Science.gov

Sample records for increases salt tolerance

  1. Azetidine-2-carboxylic acid resistant mutants of Arabidopsis thaliana with increased salt tolerance

    SciTech Connect

    Lehle, F.R.; Murphy, M.A.; Khan, R.A. )

    1989-04-01

    Nineteen mutant Arabidopsis families resistant to the proline analog azetidine-2-carboxylic acid (ACA) were characterized in terms of NaCl tolerance and proline content. Mutants were selected from about 64,000 progeny of about 16,000 self-pollinated Columbia parents which had been mutated with ethyl methane sulfonate during seed imbibition. Selections were performed during seed germination on aseptic agar medium containing 0.2 to 0.25 mM ACA. Nineteen mutant families, 12 clearly independent, retained resistance to ACA in the M{sub 4} generation. Based on germination on 150 mM NaCl, 13 of the mutant families were more tolerant than the wild type. Two mutants of intermediate resistance to ACA were markedly more salt tolerant than the others. Four mutant families appeared to overproduce proline. Of these, only 3 showed slight increases in salt tolerance.

  2. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection.

  3. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  4. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean

    PubMed Central

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-01-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na+ concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na+ transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na+ concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na+ in the vacuole, but Melrose plants accumulated Na+ in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na+ transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)–CIPK24 (CBL-interacting protein kinase 24)–NHX (Na+/H+ antiporter) and CBL4 (calcineurin B-like protein 4)–CIPK24–SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na+ in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. PMID:26276865

  5. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content.

    PubMed

    Hamouda, I; Badri, M; Mejri, M; Cruz, C; Siddique, K H M; Hessini, K

    2016-05-01

    The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment. PMID:26588061

  6. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes.

    PubMed

    Morais, Maria Cristina; Panuccio, Maria Rosaria; Muscolo, Adele; Freitas, Helena

    2012-06-01

    Salt tolerance of two co-occurring legumes in coastal areas of Portugal, a native species--Ulex europaeus, and an invasive species--Acacia longifolia, was evaluated in relation to plant growth, ion content and antioxidant enzyme activities. Plants were submitted to four concentrations of NaCl (0, 50, 100 and 200 mM) for three months, under controlled conditions. The results showed that NaCl affects the growth of both species in different ways. Salt stress significantly reduced the plant height and the dry weight in Acacia longifolia whereas in U. europaeus the effect was not significant. Under salt stress, the root:shoot ratio (W(R):W(S)) and root mass ratio (W(R):W(RS)) increased as a result of increasing salinity in A. longifolia but the same was not observed in U. europaeus. In addition, salt stress caused a significant accumulation of Na+, especially in U. europaeus, and a decrease in K+ content and K+/Na+ ratio. The activities of antioxidant enzymes were higher in A. longifolia compared to U. europaeus. In A. longifolia, catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2.) activities increased significantly, while ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POX, EC 1.11.1.7) activities remained unchanged in comparison with the control. In U. europaeus, NaCl concentration significantly reduced APX activity but did not significantly affect CAT, GR and POX activities. Our results suggest that the invasive species copes better with salinity stress in part due to a higher rates of CAT and GR activities and a higher K+/Na+ ratio, which may represent an additional advantage when competing with native species in co-occurring salty habitats.

  7. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants.

    PubMed

    Yang, Xinghong; Liang, Zheng; Wen, Xiaogang; Lu, Congming

    2008-01-01

    Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to synthesis glycinebetaine (GB) in chloroplasts was established by introducing the BADH gene for betaine aldehyde dehydrogenase from spinach (Spinacia oleracea L.). The genetic engineering resulted in enhanced tolerance of growth of young seedlings to salt stress. This increased tolerance was not due to improved water status, since there were no significant differences in accumulation of sodium and chloride, leaf water potential, and relative water content between wild type and transgenic plants under salt stress. Salt stress resulted in a decrease in CO2 assimilation and such a decrease was much greater in wild type plants than in transgenic plants. Though salt stress showed no damage to PSII, there were a decrease in the maximal PSII electron transport rate in vivo and an increase in non-photochemical quenching (NPQ) and these changes were greater in wild type plants than in transgenic plants. In addition, salt stress inhibited the activities of ribulose 1,5-bisphosphate carboxylase/oxygenase, chloroplastic fructose-1,6-bisphosphatase, fructose-1,6-bisphosphate aldolase, and phosphoribulokinase and such a decrease was also greater in wild type plants than in transgenic plants, suggesting that GB protects these enzymes against salt stress. However, there were no significant changes in the activities of phosphoglycerate kinase, triose phosphate isomerase, ribulose-5-phosphate isomerase, transketolase, and sedoheptulose-1,7-bisphosphatase in both wild type and transgenic plants. The results in this study suggest that enhanced tolerance of CO2 assimilation to salt stress may be one of physiological bases for increased tolerance of growth of transgenic plants to salt stress.

  8. Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle.

    PubMed

    Sakuraba, Yasuhito; Piao, Weilan; Lim, Jung-Hyun; Han, Su-Hyun; Kim, Ye-Sol; An, Gynheung; Paek, Nam-Chon

    2015-12-01

    NAM/ATAF1/ATAF2/CUC2 (NAC) is a plant-specific transcription factor (TF) family, and NACs participate in many diverse processes during the plant life cycle. Several Arabidopsis thaliana NACs have important roles in positively or negatively regulating leaf senescence, but in other plant species, including rice, the senescence-associated NACs (senNACs) remain largely unknown. Here we show that the rice senNAC TF ONAC106 negatively regulates leaf senescence. Leaves of onac106-1D (insertion of the 35S enhancer in the promoter region of the ONAC106 gene) mutants retained their green color under natural senescence and dark-induced senescence conditions. Genome-wide transcriptome analysis revealed that key senescence-associated genes (SGR, NYC1, OsNAC5, OsNAP, OsEIN3 and OsS3H) were differentially expressed in onac106-1D during dark-induced senescence. In addition to delayed senescence, onac106-1D also showed a salt stress-tolerant phenotype; key genes that down-regulate salt response signaling (OsNAC5, OsDREB2A, OsLEA3 and OsbZIP23) were rapidly up-regulated in onac106-1D under salt stress. Interestingly, onac106-1D also exhibited a wide tiller angle phenotype throughout development, and the tiller angle-related gene LPA1 was down-regulated in onac106-1D. Using yeast one-hybrid assays, we found that ONAC106 binds to the promoter regions of SGR, NYC1, OsNAC5 and LPA1. Taking these results together, we propose that ONAC106 functions in leaf senescence, salt stress tolerance and plant architecture by modulating the expression of its target genes that function in each signaling pathway.

  9. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    PubMed

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  10. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    SciTech Connect

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  11. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.

    PubMed

    Tuyen, D D; Lal, S K; Xu, D H

    2010-07-01

    Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F(6) recombinant inbred line mapping population (n = 112) and an F(2) population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO(3) for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F(6) and the F(2) populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.

  12. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt.

    PubMed

    Waditee-Sirisattha, Rungaroon; Singh, Meenakshi; Kageyama, Hakuto; Sittipol, Daungjai; Rai, Ashwani K; Takabe, Teruhiro

    2012-11-01

    Photosynthetic, nitrogen-fixing Anabaena strains play an important role in the carbon and nitrogen cycles in tropical paddy fields although they are salt sensitive. Improvement in salt tolerance of Anabaena cells by expressing glycine betaine-synthesizing genes is an interesting subject. Due to the absence of choline in cyanobacteria, choline-oxidizing enzyme could not be used for the synthesis of glycine betaine. Here, the genes encoding glycine-sarcosine and dimethylglycine methyltransferases (ApGSMT-DMT) from a halotolerant cyanobacterium Aphanothece halophytica were expressed in Anabaena sp. strain PCC7120. The ApGSMT-DMT-expressing Anabaena cells were capable of synthesizing glycine betaine without the addition of any substance. The accumulation level of glycine betaine in Anabaena increased with rise of salt concentration. The transformed cells exhibited an improved growth and more tolerance to salinity than the control cells. The present work provides a prospect to engineer a nitrogen-fixing cyanobacterium having enhanced tolerance to stress by manipulating de novo synthesis of glycine betaine.

  13. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  14. Plant salt-tolerance mechanisms

    DOE PAGESBeta

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  15. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.

    PubMed

    Penella, Consuelo; Landi, Marco; Guidi, Lucia; Nebauer, Sergio G; Pellegrini, Elisa; San Bautista, Alberto; Remorini, Damiano; Nali, Cristina; López-Galarza, Salvador; Calatayud, Angeles

    2016-04-01

    The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by

  16. Plant salt tolerance: adaptations in halophytes

    PubMed Central

    Flowers, Timothy J.; Colmer, Timothy D.

    2015-01-01

    Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes. Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl−, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes. Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils. PMID:25844430

  17. Salt pretreatment enhance salt tolerance in Zea mays L. seedlings.

    PubMed

    Tajdoost, S; Farboodnia, T; Heidari, R

    2007-06-15

    Recent molecular studies show that genetic factors of salt tolerance in halophytes exist in glycophytes too, but they are not active. If these plants expose to low level salt stress these factors may become active and cause plants acclimation to higher salt stresses. So because of the importance of these findings in this research the effect of salt pretreatment has been examined in Zea mays seedlings. To do the experiment four day old Zea mays seedlings (Var. single cross 704) pretreated with 50 mM NaCl for the period of 20 h. Then they were transferred to 200 and 300 mM NaCl for 48 h. At the end of treatment roots and shoots of seedlings were harvested separately. The changes of K+ -leakage, the amount of malondialdehyde, proline, soluble sugars and the Hill reaction rate were analyzed. The results indicated that the amount of K+ -leakage and malondialdehyde (MDA) have been increased because of salt-induced lipid peroxidation and membrane unstability. Soluble sugars and proline as osmoregulators has been increased in stress condition and in pretreated plants with NaCl were the highest. The rate of Hill reaction was reduced significantly in stressed plants. Therefore we concluded that salt stress causes serious physiological and biochemical damages in plants and salt pretreatment enhances tolerance mechanisms of plants and help them to tolerate salt stress and grow on salty environments. PMID:19093451

  18. Reducing Cytoplasmic Polyamine Oxidase Activity in Arabidopsis Increases Salt and Drought Tolerance by Reducing Reactive Oxygen Species Production and Increasing Defense Gene Expression

    PubMed Central

    Sagor, G. H. M.; Zhang, Siyuan; Kojima, Seiji; Simm, Stefan; Berberich, Thomas; Kusano, Tomonobu

    2016-01-01

    The link between polyamine oxidases (PAOs), which function in polyamine catabolism, and stress responses remains elusive. Here, we address this issue using Arabidopsis pao mutants in which the expression of the five PAO genes is knocked-out or knocked-down. As the five single pao mutants and wild type (WT) showed similar response to salt stress, we tried to generate the mutants that have either the cytoplasmic PAO pathway (pao1 pao5) or the peroxisomal PAO pathway (pao2 pao3 pao4) silenced. However, the latter triple mutant was not obtained. Thus, in this study, we used two double mutants, pao1 pao5 and pao2 pao4. Of interest, pao1 pao5 mutant was NaCl- and drought-tolerant, whereas pao2 pao4 showed similar sensitivity to those stresses as WT. To reveal the underlying mechanism of salt tolerance, further analyses were performed. Na uptake of the mutant (pao1 pao5) decreased to 75% of WT. PAO activity of the mutant was reduced to 62% of WT. The content of reactive oxygen species (ROS) such as hydrogen peroxide, a reaction product of PAO action, and superoxide anion in the mutant became 81 and 72% of the levels in WT upon salt treatment. The mutant contained 2.8-fold higher thermospermine compared to WT. Moreover, the mutant induced the genes of salt overly sensitive-, abscisic acid (ABA)-dependent- and ABA-independent- pathways more strongly than WT upon salt treatment. The results suggest that the Arabidopsis plant silencing cytoplasmic PAOs shows salinity tolerance by reducing ROS production and strongly inducing subsets of stress-responsive genes under stress conditions. PMID:26973665

  19. Salt tolerance evolves more frequently in C4 grass lineages.

    PubMed

    Bromham, L; Bennett, T H

    2014-03-01

    Salt tolerance has evolved many times in the grass family, and yet few cereal crops are salt tolerant. Why has it been so difficult to develop crops tolerant of saline soils when salt tolerance has evolved so frequently in nature? One possible explanation is that some grass lineages have traits that predispose them to developing salt tolerance and that without these background traits, salt tolerance is harder to achieve. One candidate background trait is photosynthetic pathway, which has also been remarkably labile in grasses. At least 22 independent origins of the C4 photosynthetic pathway have been suggested to occur within the grass family. It is possible that the evolution of C4 photosynthesis aids exploitation of saline environments, because it reduces transpiration, increases water-use efficiency and limits the uptake of toxic ions. But the observed link between the evolution of C4 photosynthesis and salt tolerance could simply be due to biases in phylogenetic distribution of halophytes or C4 species. Here, we use a phylogenetic analysis to investigate the association between photosynthetic pathway and salt tolerance in the grass family Poaceae. We find that salt tolerance is significantly more likely to occur in lineages with C4 photosynthesis than in C3 lineages. We discuss the possible links between C4 photosynthesis and salt tolerance and consider the limitations of inferring the direction of causality of this relationship.

  20. Characterization of salt-tolerant β-glucosidase with increased thermostability under high salinity conditions from Bacillus sp. SJ-10 isolated from jeotgal, a traditional Korean fermented seafood.

    PubMed

    Lee, Jong Min; Kim, Yu-Ri; Kim, Joong Kyun; Jeong, Gwi-Taek; Ha, Jeong-Chul; Kong, In-Soo

    2015-07-01

    The β-glucosidase gene, bglC, was cloned from Bacillus sp. SJ-10 isolated from the squid jeotgal. Recombinant BglC protein overexpression was induced in Escherichia coli. The optimal pH and temperature of the enzyme, using p-nitrophenyl-β-D-glucopyranoside (pNPβGlc) as a substrate, were pH 6 and 40 °C, respectively. Enzymatic activity increased by 3.3- and 3.5-fold in the presence of 15% NaCl and KCl, respectively. Furthermore, enzyme thermostability improved in the presence of NaCl or KCl. At 45 °C in the presence of salts, the enzyme was stable for 2 h and maintained 80% activity. In the absence of salts, BglC completely lost activity after 110 min at 45 °C. Comparison of the kinetic parameters at various salt concentrations revealed that BglC had approximately 1.5- and 1.2-fold higher affinity and hydrolyzed pNPβGlc 1.9- and 2.1-fold faster in the presence of 15% NaCl and KCl, respectively. Additionally, the Gibb's free energy for denaturation was higher in the presence of 15% salt than in the absence of salt at 45 and 50 °C. Since enzymatic activity and thermostability were enhanced under high salinity conditions, BglC is an ideal salt-tolerant enzyme for further research and industrial applications.

  1. Overexpression of an alfalfa GDP-mannose 3, 5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation.

    PubMed

    Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng

    2014-11-01

    GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.

  2. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aim of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the work is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture. 18 refs.

  3. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity

    PubMed Central

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Nick, Peter; Riemann, Michael

    2015-01-01

    Salinity stress represents a global constraint for rice, the most important staple food worldwide. Therefore the role of the central stress signal jasmonate for the salt response was analysed in rice comparing the responses to salt stress for two jasmonic acid (JA) biosynthesis rice mutants (cpm2 and hebiba) impaired in the function of ALLENE OXIDE CYCLASE (AOC) and their wild type. The aoc mutants were less sensitive to salt stress. Interestingly, both mutants accumulated smaller amounts of Na+ ions in their leaves, and showed better scavenging of reactive oxygen species (ROS) under salt stress. Leaves of the wild type and JA mutants accumulated similar levels of abscisic acid (ABA) under stress conditions, and the levels of JA and its amino acid conjugate, JA–isoleucine (JA-Ile), showed only subtle alterations in the wild type. In contrast, the wild type responded to salt stress by strong induction of the JA precursor 12-oxophytodienoic acid (OPDA), which was not observed in the mutants. Transcript levels of representative salinity-induced genes were induced less in the JA mutants. The absence of 12-OPDA in the mutants correlated not only with a generally increased ROS-scavenging activity, but also with the higher activity of specific enzymes in the antioxidative pathway, such as glutathione S-transferase, and fewer symptoms of damage as, for example, indicated by lower levels of malondialdehyde. The data are interpreted in a model where the absence of OPDA enhanced the antioxidative power in mutant leaves. PMID:25873666

  4. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana.

    PubMed

    Li, Wenbin; Wang, Tao; Zhang, Yuhang; Li, Yongguang

    2016-01-01

    MiRNAs play crucial roles in many aspects of plant development and the response to the environment. The miR172 family has been shown to participate in the control of flowering time and the response to abiotic stress. This family regulates the expression of APETALA2 (AP2)-like transcription factors in Arabidopsis. In the present study, soybean (Glycine max L. Merr.) miR172c, a member of the miR172 family, and its target gene were investigated for abiotic stress responses in transgenic Arabidopsis. gma-miR172c was induced by abscisic acid (ABA) treatments and abiotic stresses, including salt and water deficit. 5'-RACE (5'-rapid amplification of cDNA ends) assays indicated that miR172c directed Glyma01g39520 mRNA cleavage in soybeans. Overexpression of gma-miR172c in Arabidopsis resulted in reduced leaf water loss and increased survival rate under stress conditions. Meanwhile, the root length, germination rate, and cotyledon greening of transgenic plants were improved during both high salt and water deficit conditions. In addition, transgenic plants exhibited hypersensitivity to ABA during both the seed germination and post-germination seedling growth stages. Stress-related physiological indicators and the expression of stress/ABA-responsive genes were affected by abiotic treatments. The overexpression of gma-miR172c in Arabidopsis promoted earlier flowering compared with the wild type through modulation of the expression of flowering genes, such as FT and LFY during long days, especially under drought conditions. Glyma01g39520 weakened ABA sensitivity and reduced the tolerance to drought stress in the snz mutant of Arabidopsis by reducing the expression of ABI3 and ABI5. Overall, the present results demonstrate that gma-miR172c confers water deficit and salt tolerance but increased ABA sensitivity by regulating Glyma01g39520, which also accelerates flowering under abiotic stresses.

  5. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-09-01

    Two cysteine proteinase inhibitors (cystatins) from Arabidopsis thaliana, designated AtCYSa and AtCYSb, were characterized. Recombinant GST-AtCYSa and GST-AtCYSb were expressed in Escherichia coli and purified. They inhibit the catalytic activity of papain, which is generally taken as evidence for cysteine proteinase inhibitor function. Northern blot analyses showed that the expressions of AtCYSa and AtCYSb gene in Arabidopsis cells and seedlings were strongly induced by multiple abiotic stresses from high salt, drought, oxidant, and cold. Interestingly, the promoter region of AtCYSa gene contains a dehydration-responsive element (DRE) and an abscisic acid (ABA)-responsive element (ABRE), which identifies it as a DREB1A and AREB target gene. Under normal conditions, AtCYSa was expressed in 35S: DREB1A and 35S: AREB1 plants at a higher level than in WT plants, while AtCYSa gene was expressed in 35S: DREB2A plants at the same level as in WT plants. Under stress conditions (salt, drought and cold), AtCYSa was expressed more in all three transgenic plants than in WT plants. Over-expression of AtCYSa and AtCYSb in transgenic yeast and Arabidopsis plants increased the resistance to high salt, drought, oxidative, and cold stresses. Taken together, these data raise the possibility of using AtCYSa and AtCYSb to genetically improve environmental stresses tolerance in plants.

  6. Molten salt electrolyte battery cell with overcharge tolerance

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  7. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  8. Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress

    PubMed Central

    Ferreira, Liliana J.; Azevedo, Vanessa; Maroco, João; Oliveira, M. Margarida; Santos, Ana Paula

    2015-01-01

    DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISA-based technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In ‘Pokkali’, the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In ‘IR29’, the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses. PMID:25932633

  9. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana.

    PubMed

    Chen, Zhehao; Hu, Lingzhi; Han, Ning; Hu, Jiangqin; Yang, Yanjun; Xiang, Taihe; Zhang, Xujia; Wang, Lilin

    2015-01-01

    Soil salinity is a common environmental stress factor that limits agricultural production worldwide. Plants have evolved different strategies to achieve salt tolerance. miR393 has been identified as closely related to biotic and abiotic stresses, and targets F-box genes that encode auxin receptors. The miR393-TIR1/AFB2/AFB3 regulatory module was discovered to have multiple functions that manipulate the auxin response. This study focused on miR393 and one of its targets, TIR1, and found that they played potential roles in response to salt stress. Our results showed that overexpression of a miR393-resistant TIR1 gene (mTIR1) in Arabidopsis clearly enhanced salt stress tolerance, which led to a higher germination rate, less water loss, reduced inhibition of root elongation, delayed senescence, decreased death rate and stabilized Chl content. These plants accumulated more proline and anthocyanin, and displayed enhanced osmotic stress tolerance. The expression of some salt stress-related genes was altered, and sodium content can be reduced in these plants under salt stress. We proposed that highly increased auxin signaling by overexpression of mTIR1 may trigger auxin-mediated downstream pathways to enhance plant salt stress resistance by osmoregulation and increased Na(+) exclusion.

  10. Transcriptional analysis of major chaperone genes in salt-tolerant and salt-sensitive mesorhizobia.

    PubMed

    Brígido, Clarisse; Alexandre, Ana; Oliveira, Solange

    2012-12-20

    Salinity is an important abiotic stress that limits rhizobia-legume symbiosis, affecting plant growth, thus reducing crop productivity. Our aims were to evaluate the tolerance to salinity of native chickpea rhizobia as well as to investigate the expression of chaperone genes groEL, dnaKJ and clpB in both tolerant and sensitive isolates. One hundred and six native chickpea mesorhizobia were screened for salinity tolerance by measuring their growth with 1.5% and 3% NaCl. Most isolates were salt-sensitive, showing a growth below 20% compared to control. An association between salt tolerance and province of origin of the isolates was found. The transcriptional analysis by northern hybridization of chaperone genes was performed using tolerant and sensitive isolates belonging to different Mesorhizobium species. Upon salt shock, most isolates revealed a slight increase in the expression of the dnaK gene, whereas the groESL and clpB expression was unchanged or slightly repressed. No clear relationship was found between the chaperone genes induction and the level of salt tolerance of the isolates. This is the first report on transcriptional analysis of the major chaperones genes in chickpea mesorhizobia under salinity, which may contribute to a better understanding of the mechanisms that influence rhizobia salt tolerance.

  11. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants.

    PubMed

    Seo, Yean Joo; Park, Jong-Beum; Cho, Yeon-Jeong; Jung, Choonkyun; Seo, Hak Soo; Park, Soon-Ki; Nahm, Baek Hie; Song, Jong Tae

    2010-09-01

    Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought.

  12. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants.

    PubMed

    Seo, Yean Joo; Park, Jong-Beum; Cho, Yeon-Jeong; Jung, Choonkyun; Seo, Hak Soo; Park, Soon-Ki; Nahm, Baek Hie; Song, Jong Tae

    2010-09-01

    Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought. PMID:20803085

  13. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes.

    PubMed

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2014-12-09

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective.

  14. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes

    PubMed Central

    Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter

    2015-01-01

    Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122

  15. GmSALT3, Which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl- Exclusion Prior to Na+ Exclusion But Does Not Improve Early Vigor under Salinity

    PubMed Central

    Liu, Ying; Yu, Lili; Qu, Yue; Chen, Jingjing; Liu, Xiexiang; Hong, Huilong; Liu, Zhangxiong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan; Guan, Rongxia

    2016-01-01

    Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3) has the potential to improve soybean yields in salinized conditions. Here we evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions. Three sets of near isogenic lines (NILs), with genetic similarity of 95.6–99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties 85–140 (salt-sensitive, S) and Tiefeng 8 (salt-tolerant, T) by using marker-assisted selection. Each NIL-T; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigor under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl- in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl- than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl- accumulation in soybean, and contributes to improved soybean yield through maintaining a higher seed

  16. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].

    PubMed

    Gao, Jian-Ming; Xia, Bu-Xian; Yuan, Qing-Hua; Luo, Feng; Han, Yun; Gui, Zhi; Pei, Zhong-You; Sun, Shou-Jun

    2012-05-01

    A sand culture experiment with Hoagland solution plus NaCl and Na2CO3 was conducted to study the responses of sorghum seedlings to salt-alkaline stress. An assessment method for identifying the salt-alkaline tolerance of sorghum at seedling stage was established, and the salt-alkaline tolerance of 66 sorghum genotypes was evaluated. At the salt concentrations 8.0-12.5 g x L(-1), there was a great difference in the salt-alkaline tolerance between tolerant genotype 'TS-185' and susceptive 'Tx-622B', suggesting that this range of salt concentrations was an appropriate one to evaluate the salt-alkaline tolerance of sorghum at seedling stage. At the salt concentrations 10.0 and 12.5 g x L(-1), there existed significant differences in the relative livability, relative fresh mass, and relative height among the 66 genotypes, indicating a great difference in the salt-alkaline tolerance among these genotypes. The genotype 'Sanchisan' was highly tolerant, 16 genotypes such as 'MN-2735' were tolerant, 32 genotypes such as 'EARLY HONEY' were mild tolerant, 16 genotypes such as 'Tx-622B' were susceptive, and genotype 'MN-4588' was highly susceptive to salt-alkaline stress. Most of the sorghum genotypes belonging to Sudangrasses possessed a high salt-alkaline tolerance, while the sorghum genotypes belonging to maintainer lines were in adverse. PMID:22919841

  17. Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-type transcription factor increases tolerance to salt in transgenic tobacco.

    PubMed

    Yang, Hua; Yu, Chuan; Yan, Jun; Wang, Xuehua; Chen, Fang; Zhao, Yun; Wei, Wei

    2014-11-01

    The JcERF1 gene, which is related to the ERF family (ethylene responsive factor coding genes), was isolated and characterized from the oil tree Jatropha curcas. The JcERF1 protein contains conserved an AP2/EREBP DNA-binding domain of 58 amino acid residues. The JcERF1 gene could be induced by abscisic acid, high salinity, hormones, and osmotic stress, suggesting that JcERF1 is regulated by certain components of the stress-signaling pathway. The full-length and C-terminus of JcERF1 driven by the GAL4 promoter functioned effectively as a transactivator in yeast, while its N-terminus was completely inactive. Transient expression analysis using a JcERF1-mGFP fusion gene in onion epidermal cells revealed that the JcERF1 protein is targeted to the nucleus. Transgenic tobacco plants carrying CaMV35S::JcERF1 fragments were shown to be much more salt tolerant compared to wild-type plants. Our results indicate that JcERF1 is a new member of the ERF transcription factors family that may play an important role in tolerance to environmental stress. PMID:25540008

  18. Diversity and Evolution of Salt Tolerance in the Genus Vigna

    PubMed Central

    Iseki, Kohtaro; Takahashi, Yu; Muto, Chiaki; Naito, Ken; Tomooka, Norihiko

    2016-01-01

    Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops. PMID:27736995

  19. Bioenergetics of salt tolerance. Final report

    SciTech Connect

    Packer, L.

    1986-10-28

    Major findings are presented on how Synechococcus responds to a transition from low salt (12mM NaCl) to high salt (0.5 M NaCl) medium; we have studied immediate and long-term osmotic responses, identified deleterious effects of NaCl on cellular processes, and analyzed adaptations of the bioenergetic systems that permit the organism to tolerate a high salt environment. We have also developed new electron spin resonance methods for measuring intracellular O/sub 2/ concentrations and intracellular pH. In addition studies on the physiology and molecular mechanism of light-driven chloride transport by halorhodopsin in the halobacteria are reported. The ion-transport ATPase of halobacteria and the respiration-linked sodium transport system of the halotolerant bacterium, Bal were studied with respect to the role and functioning of ionic pumps. Chloride transport was shown to be an integral componet of the overall ion circulation in halobacterial cells, one which maintains internal salt concentration and therefore cellular volume. How halorhodopsin functions, its photointermediates, the nature of chloride-binding sites, the role of the deprotonation of the retinal Schiff-base, and how removal of most of the arginine residues, does not affect chloride-binding are reported. Methods were developed for the study of membrane-bound halobacterial ATPase, its solubilization and partial purification. 43 refs., 1 fig.

  20. Physiological and molecular features of Puccinellia tenuiflora tolerating salt and alkaline-salt stress.

    PubMed

    Zhang, Xia; Wei, Liqin; Wang, Zizhang; Wang, Tai

    2013-03-01

    Saline-alkali soil seriously threatens agriculture productivity; therefore, understanding the mechanism of plant tolerance to alkaline-salt stress has become a major challenge. Halophytic Puccinellia tenuiflora can tolerate salt and alkaline-salt stress, and is thus an ideal plant for studying this tolerance mechanism. In this study, we examined the salt and alkaline-salt stress tolerance of P. tenuiflora, and analyzed gene expression profiles under these stresses. Physiological experiments revealed that P. tenuiflora can grow normally with maximum stress under 600 mmol/L NaCl and 150 mmol/L Na2 CO3 (pH 11.0) for 6 d. We identified 4,982 unigenes closely homologous to rice and barley. Furthermore, 1,105 genes showed differentially expressed profiles under salt and alkaline-salt treatments. Differentially expressed genes were overrepresented in functions of photosynthesis, oxidation reduction, signal transduction, and transcription regulation. Almost all genes downregulated under salt and alkaline-salt stress were related to cell structure, photosynthesis, and protein synthesis. Comparing with salt stress, alkaline-salt stress triggered more differentially expressed genes and significantly upregulated genes related to H(+) transport and citric acid synthesis. These data indicate common and diverse features of salt and alkaline-salt stress tolerance, and give novel insights into the molecular and physiological mechanisms of plant salt and alkaline-salt tolerance.

  1. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    PubMed Central

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  2. Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1

    NASA Technical Reports Server (NTRS)

    Cumbers, John Robert; Rothschild, Lynn J.

    2014-01-01

    Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

  3. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant.

    PubMed

    Zhang, Huirong; Du, Chao; Wang, Yan; Wang, Jia; Zheng, Linlin; Wang, Yingchun

    2016-09-01

    Reaumuria trigyna is a typical, native desert halophyte that grows under extreme conditions in Inner Mongolia. In a previous transcriptomic profiling analysis, flavonoid pathway-related genes in R. trigyna showed significant differences in transcript abundance under salt stress. Leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19) is one of three dioxygenases in the flavonoid pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. In this study, we cloned the full-length cDNA of R. trigyna LDOX (RtLDOX), and found RtLDOX recombinant protein was able to replace flavanone-3-hydroxylase (F3H, EC 1.14.11.9), another dioxygenase in the flavonoid pathway, to convert naringenin to dihydrokaempferol in vitro. R. trigyna LDOX can complement the Arabidopsis LDOX mutant transparent testa11 (tt11-11), which has reduced proanthocyanin (PA) and anthocyanin levels in seeds, to accumulate these two compounds. Thus, RtLDOX acts as a multifunctional dioxygenase to effect the synthesis of PA and anthocyanins and can perform F3H dioxygenase activities in the flavonoid biosynthesis pathway. The RtLDOX promoter harbored many cis-acting elements that might be recognized and bound by transcription factors related to stress response. RtLDOX expression was strongly increased under salt stress, and RtLDOX transgenic Arabidopsis mutant under NaCl stress accumulated the content of flavonoids leading to an increased antioxidant activities and plant biomass. These results suggest that RtLDOX as a multifunctional dioxygenase in flavonoid biosynthesis involves in enhancing plant response to NaCl stress. PMID:27219053

  4. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  5. Invasive Knotweeds are Highly Tolerant to Salt Stress

    NASA Astrophysics Data System (ADS)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  6. Lipid composition of mangrove and its relevance to salt tolerance.

    PubMed

    Oku, Hirosuke; Baba, Shigeyuki; Koga, Hiroya; Takara, Kensaku; Iwasaki, Hironori

    2003-02-01

    Lipid compositions of mangrove trees were studied in relation to the salt-tolerance mechanism. Leaves and roots were obtained from seven mature mangrove trees on Iriomote Island, Okinawa: Bruguiera gymnorrhiza, Rhizophora stylosa, Kandelia candel, Lumnitzera racemosa, Avicennia marina, Pemphis acidula and Sonneratia alba. Lipids of mangrove leaves mainly consisted of 11 lipid classes: polar lipids, unknown (UK) 1-6, sterols, triacyl glycerols, wax ester and sterol ester (UK 3 and 4 were found to be tri-terpenoid alcohol in this study). Of these lipid classes, sterol ester was the main lipid in all species comprising 17.6-33.7% of total lipids. Analysis of the chemical structure found that the sterol esters mainly consisted of fatty acid esters of tri-terpenoid alcohols. One major tri-terpenoid alcohol was identified to be lupeol by interpretation of infrared resonance, nuclear magnetic resonance and mass spectrometry. Because of the unique anatomy of the mangrove root, lipid analyses were made separately for epidermis, cortex and innermost stele, respectively. The concentration of free tri-terpenoid alcohols showed a higher tendency in the outside part than in the inside portion of the roots, suggesting their protective roles. Relevance of lipid composition to salt tolerance was studied with propagules of K. candel and B. gymnorrhiza planted with varied salt concentrations. The proportions of free tri-terpenoids increased with salinity in both leaves and roots of K. candel, and only in roots of B. gymnorrhiza. No salt-dependent changes were noted in the phospholipid and fatty acid compositions in both species. These findings suggested that salt stress specifically modulated the terpenoid concentrations in mangroves. PMID:12605298

  7. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  8. Increasing ideological tolerance in social psychology.

    PubMed

    Inbar, Yoel; Lammers, Joris

    2015-01-01

    We argue that recognizing current ideological diversity in social psychology and promoting tolerance of minority views is just as important as increasing the number of non-liberal researchers. Increasing tolerance will allow individuals in the minority to express dissenting views, which will improve psychological science by reducing bias. We present four recommendations for increasing tolerance.

  9. Study on Mixing Field of Salt Tolerant Polymer Solution

    NASA Astrophysics Data System (ADS)

    Zhang, L. H.; Zhang, M. G.; Li, X. G.; Zhang, D.; Jiang, B.

    The salt tolerant polymer (PAM) solution is a kind of viscoelastic fluid. The polymer. whose molecular weight is more than 2.5x107g/mol, is apt to form ultra-molecular structures in solution with pretty high viscoelasticity. These characteristics considerably affect the flow patterns and the mixing process. It is far more difficult to mix viscoelastic fluid homogeneously than Newtonian fluid. Because the molecular diffusion rate of viscoelastic fluid in mixing process is very low, improving the circulating performance of the agitator is the main path to increase the mixing velocity of the viscoelastic fluid. In this study, structure and operation parameters of new type agitator—double helical ribbon screw agitator designed for the salt tolerant polymer are optimized via laboratory experiment. The experiment results show that, compared with the screw propeller, the new type agitator improves circulation of fluid field effectively and increases the homogenized rate. It reduces the mixing time from 4h to 2h. And the viscosity of the polymer solution increases by 10%. However, the energy consumption does not increase.

  10. [Selection and characterization of salt-tolerant calli of Taraxacum officinale].

    PubMed

    Zhang, Xinguo; Chen, Xianyang; Jiang, Dan; Li, Yinxin

    2008-07-01

    In order to obtain salt-tolerant calli of Dandelion (Taraxacum officinale Weber), calli were induced from leaf explants of Dandelion on Murashige and Skoog's medium supplemented with 2.0 mg/L 6-benzyladenine and 0.5 mg/L 2,4-dichlorophen oxyacetic acid With 1.5% NaCl as selection pressure, most calli became brown and dead, whereas some new cell clusters appeared at the edge of the brown calli after 2 to 3 weeks. The survived cells were picked out and sub-cultured every 3 weeks onto the fresh selection medium and salt-tolerant calli were finally obtained through 4 continuous selections on the selection medium supplemented with 1.5% NaCl. Salt-tolerant calli increased steadily under a fixed NaCl stress though their relative growth rate decreased with increased NaCl concentration whereas the control calli which were sub-cultured by 4 continus selections on salt free medium ceased to grow under the same condition. This result indicated that the salt-tolerance of the selected calli is improved and this character is stable. Compared with the control, the SDS-PAGE pattern of the salt-tolerant calli had a unique 34 kD protein band. Its 30 kD and 18 kD protein bands were up-regulated. Further more, within the NaCl stress range up to 1.5%, the activities of antioxidant enzymes such as super oxidase dimutase, peroxidase and catalase, and the proline contents of the salt-tolerant calli were higher than those of the control. The results indicated that the selected calli with improved and stable salt tolerance were cell variants. The accumulation of the organic compatible solutes including proteins and the enhanced antioxidant capabilities in the salt tolerant calli are the two ways for them to regulate their osmotic homeostasis and alleviate the secondary reactive oxygen spexies damage respectively.

  11. Salt tolerance at single cell level in giant-celled Characeae

    PubMed Central

    Beilby, Mary J.

    2015-01-01

    Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50–100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in

  12. Evaluation of cotton germplasm and breeding populations for salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three experiments were conducted in 2005 and 2007 to evaluate a total of 211 cotton germplasm and breeding lines for salt tolerance in the greenhouses. The randomized complete block designs with two or three replications were employed for those experiments. 200 mM salt solutions or tap water were ap...

  13. (Bioenergetics of salt tolerance): Progress report, 1980-1983

    SciTech Connect

    Not Available

    1983-01-01

    We have developed novel and useful techniques based on ESR probes for measuring intracellular volumes and membrane permeability, as well as adapted more commonly used ones for various measurements in work on salt tolerance. Biological membrane systems, ranging from simpler (halobacteria and cyanobacteria) to more complex (sugar beet leaf segments) have been studied where specific problems related to salt tolerance and ionic transport were identified. The role of sodium and chloride transport in maintaining cellular volumes were studied with respect to the events which take place during adaptation to salt and their relationship to nitrate assimilation. 14 refs.

  14. Physical chemistry and evolution of salt tolerance in halobacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  15. Physical Chemistry and Evolution of Salt Tolerance in Halobacteria

    NASA Astrophysics Data System (ADS)

    Lanyi, Janos K.

    1980-06-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  16. Temporal contrast of salt delivery in mouth increases salt perception.

    PubMed

    Busch, Johanneke L H C; Tournier, Carole; Knoop, Janine E; Kooyman, Gonnie; Smit, Gerrit

    2009-05-01

    The impact of salt delivery in mouth on salt perception was investigated. It was hypothesized that fast concentration changes in the delivery to the receptor can reduce sensory adaptation, leading to an increased taste perception. Saltiness ratings were scored by a panel over time during various stimulation conditions involving relative changes in NaCl concentration of 20% and 38%. Changes in salt delivery profile had similar effect on saltiness perception when delivered either by a sipwise method or by a gustometer. The impact of concentration variations and frequency of concentration changes was further investigated with the gustometer method. Five second boosts and 2 s pulses were delivered during 3 sequential 10-s intervals, whereas the delivered total salt content was the same for all conditions. Two second pulses were found to increase saltiness perception, but only when the pulses were delivered during the first seconds of stimulation. Results suggest that the frequency, timing, and concentration differences of salt stimuli can affect saltiness. Specifically, a short and intense stimulus can increase salt perception, possibly through a reduction of adaptation.

  17. A Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato

    PubMed Central

    Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity. PMID:25501819

  18. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance.

    PubMed

    Zheng, Yanhai; Jia, Aijun; Ning, Tangyuan; Xu, Jialin; Li, Zengjia; Jiang, Gaoming

    2008-09-29

    A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.

  19. The bioenergetics of salt tolerance: Final report (1)

    SciTech Connect

    Packer, L.

    1986-10-28

    Studies on the sequence of events that lead to salt adaptation in the cyanobacterium Synechococcus 6311 are reported. We present here our major findings on how this freshwater organism responds to a transition from low salt (12 M NaCl) to high salt (0.5 M NaCl) medium; we have studied immediate and long-term osmotic responses, identified deleterious effects of NaCl on cellular processes, and analyzed adaptations of the bioenergetic systems that permit Synechococcus 6311 to tolerate a high salt environment. We have also developed new electron spin resonance (ESR) methods for measuring intracellular O/sub 2/ concentrations and intracellular pH. These new methods will continue to be of great value in our future studies on the bioenergetics of salt tolerance. 26 refs.

  20. Increased tolerance to humans among disturbed wildlife.

    PubMed

    Samia, Diogo S M; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F; Blumstein, Daniel T

    2015-01-01

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds. PMID:26568451

  1. Increased tolerance to humans among disturbed wildlife

    PubMed Central

    Samia, Diogo S. M.; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F.; Blumstein, Daniel T.

    2015-01-01

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds. PMID:26568451

  2. Increased tolerance to humans among disturbed wildlife.

    PubMed

    Samia, Diogo S M; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F; Blumstein, Daniel T

    2015-01-01

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds.

  3. Reduction of perchlorate and nitrate by salt tolerant bacteria.

    PubMed

    Okeke, Benedict C; Giblin, Tara; Frankenberger, William T

    2002-01-01

    Spent regenerant brine from ion-exchange technology for the removal of perchlorate and nitrate produces a high salt waste stream, which requires remediation before disposal. Bioremediation is an attractive treatment option. In this study, we enriched for salt tolerant bacteria from sediments from Cargill salt evaporation facility (California, USA), the Salton Sea (California, USA), and a high density hydrocarbon oxidizing bacterial cocktail. The bacterial cocktail enrichment culture reduced ClO4- from 500 to 260 mg 1 in 4 weeks. Salt tolerant bacterial isolates from the enrichment cultures and two denitrifying salt tolerant bacteria, Haloferax denitrificans and Parococcus halodenitricans, substantially reduced perchlorate. The highest rate of perchlorate removal was recorded with the isolate, Citrobacter sp.: 32% reduction in 1 week. This bacterium substantially reduced perchlorate in 0-5% NaCl solutions and maximally at 30 degrees C and at an initial pH 7.5. In simulated brines containing 7.5% total solids, the Citrobacter sp. significantly reduced both perchlorate and nitrate with 34.9 and 15.6% reduction, respectively, in 1 week. Coculture of a potent perchlorate reducing, non-salt tolerant (non-saline) bacterium, perclace and the Citrobacter sp. proved most effective for perchlorate removal in the brine (46.4% in 1 week). This study demonstrates that both anions can be reduced in treatment of brines from ion exchange systems. PMID:12009133

  4. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    PubMed

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  5. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  6. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  7. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  8. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  9. Creating Drought- and Salt-Tolerant Crops by Overexpressing a Vacuolar Pyrophosphatase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proto...

  10. Phase behavior of simple salt tolerant sulfonates

    SciTech Connect

    Barakat, Y.; Fortney, L.N.; Lalanne-Cassou, C.; Schechter, R.S.; Wade, W.H.; Yiv, S.H.

    1982-01-01

    Alkane and /alpha/-olefin sulfonates can be utilized to produce optimal microemulsion formulations which have very high salinity (including divalent ion) tolerance while maintaining large solubilization parameters and low interfacial tensions. Such molecules require elevated temperatures or higher alcohol concentrations to suppress liquid crystal formulation. As found for other species, solubilization is inversely related to width of the three phase regime, and interfacial tension and solubilization are strongly coupled. 18 refs.

  11. Phase behavior of simple salt tolerant sulfonates

    SciTech Connect

    Barakat, Y.; Fortney, L.N.; Lalanne-Cassou, C.; Schechter, R.S.; Wade, W.H.; Yiv, S.H.

    1982-01-01

    Alkane and ..cap alpha..-olefin sulfonates can be utilized to produce optimal microemulsion formulations which have very high salinity (including divalent ion) tolerance while maintaining large solubilization parameters and low interfacial tensions. Such molecules require elevated temperatures or higher alcohol concentrations to suppress liquid crystal formation. As found for other species, solubilization is inversely related to width of the three phase regime, and interfacial tension and solubilization are strongly coupled.

  12. FTIR and EDXRF investigations of salt tolerant soybean mutants

    NASA Astrophysics Data System (ADS)

    Akyuz, Sevim; Akyuz, Tanil; Celik, Ozge; Atak, Cimen

    2013-07-01

    Molecular structure and elemental composition of soybean (Glycine max L. Merr.) seeds of S04-05 (Ustun-1) variety together with its salt tolerant mutants were investigated by Fourier transform infrared (FTIR) and energy dispersive X-ray fluorescence (EDXRF) spectrometry. Salt tolerant soybean mutants were in vivo and in vitro selected from the M2 generation of gamma irradiated S04-05 soybean variety. Examination of the secondary structure of proteins revealed the presence of some alterations in soybean mutants in comparison to those of the control groups. The difference IR spectra indicated that salt tolerant mutants (M2) have less protein but more lipid contents. Chemometric treatment of the FTIR data was performed and principle component analysis (PCA) revealed clear difference between control group of seeds and mutants. EDXRF analysis showed that salt tolerant mutants considerably contained more chlorine, copper and zinc elements when compared to the control group, although most of the trace elements concentrations were not significantly altered.

  13. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific.

  14. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    PubMed

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks.

  15. Thinopyrum ponticum chromatin-integrated wheat genome shows salt-tolerance at germination stage.

    PubMed

    Yuan, Wen-Ye; Tomita, Motonori

    2015-02-26

    A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70), which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42) was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42) and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ratio of 3 salt tolerant to 1 salt sensitive, indicating that the salt tolerance was conferred by a dominant gene block. Genomic in situ hybridization analysis revealed that S148 had a single pair of Th. ponticum-T. aestivum translocated chromosomes bearing the salt-tolerance. This is an initial step of molecular breeding for salt-tolerant wheat.

  16. Thinopyrum ponticum chromatin-integrated wheat genome shows salt-tolerance at germination stage.

    PubMed

    Yuan, Wen-Ye; Tomita, Motonori

    2015-01-01

    A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70), which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42) was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42) and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ratio of 3 salt tolerant to 1 salt sensitive, indicating that the salt tolerance was conferred by a dominant gene block. Genomic in situ hybridization analysis revealed that S148 had a single pair of Th. ponticum-T. aestivum translocated chromosomes bearing the salt-tolerance. This is an initial step of molecular breeding for salt-tolerant wheat. PMID:25809604

  17. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.

    PubMed

    Zhu, Zhu; Chen, Juan; Zheng, Hai-Lei

    2012-11-01

    Salinity is a major abiotic stress that is responsible for growth reduction in most higher plants. Bruguiera gymnorrhiza (L.) Lam., a mangrove plant, is a halophyte and is one of the most salt-tolerant plant species. Physiological and proteomic characteristics of B. gymnorrhiza were investigated under three NaCl concentrations (0, 200 and 500 mM) in this study. Maximum seedling growth occurred at 200 mM NaCl. Leaf osmotic potential was more negative as salt levels increased further. Physiological results revealed that inorganic ions (especially Na(+) and Cl(-)) played a key role in osmotic adjustment of B. gymnorrhiza leaves under salinity treatments. Comparative proteomic analysis revealed 23 salt-responsive proteins in B. gymnorrhiza leaves, which were differentially expressed under salt treatment compared with control. Ten protein spots were analyzed by liquid chromatography-tandem mass spectrometry, leading to identification of proteins involved in photosynthesis, antioxidation, protein folding, cell organization and metabolism. Salt-responsive mechanism was different between 200 and 500 mM NaCl-treated plants on the basis of the physiological and proteomic analyses. Salt tolerance under 200 mM NaCl treatment was due to effective osmotic adjustment, accumulation of inorganic ions (especially Na(+) and Cl(-)) as well as increased expression of photosynthesis-related proteins and antioxidant enzymes, which improved the salt tolerance of B. gymnorrhiza, and furthermore promoted plant growth. On the other hand, 500 mM NaCl reduced the growth of B. gymnorrhiza, which appears to have been caused by the accumulation of NaCl (ionic effect) and energy consumption by organic solute synthesis. Moreover, the repressed expression of photosynthesis-related proteins and antioxidant enzymes led to the reduction of growth. Protein folding and degradation-related proteins and cell organization-related protein were up-regulated and played important roles in salt tolerance of B

  18. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.

    PubMed

    Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi

    2016-02-01

    Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance.

  19. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid.

    PubMed

    Saleh, Basel; Allario, Thierry; Dambier, Dominique; Ollitrault, Patrick; Morillon, Raphaël

    2008-09-01

    Citrus trees are subject to several abiotic constraints such as salinity. Providing new rootstocks more tolerant is thus a requirement. In this article, we investigated salt stress tolerance of three tetraploid rootstock genotypes when compared to their respective diploid rootstocks (Poncirus trifoliata, Carrizo citrange, Cleopatra mandarin). Plant growth, leaf fall and ion contents were investigated. At the end of the experiment, leaf fall was observed only for diploid Poncirus trifoliata plants as well as chlorosis symptoms for Poncirus trifoliata and Carrizo citrange diploid plants. The diploid Cleopatra mandarin plants growth rate was not affected by salt stress and has even been increased for tetraploid Cleopatra mandarin. Ion contents investigation has shown lower accumulations of chloride ions in leaves of the tetraploid plants when compared to diploid plants. Our results suggest that citrus tetraploid rootstocks are more tolerant to salt stress than their corresponding diploid.

  20. [Physiological response and salt-tolerance of Gleditsia microphylla under NaCl stress].

    PubMed

    Lu, Bin; Hou, Yue-min; Li, Xin-yang; Chang, Yue-xia; Huang, Da-zhuang; Lu, Bing-she

    2015-11-01

    In order to exploit the salt-tolerance ability and mechanism of Gleditsia microphylla, the plant growth, cell membrane permeability, the activities of cell protective enzymes, and the distri- butions of Na+ and K+ in different tissues were investigated under various NaCl stress (0.053%, 0.15%, 0.3%, 0.45% and 0.6%) with potted two-year seedlings. The results were as follows: With the increase of NaCl concentration, the seedling growth decreased while the salt injured index in- creased, and the salt-tolerance thresholds of seedling was 0.42% NaCl. With the NaCl concentration increasing, the membrane permeability, superoxide anion radical generating rate and MDA content increased grandly, while the activities of SOD, POD and CAT demonstrated an increase-decrease curve which reached the peak at 0.3% or 0.45%. Under the high salt stress condition, the supero- xide anion could be consumed timely by increasing the activities of SOD, POD and CAT enzymes, which was useful to avoid cell injure. Under salt stress condition, the Na+ content in different tissues increased gradually, following the order of root > leaf > stem, and the K+ content and K+/Na+ in different tissues decreased, following the order of leaf > root > stem. The K+-Na+ selective transpor- tation coefficients (S(K+) · Na+) of stem and leaf tissues under the soil NaCl stress condition were both increased, following the order of leaf > stem. In conclusion, the findings suggested that the salt- adaptation mechanisms of G. microphylla were root salt-rejection by Na+ accumulation and restriction in root tissue and leaf salt-tolerance by a remarkably increased ability of K+ selective absorption and accumulation in leaf tissue.

  1. [Physiological response and salt-tolerance of Gleditsia microphylla under NaCl stress].

    PubMed

    Lu, Bin; Hou, Yue-min; Li, Xin-yang; Chang, Yue-xia; Huang, Da-zhuang; Lu, Bing-she

    2015-11-01

    In order to exploit the salt-tolerance ability and mechanism of Gleditsia microphylla, the plant growth, cell membrane permeability, the activities of cell protective enzymes, and the distri- butions of Na+ and K+ in different tissues were investigated under various NaCl stress (0.053%, 0.15%, 0.3%, 0.45% and 0.6%) with potted two-year seedlings. The results were as follows: With the increase of NaCl concentration, the seedling growth decreased while the salt injured index in- creased, and the salt-tolerance thresholds of seedling was 0.42% NaCl. With the NaCl concentration increasing, the membrane permeability, superoxide anion radical generating rate and MDA content increased grandly, while the activities of SOD, POD and CAT demonstrated an increase-decrease curve which reached the peak at 0.3% or 0.45%. Under the high salt stress condition, the supero- xide anion could be consumed timely by increasing the activities of SOD, POD and CAT enzymes, which was useful to avoid cell injure. Under salt stress condition, the Na+ content in different tissues increased gradually, following the order of root > leaf > stem, and the K+ content and K+/Na+ in different tissues decreased, following the order of leaf > root > stem. The K+-Na+ selective transpor- tation coefficients (S(K+) · Na+) of stem and leaf tissues under the soil NaCl stress condition were both increased, following the order of leaf > stem. In conclusion, the findings suggested that the salt- adaptation mechanisms of G. microphylla were root salt-rejection by Na+ accumulation and restriction in root tissue and leaf salt-tolerance by a remarkably increased ability of K+ selective absorption and accumulation in leaf tissue. PMID:26915182

  2. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides.

    PubMed

    Ayarpadikannan, Selvam; Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kim, Soon-Ok; Jeon, Joo-Min; Kwak, Myoung-Hae; Lee, Seon-Woo; Lee, Jai-Heon

    2012-01-01

    Salinity stress severely affects plant growth and development causing crop loss worldwide. Suaeda asparagoides is a salt-marsh euhalophyte widely distributed in southwestern foreshore of Korea. To isolate salt tolerance genes from S. asparagoides, we constructed a cDNA library from leaf tissues of S. asparagoides that was treated with 200 mM NaCl. A total of 1,056 clones were randomly selected for EST sequencing, and 932 of them produced readable sequence. By sequence analysis, we identified 538 unigenes and registered each in National Center for Biotechnology Information. The 80 salt stress related genes were selected to study their differential expression. Reverse transcription-PCR and Northern blot analysis revealed that 23 genes were differentially expressed under the high salinity stress conditions in S. asparagoides. They are functionally diverse including transport, signal transduction, transcription factor, metabolism and stress associated protein, and unknown function. Among them dehydrin (SaDhn) and RNA binding protein (SaRBP1) were examined for their abiotic stress tolerance in yeast (Saccharomyces cerevisiae). Yeast overexpressing SaDhn and SaRBP1 showed enhanced tolerance to osmotic, freezing and heat shock stresses. This study provides the evidence that SaRBP1 and SaDhn from S. asparagoides exert abiotic stress tolerance in yeast. Information of salt stress related genes from S. asparagoides would contribute for the accumulating genetic resources to improve osmotic tolerance in plants. PMID:21874516

  3. Salt tolerances of some mainland tree species select as through nursery screening.

    PubMed

    Miah, Md Abdul Quddus

    2013-09-15

    A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases. PMID:24502152

  4. Salt tolerances of some mainland tree species select as through nursery screening.

    PubMed

    Miah, Md Abdul Quddus

    2013-09-15

    A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases.

  5. Screening of Purslane (Portulaca oleracea L.) Accessions for High Salt Tolerance

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production. PMID:25003141

  6. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    SciTech Connect

    Jia, Fengjuan Qi, Shengdong Li, Hui Liu, Pu Li, Pengcheng Wu, Changai Zheng, Chengchao Huang, Jinguang

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  7. Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer.

    PubMed

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Yu-Jin; Lee, Ok Ran; Parvin, Shonana; Balusamy, Sri Renuka Devi; Khorolragchaa, Atlanzul; Yang, Deok Chun

    2014-06-01

    The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.

  8. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    SciTech Connect

    Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  9. [Salt stress tolerance of cucumber-grafted rootstocks].

    PubMed

    Wang, Li-Ping; Sun, Jin; Guo, Shi-Rong; Liu, Shu-Ren; Liu, Chao-Jie; Tian, Jing

    2012-05-01

    Taking 4 different Cucurbita maxima x C. moschata rootstocks for cucumber (Cucumis sativus) as test materials, a solution culture experiment was conducted to study their growth and antioxidative enzyme activities under the stresses of Ca(NO3)2 and NaCl, with the salt stress tolerance of the rootstocks evaluated by subordinate function. At 30 mmol x L(-1) of Ca (NO3)2 or 45 mmol x L(-1) of NaCl, the growth of the rootstock seedlings was improved; but at 60 and 120 mmol x L(-1) of Ca(NO3)2 or 90 and 180 mmol x L(-1) of NaCl, the growth and the antioxidative systems of the seedlings were inhibited, and the salt injury index of 'Qingzhen No. 1' was the smallest, with the decrement of biomass and SOD, POD and CAT activities and the increment of relative conductance being significantly lower than those of the others. Under the stress of high concentration Ca(NO3)2, the SOD, POD and CAT activities of test rootstocks were higher, and the salt injury index and relative conductance were lower, as compared with those under high concentration NaCl, suggesting that the damage of Ca(NO3)2 stress to cucumber-grafted rootstock were smaller than that of NaCl stress. Among the 4 rootstocks, 'Qingzhen No. 1' had the strongest salt stress tolerance, followed by 'Zuomu Nangua', 'Fengyuan Tiejia', and 'Chaoba Nangua'.

  10. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. PMID:27372277

  11. Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage

    PubMed Central

    Zhang, Fan; Deng, Jianli; Li, Zhikang; Fu, Binying

    2014-01-01

    Background Rice is sensitive to salt stress, especially at the seedling stage, with rice varieties differing remarkably in salt tolerance (ST). To understand the physiological mechanisms of ST, we investigated salt stress responses at the metabolite level. Methods Gas chromatography-mass spectrometry was used to profile metabolite changes in the salt-tolerant line FL478 and the sensitive variety IR64 under a salt-stress time series. Additionally, several physiological traits related to ST were investigated. Results We characterized 92 primary metabolites in the leaves and roots of the two genotypes under stress and control conditions. The metabolites were temporally, tissue-specifically and genotype-dependently regulated under salt stress. Sugars and amino acids (AAs) increased significantly in the leaves and roots of both genotypes, while organic acids (OAs) increased in roots and decreased in leaves. Compared with IR64, FL478 experienced greater increases in sugars and AAs and more pronounced decreases in OAs in both tissues; additionally, the maximum change in sugars and AAs occurred later, while OAs changed earlier. Moreover, less Na+ and higher relative water content were observed in FL478. Eleven metabolites, including AAs and sugars, were specifically increased in FL478 over the course of the treatment. Conclusions Metabolic responses of rice to salt stress are dynamic and involve many metabolites. The greater ST of FL478 is due to different adaptive reactions at different stress times. At early salt-stress stages, FL478 adapts to stress by decreasing OA levels or by quickly depressing growth; during later stages, more metabolites are accumulated, thereby serving as compatible solutes against osmotic challenge induced by salt stress. PMID:25265195

  12. Selenium accumulation and selenium-salt co-tolerance in five grass species. [Festuca arundinaceae; Agropyron deserorum; Buchloe dactyloides; Agrostis stolonifera; Cynodon dactylon

    SciTech Connect

    Wu, L.; Huang, Z.; Burau, R.G.

    1987-04-01

    Five grass species including Tall fescue (Festuca arundinaceae Schred), Crested wheatgrass (Agropyron deserorum Fisch), Buffalo grass (Buchlor dactyloides (Nutt.) Engelm.), Seaside bentgrass (Agrostis stolonifera L.) and Bermuda grass (Cynodon dactylon (L.) Pers., Syn.) were examined for selenium and salt tolerance and selenium accumulation under solution culture conditions. Distinct differences in both selenium and salt tolerance were detected among the five species, but no direct association between selenium and salt resistance was found. Tall fescue displayed considerable tolerance under 1 ppm selenium and 100 mM salt treatment. Combined selenium and salt treatment revealed that selenium uptake was increased by the incorporation of salt in the culture solution. However, salt uptake was not significantly affected by the presence of selenium in the culture solution. At moderate toxic levels of selenium, the species with greater tolerance accumulated less selenium than did the less tolerant species.

  13. Educational Strategies to Increase Racial Tolerance.

    ERIC Educational Resources Information Center

    Buchignani, Norman

    This paper reviews the effectiveness and practicality of various educational approaches for increasing racial tolerance and calls for developing strategies that have been formally evaluated to avoid the waste of time and limited resources. The first section discusses the racial inadequacies of most programs which purport to affect racial…

  14. Comparative genomics in salt tolerance between Arabidopsis and aRabidopsis-related halophyte salt cress using Arabidopsis microarray.

    PubMed

    Taji, Teruaki; Seki, Motoaki; Satou, Masakazu; Sakurai, Tetsuya; Kobayashi, Masatomo; Ishiyama, Kanako; Narusaka, Yoshihiro; Narusaka, Mari; Zhu, Jian-Kang; Shinozaki, Kazuo

    2004-07-01

    Salt cress (Thellungiella halophila), a halophyte, is a genetic model system with a small plant size, short life cycle, copious seed production, small genome size, and an efficient transformation. Its genes have a high sequence identity (90%-95% at cDNA level) to genes of its close relative, Arabidopsis. These qualities are advantageous not only in genetics but also in genomics, such as gene expression profiling using Arabidopsis cDNA microarrays. Although salt cress plants are salt tolerant and can grow in 500 mm NaCl medium, they do not have salt glands or other morphological alterations either before or after salt adaptation. This suggests that the salt tolerance in salt cress results from mechanisms that are similar to those operating in glycophytes. To elucidate the differences in the regulation of salt tolerance between salt cress and Arabidopsis, we analyzed the gene expression profiles in salt cress by using a full-length Arabidopsis cDNA microarray. In salt cress, only a few genes were induced by 250 mm NaCl stress in contrast to Arabidopsis. Notably a large number of known abiotic- and biotic-stress inducible genes, including Fe-SOD, P5CS, PDF1.2, AtNCED, P-protein, beta-glucosidase, and SOS1, were expressed in salt cress at high levels even in the absence of stress. Under normal growing conditions, salt cress accumulated Pro at much higher levels than did Arabidopsis, and this corresponded to a higher expression of AtP5CS in salt cress, a key enzyme of Pro biosynthesis. Furthermore, salt cress was more tolerant to oxidative stress than Arabidopsis. Stress tolerance of salt cress may be due to constitutive overexpression of many genes that function in stress tolerance and that are stress inducible in Arabidopsis. PMID:15247402

  15. Salt tolerance in cultured cells of Spartina pectinata.

    PubMed

    Warren, R S; Baird, L M; Thompson, A K

    1985-04-01

    Suspension cultures with cell doubling times of ca. 2 days were developed from the halophytic grass Spartina pectinata. Maximum rates of exponential growth measured by direct cell counts and by total culture packed-cell-volume were not significantly reduced by NaCl up to 200 mM but dropped beyond this point. In contrast, total cell production over a one week culture cycle, by both measures, was reduced in a roughly linear fashion between 0 and 500 mM NaCl. The pattern of growth in relation to NaCl is very similar to that of previously described cell suspensions derived from another halophyte, Distichlis spicata. In the field the latter is much more salt tolerant. The basis for the whole plant differences is not clear. They do not appear to reflect effectiveness of cell based salt tolerance or the presence of salt glands, which are reported here for the first time in S. pectinata and are found on the leaves of both species.

  16. Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions

    PubMed Central

    Katori, Taku; Ikeda, Akiro; Iuchi, Satoshi; Kobayashi, Masatomo; Shinozaki, Kazuo; Maehashi, Kenji; Sakata, Yoichi; Tanaka, Shigeo; Taji, Teruaki

    2010-01-01

    Many accessions (ecotypes) of Arabidopsis have been collected. Although few differences exist among their nucleotide sequences, these subtle differences induce large genetic variation in phenotypic traits such as stress tolerance and flowering time. To understand the natural variability in salt tolerance, large-scale soil pot experiments were performed to evaluate salt tolerance among 350 Arabidopsis thaliana accessions. The evaluation revealed a wide variation in the salt tolerance among accessions. Several accessions, including Bu-5, Bur-0, Ll-1, Wl-0, and Zu-0, exhibited marked stress tolerance compared with a salt-sensitive experimental accession, Col-0. The salt-tolerant accessions were also evaluated by agar plate assays. The data obtained by the large-scale assay correlated well with the results of a salt acclimation (SA) assay, in which plants were transferred to high-salinity medium following placement on moderate-salinity medium for 7 d. Genetic analyses indicated that the salt tolerance without SA is a quantitative trait under polygenic control, whereas salt tolerance with SA is regulated by a single gene located on chromosome 5 that is common among the markedly salt-tolerant accessions. These results provide important information for understanding the mechanisms underlying natural variation of salt tolerance in Arabidopsis. PMID:20080827

  17. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  18. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  19. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana.

    PubMed

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  20. [Effects of salt stress on physiological characters and salt-tolerance of Ulmus pumila in different habitats].

    PubMed

    Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng

    2012-06-01

    Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.

  1. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars. PMID:24737077

  2. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    PubMed

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  3. 2-3H-Benzoxazolinone (BOA) induces loss of salt tolerance in salt-adapted plants.

    PubMed

    Sánchez-Moreiras, A M; Pedrol, N; González, L; Reigosa, M J

    2009-07-01

    In order to test the stress hypothesis of allelopathy of Reigosa et al. (1999, 2002), the combined action of a well-established allelochemical compound (2-3H-benzoxazolinone, BOA) and a common abiotic stress (salt stress) were investigated in lettuce (Lactuca sativa L.). In a previous study (Baerson et al. 2005), we demonstrated that the primary effects of BOA are related to the expression of genes involved in detoxification and stress responses, which might serve to simultaneously alleviate biotic and abiotic stresses. Through analysis of the same physiological and biochemical parameters previously studied for BOA alone (Sánchez-Moreiras & Reigosa 2005), we observed specific effects of salt stress alone, as well as for the two stresses together (BOA and salt). This paper demonstrates that plants showing tolerance to salt stress (reduced stomatal density, increased proline content, higher K(+) concentration, etc.) become salt sensitive (markedly low Psiw values, high putrescine content, increased lipid peroxidation, etc.) when simultaneously treated with the allelochemical BOA. We also report additional information on the mechanisms of action of BOA, and general stress responses in this plant species.

  4. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.

    PubMed

    Kurotani, Ken-ichi; Yamanaka, Kazumasa; Toda, Yosuke; Ogawa, Daisuke; Tanaka, Maiko; Kozawa, Hirotsugu; Nakamura, Hidemitsu; Hakata, Makoto; Ichikawa, Hiroaki; Hattori, Tsukaho; Takeda, Shin

    2015-10-01

    Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions.

  5. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.

    PubMed

    Kurotani, Ken-ichi; Yamanaka, Kazumasa; Toda, Yosuke; Ogawa, Daisuke; Tanaka, Maiko; Kozawa, Hirotsugu; Nakamura, Hidemitsu; Hakata, Makoto; Ichikawa, Hiroaki; Hattori, Tsukaho; Takeda, Shin

    2015-10-01

    Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions. PMID:26329877

  6. Prospects for improving the salt tolerance of forest trees: A review

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Stine, M.

    1994-01-01

    Three major themes related to the improvement of salt tolerance in forest tree species are examined. First, evidence demonstrating that substantial intraspecific variation in salt tolerance exists in many species is presented. This evidence is important because it suggests that efforts to improve salt tolerance through conventional plant breeding techniques are justified. Second, the physiological and genetic mechanisms controlling salt tolerance are discussed briefly. Although salt tolerance involves the integration of numerous physiological processes, there is considerable evidence that differences in the ability to exclude Na+ and Cl- from leaves are the most important factors underlying intraspecific differences in tolerance. It is also becoming apparent that, although salt tolerance is a multigenic trait, major genes play an important role. Third, progress to date in improving salt tolerance of forest tree species is assessed. Compared with agricultural crops, relatively little progress has been made with either conventional or biotechnological methods, but field trials designed to test clones identified as salt tolerant in screening trials are underway now in several countries. We conclude that there is justification for cautious optimism about the prospects for improving salt tolerance in forest tree species.

  7. Regulation of nitrogen metabolism in salt tolerant and salt sensitive Frankia strains.

    PubMed

    Srivastava, Amrita; Mishra, Arun Kumar

    2014-04-01

    Effect of salinity (0, 50, 100, 250, 500 and 750 mM NaCI) was observed on some important physiological parameters of nitrogen metabolism such as nitrate uptake, intracellular and extracellular ammonium status and activities of nitrogenase, nitrate reductase, nitrite reductase and glutamine synthetase among Frankia strains differing in their salt tolerance capacity. Nitrogenase activity closely followed the growth pattern with regular decline on NaCI supplementation. All the other enzymes showed optimum activity at 100 mM and declined further. Co-regulation of the nitrate uptake system and sequential enzyme activities plays a crucial role in governing the nitrogen status of strains during salt stress. HsIil0 experiencing minimum decline in enzyme activities and best possible nitrogen regulation under NaC1 replete condition showed adequate nutritional management. Among all the strains, HsIil0 proved to be salt tolerant on account of above features while the salt sensitive strain HsIi8 lacked the ability to regulate various steps of nitrogen metabolism during salinity, and thus Frankia strain HsIil0 can potentially serve as a potential biofertilizer in the saline soil. PMID:24772938

  8. Evaluation of a Simple Method to Screen Soybean Genotypes for Salt Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive salt can reduce soybean yield in grower fields. Salt tolerant cultivars are needed to prevent field yield losses where excess salt is a problem. Soybean genotypes have primarily been evaluated for reaction to salt in the greenhouse using a labor intensive and costly hydroponics method. ...

  9. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance.

    PubMed

    Shen, Zedan; Yao, Jun; Sun, Jian; Chang, Liwei; Wang, Shaojie; Ding, Mingquan; Qian, Zeyong; Zhang, Huilong; Zhao, Nan; Sa, Gang; Hou, Peichen; Lang, Tao; Wang, Feifei; Zhao, Rui; Shen, Xin; Chen, Shaoliang

    2015-06-01

    Poplar species increase expressions of transcription factors to deal with salt environments. We assessed the salt-induced transcriptional responses of heat-shock transcription factor (HSF) and WRKY1 in Populus euphratica, and their roles in salt tolerance. High NaCl (200mM) induced PeHSF and PeWRKY1 expressions in P. euphratica, with a rapid rise in roots than in leaves. Moreover, the salt-elicited PeHSF reached its peak level 6h earlier than PeWRKY1 in leaves. PeWRKY1 was down-regulated in salinized P. euphratica when PeHSF was silenced by tobacco rattle virus-based gene silencing. Subcellular assays in onion epidermal cells and Arabidopsis protoplasts revealed that PeHSF and PeWRKY1 were restricted to the nucleus. Transgenic tobacco plants overexpressing PeWRKY1 showed improved salt tolerance in terms of survival rate, root growth, photosynthesis, and ion fluxes. We further isolated an 1182-bp promoter fragment upstream of the translational start of PeWRKY1 from P. euphratica. Promoter sequence analysis revealed that PeWRKY1 harbours four tandem repeats of heat shock element (HSE) in the upstream regulatory region. Yeast one-hybrid assay showed that PeHSF directly binds the cis-acting HSE. To determine whether the HSE cluster was important for salt-induced PeWRKY1 expression, the promoter-reporter construct PeWRKY1-pro::GUS was transferred to tobacco plants. β-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. Therefore, we conclude that salinity increased PeHSF transcription in P. euphratica, and that PeHSF binds the cis-acting HSE of the PeWRKY1 promoter, thus activating PeWRKY1 expression. PMID:25900569

  10. Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions.

    PubMed

    Capriotti, Anna Laura; Borrelli, Grazia Maria; Colapicchioni, Valentina; Papa, Roberto; Piovesana, Susy; Samperi, Roberto; Stampachiacchiere, Serena; Laganà, Aldo

    2014-02-01

    Salinity is one of the major abiotic stress conditions limiting crop growth and productivity. Duilio is a wheat genotype that shows tolerant behavior in both salt-stress and drought-stress conditions. Toward better understanding of the biochemical response to salinity in this genotype of durum wheat, a comparative label-free shotgun proteomic analysis based on normalized spectral abundance factors was conducted on wheat leaf samples subjected to increasing salt-stress levels (100 and 200 mmol L(-1) NaCl) with respect to untreated samples. We found significant changes in 71 proteins for the first stress level, in 83 proteins at the higher salinity level, and in 88 proteins when comparing salt-stress levels with each other. The major changes concerned the proteins involved in primary metabolism and production of energy, followed by those involved in protein metabolism and cellular defense mechanisms. Some indications of different specific physiological and defense mechanisms implicated in increasing tolerance were obtained. The enhanced salinity tolerance in Duilio appeared to be governed by a higher capacity for osmotic homeostasis, a more efficient defense, and an improvement of protection from mechanical stress by increased cell wall lignifications, allowing a better potential for growth recovery.

  11. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  12. Salinity tolerance in soybean is modulated by natural variation in GmSALT3.

    PubMed

    Guan, Rongxia; Qu, Yue; Guo, Yong; Yu, Lili; Liu, Ying; Jiang, Jinghan; Chen, Jiangang; Ren, Yulong; Liu, Guangyu; Tian, Lei; Jin, Longguo; Liu, Zhangxiong; Hong, Huilong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan

    2014-12-01

    The identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na+) in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H+ exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement.

  13. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis.

    PubMed

    Zaidi, Ikram; Ebel, Chantal; Belgaroui, Nibras; Ghorbel, Mouna; Amara, Imène; Hanin, Moez

    2016-04-01

    Mitogen-activated protein kinase phosphatases (MKPs) are important negative regulators in the MAPK signaling pathways, which play crucial roles in plant growth, development and stress responses. We have previously shown that the heterologous expression of a durum wheat MKP, TMKP1, results in increased tolerance to salt stress in yeast but its particular contribution in salt stress tolerance in plants was not investigated. Here, TMKP1 was overexpressed in Arabidopsis thaliana and physiological changes were assessed in transgenic plants exposed to stress conditions. Under salt stress and especially LiCl, the TMKP1 overexpressors displayed higher germination rates in comparison to wild type plants. The enhancement of salt stress tolerance was accompanied by increased antioxidant enzyme activities, namely superoxide dismutase, catalase and peroxydases. Such increases in antioxidant activities were concomitant with lower malondialdehyde, superoxide anion O2(-) and hydrogen peroxide levels in the TMKP1 transgenic seedlings. Moreover, we provide evidence that, in contrast to the Arabidopsis ortholog AtMKP1, TMKP1 acts as a positive regulator of salt stress tolerance via its ectopic expression in the Arabidopsis mkp1 mutant. PMID:26927025

  14. Mini-review of knowledge gaps in salt tolerance of plants applied to willows and poplars.

    PubMed

    Mirck, Jaconette; Zalesny, Ronald S

    2015-01-01

    Salt tolerance of agricultural crops has been studied since the 1940, but knowledge regarding salt tolerance of woody crops is still in its initial phase. Salt tolerance of agricultural crops has been expressed as the yield decrease due to a certain salt concentration within the root zone as compared to a non-saline control. The most well-known plant response curve to salinity has been a piece-wise linear regression relating crop yield to root zone salinity. This method used the hypothesis that crops tolerate salt up to a threshold after which their yield decreases approximately linearly. Critique to this method included its lack of sensitivity to dynamic factors such as weather conditions. As a result, other classification indices have been developed, but none is as well accepted as the threshold-slope model. In addition to a mini-review of the key salt tolerance studies, our objective was to classify salt tolerance levels of poplars and willows. Initial classification showed that salt tolerance of these genera ranged from sensitive to moderately tolerant.

  15. Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance.

    PubMed

    Mian, Afaq; Oomen, Ronald J F J; Isayenkov, Stanislav; Sentenac, Hervé; Maathuis, Frans J M; Véry, Anne-Aliénor

    2011-11-01

    Soil salinity is an increasing menace that affects agriculture across the globe. Plant adaptation to high salt concentrations involves integrated functions, including control of Na+ uptake, translocation and compartmentalization. Na+ transporters belonging to the HKT family have been shown to be involved in tolerance to mild salt stress in glycophytes such as Arabidopsis, wheat and rice by contributing to Na+ exclusion from aerial tissues. Here, we have analysed the role of the HKT transporter HKT2;1, which is permeable to K+ and Na+, in barley, a relatively salt-tolerant crop that displays a salt-including behaviour. In Xenopus oocytes, HvHKT2;1 co-transports Na+ and K+ over a large range of concentrations, displaying low affinity for Na+, variable affinity for K+ depending on external Na+ concentration, and inhibition by K+ (K(i) approximately 5 mm). HvHKT2;1 is predominantly expressed in the root cortex. Transcript levels are up-regulated in both roots and shoots by low K+ growth conditions, and in shoots by high Na+ growth conditions. Over-expression of HvHKT2;1 led to enhanced Na+ uptake, higher Na+ concentrations in the xylem sap, and enhanced translocation of Na+ to leaves when plants were grown in the presence of 50 or 100 mm NaCl. Interestingly, these responses were correlated with increased barley salt tolerance. This suggests that one of the factors that limits barley salt tolerance is the capacity to translocate Na+ to the shoot rather than accumulation or compartmentalization of this cation in leaf tissues. Thus, over-expression of HvHKT2;1 leads to increased salt tolerance by reinforcing the salt-including behaviour of barley. PMID:21749504

  16. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage.

    PubMed

    Chunthaburee, Sumitahnun; Dongsansuk, Anoma; Sanitchon, Jirawat; Pattanagul, Wattana; Theerakulpisut, Piyada

    2016-07-01

    Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K(+)/Na(+) ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K(+)/Na(+) ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K(+)/Na(+) ratio and chlorophyll accumulation. PMID:27298579

  17. A Cu/Zn superoxide dismutase from Jatropha curcas enhances salt tolerance of Arabidopsis thaliana.

    PubMed

    Liu, Z B; Zhang, W J; Gong, X D; Zhang, Q; Zhou, L R

    2015-01-01

    Superoxide dismutases (SODs) are involved in protecting plants against diverse biotic and abiotic stresses. In the present study, a novel Cu/Zn-SOD gene (JcCu/Zn-SOD) was cloned from Jatropha curcas L. Quantitative reverse transcription-polymerase chain reaction analysis revealed that JcCu/Zn-SOD is constitutively expressed in different tissues of J. curcas and induced under NaCl treatment. To characterize the function of this gene with respect to salt tolerance, the construct p35S:JcCu/Zn-SOD was developed and transformed into Arabidopsis using Agrobacterium-mediated transformation. Compared with wild-type, transgenic plants over-expressing JcCu/Zn-SOD showed enhanced tolerance to salt stress during germination, seedling establishment, and growth in terms of longer root, larger rosette area, and a larger number of leaves in addition to higher SOD activity levels under NaCl stress. In addition, over-expression of JcCu/Zn-SOD resulted in lower monodialdehyde content in transgenic Arabidopsis compared to wild-type plants under the same NaCl stress. Therefore, JcCu/Zn-SOD can increase a plant salt stress tolerance potentially by reducing oxidant injury. PMID:25867355

  18. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... zinc salt in or on all food commodities when applied as a fungicide and used in accordance with...

  19. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... zinc salt in or on all food commodities when applied as a fungicide and used in accordance with...

  20. DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice

    PubMed Central

    Cui, Long-Gang; Shan, Jun-Xiang; Shi, Min; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-01-01

    Natural disasters, including drought and salt stress, seriously threaten food security. In previous work we cloned a key zinc finger transcription factor gene, Drought and Salt Tolerance (DST), a negative regulator of drought and salt tolerance that controls stomatal aperture in rice. However, the exact mechanism by which DST regulates the expression of target genes remains unknown. In the present study, we demonstrated that DST Co-activator 1 (DCA1), a previously unknown CHY zinc finger protein, acts as an interacting co-activator of DST. DST was found to physically interact with itself and to form a heterologous tetramer with DCA1. This transcriptional complex appears to regulate the expression of peroxidase 24 precursor (Prx 24), a gene encoding an H2O2 scavenger that is more highly expressed in guard cells. Downregulation of DCA1 significantly enhanced drought and salt tolerance in rice, and overexpression of DCA1 increased sensitivity to stress treatment. These phenotypes were mainly influenced by DCA1 and negatively regulated stomatal closure through the direct modulation of genes associated with H2O2 homeostasis. Our findings establish a framework for plant drought and salt stress tolerance through the DCA1-DST-Prx24 pathway. Moreover, due to the evolutionary and functional conservation of DCA1 and DST in plants, engineering of this pathway has the potential to improve tolerance to abiotic stress in other important crop species. PMID:26496194

  1. Function and expression of a novel rat salt-tolerant protein: evidence of a role in cellular sodium metabolism.

    PubMed

    Tsuji, E; Tsuji, Y; Sasaguri, M; Arakawa, K

    1998-09-01

    Higher dietary salt intake in humans is associated with higher BP, but the BP response to NaCl, so-called salt sensitivity, is heterogeneous among individuals. It has been postulated that modifications in cellular cation metabolism may be related to salt sensitivity in mammalian hypertension. The authors have isolated a novel rat complementary DNA, called salt-tolerant protein (STP), that can functionally complement Saccharomyces cervisiae HAL1, which improves salt tolerance by modulating the cation transport system. On high-salt (8% NaCl) diets, both Dahl salt-sensitive and salt-resistant rats displayed an elevated BP and increased STP mRNA expression. Immunohistochemistry using an anti-rat STP antibody demonstrated the presence of STP immunoreactivity in the proximal tubules. In cells that transiently expressed STP, the intracellular [Na+]/[K+] ratio was higher than that in control cells. STP contains predicted coiled-coil and Src homology 3 domains, and shows a partially high degree of nucleotide identity to human thyroid-hormone receptor interacting protein. These results suggest that STP may play an important role in salt sensitivity through cellular sodium metabolism by mediating signal transduction and a hormone-dependent transcription mechanism. PMID:9727364

  2. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    PubMed

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees.

  3. Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis

    PubMed Central

    Wen, Xing; Li, Wenyang; Shi, Hui; Yang, Longshu; Zhu, Huaiqiu; Guo, Hongwei

    2014-01-01

    Ethylene has been regarded as a stress hormone to regulate myriad stress responses. Salinity stress is one of the most serious abiotic stresses limiting plant growth and development. But how ethylene signaling is involved in plant response to salt stress is poorly understood. Here we showed that Arabidopsis plants pretreated with ethylene exhibited enhanced tolerance to salt stress. Gain- and loss-of-function studies demonstrated that EIN3 (ETHYLENE INSENSITIVE 3) and EIL1 (EIN3-LIKE 1), two ethylene-activated transcription factors, are necessary and sufficient for the enhanced salt tolerance. High salinity induced the accumulation of EIN3/EIL1 proteins by promoting the proteasomal degradation of two EIN3/EIL1-targeting F-box proteins, EBF1 and EBF2, in an EIN2-independent manner. Whole-genome transcriptome analysis identified a list of SIED (Salt-Induced and EIN3/EIL1-Dependent) genes that participate in salt stress responses, including several genes encoding reactive oxygen species (ROS) scavengers. We performed a genetic screen for ein3 eil1-like salt-hypersensitive mutants and identified 5 EIN3 direct target genes including a previously unknown gene, SIED1 (At5g22270), which encodes a 93-amino acid polypeptide involved in ROS dismissal. We also found that activation of EIN3 increased peroxidase (POD) activity through the direct transcriptional regulation of PODs expression. Accordingly, ethylene pretreatment or EIN3 activation was able to preclude excess ROS accumulation and increased tolerance to salt stress. Taken together, our study provides new insights into the molecular action of ethylene signaling to enhance plant salt tolerance, and elucidates the transcriptional network of EIN3 in salt stress response. PMID:25330213

  4. Symbiosis increases coral tolerance to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-04-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  5. Development of EST-SSR markers related to salt tolerance and their application in genetic diversity and evolution analysis in Gossypium.

    PubMed

    Wang, B H; Zhu, P; Yuan, Y L; Wang, C B; Yu, C M; Zhang, H H; Zhu, X Y; Wang, W; Yao, C B; Zhuang, Z M; Li, P

    2014-01-01

    Salt stress is becoming one of the major problems in global agriculture with the onset of global warming, an increasing scarcity of fresh water, and improper land irrigation and fertilization practices, which leads to reduction of crop output and even causes crop death. To speed up the exploitation of saline land, it is a good choice to grow plants with a high level of salt tolerance and economic benefits. As the leading fiber crop grown commercially worldwide, cotton is placed in the moderately salt-tolerant group of plant species, and there is promising potential to improve salt tolerance in cultivated cotton. To facilitate the mapping of salt-tolerant quantitative trait loci in cotton so as to serve the aims of salt-tolerant molecular breeding in cotton, it is necessary to develop salt-tolerant molecular markers. The objective of this research was to develop simple sequence repeat (SSR) markers based on cotton salt-tolerant expressed sequence tags. To test the efficacy of these SSR markers, their polymorphism and cross-species transferability were evaluated, and their value was further investigated on the basis of genetic diversity and evolution analysis.

  6. Development of EST-SSR markers related to salt tolerance and their application in genetic diversity and evolution analysis in Gossypium.

    PubMed

    Wang, B H; Zhu, P; Yuan, Y L; Wang, C B; Yu, C M; Zhang, H H; Zhu, X Y; Wang, W; Yao, C B; Zhuang, Z M; Li, P

    2014-01-01

    Salt stress is becoming one of the major problems in global agriculture with the onset of global warming, an increasing scarcity of fresh water, and improper land irrigation and fertilization practices, which leads to reduction of crop output and even causes crop death. To speed up the exploitation of saline land, it is a good choice to grow plants with a high level of salt tolerance and economic benefits. As the leading fiber crop grown commercially worldwide, cotton is placed in the moderately salt-tolerant group of plant species, and there is promising potential to improve salt tolerance in cultivated cotton. To facilitate the mapping of salt-tolerant quantitative trait loci in cotton so as to serve the aims of salt-tolerant molecular breeding in cotton, it is necessary to develop salt-tolerant molecular markers. The objective of this research was to develop simple sequence repeat (SSR) markers based on cotton salt-tolerant expressed sequence tags. To test the efficacy of these SSR markers, their polymorphism and cross-species transferability were evaluated, and their value was further investigated on the basis of genetic diversity and evolution analysis. PMID:24854659

  7. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. PMID:26603028

  8. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines

    PubMed Central

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H.; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland’s nutrient solution with 0 mM Na+ (control) or half strength Hoagland’s nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL) ], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  9. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    PubMed

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass. PMID:26146987

  10. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai

    2014-01-01

    Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.

  11. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco.

    PubMed

    Yao, Wenjing; Wang, Lei; Zhou, Boru; Wang, Shengji; Li, Renhua; Jiang, Tingbo

    2016-07-01

    Ethylene response factors (ERFs) belong to a large plant-specific transcription factor family, which play a significant role in plant development and stress responses. Poplar ERF76 gene, a member of ERF TF family, can be up-regulated in response to salt stress, osmotic stress, and ABA treatment. The ERF76 protein was confirmed to be targeted preferentially in the nucleus of onion cell by particle bombardment. In order to understand the functions of ERF76 gene in salt stress response, we conducted temporal and spatial expression analysis of ERF76 gene in poplar. Then the ERF76 cDNA fragment containing an ORF was cloned from di-haploid Populus simonii×P. nigra and transferred into tobacco (Nicotiana tobacum) genome by Agrobacterium-mediated leaf disc method. Under salt stress, transgenic tobacco over-expressing ERF76 gene showed a significant increase in seed germination rate, plant height, root length, and fresh weight, as well as in relative water content (RWC), superoxide dismutase (SOD) activity, peroxidase (POD) activity, and proline content, compared to control tobacco lines. In contrast, transgenic tobacco lines displayed a decrease in malondialdehyde (MDA) accumulation, relative electrical conductivity (REC) and reactive oxygen species (ROS) accumulation in response to salt stress, compared to control tobacco lines. Over all, the results indicated that ERF76 gene plays a critical role in salt tolerance in transgenic tobacco. PMID:27123829

  12. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    PubMed

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa.

  13. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress.

    PubMed

    Guo, Jinyan; Shi, Gongyao; Guo, Xiaoyan; Zhang, Liwei; Xu, Wenying; Wang, Yumei; Su, Zhen; Hua, Jinping

    2015-09-01

    Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton. PMID:26259172

  14. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress.

    PubMed

    Guo, Jinyan; Shi, Gongyao; Guo, Xiaoyan; Zhang, Liwei; Xu, Wenying; Wang, Yumei; Su, Zhen; Hua, Jinping

    2015-09-01

    Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton.

  15. EHD1 functions in endosomal recycling and confers salt tolerance.

    PubMed

    Bar, Maya; Leibman, Meirav; Schuster, Silvia; Pitzhadza, Hilla; Avni, Adi

    2013-01-01

    Endocytosis is a crucial process in all eukaryotic organisms including plants. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. Knock-down of EHD1 was shown to have a delayed recycling phenotype in mammalians. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD1 that are required for its activity have not been characterized. In this work we demonstrate that knock-down of EHD1 causes a delayed recycling phenotype and reduces Brefeldin A sensitivity in Arabidopsis seedlings. The EH domain of EHD1 was found to be crucial for the localization of EHD1 to endosomal structures. Mutant EHD1 lacking the EH domain did not localize to endosomal structures and showed a phenotype similar to that of EHD1 knock-down seedlings. Mutants lacking the coiled-coil domain, however, showed a phenotype similar to wild-type or EHD1 overexpression seedlings. Salinity stress is a major problem in current agriculture. Microarray data demonstrated that salinity stress enhances the expression of EHD1, and this was confirmed by semi quantitative RT-PCR. We demonstrate herein that transgenic plants over expressing EHD1 possess enhanced tolerance to salt stress, a property which also requires an intact EH domain. PMID:23342166

  16. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora

    NASA Astrophysics Data System (ADS)

    Canalejo, Antonio; Martínez-Domínguez, David; Córdoba, Francisco; Torronteras, Rafael

    2014-06-01

    Halophytes usually have a robust antioxidative defense system to alleviate oxidative damage during salt stress. Spartina densiflora is a colonizing halophyte cordgrass, native of South America, which has become a common species in salt marshes of northern hemisphere, where it is ousting indigenous species. This study addressed salinity stress in S. densiflora; the occurrence of oxidative stress and the possible involvement of the antioxidative system in its high salt tolerance were studied. Plants were evaluated at in situ conditions, in the laboratory during a 28 day-acclimation period (AP) in clean substrate irrigated with a control salt content of 4 g L-1 (68 mM) and during a subsequent 28 day-treatment period (TP) exposed to different NaCl concentrations: control (68 mM), 428 mM or 680 mM. In the in situ setting, the high leave Na+ content was accompanied by high levels of hydroperoxides and reduced levels of total chlorophyll and carotenes, which correlated with enhanced activation of antioxidant defense biomarkers as total ascorbic acid (AA) content and guaiacol peroxidase (POD: EC 1.11.1.7)), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) activities. Throughout the AP, leave Na+ and oxidative stress markers decreased concomitantly and reached stable low levels. During the TP, dose and time-dependent accumulation of Na+ in high NaCl-treated plants was concurrent with a decrease in content of total chlorophyll and carotenes and with an increase in the levels of total AA and CAT and APX activities. In conclusion, as hypothesized, high salinity induces conditions of oxidative stress in S. densiflora, so that its salt tolerance appears to be related to the implementation of a specific antioxidant response. This may account for Spartina densiflora's successful adaptation to habitats with fluctuating salinity and favour its phytoremediation potential.

  17. Site Suitability Analysis for Dissemination of Salt-tolerant Rice Varieties in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Sinha, D. D.; Singh, A. N.; Singh, U. S.

    2014-11-01

    Bangladesh is a country of 14.4 million ha geographical area and has a population density of more than 1100 persons per sq. km. Rice is the staple food crop, growing on about 72 % of the total cultivated land and continues to be the most important crop for food security of the country. A project "Sustainable Rice Seed Production and Delivery Systems for Southern Bangladesh" has been executed by the International Rice Research Institute (IRRI) in twenty southern districts of Bangladesh. These districts grow rice in about 2.9 million ha out of the country's total rice area of 11.3 million ha. The project aims at contributing to the Government of Bangladesh's efforts in improving national and household food security through enhanced and sustained productivity by using salinity-, submergence- and drought- tolerant and high yielding rice varieties. Out of the 20 project districts, 12 coastal districts are affected by the problem of soil salinity. The salt-affected area in Bangladesh has increased from about 0.83 million ha in 1973 to 1.02 million ha in 2000, and 1.05 million ha in 2009 due to the influence of cyclonic storms like "Sidr", "Laila" and others, leading to salt water intrusion in croplands. Three salinity-tolerant rice varieties have recently been bred by IRRI and field tested and released by the Bangladesh Rice Research Institute (BRRI) and Bangladesh Institute of Nuclear Agriculture (BINA). These varieties are BRRI dhan- 47 and Bina dhan-8 and - 10. However, they can tolerate soil salinity level up to EC 8-10 dSm-1, whereas the EC of soils in several areas are much higher. Therefore, a large scale dissemination of these varieties can be done only when a site suitability analysis of the area is carried out. The present study was taken up with the objective of preparing the site suitability of the salt-tolerant varieties for the salinity-affected districts of southern Bangladesh. Soil salinity map prepared by Soil Resources Development Institute of

  18. Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks.

    PubMed

    Zrig, Ahlem; Tounekti, Taïeb; Vadel, Ahmedou Mohamed; Ben Mohamed, Hatem; Valero, Daniel; Serrano, María; Chtara, Chaker; Khemira, Habib

    2011-11-01

    Leaf physiological and biochemical adaptive strategies and more particularly the possible involvement of polyamines and polyphenols in salt stress tolerance were investigated. Three almond rootstocks (GN15, GF677 and bitter almond) were subjected to 0, 25, 50 and 75 mM NaCl for 30 days. The dry mass of leaves, stems and roots decreased with increasing salt concentration in the irrigation solution regardless of genotype. Photosynthetic assimilation rate decreased in the three almond rootstocks, but more so in GF677 and bitter almond. The accumulation of toxic ions was greater in the leaves than in the roots in all genotypes. GN15 accumulated less Na(+) and Cl(-) than GF677 and bitter almond. GF677 accumulated polyphenols, but had less anthocyanin and antioxidant activity in its leaves compared to bitter almond. It seems that GN15 was more able to tolerate the excess of toxic ions using anthocyanins which are abundant in its red leaves and free polyamines for a more efficient response to stress. However, most of the antioxidant activity was found in the leaves and was lower in the roots. Given that the upper part of the tree will be of a different cultivar after grafting, this advantage may not be relevant for the tree's survival. GF677 showed a different antioxidant strategy; it maintained a stable carotenoids content and accumulated polyphenols in its leaves. The three rootstocks used different strategies to deal with the excess of salt in the growth medium.

  19. Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana.

    PubMed Central

    Quesada, V; Ponce, M R; Micol, J L

    2000-01-01

    Stress caused by the increased salinity of irrigated fields impairs plant growth and is one of the major constraints that limits crop productivity in many important agricultural areas. As a contribution to solving such agronomic problems, we have carried out a large-scale screening for Arabidopsis thaliana mutants induced on different genetic backgrounds by EMS treatment, fast neutron bombardment, or T-DNA insertions. From the 675,500 seeds we screened, 17 mutant lines were isolated, all but one of which yielded 25-70% germination levels on 250 mm NaCl medium, a condition in which their ancestor ecotypes are unable to germinate. Monogenic recessive inheritance of NaCl-tolerant germination was displayed with incomplete penetrance by all the selected mutants, which fell into five complementation groups. These were named SALOBRENO (SAN) and mapped relative to polymorphic microsatellites, the map positions of three of them suggesting that they are novel genes. Strains carrying mutations in the SAN1-SAN4 genes display similar responses to both ionic effects and osmotic pressure, their germination being NaCl and mannitol tolerant but KCl and Na(2)SO(4) sensitive. In addition, NaCl-, KCl-, and mannitol-tolerant as well as abscisic-acid-insensitive germination was displayed by sañ5, whose genetic and molecular characterization indicates that it carries an extremely hypomorphic or null allele of the ABI4 gene, its deduced protein product lacking the APETALA2 DNA binding domain. PMID:10629000

  20. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463.

    PubMed

    Lee, Jeong-Dong; Shannon, J Grover; Vuong, Tri D; Nguyen, Henry T

    2009-01-01

    Tolerant soybean (Glycine max [L.] Merr.) cultivars aid in reducing salt damage in problem fields. New genes are important to reduce losses from salt injury. Objectives of this study were to determine inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) PI483463 and to test allelism of tolerance genes from genotypes PI483463 and S-100, a common ancestor of southern in US cultivars. Tolerant (T) PI483463 was crossed to sensitive (S) cultivar Hutcheson to study inheritance. PI483463 (T) was crossed with S-100 (T) to test for allelism. Parents, F(1) plants, F(2) populations, and F(2:3) lines were assayed in a 100 mM salt solution to determine tolerance. F(2) from T x S cross segregated 3(T):1 (S) and the F(2:3) lines responded 1 (T): 2 (segregating):1 (S). F(2) plants from PI483463 (T) x S-100 (T) segregated 15 (T):1 (S) indicating different genes from the 2 sources. Results showed that G. soja line PI483463 had a single dominant gene for salt tolerance, which was different than the gene in G. max line S-100. The symbol, Ncl2, was designated for this new salt tolerance allele.

  1. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress.

  2. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress. PMID:26962708

  3. Overexpression of Small Heat Shock Protein Enhances Heat- and Salt-Stress Tolerance of Bifidobacterium longum NCC2705.

    PubMed

    Khaskheli, Gul Bahar; Zuo, FangLei; Yu, Rui; Chen, ShangWu

    2015-07-01

    Bifidobacteria are probiotics that are incorporated live into various dairy products. They confer health-promotive effects via gastrointestinal tract colonization. However, to provide their health-beneficial properties, they must battle the various abiotic stresses in that environment, such as bile salts, acids, oxygen, and heat. In this study, Bifidobacterium longum salt- and heat-stress tolerance was enhanced by homologous overexpression of a small heat shock protein (sHsp). A positive contribution of overproduced sHsp to abiotic stress tolerance was observed when the bacterium was exposed to heat and salt stresses. Significantly higher survival of B. l ongum NCC2705 overexpressing sHsp was observed at 30 and 60 min into heat (55 °C) and salt (5 M NaCl) treatment, respectively. Thermotolerance analysis at 47 °C with sampling every 2 h also revealed the great potential tolerance of the engineered strain. Cell density and acid production rate increased for the sHsp-overexpressing strain after 8 and 10 h of both heat and salt stresses. In addition, tolerance to bile salts, low pH (3.5) and low temperature (4 °C) was also increased by homologous overexpression of the sHsp hsp20 in B. l ongum. Results revealed that hsp20 overexpression in B longum NCC2705 plays a positive cross-protective role in upregulating abiotic responses, ensuring the organism's tolerance to various stress conditions; therefore, sHsp-overexpressing B. l ongum is advised for fermented dairy foods and other probiotic product applications.

  4. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance

    PubMed Central

    Pinedo, Ignacio; Ledger, Thomas; Greve, Macarena; Poupin, María J.

    2015-01-01

    Salinity is one of the major limitations for food production worldwide. Improvement of plant salt-stress tolerance using plant-growth promoting rhizobacteria (PGPR) has arisen as a promising strategy to help overcome this limitation. However, the molecular and biochemical mechanisms controlling PGPR/plant interactions under salt-stress remain unclear. The main objective of this study was to obtain new insights into the mechanisms underlying salt-stress tolerance enhancement in the salt-sensitive Arabidopsis thaliana Col-0 plants, when inoculated with the well-known PGPR strain Burkholderia phytofirmans PsJN. To tackle this, different life history traits, together with the spatiotemporal accumulation patterns for key metabolites and salt-stress related transcripts, were analyzed in inoculated plants under short and long-term salt-stress. Inoculated plants displayed faster recovery and increased tolerance after sustained salt-stress. PsJN treatment accelerated the accumulation of proline and transcription of genes related to abscisic acid signaling (Relative to Dessication, RD29A and RD29B), ROS scavenging (Ascorbate Peroxidase 2), and detoxification (Glyoxalase I 7), and down-regulated the expression of Lipoxygenase 2 (related to jasmonic acid biosynthesis). Among the general transcriptional effects of this bacterium, the expression pattern of important ion-homeostasis related genes was altered after short and long-term stress (Arabidopsis K+ Transporter 1, High-Affinity K+ Transporter 1, Sodium Hydrogen Exchanger 2, and Arabidopsis Salt Overly Sensitive 1). In all, the faster and stronger molecular changes induced by the inoculation suggest a PsJN-priming effect, which may explain the observed tolerance after short-term and sustained salt-stress in plants. This study provides novel information about possible mechanisms involved in salt-stress tolerance induced by PGPR in plants, showing that certain changes are maintained over time. This opens up new venues to

  5. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances.

    PubMed

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-10-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na(+) and K(+), as well as the Na(+)/K(+) ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources. PMID:25435797

  6. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances

    PubMed Central

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-01-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na+ and K+, as well as the Na+/K+ ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources. PMID:25435797

  7. Modifying K sup + /Na sup + discrimination in salt-stressed wheat containing individual chromosomes of a salt-tolerant lophopyrum

    SciTech Connect

    Epstein, E.; Dvorak, J.

    1990-01-01

    As outlined in the proposal for this project, the practical or applied impetus for this research is this: salinity of soils and water is inimical to the production of crops and other plants biomass, and to that extent causes a dimunition of the world's capture of solar energy. Of the two strategies of coping with this problem -- rendering soils and water less saline, and developing plants better able to cope with saline substrates -- the present project deals with the latter. The current prolonged drought in California and elsewhere in the West prompts an energetic pursuit of this option, for the availability of less water is tantamount to a general exacerbation of the salinity threat. Bread wheat, Triticum aestivum, is relatively salt-sensitive, whereas tall wheatgrass, Lophopyrum elongatum, is highly salt-tolerant, as shown in our laboratory in investigations going back to the 1960's. In the present investigation both the degree of salt tolerance and that of K{sup +}/Na{sup +} discrimination have been examined in wheat, Triticum aestivum, Chinese Spring,' the wheat x L. elongatum amphiploid, and a set of 20 disomic substitution lines. The latter would reveal which of the L. elongatum chromosomes substituted for their homoeologues in wheat contribute salt tolerance to wheat, and what congruence, if any, exists between that degree of salt tolerance and changes in K{sup +}/Na{sup +} discrimination in the target wheat.

  8. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance.

    PubMed

    Jia, Fengjuan; Qi, Shengdong; Li, Hui; Liu, Pu; Li, Pengcheng; Wu, Changai; Zheng, Chengchao; Huang, Jinguang

    2014-11-28

    Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis. PMID:25450686

  9. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.

    PubMed

    Qiu, ZongBo; Guo, JunLi; Zhu, AiJing; Zhang, Liang; Zhang, ManMan

    2014-06-01

    Jasmonic acid (JA) is regarded as endogenous regulator that plays an important role in regulating stress responses, plant growth and development. To investigate the physiological mechanisms of salt stress mitigated by exogenous JA, foliar application of 2mM JA was done to wheat seedlings for 3days and then they were subjected to 150mM NaCl. Our results showed that 150mM NaCl treatment significantly decreased plant height, root length, shoot dry weight, root dry weight, the concentration of glutathione (GSH), chlorophyll b (Chl b) and carotenoid (Car), the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), enhanced the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the rate of superoxide radical (O2•-) generation in the wheat seedlings when compared with the control. However, treatments with exogenous JA for 3 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of MDA and H2O2, the production rate of O2•- and increasing the transcript levels and activities of SOD, POD, CAT and APX and the contents of GSH, Chl b and Car, which, in turn, enhanced the growth of salt stressed seedlings. These results suggested that JA could effectively protect wheat seedlings from salt stress damage by enhancing activities of antioxidant enzymes and the concentration of antioxidative compounds to quench the excessive reactive oxygen species caused by salt stress and presented a practical implication for wheat cultivation in salt-affected soils.

  10. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber.

    PubMed

    Wang, Shiwen; Liu, Peng; Chen, Daoqian; Yin, Lina; Li, Hongbing; Deng, Xiping

    2015-01-01

    Although the effects of silicon application on enhancing plant salt tolerance have been widely investigated, the underlying mechanism has remained unclear. In this study, seedlings of cucumber, a medium silicon accumulator plant, grown in 0.83 mM silicon solution for 2 weeks were exposed to 65 mM NaCl solution for another 1 week. The dry weight and shoot/root ratio were reduced by salt stress, but silicon application significantly alleviated these decreases. The chlorophyll concentration, net photosynthetic rate, transpiration rate and leaf water content were higher in plants treated with silicon than in untreated plants under salt stress conditions. Further investigation showed that salt stress decreased root hydraulic conductance (Lp), but that silicon application moderated this salt-induced decrease in Lp. The higher Lp in silicon-treated plants may account for the superior plant water balance. Moreover, silicon application significantly decreased Na(+) concentration in the leaves while increasing K(+) concentration. Simultaneously, both free and conjugated types of polyamines were maintained at high levels in silicon-treated plants, suggesting that polyamines may be involved in the ion toxicity. Our results indicate that silicon enhances the salt tolerance of cucumber through improving plant water balance by increasing the Lp and reducing Na(+) content by increasing polyamine accumulation. PMID:26442072

  11. Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Song, Xixi; Fang, Jie; Han, Xiaojiao; He, Xuelian; Liu, Mingying; Hu, Jianjun; Zhuo, Renying

    2016-01-15

    Quinone reductase (QR) is an oxidative-related gene and few studies have focused on its roles concerning salt stress tolerance in plants. In this study, we cloned and analyzed the QR gene from Salix matsudana, a willow with tolerance of moderate salinity. The 612-bp cDNA corresponding to SmQR encodes 203 amino acids. Expression of SmQR in Escherichia coli cells enhanced their tolerance under salt stress. In addition, transgenic Arabidopsis thaliana lines overexpressing SmQR exhibited higher salt tolerance as compared with WT, with higher QR activity and antioxidant enzyme activity as well as higher chlorophyll content, lower methane dicarboxylic aldehyde (MDA) content and electric conductivity under salt stress. Nitro blue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining also indicated that the transgenic plants accumulated less reactive oxygen species compared to WT when exposed to salt stress. Overall, our results suggested that SmQR plays a significant role in salt tolerance and that this gene may be useful for biotechnological development of plants with improved tolerance of salinity.

  12. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables,...

  13. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables,...

  14. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables,...

  15. Potassium phosphite increases tolerance to UV-B in potato.

    PubMed

    Soledad, Oyarburo Natalia; Florencia, Machinandiarena Milagros; Laura, Feldman Mariana; Raúl, Daleo Gustavo; Balbina, Andreu Adriana; Pía, Olivieri Florencia

    2015-03-01

    The use of biocompatible chemical compounds that enhance plant disease resistance through Induced Resistance (IR) is an innovative strategy to improve the yield and quality of crops. Phosphites (Phi), inorganic salts of phosphorous acid, are environment friendly, and have been described to induce disease control. Phi, similar to other plant inductors, are thought to be effective against different types of biotic and abiotic stress, and it is assumed that the underlying signaling pathways probably overlap and interact. The signaling pathways triggered by UV-B radiation, for instance, are known to crosstalk with other signaling routes that respond that biotic stress. In the present work, the effect of potassium phosphite (KPhi) pre-treatment on UV-B stress tolerance was evaluated in potato leaves. Plants were treated with KPhi and, after 3 days, exposed to 2 h/day of UV-B (1.5 Watt m(-2)) for 0, 3 and 6 days. KPhi pre-treatment had a beneficial effect on two photosynthetic parameters, specifically chlorophyll content and expression of the psbA gene. Oxidative stress caused by UV-B was also prevented by KPhi. A decrease in the accumulation of hydrogen peroxide (H2O2) in leaves and an increase in guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities were also observed. In addition, the expression levels of a gene involved in flavonoid synthesis increased in UV-B-stressed plants only when pre-treated with KPhi. Finally, accumulation of glucanases and chitinases was induced by UV-B stress and markedly potentiated by KPhi pre-treatment. Altogether, this is the first report that shows a contribution of KPhi in UV-B stress tolerance in potato plants. PMID:25596554

  16. Potassium phosphite increases tolerance to UV-B in potato.

    PubMed

    Soledad, Oyarburo Natalia; Florencia, Machinandiarena Milagros; Laura, Feldman Mariana; Raúl, Daleo Gustavo; Balbina, Andreu Adriana; Pía, Olivieri Florencia

    2015-03-01

    The use of biocompatible chemical compounds that enhance plant disease resistance through Induced Resistance (IR) is an innovative strategy to improve the yield and quality of crops. Phosphites (Phi), inorganic salts of phosphorous acid, are environment friendly, and have been described to induce disease control. Phi, similar to other plant inductors, are thought to be effective against different types of biotic and abiotic stress, and it is assumed that the underlying signaling pathways probably overlap and interact. The signaling pathways triggered by UV-B radiation, for instance, are known to crosstalk with other signaling routes that respond that biotic stress. In the present work, the effect of potassium phosphite (KPhi) pre-treatment on UV-B stress tolerance was evaluated in potato leaves. Plants were treated with KPhi and, after 3 days, exposed to 2 h/day of UV-B (1.5 Watt m(-2)) for 0, 3 and 6 days. KPhi pre-treatment had a beneficial effect on two photosynthetic parameters, specifically chlorophyll content and expression of the psbA gene. Oxidative stress caused by UV-B was also prevented by KPhi. A decrease in the accumulation of hydrogen peroxide (H2O2) in leaves and an increase in guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities were also observed. In addition, the expression levels of a gene involved in flavonoid synthesis increased in UV-B-stressed plants only when pre-treated with KPhi. Finally, accumulation of glucanases and chitinases was induced by UV-B stress and markedly potentiated by KPhi pre-treatment. Altogether, this is the first report that shows a contribution of KPhi in UV-B stress tolerance in potato plants.

  17. Creating drought- and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene.

    PubMed

    Zhang, Hong; Shen, Guoxin; Kuppu, Sundaram; Gaxiola, Roberto; Payton, Paxton

    2011-06-01

    Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proton pump activity of the vacuolar pyrophosphatase, which generates a higher proton electrochemical gradient across the vacuolar membrane, leading to lower water potential in the plant vacuole and higher secondary transporter activities that prevent ion accumulation to toxic levels in the cytoplasm. Additionally, overexpression of AVP1 appears to stimulate auxin polar transport, which in turn stimulates root development. The larger root system allows AVP1-overexpressing plants to absorb water more efficiently under drought and saline conditions, resulting in stress tolerance and increased yields. Multi-year field-trial data indicate that overexpression of AVP1 in cotton leads to at least 20% more fiber yield than wild-type control plants in dry-land conditions, which highlights the potential use of AVP1 in improving drought tolerance in crops in arid and semiarid areas of the world. 

  18. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    PubMed

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  19. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco.

    PubMed

    Deng, Xiaomin; Hu, Wei; Wei, Shuya; Zhou, Shiyi; Zhang, Fan; Han, Jiapeng; Chen, Lihong; Li, Yin; Feng, Jialu; Fang, Bin; Luo, Qingchen; Li, Shasha; Liu, Yunyi; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Calcineurin B-like protein-interacting protein kinases (CIPKs) have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV), abscisic acid (ABA) and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+)/Na(+) ratios and Ca(2+) content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT) and peroxidase (POD) under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS) homeostasis.

  20. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice.

    PubMed

    Liu, Ai-Ling; Zou, Jie; Liu, Cui-Fang; Zhou, Xiao-Yun; Zhang, Xian-Wen; Luo, Guang-Yu; Chen, Xin-Bo

    2013-01-01

    Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings.

  1. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  2. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  3. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  4. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  5. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  6. Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level.

    PubMed

    Sadeghi, Akram; Soltani, Bahram M; Jouzani, Gholamreza Salehi; Karimi, Ebrahim; Nekouei, Mojtaba Khayam; Sadeghizadeh, Majid

    2014-01-01

    Streptomyces strain C-2012 is a salt tolerant biocontrol PGPR that has been isolated from Iranian soil. The main aim of current study was finding strain C-2012 taxonomic position and to find the genes which are potentially involved in salt tolerance phenotype. Strain C-2012 chemotaxonomic, morphological and molecular characteristics indicate that this strain is a member of the genus Streptomyces. Phylogenetic analyses based on an almost complete 16S rRNA gene sequence revealed that this strain is closely related to Streptomyces rimosus JCM 4667(T). Also, DNA-DNA hybridization test estimated 74% relatedness between two strains and confirmed that C-2012 is a strain of S. rimosus. In order to find novel genes that are differentially expressed in response to the salt treatment, cDNA-AFLP was carried out. One of the selected expressed sequence tags (TDF-1) was found to be homologous to lon gene which produces a bacterial ATP-dependent proteases (proteases LA). Lon gene expression was induced following 450 mM salt (NaCl) treatment and its expression level was further (5.2-fold) increased in response to salt when ectoine was added to the medium. These results suggest that two protein protection systems including ectoine and ATP-dependent proteases synergistically are related. NaCl stress also caused an enhancement in the activity of extracellular protease.

  7. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance

    PubMed Central

    Cai, Wei; Liu, Wen; Wang, Wen-Shu; Fu, Zheng-Wei; Han, Tong-Tong; Lu, Ying-Tang

    2015-01-01

    Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses. PMID:26121399

  8. Hexaconazole-Cu complex improves the salt tolerance of Triticum aestivum seedlings.

    PubMed

    Li, Jie; Sun, Cuiyu; Yu, Nan; Wang, Chen; Zhang, Tongtong; Bu, Huaiyu

    2016-02-01

    Hexaconazole is one of the triazole complexes that are broadly used as systemic fungicides with non-traditional plant growth regulator properties. Hexaconazole-Cu complex (Hex-Cu) is a new triazole derivative, and the biological effect of Hex-Cu has been rarely studied. In this work, we investigated the functions of Hex-Cu in regulating growth and the response to salt stress in the seedlings of Triticum aestivum. Pretreated with 60μmolL(-1) Hex-Cu, the seedling plants got increased root/shoot ratio by 42.0%, and the contents of chlorophyll and soluble protein were also increased by 38.1% and 27.9%, respectively. Furthermore, Hex-Cu alleviated the growth inhibition caused by salt stress, enabled the seedlings to maintain a higher proline content and lower malondialdehyde accumulation. The functions of Hex-Cu in regulating the expression of proline synthetase (P5CS and P5CR) genes were investigated by quantitative real-time PCR (qPCR). Under 100mmolL(-1) NaCl stress, the expression of P5CS and P5CR in the seedlings by Hex-Cu pretreatment were significantly up-regulated. It attributed to the enhanced salt tolerance in plants.

  9. eHALOPH a Database of Salt-Tolerant Plants: Helping put Halophytes to Work.

    PubMed

    Santos, Joaquim; Al-Azzawi, Mohammed; Aronson, James; Flowers, Timothy J

    2016-01-01

    eHALOPH (http://www.sussex.ac.uk/affiliates/halophytes/) is a database of salt-tolerant plants-halophytes. Records of plant species tolerant of salt concentrations of around 80 mM sodium chloride or more have been collected, along with data on plant type, life form, ecotypes, maximum salinity tolerated, the presence or absence of salt glands, photosynthetic pathway, antioxidants, secondary metabolites, compatible solutes, habitat, economic use and whether there are publications on germination, microbial interactions and mycorrhizal status, bioremediation and of molecular data. The database eHALOPH can be used in the analysis of traits associated with tolerance and for informing choice of species that might be used for saline agriculture, bioremediation or ecological restoration and rehabilitation of degraded wetlands or other areas. PMID:26519912

  10. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    PubMed

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  11. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    PubMed

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  12. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species

    PubMed Central

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P.; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P.; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in “La Albufera” Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves—where they are presumably compartmentalized in vacuoles—and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl− contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level—estimated from malondialdehyde accumulation—was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results

  13. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  14. Recent progress in drought and salt tolerance studies in Brassica crops

    PubMed Central

    Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi

    2014-01-01

    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops. PMID:24987291

  15. Recent progress in drought and salt tolerance studies in Brassica crops.

    PubMed

    Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi

    2014-05-01

    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops. PMID:24987291

  16. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).

    PubMed

    Sun, Xin-E; Feng, Xin-Xin; Li, Cui; Zhang, Zhi-Ping; Wang, Liang-Ju

    2015-06-01

    5-Aminolevulinic acid (5-ALA) has been suggested for improving plant salt tolerance via exogenous application. In this study, we used a transgenic canola (Brassica napus), which contained a constituted gene YHem1 and biosynthesized more 5-ALA, to study salt stress responses. In a long-term pot experiment, the transgenic plants produced higher yield under 200 mmol L(-1) NaCl treatment than the wild type (WT). In a short-term experiment, the YHem1 transformation accelerated endogenous 5-ALA metabolism, leading to more chlorophyll accumulation, higher diurnal photosynthetic rates and upregulated expression of the gene encoding Rubisco small subunit. Furthermore, the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, were significantly higher in the transgenic plants than the WT, while the levels of O2 ·(-) and malondialdehyde were lower than the latter. Additionally, the Na(+) content was higher in the transgenic leaves than that in the WT under salinity, but K(+) and Cl(-) were significantly lower. The levels of N, P, Cu, and S in the transgenic plants were also significantly lower than those in the WT, but the Fe content was significantly improved. As the leaf Fe content was decreased by salinity, it was suggested that the stronger salt tolerance of the transgenic plants was related to the higher Fe acquisition. Lastly, YHem1 transformation improved the leaf proline content, but salinity decreased rather than increased it. The content of free amino acids and soluble sugars was similarly decreased as salinity increased, but it was higher in the transgenic plants than that in the WT.

  17. Study on salt tolerance with YHem1 transgenic canola (Brassica napus).

    PubMed

    Sun, Xin-E; Feng, Xin-Xin; Li, Cui; Zhang, Zhi-Ping; Wang, Liang-Ju

    2015-06-01

    5-Aminolevulinic acid (5-ALA) has been suggested for improving plant salt tolerance via exogenous application. In this study, we used a transgenic canola (Brassica napus), which contained a constituted gene YHem1 and biosynthesized more 5-ALA, to study salt stress responses. In a long-term pot experiment, the transgenic plants produced higher yield under 200 mmol L(-1) NaCl treatment than the wild type (WT). In a short-term experiment, the YHem1 transformation accelerated endogenous 5-ALA metabolism, leading to more chlorophyll accumulation, higher diurnal photosynthetic rates and upregulated expression of the gene encoding Rubisco small subunit. Furthermore, the activities of antioxidant enzymes, including superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, were significantly higher in the transgenic plants than the WT, while the levels of O2 ·(-) and malondialdehyde were lower than the latter. Additionally, the Na(+) content was higher in the transgenic leaves than that in the WT under salinity, but K(+) and Cl(-) were significantly lower. The levels of N, P, Cu, and S in the transgenic plants were also significantly lower than those in the WT, but the Fe content was significantly improved. As the leaf Fe content was decreased by salinity, it was suggested that the stronger salt tolerance of the transgenic plants was related to the higher Fe acquisition. Lastly, YHem1 transformation improved the leaf proline content, but salinity decreased rather than increased it. The content of free amino acids and soluble sugars was similarly decreased as salinity increased, but it was higher in the transgenic plants than that in the WT. PMID:25220348

  18. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress.

    PubMed

    Khan, M Nasir; Siddiqui, Manzer H; Mohammad, Firoz; Naeem, M

    2012-12-01

    Nitric oxide (NO), a small diffusible, ubiquitous bioactive molecule, acts as prooxidant as well as antioxidant, and also regulates remarkable spectrum of plant cellular mechanisms. The present work was undertaken to investigate the role of nitric oxide donor sodium nitroprusside (SNP) and/or calcium chloride (CaCl(2)) in the tolerance of excised mustard leaves to salt stress. After 24h, salt stressed leaves treated with SNP and/or CaCl(2), showed an improvement in the activities of carbonic anhydrase (CA) and nitrate reductase (NR), and leaf chlorophyll (Chl) content, leaf relative water content (LRWC) and leaf ion concentration as compared with the leaves treated with NaCl only. Salinity stress caused a significant increase in H(2)O(2) content and membrane damage which is witnessed by enhanced levels of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage. By contrast, such increases were blocked by the application of 0.2mM SNP and 10mM CaCl(2) to salt stressed leaves. Application of SNP and/or CaCl(2) alleviated NaCl stress by enhancing the activities of antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) and by enhancing proline (Pro) and glycinebetaine (GB) accumulation with a concomitant decrease in H(2)O(2) content, TBARS and electrolyte leakage, which is manifested in the tolerance of plants to salinity stress. Moreover, application of SNP with CaCl(2) was more effective to reduce the detrimental effects of NaCl stress on excised mustard leaves. In addition to this, ameliorating effect of SNP was not effective in presence of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]. To put all these in a nut shell, the results advocate that SNP in association with CaCl(2) plays a role in enhancing the tolerance of plants to salt stress by improving antioxidative defence system, osmolyte accumulation and ionic

  19. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K⁺ loss in seedlings of Medicago sativa.

    PubMed

    Lai, Diwen; Mao, Yu; Zhou, Heng; Li, Feng; Wu, Mingzhu; Zhang, Jing; He, Ziyi; Cui, Weiti; Xie, Yanjie

    2014-08-01

    Despite the external application of hydrogen sulfide (H2S) conferring plant tolerance against various environmental cues, the physiological significance of l-cysteine desulfhydrase (L-DES)-associated endogenous H2S production involved in salt-stress signaling was poorly understood. To address this gap, the participation of in planta changes of H2S homeostasis involved in alfalfa salt tolerance was investigated. The increasing concentration of NaCl (from 50 to 300 mM) progressively caused the induction of total l-DES activity and the increase of endogenous H2S production. NaCl-triggered toxicity symptoms (175 mM), including seedling growth inhibition and lipid peroxidation, were alleviated by sodium hydrosulfide (NaHS; 100 μM), a H2S donor, whereas aggravated by an inhibitor of l-DES or a H2S scavenger. A weaker or negative response was observed in lower or higher dose of NaHS. Further results showed that endogenous l-DES-related H2S modulated several genes/activities of antioxidant defence enzymes, and also regulated the contents of antioxidant compounds, thus counterbalancing the NaCl-induced lipid peroxidation. Moreover, H2S maintained K(+)/Na(+) homeostasis by preventing the NaCl-triggered K(+) efflux, which might be result form the impairment of SKOR expression. Together, our findings indicated that endogenous H2S homeostasis enhance salt tolerance by coupling the reestablishment of redox balance and restraining K(+) efflux in alfalfa seedlings.

  20. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na(+)/K(+) Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress.

    PubMed

    Mostofa, Mohammad G; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na(+) and the Na(+)/K(+) ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  1. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  2. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model

    PubMed Central

    Song, Jie; Wang, Baoshan

    2015-01-01

    Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. PMID:25288631

  3. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    SciTech Connect

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  4. Relationship between sodium influx and salt tolerance of nitrogen-fixing cyanobacteria

    SciTech Connect

    Apte, S.K.; Reddy, B.R.; Thomas, J.

    1987-08-01

    The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (more than 25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S.K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3-, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria. (Refs. 27)

  5. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yumei; Liu, Zhenshan; Khan, Abul Awlad; Lin, Qi; Han, Yao; Mu, Ping; Liu, Yiguo; Zhang, Hongsheng; Li, Lingyan; Meng, Xianghao; Ni, Zhongfu; Xin, Mingming

    2016-01-01

    Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in 'Chinese Spring' (CS) and 'Qing Mai 6' (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates. PMID:26892368

  6. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.)

    PubMed Central

    Zhang, Yumei; Liu, Zhenshan; Khan, Abul Awlad; Lin, Qi; Han, Yao; Mu, Ping; Liu, Yiguo; Zhang, Hongsheng; Li, Lingyan; Meng, Xianghao; Ni, Zhongfu; Xin, Mingming

    2016-01-01

    Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in ‘Chinese Spring’ (CS) and ‘Qing Mai 6’ (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates. PMID:26892368

  7. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  8. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass.

    PubMed

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  9. The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato1

    PubMed Central

    Gisbert, Carmina; Rus, Ana M.; Bolarín, M. Carmen; López-Coronado, J. Miguel; Arrillaga, Isabel; Montesinos, Consuelo; Caro, Manuel; Serrano, Ramon; Moreno, Vicente

    2000-01-01

    Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K+ concentration and decreasing intracellular Na+ during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K+ to Na+ ratios showed that transgenic lines were able to retain more K+ than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast. PMID:10806256

  10. SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.).

    PubMed

    Zhao, Y L; Wang, H M; Shao, B X; Chen, W; Guo, Z J; Gong, H Y; Sang, X H; Wang, J J; Ye, W W

    2016-01-01

    The identification of simple sequence repeat (SSR) markers associated with salt tolerance in cotton contributes to molecular assisted selection (MAS), which can improve the efficiency of traditional breeding. In this study, 134 samples of upland cotton cultivars were selected. The seedling emergence rates were tested under 0.3% NaCl stress. A total of 74 SSR markers were used to scan the genomes of these samples. To identify SSR markers associated with salt tolerance, an association analysis was performed between salt tolerance and SSR markers using TASSEL 2.1, based on the analysis of genetic structure using Structure 2.3.4. The results showed that the seedling emergence rates of 134 cultivars were significantly different, and 27 salt-sensitive and 10 salt-tolerant cultivars were identified. A total of 148 loci were found in 74 SSR markers involving 246 allelic variations, which ranged from 2 to 7 with an average of 3.32 per SSR marker. The gene diversity ranged from 0.0295 to 0.4959, with the average being 0.2897. The polymorphic information content ranged from0.0290 to 0.3729, with the average being 0.2381. This natural population was classified into two subgroups by Structure 2.3.4, containing 89 and 45 samples, respectively. Finally, eight SSR sites associated with salt tolerance ware found through an association analysis, with the rate of explanation ranging from 2.91 to 7.82% and an average of 4.32%. These results provide reference data for the use MAS for salt tolerance in cotton.

  11. Increasing the public health effectiveness of fluoridated salt.

    PubMed

    Marthaler, Thomas M

    2005-01-01

    This paper aims at assessing the public health potential of salt fluoridation schemes. There is now solid evidence which shows that the cariostatic effectiveness of universal salt fluoridation is equivalent to that of water fluoridation in both the permanent and primary dentition. In countries of continental Europe, only domestic salt is fluoridated, and its consistent use may be expected to warrant a 30% reduction of caries prevalence. However, the effectiveness in the population at large is lower because only part of the population uses the fluoridated domestic salt. Under these conditions, it must be assumed that the effectiveness is further reduced because families in low S-E strata use fluoridated salt (FS) less frequently than those in the higher S-E strata who are known to use preventive methods like toothbrushing twice a day with a fluoride dentifrice more regularly. Model calculations tend to show that in Germany, where FS has reached a market share of 60%, the overall effectiveness is 14% instead of 30%. For France with a market share of 30% of the fluoridated domestic salt, model calculations lead to an overall effectiveness of 8%. In order to obtain a substantial decline of caries in the entire population, it is important to aim for a high market share of the FS of 80%, or preferably 90%. This goal can be reached with a relatively small budget. The task of health ministries would be to promote the switch from unfluoridated salt to FS; however, such promotion is often withheld by health ministries. It is possible, through modest price increases of salt, to finance effective campaigns inducing the majority of the population to use the fluoridated variety. On a world wide scale, fluoridation of salt has established itself as an efficient public health measure. It may be particularly beneficial for developing countries because it is by far the cheapest method and it is compatible with the use of fluoridated toothpastes.

  12. [Salt tolerance evaluation of cotton (Gossypium hirsutum) at its germinating and seedling stages and selection of related indices].

    PubMed

    Zhang, Guo-wei; Lu, Hai-ling; Zhang, Lei; Chen, Bing-lin; Zhou, Zhi-guo

    2011-08-01

    A sand culture experiment was conducted to study the salt tolerance of 13 cotton cultivars at their germinating and seedling stages under the stress of different concentration NaCl, and a cluster analysis was made on the salt tolerance, according to the subjection values of salt toxicity coefficients of multi-indices and the sum subjection value. It was observed that the appropriate concentration of NaCl for the evaluation of salt tolerance was 150 mmol x L(-1). The salt tolerance differed with cultivar and growth stage. Among the 13 cultivars, the CCRI-44 and CCRI-177 were steadily salt-tolerant at both germinating and seedling stages, the CCRI-103, Dexiamian 1, and NuCOTN 33B were steadily and moderately salt-tolerant, while the CCRI-102, Sumian 12, and Simian 3 were steadily salt-sensitive. Germination rate, germination potential, germination index, vigor index, and fresh mass could be served as the indicators to evaluate the salt tolerance of the cultivars at germinating stage, while plant height, leaf expansion rate, shoot dry mass, root dry mass, root vigor, and net photosynthetic rate could be applied to assess the salt tolerance at seedling stage.

  13. Nonlinear responses in salt marsh functioning to increased nitrogen addition.

    PubMed

    Vivanco, Lucía; Irvine, Irina C; Martiny, Jennifer B H

    2015-04-01

    Salt marshes provide storm protection to shorelines, sequester carbon (C), and mitigate coastal eutrophication. These valuable coastal ecosystems are confronted with increasing nitrogen (N) inputs from anthropogenic sources, such as agricultural runoff, wastewater, and atmospheric deposition. To inform predictions of salt marsh functioning and sustainability in the future, we characterized the response of a variety of plant, microbial, and sediment responses to a seven-level gradient of N addition in three Californian salt marshes after 7 and 14 months of N addition. The marshes showed variable responses to the experimental N gradient that can be grouped as neutral (root biomass, sediment respiration, potential carbon mineralization, and potential net nitrification), linear (increasing methane flux, decreasing potential net N mineralization, and increasing sediment inorganic N), and nonlinear (saturating aboveground plant biomass and leaf N content, and exponentially increasing sediment inorganic and organic N). The three salt marshes showed quantitative differences in most ecosystem properties and processes rates; however, the form of the response curves to N addition were generally consistent across the three marshes, indicating that the responses observed may be applicable to other marshes in the region. Only for sediment properties (inorganic and organic N pool) did the shape of the response differ significantly between marshes. Overall, the study suggests salt marshes are limited in their ability to sequester C and N with future increases in N, even without further losses in marsh area. PMID:26230015

  14. Increase of urban lake salinity by road deicing salt.

    PubMed

    Novotny, Eric V; Murphy, Dan; Stefan, Heinz G

    2008-11-15

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds. PMID:18762321

  15. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  16. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance. PMID:23299430

  17. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  18. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    PubMed Central

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  19. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    PubMed

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-01-01

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions. PMID:25966262

  20. Ascorbate peroxidase from Jatropha curcas enhances salt tolerance in transgenic Arabidopsis.

    PubMed

    Chen, Y; Cai, J; Yang, F X; Zhou, B; Zhou, L R

    2015-05-11

    Ascorbate peroxidase (APX) plays a central role in the ascorbate-glutathione cycle and is a key enzyme in cellular H2O2 me-tabolism. It includes a family of isoenzymes with different character-istics, which are identified in many higher plants. In the present study, we isolated the APX gene from Jatropha curcas L, which is similar with other previously characterized APXs as revealed by alignment and phylogenetic analysis of its deduced amino acid sequence. Real-time qPCR analysis showed that the expression level of JcAPX transcript significantly increased under NaCl stress. Subsequently, to elucidate the contribution of JcAPX to the protection against salt-induced oxi-dative stress, the expression construct p35S: JcAPX was created and transformed into Arabidopsis and transcribed. Under 150-mM NaCl stress, compared with wild type (WT), the overexpression of JcAPX in Arabidopsis increased the germination rate, the number of leaves, and the rosette area. In addition, the transgenic plants had longer roots, higher total chlorophyll content, higher total APX activity, and lower H2O2 content than the WT under NaCl stress conditions. These results suggested that higher APX activity in transgenic lines increases the salt tolerance by enhancing scavenging capacity for reactive oxygen spe-cies under NaCl stress conditions.

  1. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.

    PubMed

    Pang, Qiuying; Chen, Sixue; Dai, Shaojun; Chen, Yazhou; Wang, Yang; Yan, Xiufeng

    2010-05-01

    Salinity is a major abiotic stress affecting plant cultivation and productivity. Thellungiella halophila is a halophyte and has been used as a model for studying plant salt tolerance. Understanding the molecular mechanisms of salinity tolerance will facilitate the generation of salt tolerant crops. Here we report comparative leaf proteomics of Arabidopsis, a glycophyte, and its close relative Thellungiella, a halophyte, under different salt stress conditions. Proteins from control and NaCl treated Arabidopsis and Thellungiella leaf samples were extracted and separated by two-dimensional gel electrophoresis. A total of 88 protein spots from Arabidopsis gels and 37 protein spots from Thellungiella gels showed significant changes. Out of these spots, a total of 79 and 32 proteins were identified by mass spectrometry in Arabidopsis and Thellungiella, respectively. Most of the identified proteins were involved in photosynthesis, energy metabolism, and stress response in Arabidopsis and Thellungiella. As a complementary approach, isobaric tag for relative and absolute quantification (iTRAQ) LC-MS was used to identify crude microsomal proteins. A total of 31 and 32 differentially expressed proteins were identified in Arabidopsis and Thellungiella under salt treatment, respectively. Overall, there were more proteins changed in abundance in Arabidopsis than in Thellungiella. Distinct patterns of protein changes in the two species were observed. Collectively, this work represents the most extensive proteomic description of salinity responses of Arabidopsis and Thellungiella and has improved our knowledge of salt tolerance in glycophytes and halophytes. PMID:20377188

  2. Insights into salt tolerance from the genome of Thellungiella salsuginea

    PubMed Central

    Wu, Hua-Jun; Zhang, Zhonghui; Wang, Jun-Yi; Oh, Dong-Ha; Dassanayake, Maheshi; Liu, Binghang; Huang, Quanfei; Sun, Hai-Xi; Xia, Ran; Wu, Yaorong; Wang, Yi-Nan; Yang, Zhao; Liu, Yang; Zhang, Wanke; Zhang, Huawei; Chu, Jinfang; Yan, Cunyu; Fang, Shuang; Zhang, Jinsong; Wang, Yiqin; Zhang, Fengxia; Wang, Guodong; Lee, Sang Yeol; Cheeseman, John M.; Yang, Bicheng; Li, Bo; Min, Jiumeng; Yang, Linfeng; Wang, Jun; Chu, Chengcai; Chen, Shou-Yi; Bohnert, Hans J.; Zhu, Jian-Kang; Wang, Xiu-Jie; Xie, Qi

    2012-01-01

    Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments. PMID:22778405

  3. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato

    PubMed Central

    Zhu, Tong; Deng, Xingguang; Zhou, Xue; Zhu, Lisha; Zou, Lijuan; Li, Pengxu; Zhang, Dawei; Lin, Honghui

    2016-01-01

    Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs. Scavenging of ethylene production or silencing of ethylene signaling components inhibited BR-induced salt tolerance and blocked BR-induced activities of several antioxidant enzymes. Previous studies have reported that BRs can induce plant tolerance to a variety of environmental stimuli by triggering the generation of H2O2 as a signaling molecule. We also found that H2O2 might be involved in the crosstalk between BRs and ethylene in the tomato response to salt stress. Simultaneously, BR-induced ethylene production was partially blocked by pretreated with a reactive oxygen species scavenger or synthesis inhibitor. These results strongly demonstrated that ethylene and H2O2 play important roles in BR-dependent induction of plant salt stress tolerance. Furthermore, we also investigated the relationship between BR signaling and ethylene signaling pathways in plant processes responding to salt stress. PMID:27739520

  4. Amplification of salt-induced polymer diffusiophoresis by increasing salting-out strength.

    PubMed

    McAfee, Michele S; Zhang, Huixiang; Annunziata, Onofrio

    2014-10-21

    The role of salting-out strength on (1) polymer diffusiophoresis from high to low salt concentration, and (2) salt osmotic diffusion from high to low polymer concentration was investigated. These two cross-diffusion phenomena were experimentally characterized by Rayleigh interferometry at 25 °C. Specifically, we report ternary diffusion coefficients for polyethylene glycol (molecular weight, 20 kg·mol(-1)) in aqueous solutions of several salts (NaCl, KCl, NH4Cl, CaCl2, and Na2SO4) as a function of salt concentration at low polymer concentration (0.5% w/w). We also measured polymer diffusion coefficients by dynamic light scattering in order to discuss the interpretation of these transport coefficients in the presence of cross-diffusion effects. Our cross-diffusion results, primarily those on salt osmotic diffusion, were utilized to extract N(w), the number of water molecules in thermodynamic excess around a macromolecule. This preferential-hydration parameter characterizes the salting-out strength of the employed salt. For chloride salts, changing cation has a small effect on N(w). However, replacing NaCl with Na2SO4 (i.e., changing anion) leads to a 3-fold increase in N(w), in agreement with cation and anion Hofmeister series. Theoretical arguments show that polymer diffusiophoresis is directly proportional to the difference N(w) - n(w), where n(w) is the number of water molecules transported by the migrating macromolecule. Interestingly, the experimental ratio, n(w)/N(w), was found to be approximately the same for all investigated salts. Thus, the magnitude of polymer diffusiophoresis is also proportional to salting-out strength as described by N(w). A basic hydrodynamic model was examined in order to gain physical insight on the role of n(w) in particle diffusiophoresis and explain the observed invariance of n(w)/N(w). Finally, we consider a steady-state diffusion problem to show that concentration gradients of strong salting-out agents such as Na2SO4 can

  5. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis.

    PubMed

    Cheng, Mei-Chun; Ko, Ko; Chang, Wan-Ling; Kuo, Wen-Chieh; Chen, Guan-Hong; Lin, Tsan-Piao

    2015-09-01

    Although glutathione is well known for its reactive oxygen species (ROS) scavenging function and plays a protective role in biotic stress, its regulatory function in abiotic stress still remains to be elucidated. Our previous study showed that exogenously applied reduced glutathione (GSH) could improve abiotic stress tolerance in Arabidopsis. Here, we report that endogenously increased GSH also conferred tolerance to drought and salt stress in Arabidopsis. Moreover, both exogenous and endogenous GSH delayed senescence and flowering time. Polysomal profiling results showed that global translation was enhanced after GSH treatment and by the induced increase of GSH level by salt stress. By performing transcriptomic analyses of steady-state and polysome-bound mRNAs in GSH-treated plants, we reveal that GSH has a substantial impact on translation. Translational changes induced by GSH treatment target numerous hormones and stress signaling molecules, which might contribute to the enhanced stress tolerance in GSH-treated plants. Our translatome analysis also revealed that abscisic acid (ABA), auxin and jasmonic acid (JA) biosynthesis, as well as signaling genes, were activated during GSH treatment, which has not been reported in previously published transcriptomic data. Together, our data suggest that the increased glutathione level results in stress tolerance and global translational changes. PMID:26213235

  6. Biodiesel from salt-tolerant seashore mallow (Kosteletzkya virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow (Kosteletzkya virginica) is a halophytic perennial dicot that produces up to 1500 kg of seeds (22% oil) per hectare and is tolerant of saline soils and brackish water. FAMEs were prepared in high yield by transesterification of hexane-extracted seashore mallow seed oil. The crude oil...

  7. Genetic Linkage Map Construction and QTL Mapping of Salt Tolerance Traits in Zoysiagrass (Zoysia japonica)

    PubMed Central

    Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

    2014-01-01

    Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection. PMID:25203715

  8. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport. PMID:25416933

  9. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport.

  10. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    PubMed

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification. PMID:24880475

  11. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco.

    PubMed

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-08-01

    Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.

  12. Computer-Delivered Social Norm Message Increases Pain Tolerance

    PubMed Central

    Pulvers, Kim; Schroeder, Jacquelyn; Limas, Eleuterio F.; Zhu, Shu-Hong

    2013-01-01

    Background Few experimental studies have been conducted on social determinants of pain tolerance. Purpose This study tests a brief, computer-delivered social norm message for increasing pain tolerance. Methods Healthy young adults (N=260; 44 % Caucasian; 27 % Hispanic) were randomly assigned into a 2 (social norm)×2 (challenge) cold pressor study, stratified by gender. They received standard instructions or standard instructions plus a message that contained artifically elevated information about typical performance of others. Results Those receiving a social norm message displayed significantly higher pain tolerance, F(1, 255)=26.95, p<.001, ηp2=.10 and pain threshold F(1, 244)=9.81, p=.002, ηp2=.04, but comparable pain intensity, p>.05. There were no interactions between condition and gender on any outcome variables, p>.05. Conclusions Social norms can significantly increase pain tolerance, even with a brief verbal message delivered by a video. PMID:24146086

  13. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening.

    PubMed

    Chen, Yu; Zong, Junqin; Tan, Zhiqun; Li, Lanlan; Hu, Baoyun; Chen, Chuanming; Chen, Jingbo; Liu, Jianxiu

    2015-04-01

    Though a large number of salt-tolerant genes were identified from Glycophyte in previous study, genes involved in salt-tolerance of halophyte were scarcely studied. In this report, an important halophyte turfgrass, Zoysia matrella, was used for systematic excavation of salt-tolerant genes using full-length cDNA expression library in yeast. Adopting the Gateway-compatible vector system, a high quality entry library was constructed, containing 3 × 10(6) clones with an average inserted fragments length of 1.64 kb representing a 100% full-length rate. The yeast expression library was screened in a salt-sensitive yeast mutant. The screening yielded dozens of salt-tolerant clones harboring 16 candidate salt-tolerant genes. Under salt-stress condition, these 16 genes exhibited different transcription levels. According to the results, we concluded that the salt-tolerance of Z. matrella might result from known genes involved in ion regulation, osmotic adjustment, as well as unknown pathway associated with protein folding and modification, RNA metabolism, and mitochondrial membrane translocase, etc. In addition, these results shall provide new insight for the future researches with respect to salt-tolerance.

  14. [Desmopressin effect on water-salt homeostasis and orthostatic tolerance during head-down tilting].

    PubMed

    Larina, I M; Noskov, V B; Nichiporuk, I A; Pastushkova, L Kh; Vasil'eva, G Iu

    2009-01-01

    Effects of desmopressin, a synthetic analog of antidiuretic hormone (ADH), on water-salt metabolism and orthostatic tolerance were evaluated in human subjects during 24-hr HDT (-15 degrees). Consumption of the preparation was found to dampen losses in total body and extracellular liquids and to slow down diuresis as well as establishment of a positive water balance as compared with control series without ADH. In addition, tolerance of the standard standing test improved noticeably. To conclude, desmopressin precluded hypohydration of the tilted subjects and, consequently, prevented loss of orthostatic tolerance.

  15. The phase behavior of simple salt-tolerant sulfonates

    SciTech Connect

    Barakat, Y.; Fortney, L.N.; LaLanne-Cassou, C.; Schecter, R.S.; Wade, W.H.; Weerasooriya, U.; Yiv, S.

    1983-12-01

    Alkane and ..cap alpha..-olefin sulfonates can be used to produce optimal microemulsion formulations having very high salinity tolerance (including divalent ion) while maintaining large solubilization parameters and low interfacial tensions (IFT's). Such molecules require elevated temperatures or higher alcohol concentrations to suppress liquid crystal formation. As in other species, solubilization is inversely related to width of the threephase regime, and IFT and solubilization are strongly coupled.

  16. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  17. Cloning a glutathione peroxidase gene from Nelumbo nucifera and enhanced salt tolerance by overexpressing in rice.

    PubMed

    Diao, Ying; Xu, Huaxue; Li, Guolin; Yu, Aiqing; Yu, Xia; Hu, Wanling; Zheng, Xingfei; Li, Shaoqing; Wang, Youwei; Hu, Zhongli

    2014-08-01

    A full-length cDNA clone encoding an 866 bp-length glutathione peroxidase protein (NnGPX) was isolated from lotus (Nelumbo nucifera L.). The deduced amino acid sequence of the NnGPX gene had significant homology with ATGPX6. A 3D structural model of the NnGPX was constructed by homology modeling. The cloned NnGPX gene was expressed in Escherichia coli, and a fusion protein of about 40 kDa was detected after isopropyl thiogalactoside induction. Under different concentrations of Na2SeO3 treatments, NnGPX was found to be an enzyme that does not contain selenium. Real-time PCR analysis showed that the NnGPX gene was expressed in all organs of lotus, and its high expression mainly occurred in organs with active metabolisms. NnGPX transcript increased remarkably in response to cold, heat, mechanical damage, and salt treatment. Subsequently, the NnGPX gene was introduced in Oryza sativa cv. Yuetai B. PCR results verified the integration of this gene into the genome of rice and reverse transcription-PCR verified that this gene had been expressed in transgenic rice. The transgenic plants were significantly more tolerant to salt stress compared with the wild-type. PMID:24715609

  18. COMPARATIVE TRANSCRIPTOME ANALYSIS OF SALT-TOLERANT WHEAT GERMPLASM LINES USING GENOME ARRAYS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salt-tolerant wheat lines W4909 and W4910 were derived from a cross between AJDAj5 (a disomic addition line carrying a pair of Eb chromosomes from Thinopyrum junceum) and Ph1 (a line having the Ph1 allele from Aegilops speltoides, which promotes homoeologous recombination). Both lines have greater ...

  19. Tolerance to road salt deicers in chronically exposed urban pond communities

    EPA Science Inventory

    Freshwater salinization is a concern in urban aquatic ecosystems that receive road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs and to assess the tolerance o...

  20. Tomato salt tolerance: Impact of grafting and water composition on yield and ion relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the salt tolerance of tomato cv Big Dena under both non-grafted 2 conditions and when grafted on Maxifort rootstock, under a series of 5 salinity levels and two irrigation water composition types. The salinity levels of the irrigation water were -0.03, -0.15, -0.30, -0.45, and -0.60 MPa...

  1. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli

    PubMed Central

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli. PMID:27135411

  2. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    PubMed

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  3. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    PubMed

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli. PMID:27135411

  4. Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance.

    PubMed

    Ruibal, Cecilia; Salamó, Imma Pérez; Carballo, Valentina; Castro, Alexandra; Bentancor, Marcel; Borsani, Omar; Szabados, László; Vidal, Sabina

    2012-07-01

    The moss Physcomitrella patens can withstand extreme environmental conditions including drought and salt stress. Tolerance to dehydration in mosses is thought to rely on efficient limitation of stress-induced cell damage and repair of cell injury upon stress relief. Dehydrin proteins (DHNs) are part of a conserved cell protecting mechanism in plants although their role in stress tolerance is not well understood. Four DHNs and two DHN-like proteins were identified in the predicted proteome of P. patens. Expression of PpDHNA and PpDHNB was induced by salt and osmotic stress and controlled by abscisic acid. Subcellular localization of the encoded proteins suggested that these dehydrins are localized in cytosol and accumulate near membranes during stress. Comparative analysis of dhnA and dhnB targeted knockout mutants of P. patens revealed that both genes play a role in cellular protection during salt and osmotic stress, although PpDHNA has a higher contribution to stress tolerance. Overexpression of PpDHNA and PpDHNB genes in transgenic Arabidopsis improved rosette and root growth in stress conditions, although PpDHNA was more efficient in this role. These results suggest that specific DHNs contribute considerably to the high stress tolerance of mosses and offer novel tools for genetic engineering stress tolerance of higher plants.

  5. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice

    PubMed Central

    Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel

    2016-01-01

    Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt

  6. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    PubMed Central

    Wei, Peipei; Wang, Longchao; Liu, Ailin; Yu, Bingjun; Lam, Hon-Ming

    2016-01-01

    The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-), on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl), enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress. PMID:27504114

  7. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean.

    PubMed

    Wei, Peipei; Wang, Longchao; Liu, Ailin; Yu, Bingjun; Lam, Hon-Ming

    2016-01-01

    The family of chloride channel proteins that mediate Cl(-) transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl(-) homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl(-)), on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl(-)/H(+) antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl(-) accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl(-) in their roots and transferred less Cl(-) to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl), enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl(-) stress. PMID:27504114

  8. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments.

    PubMed

    Freeman, John L; Bañuelos, Gary S

    2011-11-15

    Genetic variation in salt (Na(2)SO(4), NaCl) and boron (B) tolerance among four ecotypes of the selenium (Se) hyperaccumulator Stanleya pinnata (Pursh) Britton was utilized to select tolerant genotypes capable of phytoremediating Se from salt, B, and Se-laden agricultural drainage sediment. The few individual salt/B tolerant genotypes were successfully selected from among a large population of highly salt/B sensitive seedlings. The distribution, hyperaccumulation, and volatilization of Se were then examined in selected plants capable of tolerating the high salt/B laden drainage sediment. Salt/B tolerant genotypes from each of the four ecotypes had mean Se concentrations ranging from 2510 ± 410 to 1740 ± 620 in leaves and 3180 ± 460 to 2500 ± 1060 in seeds (μg Se g(-1) DW ± SD), while average daily Se volatilization rates ranged from 722 ± 375 to 1182 ± 575 (μg Se m(-2) d(-1) ± SD). After two growing seasons (∼18 months), we estimated that hyperaccumulation and volatilization of Se by tolerant S. pinnata genotypes and their associated microbes can remove approximately 30% of the total soil Se in 0-30 cm sediment. The salt/B tolerant S. pinnata genotypes selected and characterized herein represent promising new tools for the successful phytoremediation of Se from salt/B and Se-laden agricultural drainage sediments. PMID:21988205

  9. Ectopic expression of myo-inositol 3-phosphate synthase induces a wide range of metabolic changes and confers salt tolerance in rice.

    PubMed

    Kusuda, Hiroki; Koga, Wataru; Kusano, Miyako; Oikawa, Akira; Saito, Kazuki; Hirai, Masami Yokota; Yoshida, Kaoru T

    2015-03-01

    Salt stress is an important factor that limits crop production worldwide. The salt tolerance of plants is a complex biological process mediated by changes in gene expression and metabolite composition. The enzyme myo-inositol 3-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the first step of myo-inositol biosynthesis, and overexpression of the MIPS gene enhances salt stress tolerance in several plant species. In this study, we performed metabolite profiling of both MIPS-overexpressing and wild-type rice. The enhanced salt stress tolerance of MIPS-overexpressing plants was clear based on growth and the metabolites under salt stress. We found that constitutive overexpression of the rice MIPS gene resulted in a wide range of metabolic changes. This study demonstrates for the first time that overexpression of the MIPS gene increases various metabolites responsible for protecting plants from abiotic stress. Activation of both basal metabolism, such as glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle, and inositol metabolism is induced in MIPS-overexpressing plants. We discuss the relationship between the metabolic changes and the improved salt tolerance observed in transgenic rice.

  10. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition

    PubMed Central

    Parida, Asish K.; Veerabathini, Sairam K.; Kumari, Asha; Agarwal, Pradeep K.

    2016-01-01

    Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analyzing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500, and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area, and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem, and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, diameter of hypodermal cell, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by twofold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in NaCl treated seedlings as compared to control

  11. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition.

    PubMed

    Parida, Asish K; Veerabathini, Sairam K; Kumari, Asha; Agarwal, Pradeep K

    2016-01-01

    Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analyzing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500, and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area, and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na(+) contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K(+) content. There was significant alterations in leaf, stem, and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, diameter of hypodermal cell, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by twofold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in NaCl treated seedlings as compared to

  12. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition.

    PubMed

    Parida, Asish K; Veerabathini, Sairam K; Kumari, Asha; Agarwal, Pradeep K

    2016-01-01

    Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analyzing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500, and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area, and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na(+) contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K(+) content. There was significant alterations in leaf, stem, and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, diameter of hypodermal cell, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by twofold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in NaCl treated seedlings as compared to

  13. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants.

    PubMed

    Wang, Qing-Jie; Sun, Hong; Dong, Qing-Long; Sun, Tian-Yu; Jin, Zhong-Xin; Hao, Yu-Jin; Yao, Yu-Xin

    2016-10-01

    In this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH-overexpressing apple plants possessed improved cold and salt tolerance compared to wild-type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation-reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2 O2 content, but a low O2·- production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt- and cold-tolerant trees. PMID:26923485

  14. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.

    PubMed

    Yang, Yanjuan; Lu, Xiaomin; Yan, Bei; Li, Bin; Sun, Jin; Guo, Shirong; Tezuka, Takafumi

    2013-05-01

    The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway

  15. Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas).

    PubMed

    Fan, Weijuan; Deng, Gaifang; Wang, Hongxia; Zhang, Hongxia; Zhang, Peng

    2015-08-01

    Salinity and low temperature are the main limiting factors for sweet potato (Ipomoea batatas) growth and agricultural productivity. Various studies have shown that plant NHX-type antiporter plays a crucial role in regulating plant tolerance to salt stress by intracellular Na(+) compartmentalization. The Arabidopsis thaliana AtNHX1 gene that encodes a vacuolar Na(+) /H(+) antiporter was introduced into the sweet potato cultivar Xushu-22 by Agrobacterium-mediated transformation to confer abiotic stress tolerance. Stable insertion of AtNHX1 into the sweet potato genome and its expression was confirmed by Southern blot and reverse transcription-polymerase chain reaction (RT-PCR). A remarkably higher Na(+) /H(+) exchange activity of tonoplast membrane from transgenic sweet potato lines (NOE) in comparison with wild-type (WT) plants confirmed the vacuolar antiporter function in mediating Na(+) /H(+) exchange. Under salt stress, NOE plants accumulated higher Na(+) and K(+) levels in their tissues compared with WT plants, maintaining high K(+) /Na(+) ratios. Consequently, NOE plants showed enhanced protection against cell damage due to the increased proline accumulation, preserved cell membrane integrity, enhanced reactive oxygen species (ROS) scavenging (e.g. increased superoxide dismutase activity), and reduced H2 O2 and malondialdehyde (MDA) production. Moreover, the transgenic plants showed improved cold tolerance through multiple mechanisms of action, revealing the first molecular evidence for NHX1 function in cold response. The transgenic plants showed better biomass production and root yield under stressful conditions. These findings demonstrate that overexpressing AtNHX1 in sweet potato renders the crop tolerant to both salt and cold stresses, providing a greater capacity for the use of AtNHX1 in improving crop performance under combined abiotic stress conditions.

  16. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa.

    PubMed

    Wang, Fengxia; Xu, Yan-Ge; Wang, Shuai; Shi, Weiwei; Liu, Ranran; Feng, Gu; Song, Jie

    2015-10-01

    The effect of salinity on brown seeds/black seeds ratio, seed weight, endogenous hormone concentrations, and germination of brown and black seeds in the euhalophyte Suaeda salsa was investigated. The brown seeds/black seeds ratio, seed weight of brown and black seeds and the content of protein increased at a concentration of 500 mM NaCl compared to low salt conditions (1 mM NaCl). The germination percentage and germination index of brown seeds from plants cultured in 500 mM NaCl were higher than those cultured in 1 mM NaCl, but it was not true for black seeds. The concentrations of IAA (indole-3-acetic acid), ZR (free zeatin riboside) and ABA (abscisic acid) in brown seeds were much greater than those in black seeds, but there were no differences in the level of GAs (gibberellic acid including GA1 and GA3) regardless of the degree of salinity. Salinity during plant culture increased the concentration of GAs, but salinity had no effect on the concentrations of the other three endogenous hormones in brown seeds. Salinity had no effect on the concentration of IAA but increased the concentrations of the other three endogenous hormones in black seeds. Accumulation of endogenous hormones at different concentrations of NaCl during plant growth may be related to seed development and to salt tolerance of brown and black S. salsa seeds. These characteristics may help the species to ensure seedling establishment and population succession in variable saline environments. PMID:26184090

  17. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa.

    PubMed

    Wang, Fengxia; Xu, Yan-Ge; Wang, Shuai; Shi, Weiwei; Liu, Ranran; Feng, Gu; Song, Jie

    2015-10-01

    The effect of salinity on brown seeds/black seeds ratio, seed weight, endogenous hormone concentrations, and germination of brown and black seeds in the euhalophyte Suaeda salsa was investigated. The brown seeds/black seeds ratio, seed weight of brown and black seeds and the content of protein increased at a concentration of 500 mM NaCl compared to low salt conditions (1 mM NaCl). The germination percentage and germination index of brown seeds from plants cultured in 500 mM NaCl were higher than those cultured in 1 mM NaCl, but it was not true for black seeds. The concentrations of IAA (indole-3-acetic acid), ZR (free zeatin riboside) and ABA (abscisic acid) in brown seeds were much greater than those in black seeds, but there were no differences in the level of GAs (gibberellic acid including GA1 and GA3) regardless of the degree of salinity. Salinity during plant culture increased the concentration of GAs, but salinity had no effect on the concentrations of the other three endogenous hormones in brown seeds. Salinity had no effect on the concentration of IAA but increased the concentrations of the other three endogenous hormones in black seeds. Accumulation of endogenous hormones at different concentrations of NaCl during plant growth may be related to seed development and to salt tolerance of brown and black S. salsa seeds. These characteristics may help the species to ensure seedling establishment and population succession in variable saline environments.

  18. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    PubMed

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. PMID:26188308

  19. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives.

    PubMed

    Yaish, Mahmoud W; Kumar, Prakash P

    2015-01-01

    The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance. PMID:26042137

  20. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives

    PubMed Central

    Yaish, Mahmoud W.; Kumar, Prakash P.

    2015-01-01

    The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance. PMID:26042137

  1. (p)ppGpp-dependent and -independent pathways for salt tolerance in Escherichia coli.

    PubMed

    Tarusawa, Takefusa; Ito, Shion; Goto, Simon; Ushida, Chisato; Muto, Akira; Himeno, Hyouta

    2016-07-01

    Addition of some kinds of translation inhibitors targeting the ribosome such as kasugamycin to the culture medium as well as removal of a ribosome maturation factor or a ribosomal protein provides Escherichia coli cells with tolerance to high salt stress. Here, we found that another kind of translation inhibitor, serine hydroxamate (SHX), which induces amino acid starvation leading to (p)ppGpp production, also has a similar effect, but via a different pathway. Unlike kasugamycin, SHX was not effective in (p)ppGpp-null mutant cells. SHX and depletion of RsgA, a ribosome maturation factor, had an additive effect on salt tolerance, while kasugamycin or depletion of RsgA did not. These results indicate the presence of two distinct pathways, (p)ppGpp-dependent and -independent pathways, for salt tolerance of E. coli cell. Both pathways operate even in the absence of σ(S), an alternative sigma factor involved in the stationary phase or stress response. Hastened activation of the exocytoplasmic stress-specific sigma factor, σ(E), after salt shock was observed in the cells treated with SHX, as has been observed in the cells treated with a translation inhibitor or depleted of a ribosome maturation factor.

  2. Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance.

    PubMed

    Senadheera, Prasad; Singh, R K; Maathuis, Frans J M

    2009-01-01

    Salinity tolerance in rice, like in other glycophytes, is a function of cellular ion homeostasis. The large divergence in ion homeostasis between the salt-tolerant FL478 and salt-sensitive IR29 rice varieties can be exploited to understand mechanisms of salinity tolerance. Physiological studies indicate that FL478 shows a lower Na(+) influx, a reduced Na(+) translocation to the shoot, and maintains a lower Na(+):K(+) ratio. To understand the basis of these differences, a comparative investigation of transcript regulation in roots of the two cultivars was undertaken. This analysis revealed that genes encoding aquaporins, a silicon transporter, and N transporters are induced in both cultivars. However, transcripts for cation transport proteins including OsCHX11, OsCNGC1, OsCAX, and OsTPC1 showed differential regulation between the cultivars. The encoded proteins are likely to participate in reducing Na(+) influx, lowering the tissue Na(+):K(+) ratio and limiting the apoplastic bypass flow in roots of FL478 and are therefore important new targets to improve salt tolerance in rice. PMID:19395386

  3. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    PubMed

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants.

  4. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    PubMed

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20 mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24 h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24 h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2 h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200 mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. PMID:27052474

  5. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene

    PubMed Central

    Moghaieb, Reda EA; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn’t. The results confirmed that Na+/H+ antiporter gene AtNHX1 increased salt tolerance by increasing Na+ accumulation and keeping K+/Na+ balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs. PMID:25007249

  6. Quantitative Proteomics of the Tonoplast Reveals a Role for Glycolytic Enzymes in Salt Tolerance[C][W

    PubMed Central

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Hernández-Coronado, Marcela; Pantoja, Omar

    2009-01-01

    To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na+ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H+-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H+-pump activity. PMID:20028841

  7. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat.

    PubMed

    Shan, Lei; Li, Cuiling; Chen, Fang; Zhao, Shuangyi; Xia, Guangmin

    2008-08-01

    A salt-responsive gene WRSI5 was characterized from salt-tolerant cultivar Shanrong No. 3 (SR3), an introgression line via asymmetric somatic hybrid between Triticum aestivum L. cv. Jinan177 (JN177) and Thinopyrum ponticum Podp. The peptide encoded by WRSI5 contains a Bowman-Birk domain sharing a high level of sequence identity to monocotyledonous protease inhibitors. When expressed in vitro, the WRSI5 gene product exhibited trypsin, but not chymotrypsin inhibition. The expression level of WRSI5 was increased in SR3 roots exposed to salt, drought or oxidative stress. In situ hybridization showed that it is induced in the endodermal cells of the mature region of the SR3 root tip, with no signal detectable in the corresponding region of the salt-susceptible cultivar JN177. SR3 has a higher selectivity for K(+) over Na(+), and therefore limits the transport of Na(+) from the root to the shoot. When overexpressed in Arabidopsis thaliana, WRSI5 improves the ability of seedlings to grow on a medium containing 150 mM NaCl. We suggest that WRSI5 plays an important role in regulating the plant growth rate or long-distance Na(+) transport in SR3 plants exposed to salt stress.

  8. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    PubMed

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p < 0.001) variation among cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  9. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  10. The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  11. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.

    PubMed

    Tan, Wee-Kee; Ang, Yiqian; Lim, Teck-Kwang; Lim, Tit-Meng; Kumar, Prakash; Loh, Chiang-Shiong; Lin, Qingsong

    2015-10-01

    Preparation of proteins from salt-gland-rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high-quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland-rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland-rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol-based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D-LC-MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol-based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high-throughput proteomic analyses involving LC-MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691.

  12. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    PubMed Central

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-01-01

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3′-end and 5′-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata. PMID:23615469

  13. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    PubMed

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-01-01

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  14. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    PubMed

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-01-01

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata. PMID:23615469

  15. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    PubMed Central

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  16. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    PubMed

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  17. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    PubMed

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  18. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii

    PubMed Central

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-01-01

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress. PMID:26838812

  19. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India.

    PubMed

    Dhakar, Kusum; Sharma, Avinash; Pandey, Anita

    2014-04-01

    Twenty five fungal cultures (Penicillium spp.), isolated from soil samples from the high altitudes in the Indian Himalayan region, have been characterized following polyphasic approach. Colony morphology performed on five different media gave varying results; potato dextrose agar being the best for the vegetative growth and sporulation as well. Microscopic observations revealed 18 isolates to be biverticillate and 7 monoverticillate. Based on the phenotypic characters (colony morphology and microscopy), all the isolates were designated to the genus Penicillium. Exposure to low temperature resulted in enhanced sporulation in 23 isolates, while it ceased in case of two. The fungal isolates produced watery exudates in varying amount that in many cases increased at low temperature. All the isolates could grow between 4 and 37 °C, (optimum 24 °C), hence considered psychrotolerant. While all the isolates could tolerate pH from 2 to 14 (optimum 5-9), 7 isolates tolerated pH 1.5 as well. While all the fungal isolates tolerated salt concentration above 10 %; 10 isolates showed tolerance above 20 %. Based on ITS region (ITS1-5.8S-ITS2) analysis the fungal isolates belonged to 25 different species of Penicillium (showing similarity between 95 and 100 %). Characters like tolerance for low temperature, wide range of pH, and high salt concentration, and enhancement in sporulation and production of secondary metabolites such as watery exudates at low temperature can be attributed to the ecological resilience possessed by these fungi for survival under low temperature environment of mountain ecosystem.

  20. Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco.

    PubMed

    John, Riffat; Ganeshan, Uma; Singh, Badri N; Kaul, Tanushri; Reddy, Malireddy K; Sopory, Sudhir K; Rajam, Manchikatla V

    2016-01-01

    Topoisomerases are unique enzymes having an ability to remove or add DNA supercoils and untangle the snarled DNA. They can cut, shuffle, and religate DNA strands and remove the torsional stress during DNA replication, transcription or recombination events. In the present study, we over-expressed topoisomerase II (TopoII) in tobacco (Nicotiana tabaccum) and examined its role in growth and development as well as salt (NaCl) stress tolerance. Several putative transgenic plants were generated and the transgene integration and expression was confirmed by PCR and Southern blot analyses, and RT-PCR analysis respectively. Percent seed germination, shoot growth, and chlorophyll content revealed that transgenic lines over-expressing the NtTopoIIα-1 gene exhibited enhanced tolerance to salt (150 and 200 mM NaCl) stress. Moreover, over-expression of TopoII lead to the elevation in proline and glycine betaine levels in response to both concentrations of NaCl as compared to wild-type. In response to NaCl stress, TopoII over-expressing lines showed reduced lipid peroxidation derived malondialdehyde (MDA) generation. These results suggest that TopoII plays a pivotal role in salt stress tolerance in plants. PMID:27630644

  1. Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco

    PubMed Central

    John, Riffat; Ganeshan, Uma; Singh, Badri N.; Kaul, Tanushri; Reddy, Malireddy K.; Sopory, Sudhir K.; Rajam, Manchikatla V.

    2016-01-01

    Topoisomerases are unique enzymes having an ability to remove or add DNA supercoils and untangle the snarled DNA. They can cut, shuffle, and religate DNA strands and remove the torsional stress during DNA replication, transcription or recombination events. In the present study, we over-expressed topoisomerase II (TopoII) in tobacco (Nicotiana tabaccum) and examined its role in growth and development as well as salt (NaCl) stress tolerance. Several putative transgenic plants were generated and the transgene integration and expression was confirmed by PCR and Southern blot analyses, and RT-PCR analysis respectively. Percent seed germination, shoot growth, and chlorophyll content revealed that transgenic lines over-expressing the NtTopoIIα-1 gene exhibited enhanced tolerance to salt (150 and 200 mM NaCl) stress. Moreover, over-expression of TopoII lead to the elevation in proline and glycine betaine levels in response to both concentrations of NaCl as compared to wild-type. In response to NaCl stress, TopoII over-expressing lines showed reduced lipid peroxidation derived malondialdehyde (MDA) generation. These results suggest that TopoII plays a pivotal role in salt stress tolerance in plants.

  2. Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco

    PubMed Central

    John, Riffat; Ganeshan, Uma; Singh, Badri N.; Kaul, Tanushri; Reddy, Malireddy K.; Sopory, Sudhir K.; Rajam, Manchikatla V.

    2016-01-01

    Topoisomerases are unique enzymes having an ability to remove or add DNA supercoils and untangle the snarled DNA. They can cut, shuffle, and religate DNA strands and remove the torsional stress during DNA replication, transcription or recombination events. In the present study, we over-expressed topoisomerase II (TopoII) in tobacco (Nicotiana tabaccum) and examined its role in growth and development as well as salt (NaCl) stress tolerance. Several putative transgenic plants were generated and the transgene integration and expression was confirmed by PCR and Southern blot analyses, and RT-PCR analysis respectively. Percent seed germination, shoot growth, and chlorophyll content revealed that transgenic lines over-expressing the NtTopoIIα-1 gene exhibited enhanced tolerance to salt (150 and 200 mM NaCl) stress. Moreover, over-expression of TopoII lead to the elevation in proline and glycine betaine levels in response to both concentrations of NaCl as compared to wild-type. In response to NaCl stress, TopoII over-expressing lines showed reduced lipid peroxidation derived malondialdehyde (MDA) generation. These results suggest that TopoII plays a pivotal role in salt stress tolerance in plants. PMID:27630644

  3. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply

    PubMed Central

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union’s free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  4. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply.

    PubMed

    Žmitek, Katja; Pravst, Igor

    2016-07-16

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union's free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply.

  5. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply.

    PubMed

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union's free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  6. In-vitro Screening for Salt Tolerance in Hibiscus Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity constitutes a major abiotic stress factor affecting plant growth in many areas of the world, including the U.S. Gulf Coast where extreme weather events such as hurricanes and coastal floodings can periodically increase soil salinity. The objective of this study was to use in vitro meristem ...

  7. Biotechnological approach of improving plant salt tolerance using antioxidants as markers.

    PubMed

    Ashraf, M

    2009-01-01

    Salt stress causes multifarious adverse effects in plants. Of them, production of reactive oxygen species (ROS) is a common phenomenon. These ROS are highly reactive because they can interact with a number of cellular molecules and metabolites thereby leading to a number of destructive processes causing cellular damage. Plants possess to a variable extent antioxidant metabolites, enzymes and non-enzymes, that have the ability to detoxify ROS. In the present review, the emphasis of discussion has been on understanding the role of different antioxidants in plants defense against oxidative stress caused by salt stress. The role of different antioxidants as potential selection criteria for improving plant salt tolerance has been critically discussed. With the advances in molecular biology and availability of advanced genetic tools considerable progress has been made in the past two decades in improving salt-induced oxidative stress tolerance in plants by developing transgenic lines with altered levels of antioxidants of different crops. The potential of this approach in counteracting stress-induced oxidative stress has been discussed at length in this review.

  8. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean.

    PubMed

    Zhang, Xiu-Xiang; Tang, Yu-Juan; Ma, Qi-Bin; Yang, Cun-Yi; Mu, Ying-Hui; Suo, Hai-Cui; Luo, Lai-Hui; Nian, Hai

    2013-01-01

    The dehydration responsive element binding (DREB) transcription factors play an important role in regulating stress-related genes. OsDREB2A, a member of the DREBP subfamily of AP2/ERF transcription factors in rice (Oryza sativa), is involved in the abiotic stress response. OsDREB2A expression is induced by drought, low-temperature and salt stresses. Here, we report the ability of OsDREB2A to regulate high-salt response in transgenic soybean. Overexpressing OsDREB2A in soybeans enhanced salt tolerance by accumulating osmolytes, such as soluble sugars and free proline, and improving the expression levels of some stress-responsive transcription factors and key genes. The phenotypic characterization of transgenic soybean were significantly better than those of wild-type (WT). Electrophoresis mobility shift assay (EMSA) revealed that the OsDREB2A can bind to the DRE core element in vitro. These results indicate that OsDREB2A may participate in abiotic stress by directly binding with DRE element to regulate the expression of downstream genes. Overexpression of OsDREB2A in soybean might be used to improve tolerance to salt stress.

  9. Enhanced salt tolerance in tomato plants constitutively expressing heat-shock protein in the endoplasmic reticulum.

    PubMed

    Fu, C; Liu, X X; Yang, W W; Zhao, C M; Liu, J

    2016-01-01

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR) signaling pathway. The UPR signaling pathway is associated with plant responses to adverse environmental conditions. Thus, changes in the UPR signaling pathway might affect plant abiotic tolerance. Here, the role of ER small heat-shock protein (ER-sHSP) in improving plant resistance to salt stress was explored. Under salt stress conditions, ER-sHSP transgenic plants were found to have more vigorous roots, maintain a higher relative water content, absorb less Na(+), accumulate more osmolytes and Ca(2+), and sustain less damage to the photosystem, compared to wild-type non-transgenic plants. Furthermore, we found that the constitutive expression of ER-sHSP under salt stress depressed the expression of other ER molecular chaperones. These results indicate that the constitutive expression of ER-sHSP enhanced salinity tolerance of tomato plants significantly, and alleviated the ER stress caused by the salt stress in plant cells. PMID:27421016

  10. Transcriptome sequencing of a highly salt tolerant mangrove species Sonneratia alba using Illumina platform.

    PubMed

    Chen, Sufang; Zhou, Renchao; Huang, Yelin; Zhang, Meng; Yang, Guili; Zhong, Cairong; Shi, Suhua

    2011-06-01

    Mangroves are critical and threatened marine resources, yet few transcriptomic and genomic data are available in public databases. The transcriptome of a highly salt tolerant mangrove species, Sonneratia alba, was sequenced using the Illumina Genome Analyzer in this study. Over 15 million 75-bp paired-end reads were assembled into 30,628 unique sequences with an average length of 581 bp. Of them, 2358 SSRs were detected, with di-nucleotide repeats (59.2%) and tri-nucleotide repeats (37.7%) being the most common. Analysis of codon usage bias based on 20,945 coding sequences indicated that genes of S. alba were less biased than those of some microorganisms and Drosophila and that codon usage variation in S. alba was due primarily to compositional mutation bias, while translational selection has a relatively weak effect. Genome-wide gene ontology (GO) assignments showed that S. alba shared a similar GO slim classification with Arabidopsis thaliana. High percentages of sequences assigned to GO slim category 'mitochondrion' and four KEGG pathways, such as carbohydrates and secondary metabolites metabolism, may contribute to salt adaptation of S. alba. In addition, 1266 unique sequences matched to 273 known salt responsive genes (gene families) in other species were screened as candidates for salt tolerance of S. alba, and some of these genes showed fairly high coverage depth. At last, we identified four genes with signals of strong diversifying selection (K(a)/K(s)>1) by comparing the transcriptome sequences of S. alba with 249 known ESTs from its congener S. caseolaris. This study demonstrated a successful application of the Illumina platform to de novo assembly of the transcriptome of a non-model organism. Abundant SSR markers, salt responsive genes and four genes with signature of natural selection obtained from S. alba provide abundant sequence sources for future genetic diversity, salt adaptation and speciation studies. PMID:21620334

  11. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line.

    PubMed

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  12. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  13. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis.

    PubMed

    Wu, Gaobing; Zhang, Xiangnan; Wei, Lu; Wu, Guojie; Kumar, Ashok; Mao, Tao; Liu, Ziduo

    2015-11-01

    Lipolytic enzymes with unique physico-chemical characteristics are gaining more attention for their immense industrial importance. In this study, a novel lipolytic enzyme (Est11) was cloned from the genomic library of a marine bacterium Psychrobacter pacificensis. The enzyme was expressed in Escherichia coli and purified to homogeneity with molecular mass of 32.9kDa. The recombinant Est11 was able to hydrolyze short chain esters (C2-C8) and displayed an optimum activity against butyrate ester (C4). The optimal temperature and pH were 25°C and 7.5, respectively. Est11 retained more than 70% of its original activity at 10°C, suggesting that it was a cold-active esterase. The enzyme was highly active and stable at high concentration of NaCl (5M). Further, incubation with ethanol, isopropanol, propanediol, DMSO, acetonitrile, and glycerol rendered remarkable positive effects on Est11 activity. Typically, even at the concentration of 30% (v/v), ethanol, DMSO, and propanediol increased Est11 activity by 1.3, 2.0, and 2.4-folds, respectively. This new robust enzyme with remarkable properties like cold-adaptability, exceptional tolerance to salt and organic solvents provides us a promising candidate to meet the needs of some harsh industrial processes. PMID:26231332

  14. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

    PubMed

    Gao, Weidong; Bai, Shuang; Li, Qingmei; Gao, Caiqiu; Liu, Guifeng; Li, Guangde; Tan, Feili

    2013-01-01

    Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  15. An Ethylene-responsive Factor BpERF11 Negatively Modulates Salt and Osmotic Tolerance in Betula platyphylla.

    PubMed

    Zhang, Wenhui; Yang, Guiyan; Mu, Dan; Li, Hongyan; Zang, Dandan; Xu, Hongyun; Zou, Xuezhong; Wang, Yucheng

    2016-01-01

    Ethylene responsive factors (ERFs) play important roles in the abiotic stress; however, only a few ERF genes from woody plants have been functionally characterized. In the present study, an ERF gene from Betula platyphylla (birch), BpERF11, was functionally characterized in response to abiotic stress. BpERF11 is a nuclear protein, which could specifically bind to GCC boxes and DRE motifs. BpERF11-overexpressing and BpERF11 RNA interference (RNAi) knockdown plants were generated for gain- and loss-of-function analysis. BpERF11 negatively regulates resistance to salt and severe osmotic stress, and the transgenic birch plants overexpressing BpERF11 shows increased electrolyte leakage and malondialdehyde (MDA) contents. BpERF11 inhibits the expression of an AtMYB61 homologous gene, resulting in increased stomatal aperture, which elevated the transpiration rate. Furthermore, BpERF11 downregulates the expression of P5CS, SOD and POD genes, but upregulates the expression of PRODH and P5CDH, which results in reduced proline levels and increased reactive oxygen species (ROS) accumulation. BpERF11 also significantly inhibits the expression of LEA and dehydrin genes that involve in abiotic stress tolerance. Therefore, BpERF11 serves as a transcription factor that negatively regulates salt and severe osmotic tolerance by modulating various physiological processes. PMID:26980058

  16. An Ethylene-responsive Factor BpERF11 Negatively Modulates Salt and Osmotic Tolerance in Betula platyphylla

    PubMed Central

    Zhang, Wenhui; Yang, Guiyan; Mu, Dan; Li, Hongyan; Zang, Dandan; Xu, Hongyun; Zou, Xuezhong; Wang, Yucheng

    2016-01-01

    Ethylene responsive factors (ERFs) play important roles in the abiotic stress; however, only a few ERF genes from woody plants have been functionally characterized. In the present study, an ERF gene from Betula platyphylla (birch), BpERF11, was functionally characterized in response to abiotic stress. BpERF11 is a nuclear protein, which could specifically bind to GCC boxes and DRE motifs. BpERF11-overexpressing and BpERF11 RNA interference (RNAi) knockdown plants were generated for gain- and loss-of-function analysis. BpERF11 negatively regulates resistance to salt and severe osmotic stress, and the transgenic birch plants overexpressing BpERF11 shows increased electrolyte leakage and malondialdehyde (MDA) contents. BpERF11 inhibits the expression of an AtMYB61 homologous gene, resulting in increased stomatal aperture, which elevated the transpiration rate. Furthermore, BpERF11 downregulates the expression of P5CS, SOD and POD genes, but upregulates the expression of PRODH and P5CDH, which results in reduced proline levels and increased reactive oxygen species (ROS) accumulation. BpERF11 also significantly inhibits the expression of LEA and dehydrin genes that involve in abiotic stress tolerance. Therefore, BpERF11 serves as a transcription factor that negatively regulates salt and severe osmotic tolerance by modulating various physiological processes. PMID:26980058

  17. Osmoadaptation in rhizobia: ectoine-induced salt tolerance.

    PubMed Central

    Talibart, R; Jebbar, M; Gouesbet, G; Himdi-Kabbab, S; Wróblewski, H; Blanco, C; Bernard, T

    1994-01-01

    After having shown that ectoine (a tetrahydropyrimidine) displays osmoprotective properties towards Escherichia coli (M. Jebbar, R. Talibart, K. Gloux, T. Bernard, and Blanco, J. Bacteriol. 174:5027-5035, 1992), we have investigated the involvement of this molecule in the osmotic adaptation of Rhizobium meliloti. Ectoine appeared almost as effective as glycine betaine in improving the growth of R. meliloti under adverse osmotic conditions (0.5 M NaCl). Moreover, improvement of growth of rhizobial strains insensitive to glycine betaine was also observed. Ectoine transport proved inducible, periplasmic protein dependent, and, as shown by competition experiments, distinct from the transport of glycine betaine. Medium osmolarity had little effect on the uptake characteristics, since the rate of influx increased from 12 to only 20 nmol min-1 mg of protein-1 when NaCl concentrations were raised from 0 to 0.3 or 0.5 M, with a constant of transport of 80 microM. Natural-abundance 13C-nuclear magnetic resonance and radiolabelling assays showed that ectoine, unlike glycine betaine, is not intracellularly accumulated and, as a consequence, does not repress the synthesis of endogenous compatible solutes (glutamate, N-acetylglutaminylglutamine amide, and trehalose). Furthermore, the strong rise in glutamate content in cells osmotically stressed in the presence of ectoine suggests that, instead of being involved in osmotic balance restoration, ectoine should play a key role in triggering the synthesis of endogenous osmolytes. Hence, we believe that there are at least two distinct classes of osmoprotectants: those such as glycine betaine or glutamate, which act as genuine osmolytes, and those such as ectoine, which act as chemical mediators. Images PMID:8071195

  18. Osmoadaptation in rhizobia: ectoine-induced salt tolerance.

    PubMed

    Talibart, R; Jebbar, M; Gouesbet, G; Himdi-Kabbab, S; Wróblewski, H; Blanco, C; Bernard, T

    1994-09-01

    After having shown that ectoine (a tetrahydropyrimidine) displays osmoprotective properties towards Escherichia coli (M. Jebbar, R. Talibart, K. Gloux, T. Bernard, and Blanco, J. Bacteriol. 174:5027-5035, 1992), we have investigated the involvement of this molecule in the osmotic adaptation of Rhizobium meliloti. Ectoine appeared almost as effective as glycine betaine in improving the growth of R. meliloti under adverse osmotic conditions (0.5 M NaCl). Moreover, improvement of growth of rhizobial strains insensitive to glycine betaine was also observed. Ectoine transport proved inducible, periplasmic protein dependent, and, as shown by competition experiments, distinct from the transport of glycine betaine. Medium osmolarity had little effect on the uptake characteristics, since the rate of influx increased from 12 to only 20 nmol min-1 mg of protein-1 when NaCl concentrations were raised from 0 to 0.3 or 0.5 M, with a constant of transport of 80 microM. Natural-abundance 13C-nuclear magnetic resonance and radiolabelling assays showed that ectoine, unlike glycine betaine, is not intracellularly accumulated and, as a consequence, does not repress the synthesis of endogenous compatible solutes (glutamate, N-acetylglutaminylglutamine amide, and trehalose). Furthermore, the strong rise in glutamate content in cells osmotically stressed in the presence of ectoine suggests that, instead of being involved in osmotic balance restoration, ectoine should play a key role in triggering the synthesis of endogenous osmolytes. Hence, we believe that there are at least two distinct classes of osmoprotectants: those such as glycine betaine or glutamate, which act as genuine osmolytes, and those such as ectoine, which act as chemical mediators.

  19. How to be moderately halophilic with a broad salt tolerance: Cluesfrom the genome of chromohalobacter salexigens

    SciTech Connect

    Oren, Aharon; Larimer, Frank; Richardson, Paul; Lapidus, Alla; Csonka, Laszlo N.

    2004-07-01

    There are two strategies that enable microorganisms to grow at high salt concentrations. Some groups balance the high osmolality of their environment with high intracellular concentrations of KCl1-4. Adaptation of all intracellular proteins is then necessary, and this is reflected in a large excess of acidic over basic residues and a low content of hydrophobic amino acids 2,5-7. Other halophilic and halotolerant microorganisms keep their intracellular ion concentrations low and synthesize or accumulate organic osmotic solutes 8. While halotolerance enables organisms to colonize highly saline environments,the ecological advantage for a salt-requirement is less obvious. We analyzed the amino acid composition of different categories of proteins of the moderately halophilic bacterium Chromohalobacter salexigens, as deduced from its genome sequence. Comparison with non-halophilic bacteria shows only a slight excess of acidic residues in the cytoplasmic proteins, no significant differences in membrane-bound components, but a distinctive halophilic signature of predicted periplasmic proteins, such as the substrate binding proteins of ABC-type transport systems. The salt requirement of proteins located external to the cytoplasmic membrane may thus determine salt requirement and salt tolerance of prokaryotes.

  20. Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions

    PubMed Central

    Hiz, Mahmut Can; Canher, Balkan; Niron, Harun; Turet, Muge

    2014-01-01

    Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies. PMID:24651267

  1. Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions.

    PubMed

    Hiz, Mahmut Can; Canher, Balkan; Niron, Harun; Turet, Muge

    2014-01-01

    Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies.

  2. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley.

    PubMed

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K

    2012-06-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na(+), Cl(-), and K(+) at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at EC(e) 7.2 [Spearman's rank correlation (rs)=0.79] and EC(e) 15.3 (rs=0.82) and the crucial parameter of leaf Na(+) (rs=0.72) and Cl(-) (rs=0.82) concentrations at EC(e) 7.2 dS m(-1). This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of

  3. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  4. Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Song, Xueqing; Yu, Xiang; Hori, Chiaki; Demura, Taku; Ohtani, Misato; Zhuge, Qiang

    2016-01-01

    Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. PMID:27242819

  5. ars1, an Arabidopsis mutant exhibiting increased tolerance to arsenate and increased phosphate uptake.

    PubMed

    Lee, David A; Chen, Alice; Schroeder, Julian I

    2003-09-01

    Arsenic is one of the most toxic pollutants at contaminated sites, yet little is known about the mechanisms by which certain plants survive exposure to high arsenic levels. To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of a mutant arsenic resisant 1 (ars1) with increased tolerance to arsenate. ars1 germinates and develops under conditions that completely inhibit growth of wild-type plants and shows a semi-dominant arsenic resistance phenotype. ars1 accumulates levels of arsenic similar to that accumulated by wild-type plants, suggesting that ars1 plants have an increased ability to detoxify arsenate. However, ars1 plants produce phytochelatin levels similar to levels produced by the wild type, and the enhanced resistance of ars1 is not abolished by the gamma-glutamylcysteine synthetase inhibitor l-buthionine sulfoxime (BSO). Furthermore, ars1 plants do not show resistance to arsenite or other toxic metals such as cadmium and chromium. However, ars1 plants do show a higher rate of phosphate uptake than that shown by wild-type plants, and wild-type plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and consequently on the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 could be due to a new mechanism mediated by increased phosphate uptake in ars1. Models discussing how increased phosphate uptake could contribute to arsenate tolerance are discussed.

  6. Chronic administration of the HNO donor Angeli's salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEA/NO.

    PubMed

    Irvine, Jennifer C; Kemp-Harper, Barbara K; Widdop, Robert E

    2011-05-01

    Nitroxyl (HNO) displays distinct pharmacology to its redox congener nitric oxide (NO(•)) with therapeutic potential in the treatment of heart failure. It remains unknown if HNO donors are resistant to tolerance development following chronic in vivo administration. Wistar-Kyoto rats received a 3-day subcutaneous infusion of one of the NO(•) donors, glyceryl trinitrate (GTN) or diethylamine/NONOate (DEA/NO), or the HNO donor Angeli's salt (AS). GTN infusion (10 μg/kg/min) resulted in significantly blunted depressor responses to intravenous bolus doses of GTN, demonstrating tolerance development. By contrast, infusion with AS (20 μg/kg/min) or DEA/NO (2 μg/kg/min) did not alter their subsequent depressor responses. Similarly, ex vivo vasorelaxation responses in isolated aortae revealed that GTN infusion elicited a significant 6-fold decrease in the sensitivity to GTN and reduction in the maximum response to acetylcholine (ACh). Chronic infusion of AS or DEA/NO had no effect on subsequent vasorelaxation responses to themselves or to ACh. No functional cross-tolerance between nitrovasodilators was evident, either in vivo or ex vivo, although an impaired ability of a nitrovasodilator to increase tissue cGMP content was not necessarily indicative of a reduced functional response. In conclusion, HNO donors may represent novel therapies for cardiovascular disease with therapeutic potential over clinically used organic nitrates.

  7. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems.

    PubMed

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, [Formula: see text] generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  8. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  9. Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): photosynthesis, osmotic adjustment, and nitrogen partitioning.

    PubMed

    Moghaieb, R E A; Tanaka, N; Saneoka, H; Murooka, Y; Ono, H; Morikawa, H; Nakamura, A; Nguyen, N T; Suwa, R; Fujita, K

    2006-02-01

    Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) biosynthetic genes (ect. ABC) from Halomonas elongata were introduced to tobacco plants using an Agrobacterium-mediated gene delivery system. The genes for ectoine biosynthesis were integrated in a stable manner into the tobacco genome and the corresponding transcripts were expressed. The concentration of ectoine under salt-stress conditions was higher in the roots than in leaves. A close relationship was found between stomatal conductance and the amount of transported nitrogen, suggesting that water transport through the xylem in the stem and transpiration may be involved in nitrogen transport to leaves. The data indicate that the turgor values of the ectoine transgenic lines increased with increasing salt concentration. The data revealed two ways in which ectoine enhanced salinity tolerance of tobacco plants. First, ectoine improved the maintenance of root function so that water is taken up consistently and supplied to shoots under saline conditions. Second, ectoine enhanced the nitrogen supply to leaves by increasing transpiration and by protecting Rubisco proteins from deleterious effects of salt, thereby improving the rate of photosynthesis.

  10. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    PubMed

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  11. Salt tolerant Methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Alqarawi, Abdulaziz A.; Abd_Allah, E.F.

    2015-01-01

    The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 104 and 2.6 × 104 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions. PMID:26288563

  12. Salt tolerant Methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan; Alqarawi, Abdulaziz A; Abd Allah, E F

    2015-09-01

    The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 10(4) and 2.6 × 10(4) CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions. PMID:26288563

  13. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance.

    PubMed

    Wang, Yuguang; Zhan, Yanan; Wu, Chuan; Gong, Shilong; Zhu, Ning; Chen, Sixue; Li, Haiying

    2012-08-01

    An open reading frame encoding a cysteine protease inhibitor, cystatin was isolated from the buds of sugar beet monosomic addition line M14 (BvM14) using 5'-/3'-RACE method. It encoded a polypeptide of 104 amino acids with conserved G and PW motifs, the consensus phytocystatin sequence LARFAV and the active site QVVAG. The protein showed significant homology to other plant cystatins. BvM14-cystatin was expressed ubiquitously in roots, stems, leaves and flower tissues with relatively high abundance in developing stems and roots. It was found to be localized in the nucleus, cytoplasm and plasma membrane. Recombinant BvM14-cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Salt-stress treatment induced BvM14-cystatin transcript levels in the M14 seedlings. Homozygous Arabidopsis plants over-expressing BvM14-cystatin showed enhanced salt tolerance. Taken together, these data improved understanding of the functions of BvM14-cystatin and highlighted the possibility of employing the cystatin in engineering plants for enhanced salt tolerance.

  14. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  15. Molecular cloning and expression analysis of RrNHX1 and RrVHA-c genes related to salt tolerance in wild Rosa rugosa.

    PubMed

    Feng, Liguo; Ding, Han; Wang, Jia; Wang, Meng; Xia, Wei; Zang, Shu; Sheng, Lixia

    2015-07-01

    Salt stress is one important factor influencing the growth and development of plants, and salt tolerance of plants is a result of combined action of multiple genes and mechanisms. Rosa rugosa is not only an important ornamental plant, but also the natural aromatic plant of high value. Wild R. rugosa which is naturally distributed on the coast and islands of China has a good salt tolerance due to the special living environment. Here, the vacuolar Na(+)/H(+) reverse transporter gene (NHX1) and the vacuolar H(+)-ATPase subunit C gene (VHA-c) closely related to plant salt tolerance were isolated from wild R. rugosa, and the expression patterns in R. rugosa leaves of the two genes under NaCl stress were determined by real-time quantitative fluorescence PCR. The results showed that the RrNHX1 protein is a constitutive Na(+)/H(+) reverse transporter, the expression of the RrNHX1 gene first increased and then decreased with the increasing salt concentration, and had a time-controlled effect. The RrVHA-c gene is suggestive of the housekeeping feature, its expression pattern showed a similar variation trend with the RrNHX1 gene under the stress of different concentrations of NaCl, and its temporal expression level under 200 mM NaCl stress presented bimodal change. These findings indicated that RrNHX1 and RrVHA-c genes are closely associated with the salt tolerance trait of wild R. rugosa. PMID:26150747

  16. Genetic characterization of Lophopyrum elongatum salt tolerance and associated ion regulation as expressed in bread wheat. Final technical report

    SciTech Connect

    1997-10-07

    Lophopyrum elongatum is a highly salt-tolerant relative of wheat. Its salt tolerance is partially expressed in the amphiploid from a cross between wheat cv. Chinese Spring and L. elongatum. Genetic studies showed that the tolerance of gradually imposed salt stress is controlled by L. elongatum chromosomes 3E, 4E, 5E, and 7E and the tolerance of suddenly imposed salt stress by chromosomes 3E, 5E, 6E, and 7E. In wheat, rye, barley, and Dasypyrum, chromosomes of the same homoeologous groups, 3, 5, 6, and 7, were found to control the tolerance of these stress regimes. To gain insight into the physiological mechanisms of salt tolerance by wheat and L. elongatum, accumulation of Na and K, 20 protein amino acids, glycinebetaine, aminobutyrate, all TCA cycle intermediates, oxalate, glycerol-3-P, glyceraldehyde-3-P, pyruvate, lactate, ornithine, taurine, glucose, sucrose and other sugars was examined in the amphiploid and Chinese Spring by gas chromatography and H-NMR.

  17. Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice

    PubMed Central

    Hong, Yongbo; Zhang, Huijuan; Huang, Lei; Li, Dayong; Song, Fengming

    2016-01-01

    The NAC transcription factors play critical roles in regulating stress responses in plants. However, the functions for many of the NAC family members in rice are yet to be identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was identified. Expression of ONAC022 was induced by drought, high salinity, and abscisic acid (ABA). The ONAC022 protein was found to bind specifically to a canonical NAC recognition cis-element sequence and showed transactivation activity at its C-terminus in yeast. The ONAC022 protein was localized to nucleus when transiently expressed in Nicotiana benthamiana. Three independent transgenic rice lines with overexpression of ONAC022 were generated and used to explore the function of ONAC022 in drought and salt stress tolerance. Under drought stress condition in greenhouse, soil-grown ONAC022-overexpressing (N22oe) transgenic rice plants showed an increased drought tolerance, leading to higher survival ratios and better growth than wild-type (WT) plants. When grown hydroponically in Hogland solution supplemented with 150 mM NaCl, the N22oe plants displayed an enhanced salt tolerance and accumulated less Na+ in roots and shoots as compared to WT plants. Under drought stress condition, the N22oe plants exhibited decreased rates of water loss and transpiration, reduced percentage of open stomata and increased contents of proline and soluble sugars. However, the N22oe lines showed increased sensitivity to exogenous ABA at seed germination and seedling growth stages but contained higher level of endogenous ABA. Expression of some ABA biosynthetic genes (OsNCEDs and OsPSY), signaling and regulatory genes (OsPP2C02, OsPP2C49, OsPP2C68, OsbZIP23, OsAP37, OsDREB2a, and OsMYB2), and late stress-responsive genes (OsRAB21, OsLEA3, and OsP5CS1) was upregulated in N22oe plants. Our data demonstrate that ONAC022 functions as a stress-responsive NAC with transcriptional activator activity and plays a positive role in drought and

  18. Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice.

    PubMed

    Hong, Yongbo; Zhang, Huijuan; Huang, Lei; Li, Dayong; Song, Fengming

    2016-01-01

    The NAC transcription factors play critical roles in regulating stress responses in plants. However, the functions for many of the NAC family members in rice are yet to be identified. In the present study, a novel stress-responsive rice NAC gene, ONAC022, was identified. Expression of ONAC022 was induced by drought, high salinity, and abscisic acid (ABA). The ONAC022 protein was found to bind specifically to a canonical NAC recognition cis-element sequence and showed transactivation activity at its C-terminus in yeast. The ONAC022 protein was localized to nucleus when transiently expressed in Nicotiana benthamiana. Three independent transgenic rice lines with overexpression of ONAC022 were generated and used to explore the function of ONAC022 in drought and salt stress tolerance. Under drought stress condition in greenhouse, soil-grown ONAC022-overexpressing (N22oe) transgenic rice plants showed an increased drought tolerance, leading to higher survival ratios and better growth than wild-type (WT) plants. When grown hydroponically in Hogland solution supplemented with 150 mM NaCl, the N22oe plants displayed an enhanced salt tolerance and accumulated less Na(+) in roots and shoots as compared to WT plants. Under drought stress condition, the N22oe plants exhibited decreased rates of water loss and transpiration, reduced percentage of open stomata and increased contents of proline and soluble sugars. However, the N22oe lines showed increased sensitivity to exogenous ABA at seed germination and seedling growth stages but contained higher level of endogenous ABA. Expression of some ABA biosynthetic genes (OsNCEDs and OsPSY), signaling and regulatory genes (OsPP2C02, OsPP2C49, OsPP2C68, OsbZIP23, OsAP37, OsDREB2a, and OsMYB2), and late stress-responsive genes (OsRAB21, OsLEA3, and OsP5CS1) was upregulated in N22oe plants. Our data demonstrate that ONAC022 functions as a stress-responsive NAC with transcriptional activator activity and plays a positive role in drought

  19. Selenium accumulation and selenium tolerance of salt grass from soils with elevated concentrations of Se and salinity.

    PubMed

    Wu, L; Huang, Z Z

    1991-12-01

    Biomass production, selenium accumulation, and the role of the bioextraction of selenium by salt grass (Distichlis spicata L.) in soils with elevated concentrations of Se and salinity at Kesterson, California, were studied. Salt grass contributed more than 80% vegetative coverage and 90% dry weight in the grassland communities where the soil Se concentrations were 100 times (1000 to 3000 micrograms kg-1) higher than the Se concentrations found in soils of the control sites. No evidence for evolution of Se tolerance was found in the salt grass populations. The successful colonization of salt grass in the soil with elevated Se and salinity is attributable to the presence of high concentrations of soil sulfate. Salt grass accumulated less Se than other salt-tolerant plant species existing in the same area, and no predation of animals and insects on salt grass has been noticed. Salt grass can transpire substantial amounts of volatile Se through its plant tissue. Under field conditions, a 1-m2 salt grass plot may produce 180 micrograms volatile selenium per day. However, no reduction of soil Se concentration in the salt grass habitat was detected over a period of 1 year. A long-term monitoring of Se status is needed in order to make predictions of the effectiveness of efforts to clean up Se-contaminated soils through the use of native plant species.

  20. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

    PubMed

    Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo

    2014-08-18

    The osmotolerant and halotolerant food yeast Zygosaccharomyces rouxii is known for its ability to grow and survive in the face of stress caused by high concentrations of non-ionic (sugars and polyols) and ionic (mainly Na(+) cations) solutes. This ability determines the success of fermentation on high osmolarity food matrices and leads to spoilage of high sugar and high salt foods. The knowledge about the genes, the metabolic pathways, and the regulatory circuits shaping the Z. rouxii sugar and salt-tolerance, is a prerequisite to develop effective strategies for fermentation control, optimization of food starter culture, and prevention of food spoilage. This review summarizes recent insights on the mechanisms used by Z. rouxii and other osmo and halotolerant food yeasts to endure salts and sugars stresses. Using the information gathered from S. cerevisiae as guide, we highlight how these non-conventional yeasts integrate general and osmoticum-specific adaptive responses under sugar and salts stresses, including regulation of Na(+) and K(+)-fluxes across the plasma membrane, modulation of cell wall properties, compatible osmolyte production and accumulation, and stress signalling pathways. We suggest how an integrated and system-based knowledge on these mechanisms may impact food and biotechnological industries, by improving the yeast spoilage control in food, enhancing the yeast-based bioprocess yields, and engineering the osmotolerance in other organisms.

  1. Transgenerational cross-tolerance to stress: parental exposure to predators increases offspring contaminant tolerance.

    PubMed

    Plautz, Stephanie C; Guest, Taylor; Funkhouser, Meghan A; Salice, Christopher J

    2013-07-01

    Transgenerational effects of stressors can have important implications for offspring fitness and the responses of offspring to future stressful conditions. Parental effects, a common type of transgenerational effect, are non-genetic influences on offspring phenotype that result from parental phenotypes or environments. Little is known, however, about how parental exposure to a stressor effects offspring responses to other stressors despite this type of multi-stressor scenario being common. To better understand the role that parental effects have on offspring contaminant tolerance, we raised freshwater snails, Biomphalaria glabrata, in the presence or absence of predator threat (crayfish + crushed snail) for 12 weeks. Predators are common stressors in aquatic systems and can co-occur with chemical contaminants. We then collected egg masses from parental snails and exposed their offspring to cadmium and malathion survival challenges. Snails raised in the presence of predator threat displayed indicators of stress, including increased time to first reproduction, lower production of egg masses per snail per day and fewer eggs per egg mass, and had smaller shell lengths at 6.5 weeks old compared to snails not exposed to predator threat. Parental exposure to predator threat increased the cadmium tolerance of offspring but did not affect malathion tolerance. These results may have important implications for understanding effects of multiple stressors and indicate that the parental environment can influence responses to contaminants in offspring. To our knowledge, this is the first study to demonstrate that a biotic stressor in the parental environment can significantly affect the contaminant tolerance of their offspring.

  2. Salt tolerant green crop species for sodium management in space agriculture

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  3. Wnt Pathway Activation Increases Hypoxia Tolerance during Development

    PubMed Central

    Gersten, Merril; Zhou, Dan; Azad, Priti; Haddad, Gabriel G.; Subramaniam, Shankar

    2014-01-01

    Adaptation to hypoxia, defined as a condition of inadequate oxygen supply, has enabled humans to successfully colonize high altitude regions. The mechanisms attempted by organisms to cope with short-term hypoxia include increased ATP production via anaerobic respiration and stabilization of Hypoxia Inducible Factor 1α (HIF-1α). However, less is known about the means through which populations adapt to chronic hypoxia during the process of development within a life time or over generations. Here we show that signaling via the highly conserved Wnt pathway impacts the ability of Drosophila melanogaster to complete its life cycle under hypoxia. We identify this pathway through analyses of genome sequencing and gene expression of a Drosophila melanogaster population adapted over >180 generations to tolerate a concentration of 3.5–4% O2 in air. We then show that genetic activation of the Wnt canonical pathway leads to increased rates of adult eclosion in low O2. Our results indicate that a previously unsuspected major developmental pathway, Wnt, plays a significant role in hypoxia tolerance. PMID:25093834

  4. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    PubMed Central

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress

  5. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants

    PubMed Central

    Alavilli, Hemasundar; Awasthi, Jay Prakash; Rout, Gyana R.; Sahoo, Lingaraj; Lee, Byeong-ha; Panda, Sanjib Kumar

    2016-01-01

    We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes.

  6. Platyamoeba pseudovannellida n. sp., a naked amoeba with wide salt tolerance isolated from the Salton Sea, California.

    PubMed

    Hauer, G; Rogerson, A; Anderson, O R

    2001-01-01

    A new species of naked amoeba, Platyamoeba pseudovannellida n.sp., is described on the basis of light microscopic and fine structural features. The amoeba was isolated from the Salton Sea, California, from water at a salinity of ca. 44%. Locomotive amoebae occasionally had a spatulate outline and floating cells had radiating pseudopodia, sometimes with pointed tips. Both these features are reminiscent of the genus Vannella. However, the surface coat (glycocalyx) as revealed by TEM indicates that this is a species of Platyamoeba. Although salinity was not used as a diagnostic feature, this species was found to have remarkable tolerance to fluctuating salinity levels, even when changes were rapid. Amoebae survived over the range 0 per thousand to 150 per thousand salt and grew within the range 0 per thousand to 138 per thousand salt. The generation time of cells averaged 29 h and was not markedly affected by salt concentration. This is longer than expected for an amoeba of this size and suggests a high energetic cost of coping with salinity changes. The morphology of cells changed with increasing salinity: at 0 per thousand cells were flattened and active and at the other extreme (138 per thousand) amoebae were wrinkled and domed and cell movement was very slow. At the ultrastructural level, the cytoplasm of cells grown at high salinity (98 per thousand was considerably denser than that of cells reared at 0 per thousand. PMID:11831775

  7. Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance.

    PubMed

    Hamayun, Muhammad; Khan, Sumera Afzal; Khan, Abdul Latif; Shin, Jae-Ho; Ahmad, Bashir; Shin, Dong-Hyun; Lee, In-Jung

    2010-06-23

    The agricultural industry is severely affected by salinity due to its high magnitude of adverse impacts and worldwide distribution. We observed the role of exogenous gibberellic acid (GA(3)) in salinity alleviation of soybean. We found that GA(3) application significantly promoted plant length and plant fresh/dry biomass while markedly hindered by NaCl induced salt stress. The adverse effect of salt stress was mitigated by GA(3), as growth attributes significantly recovered, when GA(3) was added to salt stressed soybean plants. Elevated GA(3) treatments increased daidzein and genistein contents (commonly known as phytoestrogens) of soybean leaves under control and salt stress conditions. Phytohormonal analysis of soybean showed that the level of bioactive gibberellins (GA(1) and GA(4)) and jasmonic acid increased in GA(3) treated plants, while the endogenous abscisic acid and salicylic acid contents declined under the same treatment. GA(3) mitigated the adverse effects of salt stress by regulating the level of phytohormones, thus aiding the plant in resuming its normal growth and development. The presence of GA(1) and GA(4) showed that both early-C13-hydroxylation and non-C13-hydroxylation pathways of GA biosynthesis are functional in soybean. It was concluded that GA(3) ameliorates the adverse effects of salt stress and restores normal growth and development of soybean.

  8. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    PubMed

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots.

  9. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis.

    PubMed

    Ying, Sheng; Zhang, Deng-Feng; Li, Hui-Yong; Liu, Ying-Hui; Shi, Yun-Su; Song, Yan-Chun; Wang, Tian-Yu; Li, Yu

    2011-09-01

    SnRK2 (sucrose non-fermenting 1-related protein kinases 2) represents a unique family of protein kinase in regulating signaling transduction in plants. Although the regulatory mechanisms of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in maize are still unknown. In our study, we cloned an SnRK2 gene from maize, ZmSAPK8, which encoded a putative homolog of the rice SAPK8 protein. ZmSAPK8 had two copies in the maize genome and harbored eight introns in its coding region. We demonstrated that ZmSAPK8 expressed differentially in various organs of maize plants and was up-regulated by high-salinity and drought treatment. A green fluorescent protein (GFP)-tagged ZmSAPK8 showed subcellular localization in the cell membrane, cytoplasm and nucleus. In vitro kinase assays indicated that ZmSAPK8 preferred Mn(2+) to Mg(2+) as cofactor for phosphorylation, and Ser-182 and Thr-183 in activation loop was important for its activity. Heterologous overexpression of ZmSAPK8 in Arabidopsis could significantly strengthen tolerance to salt stress. Under salt treatment, ZmSAPK8-overexpressed transgenic plants exhibited higher germination rate and proline content, low electrolyte leakage and higher survival rate than wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18, ABI1, DREB2A and P5CS1, under high-salinity conditions. The results demonstrated that ZmSAPK8 was involved in diverse stress signal transduction. Moreover, no obvious adverse effects on growth and development in the ZmSAPK8-overexpressed transgenic plants implied that ZmSAPK8 was potentially useful in transgenic breeding to improve salt tolerance in crops.

  10. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots

    PubMed Central

    Chen, Juan; Wang, Wen-Hua; Wu, Fei-Hua; He, En-Ming; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K+/Na+ balance by decreasing the net K+ efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K+ uptake system (HvHAK4). H2S and NO maintained the lower Na+ content in the cytoplast by increasing the amount of PM H+-ATPase, the transcriptional levels of PM H+-ATPase (HvHA1) and Na+/H+ antiporter (HvSOS1). H2S and NO modulated Na+ compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na+/H+ antiporter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na+/H+ antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal. PMID:26213372

  11. Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species.

    PubMed

    Liu, Changhai; Li, Chao; Liang, Dong; Wei, Zhiwei; Zhou, Shasha; Wang, Rongchao; Ma, Fengwang

    2012-09-01

    Maintaining ion and water homeostasis in plants is an important defense strategy against salinity stress. Divergence in ion homeostasis between the salt-tolerant Malus hupehensis Rehd. and salt-sensitive Malus prunifolia 'yingyehaitang' was studied to understand their mechanisms for tolerance. Compared with the control on Day 15, plants of those two genotypes under high-salinity treatment had less K(+) in the leaves, stems, and roots. Contents were higher in the roots but lower in the leaves of M. hupehensis while levels in the stems were similar to those from M. prunifolia. For both genotypes, the sodium content increased after salinity treatment in all tissue types. However, the leaves from M. hupehensis had less Na(+) and maintained a lower Na(+)/K(+) ratio. To understand the basis for these differences, we studied the ion transporters and regulation of aquaporin transcripts in the leaves. Transcript levels for both MdHKT1 and MdSOS1 were higher in M. hupehensis, implying that this species had better capacity to exclude sodium so that less Na(+) occurred in the leaves but more in the stems. M. hupehensis also had a greater amount of MdNHX1 transcripts, which could have assisted in sequestering excess Na(+) into the vacuoles and sustaining a better cellular environment. A relatively higher level of aquaporin transcript was also found in M. hupehensis, suggesting that those plants were more capable of maintaining a better leaf water status and diluting excess ions effectively under high-salinity conditions. Therefore, these tested transporters may play important roles in determining how salinity tolerance is conferred in Malus species.

  12. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa.

    PubMed

    Bimpong, Isaac Kofi; Manneh, Baboucarr; Sock, Mamadou; Diaw, Faty; Amoah, Nana Kofi Abaka; Ismail, Abdelbagi M; Gregorio, Glenn; Singh, Rakesh Kumar; Wopereis, Marco

    2016-01-01

    Salt stress affects about 25% of the 4.4 million ha of irrigated and lowland systems for rice cultivation in West Africa (WA). A major quantitative trait locus (QTLs) on chromosome 1 (Saltol) that enhances tolerance to salt stress at the vegetative stage has enabled the use of marker-assisted selection (MAS) to develop salt-tolerant rice cultivar(s) in WA. We used 3 cycles of backcrossing with selection based on DNA markers and field-testing using 'FL478' as tolerant donor and the widely grown 'Rassi' as recurrent parent. In the BC3F2 stage, salt-tolerant lines with over 80% Rassi alleles except in the region around Saltol segment were selected. 429 introgression lines (Saltol-ILs) were identified as tolerant at vegetative stage, of which 116 were field-tested for four seasons at the reproductive stage. Sixteen Saltol-ILs had less yield loss (3-26% relative to control trials), and 8 Saltol-ILs showed high yield potential under stress and non-stress conditions. The 16 Saltol-ILs had been included for further African-wide testing prior to release in 6 WA countries. MAS reduced the time for germplasm improvement from at least 7 to about 4 years. Our objective is to combine different genes/QTLs conferring tolerance to stresses under one genetic background using MAS. PMID:26566846

  13. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples.

    PubMed

    Bastos, A E; Moon, D H; Rossi, A; Trevors, J T; Tsai, S M

    2000-11-01

    Two phenol-degrading microorganisms were isolated from Amazonian rain forest soil samples after enrichment in the presence of phenol and a high salt concentration. The yeast Candida tropicalis and the bacterium Alcaligenes faecoalis were identified using several techniques, including staining, morphological observation and biochemical tests, fatty acid profiles and 16S/18S rRNA sequencing. Both isolates, A. faecalis and C. tropicalis, were used in phenol degradation assays, with Rhodococcus erythropolis as a reference phenol-degrading bacterium, and compared to microbial populations from wastewater samples collected from phenol-contaminated environments. C. tropicalis tolerated higher concentrations of phenol and salt (16 mM and 15%, respectively) than A. faecalis (12 mM and 5.6%). The yeast also tolerated a wider pH range (3-9) during phenol degradation than A. faecalis (pH 7-9). Phenol degradation was repressed in C. tropicalis by acetate and glucose, but not by lactate. Glucose and acetate had little effect, while lactate stimulated phenol degradation in A. faecalis. To our knowledge, these soils had never been contaminated with man-made phenolic compounds and this is the first report of phenol-degrading microorganisms from Amazonian forest soil samples. The results support the idea that natural uncontaminated environments contain sufficient genetic diversity to make them valid choices for the isolation of microorganisms useful in bioremediation.

  14. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices

    PubMed Central

    Singh, Y.P.; Mishra, V.K.; Singh, Sudhanshu; Sharma, D.K.; Singh, D.; Singh, U.S.; Singh, R.K.; Haefele, S.M.; Ismail, A.M.

    2016-01-01

    . Hence, 150 kg N ha−1 was considered the economic optimum N application rate for CSR43 in these sodic soils. Using 150–60–40–25 kg N–P2O5–K2O–ZnSO4·7H2O ha−1 in farmers’ fields grown to CSR43 produced an average of 5.5 t ha−1 grain. The results of on-farm evaluation trials of CSR43 showed that matching management practices (Mmp) increased yield by 8% over existing best management practices (Bmp) recommended by ICAR-CSSRI for sodic soils and by 16% over framers’ management practices; however, combining Mmp with CSR43 resulted in 35% higher yields over farmers’ current varieties and management. This approach of combining cost effective crop and nutrient management options and a salt-tolerant variety can maximize the productivity and profitability of sodic soils in the alluvial Indo-Gangetic plains and in neighboring salt-affected areas of the Ganges mega delta in South Asia. PMID:27212787

  15. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants.

    PubMed

    Brini, Faïçal; Hanin, Moez; Mezghani, Imed; Berkowitz, Gerald A; Masmoudi, Khaled

    2007-01-01

    Transgenic Arabidopsis plants overexpressing the wheat vacuolar Na(+)/H(+) antiporter TNHX1 and H(+)-PPase TVP1 are much more resistant to high concentrations of NaCl and to water deprivation than the wild-type strains. These transgenic plants grow well in the presence of 200 mM NaCl and also under a water-deprivation regime, while wild-type plants exhibit chlorosis and growth inhibition. Leaf area decreased much more in wild-type than in transgenic plants subjected to salt or drought stress. The leaf water potential was less negative for wild-type than for transgenic plants. This could be due to an enhanced osmotic adjustment in the transgenic plants. Moreover, these transgenic plants accumulate more Na(+) and K(+) in their leaf tissue than the wild-type plants. The toxic effect of Na(+) accumulation in the cytosol is reduced by its sequestration into the vacuole. The rate of water loss under drought or salt stress was higher in wild-type than transgenic plants. Increased vacuolar solute accumulation and water retention could confer the phenotype of salt and drought tolerance of the transgenic plants. Overexpression of the isolated genes from wheat in Arabidopsis thaliana plants is worthwhile to elucidate the contribution of these proteins to the tolerance mechanism to salt and drought. Adopting a similar strategy could be one way of developing transgenic staple crops with improved tolerance to these important abiotic stresses.

  16. The respiratory chain provides salt stress tolerance by maintaining a low NADH/NAD+ ratio in Zymomonas mobilis.

    PubMed

    Hayashi, Takeshi; Kato, Tsuyoshi; Watakabe, Satoshi; Song, Wonjoon; Aikawa, Shizuho; Furukawa, Kensuke

    2015-12-01

    The respiratory chain of ethanol-producing Zymomonas mobilis shows an unusual physiological property in that it is not involved in energy conservation, even though this organism has a complete electron transport system. We reported previously that respiratory-deficient mutants (RDMs) of Z. mobilis exhibit higher growth rates and enhanced ethanol productivity under aerobic and high-temperature conditions. Here, we demonstrated that the salt tolerance of RDM strains was drastically decreased compared with the wild-type strain. We found that the NADH/NAD+ ratio was maintained at low levels in both the wild-type and the RDM strains under non-stress conditions. However, the ratio substantially increased in the RDM strains in response to salt stress. Complementation of the deficient respiratory-chain genes in the RDM strains resulted in a decrease in the NADH/NAD+ ratio and an increase in the growth rate. In contrast, expression of malate dehydrogenase, activity of which increases the supply of NADH, in the RDM strains led to an increased NADH/NAD+ ratio and resulted in poor growth. Taken together, these results suggest that the respiratory chain of Z. mobilis functions to maintain a low NADH/NAD+ ratio when the cells are exposed to environmental stresses, such as salinity. PMID:26432557

  17. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use.

    PubMed

    Moya, José Luís; Gómez-Cadenas, Aurelio; Primo-Millo, Eduardo; Talon, Manuel

    2003-02-01

    In this work, seedlings of two citrus rootstocks, the salt-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the salt-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. x Poncirus trifoliata [L.] Raf.) were used to study the relationship between chloride and water uptake. The results indicated that net chloride uptake rates in both genotypes were alike and decreased linearly with the time of salinity exposure, although they were more rapidly reduced in the tolerant genotype. In each rootstock, chloride uptake rates paralleled the decreases in transpiration rates. When transpiration was modified, concomitant changes in leaf Cl(-) concentrations were observed. There was a high positive correlation between total chloride content per plant and total water absorbed. In addition, the data indicate that the tolerant genotype "excluded" more chloride, i.e. it absorbed lower amounts of chloride per volume of water. Cleopatra also possessed a less efficient root system for water uptake and a higher shoot-to-root ratio. The results show that, overall, chloride absorption is linked to water use and that further tolerance in Cleopatra is mostly conferred by superior root resistance to Cl(-) uptake. Therefore, it is proposed that chloride absorption and, hence, salt tolerance in citrus depends to a great extent upon water use.

  18. Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial.

    PubMed

    Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A

    2016-06-01

    The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP. PMID:27160199

  19. Modest Salt Reduction Lowers Blood Pressure and Albumin Excretion in Impaired Glucose Tolerance and Type 2 Diabetes Mellitus: A Randomized Double-Blind Trial.

    PubMed

    Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A

    2016-06-01

    The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP.

  20. Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance.

    PubMed

    Petrezselyova, Silvia; Zahradka, Jaromir; Sychrova, Hana

    2010-01-01

    Saccharomyces cerevisiae yeast cells serve as a model to elucidate the bases of salt tolerance and potassium homeostasis regulation in eukaryotic cells. In this study, we show that two widely used laboratory strains, BY4741 and W303-1A, differ not only in cell size and volume but also in their relative plasma-membrane potential (estimated with a potentiometric fluorescent dye diS-C3(3) and as Hygromycin B sensitivity) and tolerance to alkali-metal cations. W303-1A cells and their mutant derivatives lacking either uptake (trk1 trk2) or efflux (nha1) systems for alkali-metal cations are more tolerant to toxic sodium and lithium cations but also more sensitive to higher external concentrations of potassium than BY4741 cells and their mutants. Moreover, our results suggest that though the two strains do not differ in the total potassium content, the regulation of intracellular potassium homeostasis is probably not the same in BY4741 and W303-1A cells.

  1. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance

    PubMed Central

    Liu, Dongfeng; Chen, Xujun; Liu, Jiqin; Ye, Jianchun; Guo, Zejian

    2012-01-01

    Rice OsERF922, encoding an APETELA2/ethylene response factor (AP2/ERF) type transcription factor, is rapidly and strongly induced by abscisic acid (ABA) and salt treatments, as well as by both virulent and avirulent pathovars of Magnaporthe oryzae, the causal agent of rice blast disease. OsERF922 is localized to the nucleus, binds specifically to the GCC box sequence, and acts as a transcriptional activator in plant cells. Knockdown of OsERF922 by means of RNAi enhanced resistance against M. oryzae. The elevated disease resistance of the RNAi plants was associated with increased expression of PR, PAL, and the other genes encoding phytoalexin biosynthetic enzymes and without M. oryzae infection. In contrast, OsERF922-overexpressing plants showed reduced expression of these defence-related genes and enhanced susceptibility to M. oryzae. In addition, the OsERF922-overexpressing lines exhibited decreased tolerance to salt stress with an increased Na+/K+ ratio in the shoots. The ABA levels were found increased in the overexpressing lines and decreased in the RNAi plants. Expression of the ABA biosynthesis-related genes, 9-cis-epoxycarotenoid dioxygenase (NCED) 3 and 4, was upregulated in the OsERF922-overexpressing plants, and NCED4 was downregulated in the RNAi lines. These results suggest that OsERF922 is integrated into the cross-talk between biotic and abiotic stress-signalling networks perhaps through modulation of the ABA levels. PMID:22442415

  2. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress.

    PubMed

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd. PMID:27582752

  3. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress

    PubMed Central

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd. PMID:27582752

  4. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress.

    PubMed

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd.

  5. Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin

    PubMed Central

    Bafeel, Sameera Omar

    2014-01-01

    Salt-tolerant ecotypes (or cultivars, varieties, etc.) of different plant species have been long known to evolve in nature. In the past few years, plant breeders have made significant achievements regarding salt tolerance in a number of potential crops using artificial selection. The aim of this work was to evaluate and screening of the natural sea water (Red sea) tolerance of 7 Saudi local (Baish, Jazan; 17.388086, 42.524070) cultivars of sorghum (Sorghumbicolor L., Moench; Poaceae) with respect to the performance of some physiological parameters such as germination, shoot and root development which could be recommended to local farmers and plant breeders. The shoot growth of the studied sorghum cultivars were significantly affected by the exposure to sea water. Root growth was different among cultivars even when treated with normal water. The cultivar C3 (mix white and red seeds) was observed as more salt tolerant and cultivar C4 (whitish seeds) was more salt sensitive on the basis of the germination-ability and shoot development. Cultivar C3 was also observed to produce better seeds compared with the other cultivars. Results of this experiment can be useful to the local sorghum growing farmers or as a genetic resource for the development of sorghum cultivars with improved germination under salt stress. PMID:25183939

  6. Physiological parameters of salt tolerance during germination and seedling growth of Sorghum bicolor cultivars of the same subtropical origin.

    PubMed

    Bafeel, Sameera Omar

    2014-09-01

    Salt-tolerant ecotypes (or cultivars, varieties, etc.) of different plant species have been long known to evolve in nature. In the past few years, plant breeders have made significant achievements regarding salt tolerance in a number of potential crops using artificial selection. The aim of this work was to evaluate and screening of the natural sea water (Red sea) tolerance of 7 Saudi local (Baish, Jazan; 17.388086, 42.524070) cultivars of sorghum (Sorghum bicolor L., Moench; Poaceae) with respect to the performance of some physiological parameters such as germination, shoot and root development which could be recommended to local farmers and plant breeders. The shoot growth of the studied sorghum cultivars were significantly affected by the exposure to sea water. Root growth was different among cultivars even when treated with normal water. The cultivar C3 (mix white and red seeds) was observed as more salt tolerant and cultivar C4 (whitish seeds) was more salt sensitive on the basis of the germination-ability and shoot development. Cultivar C3 was also observed to produce better seeds compared with the other cultivars. Results of this experiment can be useful to the local sorghum growing farmers or as a genetic resource for the development of sorghum cultivars with improved germination under salt stress. PMID:25183939

  7. Increased Microbial Butanol Tolerance by Exogenous Membrane Insertion Molecules.

    PubMed

    Hinks, Jamie; Wang, Yaofeng; Matysik, Artur; Kraut, Rachel; Kjelleberg, Staffan; Mu, Yuguang; Bazan, Guillermo C; Wuertz, Stefan; Seviour, Thomas

    2015-11-01

    Butanol is an ideal biofuel, although poor titers lead to high recovery costs by distillation. Fluidization of microbial membranes by butanol is one of the major factors limiting titers in butanol-producing bioprocesses. Starting with the hypothesis that certain membrane insertion molecules would stabilize the lipid bilayer in the presence of butanol, we applied a combination of in vivo and in vitro techniques within an in silico framework to describe a new approach to achieve solvent tolerance in bacteria. Single-molecule tracking of a model supported bilayer showed that COE1-5C, a five-ringed oligo-polyphenylenevinylene conjugated oligoelectrolyte (COE), reduced the diffusion rate of phospholipids in a microbially derived lipid bilayer to a greater extent than three-ringed and four-ringed COEs. Furthermore, COE1-5C treatment increased the specific growth rate of E. coli K12 relative to a control at inhibitory butanol concentrations. Consequently, to confer butanol tolerance to microbes by exogenous means is complementary to genetic modification of strains in industrial bioprocesses, extends the physiological range of microbes to match favorable bioprocess conditions, and is amenable with complex and undefined microbial consortia for biobutanol production. Molecular dynamics simulations indicated that the π-conjugated aromatic backbone of COE1-5C likely acts as a hydrophobic tether for glycerophospholipid acyl chains by enhancing bilayer integrity in the presence of high butanol concentrations, which thereby counters membrane fluidization. COE1-5C-mitigated E. coli K12 membrane depolarization by butanol is consistent with the hypothesis that improved growth rates in the presence of butanol are a consequence of improved bilayer stability. PMID:26404512

  8. Increased Microbial Butanol Tolerance by Exogenous Membrane Insertion Molecules.

    PubMed

    Hinks, Jamie; Wang, Yaofeng; Matysik, Artur; Kraut, Rachel; Kjelleberg, Staffan; Mu, Yuguang; Bazan, Guillermo C; Wuertz, Stefan; Seviour, Thomas

    2015-11-01

    Butanol is an ideal biofuel, although poor titers lead to high recovery costs by distillation. Fluidization of microbial membranes by butanol is one of the major factors limiting titers in butanol-producing bioprocesses. Starting with the hypothesis that certain membrane insertion molecules would stabilize the lipid bilayer in the presence of butanol, we applied a combination of in vivo and in vitro techniques within an in silico framework to describe a new approach to achieve solvent tolerance in bacteria. Single-molecule tracking of a model supported bilayer showed that COE1-5C, a five-ringed oligo-polyphenylenevinylene conjugated oligoelectrolyte (COE), reduced the diffusion rate of phospholipids in a microbially derived lipid bilayer to a greater extent than three-ringed and four-ringed COEs. Furthermore, COE1-5C treatment increased the specific growth rate of E. coli K12 relative to a control at inhibitory butanol concentrations. Consequently, to confer butanol tolerance to microbes by exogenous means is complementary to genetic modification of strains in industrial bioprocesses, extends the physiological range of microbes to match favorable bioprocess conditions, and is amenable with complex and undefined microbial consortia for biobutanol production. Molecular dynamics simulations indicated that the π-conjugated aromatic backbone of COE1-5C likely acts as a hydrophobic tether for glycerophospholipid acyl chains by enhancing bilayer integrity in the presence of high butanol concentrations, which thereby counters membrane fluidization. COE1-5C-mitigated E. coli K12 membrane depolarization by butanol is consistent with the hypothesis that improved growth rates in the presence of butanol are a consequence of improved bilayer stability.

  9. Development and characterization of seashore paspulum SSR markers and identification of markers associated with salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity is a major environmental factor limiting plant growth and productivity. Restrictions on water-use due to water shortages have resulted in the use of secondary water sources, which are often higher in salt, to irrigate turf. Furthermore, the increasing use of irrigation, which is highly...

  10. Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K(+) efflux by polyamines.

    PubMed

    Velarde-Buendía, Ana María; Shabala, Sergey; Cvikrova, Milena; Dobrovinskaya, Oxana; Pottosin, Igor

    2012-12-01

    Generation of high levels of polyamines and reactive oxygen species (ROS) is common under stress conditions. Our recent study on a salt-sensitive pea species revealed an interaction between natural polyamines and hydroxyl radicals in inducing non-selective conductance and stimulating Ca(2+)-ATPase pumps at the root plasma membrane (I. Zepeda-Jazo, A.M. Velarde-Buendía, R. Enríquez-Figueroa, B. Jayakumar, S. Shabala, J. Muñiz, I. Pottosin, Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes, Plant Phys. 157 (2011) 1-14). In this work, we extended that study to see if interaction between polyamines and ROS may determine the extent of genotypic variation in salinity tolerance. This work was conducted using barley genotypes contrasting in salinity tolerance. Similar to our findings in pea, application of hydroxyl radicals-generating Cu(2+)/ascorbate mixture induced transient Ca(2+) and K(+) fluxes in barley roots. Putrescine and spermine alone induced only transient Ca(2+) efflux and negligible K(+) flux. However, both putrescine and spermine strongly potentiated hydroxyl radicals-induced K(+) efflux and respective non-selective current. This synergistic effect was much more pronounced in a salt-sensitive cultivar Franklin as compared to a salt-tolerant TX9425. As retention of K(+) under salt stress is a key determinant of salinity tolerance in barley, we suggest that the alteration of cytosolic K(+) homeostasis, caused by interaction between polyamines and ROS, may have a substantial contribution to genetic variability in salt sensitivity in this species.

  11. Heterologous expression of the halophyte Zoysia matrella H⁺-pyrophosphatase gene improved salt tolerance in Arabidopsis thaliana.

    PubMed

    Chen, Yu; Li, Lanlan; Zong, Junqin; Chen, Jingbo; Guo, Hailin; Guo, Aigui; Liu, Jianxiu

    2015-06-01

    A number of vacuolar H(+)-pyrophosphatase (VP) family genes play important roles in plant growth under salt stress condition. Despite their biological importance in plant salt-stress regulation, there is no report about VP in the halophytic turfgrass Zoysia matrella. Here, we isolated ZmVP1, a type I VP homologues gene encoding 768 amino acids by using the degenerated PCR and RACE PCR methods from Zoysia matrella. The expression level of ZmVP1 was significantly induced by salinity, drought and cold, but not by heat. ZmVP1 can restore the salt-tolerant ability of a salt-sensitive yeast strain. Overexpression of ZmVP1 in Arabidopsis thaliana resulted in more vigorous growth under salt stress. Moreover, the transgenic Arabidopsis accumulated more Na(+) and K(+) in the leaves compared to that of wild type plants under salt stress, had higher activities of V-ATPase and V-PPase, and showed higher relative gene expression levels of 5 stress-related genes (AtNHX1, AtLEA, AtP5CS, AtMn-SOD, AtAPX1). These results demonstrated that ZmVP1 from Z. matrella was a functional tonoplast H(+)-pyrophosphatase contributing to salt tolerance potentially through regulating the Na(+) compartment in vacuole, K(+) assimilation, osmotic regulation and antioxidant response. PMID:25874657

  12. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    PubMed

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  13. Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis.

    PubMed

    Liu, Liang; Wang, Ying; Wang, Nan; Dong, Yuan-Yuan; Fan, Xiu-Duo; Liu, Xiu-Ming; Yang, Jing; Li, Hai-Yan

    2011-09-01

    Salt, saline-alkali conditions, and drought are major environmental factors limiting plant growth and productivity. The vacuolar H(+)-translocating inorganic pyrophosphatase (V-H(+)-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells. Expression of V-H(+)-PPase increases in plants under a number of abiotic stresses, and is thought to have an important role in adaptation to abiotic stress. In this work, we report the isolation and characterization of the gene, ScVP, encoding a vacuolar inorganic pyrophosphatase (V-H(+)-PPase) from the halophyte, Suaeda corniculata. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots, stems and leaves under treatment with salt, saline-alkali and drought. Compared with wild-type (WT) Arabidopsis, transgenic plants overexpressing ScVP accumulated more Na(+) in leaves and roots, and showed increased tolerance to high salinity, saline-alkali and drought stresses. The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses. The root length of transgenic plants under salt stress was longer than that of WT plants. Furthermore, the rate of water loss during drought stress was higher in WT than in transgenic plants. Collectively, these results indicate that ScVP plays an important role in plant tolerance to salt, saline-alkali and drought stress.

  14. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress.

    PubMed

    Lai, Shu-Jung; Lai, Mei-Chin; Lee, Ren-Jye; Chen, Yu-Hsuan; Yen, Hungchen Emilie

    2014-07-01

    Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments. PMID:24803410

  15. Genetic variation in salt tolerance during seed germination in a backcross inbred line population and advanced breeding lines derived from upland cotton x pima cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination is a crucial phase of the plant life cycle that affects its establishment and productivity. However, information on salt tolerance at this phase is limited. Pima cotton (Gossypium barbadense L.) may be more salt tolerant during germination than Upland cotton (G. hirsutum L.) based o...

  16. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing.

    PubMed

    Qi, Xinpeng; Li, Man-Wah; Xie, Min; Liu, Xin; Ni, Meng; Shao, Guihua; Song, Chi; Kay-Yuen Yim, Aldrin; Tao, Ye; Wong, Fuk-Ling; Isobe, Sachiko; Wong, Chi-Fai; Wong, Kwong-Sen; Xu, Chunyan; Li, Chunqing; Wang, Ying; Guan, Rui; Sun, Fengming; Fan, Guangyi; Xiao, Zhixia; Zhou, Feng; Phang, Tsui-Hung; Liu, Xuan; Tong, Suk-Wah; Chan, Ting-Fung; Yiu, Siu-Ming; Tabata, Satoshi; Wang, Jian; Xu, Xun; Lam, Hon-Ming

    2014-07-09

    Using a whole-genome-sequencing approach to explore germplasm resources can serve as an important strategy for crop improvement, especially in investigating wild accessions that may contain useful genetic resources that have been lost during the domestication process. Here we sequence and assemble a draft genome of wild soybean and construct a recombinant inbred population for genotyping-by-sequencing and phenotypic analyses to identify multiple QTLs relevant to traits of interest in agriculture. We use a combination of de novo sequencing data from this work and our previous germplasm re-sequencing data to identify a novel ion transporter gene, GmCHX1, and relate its sequence alterations to salt tolerance. Rapid gain-of-function tests show the protective effects of GmCHX1 towards salt stress. This combination of whole-genome de novo sequencing, high-density-marker QTL mapping by re-sequencing and functional analyses can serve as an effective strategy to unveil novel genomic information in wild soybean to facilitate crop improvement.

  17. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development.

    PubMed

    Srivastava, Anjil Kumar; Zhang, Cunjin; Sadanandom, Ari

    2016-05-01

    Salinity is one of the major environmental stresses affecting rice production worldwide. Improving rice salt tolerance is a critical step for sustainable food production. Posttranslational modifications of proteins greatly expand proteome diversity, increase functionality and allow quick responses to environmental stresses, all at low cost to the cell. SUMO mediated modification of substrate proteins is a highly dynamic process governed by the balance of activities of SUMO E3 ligases and deconjugating SUMO proteases. In recent years, SUMO (Small Ubiquitin like Modifier) conjugation of proteins has emerged as an influential regulator of stress signaling in the model plant Arabidopsis. However SUMOylation remain largely under studied in crop plants. We recently identified the SUMO protease gene family in rice and demonstrated a role for OsOTS1 SUMO proteases in salt stress. Interestingly, rice plants silencing OsOTS1 also show significantly reduced germination rate. Knockdown of OsOTS1 gene expression affects root growth by primarily reducing cell size rather than cell division. PMID:27119209

  18. Rice OVERLY TOLERANT TO SALT 1 (OTS1) SUMO protease is a positive regulator of seed germination and root development.

    PubMed

    Srivastava, Anjil Kumar; Zhang, Cunjin; Sadanandom, Ari

    2016-05-01

    Salinity is one of the major environmental stresses affecting rice production worldwide. Improving rice salt tolerance is a critical step for sustainable food production. Posttranslational modifications of proteins greatly expand proteome diversity, increase functionality and allow quick responses to environmental stresses, all at low cost to the cell. SUMO mediated modification of substrate proteins is a highly dynamic process governed by the balance of activities of SUMO E3 ligases and deconjugating SUMO proteases. In recent years, SUMO (Small Ubiquitin like Modifier) conjugation of proteins has emerged as an influential regulator of stress signaling in the model plant Arabidopsis. However SUMOylation remain largely under studied in crop plants. We recently identified the SUMO protease gene family in rice and demonstrated a role for OsOTS1 SUMO proteases in salt stress. Interestingly, rice plants silencing OsOTS1 also show significantly reduced germination rate. Knockdown of OsOTS1 gene expression affects root growth by primarily reducing cell size rather than cell division.

  19. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance

    PubMed Central

    Liu, Lijing; Cui, Feng; Li, Qingliang; Yin, Bojiao; Zhang, Huawei; Lin, Baoying; Wu, Yaorong; Xia, Ran; Tang, Sanyuan; Xie, Qi

    2011-01-01

    Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca2+ release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway. PMID:21187857

  20. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development. PMID:26711633

  1. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  2. A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress.

    PubMed

    Egamberdieva, Dilfuza; Li, Li; Lindström, Kristina; Räsänen, Leena A

    2016-03-01

    Chinese liquorice (Glycyrrhiza uralensis Fish.) is a salt-tolerant medicinal legume that could be utilized for bioremediation of salt-affected soils. We studied whether co-inoculation of the symbiotic Mesorhizobium sp. strain NWXJ19 or NWXJ31 with the plant growth-promoting Pseudomonas extremorientalis TSAU20 could restore growth, nodulation, and shoot/root nitrogen contents of salt-stressed G. uralensis, which was grown in potting soil and irrigated with 0, 50, and 75 mM NaCl solutions under greenhouse conditions. Irrigation with NaCl solutions clearly retarded the growth of uninoculated liquorice, and the higher the NaCl concentration (75 and 100 mM NaCl), the more adverse is the effect. The two Mesorhizobium strains, added either alone or in combination with P. extremorientalis TSAU20, responded differently to the salt levels used. The strain NWXJ19 was a good symbiont for plants irrigated with 50 mM NaCl, whereas the strain NWXJ31 was more efficient for plants irrigated with water or 75 mM NaCl solution. P. extremorientalis TSAU20 combined with single Mesorhizobium strains alleviated the salt stress of liquorice plants and improved yield and nodule numbers significantly in comparison with single-strain-inoculated liquorice. Both salt stress and inoculation raised the nitrogen content of shoots and roots. The nitrogen contents were at their highest, i.e., 30 and 35 % greater compared to non-stressed uninoculated plants, when plants were inoculated with P. extremorientalis TSAU20 and Mesorhizobium sp. NWXJ31 as well as irrigated with 75 mM NaCl solution. From this study, we conclude that dual inoculation with plant growth-promoting rhizobacteria could be a new approach to improve the tolerance of G. uralensis to salt stress, thereby improving its suitability for the remediation of saline lands.

  3. Comparative expression analysis of Calcineurin B-like family gene CBL10A between salt-tolerant and salt-sensitive cultivars in B. oleracea.

    PubMed

    Xu, Ling; Zhang, Dayong; Xu, Zhaolong; Huang, Yihong; He, Xiaolan; Wang, Jinyan; Gu, Minfeng; Li, Jianbin; Shao, Hongbo

    2016-11-15

    Calcineurin B-like proteins (CBLs) are plant calcium sensors that play a critical role in the regulation of plant growth and response to stress. Many CBLs have been identified in the calcium signaling pathway in both Arabidopsis and rice. However, information about BoCBLs genes from Brassica oleracea has not been reported. In the present study, we identified 13 candidate CBL genes in the B. oleracea genome based on the conserved domain of the Calcineurin B-like family, and we carried out a phylogenetic analysis of CBLs among Arabidopsis, rice, maize, cabbage and B. oleracea. For B. oleracea, the distribution of the predicted BoCBL genes was uneven among the five chromosomes. Sequence analysis showed that the nucleotide sequences and corresponding protein structure of BoCBLs were highly conserved, i.e., all of the putative BoCBLs contained 6-8 introns, and most of the exons of those genes contained the same number of nucleotides and had high sequence identities. All BoCBLs consisted of four EF-Hand functional domains, and the distance between the EF-hand motifs was conserved. Evolutionary analysis revealed that the CBLs were classified into two subgroups. Additionally, the CBL10A gene was cloned from salt-tolerant (CB6) and salt-sensitive (CB3) cultivars using RT-PCR. The results indicated that the cloned gene had a substantial difference in length (741bp in CB3 and 829bp in CB6) between these two cultivars. The deduced CBL10A protein in CB6 had four EF-hand structural domains, which have an irreplaceable role in calcium-binding and have calcineurin A subunit binding sites, while the BoCBL10A protein in CB3 had only two EF-hand structural domains and lacked calcineurin A subunit binding sites. The expression level of the BoCBL10A gene between salt tolerance (CB6)and sensitive varieties(CB3) under salt stress was significantly different (P<0.01 and P<0.05). The expression of BoCBL10A gene was relatively higher in salt-tolerant (CB6) cultivar under salt stress, with a

  4. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes.

    PubMed

    Liu, Jiangtao; Zhou, Yuelong; Luo, Changxin; Xiang, Yun; An, Lizhe

    2016-01-01

    Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including "oxidation reduction", "transcription factor activity", and "ion channel transporter". Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress. PMID:27023614

  5. Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity reduces cotton growth, yield, and fiber quality and has become a serious problem in the arid southwestern region of the Unites States. Development and planting of salt-tolerant cultivars could ameliorate the deleterious effects. The objectives of this study were to assess the genetic v...

  6. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes.

    PubMed

    Liu, Jiangtao; Zhou, Yuelong; Luo, Changxin; Xiang, Yun; An, Lizhe

    2016-01-01

    Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including "oxidation reduction", "transcription factor activity", and "ion channel transporter". Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress.

  7. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1)in peanut to improve salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...

  8. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes

    PubMed Central

    Liu, Jiangtao; Zhou, Yuelong; Luo, Changxin; Xiang, Yun; An, Lizhe

    2016-01-01

    Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress. PMID:27023614

  9. Long-Term Tolerability and Effectiveness of Once-Daily Mixed Amphetamine Salts (Adderall XR) in Children with ADHD

    ERIC Educational Resources Information Center

    McGough, James J.; Biederman, Joseph; Wigal, Sharon B.; Lopez, Frank A.; McCracken, James T.; Spencer, Thomas; Zhang, Yuxin; Tulloch, Simon J.

    2005-01-01

    Objective: To evaluate the long-term tolerability and effectiveness of extended-release mixed amphetamine salts (MAS XR; Adderall XR[R]) in children with attention-deficit/hyperactivity disorder (ADHD). Method: This was a 24-month, multicenter, open-label extension of TWO placebo-controlled studies of MAS XR in children with ADHD aged 6 to 12…

  10. Characterization of a salt-tolerant bacterium Bacillus sp. from a membrane bioreactor for saline wastewater treatment.

    PubMed

    Zhang, Xiaohui; Gao, Jie; Zhao, Fangbo; Zhao, Yuanyuan; Li, Zhanshuang

    2014-06-01

    High salt concentrations can cause plasmolysis and loss of activity of cells, but the salt-tolerant bacterium can endure the high salt concentrations in wastewater. In this research 7 salt-tolerant bacteria, which could survive in dry powder products and could degrade organic contaminants in saline wastewater, were isolated from a membrane bioreactor. The strain NY6 which showed the fastest growth rate, best property for organic matter degradation and could survive in dry powder more than 3 months was selected and characterized. It was classified as Bacillus aerius based on the analysis of the morphological and physiological properties as well as the 16S rRNA sequence and Neigh borjoining tree. The strain NY6 could survive in the salinity up to 6% and the optimal growth salinity is 2%; it belongs to a slightly halophilic bacterium. The capability of its dry powder products for COD removal was 800 mg COD/(g·day) in synthesized saline wastewater with salinity of 2%. According to salt-tolerant mechanism research, when the salinity was below 2%, the stain NY6 absorbed K(+) and Na(+) to maintain osmotic equilibrium, and when the salinity was above 2%, the NY6 kept its life by producing a large amount of spores. PMID:25079850

  11. Arabidopsis Fatty Acid Desaturase FAD2 Is Required for Salt Tolerance during Seed Germination and Early Seedling Growth

    PubMed Central

    Sun, Jian; Li, Bei; Zhu, Qiang; Chen, Shaoliang; Zhang, Hongxia

    2012-01-01

    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis. PMID:22279586

  12. Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato.

    PubMed

    Bouaziz, Donia; Pirrello, Julien; Ben Amor, Hela; Hammami, Asma; Charfeddine, Mariam; Dhieb, Amina; Bouzayen, Mondher; Gargouri-Bouzid, Radhia

    2012-11-01

    Dehydration responsive element binding proteins (DREB) are members of a larger family of transcription factors, many of which have been reported to contribute to plant responses to abiotic stresses in several species. While, little is known about their role in potato (Solanum tuberosum). This report describes the cloning and characterization of a DREB transcription factor cDNA, StDREB2, isolated from potato (cv Nicola) plants submitted to salt treatment. Based on a multiple sequence alignment, this protein was classified into the A-5 group of DREB subfamily. Expression studies revealed that StDREB2 was induced in leaves, roots and stems upon various abiotic stresses and in response to exogenous treatment with abscisic acid (ABA). In agreement with this expression pattern, over-expression of StDREB2 in transgenic potato plants resulted in enhanced tolerance to salt stress. These data suggest that the isolated StDREB2 encodes a functional protein involved in plant response to different abiotic stresses. An electrophoretic mobility shift assay (EMSA) indicated that the StDREB2 protein bound specifically to the DRE core element (ACCGAGA) in vitro. Moreover, Semi quantitative RT-PCR analysis revealed that the transcript level of a putative target gene i.e. δ(1)-pyrroline-5-carboxylate synthase (P5CS) was up-regulated in transgenic plants submitted to salt stress conditions. A concomitant increase in proline accumulation was also observed under these conditions. Taking together, all these data suggest that StDREB2 takes part in the processes underlying plant responses to abiotic stresses probably via the regulation of ABA hormone signaling and through a mechanism allowing proline synthesis.

  13. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis.

    PubMed

    Kong, Xiangpei; Pan, Jiaowen; Zhang, Maoying; Xing, Xin; Zhou, Yan; Liu, Yang; Li, Dapeng; Li, Dequan

    2011-08-01

    Mitogen-activated protein kinase (MAPK) cascades are signalling modules that transduce extracellular signalling to a range of cellular responses. Plant MAPK cascades have been implicated in development and stress response. In this study, we isolated a novel group C MAPKK gene, ZmMKK4, from maize. Northern blotting analysis revealed that the ZmMKK4 transcript expression was up-regulated by cold, high salt and exogenous H(2)O(2,) but down-regulated by exogenous abscisic acid (ABA). Over-expression of ZmMKK4 in Arabidopsis conferred tolerance to cold and salt stresses by increased germination rate, lateral root numbers, plant survival rate, chlorophyll, proline and soluble sugar contents, and antioxidant enzyme [peroxidase (POD), catalase (CAT)] activities compared with control plants. Furthermore, ZmMKK4 enhanced a 37 kDa kinase activity after cold and salt stresses. RT-PCR analysis revealed that the transcript levels of stress-responsive transcription factors and functional genes were higher in ZmMKK4-over-expressing plants than in control plants. In addition, ZmMKK4 protein is localized in the nucleus. Taken together, these results indicate that ZmMKK4 is a positive regulator of salt and cold tolerance in plants.

  14. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance.

  15. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. PMID:26906624

  16. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient

    USGS Publications Warehouse

    Vasquez, Edward A.; Glenn, Edward P.; Guntenspergen, Glenn R.; Brown, J. Jed; Nelson, Stephen G.

    2006-01-01

    An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na+ for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.

  17. Expression of a Medicago falcata small GTPase gene, MfARL1 enhanced tolerance to salt stress in Arabidopsis thaliana.

    PubMed

    Wang, Tian-Zuo; Xia, Xiu-Zhi; Zhao, Min-Gui; Tian, Qiu-Ying; Zhang, Wen-Hao

    2013-02-01

    To understand the role of small GTPases in response to abiotic stress, we isolated a gene encoding a small GTPase, designated MfARL1, from a subtracted cDNA library in Medicago falcata, a native legume species in semi-arid grassland in northern China. The function of MfARL1 in response to salt stress was studied by expressing MfARL1 in Arabidopsis. Wild-type (WT) and transgenic plants constitutively expressing MfARL1 showed comparable phenotype when grown under control conditions. Germination of seeds expressing MfARL1 was less suppressed by salt stress than that of WT seeds. Transgenic seedlings had higher survival rate than WT seedlings under salt stress, suggesting that expression of MfARL1 confers tolerance to salt stress. The physiological and molecular mechanisms underlying these phenomena were elucidated. Salt stress led to a significant decrease in chlorophyll contents in WT plants, but not in transgenic plants. Transgenic plants accumulated less amounts of H(2)O(2) and malondialdehyde than their WT counterparts under salt stress, which can be accounted for by the higher catalase activities, lower activities of superoxide dismutase, and peroxidase in transgenic plants than in WT plants. Transgenic plants displayed lower Na(+)/K(+) ratio due to less accumulation of Na(+) than wild-type under salt stress conditions. The lower Na(+)/K(+) ratio may result from less accumulation of Na(+) due to reduced expression of AtHKT1 that encodes Na(+) transporter in transgenic plants under salt stress. These findings demonstrate that MfARL1 encodes a novel stress-responsive small GTPase that is involved in tolerance to salt stress.

  18. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa

    PubMed Central

    Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A.; Ruan, Songlin; Zhou, Weijun

    2016-01-01

    Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.

  19. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa

    PubMed Central

    Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A.; Ruan, Songlin; Zhou, Weijun

    2016-01-01

    Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop. PMID:27695459

  20. Seagrass tolerance to herbivory under increased ocean temperatures.

    PubMed

    Garthwin, Ruby G; Poore, Alistair G B; Vergés, Adriana

    2014-06-30

    Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change. PMID:23993389

  1. Seagrass tolerance to herbivory under increased ocean temperatures.

    PubMed

    Garthwin, Ruby G; Poore, Alistair G B; Vergés, Adriana

    2014-06-30

    Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change.

  2. Salt stabilizer for preventing chlorine depletion and increasing shelf-life of potable water - A concept

    NASA Technical Reports Server (NTRS)

    Copeland, E. J.; Edgerley, R. H.

    1971-01-01

    Proposed concept, based on law of mass action uses addition of salt to increase chlorine ions produced in sodium hydrochlorite solutions, thereby increasing solution shelf-life. This technique is not costly. Usefulness will be determined by acceptability of salt in product undergoing long shelf-life.

  3. Inositol Polyphosphate 5-Phosphatase7 Regulates the Production of Reactive Oxygen Species and Salt Tolerance in Arabidopsis1[C][W][OA

    PubMed Central

    Kaye, Yuval; Golani, Yael; Singer, Yaniv; Leshem, Yehoram; Cohen, Gil; Ercetin, Mustafa; Gillaspy, Glenda; Levine, Alex

    2011-01-01

    Plants possess remarkable ability to adapt to adverse environmental conditions. The adaptation process involves the removal of many molecules from organelles, especially membranes, and replacing them with new ones. The process is mediated by an intracellular vesicle-trafficking system regulated by phosphatidylinositol (PtdIns) kinases and phosphatases. Although PtdIns comprise a fraction of membrane lipids, they function as major regulators of stress signaling. We analyzed the role of PtdIns 5-phosphatases (5PTases) in plant salt tolerance. The Arabidopsis (Arabidopsis thaliana) genome contains 15 At5PTases. We analyzed salt sensitivity in nine At5ptase mutants and identified one (At5ptase7) that showed increased sensitivity, which was improved by overexpression. At5ptase7 mutants demonstrated reduced production of reactive oxygen species (ROS). Supplementation of mutants with exogenous PtdIns dephosphorylated at the D5′ position restored ROS production, while PtdIns(4,5)P2, PtdIns(3,5)P2, or PtdIns(3,4,5)P3 were ineffective. Compromised salt tolerance was also observed in mutant NADPH Oxidase, in agreement with the low ROS production and salt sensitivity of PtdIns 3-kinase mutants and with the inhibition of NADPH oxidase activity in wild-type plants. Localization of green fluorescent protein-labeled At5PTase7 occurred in the plasma membrane and nucleus, places that coincided with ROS production. Analysis of salt-responsive gene expression showed that mutants failed to induce the RD29A and RD22 genes, which contain several ROS-dependent elements in their promoters. Inhibition of ROS production by diphenylene iodonium suppressed gene induction. In summary, our results show a nonredundant function of At5PTase7 in salt stress response by regulating ROS production and gene expression. PMID:21677096

  4. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic.

    PubMed

    Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K

    2013-03-01

    Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.

  5. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice.

    PubMed

    Zhu, Ning; Cheng, Saifeng; Liu, Xiaoyun; Du, Hao; Dai, Mingqiu; Zhou, Dao-Xiu; Yang, Wenjing; Zhao, Yu

    2015-07-01

    Plants have evolved a number of different mechanisms to respond and to adapt to abiotic stress for their survival. However, the regulatory mechanisms involved in coordinating abiotic stress tolerance and plant growth are not fully understood. Here, the function of OsMYB91, an R2R3-type MYB transcription factor of rice was explored. OsMYB91 was induced by abiotic stress, especially by salt stress. Analysis of chromatin structure of the gene revealed that salt stress led to rapid removal of DNA methylation from the promoter region and rapid changes of histone modifications in the locus. Plants over-expressing OsMYB91 showed reduced plant growth and accumulation of endogenous ABA under control conditions. Under salt stress, the over-expression plants showed enhanced tolerance with significant increases of proline levels and a highly enhanced capacity to scavenge active oxygen as well as the increased induction of OsP5CS1 and LOC_Os03g44130 compared to wild type, while RNAi plants were less sensitive. In addition, expression of OsMYB91 was also induced by other abiotic stresses and hormone treatment. More interestingly, SLR1, the rice homolog of Arabidopsis DELLA genes that have been shown to integrate endogenous developmental signals with adverse environmental conditions, was highly induced by OsMYB91 over-expression, while the salt-induction of SLR1 expression was impaired in the RNAi plants. These results suggested that OsMYB91 was a stress-responsive gene that might be involved in coordinating rice tolerance to abiotic stress and plant growth by regulating SLR1 expression.

  6. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    PubMed

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. PMID:27340231

  7. Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses.

    PubMed

    Yu, Y; Cui, Y C; Ren, C; Rocha, P S C F; Peng, M; Xu, G Y; Wang, M L; Xia, X J

    2016-02-05

    Plasma membrane proteolipid 3 (PMP3) is a class of small hydrophobic proteins found in many organisms including higher plants. Some plant PMP3 genes have been shown to respond to abiotic stresses and to participate in the processes of plant stress tolerance. In this study, we isolated the cassava (Manihot esculenta Crantz) MePMP3-2 gene and functionally characterized its role in tolerance to abiotic stress by expressing it in rice (Oryza sativa L.). MePMP3-2 encodes a 77-amino acid protein belonging to a subgroup of plant PMP3s that have long hydrophylic C-terminal tails of unknown function. In silico analysis and co-localization studies indicated that MePMP3-2 is a plasma membrane protein with two transmembrane domains, similar to other PMP3s. In cassava leaves, MePMP3-2 expression was up-regulated by salt and drought stresses. Heterologous constitutive expression of MePMP3-2 in rice did not alter plant growth and development but increased tolerance to salt and drought stresses. In addition, under stress conditions MePMP3-2 transgenic plants accumulated less malondialdehyde, had increased levels of proline, and exhibited greater up-regulation of the stress-related genes OsProT and OsP5CS, but led to only minor changes in OsDREB2A and OsLEA3 expression. These findings indicate that MePMP3-2 may play an important role in salt and drought stress tolerance in transgenic rice.

  8. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species

    PubMed Central

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-01-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. PMID:27340231

  9. Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat.

    PubMed

    Ma, Xiaoli; Liang, Wenji; Gu, Peihan; Huang, Zhanjing

    2016-09-01

    The expression profile chip of the wheat salt-tolerant mutant RH8706-49 was investigated under salt stress in our laboratory. Results revealed a novel gene induced by salt stress with unknown functions. The gene was named as TaZNF (Triticum aestivum predicted Dof zinc finger protein) because it contains the zf-Dof superfamily and was deposited in GenBank (accession no. KF307327). Further analysis showed that TaZNF significantly improved the salt-tolerance of transgenic Arabidopsis. Various physiological indices of the transgenic plant were improved compared with those of the control after salt stress. Non-invasive micro-test (NMT) detection showed that the root tip of transgenic Arabidopsis significantly expressed Na(+) excretion. TaZNF is mainly localized in the nucleus and exhibited transcriptional activity. Hence, this protein was considered a transcription factor. The TaZNF upstream promoter was then cloned and was found to contain three salts, one jasmonic acid methyl ester (MeJA), and several ABA-responsive elements. The GUS staining and quantitative results of different tissues in the full-length promoter in the transgenic plants showed that the promoter was not tissue specific. The promoter activity in the root, leaf, and flower was enhanced after induction by salt stress. Moreover, GUS staining and quantitative measurement of GUS activity showed that the promoter sequence contained the positive regulatory element of salt and MeJA after their respective elements were mutated in the full-length promoter. RNA-Seq result showed that 2727 genes were differentially expressed; most of these genes were involved in the metabolic pathway and biosynthesis of secondary metabolite pathway. PMID:27156137

  10. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus.

    PubMed

    Li, Qing; Tang, Zhong; Hu, Yibing; Yu, Ling; Liu, Zhaopu; Xu, Guohua

    2014-08-01

    Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na(+)/H(+) antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4% identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na(+) and accumulate more K(+). Expression of HtSOS1 decreased Na(+) content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte. PMID:24771143

  11. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus.

    PubMed

    Li, Qing; Tang, Zhong; Hu, Yibing; Yu, Ling; Liu, Zhaopu; Xu, Guohua

    2014-08-01

    Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na(+)/H(+) antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4% identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na(+) and accumulate more K(+). Expression of HtSOS1 decreased Na(+) content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.

  12. Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L.).

    PubMed

    Patade, Vikas Yadav; Bhargava, Sujata; Suprasanna, Penna

    2012-10-01

    Seed priming is a well known pre-germination strategy that improves seed performance. However, biochemical and molecular mechanisms underlying priming mediated stress tolerance are little understood. Here, we report results of the study on growth, physiological characteristics and expression of stress responsive genes in salt primed sugarcane cv. Co 86032 plants in response to salt (NaCl, 150 mM) or iso-osmotic (-0.7 MPa) polyethylene glycol-PEG 8000 (20 % w/v) stress exposure for 15 days. Variable growth, osmolyte accumulation and antioxidant capacity was revealed among the primed and non-primed plants. The primed plants showed better tolerance to the salt or PEG stress, as revealed by better growth and lower membrane damage, through better antioxidant capacity as compared to the respective non-primed controls. Further, steady state transcript expression analysis revealed up regulation of sodium proton antiporter (NHX) while, down regulation of sucrose transporter (SUT1), delta ( 1 )-pyrolline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (PDH) in primed plants on exposure to the stress as compared to the non-primed plants. Transcript abundance of catalase (CAT2) decreased by about 25 % in leaves of non-primed stressed plants, however, the expression was maintained in leaves of the stressed primed plants to that of non-stressed controls. Thus, the results indicated priming mediated salt and PEG stress tolerance through altered gene expression leading to improved antioxidant capacity in sugarcane.

  13. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco.

    PubMed

    George, Suja; Parida, Ajay

    2011-03-01

    Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. In our previous study, we used Prosopis juliflora, an abiotic stress tolerant tree species of Fabaceae, as a model plant system for isolating genes functioning in abiotic stress tolerance. Here we report the isolation and characterization of a Rab family GTPase from P. juliflora (Pj Rab7) and the ability of this gene to confer salt stress tolerance in transgenic tobacco. Northern analysis for Pj Rab7 in P. juliflora leaf tissue revealed up-regulation of this gene under salt stress under the concentrations and time points analyzed. Pj Rab7 transgenic tobacco lines survived better under conditions of 150 mM NaCl stress compared to control un-transformed plants. Pj Rab7 transgenic plants were found to accumulate more sodium than control plants during salt stress. The results of our studies could be used as a starting point for generation of crop plants tolerant to abiotic stress.

  14. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.

    PubMed

    An, Tianchen; Dong, Zhu; Lv, Junchen; Liu, Yujun; Wang, Manchuriga; Wei, Shuangshuang; Song, Yanting; Zhang, Yingxia; Deng, Shiming

    2015-04-01

    A cellulase with wide range of pH resistance and high salt tolerance was isolated from the digestive gland of the oyster Crassostrea rivularis living in mangrove forests. The 27 kDa cellulase named as CrCel was purified 40.6 folds by anion exchange chromatography and extraction from the gel after non-reducing sodium dodecylsufate-polyacrylamide gel electrophoresis. The specific activity of the purified cellulase was 23.4 U/mg against carboxymethyl cellulose (CMC). The N-terminal amino acid sequence of CrCel was determined to be NQKCQANSRV. CrCel preferably hydrolyzes β-1,4-glucosidic bonds in the amorphous parts of cellulose materials and displays degradation activity toward xylan. The Km and Vmax values of CrCel for CMC were determined to be 2.1% ± 0.4% and 73.5 ± 3.3 U mg(-1), respectively. The optimal pH value and temperature of CrCel were 5.5 and 40°C, respectively. The enzyme was stable in a wide range of pH, retaining over 60% activity after incubation for 80 min in the pH range of 3.0-9.0. In addition, CrCel showed remarkable tolerance to salt and remained active at high NaCl concentrations, but also retained over 70% activity after incubation in 0.5-2 M NaCl for up to 24 h. On the basis of the N-terminal sequence alignment and its similar properties to other animal cellulases, CrCel was regarded as a member of glycosyl hydrolase family 45 β-1,4-glucanases. CrCel is the first reported cellulase isolated from mangrove invertebrates, which suggests that it may participate in the assimilation of cellulolytic materials derived from the food sources of the oyster and contribute to the consumption of mangrove primary production. The unique properties of this enzyme make it a potential candidate for further industrial application.

  15. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in salt stress tolerance

    PubMed Central

    2010-01-01

    Background GABA (γ-aminobutyric acid) is a non protein amino acid that has been reported to accumulate in a number of plant species when subjected to high salinity and many other environmental constraints. However, no experimental data are to date available on the molecular function of GABA and the involvement of its metabolism in salt stress tolerance in higher plants. Here, we investigated the regulation of GABA metabolism in Arabidopsis thaliana at the metabolite, enzymatic activity and gene transcription levels upon NaCl stress. Results We identified the GABA transaminase (GABA-T), the first step of GABA catabolism, as the most responsive to NaCl. We further performed a functional analysis of the corresponding gene POP2 and demonstrated that the previously isolated loss-of-function pop2-1 mutant was oversensitive to ionic stress but not to osmotic stress suggesting a specific role in salt tolerance. NaCl oversensitivity was not associated with overaccumulation of Na+ and Cl- but mutant showed a slight decrease in K+. To bring insights into POP2 function, a promoter-reporter gene strategy was used and showed that POP2 was mainly expressed in roots under control conditions and was induced in primary root apex and aerial parts of plants in response to NaCl. Additionally, GC-MS- and UPLC-based metabolite profiling revealed major changes in roots of pop2-1 mutant upon NaCl stress including accumulation of amino acids and decrease in carbohydrates content. Conclusions GABA metabolism was overall up-regulated in response to NaCl in Arabidopsis. Particularly, GABA-T was found to play a pivotal function and impairment of this step was responsible for a decrease in salt tolerance indicating that GABA catabolism was a determinant of Arabidopsis salt tolerance. GABA-T would act in salt responses in linking N and C metabolisms in roots. PMID:20122158

  16. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance

    PubMed Central

    Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome. PMID:26176782

  17. Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3.

    PubMed Central

    Ferrando, A; Kron, S J; Rios, G; Fink, G R; Serrano, R

    1995-01-01

    Dynamic regulation of ion transport is essential for homeostasis as cells confront changes in their environment. The gene HAL3 encodes a novel component of this regulatory circuit in the yeast Saccharomyces cerevisiae. Overexpression of HAL3 improves growth of wild-type cells exposed to toxic concentrations of sodium and lithium and suppresses the salt sensitivity conferred by mutation of the calcium-dependent protein phosphatase calcineurin. Null mutants of HAL3 display salt sensitivity. The sequence of HAL3 gives little clue to its function. However, alterations in intracellular cation concentrations associated with changes in HAL3 expression suggest that HAL3 activity may directly increase cytoplasmic K+ and decrease Na+ and Li+. Cation efflux in S. cerevisiae is mediated by the P-type ATPase encoded by the ENA1/PMR24 gene, a putative plasma membrane Na+ pump whose expression is salt induced. Acting in concert with calcineurin, HAL3 is necessary for full activation of ENA1 expression. This functional complementarity is also reflected in the participation of both proteins in recovery from alpha-factor-induced growth arrest. Recently, HAL3 was isolated as a gene (named SIS2) which when overexpressed partially relieves loss of transcription of G1 cyclins in mutants lacking the protein phosphatase Sit4p. Therefore, HAL3 influences cell cycle control and ion homeostasis, acting in parallel to the protein phosphatases Sit4p and calcineurin. PMID:7565698

  18. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential.

    PubMed

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K(+) loss, decreased Na(+) accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na(+) and K(+) homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  19. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  20. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential.

  1. Improving the yield of (+)-terrein from the salt-tolerant Aspergillus terreus PT06-2.

    PubMed

    Zhao, Chengying; Guo, Lei; Wang, Liping; Zhu, Guoliang; Zhu, Weiming

    2016-05-01

    (+)-Terrein has a potential application for drug discovery. To improve the yield of (+)-terrein, two-level Plackett-Burman design and response surface methodology methods were used to optimize the condition of a salt-tolerant fungus, Aspergillus terreus PT06-2. As a result, the yield of (+)-terrein reached 8.20 ± 0.072 g/L in a 500-mL flask containing 150 mL optimal medium consisted of 13.1 % NaCl, 3.6 % starch, 2 % sodium glutamate, 0.05 % KCl, 3 % inoculum size, adjusting initial pH value to 5 with 10 % HCl and shaking for 18 days at 28 °C and 180 rpm. The production of (+)-terrein was 47.0 % higher than the highest production reported in shake flasks. The advantages of this optimization are uses of single carbon source and nitrogen source and easy separation and purification by recrystallization. The result exhibited the potential and advantages of A. terreus PT06-2 in industrial production of (+)-terrein by fermentation. PMID:27038947

  2. Screening for Abiotic Stress Tolerance in Rice: Salt, Cold, and Drought.

    PubMed

    Almeida, Diego M; Almadanim, M Cecília; Lourenço, Tiago; Abreu, Isabel A; Saibo, Nelson J M; Oliveira, M Margarida

    2016-01-01

    Rice (Oryza sativa) is the primary source of food for more than half of the world population. Most rice varieties are severely injured by abiotic stresses, with strong social and economic impact. Understanding rice responses to stress may help breeding for more tolerant varieties. However, papers dealing with stress experiments often describe very different experimental designs, thus making comparisons difficult. The use of identical setups is the only way to generate comparable data. This chapter is organized into three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB to assess the response of rice plants to three different abiotic stresses--high salinity, cold stress, and drought. All sections include a detailed description of the materials and methodology, as well as useful notes gathered from the GPlantS team's experience. We use rice seedlings as plants at this stage show high sensitivity to abiotic stresses. For the salt and cold stress assays we use hydroponic cultures, while for the drought assay plants are grown in soil and subjected to water withholding. All setups enable visual score determination and are suitable for sample collection along the imposition of stress. The proposed methodologies are simple and affordable to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic level. PMID:26867623

  3. Identification and characterization of a novel salt-tolerant esterase from a Tibetan glacier metagenomic library.

    PubMed

    De Santi, Concetta; Ambrosino, Luca; Tedesco, Pietro; Zhai, Lei; Zhou, Cheng; Xue, Yanfen; Ma, Yanhe; de Pascale, Donatella

    2015-01-01

    A salt-tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p-nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three-dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat-resistant features. PMID:25920073

  4. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis.

    PubMed

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-04-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na(+) entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis. PMID:25614660

  5. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis

    PubMed Central

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-01-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na+ entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis. PMID:25614660

  6. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis.

    PubMed

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-04-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na(+) entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis.

  7. Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency

    PubMed Central

    Nishiyama, Rie; Le, Dung Tien; Watanabe, Yasuko; Matsui, Akihiro; Tanaka, Maho; Seki, Motoaki; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2012-01-01

    Soil destruction by abiotic environmental conditions, such as high salinity, has resulted in dramatic losses of arable land, giving rise to the need of studying mechanisms of plant adaptation to salt stress aimed at creating salt-tolerant plants. Recently, it has been reported that cytokinins (CKs) regulate plant environmental stress responses through two-component systems. A decrease in endogenous CK levels could enhance salt and drought stress tolerance. Here, we have investigated the global transcriptional change caused by a reduction in endogenous CK content under both normal and salt stress conditions. Ten-day-old Arabidopsis thaliana wild-type (WT) and CK-deficient ipt1,3,5,7 plants were transferred to agar plates containing either 0 mM (control) or 200 mM NaCl and maintained at normal growth conditions for 24 h. Our experimental design allowed us to compare transcriptome changes under four conditions: WT-200 mM vs. WT-0 mM, ipt1,3,5,7-0 mM vs. WT-0 mM, ipt1,3,5,7-200 mM vs. ipt1,3,5,7-0 mM and ipt1,3,5,7-200 mM vs. WT-200 mM NaCl. Our results indicated that the expression of more than 10% of all of the annotated Arabidopsis genes was altered by CK deficiency under either normal or salt stress conditions when compared to WT. We found that upregulated expression of many genes encoding either regulatory proteins, such as NAC, DREB and ZFHD transcription factors and the calcium sensor SOS3, or functional proteins, such as late embryogenesis-abundant proteins, xyloglucan endo-transglycosylases, glycosyltransferases, glycoside hydrolases, defensins and glyoxalase I family proteins, may contribute to improved salt tolerance of CK-deficient plants. We also demonstrated that the downregulation of photosynthesis-related genes and the upregulation of several NAC genes may cause the altered morphological phenotype of CK-deficient plants. This study highlights the impact of CK regulation on the well-known stress-responsive signaling pathways, which regulate plant

  8. Cloning and Functional Characterization of a Vacuolar Na+/H+ Antiporter Gene from Mungbean (VrNHX1) and Its Ectopic Expression Enhanced Salt Tolerance in Arabidopsis thaliana

    PubMed Central

    Mishra, Sagarika; Alavilli, Hemasundar; Lee, Byeong-ha; Panda, Sanjib Kumar; Sahoo, Lingaraj

    2014-01-01

    Plant vacuolar NHX exchangers play a significant role in adaption to salt stress by compartmentalizing excess cytosolic Na+ into vacuoles and maintaining cellular homeostasis and ionic equilibrium. We cloned an orthologue of the vacuolar Na+/H+ antiporter gene, VrNHX1 from mungbean (Vigna radiata), an important Asiatic grain legume. The VrNHX1 (Genbank Accession number JN656211.1) contains 2095 nucleotides with an open reading frame of 1629 nucleotides encoding a predicted protein of 542 amino acids with a deduced molecular mass of 59.6 kDa. The consensus amiloride binding motif (84LFFIYLLPPI93) was observed in the third putative transmembrane domain of VrNHX1. Bioinformatic and phylogenetic analysis clearly suggested that VrNHX1 had high similarity to those of orthologs belonging to Class-I clade of plant NHX exchangers in leguminous crops. VrNHX1 could be strongly induced by salt stress in mungbean as the expression in roots significantly increased in presence of 200 mM NaCl with concomitant accumulation of total [Na+]. Induction of VrNHX1 was also observed under cold and dehydration stress, indicating a possible cross talk between various abiotic stresses. Heterologous expression in salt sensitive yeast mutant AXT3 complemented for the loss of yeast vacuolar NHX1 under NaCl, KCl and LiCl stress indicating that VrNHX1 was the orthologue of ScNHX1. Further, AXT3 cells expressing VrNHX1 survived under low pH environment and displayed vacuolar alkalinization analyzed using pH sensitive fluorescent dye BCECF-AM. The constitutive and stress inducible expression of VrNHX1 resulted in enhanced salt tolerance in transgenic Arabidopsis thaliana lines. Our work suggested that VrNHX1 was a salt tolerance determinant in mungbean. PMID:25350285

  9. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    DOEpatents

    Zhu, Jian-Kang; Quintero-Toscano, Francisco Javier; Pardo-Prieto, Jose Manuel; Qiu, Quansheng; Schumaker, Karen Sue; Ohta, Masaru; Zhang, Changqing; Guo, Yan

    2007-09-04

    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  10. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar.

    PubMed

    Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing

    2016-09-01

    The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar. PMID:27593267

  11. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings.

    PubMed

    Li, Gezi; Peng, Xiaoqi; Wei, Liting; Kang, Guozhang

    2013-10-25

    Exogenous salicylic acid (SA) significantly improved abiotic tolerance in higher plants, and ascorbate (ASA) and glutathione (GSH) play important roles in abiotic tolerance. In this study, SA (0.5mM) markedly increased the contents of ASA and GSH in SA-treated plants during salt stress (250mM NaCl). The transcript levels of the genes encoding ASA and GSH cycle enzymes were measured using quantitative real-time PCR. The results indicated that, during salt stress, exogenous SA significantly enhanced the transcripts of glutathione peroxidase (GPX1), phospholipid hydroperoxide glutathione peroxidase (GPX2) and dehydroascorbate reductase (DHAR) genes at 12h, glutathione reductase (GR) at 24h, 48h and 72h, glutathione-S-transferase 1 (GST1), 2 (GST2), monodehydroascorbate reductase (MDHAR) and glutathione synthetase (GS) at the 48h and 72h after salt stress, respectively. The results implied that SA temporally regulated the transcript levels of the genes encoding ASA-GSH cycle enzymes, resulting in the increased contents of GSH and ASA and enhanced salt tolerance.

  12. Infection risk decreases with increasing mismatch in host and pathogen environmental tolerances.

    PubMed

    Nowakowski, A Justin; Whitfield, Steven M; Eskew, Evan A; Thompson, Michelle E; Rose, Jonathan P; Caraballo, Benjamin L; Kerby, Jacob L; Donnelly, Maureen A; Todd, Brian D

    2016-09-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused the greatest known wildlife pandemic, infecting over 500 amphibian species. It remains unclear why some host species decline from disease-related mortality whereas others persist. We introduce a conceptual model that predicts that infection risk in ectotherms will decrease as the difference between host and pathogen environmental tolerances (i.e. tolerance mismatch) increases. We test this prediction using both local-scale data from Costa Rica and global analyses of over 11 000 Bd infection assays. We find that infection prevalence decreases with increasing thermal tolerance mismatch and with increasing host tolerance of habitat modification. The relationship between environmental tolerance mismatches and Bd infection prevalence is generalisable across multiple amphibian families and spatial scales, and the magnitude of the tolerance mismatch effect depends on environmental context. These findings may help explain patterns of amphibian declines driven by a global wildlife pandemic. PMID:27339786

  13. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance.

    PubMed

    Navarro, Josefa M; Pérez-Tornero, Olaya; Morte, Asunción

    2014-01-01

    Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (-AM). From forty-five days after fungal inoculation onwards, half of +AM or -AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized -AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.

  14. The Redox-Sensitive Chloroplast Trehalose-6-Phosphate Phosphatase AtTPPD Regulates Salt Stress Tolerance

    PubMed Central

    Krasensky, Julia; Broyart, Caroline; Rabanal, Fernando A.

    2014-01-01

    Abstract Aims: High salinity stress impairs plant growth and development. Trehalose metabolism has been implicated in sugar signaling, and enhanced trehalose metabolism can positively regulate abiotic stress tolerance. However, the molecular mechanism(s) of the stress-related trehalose pathway and the role of individual trehalose biosynthetic enzymes for stress tolerance remain unclear. Results: Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step of trehalose metabolism. Investigating the subcellular localization of the Arabidopsis thaliana TPP family members, we identified AtTPPD as a chloroplast-localized enzyme. Plants deficient in AtTPPD were hypersensitive, whereas plants overexpressing AtTPPD were more tolerant to high salinity stress. Elevated stress tolerance of AtTPPD overexpressors correlated with high starch levels and increased accumulation of soluble sugars, suggesting a role for AtTPPD in regulating sugar metabolism under salinity conditions. Biochemical analyses indicate that AtTPPD is a target of post-translational redox regulation and can be reversibly inactivated by oxidizing conditions. Two cysteine residues were identified as the redox-sensitive sites. Structural and mutation analyses suggest that the formation of an intramolecular disulfide bridge regulates AtTPPD activity. Innovation: The activity of different AtTPP isoforms, located in the cytosol, nucleus, and chloroplasts, can be redox regulated, suggesting that the trehalose metabolism might relay the redox status of different cellular compartments to regulate diverse biological processes such as stress responses. Conclusion: The evolutionary conservation of the two redox regulatory cysteine residues of TPPs in spermatophytes indicates that redox regulation of TPPs might be a common mechanism enabling plants to rapidly adjust trehalose metabolism to the prevailing environmental and developmental conditions. Antioxid. Redox Signal. 21, 1289–1304. PMID:24800789

  15. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway.

    PubMed

    Bao, Hexigeduleng; Chen, Xianyang; Lv, Sulian; Jiang, Ping; Feng, Juanjuan; Fan, Pengxiang; Nie, Lingling; Li, Yinxin

    2015-03-01

    γ-Aminobutyric acid (GABA) accumulates in many plant species in response to environmental stress. However, the physiological function of GABA or its metabolic pathway (GABA shunt) in plants remains largely unclear. Here, the genes, including glutamate decarboxylases (SlGADs), GABA transaminases (SlGABA-Ts) and succinic semialdehyde dehydrogenase (SlSSADH), controlling three steps of the metabolic pathway of GABA, were studied through virus-induced gene silencing approach in tomato. Silencing of SlGADs (GABA biosynthetic genes) and SlGABA-Ts (GABA catabolic genes) led to increased accumulation of reactive oxygen species (ROS) as well as salt sensitivity under 200 mm NaCl treatment. Targeted quantitative analysis of metabolites revealed that GABA decreased and increased in the SlGADs- and SlGABA-Ts-silenced plants, respectively, whereas succinate (the final product of GABA metabolism) decreased in both silenced plants. Contrarily, SlSSADH-silenced plants, also defective in GABA degradation process, showed dwarf phenotype, curled leaves and enhanced accumulation of ROS in normal conditions, suggesting the involvement of a bypath for succinic semialdehyde catabolism to γ-hydroxybutyrate as reported previously in Arabidopsis, were less sensitive to salt stress. These results suggest that GABA shunt is involved in salt tolerance of tomato, probably by affecting the homeostasis of metabolites such as succinate and γ-hydroxybutyrate and subsequent ROS accumulation under salt stress.

  16. Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments.

    PubMed

    Divya, L M; Prasanth, G K; Sadasivan, C

    2014-06-01

    Industrialization causes the generation of phenolic pollutants in the environment. The ability of laccases to oxidize phenolic compounds and reduce molecular oxygen to water has led to intensive studies on these enzymes. Although salt-tolerant fungi are potential sources of enzymes for industrial applications, they have been inadequately explored for laccase production. This study describes the isolation of a salt- and phenol-tolerant strain of Trichoderma sp. with the ability to produce laccase, and thus with the potential for industrial applications. The coconut husk retting ground in the estuaries of Kerala, India, a saline environment highly polluted with phenolic compounds, was selected for isolating the fungus. Enhanced laccase production was observed at 5-10 ppt salinity. The organism could grow even at 30 ppt salinity with reduced biomass production and laccase secretion. The optimum concentration of different phenolic compounds for enhanced laccase secretion ranged between 20 and 80 mg L(-1) . As the concentration of phenolic compounds increased beyond 200 mg L(-1) , the enzyme activity decreased and was completely inhibited at 800 mg L(-1) . The tolerance of Trichoderma viride Pers. NFCCI-2745 to salinity and various phenolic compounds can be utilized in the bioremediation of highly saline and phenolic compound-rich industrial effluents.

  17. Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments.

    PubMed

    Divya, L M; Prasanth, G K; Sadasivan, C

    2014-06-01

    Industrialization causes the generation of phenolic pollutants in the environment. The ability of laccases to oxidize phenolic compounds and reduce molecular oxygen to water has led to intensive studies on these enzymes. Although salt-tolerant fungi are potential sources of enzymes for industrial applications, they have been inadequately explored for laccase production. This study describes the isolation of a salt- and phenol-tolerant strain of Trichoderma sp. with the ability to produce laccase, and thus with the potential for industrial applications. The coconut husk retting ground in the estuaries of Kerala, India, a saline environment highly polluted with phenolic compounds, was selected for isolating the fungus. Enhanced laccase production was observed at 5-10 ppt salinity. The organism could grow even at 30 ppt salinity with reduced biomass production and laccase secretion. The optimum concentration of different phenolic compounds for enhanced laccase secretion ranged between 20 and 80 mg L(-1) . As the concentration of phenolic compounds increased beyond 200 mg L(-1) , the enzyme activity decreased and was completely inhibited at 800 mg L(-1) . The tolerance of Trichoderma viride Pers. NFCCI-2745 to salinity and various phenolic compounds can be utilized in the bioremediation of highly saline and phenolic compound-rich industrial effluents. PMID:23712577

  18. Increased salt sensitivity secondary to leptin resistance in SHHF rats is mediated by endothelin.

    PubMed

    Radin, M Judith; Holycross, Bethany J; Hoepf, Toni M; McCune, Sylvia A

    2003-01-01

    A link between leptin resistance, obesity, and salt sensitivity has been suggested. SHHF/Mcc-fa(cp) rats (SHHF) were used to study the effect of gene dosage of a null mutation of the leptin receptor (cp) on salt sensitivity and response to a combined endothelin A and B receptor antagonist (bosentan). Obese (cp/cp), heterozygous (+/cp), and homozygous lean (+/+) male SHHF were fed a low salt diet (0.3% NaCl) for 7 days, followed by a high salt diet (8.0% NaCl) for 7 days. There were no significant differences in systolic blood pressure between genotypes on low salt. In response to high salt, cp/cp had significantly greater systolic pressure than +/cp and +/+. On high salt diet, cp/cp showed a significant increase in 24 h urinary endothelin excretion and increased renal expression of preproendothelin mRNA. There was no effect of high salt diet on renal excretion of nitric oxide (NOx) or on gene expression of endothelial, neuronal, or cytokine-induced nitric oxide synthase isoforms (eNOS, nNOS, iNOS, respectively). Treatment with bosentan prevented the high salt-induced increment in systolic blood pressure in cp/cp. This was associated with a doubling of renal NOx excretion, but without changes in eNOS, nNOS, or iNOS expression. Endothelin receptor antagonism did not normalize systolic pressure in any of the genotypes. Our studies indicate that obesity secondary to leptin resistance (cp/cp) results in increased salt sensitivity that is mediated by endothelin in the SHHF rat.

  19. Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance.

    PubMed

    Wu, X X; Li, J; Wu, X D; Liu, Q; Wang, Z K; Liu, S S; Li, S N; Ma, Y L; Sun, J; Zhao, L; Li, H Y; Li, D M; Li, W B; Su, A Y

    2016-01-01

    Drought and salt stresses are the two major factors influencing the yield and quality of crops worldwide. Na(+)(K(+))/H(+) antiporters (NHXs) are ubiquitous membrane proteins that play important roles in maintaining the cellular pH and Na(+)(K(+)) homeostasis. The model plant Arabidopsis potentially encodes six NHX genes, namely AtNHX1 to 6. In the present study, AtNHX5, a comparatively less well-studied NHX, was cloned and transferred into a soybean variety, Dongnong-50, via Agrobacterium-mediated cotyledonary node transformation to assess its role in improving salt tolerance of the transgenic plants. The transgenic soybean plants were tolerant to the presence of 300 mM NaCl whereas the non-transgenic plants were not. Furthermore, after NaCl treatment, the transgenic plants had a higher content of free proline but lower content of malondialdehyde compared to the non-transgenic plants. Our results revealed that that AtNHX5 possibly functioned by efficiently transporting Na(+) and K(+) ions from the roots to the leaves. Overall, the results obtained in this study suggest that soybean salt tolerance could be improved through the over expression of Arabidopsis AtNHX5. PMID:27323012

  20. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae)

    USGS Publications Warehouse

    Vasquez, Edward A.; Glenn, Edward P.; Brown, J. Jed; Guntenspergen, Glenn R.; Nelson, Stephen G.

    2005-01-01

    A distinct, non-native haplotype of the common reed Phragmites australis has become invasive in Atlantic coastal Spartina marshes. We compared the salt tolerance and other growth characteristics of the invasive M haplotype with 2 native haplotypes (F and AC) in greenhouse experiments. The M haplotype retained 50% of its growth potential up to 0.4 M NaCl, whereas the F and AC haplotypes did not grow above 0.1 M NaCl. The M haplotype produced more shoots per gram of rhizome tissue and had higher relative growth rates than the native haplotypes on both freshwater and saline water treatments. The M haplotype also differed from the native haplotypes in shoot water content and the biometrics of shoots and rhizomes. The results offer an explanation for how the M haplotype is able to spread in coastal salt marshes and support the conclusion of DNA analyses that the M haplotype is a distinct ecotype of P. australis.

  1. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.

    PubMed

    Liu, Hua; Wang, Qiuqing; Yu, Mengmeng; Zhang, Yanyan; Wu, Yingbao; Zhang, Hongxia

    2008-09-01

    In Arabidopsis thaliana, six vacuolar Na(+)/H(+) antiporters (AtNHX1-6) were identified. Among them, AtNHX1, 2 and 5 are functional Na(+)/H(+) antiporters with the most abundant expression levels in seedling shoots and roots. However, the expression of AtNHX3 in Arabidopsis can only be detected by RT-PCR, and its physiological function still remains unclear. In this work, we demonstrate that constitutive expression of AtNHX3 in sugar beet (Beta vulgaris L.) conferred augmented resistance to high salinity on transgenic plants. In the presence of 300 or 500 mm NaCl, transgenic plants showed very high potassium accumulation in the roots and storage roots. Furthermore, the transcripts of sucrose phosphate synthase (SPS), sucrose synthase (SS) and cell wall sucrose invertase (SI) genes were maintained in transgenic plants. The accumulation of soluble sugar in the storage roots of transgenic plants grown under high salt stress condition was also higher. Our results implicate that AtNHX3 is also a functional antiporter responsible for salt tolerance by mediating K(+)/H(+) exchange in higher plants. The salt accumulation in leaves but not in the storage roots, and the increased yield of storage roots with enhanced constituent soluble sugar contents under salt stress condition demonstrate a great potential use of this gene in improving the quality and yield of crop plants.

  2. Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance.

    PubMed

    Müller, Maria; Kunz, Hans-Henning; Schroeder, Julian I; Kemp, Grant; Young, Howard S; Neuhaus, H Ekkehard

    2014-05-01

    Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.

  3. Responses of tolerant and susceptible Kentucky bluegrass (Poa pratensis L.) germplasm to salt stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of semi-arid western North America is salt-affected, and utilizing turfgrasses in salty areas can be challenging. Kentucky bluegrass is relatively susceptible to salt stress, showing reduced growth, osmotic and ionic stress, and eventual death at moderate or high salt concentrations. Consider...

  4. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    PubMed

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control.

  5. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco.

    PubMed

    Guo, Ze-Jian; Chen, Xu-Jun; Wu, Xue-Long; Ling, Jian-Qun; Xu, Ping

    2004-07-01

    Osmotin promoter binding protein 1 (OPBP1), an AP2/EREBP-like transcription factor of tobacco (Nicotiana tabacum), was isolated using a yeast one-hybrid system. RNA gel blot analysis indicated that expression of the OPBP1 gene was induced by elicitor cryptogein, NaCl, ethephon, methyl jasmonate, as well as cycloheximide. Transient expression analysis using an OPBP1-eGFP fusion gene in onion epidermal cells revealed that the OPBP1 protein was targeted to the nuclear. Further, electrophoretic mobility shift assays demonstrated that the recombinant OPBP1 protein could bind to an oligonucleotide containing the GCC-box cis element. Transgenic tobacco plants with an over expression of the OPBP1 gene accumulated high levels of PR-1a and PR-5d genes and exhibited enhanced resistance to infection by Pseudomonas syringae pv tabaci and Phytophthora parasitica var nicotianae pathogens. They also exhibited increased tolerance to salt stress. These results suggest that OPBP1 might be a transcriptional regulator capable of regulating expression in sets of stress-related genes. PMID:15604704

  6. Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms

    PubMed Central

    2010-01-01

    Background Populus euphratica is a salt tolerant and Populus × canescens a salt sensitive poplar species. Because of low transcriptional responsiveness of P. euphratica to salinity we hypothesized that this species exhibits an innate activation of stress protective genes compared with salt sensitive poplars. To test this hypothesis, the transcriptome and metabolome of mature unstressed leaves of P. euphratica and P. × canescens were compared by whole genome microarray analyses and FT-ICR-MS metabolite profiling. Results Direct cross-species comparison of the transcriptomes of the two poplar species from phylogenetically different sections required filtering of the data set. Genes assigned to the GO slim categories 'mitochondria', 'cell wall', 'transport', 'energy metabolism' and 'secondary metabolism' were significantly enriched, whereas genes in the categories 'nucleus', 'RNA or DNA binding', 'kinase activity' and 'transcription factor activity' were significantly depleted in P. euphratica compared with P. × canescens. Evidence for a general activation of stress relevant genes in P. euphratica was not detected. Pathway analyses of metabolome and transcriptome data indicated stronger accumulation of primary sugars, activation of pathways for sugar alcohol production, and faster consumption of secondary metabolites in P. euphratica compared to P. × canescens. Physiological measurements showing higher respiration, higher tannin and soluble phenolic contents as well as enrichment of glucose and fructose in P. euphratica compared to P. × canescens corroborated the results of pathway analyses. Conclusion P. euphratica does not rely on general over-expression of stress pathways to tolerate salt stress. Instead, it exhibits permanent activation of control mechanisms for osmotic adjustment (sugar and sugar alcohols), ion compartmentalization (sodium, potassium and other metabolite transporters) and detoxification of reactive oxygen species (phenolic compounds). The

  7. Salt-Induced Thirst Results in Increased Finickiness in Humans

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Case, Trevor I.; Oaten, Megan J.

    2010-01-01

    Common sense suggests that water-deprived or food-deprived organisms should be more willing to consume foods or fluids that would be deemed undesirable under lower states of deprivation. With food, evidence favoring this account has been observed; however other studies find that hungry participants demonstrate increased finickiness--avoiding less…

  8. The HAL1 function on Na+ homeostasis is maintained over time in salt-treated transgenic tomato plants, but the high reduction of Na+ in leaf is not associated with salt tolerance.

    PubMed

    Muñoz-Mayor, Alicia; Pineda, Benito; Garcia-Abellán, Jose O; Garcia-Sogo, Begoña; Moyano, Elena; Atares, Alejandro; Vicente-Agulló, Francisco; Serrano, Ramon; Moreno, Vicente; Bolarin, Maria C

    2008-06-01

    To achieve a deeper knowledge on the function of HAL1 gene in tomato (Solanum lycopersicum) plants submitted to salt stress, in this study, we studied the growth and physiological responses to high salt stress of T3 transgenic plants (an azygous line without transgene and both homozygous and hemizygous lines for HAL1) proceeding from a primary transformant with a very high expression level of HAL1 gene. The homozygous plants for HAL1 gene did not increase their salt tolerance in spite of an earlier and higher reduction of the Na(+) accumulation in leaves, being moreover the Na(+) homeostasis maintained throughout the growth cycle. The greater ability of the homozygous line to regulate the Na(+) transport to the shoot to long term was even shown in low accumulation of Na(+) in fruits. By comparing the homozygous and hemizygous lines, a higher salt tolerance in the hemizygous line, with respect to the homozygous line, was observed on the basis of fruit yield. The Na(+) homeostasis and osmotic homeostasis were also different in homozygous and hemizygous lines. Indeed, the Na(+) accumulation rate in leaves was greater in hemizygous than in homozygous line after 35 days of 100 mM NaCl treatment and only at the end of growth cycle did the hemizygous line show leaf Na(+) levels similar to those found in the homozygous line. With respect to the osmotic homeostasis, the main difference between lines was the different contribution of inorganic and organic solutes to the leaf osmotic balance. Taken together, these results suggest that the greater Na(+) exclusion ability of the homozygous line overexpressing HAL1 induces a greater use of organic solutes for osmotic balance, which seems to have an energy cost and hence a growth penalty that reverts negatively on fruit yield.

  9. Estradiol increases salt intake in female normotensive and hypertensive rats.

    PubMed

    Kensicki, Eric; Dunphy, Gail; Ely, Daniel

    2002-08-01

    The objective of this study was to examine whether or not estradiol (E2) alters sodium intake in hypertensive and normotensive female rats. It was hypothesized that higher doses of E2 would increase sodium consumption and that this response would be greater in spontaneously hypertensive rats (SHR) compared with Wistar Kyoto (WKY) rats. The study involved female SHR and WKY (n = 12/group). All animals were ovariectomized. Six of twelve rats from each strain received three progressively larger doses of beta-estradiol propionate (each dose lasting 2 wk), whereas the other six rats from each strain received sham implants. Blood E2 levels were measured by radioimmunoassay after each 2-wk period, allowing a 10-day washout period before the next E2 dose. Rats had access to 0.0, 0.5, 1.0, and 1.5% NaCl solutions to drink throughout the experiment. There was a significant positive correlation between sodium intake and plasma E2 (r = 0.8, P < 0.001). Both strains avoided the 1.5% NaCl, and the increased sodium intake was achieved by an increase in consumption of the 0.5% NaCl. SHR females consumed more sodium than WKY females, which is similar to what has been observed in males of these strains. In conclusion, E2 was positively correlated with sodium intake in both strains of rat, with the hypertensive rats consuming more sodium than the normotensive rats.

  10. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    NASA Astrophysics Data System (ADS)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  11. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicargo sativa L.) using Genotyping by Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : In this study, we used a diverse panel of alfalfa accessions to identify molecular markers associated with salt tolerance during germination by genome-wide association (GWA) mapping and genotyping-by-sequencing (GBS). Three levels of salt treatments were applied during seed germination. Phenotypic...

  12. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling.

    PubMed

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  13. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    PubMed Central

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  14. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

    PubMed

    Hu, Honghong; You, Jun; Fang, Yujie; Zhu, Xiaoyi; Qi, Zhuyun; Xiong, Lizhong

    2008-05-01

    Plants respond to adverse environment by initiating a series of signaling processes including activation of transcription factors that can regulate expression of arrays of genes for stress response and adaptation. NAC (NAM, ATAF, and CUC) is a plant specific transcription factor family with diverse roles in development and stress regulation. In this report, a stress-responsive NAC gene (SNAC2) isolated from upland rice IRA109 (Oryza sativa L. ssp japonica) was characterized for its role in stress tolerance. SNAC2 was proven to have transactivation and DNA-binding activities in yeast and the SNAC2-GFP fusion protein was localized in the rice nuclei. Northern blot and SNAC2 promoter activity analyses suggest that SNAC2 gene was induced by drought, salinity, cold, wounding, and abscisic acid (ABA) treatment. The SNAC2 gene was over-expressed in japonica rice Zhonghua 11 to test the effect on improving stress tolerance. More than 50% of the transgenic plants remained vigorous when all WT plants died after severe cold stress (4-8 degrees C for 5 days). The transgenic plants had higher cell membrane stability than wild type during the cold stress. The transgenic rice had significantly higher germination and growth rate than WT under high salinity conditions. Over-expression of SNAC2 can also improve the tolerance to PEG treatment. In addition, the SNAC2-overexpressing plants showed significantly increased sensitivity to ABA. DNA chip profiling analysis of transgenic plants revealed many up-regulated genes related to stress response and adaptation such as peroxidase, ornithine aminotransferase, heavy metal-associated protein, sodium/hydrogen exchanger, heat shock protein, GDSL-like lipase, and phenylalanine ammonia lyase. Interestingly, none of the up-regulated genes in the SNAC2-overexpressing plants matched the genes up-regulated in the transgenic plants over-expressing other stress responsive NAC genes reported previously. These data suggest SNAC2 is a novel stress

  15. An acanthocephalan parasite increases the salinity tolerance of the freshwater amphipod Gammarus roeseli (Crustacea: Gammaridae).

    PubMed

    Piscart, Christophe; Webb, Dennis; Beisel, Jean Nicolas

    2007-09-01

    Studies of the influence of parasites on host fitness generally conclude that parasites have a strong negative effect on their hosts. In this study, we have investigated experimentally the role of Polymorphus minutus, an acanthocephalan parasite, on the salinity tolerance of the freshwater amphipod Gammarus roeseli, one of its intermediate hosts. Unexpectedly, P. minutus-infected gammarids were more tolerant to salinity stress than uninfected ones. The mean lethal salt concentrations for 50% mortality of hosts tested were 17.3 (infected) and 9.7 g/L (uninfected). The parasitic load (one or two parasites per host) did not affect the result. The size of hosts had no significant influence on the salinity tolerance of either infected or uninfected gammarids. The mobility of all types of gammarid decreased when the salinity exceeded 9.0 g/L, but there was no significant difference between infected and uninfected gammarids. We discuss the higher salinity tolerance of infected amphipods in relation to O(2) consumption and osmoregulation. Finally, we demonstrate that the salinity tolerance is enhanced in the parasitized amphipod but without a significant change in behavior or an osmoregulatory adjustment. PMID:17487466

  16. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.

    PubMed

    Chen, Huatao; He, Hui; Yu, Deyue

    2011-01-01

    Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38-49% identity with other plant HKT-like sequences. RT-PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non-transgenic plants. To investigate the role of GmHKT1 in K(+) and Na(+) transport, we compared K(+) and Na(+) accumulation in roots and shoots of wild-type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K(+) and Na(+) transport in roots and shoots, and regulated Na(+) /K(+) homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress.

  17. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza.

    PubMed

    Wu, Yucui; Liu, Congling; Kuang, Jing; Ge, Qian; Zhang, Yuan; Wang, Zhezhi

    2014-09-01

    Salinity and drought are important abiotic stresses limiting plant growth and development. Late embryogenesis abundant (LEA) proteins are a group of proteins associated with tolerance to water-related stress. We previously cloned an LEA gene, SmLEA, from Salvia miltiorrhiza Bunge. Phylogenetic analysis indicated that SmLEA belongs to Group LEA14, which is involved in the dehydration response. To determine its function in detail, we have now overexpressed SmLEA in Escherichia coli and S. miltiorrhiza. The logarithmic increase in accumulations of SmLEA proteins in E. coli occurred earlier under salinity than under standard conditions. SmLEA-transformed S. miltiorrhiza plants also showed faster root elongation and a lower malondialdehyde concentration than the empty vector control plants did when cultured on MS media supplemented with 60 mM NaCl or 150 mM mannitol. Moreover, SmLEA-overexpressing transgenics experienced a less rapid rate of water loss. Under either salinity or drought, overexpressing plants had greater superoxide dismutase activity and a higher glutathione concentration. These results suggest that SmLEA may be useful in efforts to improve drought and salinity tolerance in S. miltiorrhiza. Our data also provide a good foundation for further studies into the stress resistance mechanism and molecular breeding of this valuable medicinal plant.

  18. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza.

    PubMed

    Wu, Yucui; Liu, Congling; Kuang, Jing; Ge, Qian; Zhang, Yuan; Wang, Zhezhi

    2014-09-01

    Salinity and drought are important abiotic stresses limiting plant growth and development. Late embryogenesis abundant (LEA) proteins are a group of proteins associated with tolerance to water-related stress. We previously cloned an LEA gene, SmLEA, from Salvia miltiorrhiza Bunge. Phylogenetic analysis indicated that SmLEA belongs to Group LEA14, which is involved in the dehydration response. To determine its function in detail, we have now overexpressed SmLEA in Escherichia coli and S. miltiorrhiza. The logarithmic increase in accumulations of SmLEA proteins in E. coli occurred earlier under salinity than under standard conditions. SmLEA-transformed S. miltiorrhiza plants also showed faster root elongation and a lower malondialdehyde concentration than the empty vector control plants did when cultured on MS media supplemented with 60 mM NaCl or 150 mM mannitol. Moreover, SmLEA-overexpressing transgenics experienced a less rapid rate of water loss. Under either salinity or drought, overexpressing plants had greater superoxide dismutase activity and a higher glutathione concentration. These results suggest that SmLEA may be useful in efforts to improve drought and salinity tolerance in S. miltiorrhiza. Our data also provide a good foundation for further studies into the stress resistance mechanism and molecular breeding of this valuable medicinal plant. PMID:24595620

  19. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression

    PubMed Central

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants.

  20. Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression

    PubMed Central

    Zhang, Shuwu; Gan, Yantai; Xu, Bingliang

    2016-01-01

    Soil salinity is a serious problem worldwide that reduces agricultural productivity. Trichoderma longibrachiatum T6 (T6) has been shown to promote wheat growth and induce plant resistance to parasitic nematodes, but whether the plant-growth-promoting fungi T6 can enhance plant tolerance to salt stress is unknown. Here, we determined the effect of plant-growth-promoting fungi T6 on wheat seedlings’ growth and development under salt stress, and investigated the role of T6 in inducing the resistance to NaCl stress at physiological, biochemical, and molecular levels. Wheat seedlings were inoculated with the strain of T6 and then compared with non-inoculated controls. Shoot height, root length, and shoot and root weights were measured on 15 days old wheat seedlings grown either under 150 mM NaCl or in a controlled setting without any NaCl. A number of colonies were re-isolated from the roots of wheat seedlings under salt stress. The relative water content in the leaves and roots, chlorophyll content, and root activity were significantly increased, and the accumulation of proline content in leaves was markedly accelerated with the plant growth parameters, but the content of leaf malondialdehyde under saline condition was significantly decreased. The antioxidant enzymes-superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in wheat seedlings were increased by 29, 39, and 19%, respectively, with the application of the strain of T6 under salt stress; the relative expression of SOD, POD, and CAT genes in these wheat seedlings were significantly up-regulated. Our results indicated that the strain of T6 ameliorated the adverse effects significantly, protecting the seedlings from salt stress during their growth period. The possible mechanisms by which T6 suppresses the negative effect of NaCl stress on wheat seedling growth may be due to the improvement of the antioxidative defense system and gene expression in the stressed wheat plants. PMID:27695475

  1. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance.

    PubMed

    Shi, Yanmei; Guo, Jinggong; Zhang, Wei; Jin, Lifeng; Liu, Pingping; Chen, Xia; Li, Feng; Wei, Pan; Li, Zefeng; Li, Wenzheng; Wei, Chunyang; Zheng, Qingxia; Chen, Qiansi; Zhang, Jianfeng; Lin, Fucheng; Qu, Lingbo; Snyder, John Hugh; Wang, Ran

    2015-01-01

    Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum. PMID:26703579

  2. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    PubMed Central

    Shi, Yanmei; Guo, Jinggong; Zhang, Wei; Jin, Lifeng; Liu, Pingping; Chen, Xia; Li, Feng; Wei, Pan; Li, Zefeng; Li, Wenzheng; Wei, Chunyang; Zheng, Qingxia; Chen, Qiansi; Zhang, Jianfeng; Lin, Fucheng; Qu, Lingbo; Snyder, John Hugh; Wang, Ran

    2015-01-01

    Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum. PMID:26703579

  3. Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance.

    PubMed

    Gouiaa, Sandra; Khoudi, Habib; Leidi, Eduardo O; Pardo, Jose M; Masmoudi, Khaled

    2012-05-01

    Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance. PMID:22415161

  4. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato.

    PubMed

    Zhai, Hong; Wang, Feibing; Si, Zengzhi; Huo, Jinxi; Xing, Lei; An, Yanyan; He, Shaozhen; Liu, Qingchang

    2016-02-01

    Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3 ), phosphatidic acid (PA), Ca(2+) , ABA, K(+) , proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na(+) and H2 O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3 , PA, Ca(2+) , ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2 O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants. PMID:26011089

  5. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants

    PubMed Central

    Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong

    2016-01-01

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021

  6. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  7. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change. PMID:26909467

  8. Ion measurements by X-ray microanalysis in unfixed, frozen, hydrated plant cells of species differing in salt tolerance.

    PubMed

    Yeo, A R; Läuchli, A; Kramer, D; Gullasch, J

    1977-01-01

    A technique is described for X-ray microanalysis of unfixed, frozen, hydrated higher plant cells using a scanning electron microscope in conjunction with a cryostage. Freezing in liquid N2 is the only preparative step required. Using this method, ion distribution was compared in the roots of Zea mays L. (termed a salt excluder) and Hordeum vulgare L. (which is rather more tolerant), both grown in the presence of NaCl. Distinct differences were observed between the two species in Na, K and Cl distribution. Evidence is presented to support the hypothesis that reabsorption of Na from the xylem sap in the mature regions of the root may occur in salt-sensitive glycophytes such as Z. mays. PMID:24419576

  9. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.

    PubMed

    Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2016-07-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.

  10. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance1[OPEN

    PubMed Central

    Ali, Akhtar; Aman, Rashid; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A.; Lee, Keun Woo; Maggio, Albino; Yun, Dae-Jin

    2016-01-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K+ TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na+ from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K+ transporter in the presence of Na+ in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T. salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1N-D) complemented K+-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1N-D and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1. Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na+ and K+ based on the n/d variance in the pore region. This change also dictated inward-rectification for Na+ transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. PMID:27208305

  11. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.

    PubMed

    Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2016-07-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. PMID:27208305

  12. Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level.

    PubMed

    Batista-Santos, Paula; Duro, Nuno; Rodrigues, Ana P; Semedo, José N; Alves, Paula; da Costa, Mário; Graça, Inês; Pais, Isabel P; Scotti-Campos, Paula; Lidon, Fernando C; Leitão, António E; Pawlowski, Katharina; Ribeiro-Barros, Ana I; Ramalho, José C

    2015-11-01

    Casuarina glauca is an actinorhizal tree which establishes root-nodule symbiosis with N2-fixing Frankia bacteria. This plant is commonly found in saline zones and is widely used to remediate marginal soils and prevent desertification. The nature of its ability to survive in extreme environments and the extent of Frankia contribution to stress tolerance remain unknown. Thus, we evaluated the ability of C. glauca to cope with salt stress and the influence of the symbiosis on this trait. To this end, we analysed the impact of salt on plant growth, mineral contents, water relations, photosynthetic-related parameters and non-structural sugars in nodulated vs. non-nodulated plants. Although the effects on photosynthesis and stomatal conductance started to become measurable in the presence of 200 mM NaCl, photochemical (e.g., photosynthetic electron flow) and biochemical (e.g., activity of photosynthetic enzymes) parameters were only strongly impaired when NaCl levels reached 600 mM. These results indicate the maintenance of high tissue hydration under salt stress, probably associated with enhanced osmotic potential. Furthermore, the maintenance of photosynthetic assimilation potential (A(max)), together with the increase in the quantum yield of down-regulated energy dissipation of PSII (Y(NPQ)), suggested a down-regulation of photosynthesis instead of photo-damaging effects. A comparison of the impact of increasing NaCl levels on the activities of photosynthetic (RubisCO and ribulose-5 phosphate kinase) and respiratory (pyruvate kinase and NADH-dependent malate dehydrogenase) enzymes vs. photosynthetic electron flow and fluorescence parameters, revealed that biochemical impairments are more limiting than photochemical damage. Altogether, these results indicate that, under controlled conditions, C. glauca tolerates high NaCl levels and that this capacity is linked to photosynthetic adjustments.

  13. Is salt stress tolerance in Casuarina glauca Sieb. ex Spreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level.

    PubMed

    Batista-Santos, Paula; Duro, Nuno; Rodrigues, Ana P; Semedo, José N; Alves, Paula; da Costa, Mário; Graça, Inês; Pais, Isabel P; Scotti-Campos, Paula; Lidon, Fernando C; Leitão, António E; Pawlowski, Katharina; Ribeiro-Barros, Ana I; Ramalho, José C

    2015-11-01

    Casuarina glauca is an actinorhizal tree which establishes root-nodule symbiosis with N2-fixing Frankia bacteria. This plant is commonly found in saline zones and is widely used to remediate marginal soils and prevent desertification. The nature of its ability to survive in extreme environments and the extent of Frankia contribution to stress tolerance remain unknown. Thus, we evaluated the ability of C. glauca to cope with salt stress and the influence of the symbiosis on this trait. To this end, we analysed the impact of salt on plant growth, mineral contents, water relations, photosynthetic-related parameters and non-structural sugars in nodulated vs. non-nodulated plants. Although the effects on photosynthesis and stomatal conductance started to become measurable in the presence of 200 mM NaCl, photochemical (e.g., photosynthetic electron flow) and biochemical (e.g., activity of photosynthetic enzymes) parameters were only strongly impaired when NaCl levels reached 600 mM. These results indicate the maintenance of high tissue hydration under salt stress, probably associated with enhanced osmotic potential. Furthermore, the maintenance of photosynthetic assimilation potential (A(max)), together with the increase in the quantum yield of down-regulated energy dissipation of PSII (Y(NPQ)), suggested a down-regulation of photosynthesis instead of photo-damaging effects. A comparison of the impact of increasing NaCl levels on the activities of photosynthetic (RubisCO and ribulose-5 phosphate kinase) and respiratory (pyruvate kinase and NADH-dependent malate dehydrogenase) enzymes vs. photosynthetic electron flow and fluorescence parameters, revealed that biochemical impairments are more limiting than photochemical damage. Altogether, these results indicate that, under controlled conditions, C. glauca tolerates high NaCl levels and that this capacity is linked to photosynthetic adjustments. PMID:26245981

  14. Capsicum annuum homeobox 1 (CaHB1) is a nuclear factor that has roles in plant development, salt tolerance, and pathogen defense

    SciTech Connect

    Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja; Jang, Hyun A; Kwon, Suk-Yoon; Choi, Doil

    2013-12-06

    Highlights: •The CaHB1 is a nuclear factor, belonging to HD-Zip proteins. •SA and ET, as signal molecules, modulate CaHB1-mediated responses. •Overexpression of CaHB1 in tomato resulted in a thicker cell wall. •CaHB1-transgenic tomato confers resistance to Phytophthora infestans. •CaHB1 enhanced tolerance to saline stress in tomato. -- Abstract: Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants were challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense.

  15. Salt-tolerant and high-pH-resistant hydrogenase from the haloalkaliphilic, sulfate-reducing bacterium Desulfonatronum thiodismutans

    NASA Astrophysics Data System (ADS)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, catalyzing the converse reaction of hydrogen oxidation and responsible for the consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins, most of which contain either nickel and iron or iron alone in their active center. Hydrogenases have been found in many microorganisms, such as methanogenic, acetogenic, nitrogen-fixing, sulfate-reducing, photosynthetic bacteria, and algae that use the hydrogen as an energy source or as an electron sink. Hydrogenases are the subject of wide physiological, biochemical, physico-chemical and genetic studies due to their abilities to produce molecular hydrogen as an alternative source of energy. Despite the large quantity of work dealing with the intracellular and extracellular enzymes of halophilic bacteria, the data about the response of hydrogenases to salts are practically absent. The study of hydrogenase in cell-free extracts of the extremely halophilic eubacterium Acetohalobium arabaticum showed a dramatic increase in the activity of the enzyme at high concentrations of NaCl and KCl (near saturated solutions). Here we present data about hydrogenase in a free-cell extract from the new halo-alkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grows on a highly mineralized carbonate-bicarbonate medium in the salinity range from 1 to 7 % NaCl and at pH 8.0-10.0. The studied enzyme was active in concentration range from 0.0 to 4.3 M NaCl with the optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme expressed 20 % additional activity, with NaCl concentration changing from 2.1 M to 3.4 M, and then the activity decreased and reached a constant level. Although sodium bicarbonate decreases the hydrogenase activity, the enzyme still showed activity at 60 % of the maximum level at concentration in a near saturated solution (1.2 M NaHCO3). The maximum enzyme activity was observed at pH 9.5 with limits of 7.5 and 11.5, which is practically

  16. Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers.

    PubMed

    Noreen, Zahra; Ashraf, Muhammad

    2009-11-01

    The present work describes whether the changes in the activities of antioxidant enzymes and the levels of some non-enzymatic antioxidants could be used as markers of salt tolerance in nine genetically diverse pea (Pisum sativum) cultivars. All cultivars were exposed to four levels of NaCl i.e., 0, 40, 80 and 120mM in sand culture. Plant fresh biomass, total phenolics, total soluble proteins, hydrogen peroxide (H(2)O(2)), malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in leaves while different forms of tocopherols (alpha-, gamma- and Delta-tocopherol) in fresh seed of salt-stressed and non-stressed plants were analyzed. On the basis of percent inhibition in shoot biomass at the highest salt level (120mM) cultivars 2001-35, 2001-55 and Climax were ranked as tolerant (percent inhibition less than 60%), 2001-20, 9800-5 and 9800-10 moderately tolerant (percent inhibition 60-70%), and 2001-40, 9200 and Tere 2 salt sensitive (percent inhibition more than 70%). Salt stress markedly enhanced the activities of SOD and POD, levels of total phenolics and gamma- and Delta-tocopherols, and decreased the total soluble proteins and CAT activity, while the internal levels of H(2)O(2) remained unaffected in all pea cultivars. Although salt-induced oxidative stress occurred in all pea cultivars, the response of salt-tolerant and salt-sensitive cultivars with respect to the generation of enzymatic and non-enzymatic metabolites measured in the present study was not consistent. Of different antioxidant enzymes and metabolites analyzed, only CAT activity was found to be a reliable marker of salt tolerance in the set of pea cultivars examined.

  17. The Arabidopsis RNA-Binding Protein AtRGGA Regulates Tolerance to Salt and Drought Stress1[OPEN

    PubMed Central

    Ambrosone, Alfredo; Batelli, Giorgia; Nurcato, Roberta; Aurilia, Vincenzo; Punzo, Paola; Bangarusamy, Dhinoth Kumar; Ruberti, Ida; Sassi, Massimiliano; Leone, Antonietta; Costa, Antonello; Grillo, Stefania

    2015-01-01

    Salt and drought stress severely reduce plant growth and crop productivity worldwide. The identification of genes underlying stress response and tolerance is the subject of intense research in plant biology. Through microarray analyses, we previously identified in potato (Solanum tuberosum) StRGGA, coding for an Arginine Glycine Glycine (RGG) box-containing RNA-binding protein, whose expression was specifically induced in potato cell cultures gradually exposed to osmotic stress. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog, AtRGGA, is a functional RNA-binding protein required for a proper response to osmotic stress. AtRGGA gene expression was up-regulated in seedlings after long-term exposure to abscisic acid (ABA) and polyethylene glycol, while treatments with NaCl resulted in AtRGGA down-regulation. AtRGGA promoter analysis showed activity in several tissues, including stomata, the organs controlling transpiration. Fusion of AtRGGA with yellow fluorescent protein indicated that AtRGGA is localized in the cytoplasm and the cytoplasmic perinuclear region. In addition, the rgga knockout mutant was hypersensitive to ABA in root growth and survival tests and to salt stress during germination and at the vegetative stage. AtRGGA-overexpressing plants showed higher tolerance to ABA and salt stress on plates and in soil, accumulating lower levels of proline when exposed to drought stress. Finally, a global analysis of gene expression revealed extensive alterations in the transcriptome under salt stress, including several genes such as ASCORBATE PEROXIDASE2, GLUTATHIONE S-TRANSFERASE TAU9, and several SMALL AUXIN UPREGULATED RNA-like genes showing opposite expression behavior in transgenic and knockout plants. Taken together, our results reveal an important role of AtRGGA in the mechanisms of plant response and adaptation to stress. PMID:25783413

  18. Genetic analysis of Na(+) and K (+) concentrations in leaf and stem as physiological components of salt tolerance in Tomato.

    PubMed

    Villalta, I; Reina-Sánchez, A; Bolarín, M C; Cuartero, J; Belver, A; Venema, K; Carbonell, E A; Asins, M J

    2008-04-01

    The sodium and potassium concentrations in leaf and stem have been genetically studied as physiological components of the vegetative and reproductive development in two populations of F(8) lines, derived from a salt sensitive genotype of Solanum lycopersicum cv. Cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Genetic parameters of ten traits under salinity and five of them under control conditions were studied by ANOVA, correlation, principal component and QTL analysis to understand the global response of the plant. Two linkage maps including some tomato flowering time and salt tolerance candidate genes encoding for SlSOS1, SlSOS2, SlSOS3, LeNHX1, LeNHX3, were used for the QTL detection. Thirteen and 20 QTLs were detected under salinity in the P and C populations, respectively, and four under control conditions. Highly significant and contributing QTLs (over 40%) for the concentrations of Na(+) and K(+) in stems and leaves have been detected on chromosome 7 in both the populations. This is the only genomic position where the concentration QTLs for both the cations locate together. The proportion of QTLs significantly affected by salinity was larger in the P population (64.3%, including all QTLs detected under control) than in the C population (21.4%), where the estimated genetic component of variance was larger for most traits. A highly significant association between the leaf area and fruit yield under salinity was found only in the C population, which is supported by the location of QTLs for these traits in a common region of chromososome C1. As far as breeding for salt tolerance is concerned, only two sodium QTLs (lnc1.1 and lnc8.1) map in genomic regions of C1 and C8 where fruit yield QTLs are also located but in both the cases the profitable allele corresponds to the salt sensitive, cultivated species. One of those QTLs, lnc1

  19. [Human tolerance to rotation at different levels of increased gravitation].

    PubMed

    Genin, A M; Kotovskaia, A R; Galle, R R; Gavrilova, L N; Sarkisov, I Iu

    1982-01-01

    The effects of acceleration of different value (up to 2 g) on the level of motion sickness, vestibular and postural reactions to rotation were studied. The experiments were carried out in a centrifuge equipped with a cabin that could be mounted at a different distance from the axis of rotation. Three experimental runs were conducted with a rate of rotation of 15.3 and accelerations values of 1.09, 1.6 and 2.0 g. Vestibular stimulation was produced by head movements of a predetermined number. It was found that with increase in the acceleration value the level of motion sickness decreased and the nystagmic reaction and balance dysfunction enhanced. PMID:6977679

  20. Acclimation strategy to increase phenol tolerance of an anaerobic microbiota.

    PubMed

    Madigou, Céline; Poirier, Simon; Bureau, Chrystelle; Chapleur, Olivier

    2016-09-01

    A wide variety of inhibitory substances can induce anaerobic digester upset or failure. In this work the possibility to improve the resistance of an anaerobic microbiota to a common pollutant, the phenol, was evaluated in a lab-scale semi-continuous bioreactor. An acclimation strategy, consisting in a regular step-wise adaptation of the microbiota to stressful condition was employed. Degradation performances were monitored and molecular tools (16S sequencing and ARISA fingerprinting technique) were used to track changes in the microbial community. The acclimation strategy progressively minimized the effect of phenol on degradation performances. After 3 successive disturbance episodes, microbiota resistance was considerably developed and total inhibition threshold increased from 895 to 1942mg/L of phenol. Microbiota adaptation was characterized by the selection of the most resistant Archaea OTU from Methanobacterium genus and an important elasticity of Bacteria, especially within Clostridiales and Bacteroidales orders, that probably enabled the adaptation to more and more stressful conditions. PMID:27233100

  1. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    PubMed Central

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products. PMID:26885394

  2. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel.

    PubMed

    Baisakh, Niranjan; RamanaRao, Mangu V; Rajasekaran, Kanniah; Subudhi, Prasanta; Janda, Jaroslav; Galbraith, David; Vanier, Cheryl; Pereira, Andy

    2012-05-01

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1-expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and preparatory physiological responses. In addition to the increased accumulation of its own transcript, SaVHAc1 expression led to increased accumulation of messages of other native genes in rice, especially those involved in cation transport and ABA signalling. The SaVHAc1-expressing plants maintained higher relative water content under salt stress through early stage closure of the leaf stoma and reduced stomata density. The increased K(+) /Na(+) ratio and other cations established an ion homoeostasis in SaVHAc1-expressing plants to protect the cytosol from toxic Na(+) and thereby maintained higher chlorophyll retention than the WT plants under salt stress. Besides, the role of SaVHAc1 in cell wall expansion and maintenance of net photosynthesis was implicated by comparatively higher root and leaf growth and yield of rice expressing SaVHAc1 over WT under salt stress. The study indicated that the genes contributing toward natural variation in grass halophytes could be effectively manipulated for improving salt tolerance of field crops within related taxa.

  3. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    PubMed Central

    Tavares, Adassa Gama; do Monte, Daniel Farias Marinho; Albuquerque, Allan dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; de Siqueira, José Pinto; de Souza, Evandro Leite

    2015-01-01

    Entero