PVP) solutions were mixed with Kollicoat SR 30D and spray dried to microparticles of different drug:excipient ratio and PVP content. Co-spray dried products and physical mixtures of drug, Kollidon SR and PVP were tableted. Spray drying process, co-spray dried products and compressibility/compactability of co-spray dried and physical mixtures, as well as drug release and water uptake of matrix-tablets was evaluated. Simple power equation fitted drug release and water uptake (R(2) > 0.909 and 0.938, respectively) and correlations between them were examined. Co-spray dried products with PVP content lower than in physical mixtures result in slower release, while at equal PVP content (19 and 29% w/w of excipient) in similar release (f2 > 50). Increase of PVP content increases release rate and co-spray drying might be an alternative, when physical mixing is inadequate. Co-spray dried products show better compressibility/compatibility but higher stickiness to the die-wall compared to physical mixtures. SEM observations and comparison of release and swelling showed that distribution of tableted component affects only the swelling, while PVP content for both co-spray dried and physical mixes is major reason for release alterations and an aid for drug release control.
Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, C.; Ternaux, J.P.
1990-05-01
The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest twomore » different serotoninergic pools within the enterochromaffin cell population.« less
Astrocyte-Mediated Neuronal Synchronization Properties Revealed by False Gliotransmitter Release.
Pirttimaki, Tiina M; Sims, Robert E; Saunders, Gregory; Antonio, Serena A; Codadu, Neela Krushna; Parri, H Rheinallt
2017-10-11
Astrocytes spontaneously release glutamate (Glut) as a gliotransmitter (GT), resulting in the generation of extrasynaptic NMDAR-mediated slow inward currents (SICs) in neighboring neurons, which can increase local neuronal excitability. However, there is a deficit in our knowledge of the factors that control spontaneous astrocyte GT release and the extent of its influence. We found that, in rat brain slices, increasing the supply of the physiological transmitter Glut increased the frequency and signaling charge of SICs over an extended period. This phenomenon was replicated by exogenous preexposure to the amino acid D-aspartate (D-Asp). Using D-Asp as a "false" GT, we determined the extent of local neuron excitation by GT release in ventrobasal thalamus, CA1 hippocampus, and somatosensory cortex. By analyzing synchronized neuronal NMDAR-mediated excitation, we found that the properties of the excitation were conserved in different brain areas. In the three areas, astrocyte-derived GT release synchronized groups of neurons at distances of >;200 μm. Individual neurons participated in more than one synchronized population, indicating that individual neurons can be excited by more than one astrocyte and that individual astrocytes may determine a neuron's synchronized network. The results confirm that astrocytes can act as excitatory nodes that can influence neurons over a significant range in a number of brain regions. Our findings further suggest that chronic elevation of ambient Glut levels can lead to increased GT Glut release, which may be relevant in some pathological states. SIGNIFICANCE STATEMENT Astrocytes spontaneously release glutamate (Glut) and other gliotransmitters (GTs) that can modify neuronal activity. Exposing brain slices to Glut and D-aspartate (D-Asp) before recording resulted in an increase in frequency of GT-mediated astrocyte-neuron signaling. Using D-Asp, it was possible to investigate the effects of specific GT release at neuronal NMDARs. Calcium imaging showed synchronized activity in groups of neurons in cortex, hippocampus, and thalamus. The size of these populations was similar in all areas and some neurons were involved in more than one synchronous group. The findings show that GT release is supply dependent and that the properties of the signaling and activated networks are largely conserved between different brain areas. Copyright © 2017 Pirttimaki, Sims et al.
Qi, Yuan-Hong; Mao, Fang-Fang; Zhou, Zhu-Qing; Liu, Dong-Cheng; Min-Yu; Deng, Xiang-Yi; Li, Ji-Wei; Mei, Fang-Zhu
2018-05-02
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar "huamai 8" during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.
Ikawa, K; Shimatani, T; Azuma, Y; Inoue, M; Morikawa, N
2006-08-01
To examine the effects of the histamine H(2)-receptor antagonist, lafutidine, at clinical dosage (10 mg tablet after a standardized meal) on plasma levels of the gastrointestinal peptides, calcitonin gene-related peptide (CGRP), somatostatin and gastrin. Six healthy male volunteers ate a standardized meal, and received either lafutidine orally at a dose of 10 mg or water only (control). Blood samples were taken before and up to 4 h after the drug administration. Plasma lafutidine concentrations were determined by high pressure liquid chromatography. Pharmacokinetic analysis of lafutidine was performed using one-compartmental model. The levels of immunoreactive substances of plasma CGRP, somatostatin and gastrin were measured by enzyme immunoassay, and the amount of peptide release was calculated by the trapezoidal method. Lafutidine significantly increased plasma CGRP levels at 1, 1.5, 2.5 and 4 h and the total amount of CGRP release (192 +/- 14.0 pg.h/mL) compared with the control group (128 +/- 21.5 pg.h/mL). Lafutidine significantly increased the plasma somatostatin levels at 1 and 1.5 h, and the total amount of somatostatin released (107 +/- 18.2 pg.h/mL) compared with the control (78.4 +/- 7.70 pg.h/mL). The area under the drug concentration-time curve (AUC) from 0 to 4 h after administration correlated well with the Delta-CGRP and Delta-somatostatin release but not with total amount of gastrin released. However, plasma gastrin levels were significantly elevated at 1.5 h after drug administration. Lafutidine at clinical dosage increases plasma CGRP and the somatostatin. The amounts released correlated with the AUC of lafutidine in humans. These results suggest that the increased release of CGRP and somatostatin may contribute to its gastroprotective and anti-acid secretory effect.
Oh, Sarah; McCanna, David J; Subbaraman, Lakshman N; Jones, Lyndon W
2018-06-01
To ascertain the effect that four contact lens (CL) multipurpose solutions (MPS) have on the viability and release of pro-inflammatory cytokines from human corneal epithelial cells (HCEC). HCEC were exposed to four different MPS at various concentrations for 18 hours. The cells were also exposed to phosphate buffer, borate buffer, and PHMB. The cell viability was evaluated using the alamarBlue assay. The release of pro-inflammatory cytokines was measured using a Multiplex electrochemiluminescent assay. MPS-A, MPS-B and MPS-C all reduced cell metabolic activity p < 0.05 from control with MPS-A showing the greatest cytotoxic effect (maximum reduction, 90.6%). In contrast, MPS-D showed no significant reductions in cytotoxicity except at the highest concentration tested (19% reduction at 20% MPS concentration). Of the four cytokines evaluated MPS-C showed a substantial increase in the release of IL-1β, IL-6, IL-8, and TNF-α at higher concentrations when compared to control p < 0.05. At the 20% concentration of MPS-A and MPS-B the release of IL-1 β increased p < 0.05 but the release of IL-6, IL-8, and TNF-α decreased. MPS-D did not cause a change in the release of cytokines IL-1β, IL-6, IL-8 and TNF-α p > 0.05. Exposing the cells to borate buffer and PHMB caused an increase in the release of TNF-α p < 0.05. This investigation demonstrates that at different concentration levels, several of the MPS tested showed a decrease in viability and an increase in the release of inflammatory cytokines from HCEC. The borate buffer component as well as PHMB appears to contribute to this pro-inflammatory reaction. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Increased production and use of engineered nanomaterials (ENMs) over the past decade has increased the potential for the transport and release of these materials into the environment. Here we present results of two separate studies designed to simulate the effects of weathering o...
Site Characterization of Ethanol-Blended Fuel Releases
There has been an increasing use of biofuels (ethanol in particular) in the fuel supply nationwide, and an increase in the number of stations that sell gasoline that contains more than 10% ethanol. The U.S. EPA needs to understand the fate of these materials if they are released ...
Global analysis of translation termination in E. coli
Baggett, Natalie E.
2017-01-01
Terminating protein translation accurately and efficiently is critical for both protein fidelity and ribosome recycling for continued translation. The three bacterial release factors (RFs) play key roles: RF1 and 2 recognize stop codons and terminate translation; and RF3 promotes disassociation of bound release factors. Probing release factors mutations with reporter constructs containing programmed frameshifting sequences or premature stop codons had revealed a propensity for readthrough or frameshifting at these specific sites, but their effects on translation genome-wide have not been examined. We performed ribosome profiling on a set of isogenic strains with well-characterized release factor mutations to determine how they alter translation globally. Consistent with their known defects, strains with increasingly severe release factor defects exhibit increasingly severe accumulation of ribosomes over stop codons, indicative of an increased duration of the termination/release phase of translation. Release factor mutant strains also exhibit increased occupancy in the region following the stop codon at a significant number of genes. Our global analysis revealed that, as expected, translation termination is generally efficient and accurate, but that at a significant number of genes (≥ 50) the ribosome signature after the stop codon is suggestive of translation past the stop codon. Even native E. coli K-12 exhibits the ribosome signature suggestive of protein extension, especially at UGA codons, which rely exclusively on the reduced function RF2 variant of the K-12 strain for termination. Deletion of RF3 increases the severity of the defect. We unambiguously demonstrate readthrough and frameshifting protein extensions and their further accumulation in mutant strains for a few select cases. In addition to enhancing recoding, ribosome accumulation over stop codons disrupts attenuation control of biosynthetic operons, and may alter expression of some overlapping genes. Together, these functional alterations may either augment the protein repertoire or produce deleterious proteins. PMID:28301469
Yang, Quan; Battistini, Bruno; Pelletier, Stéphane; Sirois, Pierre
2007-10-01
The effects of cyclic AMP-related compounds and beta adrenoceptor agonists on the basal and lipopolysaccharide (LPS)-stimulated release of endothelin-1 (ET-1) from guinea-pig tracheal epithelial cells (GPTEpCs) in culture were studied. Forskolin (a potent activator of adenylyl cyclase), 8-bromo-cyclic AMP (a cyclic AMP analogue), salbutamol and salmeterol (two beta 2-adrenoceptor agonists), were used to increase cyclic AMP levels. Cultured GPTEpCs released ET-1 continuously over a 24 h incubation period. The values reached 1,938 +/- 122 pg/mg of total cell proteins after 24 h. LPS (10 microg/ml) significantly stimulated the release of ET-1 by 1.6- to 1.8-fold, up to 1,262 +/- 56 pg/mg total cell proteins after an 8 h incubation period. Compound 8-bromo-cyclic AMP (10(-5), 10(-4) and 10(-3) M) reduced the basal release of ET-1 from GPTEpCs by up to 31% (P < 0.01) and the LPS stimulated release by up to 42% (P < 0.05), after an 8 h incubation period. Forskolin (10(-6), 10(-5) and 10(-4) M) also inhibited the basal release of ET-1 by up to 28% (P < 0.05) and LPS-stimulated release of ET-1 by up to 50% (P < 0.05), after an 8 h incubation period. At the concentration of 10(-5) M, forskolin increased cyclic AMP levels in GPTEpCs by 17-fold (P < 0.001) in the medium, 15 min after the beginning of the incubation. Salbutamol (10(-8) to 10(-6) M) had no effect on the basal production and release of ET-1 after 8 h. Conversely, this short acting beta 2-adrenoceptor agonist significantly reduced LPS-mediated increase of ET-1 production by up to 55% (P < 0.05) after an 8 h incubation period. Salmeterol (10(-9) M to 10(-5) M) inhibited basal and LPS-stimulated production and release of ET-1 after an 8 h incubation period (between 44 and 51%, P < 0.01). Both salbutamol and salmeterol (10(-6) M) increase cyclic AMP levels by five- and twofold, respectively (P < 0.05). In summary, these observations indicate that beta 2-adrenoceptor agonists or cyclic AMP enhancers can modulate both basal and more markedly, the enhanced production of ET-1 from LPS-activated guinea pig airway EpCs. In addition, these compounds increase cyclic AMP levels in the cells. It is suggested that there is a correlation between cyclic AMP increase and inhibition of ET-1 release by guinea pig airway EpCs. Since ET-1 production was shown to be elevated in asthmatic subjects and in patients suffering from other inflammatory lung disorders, the inhibition of its production by beta adrenoceptor agonists, such as salbutamol and salmeterol, could be added to their therapeutical benefits.