Science.gov

Sample records for increases salt tolerance

  1. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    PubMed

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress.

  2. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  3. Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants.

    PubMed

    Bouaziz, Donia; Pirrello, Julien; Charfeddine, Mariam; Hammami, Asma; Jbir, Rania; Dhieb, Amina; Bouzayen, Mondher; Gargouri-Bouzid, Radhia

    2013-07-01

    It has been established that drought-responsive element binding (DREB) proteins correspond to transcription factors which play important regulatory roles in plant response to abiotic and biotic stresses. In this study, a novel cDNA encoding DREB transcription factor, designated StDREB1, was isolated from potato (Solanum tuberosum L.). This protein was classified in the A-4 group of DREB subfamily based on multiple sequence alignments and phylogenetic characterization. Semi-quantitative RT-PCR showed that StDREB1 is expressed in leaves, stems, and roots under stress conditions and it is greatly induced by NaCl, drought, low temperature, and abscisic acid (ABA) treatments. Overexpression of StDREB1 cDNA in transgenic potato plants exhibited an improved salt and drought stress tolerance in comparison to the non-transformed controls. The enhanced stress tolerance may be associated with the increase in P5CS-RNA expression (δ (1)-pyrroline-5-carboxylate synthetase) and the subsequent accumulation of proline osmoprotectant in addition to a better control of water loss. Overexpression of StDREB1 also activated stress-responsive genes, such as those encoding calcium-dependent protein kinases (CDPKs), in transgenic potatoes under standard and high salt conditions. These data suggest that the StDREB1 transcription factor is involved in the regulation of salt stress tolerance in potato by the activation of different downstream gene expression.

  4. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    PubMed

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  5. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content.

    PubMed

    Hamouda, I; Badri, M; Mejri, M; Cruz, C; Siddique, K H M; Hessini, K

    2016-05-01

    The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.

  6. Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes.

    PubMed

    Morais, Maria Cristina; Panuccio, Maria Rosaria; Muscolo, Adele; Freitas, Helena

    2012-06-01

    Salt tolerance of two co-occurring legumes in coastal areas of Portugal, a native species--Ulex europaeus, and an invasive species--Acacia longifolia, was evaluated in relation to plant growth, ion content and antioxidant enzyme activities. Plants were submitted to four concentrations of NaCl (0, 50, 100 and 200 mM) for three months, under controlled conditions. The results showed that NaCl affects the growth of both species in different ways. Salt stress significantly reduced the plant height and the dry weight in Acacia longifolia whereas in U. europaeus the effect was not significant. Under salt stress, the root:shoot ratio (W(R):W(S)) and root mass ratio (W(R):W(RS)) increased as a result of increasing salinity in A. longifolia but the same was not observed in U. europaeus. In addition, salt stress caused a significant accumulation of Na+, especially in U. europaeus, and a decrease in K+ content and K+/Na+ ratio. The activities of antioxidant enzymes were higher in A. longifolia compared to U. europaeus. In A. longifolia, catalase (CAT, EC 1.11.1.6) and glutathione reductase (GR, EC 1.6.4.2.) activities increased significantly, while ascorbate peroxidase (APX, EC 1.11.1.11) and peroxidase (POX, EC 1.11.1.7) activities remained unchanged in comparison with the control. In U. europaeus, NaCl concentration significantly reduced APX activity but did not significantly affect CAT, GR and POX activities. Our results suggest that the invasive species copes better with salinity stress in part due to a higher rates of CAT and GR activities and a higher K+/Na+ ratio, which may represent an additional advantage when competing with native species in co-occurring salty habitats.

  7. Rice ONAC106 Inhibits Leaf Senescence and Increases Salt Tolerance and Tiller Angle.

    PubMed

    Sakuraba, Yasuhito; Piao, Weilan; Lim, Jung-Hyun; Han, Su-Hyun; Kim, Ye-Sol; An, Gynheung; Paek, Nam-Chon

    2015-12-01

    NAM/ATAF1/ATAF2/CUC2 (NAC) is a plant-specific transcription factor (TF) family, and NACs participate in many diverse processes during the plant life cycle. Several Arabidopsis thaliana NACs have important roles in positively or negatively regulating leaf senescence, but in other plant species, including rice, the senescence-associated NACs (senNACs) remain largely unknown. Here we show that the rice senNAC TF ONAC106 negatively regulates leaf senescence. Leaves of onac106-1D (insertion of the 35S enhancer in the promoter region of the ONAC106 gene) mutants retained their green color under natural senescence and dark-induced senescence conditions. Genome-wide transcriptome analysis revealed that key senescence-associated genes (SGR, NYC1, OsNAC5, OsNAP, OsEIN3 and OsS3H) were differentially expressed in onac106-1D during dark-induced senescence. In addition to delayed senescence, onac106-1D also showed a salt stress-tolerant phenotype; key genes that down-regulate salt response signaling (OsNAC5, OsDREB2A, OsLEA3 and OsbZIP23) were rapidly up-regulated in onac106-1D under salt stress. Interestingly, onac106-1D also exhibited a wide tiller angle phenotype throughout development, and the tiller angle-related gene LPA1 was down-regulated in onac106-1D. Using yeast one-hybrid assays, we found that ONAC106 binds to the promoter regions of SGR, NYC1, OsNAC5 and LPA1. Taking these results together, we propose that ONAC106 functions in leaf senescence, salt stress tolerance and plant architecture by modulating the expression of its target genes that function in each signaling pathway.

  8. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    PubMed

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  9. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    SciTech Connect

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. Black-Right-Pointing-Pointer Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. Black-Right-Pointing-Pointer The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. Black-Right-Pointing-Pointer GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  10. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants.

    PubMed

    Yamamoto, Atsuko; Bhuiyan, Md Nazmul H; Waditee, Rungaroon; Tanaka, Yoshito; Esaka, Muneharu; Oba, Kazuko; Jagendorf, André T; Takabe, Teruhiro

    2005-07-01

    Transgenic tobacco plants expressing the ascorbate oxidase (AAO) gene in sense and antisense orientations, and an Arabidopsis mutant in which the T-DNA was inserted into a putative AAO gene, were used to examine the potential roles of AAO for salt-stress tolerance in plants. AAO activities in the transgenic tobacco plants expressing the gene in sense and antisense orientations were, respectively, about 16-fold and 0.2-fold of those in the wild type. Under normal growth conditions, no significant differences in phenotypes were observed, except for a delay in flowering time in the antisense plants. However, at high salinity, the percentage germination, photosynthetic activity, and seed yields were higher in antisense plants, with progressively lower levels in the wild type and the sense plants. The redox state of apoplastic ascorbate in sense plants was very low even under normal growth conditions. Upon salt stress, the redox state of symplastic and apoplastic ascorbate decreased among the three types of plants, but was lowest in the sense plants. The hydrogen peroxide contents in the symplastic and apoplastic spaces were higher in sense plants, progressively lower in the wild type, followed by the antisense plants. The Arabidopsis T-DNA inserted mutant exhibited very low ascorbate oxidase activity, and its phenotype was similar to that of antisense tobacco plants. These results suggest that the suppressed expression of apoplastic AAO under salt-stress conditions leads to a relatively low level of hydrogen peroxide accumulation and a high redox state of symplastic and apoplastic ascorbate which, in turn, permits a higher seed yield.

  11. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.

    PubMed

    Tuyen, D D; Lal, S K; Xu, D H

    2010-07-01

    Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F(6) recombinant inbred line mapping population (n = 112) and an F(2) population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO(3) for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F(6) and the F(2) populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.

  12. Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L.

    PubMed Central

    Sheveleva, E.; Chmara, W.; Bohnert, H. J.; Jensen, R. G.

    1997-01-01

    A cDNA encoding myo-inositol O-methyltransferase (IMT1) has been transferred into Nicotiana tabacum cultivar SR1. During drought and salt stress, transformants (I5A) accumulated the methylated inositol D-ononitol in amounts exceeding 35 [mu]mol g-1 fresh weight In I5A, photosynthetic CO2 fixation was inhibited less during salt stress and drought, and the plants recovered faster than wild type. One day after rewatering drought-stressed plants, I5A photosynthesis had recovered 75% versus 57% recovery with cultivar SR1 plants. After 2.5 weeks of 250 mM NaCl in hydroponic solution, I5A fixed 4.9 [plus or minus] 1.4 [mu]mol CO2 m-2 s-1, whereas SR1 fixed 2.5 [plus or minus] 0.6 [mu]mol CO2 m-2 s-1. myo-Inositol, the substrate for IMT1, increases in tobacco under stress. Preconditioning of I5A plants in 50 mM NaCl increased D-ononitol amounts and resulted in increased protection when the plants were stressed subsequently with 150 mM NaCl. Pro, Suc, Fru, and Glc showed substantial diurnal fluctuations in amounts, but D-ononitol did not. Plant transformation resulting in stress-inducible, stable solute accumulation appears to provide better protection under drought and salt-stress conditions than strategies using osmotic adjustment by metabolites that are constitutively present. PMID:12223867

  13. Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana

    PubMed Central

    Hu, Rongbin; Zhu, Yinfeng; Shen, Guoxin; Zhang, Hong

    2017-01-01

    ABSTRACT Protein phosphatase 2A (PP2A) was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of 3 subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants. For an example, there are 3 A subunits, 17 B subunits, and 5 C subunits in Arabidopsis, which could form 255 different PP2A holoenzymes. Understanding the roles of these PP2A holoenzymes in various signaling pathways is a challenging task. In a recent study,1 we discovered that PP2A-C5, the catalytic subunit 5 of PP2A, plays an important role in salt tolerance in Arabidopsis. We found that a knockout mutant of PP2A-C5 (i.e. pp2a-c5–1) was very sensitive to salt treatments, whereas PP2A-C5-overexpressing plants were more tolerant to salt stresses. Genetic analyses between pp2a-c5–1 and Salt-Overly-Sensitive (SOS) mutants indicated that PP2A-C5 does not function in the same pathway as SOS genes. Using yeast 2-hybrid analysis, we found that PP2A-C5 interacts with several vacuolar membrane bound chloride channel proteins. We hypothesize that these vacuolar chloride channel proteins might be PP2A-C5's substrates in vivo, and the action of PP2A-C5 on these channel proteins could increase or activate their activities, thereby result in accumulation of the chloride and sodium contents in vacuoles, leading to increased salt tolerance in plants. PMID:28045581

  14. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  15. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  16. Plant salt-tolerance mechanisms.

    PubMed

    Deinlein, Ulrich; Stephan, Aaron B; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  17. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.

    PubMed

    Kim, Eun Yu; Seo, Young Sam; Park, Ki Youl; Kim, Soo Jin; Kim, Woo Taek

    2014-11-15

    The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23(fyp) and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses.

  18. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength.

    PubMed

    Penella, Consuelo; Landi, Marco; Guidi, Lucia; Nebauer, Sergio G; Pellegrini, Elisa; San Bautista, Alberto; Remorini, Damiano; Nali, Cristina; López-Galarza, Salvador; Calatayud, Angeles

    2016-04-01

    The performance of a salt-tolerant pepper (Capsicum annuum L.) accession (A25) utilized as a rootstock was assessed in two experiments. In a first field experiment under natural salinity conditions, we observed a larger amount of marketable fruit (+75%) and lower Blossom-end Root incidence (-31%) in commercial pepper cultivar Adige (A) grafted onto A25 (A/A25) when compared with ungrafted plants. In order to understand this behavior a second greenhouse experiment was conducted to determine growth, mineral partitioning, gas exchange and chlorophyll a fluorescence parameters, antioxidant systems and proline content in A and A/A25 plants under salinity conditions (80 mM NaCl for 14 days). Salt stress induced significantly stunted growth of A plants (-40.6% of leaf dry weight) compared to the control conditions, while no alterations were observed in A/A25 at the end of the experiment. Accumulation of Na(+) and Cl(-) in leaves and roots was similar in either grafted or ungrafted plants. Despite the activation of protective mechanisms (increment of superoxide dismutase, catalase, ascorbate peroxidase activity and non-photochemical quenching), A plants showed severely reduced photosynthetic CO2 assimilation (-45.6% of AN390) and substantial buildup of malondialdehyde (MDA) by-product, suggesting the inability to counteract salt-triggered damage. In contrast, A/A25 plants, which had a constitutive enhanced root apparatus, were able to maintain the shoot and root growth under salinity conditions by supporting the maintained photosynthetic performance. No increases in catalase and ascorbate peroxidase activities were observed in response to salinity, and MDA levels increased only slightly; indicating that alleviation of oxidative stress did not occur in A/A25 plants. In these plants the increased proline levels could protect enzymatic stability from salt-triggered damage, preserving the photosynthetic performance. The results could indicate that salt stress was vanished by

  19. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar.

    PubMed

    Ke, Qingbo; Kim, Ho Soo; Wang, Zhi; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Choi, Young-Im; Xu, Bingcheng; Deng, Xiping; Yun, Dae-Jin; Kwak, Sang-Soo

    2017-03-01

    The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in Arabidopsis. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three GI-like genes (PagGIa, PagGIb and PagGIc) from poplar (Populus alba × Populus glandulosa). PagGIs are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long-day conditions. Overexpressing PagGIs in wild-type (WT) Arabidopsis induced early flowering and salt sensitivity, while overexpressing PagGIs in the gi-2 mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs-PagSOS2 complexes inhibited PagSOS2-regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down-regulation of PagGIs by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of Arabidopsis GI are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt-tolerant trees for sustainable development on marginal lands worldwide.

  20. Increased salt and drought tolerance by D-ononitol production in transgenic Arabidopsis thaliana.

    PubMed

    Ahn, Chulhyun; Park, Uhnmee; Park, Phun Bum

    2011-12-02

    The methylation of myo-inositol forms O-methyl inositol (D-ononitol) when plants are under abiotic stress in a reaction catalyzed by myo-inositol methyltransferase (IMT). D-Ononitol can serve as an osmoprotectant that prevents water loss in plants. We isolated the IMT cDNA from Glycine max and found by RT-PCR analysis that GmIMT transcripts are induced by drought and salinity stress treatments in the leaves of soybean seedlings. We confirmed the protein product of GmIMT and its substrate using a recombinant system in E. coli. Transgenic Arabidopsis plants over-expressing GmIMT displayed improved tolerance to dehydration stress treatment and to a lesser extent high salinity stress treatment. These results indicate that GmIMT is functional in heterologous Arabidopsis plants.

  1. Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field.

    PubMed

    Yu, Lin-Hui; Wu, Shen-Jie; Peng, Yi-Shu; Liu, Rui-Na; Chen, Xi; Zhao, Ping; Xu, Ping; Zhu, Jian-Bo; Jiao, Gai-Li; Pei, Yan; Xiang, Cheng-Bin

    2016-01-01

    Drought and salinity are two major environmental factors limiting crop production worldwide. Improvement of drought and salt tolerance of crops with transgenic approach is an effective strategy to meet the demand of the ever-growing world population. Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a homeodomain-START transcription factor, has been demonstrated to significantly improve drought tolerance in Arabidopsis, tobacco, tall fescue and rice. Here we report that AtHDG11 also confers drought and salt tolerance in upland cotton (Gossypium hirsutum) and woody plant poplar (Populus tomentosa Carr.). Our results showed that both the transgenic cotton and poplar exhibited significantly enhanced tolerance to drought and salt stress with well-developed root system. In the leaves of the transgenic cotton plants, proline content, soluble sugar content and activities of reactive oxygen species-scavenging enzymes were significantly increased after drought and salt stress compared with wild type. Leaf stomatal density was significantly reduced, whereas stomatal and leaf epidermal cell size were significantly increased in both the transgenic cotton and poplar plants. More importantly, the transgenic cotton showed significantly improved drought tolerance and better agronomic performance with higher cotton yield in the field both under normal and drought conditions. These results demonstrate that AtHDG11 is not only a promising candidate for crops improvement but also for woody plants.

  2. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures.

    PubMed

    Kim, Sun Ha; Ahn, Young Ock; Ahn, Mi-Jeong; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2013-09-01

    The Orange (Or) gene is responsible for the accumulation of carotenoids in plants. We isolated the Or gene (IbOr) from storage roots of orange-fleshed sweetpotato (Ipomoea batatas L. Lam. cv. Sinhwangmi), and analyzed its function in transgenic sweetpotato calli. The IbOr gene has an open reading frame in the 942 bp cDNA, which encodes a 313-amino acid protein containing a cysteine-rich zinc finger domain. IbOr was strongly expressed in storage roots of orange-fleshed sweetpotato cultivars; it also was expressed in leaves, stems, and roots of cultivars with alternatively colored storage roots. IbOr transcription increased in response to abiotic stress, with gene expression reaching maximum at 2 h after treatment. Two different overexpression vectors of IbOr (IbOr-Wt and IbOr-Ins, which contained seven extra amino acids) were transformed into calli of white-fleshed sweetpotato [cv. Yulmi (Ym)] using Agrobacterium. The transgenic calli were easily selected because they developed a fine orange color. The expression levels of the IbOr transgene and genes involved in carotenoid biosynthesis in IbOr-Wt and IbOr-Ins transgenic calli were similar, and both transformants displayed higher expression levels than those in Ym calli. The contents of β-carotene, lutein, and total carotenoids in IbOr-Ins transgenic lines were approximately 10, 6, and 14 times higher than those in Ym calli, respectively. The transgenic IbOr calli exhibited increased antioxidant activity and increased tolerance to salt stress. Our work shows that the IbOr gene may be useful for the biotechnological development of transgenic sweetpotato plants that accumulate increased carotenoid contents on marginal agricultural lands.

  3. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions.

    PubMed

    Pasapula, Vijaya; Shen, Guoxin; Kuppu, Sundaram; Paez-Valencia, Julio; Mendoza, Marisol; Hou, Pei; Chen, Jian; Qiu, Xiaoyun; Zhu, Longfu; Zhang, Xianlong; Auld, Dick; Blumwald, Eduardo; Zhang, Hong; Gaxiola, Roberto; Payton, Paxton

    2011-01-01

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought- and salt tolerance when compared to wild-type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1-expressing cotton plants were created and tested for their performance under high-salt and reduced irrigation conditions. The AVP1-expressing cotton plants showed more vigorous growth than wild-type plants in the presence of 200 mM NaCl under hydroponic growth conditions. The soil-grown AVP1-expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1-expressing cotton plants is at least 20% higher than that of wild-type plants under dry-land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop's drought- and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.

  4. Plant salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors have led to increased interest in using recycled wastewaters to irrigate agronomic and horticultural crops as well as plants in ornamental landscapes. One major driving force is the uncertainty of the allocation and dependability of good quality water in the future as competition among...

  5. Salt tolerance evolves more frequently in C4 grass lineages.

    PubMed

    Bromham, L; Bennett, T H

    2014-03-01

    Salt tolerance has evolved many times in the grass family, and yet few cereal crops are salt tolerant. Why has it been so difficult to develop crops tolerant of saline soils when salt tolerance has evolved so frequently in nature? One possible explanation is that some grass lineages have traits that predispose them to developing salt tolerance and that without these background traits, salt tolerance is harder to achieve. One candidate background trait is photosynthetic pathway, which has also been remarkably labile in grasses. At least 22 independent origins of the C4 photosynthetic pathway have been suggested to occur within the grass family. It is possible that the evolution of C4 photosynthesis aids exploitation of saline environments, because it reduces transpiration, increases water-use efficiency and limits the uptake of toxic ions. But the observed link between the evolution of C4 photosynthesis and salt tolerance could simply be due to biases in phylogenetic distribution of halophytes or C4 species. Here, we use a phylogenetic analysis to investigate the association between photosynthetic pathway and salt tolerance in the grass family Poaceae. We find that salt tolerance is significantly more likely to occur in lineages with C4 photosynthesis than in C3 lineages. We discuss the possible links between C4 photosynthesis and salt tolerance and consider the limitations of inferring the direction of causality of this relationship.

  6. The bioenergetics of salt tolerance

    SciTech Connect

    Packer, L.

    1991-01-01

    The aim of this project was to try to understand the adaptive mechanisms that organisms develop in order to respond to a sudden transformation in their environment to a salt shock.'' To study this problem we used a fresh water oxygenic photosynthetic cyanobacterium known as Synecoccus 6311. This organism suffers injury after this sudden exposure to high concentrations of sodium chloride equivalent to or even higher than that in sea water. Yet they are able to re-establish their photosynthetic activity which is partially injured and return to virtually normal growth rates. Identification of the temporal sequence of changes involved in adaptation to this stress was the rationale. Indeed this project employed a wide variety of biochemical and biophysical methods, including electron spin resonance techniques and nuclear magnetic resonance to study the bioenergetics and transport mechanisms, growth and energy changes in these organisms and how the structural components of the cells changed in response to adaptation to growth at high salinity. The problem has relevance for higher plants because most of the arable farmland in the work is already under use and that which is not used is usually in salite environments. Hence, understanding basic mechanisms of salt tolerance is a fundamental biological problem with great applications for bioproductivity and agriculture. 18 refs.

  7. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Chen, Honglin; Liu, Liping; Wang, Lixia; Wang, Suhua; Cheng, Xuzhen

    2016-03-01

    Mung bean (Vigna radiata L.) is commonly grown in Asia as an important nutritional dry grain legume, as it can survive better in arid conditions than other crops. Abiotic stresses, such as drought and high-salt contents, negatively impact its growth and production. The dehydration-responsive element-binding protein 2 (DREB2) transcription factors play a significant role in the response to these stress stimuli via transcriptional regulation of downstream genes containing the cis-element dehydration-responsive element (DRE). However, the molecular mechanisms involved in the drought tolerance of this species remain elusive, with very few reported candidate genes. No DREB2 ortholog has been reported for mung bean, and the function of mung bean DREB2 is not clear. In this study, a novel VrDREB2A gene with conserved AP2 domains and transactivation ability was isolated from mung bean. A modified VrDREB2A protein lacking the putative negative regulatory domain encoded by nucleotides 394-543 was shown to be localized in the nucleus. Expression of the VrDREB2A gene was induced by drought, high salt concentrations and abscisic acid treatment. Furthermore, comparing with the wild type Arabidopsis, the overexpression of VrDREB2A activated the expression of downstream genes in transgenic Arabidopsis, resulting in enhanced tolerance to drought and high-salt stresses and no growth retardation. The results from this study indicate that VrDREB2A functions as an important transcriptional activator and may help increase the abiotic stress tolerance of the mung bean plant.

  8. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity

    PubMed Central

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Nick, Peter; Riemann, Michael

    2015-01-01

    Salinity stress represents a global constraint for rice, the most important staple food worldwide. Therefore the role of the central stress signal jasmonate for the salt response was analysed in rice comparing the responses to salt stress for two jasmonic acid (JA) biosynthesis rice mutants (cpm2 and hebiba) impaired in the function of ALLENE OXIDE CYCLASE (AOC) and their wild type. The aoc mutants were less sensitive to salt stress. Interestingly, both mutants accumulated smaller amounts of Na+ ions in their leaves, and showed better scavenging of reactive oxygen species (ROS) under salt stress. Leaves of the wild type and JA mutants accumulated similar levels of abscisic acid (ABA) under stress conditions, and the levels of JA and its amino acid conjugate, JA–isoleucine (JA-Ile), showed only subtle alterations in the wild type. In contrast, the wild type responded to salt stress by strong induction of the JA precursor 12-oxophytodienoic acid (OPDA), which was not observed in the mutants. Transcript levels of representative salinity-induced genes were induced less in the JA mutants. The absence of 12-OPDA in the mutants correlated not only with a generally increased ROS-scavenging activity, but also with the higher activity of specific enzymes in the antioxidative pathway, such as glutathione S-transferase, and fewer symptoms of damage as, for example, indicated by lower levels of malondialdehyde. The data are interpreted in a model where the absence of OPDA enhanced the antioxidative power in mutant leaves. PMID:25873666

  9. Increased tolerance to salt stress in OPDA-deficient rice ALLENE OXIDE CYCLASE mutants is linked to an increased ROS-scavenging activity.

    PubMed

    Hazman, Mohamed; Hause, Bettina; Eiche, Elisabeth; Nick, Peter; Riemann, Michael

    2015-06-01

    Salinity stress represents a global constraint for rice, the most important staple food worldwide. Therefore the role of the central stress signal jasmonate for the salt response was analysed in rice comparing the responses to salt stress for two jasmonic acid (JA) biosynthesis rice mutants (cpm2 and hebiba) impaired in the function of ALLENE OXIDE CYCLASE (AOC) and their wild type. The aoc mutants were less sensitive to salt stress. Interestingly, both mutants accumulated smaller amounts of Na(+) ions in their leaves, and showed better scavenging of reactive oxygen species (ROS) under salt stress. Leaves of the wild type and JA mutants accumulated similar levels of abscisic acid (ABA) under stress conditions, and the levels of JA and its amino acid conjugate, JA-isoleucine (JA-Ile), showed only subtle alterations in the wild type. In contrast, the wild type responded to salt stress by strong induction of the JA precursor 12-oxophytodienoic acid (OPDA), which was not observed in the mutants. Transcript levels of representative salinity-induced genes were induced less in the JA mutants. The absence of 12-OPDA in the mutants correlated not only with a generally increased ROS-scavenging activity, but also with the higher activity of specific enzymes in the antioxidative pathway, such as glutathione S-transferase, and fewer symptoms of damage as, for example, indicated by lower levels of malondialdehyde. The data are interpreted in a model where the absence of OPDA enhanced the antioxidative power in mutant leaves.

  10. Molecular cloning and characterization of a vacuolar H+ -pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis.

    PubMed

    Guo, Shanli; Yin, Haibo; Zhang, Xia; Zhao, Fengyun; Li, Pinghua; Chen, Shihua; Zhao, Yanxiu; Zhang, Hui

    2006-01-01

    The chenopodiaceae Suaeda salsa L. is a leaf succulent euhalophyte. Shoots of the S. salsa are larger and more succulent when grown in highly saline environments. This increased growth and water uptake has been correlated with a large and specific cellular accumulation of sodium. S. salsa does not have salt glands or salt bladders on its leaves. Thus, this plant must compartmentalize the toxic Na(+) in the vacuoles. The ability to compartmentalize sodium may result from a stimulation of the proton pumps that provide the driving force for increased sodium transport into the vacuole. In this work, we isolated the cDNA of the vacuolar membrane proton-translocating inorganic pyrophosphatase (H(+) -PPase) from S. salsa. The SsVP cDNA contains an uninterrupted open reading frame of 2292 bp, coding for a polypeptide of 764 amino acids. Northern blotting analysis showed that SsVP was induced in salinity treated leaves. The activities of both the V-ATPase and the V-PPase in Arabidopsis overexpressing SsVP-2 is higher markedly than in wild-type plant under 200 mM NaCl and drought stresses. The Overexpression of SsVP can increase salt and drought tolerance of transgenic Arabidopsis.

  11. Genetic Diversity of Salt Tolerance in Miscanthus

    PubMed Central

    Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard

    2017-01-01

    Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243

  12. Molten salt electrolyte battery cell with overcharge tolerance

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  13. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-09-01

    Two cysteine proteinase inhibitors (cystatins) from Arabidopsis thaliana, designated AtCYSa and AtCYSb, were characterized. Recombinant GST-AtCYSa and GST-AtCYSb were expressed in Escherichia coli and purified. They inhibit the catalytic activity of papain, which is generally taken as evidence for cysteine proteinase inhibitor function. Northern blot analyses showed that the expressions of AtCYSa and AtCYSb gene in Arabidopsis cells and seedlings were strongly induced by multiple abiotic stresses from high salt, drought, oxidant, and cold. Interestingly, the promoter region of AtCYSa gene contains a dehydration-responsive element (DRE) and an abscisic acid (ABA)-responsive element (ABRE), which identifies it as a DREB1A and AREB target gene. Under normal conditions, AtCYSa was expressed in 35S: DREB1A and 35S: AREB1 plants at a higher level than in WT plants, while AtCYSa gene was expressed in 35S: DREB2A plants at the same level as in WT plants. Under stress conditions (salt, drought and cold), AtCYSa was expressed more in all three transgenic plants than in WT plants. Over-expression of AtCYSa and AtCYSb in transgenic yeast and Arabidopsis plants increased the resistance to high salt, drought, oxidative, and cold stresses. Taken together, these data raise the possibility of using AtCYSa and AtCYSb to genetically improve environmental stresses tolerance in plants.

  14. Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco.

    PubMed

    Zhang, Ji-Yu; Qu, Shen-Chun; Qiao, Yu-Shan; Zhang, Zhen; Guo, Zhong-Ren

    2014-03-01

    Earlier, we have reported that overexpression of Malus hupehensis Non-expressor of pathogenesis related gene 1 (MhNPR1) gene in tobacco could induce the expression of pathogenesis-related genes and enhance resistance to fungus Botrytis cinerea. In this study, we showed that MhNPR1 can be induced by NaCl, PEG6000, low temperature (4 °C), abscisic acid and apple aphids' treatments in M. hupehensis. Heterogonous expression of MhNPR1 gene in tobacco conferred enhanced resistance to NaCl at the stage of seed germination, and conferred resistance to mannitol at the stage of seed germination and to PEG6000 at the stage of seedlings. Furthermore, overexpression of MhNPR1 in transgenic tobacco led to higher expression levels of osmotic-stress related genes compared with wild-type plants. This was the first report of a novel function of NPR1 that overexpression of MhNPR1 gene has a positive effect on salt and osmotic stress in tobacco, which differs from the function that overexpressing of AtNPR1 gene has a negative effect on dehydration and salt stress in rice.

  15. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  16. Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress

    PubMed Central

    Ferreira, Liliana J.; Azevedo, Vanessa; Maroco, João; Oliveira, M. Margarida; Santos, Ana Paula

    2015-01-01

    DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantified using the 5-methylcytosine (5mC) antibody and an ELISA-based technique, which is an affordable and quite pioneer assay in plants, and in situ imaging of methylation sites in interphase nuclei of tissue sections. Variations of global DNA methylation levels in response to salt stress were tissue- and genotype-dependent. We show a connection between a higher ability of DNA methylation adjustment levels and salt stress tolerance. The salt-tolerant rice variety Pokkali was remarkable in its ability to quickly relax DNA methylation in response to salt stress. In spite of the same tendency for reduction of global methylation under salinity, in the salt-sensitive rice variety IR29 such reduction was not statistically supported. In ‘Pokkali’, the salt stress-induced demethylation may be linked to active demethylation due to increased expression of DNA demethylases under salt stress. In ‘IR29’, the induction of both DNA demethylases and methyltransferases may explain the lower plasticity of DNA methylation. We further show that mutations for epigenetic regulators affected specific phenotypic parameters related to salinity tolerance, such as the root length and biomass. This work emphasizes the role of differential methylome flexibility between salt tolerant and salt sensitive rice varieties as an important player in salt stress tolerance, reinforcing the need to better understand the connection between epigenetic networks and plant responses to environmental stresses. PMID:25932633

  17. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana.

    PubMed

    Chen, Zhehao; Hu, Lingzhi; Han, Ning; Hu, Jiangqin; Yang, Yanjun; Xiang, Taihe; Zhang, Xujia; Wang, Lilin

    2015-01-01

    Soil salinity is a common environmental stress factor that limits agricultural production worldwide. Plants have evolved different strategies to achieve salt tolerance. miR393 has been identified as closely related to biotic and abiotic stresses, and targets F-box genes that encode auxin receptors. The miR393-TIR1/AFB2/AFB3 regulatory module was discovered to have multiple functions that manipulate the auxin response. This study focused on miR393 and one of its targets, TIR1, and found that they played potential roles in response to salt stress. Our results showed that overexpression of a miR393-resistant TIR1 gene (mTIR1) in Arabidopsis clearly enhanced salt stress tolerance, which led to a higher germination rate, less water loss, reduced inhibition of root elongation, delayed senescence, decreased death rate and stabilized Chl content. These plants accumulated more proline and anthocyanin, and displayed enhanced osmotic stress tolerance. The expression of some salt stress-related genes was altered, and sodium content can be reduced in these plants under salt stress. We proposed that highly increased auxin signaling by overexpression of mTIR1 may trigger auxin-mediated downstream pathways to enhance plant salt stress resistance by osmoregulation and increased Na(+) exclusion.

  18. GmSALT3, Which Confers Improved Soybean Salt Tolerance in the Field, Increases Leaf Cl- Exclusion Prior to Na+ Exclusion But Does Not Improve Early Vigor under Salinity

    PubMed Central

    Liu, Ying; Yu, Lili; Qu, Yue; Chen, Jingjing; Liu, Xiexiang; Hong, Huilong; Liu, Zhangxiong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan; Guan, Rongxia

    2016-01-01

    Soil salinity reduces soybean growth and yield. The recently identified GmSALT3 (Glycine max salt Tolerance-associated gene on chromosome 3) has the potential to improve soybean yields in salinized conditions. Here we evaluate the impact of GmSALT3 on soybean performance under saline or non-saline conditions. Three sets of near isogenic lines (NILs), with genetic similarity of 95.6–99.3% between each pair of NIL-T and NIL-S, were generated from a cross between two varieties 85–140 (salt-sensitive, S) and Tiefeng 8 (salt-tolerant, T) by using marker-assisted selection. Each NIL-T; 782-T, 820-T and 860-T, contained a common ~1000 kb fragment on chromosome 3 where GmSALT3 was located. We show that GmSALT3 does not contribute to an improvement in seedling emergence rate or early vigor under salt stress. However, when 12-day-old seedlings were exposed to NaCl stress, the NIL-T lines accumulated significantly less leaf Na+ compared with their corresponding NIL-S, while no significant difference of K+ concentration was observed between NIL-T and NIL-S; the magnitude of Na+ accumulation within each NIL-T set was influenced by the different genetic backgrounds. In addition, NIL-T lines accumulated less Cl- in the leaf and more in the root prior to any difference in Na+; in the field they accumulated less pod wall Cl- than the corresponding NIL-S lines. Under non-saline field conditions, no significant differences were observed for yield related traits within each pair of NIL-T and NIL-S lines, indicating there was no yield penalty for having the GmSALT3 gene. In contrast, under saline field conditions the NIL-T lines had significantly greater plant seed weight and 100-seed weight than the corresponding NIL-S lines, meaning GmSALT3 conferred a yield advantage to soybean plants in salinized fields. Our results indicated that GmSALT3 mediated regulation of both Na+ and Cl- accumulation in soybean, and contributes to improved soybean yield through maintaining a higher seed

  19. Salt tolerance of southern baldcypress

    USGS Publications Warehouse

    Allen, James A.; Burkett, Virginia R.

    1997-01-01

    Historically, cypress-tupelo swamps covered much of the low-lying coastal regions of the Southeast. However, saltwater intrusion and increased flooding over the past 30 years, combined with past logging, have depleted the numbers and decreased the survival and growth of baldcypress (Taxodium distichum) in coastal areas along the Gulf of Mexico.

  20. 77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... AGENCY 40 CFR Part 180 Silicic Acid, Sodium Salt etc.; Tolerance Exemption AGENCY: Environmental... requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with... residues of Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl...

  1. Diversity and Evolution of Salt Tolerance in the Genus Vigna

    PubMed Central

    Iseki, Kohtaro; Takahashi, Yu; Muto, Chiaki; Naito, Ken; Tomooka, Norihiko

    2016-01-01

    Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops. PMID:27736995

  2. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling

    PubMed Central

    Wang, Wen-Sheng; Zhao, Xiu-Qin; Li, Min; Huang, Li-Yu; Xu, Jian-Long; Zhang, Fan; Cui, Yan-Ru; Fu, Bin-Ying; Li, Zhi-Kang

    2016-01-01

    To understand the physiological and molecular mechanisms underlying seedling salt tolerance in rice (Oryza sativa L.), the phenotypic, metabolic, and transcriptome responses of two related rice genotypes, IR64 and PL177, with contrasting salt tolerance were characterized under salt stress and salt+abscisic acid (ABA) conditions. PL177 showed significantly less salt damage, lower Na+/K+ ratios in shoots, and Na+ translocation from roots to shoots, attributed largely to better salt exclusion from its roots and salt compartmentation of its shoots. Exogenous ABA was able to enhance the salt tolerance of IR64 by selectively decreasing accumulation of Na+ in its roots and increasing K+ in its shoots. Salt stress induced general and organ-specific increases of many primary metabolites in both rice genotypes, with strong accumulation of several sugars plus proline in shoots and allantoin in roots. This was due primarily to ABA-mediated repression of genes for degradation of these metabolites under salt. In PL177, salt specifically up-regulated genes involved in several pathways underlying salt tolerance, including ABA-mediated cellular lipid and fatty acid metabolic processes and cytoplasmic transport, sequestration by vacuoles, detoxification and cell-wall remodeling in shoots, and oxidation–reduction reactions in roots. Combined genetic and transcriptomic evidence shortlisted relatively few candidate genes for improved salt tolerance in PL177. PMID:26512058

  3. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling.

    PubMed

    Wang, Wen-Sheng; Zhao, Xiu-Qin; Li, Min; Huang, Li-Yu; Xu, Jian-Long; Zhang, Fan; Cui, Yan-Ru; Fu, Bin-Ying; Li, Zhi-Kang

    2016-01-01

    To understand the physiological and molecular mechanisms underlying seedling salt tolerance in rice (Oryza sativa L.), the phenotypic, metabolic, and transcriptome responses of two related rice genotypes, IR64 and PL177, with contrasting salt tolerance were characterized under salt stress and salt+abscisic acid (ABA) conditions. PL177 showed significantly less salt damage, lower Na(+)/K(+) ratios in shoots, and Na(+) translocation from roots to shoots, attributed largely to better salt exclusion from its roots and salt compartmentation of its shoots. Exogenous ABA was able to enhance the salt tolerance of IR64 by selectively decreasing accumulation of Na(+) in its roots and increasing K(+) in its shoots. Salt stress induced general and organ-specific increases of many primary metabolites in both rice genotypes, with strong accumulation of several sugars plus proline in shoots and allantoin in roots. This was due primarily to ABA-mediated repression of genes for degradation of these metabolites under salt. In PL177, salt specifically up-regulated genes involved in several pathways underlying salt tolerance, including ABA-mediated cellular lipid and fatty acid metabolic processes and cytoplasmic transport, sequestration by vacuoles, detoxification and cell-wall remodeling in shoots, and oxidation-reduction reactions in roots. Combined genetic and transcriptomic evidence shortlisted relatively few candidate genes for improved salt tolerance in PL177.

  4. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea.

    PubMed

    Lv, Sulian; Jiang, Ping; Chen, Xianyang; Fan, Pengxiang; Wang, Xuchu; Li, Yinxin

    2012-02-01

    Euhalophyte Salicornia europaea L., one of the most salt-tolerant plant species in the world, can tolerate more than 1000 mM NaCl. To study the salt tolerance mechanism of this plant, the effects of different NaCl concentrations on plant growth, as well as Na(+) accumulation and distribution at organ, tissue, and subcellular levels, were investigated. Optimal growth and an improved photosynthetic rate were observed with the plant treated with 200-400 mM NaCl. The Na(+) content in the shoots was considerably higher than that in the roots of S. europaea. The Na(+) in S. europaea cells may act as an effective osmotic adjuster to maintain cell turgor, promoting photosynthetic competence and plant growth. The results from the SEM-X-ray and TEM-X-ray microanalyses demonstrate that Na(+) was compartmentalized predominantly into the cell vacuoles of shoot endodermis tissues. Accordingly, the transcript amounts of SeNHX1, SeVHA-A, and SeVP1 increased significantly with increased NaCl concentration, suggesting their important roles in Na(+) sequestration into the vacuoles. Therefore, a multiple sodium compartmentalization mechanism is proposed to enhance further the salt tolerance of S. europaea.

  5. Genomics, Physiology, and Molecular Breeding Approaches for Improving Salt Tolerance.

    PubMed

    Ismail, Abdelbagi M; Horie, Tomoaki

    2017-02-22

    Salt stress reduces land and water productivity and contributes to poverty and food insecurity. Increased salinization caused by human practices and climate change is progressively reducing agriculture productivity despite escalating calls for more food. Plant responses to salt stress are fairly well understood, involving numerous critical processes that are each controlled by multiple genes. Knowledge of the critical mechanisms controlling salt uptake and exclusion from functioning tissues, signaling of salt stress, and the arsenal of protective metabolites is advancing. However, little progress has been made in developing salt-tolerant varieties of crop species using standard (but slow) breeding approaches. The genetic diversity available within cultivated crops and their wild relatives provides rich sources for trait and gene discovery that has yet to be sufficiently utilized. Transforming this knowledge into modern approaches using genomics and molecular tools for precision breeding will accelerate the development of tolerant cultivars and help sustain food production. Expected final online publication date for the Annual Review of Plant Biology Volume 68 is April 29, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  6. Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance.

    PubMed

    Ariga, Hirotaka; Katori, Taku; Yoshihara, Ryouhei; Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Iuchi, Satoshi; Kobayashi, Masatomo; Tezuka, Kenji; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2013-07-01

    An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance.

  7. Arabidopsis sos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance

    PubMed Central

    Ariga, Hirotaka; Katori, Taku; Yoshihara, Ryouhei; Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Iuchi, Satoshi; Kobayashi, Masatomo; Tezuka, Kenji; Sakata, Yoichi; Hayashi, Takahisa; Taji, Teruaki

    2013-01-01

    An analysis of the salinity tolerance of 354 Arabidopsis thaliana accessions showed that some accessions were more tolerant to salt shock than the reference accession, Col-0, when transferred from 0 to 225 mM NaCl. In addition, several accessions, including Zu-0, showed marked acquired salt tolerance after exposure to moderate salt stress. It is likely therefore that Arabidopsis plants have at least two types of tolerance, salt shock tolerance and acquired salt tolerance. To evaluate a role of well-known salt shock tolerant gene SOS1 in acquired salt tolerance, we isolated a sos1 mutant from ion-beam-mutagenized Zu-0 seedlings. The mutant showed severe growth inhibition under salt shock stress owing to a single base deletion in the SOS1 gene and was even more salt sensitive than Col-0. Nevertheless, it was able to survive after acclimation on 100 mM NaCl for 7 d followed by 750 mM sorbitol for 20 d, whereas Col-0 became chlorotic under the same conditions. We propose that genes for salt acclimation ability are different from genes for salt shock tolerance and play an important role in the acquisition of salt or osmotic tolerance. PMID:23656872

  8. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress.

    PubMed

    Lee, Min Hee; Cho, Eun Ju; Wi, Seung Gon; Bae, Hyoungwoo; Kim, Ji Eun; Cho, Jae-Young; Lee, Sungbeom; Kim, Jin-Hong; Chung, Byung Yeoup

    2013-09-01

    Salinization plays a primary role in soil degradation and reduced agricultural productivity. We observed that salt stress reversed photosynthesis and reactive oxygen scavenging responses in leaves or roots of two rice cultivars, a salt-tolerant cultivar Pokkali and a salt-sensitive cultivar IR-29. Salt treatment (100 mM NaCl) on IR-29 decreased the maximum photochemical efficiency (Fv/Fm) and the photochemical quenching coefficient (qP), thereby inhibiting photosynthetic activity. By contrast, the salt treatment on Pokkali had the converse effect on Fv/Fm and qP, while increasing the nonphotochemical quenching coefficient (NPQ), thereby favoring photosynthetic activity. Notably, chloroplast or root cells in Pokkali maintained their ultrastructures largely intact under the salt stress, but, IR-29 showed severe disintegration of existing grana stacks, increase of plastoglobuli, and swelling of thylakoidal membranes in addition to collapsed vascular region in adventitious roots. Pokkali is known to have higher hydrogen peroxide (H2O2)-scavenging enzyme activities in non-treated seedlings, including ascorbate peroxidase, catalase, and peroxidase activities. However, these enzymatic activities were induced to a greater extent in IR-29 by the salt stress. While the level of endogenous H2O2 was lower in Pokkali than in IR-29, it was reversed upon the salt treatment. Nevertheless, the decreased amount of H2O2 in IR-29 upon the salt stress didn't result in a high scavenging activity of total cell extracts for H2O2, as well as O2(·-) and (·)OH species. The present study suggests that the tolerance to the moderate salinity in Pokkali derives largely from the constitutively maintained antioxidant enzymatic activities as well as the induced antioxidant enzyme system.

  9. Effect of temperature & salt concentration on salt tolerant nitrate-perchlorate reducing bacteria: Nitrate degradation kinetics.

    PubMed

    Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J

    2015-10-15

    The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification.

  10. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    PubMed Central

    Massange-Sánchez, Julio A.; Palmeros-Suárez, Paola A.; Espitia-Rangel, Eduardo; Rodríguez-Arévalo, Isaac; Sánchez-Segura, Lino; Martínez-Gallardo, Norma A.; Alatorre-Cobos, Fulgencio; Tiessen, Axel; Délano-Frier, John P.

    2016-01-01

    Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms. PMID:27749893

  11. Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1

    NASA Technical Reports Server (NTRS)

    Cumbers, John Robert; Rothschild, Lynn J.

    2014-01-01

    Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.

  12. Invasive Knotweeds are Highly Tolerant to Salt Stress

    NASA Astrophysics Data System (ADS)

    Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence

    2012-12-01

    Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.

  13. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  14. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars.

  15. Salt tolerance at single cell level in giant-celled Characeae

    PubMed Central

    Beilby, Mary J.

    2015-01-01

    Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50–100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in

  16. [Selection and characterization of salt-tolerant calli of Taraxacum officinale].

    PubMed

    Zhang, Xinguo; Chen, Xianyang; Jiang, Dan; Li, Yinxin

    2008-07-01

    In order to obtain salt-tolerant calli of Dandelion (Taraxacum officinale Weber), calli were induced from leaf explants of Dandelion on Murashige and Skoog's medium supplemented with 2.0 mg/L 6-benzyladenine and 0.5 mg/L 2,4-dichlorophen oxyacetic acid With 1.5% NaCl as selection pressure, most calli became brown and dead, whereas some new cell clusters appeared at the edge of the brown calli after 2 to 3 weeks. The survived cells were picked out and sub-cultured every 3 weeks onto the fresh selection medium and salt-tolerant calli were finally obtained through 4 continuous selections on the selection medium supplemented with 1.5% NaCl. Salt-tolerant calli increased steadily under a fixed NaCl stress though their relative growth rate decreased with increased NaCl concentration whereas the control calli which were sub-cultured by 4 continus selections on salt free medium ceased to grow under the same condition. This result indicated that the salt-tolerance of the selected calli is improved and this character is stable. Compared with the control, the SDS-PAGE pattern of the salt-tolerant calli had a unique 34 kD protein band. Its 30 kD and 18 kD protein bands were up-regulated. Further more, within the NaCl stress range up to 1.5%, the activities of antioxidant enzymes such as super oxidase dimutase, peroxidase and catalase, and the proline contents of the salt-tolerant calli were higher than those of the control. The results indicated that the selected calli with improved and stable salt tolerance were cell variants. The accumulation of the organic compatible solutes including proteins and the enhanced antioxidant capabilities in the salt tolerant calli are the two ways for them to regulate their osmotic homeostasis and alleviate the secondary reactive oxygen spexies damage respectively.

  17. Expression of an Arabidopsis Vacuolar H+-pyrophosphatase Gene (AVP1) in Cotton Improves Drought- and Salt Tolerance and Increases Fibre Yield in the Field Conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+PPase from Arabido...

  18. Expression of an arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabid...

  19. Evaluation of cotton germplasm and breeding populations for salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three experiments were conducted in 2005 and 2007 to evaluate a total of 211 cotton germplasm and breeding lines for salt tolerance in the greenhouses. The randomized complete block designs with two or three replications were employed for those experiments. 200 mM salt solutions or tap water were ap...

  20. (Bioenergetics of salt tolerance): Progress report, 1980-1983

    SciTech Connect

    Not Available

    1983-01-01

    We have developed novel and useful techniques based on ESR probes for measuring intracellular volumes and membrane permeability, as well as adapted more commonly used ones for various measurements in work on salt tolerance. Biological membrane systems, ranging from simpler (halobacteria and cyanobacteria) to more complex (sugar beet leaf segments) have been studied where specific problems related to salt tolerance and ionic transport were identified. The role of sodium and chloride transport in maintaining cellular volumes were studied with respect to the events which take place during adaptation to salt and their relationship to nitrate assimilation. 14 refs.

  1. Increasing ideological tolerance in social psychology.

    PubMed

    Inbar, Yoel; Lammers, Joris

    2015-01-01

    We argue that recognizing current ideological diversity in social psychology and promoting tolerance of minority views is just as important as increasing the number of non-liberal researchers. Increasing tolerance will allow individuals in the minority to express dissenting views, which will improve psychological science by reducing bias. We present four recommendations for increasing tolerance.

  2. Physical Chemistry and Evolution of Salt Tolerance in Halobacteria

    NASA Astrophysics Data System (ADS)

    Lanyi, Janos K.

    1980-06-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  3. Physical chemistry and evolution of salt tolerance in halobacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  4. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato.

    PubMed

    Liu, Degao; Wang, Lianjun; Zhai, Hong; Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

  5. A Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato

    PubMed Central

    Song, Xuejin; He, Shaozhen; Liu, Qingchang

    2014-01-01

    Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and belongs to α/β-hydrolase superfamily. Expression of IbMas was up-regulated in sweetpotato under salt stress and ABA treatment. The IbMas-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbMas up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes, under salt stress. These findings suggest that overexpression of IbMas enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity. PMID:25501819

  6. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance.

    PubMed

    Zheng, Yanhai; Jia, Aijun; Ning, Tangyuan; Xu, Jialin; Li, Zengjia; Jiang, Gaoming

    2008-09-29

    A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.

  7. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.

    PubMed

    Zang, Dandan; Wang, Chao; Ji, Xiaoyu; Wang, Yucheng

    2015-06-01

    Zinc finger proteins (ZFPs) are a large family that play important roles in various biological processes, such as signal transduction, RNA binding, morphogenesis, transcriptional regulation, abiotic or biotic stress response. However, the functions of ZFPs involved in abiotic stress are largely not known. In the present study, we cloned and functionally characterized a ZFP gene, ThZFP1, from Tamarix hispida. The expression of ThZFP1 is highly induced by NaCl, mannitol or ABA treatment. To study the function of ThZFP1 involved in abiotic stress response, transgenic T. hispida plants with overexpression or knockdown of ThZFP1 were generated using a transient transformation system. Gain- and loss-of-function studies of ThZFP1 suggested that ThZFP1 can induce the expression of a series of genes, including delta-pyrroline-5-carboxylate synthetase (P5CS), peroxidase (POD) and superoxide dismutase (SOD), leading to accumulation of proline and enhanced activities of SOD and POD. These physiological changes enhanced proline content and reactive oxygen species (ROS) scavenging capability when exposed to salt or osmotic stress. All the results obtained from T. hispida plants were further confirmed by analyses of the transgenic Arabidopsis plants overexpressing ThZFP1. These data together suggested that ThZFP1 positively regulates proline accumulation and activities of SOD and POD under salt and osmotic stress conditions.

  8. Directed Evolution of Dunaliella salina Ds-26-16 and Salt-Tolerant Response in Escherichia coli

    PubMed Central

    Guo, Yuan; Dong, Yanping; Hong, Xiao; Pang, Xiaonan; Chen, Defu; Chen, Xiwen

    2016-01-01

    Identification and evolution of salt tolerant genes are crucial steps in developing salt tolerant crops or microorganisms using biotechnology. Ds-26-16, a salt tolerant gene that was isolated from Dunaliella salina, encodes a transcription factor that can confer salt tolerance to a number of organisms including Escherichia coli (E. coli), Haematococcus pluvialis and tobacco. To further improve its salt tolerance, a random mutagenesis library was constructed using deoxyinosine triphosphate-mediated error-prone PCR technology, and then screened using an E. coli expression system that is based on its broad-spectrum salt tolerance. Seven variants with enhanced salt tolerance were obtained. Variant EP-5 that contained mutation S32P showed the most improvement with the E. coli transformant enduring salt concentrations up to 1.54 M, in comparison with 1.03 M for the wild type gene. Besides, Ds-26-16 and EP-5 also conferred E. coli transformant tolerance to freezing, cold, heat, Cu2+ and alkaline. Homology modeling revealed that mutation S32P in EP-5 caused the conformational change of N- and C-terminal α-helixes. Expression of Ds-26-16 and EP-5 maintained normal cellular morphology, increased the intracellular antioxidant enzymatic activity, reduced malondialdehyde content, and stimulated Nitric Oxide synthesis, thus enhancing salt tolerance to E. coli transformants. PMID:27801872

  9. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species.

    PubMed

    Gálvez, Francisco Javier; Baghour, Mourad; Hao, Gangping; Cagnac, Olivier; Rodríguez-Rosales, María Pilar; Venema, Kees

    2012-02-01

    In general, wild tomato species are more salt tolerant than cultivated species, a trait that is related to enhanced Na(+) accumulation in aerial parts in the wild species, but the molecular basis for these differences is not known. Plant NHX proteins have been suggested to be important for salt tolerance by promoting accumulation of Na(+) or K(+) inside vacuoles. Therefore, differences in expression or activity of NHX proteins in tomato could be at the basis of the enhanced salt tolerance in wild tomato species. To test this hypothesis, we studied the expression level of four NHX genes in the salt sensitive cultivated species Solanum lycopersicum L. cv. Volgogradskij and the salt tolerant wild species Solanum pimpinelifolium L in response to salt stress. First, we determined that in the absence of salt stress, the RNA abundance of LeNHX2, 3 and 4 was comparable in both species, while more LeNHX1 RNA was detected in the tolerant species. LeNHX2 and LeNHX3 showed comparable expression levels and were present in all tissues, while LeNHX4 was expressed above all in stem and fruit tissues. Next, we confirmed that the wild species was more tolerant and accumulated more Na(+) in aerial parts of the plant. This correlated with the observation that salt stress induced especially the LeNHX3 and LeNHX4 isoforms in the tolerant species. These results support a role of NHX genes as determinants of salt tolerance in tomato, inducing enhanced Na(+) accumulation observed in the wild species when grown in the presence of NaCl.

  10. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population.

    PubMed

    Gruber, M Y; Xia, J; Yu, M; Steppuhn, H; Wall, K; Messer, D; Sharpe, A G; Acharya, S N; Wishart, D S; Johnson, D; Miller, D R; Taheri, A

    2017-02-01

    With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while expression remained unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population was observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa.

  11. Comparison between the polypeptide profile of halophilic bacteria and salt tolerant plants.

    PubMed

    Muñoz, G; González, C; Flores, P; Prado, B; Campos, V

    1997-12-01

    Changes in the polypeptide profile induced by salt stress in halotolerant and halophilic bacteria, isolated from the Atacama desert (northern Chile), were compared with those in the cotyledons of Prosopis chilensis (Leguminoseae) seedlings, a salt tolerant plant. SDS-PAGE analyses show the presence of four predominant polypeptides, with molecular weights around 78, 70, 60 and 44 kDa respectively, both in bacteria and in cotyledons from P. chilensis seedlings raised under salt stress conditions. Moreover, the 60 and 44 kDa polypeptides seem to be salt responsive, since their concentration increases with increasing NaCl in the growth medium. Our results suggest a common mechanism for salt tolerance in prokaryotes and in eukaryotes.

  12. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  13. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  14. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  15. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Sodium salt of acifluorfen; tolerances... Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances are established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5- -2-nitrobenzoate,...

  16. Increased tolerance to humans among disturbed wildlife.

    PubMed

    Samia, Diogo S M; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F; Blumstein, Daniel T

    2015-11-16

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds.

  17. Increased tolerance to humans among disturbed wildlife

    PubMed Central

    Samia, Diogo S. M.; Nakagawa, Shinichi; Nomura, Fausto; Rangel, Thiago F.; Blumstein, Daniel T.

    2015-01-01

    Human disturbance drives the decline of many species, both directly and indirectly. Nonetheless, some species do particularly well around humans. One mechanism that may explain coexistence is the degree to which a species tolerates human disturbance. Here we provide a comprehensive meta-analysis of birds, mammals and lizards to investigate species tolerance of human disturbance and explore the drivers of this tolerance in birds. We find that, overall, disturbed populations of the three major taxa are more tolerant of human disturbance than less disturbed populations. The best predictors of the direction and magnitude of bird tolerance of human disturbance are the type of disturbed area (urbanized birds are more tolerant than rural or suburban populations) and body mass (large birds are more tolerant than small birds). By identifying specific features associated with tolerance, these results guide evidence-based conservation strategies to predict and manage the impacts of increasing human disturbance on birds. PMID:26568451

  18. Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco.

    PubMed

    Chen, Xianyang; Bao, Hexigeduleng; Guo, Jie; Jia, Weitao; Li, Yinxin

    2015-01-01

    Recently, we found NHX1, the gene encoding a Na(+)/H(+) exchanger, participated in plant disease defense. Although NHX1 has been confirmed to be involved in plant salt tolerance, whether the NHX1 transgenic plants exhibit both salt tolerance and disease resistance has not been investigated. The T1 progenies of Nicotiana tabacum L. lines expressing SeNHX1 (from Salicornia europaea) were generated for the present study. Compared with PBI-type control plants, SeNHX1 transgenic tobaccos exhibited more biomass, longer root length, and higher K(+)/Na(+) ratio at post germination or seedling stage under NaCl treatment, indicating enhanced salt tolerance. The vacuolar H(+) efflux in SeNHX1 transgenic tobacco was increased after treatment of NaCl with different concentration. Meanwhile, the SeNHX1 transgenic tobaccos showed smaller wilted spot area, less H2O2 accumulation in leaves after infection of Phytophthora parasitica var. nicotianae. Further investigation demonstrated a larger NAD(P)(H) pool in SeNHX1 transgenic tobacco. These evidences revealed that overexpression of SeNHX1 intensified the compartmentation of Na(+) into vacuole under salt stress and improved the ability of eliminating ROS after pathogen attack, which then enhanced salt tolerance and disease resistance simultaneously in tobacco. Our findings indicate NHX1 has potential value in creating crops with both improved salt tolerance and disease resistance.

  19. EIN3 and SOS2 synergistically modulate plant salt tolerance

    PubMed Central

    Quan, Ruidang; Wang, Juan; Yang, Dexin; Zhang, Haiwen; Zhang, Zhijin; Huang, Rongfeng

    2017-01-01

    Ethylene biosynthesis and the ethylene signaling pathway regulate plant salt tolerance by activating the expression of downstream target genes such as those related to ROS and Na+/K+ homeostasis. The Salt Overly Sensitive (SOS) pathway regulates Na+/K+ homeostasis in Arabidopsis under salt stress. However, the connection between these two pathways is unclear. Through genetic screening, we identified two sos2 alleles as salt sensitive mutants in the ein3-1 background. Neither Ethylene-Insensitive 2 (EIN2) nor EIN3 changed the expression patterns of SOS genes including SOS1, SOS2, SOS3 and SOS3-like Calcium Binding Protein 8 (SCaBP8), but SOS2 activated the expression of one target gene of EIN3, Ethylene and Salt-inducible ERF 1 (ESE1). Moreover, Ser/Thr protein kinase SOS2 phosphorylated EIN3 in vitro mainly at the S325 site and weakly at the S35, T42 and S606 sites. EIN3 S325A mutation reduced its transcriptional activating activity on ESE1 promoter:GUS in a transient GUS assay, and impaired its ability to rescue ein3-1 salt hypersensitivity. Furthermore, SOS2 activated salt-responsive ESE1 target gene expression under salt stress. Therefore, EIN3-SOS2 might link the ethylene signaling pathway and the SOS pathway in Arabidopsis salt responses. PMID:28300216

  20. Creating Drought- and Salt-Tolerant Crops by Overexpressing a Vacuolar Pyrophosphatase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proto...

  1. 40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Sodium salt of acifluorfen; tolerances... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.383 Sodium salt of acifluorfen; tolerances for residues. (a) General. Tolerances...

  2. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific.

  3. Salt- and alkaline-tolerance are linked in Acacia

    PubMed Central

    Bui, Elisabeth N.; Thornhill, Andrew; Miller, Joseph T.

    2014-01-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  4. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.

    PubMed

    Zhu, Zhu; Chen, Juan; Zheng, Hai-Lei

    2012-11-01

    Salinity is a major abiotic stress that is responsible for growth reduction in most higher plants. Bruguiera gymnorrhiza (L.) Lam., a mangrove plant, is a halophyte and is one of the most salt-tolerant plant species. Physiological and proteomic characteristics of B. gymnorrhiza were investigated under three NaCl concentrations (0, 200 and 500 mM) in this study. Maximum seedling growth occurred at 200 mM NaCl. Leaf osmotic potential was more negative as salt levels increased further. Physiological results revealed that inorganic ions (especially Na(+) and Cl(-)) played a key role in osmotic adjustment of B. gymnorrhiza leaves under salinity treatments. Comparative proteomic analysis revealed 23 salt-responsive proteins in B. gymnorrhiza leaves, which were differentially expressed under salt treatment compared with control. Ten protein spots were analyzed by liquid chromatography-tandem mass spectrometry, leading to identification of proteins involved in photosynthesis, antioxidation, protein folding, cell organization and metabolism. Salt-responsive mechanism was different between 200 and 500 mM NaCl-treated plants on the basis of the physiological and proteomic analyses. Salt tolerance under 200 mM NaCl treatment was due to effective osmotic adjustment, accumulation of inorganic ions (especially Na(+) and Cl(-)) as well as increased expression of photosynthesis-related proteins and antioxidant enzymes, which improved the salt tolerance of B. gymnorrhiza, and furthermore promoted plant growth. On the other hand, 500 mM NaCl reduced the growth of B. gymnorrhiza, which appears to have been caused by the accumulation of NaCl (ionic effect) and energy consumption by organic solute synthesis. Moreover, the repressed expression of photosynthesis-related proteins and antioxidant enzymes led to the reduction of growth. Protein folding and degradation-related proteins and cell organization-related protein were up-regulated and played important roles in salt tolerance of B

  5. Thinopyrum ponticum chromatin-integrated wheat genome shows salt-tolerance at germination stage.

    PubMed

    Yuan, Wen-Ye; Tomita, Motonori

    2015-02-26

    A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70), which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42) was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42) and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ratio of 3 salt tolerant to 1 salt sensitive, indicating that the salt tolerance was conferred by a dominant gene block. Genomic in situ hybridization analysis revealed that S148 had a single pair of Th. ponticum-T. aestivum translocated chromosomes bearing the salt-tolerance. This is an initial step of molecular breeding for salt-tolerant wheat.

  6. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    PubMed

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks.

  7. Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco.

    PubMed

    Sun, Yan-Guo; Wang, Bo; Jin, Shang-Hui; Qu, Xiao-Xia; Li, Yan-Jie; Hou, Bing-Kai

    2013-01-01

    Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stress tolerance in the transgenic plants. There were higher seed germination rates, better plant growth and less chlorophyll loss in transgenic lines compared to wild type plants under salt stress. This enhanced tolerance of salt stress was correlated with increased accumulations of proline and soluble sugars, but with decreases in malondialdehyde accumulation and Na(+)/K(+) ratio in UGT85A5-expressing tobacco. Furthermore, during salt stress, expression of several carbohydrate metabolism-related genes including those for sucrose synthase, sucrose-phosphate synthase, hexose transporter and a group2 LEA protein were obviously upregulated in UGT85A5-expressing transgenic plants compared with wild type controls. Thus, these findings suggest a specific protective role of this glycosyltransferase against salt stress and provide a genetic engineering strategy to improve salt tolerance of crops.

  8. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.

    PubMed

    Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi

    2016-02-01

    Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance.

  9. [Physiological response and salt-tolerance of Gleditsia microphylla under NaCl stress].

    PubMed

    Lu, Bin; Hou, Yue-min; Li, Xin-yang; Chang, Yue-xia; Huang, Da-zhuang; Lu, Bing-she

    2015-11-01

    In order to exploit the salt-tolerance ability and mechanism of Gleditsia microphylla, the plant growth, cell membrane permeability, the activities of cell protective enzymes, and the distri- butions of Na+ and K+ in different tissues were investigated under various NaCl stress (0.053%, 0.15%, 0.3%, 0.45% and 0.6%) with potted two-year seedlings. The results were as follows: With the increase of NaCl concentration, the seedling growth decreased while the salt injured index in- creased, and the salt-tolerance thresholds of seedling was 0.42% NaCl. With the NaCl concentration increasing, the membrane permeability, superoxide anion radical generating rate and MDA content increased grandly, while the activities of SOD, POD and CAT demonstrated an increase-decrease curve which reached the peak at 0.3% or 0.45%. Under the high salt stress condition, the supero- xide anion could be consumed timely by increasing the activities of SOD, POD and CAT enzymes, which was useful to avoid cell injure. Under salt stress condition, the Na+ content in different tissues increased gradually, following the order of root > leaf > stem, and the K+ content and K+/Na+ in different tissues decreased, following the order of leaf > root > stem. The K+-Na+ selective transpor- tation coefficients (S(K+) · Na+) of stem and leaf tissues under the soil NaCl stress condition were both increased, following the order of leaf > stem. In conclusion, the findings suggested that the salt- adaptation mechanisms of G. microphylla were root salt-rejection by Na+ accumulation and restriction in root tissue and leaf salt-tolerance by a remarkably increased ability of K+ selective absorption and accumulation in leaf tissue.

  10. Tetraploid citrus rootstocks are more tolerant to salt stress than diploid.

    PubMed

    Saleh, Basel; Allario, Thierry; Dambier, Dominique; Ollitrault, Patrick; Morillon, Raphaël

    2008-09-01

    Citrus trees are subject to several abiotic constraints such as salinity. Providing new rootstocks more tolerant is thus a requirement. In this article, we investigated salt stress tolerance of three tetraploid rootstock genotypes when compared to their respective diploid rootstocks (Poncirus trifoliata, Carrizo citrange, Cleopatra mandarin). Plant growth, leaf fall and ion contents were investigated. At the end of the experiment, leaf fall was observed only for diploid Poncirus trifoliata plants as well as chlorosis symptoms for Poncirus trifoliata and Carrizo citrange diploid plants. The diploid Cleopatra mandarin plants growth rate was not affected by salt stress and has even been increased for tetraploid Cleopatra mandarin. Ion contents investigation has shown lower accumulations of chloride ions in leaves of the tetraploid plants when compared to diploid plants. Our results suggest that citrus tetraploid rootstocks are more tolerant to salt stress than their corresponding diploid.

  11. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides.

    PubMed

    Ayarpadikannan, Selvam; Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kim, Soon-Ok; Jeon, Joo-Min; Kwak, Myoung-Hae; Lee, Seon-Woo; Lee, Jai-Heon

    2012-01-01

    Salinity stress severely affects plant growth and development causing crop loss worldwide. Suaeda asparagoides is a salt-marsh euhalophyte widely distributed in southwestern foreshore of Korea. To isolate salt tolerance genes from S. asparagoides, we constructed a cDNA library from leaf tissues of S. asparagoides that was treated with 200 mM NaCl. A total of 1,056 clones were randomly selected for EST sequencing, and 932 of them produced readable sequence. By sequence analysis, we identified 538 unigenes and registered each in National Center for Biotechnology Information. The 80 salt stress related genes were selected to study their differential expression. Reverse transcription-PCR and Northern blot analysis revealed that 23 genes were differentially expressed under the high salinity stress conditions in S. asparagoides. They are functionally diverse including transport, signal transduction, transcription factor, metabolism and stress associated protein, and unknown function. Among them dehydrin (SaDhn) and RNA binding protein (SaRBP1) were examined for their abiotic stress tolerance in yeast (Saccharomyces cerevisiae). Yeast overexpressing SaDhn and SaRBP1 showed enhanced tolerance to osmotic, freezing and heat shock stresses. This study provides the evidence that SaRBP1 and SaDhn from S. asparagoides exert abiotic stress tolerance in yeast. Information of salt stress related genes from S. asparagoides would contribute for the accumulating genetic resources to improve osmotic tolerance in plants.

  12. Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance.

    PubMed

    Navarro-Torre, S; Barcia-Piedras, J M; Mateos-Naranjo, E; Redondo-Gómez, S; Camacho, M; Caviedes, M A; Pajuelo, E; Rodríguez-Llorente, I D

    2017-03-01

    There is an increasing interest to use halophytes for revegetation of salt affected ecosystems, as well as in understanding their mechanisms of salt tolerance. We hypothesized that bacteria from the phyllosphere of these plants might play a key role in its high tolerance to excessive salinity. Eight endophytic bacteria belonging to Bacillus and closely related genera were isolated from phyllosphere of the halophyte Arthrocnemum macrostachyum growing in salty agricultural soils. The presence of plant-growth promoting (PGP) properties, enzymatic activities and tolerance towards NaCl was determined. Effects of inoculation on seeds germination and adult plant growth under experimental NaCl treatments (0, 510 and 1030 mM NaCl) were studied. Inoculation with a consortium including the best performing bacteria improved considerably the kinetics of germination and the final germination percentage of A. macrostachyum seeds. At high NaCl concentrations (1030 mM), inoculation of plants mitigated the effects of high salinity on plant growth and physiological performance and, in addition, this consortium appears to have increased the potential of A. macrostachyum to accumulate Na(+) in its shoots, thus improving sodium phytoextraction capacity. Bacteria isolated from A. macrostachyum phyllosphere seem to play an important role in plant salt tolerance under stressing salt concentrations. The combined use of A. macrostachyum and its microbiome can be an adequate tool to enhance plant adaptation and sodium phytoextraction during restoration of salt degraded soils.

  13. Screening of Purslane (Portulaca oleracea L.) Accessions for High Salt Tolerance

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2014-01-01

    Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production. PMID:25003141

  14. Overexpression of Late Embryogenesis Abundant 14 enhances Arabidopsis salt stress tolerance

    SciTech Connect

    Jia, Fengjuan Qi, Shengdong Li, Hui Liu, Pu Li, Pengcheng Wu, Changai Zheng, Chengchao Huang, Jinguang

    2014-11-28

    Highlights: • It is the first time to investigate the biological function of AtLEA14 in salt stress response. • AtLEA14 enhances the salt stress tolerance both in Arabidopsis and yeast. • AtLEA14 responses to salt stress by stabilizing AtPP2-B11, an E3 ligase, under normal or salt stress conditions. - Abstract: Late embryogenesis abundant (LEA) proteins are implicated in various abiotic stresses in higher plants. In this study, we identified a LEA protein from Arabidopsis thaliana, AtLEA14, which was ubiquitously expressed in different tissues and remarkably induced with increased duration of salt treatment. Subcellular distribution analysis demonstrated that AtLEA14 was mainly localized in the cytoplasm. Transgenic Arabidopsis and yeast overexpressing AtLEA14 all exhibited enhanced tolerance to high salinity. The transcripts of salt stress-responsive marker genes (COR15a, KIN1, RD29B and ERD10) were overactivated in AtLEA14 overexpressing lines compared with those in wild type plants under normal or salt stress conditions. In vivo and in vitro analysis showed that AtLEA14 could effectively stabilize AtPP2-B11, an important E3 ligase. These results suggested that AtLEA14 had important protective functions under salt stress conditions in Arabidopsis.

  15. Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli.

    PubMed

    Suzuki, Hirokazu; Ishii, Jun; Kondo, Akihiko; Yoshida, Ken-Ichi

    2015-02-01

    Microbes employ cell membranes for reducing exogenous stresses. Polyamino acid display on microbial cell surfaces and their effects on microbial chemical stress tolerance were examined. Growth analysis revealed that displays of polyarginine, polyaspartate and polytryptophan substantially enhanced tolerance of Escherichia coli to NaCl. A titration assay indicated that polyarginine and polyaspartate altered cell surface charges, implying tolerance enhancement via ion atmosphere and/or ionic bond network formations for electrostatic ion repulsion. The enhancement by polytryptophan may have arisen from surface hydrophobicity increase for hydrophobic ion exclusion, because of a strong correlation between hydrophobic characters of amino acids and their effects on tolerance enhancement. The display also enhanced tolerance to other salts and/or alcohols in E. coli and to NaCl in Saccharomyces cerevisiae. Thus polyamino acid display has the potential as an approach for conferring chemical stress tolerance on various microbes.

  16. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings

    SciTech Connect

    Qi, Wencai; Zhang, Liang; Xu, Hangbo; Wang, Lin; Jiao, Zhen

    2014-07-25

    Highlights: • 50-Gy gamma irradiation markedly promotes the seedling growth under salt stress in Arabidopsis. • The contents of H{sub 2}O{sub 2} and MDA are obviously reduced by low-dose gamma irradiation under salt stress. • Low-dose gamma irradiation stimulates the activities of antioxidant enzymes under salt stress. • Proline accumulation is required for the low-gamma-ray-induced salt tolerance. • Low gamma rays differentially regulate the expression of genes related to salt stress. - Abstract: It has been established that gamma rays at low doses stimulate the tolerance to salt stress in plants. However, our knowledge regarding the molecular mechanism underlying the enhanced salt tolerance remains limited. In this study, we found that 50-Gy gamma irradiation presented maximal beneficial effects on germination index and root length in response to salt stress in Arabidopsis seedlings. The contents of H{sub 2}O{sub 2} and MDA in irradiated seedlings under salt stress were significantly lower than those of controls. The activities of antioxidant enzymes and proline levels in the irradiated seedlings were markedly increased compared with the controls. Furthermore, transcriptional expression analysis of selected genes revealed that some components of salt stress signaling pathways were stimulated by low-dose gamma irradiation under salt stress. Our results suggest that gamma irradiation at low doses alleviates the salt stress probably by modulating the physiological responses as well as stimulating the stress signal transduction in Arabidopsis seedlings.

  17. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.

    PubMed

    Chen, Lin; Liu, Yunpeng; Wu, Gengwei; Veronican Njeri, Kimani; Shen, Qirong; Zhang, Nan; Zhang, Ruifu

    2016-09-01

    Salt stress reduces plant growth and is now becoming one of the most important factors restricting agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear. In this study, hydroponic experiments indicated that the PGPR strain Bacillus amyloliquefaciens SQR9 could help maize plants tolerate salt stress. After exposure to salt stress for 20 days, SQR9 significantly promoted the growth of maize seedlings and enhanced the chlorophyll content compared with the control. Additional analysis showed that the involved mechanisms could be the enhanced total soluble sugar content for decreasing cell destruction, improved peroxidase/catalase activity and glutathione content for scavenging reactive oxygen species, and reduced Na(+) levels in the plant to decrease Na(+) toxicity. These physiological appearances were further confirmed by the upregulation of RBCS, RBCL, H(+) -PPase, HKT1, NHX1, NHX2 and NHX3, as well as downregulation of NCED expression, as determined by quantitative reverse transcription-polymerase chain reaction. However, SQR9 counteracted the increase of abscisic acid in response to salt stress. In summary, these results show that SQR9 confers plant salt tolerance by protecting the plant cells and managing Na(+) homeostasis. Hence, it can be used in salt stress prone areas, thereby promoting agricultural production.

  18. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    PubMed

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.

  19. Acclimation of hydrogen peroxide enhances salt tolerance by activating defense-related proteins in Panax ginseng C.A. Meyer.

    PubMed

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Yu-Jin; Lee, Ok Ran; Parvin, Shonana; Balusamy, Sri Renuka Devi; Khorolragchaa, Atlanzul; Yang, Deok Chun

    2014-06-01

    The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.

  20. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot.

  1. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast.

    PubMed Central

    Gaxiola, R; de Larrinoa, I F; Villalba, J M; Serrano, R

    1992-01-01

    We have isolated a novel yeast gene, HAL1, which upon overexpression improves growth under salt stress. In addition, disruption of this gene decreases salt tolerance. Therefore HAL1 constitutes a rate-limiting determinant for halotolerance. It encodes a polar protein of 32 kDa located in the yeast cytoplasm and unrelated to sequences in data banks. The expression of this gene is increased by high concentrations of either NaCl, KCl or sorbitol. On the other hand, the growth advantage obtained by overexpression of HAL1 is specific for NaCl stress. In cells overexpressing HAL1, sodium toxicity seems to be counteracted by an increased accumulation of potassium. The HAL1 protein could interact with the transport systems which determine intracellular K+ homeostasis. The HAL1 gene and encoded protein are conserved in plants, being induced in these organisms by salt stress and abscisic acid. These results suggest that yeast serves as a convenient model system for the molecular biology of plant salt tolerance. Images PMID:1505513

  2. Selenium accumulation and selenium-salt co-tolerance in five grass species. [Festuca arundinaceae; Agropyron deserorum; Buchloe dactyloides; Agrostis stolonifera; Cynodon dactylon

    SciTech Connect

    Wu, L.; Huang, Z.; Burau, R.G.

    1987-04-01

    Five grass species including Tall fescue (Festuca arundinaceae Schred), Crested wheatgrass (Agropyron deserorum Fisch), Buffalo grass (Buchlor dactyloides (Nutt.) Engelm.), Seaside bentgrass (Agrostis stolonifera L.) and Bermuda grass (Cynodon dactylon (L.) Pers., Syn.) were examined for selenium and salt tolerance and selenium accumulation under solution culture conditions. Distinct differences in both selenium and salt tolerance were detected among the five species, but no direct association between selenium and salt resistance was found. Tall fescue displayed considerable tolerance under 1 ppm selenium and 100 mM salt treatment. Combined selenium and salt treatment revealed that selenium uptake was increased by the incorporation of salt in the culture solution. However, salt uptake was not significantly affected by the presence of selenium in the culture solution. At moderate toxic levels of selenium, the species with greater tolerance accumulated less selenium than did the less tolerant species.

  3. Citeromyces matritensis M37 is a salt-tolerant yeast that produces ethanol from salted algae.

    PubMed

    Okai, Masahiko; Betsuno, Ayako; Shirao, Ayaka; Obara, Nobuo; Suzuki, Kotaro; Takei, Toshinori; Takashio, Masachika; Ishida, Masami; Urano, Naoto

    2017-01-01

    Algae are referred to as a third-generation biomass for ethanol production. However, salinity treatment is a problem that needs to be solved, because algal hydrolysates often contain high salt. Here, we isolated the salt-tolerant ethanol-producing yeast Citeromyces matritensis M37 from the east coast of Miura Peninsula in Japan. This yeast grew under osmotic stress conditions (20% NaCl or 60% glucose). It produced 6.55 g/L ethanol from YPD medium containing 15% NaCl after 48 h, and the ethanol accumulation was observed even at 20% NaCl. Using salted Undaria pinnatifida (wakame), we obtained 6.33 g/L glucose from approx. 150 g/L of the salted wakame powder with acidic and heat pretreatment followed by enzymatic saccharification, and the ethanol production reached 2.58 g/L for C. matritensis M37. The ethanol concentration was 1.4 times higher compared with that using the salt-tolerant ethanol-producing yeast Zygosaccharomyces rouxii S11.

  4. Rapid evolution of tolerance to road salt in zooplankton.

    PubMed

    Coldsnow, Kayla D; Mattes, Brian M; Hintz, William D; Relyea, Rick A

    2017-03-01

    Organisms around the globe are experiencing novel environments created by human activities. One such disturbance of growing concern is the salinization of freshwater habitats from the application of road deicing salts, which creates salinity levels not experienced within the recent evolutionary history of most freshwater organisms. Moreover, salinization can induce trophic cascades and alter the structure of freshwater communities, but knowledge is still scarce about the ability of freshwater organisms to adapt to elevated salinity. We examined if a common zooplankton of freshwater lakes (Daphnia pulex) could evolve a tolerance to the most commonly used road deicing salt (sodium chloride, NaCl). Using a mesocosm experiment, we exposed freshwater communities containing Daphnia to five levels of NaCl (15, 100, 200, 500, and 1000 mg Cl(-) L(-1)). After 2.5 months, we collected Daphnia from each mesocosm and raised them in the lab for three generations under low salt conditions (15 mg Cl(-) L(-1)). We then conducted a time-to-death experiment with varying concentrations of NaCl (30, 1300, 1500, 1700, 1900 mg Cl(-) L(-1)) to test for evolved tolerance. All Daphnia populations exhibited high survival when subsequently exposed to the lowest salt concentration (30 mg Cl(-) L(-1)). At the intermediate concentration (1300 mg Cl(-) L(-1)), however, populations previously exposed to elevated concentrations (i.e.100-1000 mg Cl(-) L(-1)) had higher survival than populations previously exposed to natural background levels (15 mg Cl(-) L(-1)). All populations survived poorly when subsequently exposed to the highest concentrations (1500, 1700, and 1900 mg Cl(-) L(-1)). Our results show that the evolution of tolerance to moderate levels of salt can occur within 2.5 months, or 5-10 generations, in Daphnia. Given the importance of Daphnia in freshwater food webs, such evolved tolerance might allow Daphnia to buffer food webs from the impacts of freshwater

  5. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding

    PubMed Central

    Hanin, Moez; Ebel, Chantal; Ngom, Mariama; Laplaze, Laurent; Masmoudi, Khaled

    2016-01-01

    Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields. PMID:27965692

  6. Salt tolerance and stress level affect plant biomass-density relationships and neighbor effects

    NASA Astrophysics Data System (ADS)

    Yu, Zhenxing; Chen, Wenwen; Zhang, Qian; Yang, Haishui; Tang, Jianjun; Weiner, Jacob; Chen, Xin

    2014-07-01

    It has been shown that plant biomass-density relationships are altered under extreme or stressed conditions. We do not know whether variation in biomass-density relationships is a direct result of stress tolerance or occurs via changes in plant-plant interactions. Here, we evaluated biomass-density relationships and neighbor effects in six plant species that differ in salt tolerance in a salt marsh, and conducted a literature review of biomass-density relationship under higher and lower stress levels. Our field study showed that both neighbor effects and the exponent of the biomass-density relationship (α) varied among plant species with different degrees of salt tolerance. There was a positive relationship between neighbor effects (measured as relative interaction index) and α-value among the tested species. The literature review showed that α and its variation increased under higher stress. Our results indicate that plant species with different salinity tolerance differ in the direction and strength of neighbor effects, resulting in variation in biomass-density relationships. Our results support the hypothesis that differences in biomass-density relationships among species are not due to differences in stress tolerance alone, they are mediated by changes in plant-plant interactions.

  7. 2-3H-Benzoxazolinone (BOA) induces loss of salt tolerance in salt-adapted plants.

    PubMed

    Sánchez-Moreiras, A M; Pedrol, N; González, L; Reigosa, M J

    2009-07-01

    In order to test the stress hypothesis of allelopathy of Reigosa et al. (1999, 2002), the combined action of a well-established allelochemical compound (2-3H-benzoxazolinone, BOA) and a common abiotic stress (salt stress) were investigated in lettuce (Lactuca sativa L.). In a previous study (Baerson et al. 2005), we demonstrated that the primary effects of BOA are related to the expression of genes involved in detoxification and stress responses, which might serve to simultaneously alleviate biotic and abiotic stresses. Through analysis of the same physiological and biochemical parameters previously studied for BOA alone (Sánchez-Moreiras & Reigosa 2005), we observed specific effects of salt stress alone, as well as for the two stresses together (BOA and salt). This paper demonstrates that plants showing tolerance to salt stress (reduced stomatal density, increased proline content, higher K(+) concentration, etc.) become salt sensitive (markedly low Psiw values, high putrescine content, increased lipid peroxidation, etc.) when simultaneously treated with the allelochemical BOA. We also report additional information on the mechanisms of action of BOA, and general stress responses in this plant species.

  8. Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Ren, Shuxin; Lyle, Chimera; Jiang, Guo-liang; Penumala, Abhishek

    2016-01-01

    Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops. PMID:27148284

  9. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    PubMed

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  10. (22)Na influx is significantly lower in salt tolerant groundnut (Arachis hypogaea) varieties.

    PubMed

    Smitharani, J A; Sowmyashree, M L; Vasantha, K M; Srivastava, M; Sashidhar, V R

    2014-01-01

    Distinct varieties differing in salt tolerance were initially identified from two separate green house experiments using two systems; solution as well as soil culture. The first screening involved a diverse group of 27 cultivars. Several physiological traits; Chlorophyll Stability Index (CSI), Salt Tolerance Index (STI) and ion content were determined to screen the cultivars for differences in salt tolerance using solution culture in the first experiment. A set of six varieties (three tolerant and three susceptible) were selected from this experiment and then subjected again to salt stress adopting a natural soil system in the second experiment which involved a screening approach essentially similar to that of the first experiment. In the third experiment using two distinct cultivars differing in salt tolerance selected from experiment II, (22)Na influx rate was determined in the root and shoot at the end of a 24 h salt imposition in Hoagland's nutrient system containing 180 KBq of (22)Na. The results suggested that there were distinct differences in (22)Na influx rate into root and concurrently in the shoot. The salt tolerant Spanish improved and one of the moderately tolerant Trombay variety TAG 24, showed good regulation of (22)Na influx resulting in low (22)Na concentration. The salt susceptible variety JSP39 had nearly 7-8 fold higher root (22)Na content as compared to the tolerant and moderately tolerant cultivars. The results have highlighted the importance of Na exclusion as an important determinant of salt tolerance in groundnut.

  11. Prospects for improving the salt tolerance of forest trees: A review

    USGS Publications Warehouse

    Allen, J.A.; Chambers, J.L.; Stine, M.

    1994-01-01

    Three major themes related to the improvement of salt tolerance in forest tree species are examined. First, evidence demonstrating that substantial intraspecific variation in salt tolerance exists in many species is presented. This evidence is important because it suggests that efforts to improve salt tolerance through conventional plant breeding techniques are justified. Second, the physiological and genetic mechanisms controlling salt tolerance are discussed briefly. Although salt tolerance involves the integration of numerous physiological processes, there is considerable evidence that differences in the ability to exclude Na+ and Cl- from leaves are the most important factors underlying intraspecific differences in tolerance. It is also becoming apparent that, although salt tolerance is a multigenic trait, major genes play an important role. Third, progress to date in improving salt tolerance of forest tree species is assessed. Compared with agricultural crops, relatively little progress has been made with either conventional or biotechnological methods, but field trials designed to test clones identified as salt tolerant in screening trials are underway now in several countries. We conclude that there is justification for cautious optimism about the prospects for improving salt tolerance in forest tree species.

  12. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.

    PubMed

    Kurotani, Ken-ichi; Yamanaka, Kazumasa; Toda, Yosuke; Ogawa, Daisuke; Tanaka, Maiko; Kozawa, Hirotsugu; Nakamura, Hidemitsu; Hakata, Makoto; Ichikawa, Hiroaki; Hattori, Tsukaho; Takeda, Shin

    2015-10-01

    Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions.

  13. Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance.

    PubMed

    Ganguly, Moumita; Datta, Karabi; Roychoudhury, Aryadeep; Gayen, Dipak; Sengupta, Dibyendu N; Datta, Swapan K

    2012-04-01

    We report here the overexpression of Rab16A full length gene (promoter + ORF), from the salt-tolerant indica rice Pokkali, in the salt-susceptible indica rice variety Khitish, via particle bombardment. Molecular analysis of the transgenics revealed stable integration of the transgene upto T2 generation. High level of expression of the transgene (driven by its own stress-inducible promoter), as well as the protein, was detectable in the leaves under simulated salinity stress (250 mM NaCl, 24 h); the expression level being higher than wild type (WT) plants. The Rab16A transcript also increased gradually with seed maturity, with its maximal accumulation at 30 d after pollination (DAP) i.e., fully matured seeds, explaining the protective role of Rab16A gene during seed maturation. Enhanced tolerance to salinity was observed in the plants transformed with Rab16A. The superior physiological performances of the transgenics under salt treatment were also reflected in lesser shoot or root length inhibition, reduced chlorophyll damages, lesser accumulation of Na(+) and reduced loss of K(+), increased proline content as compared with the WT plants. All these results indicated that the overproduction of RAB16A protein in the transgenics enable them to display enhanced tolerance to salinity stress with improved physiological traits. Our work demonstrates the profound potential of Group 2 LEA proteins (to which RAB16A belongs to) in conferring stress tolerance in crop plants through their genetic manipulation.

  14. Evaluation of a Simple Method to Screen Soybean Genotypes for Salt Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive salt can reduce soybean yield in grower fields. Salt tolerant cultivars are needed to prevent field yield losses where excess salt is a problem. Soybean genotypes have primarily been evaluated for reaction to salt in the greenhouse using a labor intensive and costly hydroponics method. ...

  15. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.

    PubMed

    Zhang, Huiming; Kim, Mi-Seong; Sun, Yan; Dowd, Scot E; Shi, Huazhong; Paré, Paul W

    2008-06-01

    Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.

  16. Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco.

    PubMed

    Chen, Xianyang; Han, Heping; Jiang, Ping; Nie, Lingling; Bao, Hexigeduleng; Fan, Pengxiang; Lv, Sulian; Feng, Juanjuan; Li, Yinxin

    2011-05-01

    Inhibition of lycopene cyclization decreased the salt tolerance of the euhalophyte Salicornia europaea L. We isolated a β-lycopene cyclase gene SeLCY from S. europaea and transformed it into Arabidopsis with stable expression. Transgenic Arabidopsis on post-germination exhibited enhanced tolerance to oxidative and salt stress. After 8 and 21 d recovery from 200 mM NaCl treatment, transgenic lines had a higher survival ratio than wild-type (WT) plants. Three-week-old transgenic plants treated with 200 mM NaCl showed better growth than the WT with higher photosystem activity and less H(2)O(2) accumulation. Determination of endogenous pigments of Arabidopsis treated with 200 mM NaCl for 0, 2 or 4 d demonstrated that the transgenic plants retained higher contents of carotenoids than the WT. Furthermore, to compare the difference between SeLCY and AtLCY from Arabidopsis, we used viral vector mediating ectopic expression of SeLCY and AtLCY in Nicotiana benthamiana. Although LCY genes transformation increased the salt tolerance in tobacco, there is no significant difference between SeLCY- and AtLCY-transformed plants. These findings indicate that SeLCY transgenic Arabidopsis improved salt tolerance by increasing synthesis of carotenoids, which impairs reactive oxygen species and protects the photosynthesis system under salt stress, and as a single gene, SeLCY functionally showed no advantage for salt tolerance improvement compared with AtLCY.

  17. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance.

    PubMed

    Shen, Zedan; Yao, Jun; Sun, Jian; Chang, Liwei; Wang, Shaojie; Ding, Mingquan; Qian, Zeyong; Zhang, Huilong; Zhao, Nan; Sa, Gang; Hou, Peichen; Lang, Tao; Wang, Feifei; Zhao, Rui; Shen, Xin; Chen, Shaoliang

    2015-06-01

    Poplar species increase expressions of transcription factors to deal with salt environments. We assessed the salt-induced transcriptional responses of heat-shock transcription factor (HSF) and WRKY1 in Populus euphratica, and their roles in salt tolerance. High NaCl (200mM) induced PeHSF and PeWRKY1 expressions in P. euphratica, with a rapid rise in roots than in leaves. Moreover, the salt-elicited PeHSF reached its peak level 6h earlier than PeWRKY1 in leaves. PeWRKY1 was down-regulated in salinized P. euphratica when PeHSF was silenced by tobacco rattle virus-based gene silencing. Subcellular assays in onion epidermal cells and Arabidopsis protoplasts revealed that PeHSF and PeWRKY1 were restricted to the nucleus. Transgenic tobacco plants overexpressing PeWRKY1 showed improved salt tolerance in terms of survival rate, root growth, photosynthesis, and ion fluxes. We further isolated an 1182-bp promoter fragment upstream of the translational start of PeWRKY1 from P. euphratica. Promoter sequence analysis revealed that PeWRKY1 harbours four tandem repeats of heat shock element (HSE) in the upstream regulatory region. Yeast one-hybrid assay showed that PeHSF directly binds the cis-acting HSE. To determine whether the HSE cluster was important for salt-induced PeWRKY1 expression, the promoter-reporter construct PeWRKY1-pro::GUS was transferred to tobacco plants. β-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. Therefore, we conclude that salinity increased PeHSF transcription in P. euphratica, and that PeHSF binds the cis-acting HSE of the PeWRKY1 promoter, thus activating PeWRKY1 expression.

  18. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.

    PubMed

    Qin, Yuan; Druzhinina, Irina S; Pan, Xueyu; Yuan, Zhilin

    2016-11-15

    Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions.

  19. OsHKT2;2/1-mediated Na(+) influx over K(+) uptake in roots potentially increases toxic Na(+) accumulation in a salt-tolerant landrace of rice Nona Bokra upon salinity stress.

    PubMed

    Suzuki, Kei; Costa, Alex; Nakayama, Hideki; Katsuhara, Maki; Shinmyo, Atsuhiko; Horie, Tomoaki

    2016-01-01

    HKT transporters are Na(+)-permeable membrane proteins, which mediate Na(+) and K(+) homeostasis in K(+)-depleted and saline environments in plants. Class II HKT transporters, a distinct subgroup found predominantly in monocots, are known to mediate Na(+)-K(+) co-transport in principle. Here we report features of ion transport functions of No-OsHKT2;2/1, a class II transporter identified in a salt tolerant landrace of indica rice, Nona Bokra. We profiled No-OsHKT2;2/1 expression in organs of Nona Bokra plants with or without salinity stress. Dominant accumulation of the No-OsHKT2;2/1 transcript in K(+)-starved roots of Nona Bokra plants largely disappeared in response to 50 mM NaCl. We found that No-OsHKT2;2/1 expressed in the high-affinity K(+) uptake deficient mutant of Saccharomyces cerevisiae and Xenopus laevis oocytes shows robust K(+) selectivity even in the presence of a large amount of NaCl as reported previously. However, No-OsHKT2;2/1-expressing yeast cells exhibited Na(+) hypersensitive growth under various concentrations of K(+) and Na(+) as the cells expressing Po-OsHKT2;2, a similar class II transporter from another salt tolerant indica rice Pokkali, when compared with the growth of cells harboring empty vector or cells expressing OsHKT2;4. The OsHKT2;4 protein expressed in Xenopus oocytes showed strong K(+) selectivity in the presence of 50 mM NaCl in comparison with No-OsHKT2;2/1 and Po-OsHKT2;2. Together with apparent plasma membrane-localization of No-OsHKT2;2/1, these results point to possibilities that No-OsHKT2;2/1 could mediate destructive Na(+) influx over K(+) uptake in Nona Bokra plants upon salinity stress, and that a predominant physiological function of No-OsHKT2;2/1 might be the acquisition of Na(+) and K(+) in K(+)-limited environments.

  20. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea

    PubMed Central

    Nakahara, Yoshiki; Sawabe, Shogo; Kainuma, Kenta; Katsuhara, Maki; Shibasaka, Mineo; Suzuki, Masanori; Yamamoto, Kosuke; Oguri, Suguru; Sakamoto, Hikaru

    2015-01-01

    Salinity is a critical environmental factor that adversely affects crop productivity. Halophytes have evolved various mechanisms to adapt to saline environments. Salicornia europaea L. is one of the most salt-tolerant plant species. It does not have special salt-secreting structures like a salt gland or salt bladder, and is therefore a good model for studying the common mechanisms underlying plant salt tolerance. To identify candidate genes encoding key proteins in the mediation of salt tolerance in S. europaea, we performed a functional screen of a cDNA library in yeast. The library was screened for genes that allowed the yeast to grow in the presence of 1.3 M NaCl. We obtained three full-length S. europaea genes that confer salt tolerance. The genes are predicted to encode (1) a novel protein highly homologous to thaumatin-like proteins, (2) a novel coiled-coil protein of unknown function, and (3) a novel short peptide of 32 residues. Exogenous application of a synthetic peptide corresponding to the 32 residues improved salt tolerance of Arabidopsis. The approach described in this report provides a rapid assay system for large-scale screening of S. europaea genes involved in salt stress tolerance and supports the identification of genes responsible for such mechanisms. These genes may be useful candidates for improving crop salt tolerance by genetic transformation. PMID:26579166

  1. Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions.

    PubMed

    Capriotti, Anna Laura; Borrelli, Grazia Maria; Colapicchioni, Valentina; Papa, Roberto; Piovesana, Susy; Samperi, Roberto; Stampachiacchiere, Serena; Laganà, Aldo

    2014-02-01

    Salinity is one of the major abiotic stress conditions limiting crop growth and productivity. Duilio is a wheat genotype that shows tolerant behavior in both salt-stress and drought-stress conditions. Toward better understanding of the biochemical response to salinity in this genotype of durum wheat, a comparative label-free shotgun proteomic analysis based on normalized spectral abundance factors was conducted on wheat leaf samples subjected to increasing salt-stress levels (100 and 200 mmol L(-1) NaCl) with respect to untreated samples. We found significant changes in 71 proteins for the first stress level, in 83 proteins at the higher salinity level, and in 88 proteins when comparing salt-stress levels with each other. The major changes concerned the proteins involved in primary metabolism and production of energy, followed by those involved in protein metabolism and cellular defense mechanisms. Some indications of different specific physiological and defense mechanisms implicated in increasing tolerance were obtained. The enhanced salinity tolerance in Duilio appeared to be governed by a higher capacity for osmotic homeostasis, a more efficient defense, and an improvement of protection from mechanical stress by increased cell wall lignifications, allowing a better potential for growth recovery.

  2. Selection for salt tolerance in tidal freshwater swamp species: Advances using baldcypress as a model for restoration: Chapter 14

    USGS Publications Warehouse

    Krauss, Ken W.; Chambers, Jim L.; Creech, David L.

    2007-01-01

    Worldwide, the intrusion of salinity into irrigated and natural landscapes has major economic and cultural impacts and has resulted in large reductions in crop yields (Epstein et al. 1980; Flowers 2003). Losses have prompted wide-scale programs to improve the salt tolerance of many agronomic species or to identify crop species that can tolerate lands affected by low levels of salinity. Few historic research efforts have considered forest tree species in the United States, especially in nonurban areas. Newer programs have focused on identifying salt tolerance in forest tree species but have mainly limited these efforts to compiling lists of salt tolerant species to be used in afforestation projects (Gogate et al. 1984; Shrivastava et al. 1988; Beckmann 1991; Bell 1999). Gogate et al. (1984), for instance, listed 26 potential species from Australia with silvicultural application to salt affected lands in India. More comprehensive efforts have considered species lists along with specific site requirements (Bell 1999); species tolerant to saline irrigation waters on dry land, for example, will not often be tolerant of salinity increases in wetland settings. Similar ideas have spawned field trials of native and nonnative tree species in India, Pakistan, Thailand, Australia, and the United States (Thomson 1988; Beckmann 1991; Krauss et al. 2000; Conner and Ozalp 2002; Marcar and Crawford 2004; Conner and Inabinette 2005). Concerted attempts at salt tolerance improvement of forest tree species have been limited, owing in part to the diversity of regional issues that such programs must consider. Whereas food, fodder, and pulp yield may be the major improvement goal on salt affected lands in India (Mathur and Sharma 1984), identifying trees that can survive deicing salts (Townsend 1989), oil and gas brine discharges (Auchmoody and Walters 1988), or sea-level rise induced salinity changes (Pezeshki et al. 1987, 1990) are of greater interest to larger industrial nations

  3. Rubidium chloride tolerant callus cultures of rice (Oryza sativa L.) accumulate more potassium and cross tolerate to other salts.

    PubMed

    Naga Amrutha, R; Jogeswar, G; Srilaxmi, P; Kavi Kishor, P B

    2007-09-01

    Callus cultures from salt tolerant (CSR-10) and susceptible (Swarnadhan) varieties of Oryza sativa L. were established in Murashige and Skoog's (MS) medium containing lethal concentrations (50 mM) of rubidium chloride (RbCl) as a selective agent. While 95-100% cells were viable in callus cultures grown without RbCl, viability was 75% in 50 mM RbCl selected cultures. Growth of RbCl selected calli in presence of salt was comparable to that of callus grown without it. Cells tolerant to RbCl showed more vacuoles and accumulated more K(+) in comparison with their corresponding controls. Suspension cultures were established and uptake of (86)Rb(+) was measured at 10 and 20 min intervals, which revealed a linear relationship between the absorption of K(+) and time. Callus cultures (560-day-old) tolerant to 50 mM RbCl regenerated shoots with 35-40% frequencies in both the varieties, but the same age-old callus grown in the medium devoid of RbCl did not show any organogenesis. Callus cultures that are tolerant to 50 mM RbCl when exposed to 25 mM LiCl, 50 mM NaCl, 50 mM KCl and 25 mM CsCl also exhibited cross tolerance in both the varieties. This is the first time that a callus line of rice resistant to RbCl was raised and shown to accumulate a major cation K(+ )and also an increased influx of it.

  4. An Ipomoea batatas Iron-Sulfur Cluster Scaffold Protein Gene, IbNFU1, Is Involved in Salt Tolerance

    PubMed Central

    Song, Xuejin; He, Shaozhen; Zhai, Hong; Liu, Qingchang

    2014-01-01

    Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system. PMID:24695556

  5. An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance.

    PubMed

    Liu, Degao; Wang, Lianjun; Liu, Chenglong; Song, Xuejin; He, Shaozhen; Zhai, Hong; Liu, Qingchang

    2014-01-01

    Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our previous study, but its role in sweetpotato stress tolerance was not investigated. In the present study, the IbNFU1 gene was introduced into a salt-sensitive sweetpotato cv. Lizixiang to characterize its function in salt tolerance. The IbNFU1-overexpressing sweetpotato plants exhibited significantly higher salt tolerance compared with the wild-type. Proline and reduced ascorbate content were significantly increased, whereas malonaldehyde (MDA) content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbNFU1 up-regulated pyrroline-5-carboxylate synthase (P5CS) and pyrroline-5-carboxylate reductase (P5CR) genes under salt stress. The systemic up-regulation of reactive oxygen species (ROS) scavenging genes was found in the transgenic plants under salt stress. These findings suggest that IbNFU1gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and activating ROS scavenging system.

  6. Salinity tolerance in soybean is modulated by natural variation in GmSALT3.

    PubMed

    Guan, Rongxia; Qu, Yue; Guo, Yong; Yu, Lili; Liu, Ying; Jiang, Jinghan; Chen, Jiangang; Ren, Yulong; Liu, Guangyu; Tian, Lei; Jin, Longguo; Liu, Zhangxiong; Hong, Huilong; Chang, Ruzhen; Gilliham, Matthew; Qiu, Lijuan

    2014-12-01

    The identification of genes that improve the salt tolerance of crops is essential for the effective utilization of saline soils for agriculture. Here, we use fine mapping in a soybean (Glycine max (L.) Merr.) population derived from the commercial cultivars Tiefeng 8 and 85-140 to identify GmSALT3 (salt tolerance-associated gene on chromosome 3), a dominant gene associated with limiting the accumulation of sodium ions (Na+) in shoots and a substantial enhancement in salt tolerance in soybean. GmSALT3 encodes a protein from the cation/H+ exchanger family that we localized to the endoplasmic reticulum and which is preferentially expressed in the salt-tolerant parent Tiefeng 8 within root cells associated with phloem and xylem. We identified in the salt-sensitive parent, 85-140, a 3.78-kb copia retrotransposon insertion in exon 3 of Gmsalt3 that truncates the transcript. By sequencing 31 soybean landraces and 22 wild soybean (Glycine soja) a total of nine haplotypes including two salt-tolerant haplotypes and seven salt-sensitive haplotypes were identified. By analysing the distribution of haplotypes among 172 Chinese soybean landraces and 57 wild soybean we found that haplotype 1 (H1, found in Tiefeng 8) was strongly associated with salt tolerance and is likely to be the ancestral allele. Alleles H2-H6, H8 and H9, which do not confer salinity tolerance, were acquired more recently. H1, unlike other alleles, has a wide geographical range including saline areas, which indicates it is maintained when required but its potent stress tolerance can be lost during natural selection and domestication. GmSALT3 is a gene associated with salt tolerance with great potential for soybean improvement.

  7. Salicylic Acid Improved In Viro Meristem Regeneration and Salt Tolerance in Two Hibiscus Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salicylic acid (SA) has been reported to induce abiotic stress, including salt tolerance in plants. The objective of this study was to determine whether application of various exogenous SA concentrations to in vitro grown meristem shoots could induce salt tolerance in two Hibiscus species. The effec...

  8. 77 FR 68686 - Xylenesulfonic Acid, Sodium Salt; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... AGENCY 40 CFR Part 180 Xylenesulfonic Acid, Sodium Salt; Exemption From the Requirement of a Tolerance... an exemption from the requirement of a tolerance for residues of xylenesulfonic acid, sodium salt (also known as sodium xylene sulfonate) (CAS Reg. No. 1300-72-7) when used as an inert ingredient...

  9. Mini-review of knowledge gaps in salt tolerance of plants applied to willows and poplars.

    PubMed

    Mirck, Jaconette; Zalesny, Ronald S

    2015-01-01

    Salt tolerance of agricultural crops has been studied since the 1940, but knowledge regarding salt tolerance of woody crops is still in its initial phase. Salt tolerance of agricultural crops has been expressed as the yield decrease due to a certain salt concentration within the root zone as compared to a non-saline control. The most well-known plant response curve to salinity has been a piece-wise linear regression relating crop yield to root zone salinity. This method used the hypothesis that crops tolerate salt up to a threshold after which their yield decreases approximately linearly. Critique to this method included its lack of sensitivity to dynamic factors such as weather conditions. As a result, other classification indices have been developed, but none is as well accepted as the threshold-slope model. In addition to a mini-review of the key salt tolerance studies, our objective was to classify salt tolerance levels of poplars and willows. Initial classification showed that salt tolerance of these genera ranged from sensitive to moderately tolerant.

  10. Kidney Dysfunction Mediates Salt-Induced Increases in Blood Pressure

    PubMed Central

    Hall, John E.

    2016-01-01

    Chronic excess salt intake increases the risk for hypertension and moderation of salt intake is an important strategy for prevention of cardiovascular and kidney disease, especially in salt-sensitive subjects. Although short-term blood pressure (BP) responses to high salt intake over several days are highly variable, chronic high salt intake worsens BP salt-sensitivity. Aging, diabetes, hypertension, and various acquired and genetic kidney disorders also exacerbate salt-sensitivity of BP. Kidney dysfunction, characterized by impaired pressure natriuresis, has been demonstrated in all forms of experimental and human genetic or acquired salt-sensitive hypertension studied thus far. Abnormalities of kidney function that directly or indirectly increase NaCl reabsorption, decrease glomerular capillary filtration coefficient, or cause nephron injury/loss exacerbate BP salt-sensitivity. In most cases, salt-sensitive hypertension is effectively treated with drugs that increase glomerular filtration rate or reduce renal NaCl reabsorption (e.g. diuretics, renin-angiotensin-aldosterone system blockers). Increased vascular resistance may occur concomitantly or secondarily to kidney dysfunction and increased BP in salt-sensitive hypertension. However, primary increases in non-renal vascular resistance have not been shown to cause salt-sensitive hypertension or long-term changes in BP in the absence of impaired renal-pressure natriuresis. The mechanisms responsible for increased total peripheral resistance (TPR) during high salt intake in salt-sensitive subjects are not fully understood but likely involve pressure-dependent and/or flow-dependent autoregulation in peripheral tissues as well as neurohormonal factors that occur concomitantly with kidney dysfunction. Physiological studies have demonstrated that increased BP almost invariably initiates secondary pressure-dependent functional and structural vascular changes that increase TPR. PMID:26927007

  11. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... zinc salt in or on all food commodities when applied as a fungicide and used in accordance with...

  12. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... zinc salt in or on all food commodities when applied as a fungicide and used in accordance with...

  13. DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice.

    PubMed

    Cui, Long-Gang; Shan, Jun-Xiang; Shi, Min; Gao, Ji-Ping; Lin, Hong-Xuan

    2015-10-01

    Natural disasters, including drought and salt stress, seriously threaten food security. In previous work we cloned a key zinc finger transcription factor gene, Drought and Salt Tolerance (DST), a negative regulator of drought and salt tolerance that controls stomatal aperture in rice. However, the exact mechanism by which DST regulates the expression of target genes remains unknown. In the present study, we demonstrated that DST Co-activator 1 (DCA1), a previously unknown CHY zinc finger protein, acts as an interacting co-activator of DST. DST was found to physically interact with itself and to form a heterologous tetramer with DCA1. This transcriptional complex appears to regulate the expression of peroxidase 24 precursor (Prx 24), a gene encoding an H2O2 scavenger that is more highly expressed in guard cells. Downregulation of DCA1 significantly enhanced drought and salt tolerance in rice, and overexpression of DCA1 increased sensitivity to stress treatment. These phenotypes were mainly influenced by DCA1 and negatively regulated stomatal closure through the direct modulation of genes associated with H2O2 homeostasis. Our findings establish a framework for plant drought and salt stress tolerance through the DCA1-DST-Prx24 pathway. Moreover, due to the evolutionary and functional conservation of DCA1 and DST in plants, engineering of this pathway has the potential to improve tolerance to abiotic stress in other important crop species.

  14. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    PubMed

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees.

  15. Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace 'Pokkali'.

    PubMed

    De Leon, Teresa B; Linscombe, Steven; Subudhi, Prasanta K

    2017-01-01

    Salinity is a major threat to rice production worldwide. Several studies have been conducted to elucidate the molecular basis of salinity tolerance in rice. However, the genetic information such as quantitative trait loci (QTLs) and molecular markers, emanating from these studies, were rarely exploited for marker-assisted breeding. To better understand salinity tolerance and to validate previously reported QTLs at seedling stage, a set of introgression lines (ILs) of a salt tolerant donor line 'Pokkali' developed in a susceptible high yielding rice cultivar 'Bengal' background was evaluated for several morphological and physiological traits under salt stress. Both SSR and genotyping-by-sequencing (GBS) derived SNP markers were utilized to characterize the ILs and identify QTLs for traits related to salinity tolerance. A total of eighteen and thirty-two QTLs were detected using SSR and SNP markers, respectively. At least fourteen QTLs detected in the RIL population developed from the same cross were validated in IL population. Analysis of phenotypic responses, genomic composition, and QTLs present in the tolerant ILs suggested that the mechanisms of tolerance could be Na+ dilution in leaves, vacuolar Na+ compartmentation, and possibly synthesis of compatible solutes. Our results emphasize the use of salt injury score (SIS) QTLs in marker-assisted breeding to improve salinity tolerance. The tolerant lines identified in this study will serve as improved breeding materials for transferring salinity tolerance without the undesirable traits of Pokkali. Additionally, the lines will be useful for fine mapping and map-based cloning of genes responsible for salinity tolerance.

  16. A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants.

    PubMed

    Kavitha, Kumaresan; George, Suja; Venkataraman, Gayatri; Parida, Ajay

    2010-10-01

    Plant growth and productivity are adversely affected by various abiotic stress factors. In our previous study, we used Avicennia marina, a halophytic mangrove, as a model plant system for isolating genes functioning in salt stress tolerance. A large scale random EST sequencing from a salt stressed leaf tissue cDNA library of one month old A. marina plants resulted in identification of a clone showing maximum homology to Monodehydroascorbate reductase (Am-MDAR). MDAR plays a key role in regeneration of ascorbate from monodehydroascorbate for ROS scavenging. In this paper, we report the cellular localization and the ability to confer salt stress tolerance in transgenic tobacco of this salt inducible Am-MDAR. A transit peptide at the N-terminal region of Am-MDAR suggested that it encodes a chloroplastic isoform. The chloroplastic localization was confirmed by stable transformation and expression of the Am-MDAR-GFP fusion protein in tobacco. Transgenic tobacco plants overexpressing Am-MDAR survived better under conditions of salt stress compared to untransformed control plants. Assays of enzymes involved in ascorbate-glutathione cycle revealed an enhanced activity of MDAR and ascorbate peroxidase whereas the activity of dehyroascorbate reductase was reduced under salt stressed and unstressed conditions in Am-MDAR transgenic lines. The transgenic lines showed an enhanced redox state of ascorbate and reduced levels of malondialdehyde indicating its enhanced tolerance to oxidative stress. The results of our studies could be used as a starting point for genetic engineering of economically important plants tolerant to salt stress.

  17. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H + antiporter gene from Suaeda salsa.

    PubMed

    Zhao, Fengyun; Wang, Zenglan; Zhang, Quan; Zhao, Yanxiu; Zhang, Hui

    2006-03-01

    Salt stress is one of the most serious factors limiting the productivity of agricultural crops. Increasing evidence has demonstrated that vacuolar Na+/H+ antiporters play a crucial role in plant salt tolerance. In the present study, we expressed the Suaeda salsa vacuolar Na+/H+ antiporter SsNHX1 in transgenic rice to investigate whether this can increase the salt tolerance of rice, and to study how overexpression of this gene affected other salt-tolerant mechanisms. It was found that transgenic rice plants showed markedly enhanced tolerance to salt stress and to water deprivation compared with non-transgenic controls upon salt stress imposition under outdoor conditions. Measurements of ion levels indicated that K+, Ca2+ and Mg2+ contents were all higher in transgenic plants than in non-transformed controls. Furthermore, shoot V-ATPase hydrolytic activity was dramatically increased in transgenics compared to that of non-transformed controls under salt stress conditions. Physiological analysis also showed that the photosynthetic activity of the transformed plants was higher whereas the same plants had reduced reactive oxygen species generation. In addition, the soluble sugar content increased in the transgenics compared with that in non-transgenics. These results imply that up-regulation of a vacuolar Na+/H+ antiporter gene in transgenic rice might cause pleiotropic up-regulation of other salt-resistance-related mechanisms to improve salt tolerance.

  18. Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium.

    PubMed

    Miller, E N; Ingram, L O

    2007-02-01

    In mineral salts medium, supplementing with betaine in combination with increased production of endogenous osmoprotectant from a second copy of the trehalose biosynthetic genes (otsBA) improved growth of E. coli and increased the MIC for xylose, glucose, sodium lactate and NaCl. With these compounds, this combination was more effective than either betaine or trehalose alone. With succinate, this combination was no more effective than betaine alone. Neither approach improved tolerance to ethanol. A combination of betaine and increased trehalose may improve strain productivity for many bioproducts by promoting growth in the presence of high sugar concentrations.

  19. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    PubMed

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  20. Development of EST-SSR markers related to salt tolerance and their application in genetic diversity and evolution analysis in Gossypium.

    PubMed

    Wang, B H; Zhu, P; Yuan, Y L; Wang, C B; Yu, C M; Zhang, H H; Zhu, X Y; Wang, W; Yao, C B; Zhuang, Z M; Li, P

    2014-05-13

    Salt stress is becoming one of the major problems in global agriculture with the onset of global warming, an increasing scarcity of fresh water, and improper land irrigation and fertilization practices, which leads to reduction of crop output and even causes crop death. To speed up the exploitation of saline land, it is a good choice to grow plants with a high level of salt tolerance and economic benefits. As the leading fiber crop grown commercially worldwide, cotton is placed in the moderately salt-tolerant group of plant species, and there is promising potential to improve salt tolerance in cultivated cotton. To facilitate the mapping of salt-tolerant quantitative trait loci in cotton so as to serve the aims of salt-tolerant molecular breeding in cotton, it is necessary to develop salt-tolerant molecular markers. The objective of this research was to develop simple sequence repeat (SSR) markers based on cotton salt-tolerant expressed sequence tags. To test the efficacy of these SSR markers, their polymorphism and cross-species transferability were evaluated, and their value was further investigated on the basis of genetic diversity and evolution analysis.

  1. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    PubMed

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance.

  2. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis.

  3. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    PubMed

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  4. LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice.

    PubMed

    Li, Xiaoxia; Hou, Shenglin; Gao, Qiong; Zhao, Pincang; Chen, Shuangyan; Qi, Dongmei; Lee, Byung-Hyun; Cheng, Liqin; Liu, Gongshe

    2013-07-01

    Previously, we identified >1,500 genes that were induced by high salt stress in sheepgrass (Leymus chinensis, Gramineae: Triticeae) when comparing the changes in their transcription levels in response to high salt stress by next-generation sequencing. Among the identified genes, a gene of unknown function (designated as Leymus chinensis salt-induced 1, LcSAIN1) showed a high sequence identity to its homologs from wheat, Hordeum vulgare and Oryza sativa, but LcSAIN1 and its homologs produce hypothetical proteins with no conserved functional domains. Transcription of the LcSAIN1 gene was up-regulated by various stresses. The overexpression of LcSAIN1 in Arabidopsis and rice increased the greening rate of cotyledons, the fresh weight, root elongation, plant height and the plant survival rate when compared with control plants and conferred a tolerance against salt stress. Subcellular localization analysis indicated that LcSAIN1 is localized predominantly in the nucleus. Our results show that the LcSAIN1 gene might play an important positive modulation role in increasing the expression of transcription factors (MYB2 and DREB2A) and functional genes (P5CS and RAB18) in transgenic plants under salt stress and that it augments stress tolerance through the accumulation of compatible solutes (proline and soluble sugar) and the alleviation of changes in reactive oxygen species. The LcSAIN1 gene could be a potential resource for engineering salinity tolerance in important crop species.

  5. Constitutive and salt-inducible expression of SlBADH gene in transgenic tomato (Solanum lycopersicum L. cv. Micro-Tom) enhances salt tolerance.

    PubMed

    Wang, Jing-yu; Lai, Lu-di; Tong, Shao-ming; Li, Qiu-li

    2013-03-08

    To improve the stress tolerance of crops, many genes, including transcription factors, have been expressed in transgenic plants using either constitutive or stress-inducible promoters. However, transgenic plants that show strong constitutive expression of transcription factors often suffer from many undesirable phenotypes, such as stunted growth and reduced yield. In the present study, the betaine aldehyde dehydrogenase (BADH) gene, cloned from Suaeda liaotungensis and, controlled by the Cauliflower mosaic virus (CaMV) 35S promoter or stress-inducible promoter of BADH (P5: -300 to +62 bp), was transformed into tomato (Solanum lycopersicum). The transformants with single copy of SlBADH were determined by real time PCR. Expression of SlBADH in the P5:BADH transgenic plants exhibited salt induced and was higher than that in CaMV35S:BADH under salt stress. The SlBADH enhanced salt tolerance of P5:BADH and CaMV35S:BADH transformants. And SlBADH in P5:BADH plants did not affect the growth of transformants. Consequently, we conclude that the P5 promoter can drive increased expression of SlBADH in transgenic tomato under salt stress and increase salt tolerance without affecting plant growth.

  6. Salt intrusion in tidal wetlands: European willow species tolerate oligohaline conditions

    NASA Astrophysics Data System (ADS)

    Markus-Michalczyk, Heike; Hanelt, Dieter; Ludewig, Kristin; Müller, David; Schröter, Brigitte; Jensen, Kai

    2014-01-01

    Tidal wetlands experience salt intrusion due to the effects of climate change. This study clarifies that the European flood plain willows species Salix alba and Salix viminalis tolerate oligohaline conditions. Salix alba L. and Salix viminalis L. are distributed on flood plains up to transitional waters of the oligohaline to the mesohaline estuarine stretch in temperate climates. They experience spatial and temporal variations in flooding and salinity. In the past, willows dominated the vegetation above the mean high water line, attenuated waves and contributed to sedimentation. In recent centuries, human utilization reduced willow stands. Today, the Elbe estuary - a model system for an estuary in temperate zones - exhibits increasing flooding and salinity due to man-induced effects and climatic changes. Willows were described as having no salinity tolerance. In contrast, our soil water salinity measurements at willows in tidal wetlands prove that mature Salix individuals tolerate oligohaline conditions. To assess immature plant salinity tolerance, we conducted a hydroponic greenhouse experiment. Vegetative propagules originating from a freshwater and an oligohaline site were treated in four salinities. Related to growth rates and biomass production, we found interspecific similarities and a salinity tolerance up to salinity 2. Vitality and chlorophyll fluorescence indicated an acclimation of Salix viminalis to oligohaline conditions. We conclude, that the survival of S. alba and S. viminalis and the restoration of willow stands in estuarine flood plains - with regard to wave attenuation and sedimentation - might be possible, despite increasing salinity in times of climate change.

  7. Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.

    PubMed

    Zhang, Wan-Jun; Wang, Tao

    2015-05-01

    Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa.

  8. Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress.

    PubMed

    Guo, Jinyan; Shi, Gongyao; Guo, Xiaoyan; Zhang, Liwei; Xu, Wenying; Wang, Yumei; Su, Zhen; Hua, Jinping

    2015-09-01

    Salinity stress is one of the most devastating abiotic stresses in crop plants. As a moderately salt-tolerant crop, upland cotton (Gossypium hirsutum L.) is a major cash crop in saline areas and a suitable model for salt stress tolerance research. In this study, we compared the transcriptome changes between the salt-tolerant upland cotton cultivar Zhong 07 and salt-sensitive cultivar Zhong G5 in response to NaCl treatments. Transcriptional regulation, signal transduction and secondary metabolism in two varieties showed significant differences, all of which might be related to mechanisms underlying salt stress tolerance. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying salt tolerance. Based on our findings, we proposed several candidate genes that might be used to improve salt tolerance in upland cotton.

  9. Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora

    NASA Astrophysics Data System (ADS)

    Canalejo, Antonio; Martínez-Domínguez, David; Córdoba, Francisco; Torronteras, Rafael

    2014-06-01

    Halophytes usually have a robust antioxidative defense system to alleviate oxidative damage during salt stress. Spartina densiflora is a colonizing halophyte cordgrass, native of South America, which has become a common species in salt marshes of northern hemisphere, where it is ousting indigenous species. This study addressed salinity stress in S. densiflora; the occurrence of oxidative stress and the possible involvement of the antioxidative system in its high salt tolerance were studied. Plants were evaluated at in situ conditions, in the laboratory during a 28 day-acclimation period (AP) in clean substrate irrigated with a control salt content of 4 g L-1 (68 mM) and during a subsequent 28 day-treatment period (TP) exposed to different NaCl concentrations: control (68 mM), 428 mM or 680 mM. In the in situ setting, the high leave Na+ content was accompanied by high levels of hydroperoxides and reduced levels of total chlorophyll and carotenes, which correlated with enhanced activation of antioxidant defense biomarkers as total ascorbic acid (AA) content and guaiacol peroxidase (POD: EC 1.11.1.7)), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) activities. Throughout the AP, leave Na+ and oxidative stress markers decreased concomitantly and reached stable low levels. During the TP, dose and time-dependent accumulation of Na+ in high NaCl-treated plants was concurrent with a decrease in content of total chlorophyll and carotenes and with an increase in the levels of total AA and CAT and APX activities. In conclusion, as hypothesized, high salinity induces conditions of oxidative stress in S. densiflora, so that its salt tolerance appears to be related to the implementation of a specific antioxidant response. This may account for Spartina densiflora's successful adaptation to habitats with fluctuating salinity and favour its phytoremediation potential.

  10. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated sodium (Na+) decreases plant growth and thereby agricultural productivity. The ion transporter HKT1 controls Na+ import in roots, yet dysfunction or over-expression of HKT1 fails to increase salt tolerance, raising questions as to HKT1’s role in regulating Na+ homeostasis. Here, we report t...

  11. Symbiosis increases coral tolerance to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ohki, S.; Irie, T.; Inoue, M.; Shinmen, K.; Kawahata, H.; Nakamura, T.; Kato, A.; Nojiri, Y.; Suzuki, A.; Sakai, K.; van Woesik, R.

    2013-04-01

    Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2-0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2), to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e. broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  12. Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks.

    PubMed

    Zrig, Ahlem; Tounekti, Taïeb; Vadel, Ahmedou Mohamed; Ben Mohamed, Hatem; Valero, Daniel; Serrano, María; Chtara, Chaker; Khemira, Habib

    2011-11-01

    Leaf physiological and biochemical adaptive strategies and more particularly the possible involvement of polyamines and polyphenols in salt stress tolerance were investigated. Three almond rootstocks (GN15, GF677 and bitter almond) were subjected to 0, 25, 50 and 75 mM NaCl for 30 days. The dry mass of leaves, stems and roots decreased with increasing salt concentration in the irrigation solution regardless of genotype. Photosynthetic assimilation rate decreased in the three almond rootstocks, but more so in GF677 and bitter almond. The accumulation of toxic ions was greater in the leaves than in the roots in all genotypes. GN15 accumulated less Na(+) and Cl(-) than GF677 and bitter almond. GF677 accumulated polyphenols, but had less anthocyanin and antioxidant activity in its leaves compared to bitter almond. It seems that GN15 was more able to tolerate the excess of toxic ions using anthocyanins which are abundant in its red leaves and free polyamines for a more efficient response to stress. However, most of the antioxidant activity was found in the leaves and was lower in the roots. Given that the upper part of the tree will be of a different cultivar after grafting, this advantage may not be relevant for the tree's survival. GF677 showed a different antioxidant strategy; it maintained a stable carotenoids content and accumulated polyphenols in its leaves. The three rootstocks used different strategies to deal with the excess of salt in the growth medium.

  13. Site Suitability Analysis for Dissemination of Salt-tolerant Rice Varieties in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Sinha, D. D.; Singh, A. N.; Singh, U. S.

    2014-11-01

    Bangladesh is a country of 14.4 million ha geographical area and has a population density of more than 1100 persons per sq. km. Rice is the staple food crop, growing on about 72 % of the total cultivated land and continues to be the most important crop for food security of the country. A project "Sustainable Rice Seed Production and Delivery Systems for Southern Bangladesh" has been executed by the International Rice Research Institute (IRRI) in twenty southern districts of Bangladesh. These districts grow rice in about 2.9 million ha out of the country's total rice area of 11.3 million ha. The project aims at contributing to the Government of Bangladesh's efforts in improving national and household food security through enhanced and sustained productivity by using salinity-, submergence- and drought- tolerant and high yielding rice varieties. Out of the 20 project districts, 12 coastal districts are affected by the problem of soil salinity. The salt-affected area in Bangladesh has increased from about 0.83 million ha in 1973 to 1.02 million ha in 2000, and 1.05 million ha in 2009 due to the influence of cyclonic storms like "Sidr", "Laila" and others, leading to salt water intrusion in croplands. Three salinity-tolerant rice varieties have recently been bred by IRRI and field tested and released by the Bangladesh Rice Research Institute (BRRI) and Bangladesh Institute of Nuclear Agriculture (BINA). These varieties are BRRI dhan- 47 and Bina dhan-8 and - 10. However, they can tolerate soil salinity level up to EC 8-10 dSm-1, whereas the EC of soils in several areas are much higher. Therefore, a large scale dissemination of these varieties can be done only when a site suitability analysis of the area is carried out. The present study was taken up with the objective of preparing the site suitability of the salt-tolerant varieties for the salinity-affected districts of southern Bangladesh. Soil salinity map prepared by Soil Resources Development Institute of

  14. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress.

  15. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463.

    PubMed

    Lee, Jeong-Dong; Shannon, J Grover; Vuong, Tri D; Nguyen, Henry T

    2009-01-01

    Tolerant soybean (Glycine max [L.] Merr.) cultivars aid in reducing salt damage in problem fields. New genes are important to reduce losses from salt injury. Objectives of this study were to determine inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) PI483463 and to test allelism of tolerance genes from genotypes PI483463 and S-100, a common ancestor of southern in US cultivars. Tolerant (T) PI483463 was crossed to sensitive (S) cultivar Hutcheson to study inheritance. PI483463 (T) was crossed with S-100 (T) to test for allelism. Parents, F(1) plants, F(2) populations, and F(2:3) lines were assayed in a 100 mM salt solution to determine tolerance. F(2) from T x S cross segregated 3(T):1 (S) and the F(2:3) lines responded 1 (T): 2 (segregating):1 (S). F(2) plants from PI483463 (T) x S-100 (T) segregated 15 (T):1 (S) indicating different genes from the 2 sources. Results showed that G. soja line PI483463 had a single dominant gene for salt tolerance, which was different than the gene in G. max line S-100. The symbol, Ncl2, was designated for this new salt tolerance allele.

  16. Role of oxidative stress in the extremely salt-tolerant yeast Hortaea werneckii.

    PubMed

    Petrovic, Uros

    2006-08-01

    Eukaryotic halotolerant microorganisms are important as model organisms to understand the general mechanisms of resistance to environmental salinity. The ability of the extremely halotolerant black yeast Hortaea werneckii to combat oxidative stress was addressed, using hydrogen peroxide to generate the reactive oxygen species. Increasing environmental salinity was found to have no effect on its high ability to degrade hydrogen peroxide but resulted in a decrease in viability in response to externally added hydrogen peroxide, suggesting that the latter property determines the upper limit of the salt tolerance of H. werneckii. A refinement of the model of adaptation of H. werneckii to high-salinity environments is proposed.

  17. Arabidopsis AINTEGUMENTA mediates salt tolerance by trans-repressing SCABP8.

    PubMed

    Meng, Lai-Sheng; Wang, Yi-Bo; Yao, Shun-Qiao; Liu, Aizhong

    2015-08-01

    The Arabidopsis AINTEGUMENTA (ANT) gene, which encodes an APETALA2 (AP2)-like transcription factor, controls plant organ cell number and organ size throughout shoot development. ANT is thus a key factor in the development of plant shoots. Here, we have found that ANT plays an essential role in conferring salt tolerance in Arabidopsis. ant-knockout mutants presented a salt-tolerant phenotype, whereas transgenic plants expressing ANT under the 35S promoter (35S:ANT) exhibited more sensitive phenotypes under high salt stress. Further analysis indicated that ANT functions mainly in the shoot response to salt toxicity. Target gene analysis revealed that ANT bound to the promoter of SOS3-LIKE CALCIUM BINDING PROTEIN 8 (SCABP8), which encodes a putative Ca(2+) sensor, thereby inhibiting expression of SCABP8 (also known as CBL10). It has been reported that the salt sensitivity of scabp8 is more prominent in shoot tissues. Genetic experiments indicated that the mutation of SCABP8 suppresses the ant-knockout salt-tolerant phenotype, implying that ANT functions as a negative transcriptional regulator of SCABP8 upon salt stress. Taken together, the above results reveal that ANT is a novel regulator of salt stress and that ANT binds to the SCABP8 promoter, mediating salt tolerance.

  18. Isolation of genes conferring salt tolerance from Piriformospora indica by random overexpression in Escherichia coli.

    PubMed

    Gahlot, Sunayna; Joshi, Amita; Singh, Pratap; Tuteja, Renu; Dua, Meenakshi; Jogawat, Abhimanyu; Kumar, Manoj; Raj, Sumit; Dayaman, Vikram; Johri, Atul Kumar; Tuteja, Narendra

    2015-08-01

    Piriformospora indica, a root endophytic fungus identified in the Indian Thar desert, colonizes the roots of plants and provides resistance towards biotic stress as well as tolerance to abiotic stress in the plants. Despite its positive impact on the host, little is known about the P. indica genes that are involved in salt stress tolerance. Therefore this study was conducted to identify and isolate high salinity-tolerance genes from P. indica. Thirty-six salinity-tolerance genes were obtained by functional screening, based on random over expression of a P. indica cDNA library in Escherichia coli grown on medium supplemented with 0.6 M NaCl. The salinity tolerance conferred by these 36 genes in bacteria was further confirmed by using another strain of E. coli (DH5α) transformants. However when the expression of these 36 genes was analysed in P. indica using quantitative RT-PCR, we found only six genes were up-regulated by salt stress. These six genes are involved in different cellular processes, such as metabolism, energy and biosynthetic processes, DNA repair, regulation of protein turnover, transport and salt stress tolerance. This work presents the basis for further molecular analyses of the mechanisms of salt tolerance in P. indica and for the use of this endophyte to confer salt tolerance to plants.

  19. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances.

    PubMed

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-10-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na(+) and K(+), as well as the Na(+)/K(+) ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources.

  20. Cloning and Characterisation of Two H+ Translocating Organic Pyrophos-phatase Genes in Salix and Their Expression Differences in Two Willow Varieties with Different Salt Tolerances

    PubMed Central

    Li, Min; Yu, Chunmei; Wang, Yaoyi; Li, Wentao; Wang, Ying; Yang, Yun; Liu, Huihui; Li, Yujuan; Tan, Feng; Zhang, Jian

    2014-01-01

    Willows are one of the most important tree species for landscaping, biofuel and raw timber. Screening salt-tolerant willow varieties is an effective approach to balance wood supply and demand. However, more salt-tolerant willow varieties are required and little is known regarding the mechanism of salt tolerance at the gene expression level. In this paper, two willow varieties were studies in terms of their differences in salt-tolerances and mechanism of salt tolerance at the level of VP1 gene expression. The results showed that Salix L0911 (L0911) had higher biomass than Salix matsudana (SM), and salt injuries were less severe in L0911 than in SM. The activities of peroxidase and superoxide dismutase, as well as the contents of soluble protein and proline, were higher in L0911 than in SM, whereas the contents of Na+ and K+, as well as the Na+/K+ ratio, were lower in L0911 than in SM. Two VP1 genes (VP1.1 and VP1.2) cloned in L0911 and SM had similar sequences and structures. VP1.1 and VP1.2 belonged to different subgroups. Total expression levels of the VP1.1 gene in both roots and leaves of L0911 were higher than that in SM under normal conditions. Under salt stress, expression of VP1 in SM roots initially increased and then decreased, whereas the expression of VP1 in leaves of L0911 and SM, as well as in roots of L0911, decreased with increasing salt concentrations. This study increased our understanding of the salt-tolerance mechanism of willow and may facilitate the selection of salt-tolerant willow resources. PMID:25435797

  1. Overexpression of Small Heat Shock Protein Enhances Heat- and Salt-Stress Tolerance of Bifidobacterium longum NCC2705.

    PubMed

    Khaskheli, Gul Bahar; Zuo, FangLei; Yu, Rui; Chen, ShangWu

    2015-07-01

    Bifidobacteria are probiotics that are incorporated live into various dairy products. They confer health-promotive effects via gastrointestinal tract colonization. However, to provide their health-beneficial properties, they must battle the various abiotic stresses in that environment, such as bile salts, acids, oxygen, and heat. In this study, Bifidobacterium longum salt- and heat-stress tolerance was enhanced by homologous overexpression of a small heat shock protein (sHsp). A positive contribution of overproduced sHsp to abiotic stress tolerance was observed when the bacterium was exposed to heat and salt stresses. Significantly higher survival of B. l ongum NCC2705 overexpressing sHsp was observed at 30 and 60 min into heat (55 °C) and salt (5 M NaCl) treatment, respectively. Thermotolerance analysis at 47 °C with sampling every 2 h also revealed the great potential tolerance of the engineered strain. Cell density and acid production rate increased for the sHsp-overexpressing strain after 8 and 10 h of both heat and salt stresses. In addition, tolerance to bile salts, low pH (3.5) and low temperature (4 °C) was also increased by homologous overexpression of the sHsp hsp20 in B. l ongum. Results revealed that hsp20 overexpression in B longum NCC2705 plays a positive cross-protective role in upregulating abiotic responses, ensuring the organism's tolerance to various stress conditions; therefore, sHsp-overexpressing B. l ongum is advised for fermented dairy foods and other probiotic product applications.

  2. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis.

    PubMed

    Chien, Pei-Shan; Nam, Hong Gil; Chen, Yet-Ran

    2015-08-01

    High salinity has negative impacts on plant growth through altered water uptake and ion-specific toxicities. Plants have therefore evolved an intricate regulatory network in which plant hormones play significant roles in modulating physiological responses to salinity. However, current understanding of the plant peptides involved in this regulatory network remains limited. Here, we identified a salt-regulated peptide in Arabidopsis. The peptide was 11 aa and was derived from the C terminus of a cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily. This peptide was found by searching homologues in Arabidopsis using the precursor of a tomato CAP-derived peptide (CAPE) that was initially identified as an immune signal. In searching for a CAPE involved in salt responses, we screened CAPE precursor genes that showed salt-responsive expression and found that the PROAtCAPE1 (AT4G33730) gene was regulated by salinity. We confirmed the endogenous Arabidopsis CAP-derived peptide 1 (AtCAPE1) by mass spectrometry and found that a key amino acid residue in PROAtCAPE1 is critical for AtCAPE1 production. Moreover, although PROAtCAPE1 was expressed mainly in the roots, AtCAPE1 was discovered to be upregulated systemically upon salt treatment. The salt-induced AtCAPE1 negatively regulated salt tolerance by suppressing several salt-tolerance genes functioning in the production of osmolytes, detoxification, stomatal closure control, and cell membrane protection. This discovery demonstrates that AtCAPE1, a homologue of tomato immune regulator CAPE1, plays an important role in the regulation of salt stress responses. Our discovery thus suggests that the peptide may function in a trade-off between pathogen defence and salt tolerance.

  3. Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress.

    PubMed

    Qiu, ZongBo; Guo, JunLi; Zhu, AiJing; Zhang, Liang; Zhang, ManMan

    2014-06-01

    Jasmonic acid (JA) is regarded as endogenous regulator that plays an important role in regulating stress responses, plant growth and development. To investigate the physiological mechanisms of salt stress mitigated by exogenous JA, foliar application of 2mM JA was done to wheat seedlings for 3days and then they were subjected to 150mM NaCl. Our results showed that 150mM NaCl treatment significantly decreased plant height, root length, shoot dry weight, root dry weight, the concentration of glutathione (GSH), chlorophyll b (Chl b) and carotenoid (Car), the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), enhanced the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2) and the rate of superoxide radical (O2•-) generation in the wheat seedlings when compared with the control. However, treatments with exogenous JA for 3 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of MDA and H2O2, the production rate of O2•- and increasing the transcript levels and activities of SOD, POD, CAT and APX and the contents of GSH, Chl b and Car, which, in turn, enhanced the growth of salt stressed seedlings. These results suggested that JA could effectively protect wheat seedlings from salt stress damage by enhancing activities of antioxidant enzymes and the concentration of antioxidative compounds to quench the excessive reactive oxygen species caused by salt stress and presented a practical implication for wheat cultivation in salt-affected soils.

  4. Exogenous Melatonin Confers Salt Stress Tolerance to Watermelon by Improving Photosynthesis and Redox Homeostasis.

    PubMed

    Li, Hao; Chang, Jingjing; Chen, Hejie; Wang, Zhongyuan; Gu, Xiurong; Wei, Chunhua; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian

    2017-01-01

    Melatonin, a pleiotropic signal molecule, has been shown to play important roles in the regulation of plant growth, development, and responses to environmental stresses. Since a few species have been investigated to unveil the effect of exogenous melatonin on salt stress, the underlying mechanism of melatonin-mediated salt stress tolerance in other plant species still remains largely unknown. In this study, the effects of melatonin on leaf photosynthesis and redox homeostasis in watermelon were examined under salt stress (300 mM NaCl) along with different doses of melatonin (50, 150, and 500 μM) pretreatment. NaCl stress inhibited photosynthesis and increased accumulation of reactive oxygen species and membrane damage in leaves of watermelon seedlings. However, pretreatment with melatonin on roots alleviated NaCl-induced decrease in photosynthetic rate and oxidative stress in a dose-dependent manner. The protection of photosynthesis by melatonin was closely associated with the inhibition of stomatal closure and improved light energy absorption and electron transport in photosystem II, while the reduction of oxidative stress by melatonin was attributed to the improved redox homeostasis coupled with the enhanced activities of antioxidant enzymes. This study unraveled crucial role of melatonin in salt stress mitigation and thus can be implicated in the management of salinity in watermelon cultivation.

  5. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).

    PubMed

    Kang, Guozhang; Li, Gezi; Zheng, Beibei; Han, Qiaoxia; Wang, Chenyang; Zhu, Yunji; Guo, Tiancai

    2012-12-01

    The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.

  6. Exogenous Melatonin Confers Salt Stress Tolerance to Watermelon by Improving Photosynthesis and Redox Homeostasis

    PubMed Central

    Li, Hao; Chang, Jingjing; Chen, Hejie; Wang, Zhongyuan; Gu, Xiurong; Wei, Chunhua; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian

    2017-01-01

    Melatonin, a pleiotropic signal molecule, has been shown to play important roles in the regulation of plant growth, development, and responses to environmental stresses. Since a few species have been investigated to unveil the effect of exogenous melatonin on salt stress, the underlying mechanism of melatonin-mediated salt stress tolerance in other plant species still remains largely unknown. In this study, the effects of melatonin on leaf photosynthesis and redox homeostasis in watermelon were examined under salt stress (300 mM NaCl) along with different doses of melatonin (50, 150, and 500 μM) pretreatment. NaCl stress inhibited photosynthesis and increased accumulation of reactive oxygen species and membrane damage in leaves of watermelon seedlings. However, pretreatment with melatonin on roots alleviated NaCl-induced decrease in photosynthetic rate and oxidative stress in a dose-dependent manner. The protection of photosynthesis by melatonin was closely associated with the inhibition of stomatal closure and improved light energy absorption and electron transport in photosystem II, while the reduction of oxidative stress by melatonin was attributed to the improved redox homeostasis coupled with the enhanced activities of antioxidant enzymes. This study unraveled crucial role of melatonin in salt stress mitigation and thus can be implicated in the management of salinity in watermelon cultivation. PMID:28298921

  7. Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense.

    PubMed

    Gharbi, Emna; Martínez, Juan-Pablo; Benahmed, Hela; Lepoint, Gilles; Vanpee, Brigitte; Quinet, Muriel; Lutts, Stanley

    2017-03-01

    Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2μM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ(13)C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ(13)C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ(13)C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense.

  8. Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion

    PubMed Central

    Saisho, Daisuke; Takumi, Shigeo; Matsuoka, Yoshihiro

    2016-01-01

    Adaptation to edaphic stress may have a key role in plant species range expansion. Aegilops tauschii Coss., the common wheat’s D-genome progenitor native to the Transcaucasus-Middle East region, is a good model to study the relationships between soil salinity and plant distributions: one of its intraspecific sublineages, TauL1b, drove the long-distance eastward expansion of this species range reaching semi-arid-central Asia. Salt tolerance during germination and seedling growth was evaluated in 206 Ae. tauschii accessions by treating seeds with NaCl solutions differing in concentrations. Differences in natural variation patterns were analyzed between sublineages and associated with natural edaphic condition variables, and then compared with reproductive trait variation patterns. The natural variations observed in NaCl-induced-stress tolerance had clear geographic and genetic structure. Seedling growth significantly increased in the TauL1b accessions that were collected from salt-affected soil habitats, whereas germinability did not. Principal component analysis suggested that the NaCl-induced-stress tolerances and reproductive traits might have had a similar degree of influence on Ae. tauschii’s eastward range expansion. Adaptation to salt-affected soils through increased seedling growth was an important factor for the species’ successful colonization of the semi-arid central Asian habitats. TauL1b accessions might provide useful genetic resources for salt-tolerant wheat breeds. PMID:27929044

  9. A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses

    PubMed Central

    2014-01-01

    Background Aquaporin (AQP) proteins function in transporting water and other small molecules through the biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the precise role of AQPs in drought and salt stresses is not completely understood in plants. Results In this study, we have identified a PIP1 subfamily AQP (MaPIP1;1) gene from banana and characterized it by overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its localization at plasma membrane. The expression of MaPIP1;1 was induced by NaCl and water deficient treatment. Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K+/Na+ ratio. Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing plants reflects their improved physiological status. Conclusions Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance. PMID:24606771

  10. [Selection and identification of salt-tolerant variants of Taraxacum officinale].

    PubMed

    Zhang, Xinguo; Li, Yinxin; Chen, Hua; Shi, Wuliang

    2008-02-01

    In order to obtain salt-tolerant variant plants of Dandelion (Taraxacum officinale Weber), the leaf discs were excised from 20 to 30-day old seedlings to produce callus, then the induced calli were transferred to selection mediums containing 1.5% NaCl. After regenerating and rooting, these salt-tolerant calli finally developed into 12 variant plantlets. Compared with the wild-type, these regenerated plants produced more trichomes on their leaves, and had larger leaves and shorter petioles. Additionally, the dumpy roots and an approximately 2-cm bract in middle parts of the floricanes were clearly observed in these salt-tolerant plants. By RAPD (Random Amplified Polymorphic DNA) and SDS-PAGE analysis, these salt-tolerant plants showed differences from the control at DNA and protein levels. With 1.5% NaCl treatment, the antioxidant enzyme activity, proline content, and flavonoid concentration were higher in these salt-tolerant plants, whereas maloaldehyde concentration was significantly lower. Salt-tolerant lines of T. officinale showed stronger anti-oxidative activity and higher flavonoid contents.

  11. Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Song, Xixi; Fang, Jie; Han, Xiaojiao; He, Xuelian; Liu, Mingying; Hu, Jianjun; Zhuo, Renying

    2016-01-15

    Quinone reductase (QR) is an oxidative-related gene and few studies have focused on its roles concerning salt stress tolerance in plants. In this study, we cloned and analyzed the QR gene from Salix matsudana, a willow with tolerance of moderate salinity. The 612-bp cDNA corresponding to SmQR encodes 203 amino acids. Expression of SmQR in Escherichia coli cells enhanced their tolerance under salt stress. In addition, transgenic Arabidopsis thaliana lines overexpressing SmQR exhibited higher salt tolerance as compared with WT, with higher QR activity and antioxidant enzyme activity as well as higher chlorophyll content, lower methane dicarboxylic aldehyde (MDA) content and electric conductivity under salt stress. Nitro blue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining also indicated that the transgenic plants accumulated less reactive oxygen species compared to WT when exposed to salt stress. Overall, our results suggested that SmQR plays a significant role in salt tolerance and that this gene may be useful for biotechnological development of plants with improved tolerance of salinity.

  12. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables,...

  13. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables,...

  14. 40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables,...

  15. Salt and heavy metal tolerance and expression levels of candidate tolerance genes among four extremophile Cochlearia species with contrasting habitat preferences.

    PubMed

    Nawaz, Ismat; Iqbal, Mazhar; Bliek, Mattijs; Schat, Henk

    2017-01-24

    To test the concept of a general "mineral stress tolerance", we compared four extremophile Cochlearia species for salt (NaCl), zinc (Zn) and cadmium (Cd) tolerance and accumulation, and for expression of candidate tolerance genes for salt and Zn tolerance. Salt tolerance decreased in the order C. anglica>C. x hollandica>C. danica>C. pyrenaica, corresponding with the average salinity levels in the species' natural environments. The glycophytic metallophyte, C. pyrenaica, showed a relatively high level of salt tolerance, compared to other glycophytic Brassicaceae. Salt tolerance was positively correlated with HKT1 expression and the K(+) concentration in roots under salt exposure, but uncorrelated with the Na(+) concentrations in roots and shoots. All the species accumulated Na(+) primarily in their leaves, and exhibited a high NHX1 expression in leaves, in comparison with other glycophytic Brassicaceae, suggesting that salt tolerance in Cochlearia is based on an efficient vacuolar sequestration of Na(+) in leaves. The metallicolous C. pyrenaica population was hypertolerant to Zn, but not to Cd, in comparison with the other Cochlearia species. All the Cochlearia species accumulated Zn and Cd primarily in roots, and showed high levels of Cd and Zn tolerance, with unusually low rates of metal accumulation, in comparison with non-metallophytes, or non-metallicolous metallophyte populations, of species belonging to other genera or families. Although Cochlearia, as a genus, shows relatively high levels of tolerance to both salt and heavy metals, this is most probably not due to a common 'mineral stress tolerance' mechanism.

  16. Searching in sequences of Leymus BAC clones for genes controlling salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many species of Thinopyrum and Leymus are known to be highly salt tolerant. Salinity tolerance in diploid Thinopyrum elongatum, thus all polyploid Thinopyrum species too, is controlled by genes on different chromosomes. Some candidate genes, including genes for peroxidase precursor, for salinity t...

  17. The Arabidopsis salt overly sensitive 4 Mutants Uncover a Critical Role for Vitamin B6 in Plant Salt Tolerance

    PubMed Central

    Shi, Huazhong; Xiong, Liming; Stevenson, Becky; Lu, Tiegang; Zhu, Jian-Kang

    2002-01-01

    Salt stress is a major environmental factor influencing plant growth and development. To identify salt tolerance determinants, a genetic screen for salt overly sensitive (sos) mutants was performed in Arabidopsis. We present here the characterization of sos4 mutants and the positional cloning of the SOS4 gene. sos4 mutant plants are hypersensitive to Na+, K+, and Li+ ions. Under NaCl stress, sos4 plants accumulate more Na+ and retain less K+ compared with wild-type plants. SOS4 encodes a pyridoxal kinase that is involved in the biosynthesis of pyridoxal-5-phosphate, an active form of vitamin B6. The expression of SOS4 cDNAs complements an Escherichia coli mutant defective in pyridoxal kinase. Supplementation of pyridoxine but not pyridoxal in the growth medium can partially rescue the sos4 defect in salt tolerance. SOS4 is expressed ubiquitously in all plant tissues. As a result of alternative splicing, two transcripts are derived from the SOS4 gene, the relative abundance of which is modulated by development and environmental stresses. Besides being essential cofactors for numerous enzymes, as shown by pharmacological studies in animal cells, pyridoxal-5-phosphate and its derivatives are also ligands for P2X receptor ion channels. Our results demonstrate that pyridoxal kinase is a novel salt tolerance determinant important for the regulation of Na+ and K+ homeostasis in plants. We propose that pyridoxal-5-phosphate regulates Na+ and K+ homeostasis by modulating the activities of ion transporters. PMID:11910005

  18. Taxonomic study of a salt tolerant Streptomyces sp. strain C-2012 and the effect of salt and ectoine on lon expression level.

    PubMed

    Sadeghi, Akram; Soltani, Bahram M; Jouzani, Gholamreza Salehi; Karimi, Ebrahim; Nekouei, Mojtaba Khayam; Sadeghizadeh, Majid

    2014-01-01

    Streptomyces strain C-2012 is a salt tolerant biocontrol PGPR that has been isolated from Iranian soil. The main aim of current study was finding strain C-2012 taxonomic position and to find the genes which are potentially involved in salt tolerance phenotype. Strain C-2012 chemotaxonomic, morphological and molecular characteristics indicate that this strain is a member of the genus Streptomyces. Phylogenetic analyses based on an almost complete 16S rRNA gene sequence revealed that this strain is closely related to Streptomyces rimosus JCM 4667(T). Also, DNA-DNA hybridization test estimated 74% relatedness between two strains and confirmed that C-2012 is a strain of S. rimosus. In order to find novel genes that are differentially expressed in response to the salt treatment, cDNA-AFLP was carried out. One of the selected expressed sequence tags (TDF-1) was found to be homologous to lon gene which produces a bacterial ATP-dependent proteases (proteases LA). Lon gene expression was induced following 450 mM salt (NaCl) treatment and its expression level was further (5.2-fold) increased in response to salt when ectoine was added to the medium. These results suggest that two protein protection systems including ectoine and ATP-dependent proteases synergistically are related. NaCl stress also caused an enhancement in the activity of extracellular protease.

  19. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    PubMed

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  20. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  1. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  2. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  3. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  4. 40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts...

  5. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice Enhances Drought and Salt Tolerance.

    PubMed

    Cai, Wei; Liu, Wen; Wang, Wen-Shu; Fu, Zheng-Wei; Han, Tong-Tong; Lu, Ying-Tang

    2015-01-01

    Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.

  6. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance.

    PubMed

    Wu, Wei; Zhang, Qing; Zhu, Yanming; Lam, Hon-Ming; Cai, Zongwei; Guo, Dianjing

    2008-12-10

    High-performance liquid chromatography-ultraviolet-electrospray ionization mass spectrometry (HPLC-UV-ESI-MS) and HPLC-ESI-MS(n) analysis methods were used for metabolic profiling and simultaneous identification of isoflavonoids and saponins in soybean seeds. Comparative targeted metabolic profiling revealed marked differences in the metabolite composition between salt-sensitive and salt-tolerant soybean varieties. Principle component analysis clearly demonstrated that it is possible to use secondary metabolites, for example, isoflavones and saponins, to discriminate between closely related soybean genotypes. Genistin and group B saponins were identified as the key secondary metabolites correlated with salt tolerance. These individual metabolites may provide additional insight into the salt tolerance and adaptation of plants.

  7. Ectopic Expression of OsSta2 Enhances Salt Stress Tolerance in Rice

    PubMed Central

    Kumar, Manu; Choi, Juyoung; An, Gynheung; Kim, Seong-Ryong

    2017-01-01

    Salt stress can severely reduce crop yields. To understand how rice (Oryza sativa) plants respond to this environmental challenge, we investigated the genes involved in conferring salt tolerance by screening T-DNA tagging lines and identified OsSta2-D (Oryza sativa Salt tolerance activation 2-Dominant). In that line, expression of OsSta2 was enhanced by approximately eightfold when compared with the non-transformed wild type (WT). This gene was highly expressed in the callus, roots, and panicles. To confirm its role in stress tolerance, we generated transgenic rice that over-expresses OsSta2 under a maize ubiquitin promoter. The OsSta2-Ox plants were salt-tolerant at the vegetative stage, based on our calculations of chlorophyll fluorescence (Fv/Fm), fresh and dry weights, chlorophyll concentrations, and survival rates. Under normal paddy field conditions, the Ox plants were somewhat shorter than the WT control but had improved agronomic traits such as higher total grain yield. They were also more tolerant to osmotic stress and hypersensitive to abscisic acid. Based on all of these results, we suggest that OsSta2 has important roles in determining yields as well as in conferring tolerance to salt stresses. PMID:28344585

  8. Hexaconazole-Cu complex improves the salt tolerance of Triticum aestivum seedlings.

    PubMed

    Li, Jie; Sun, Cuiyu; Yu, Nan; Wang, Chen; Zhang, Tongtong; Bu, Huaiyu

    2016-02-01

    Hexaconazole is one of the triazole complexes that are broadly used as systemic fungicides with non-traditional plant growth regulator properties. Hexaconazole-Cu complex (Hex-Cu) is a new triazole derivative, and the biological effect of Hex-Cu has been rarely studied. In this work, we investigated the functions of Hex-Cu in regulating growth and the response to salt stress in the seedlings of Triticum aestivum. Pretreated with 60μmolL(-1) Hex-Cu, the seedling plants got increased root/shoot ratio by 42.0%, and the contents of chlorophyll and soluble protein were also increased by 38.1% and 27.9%, respectively. Furthermore, Hex-Cu alleviated the growth inhibition caused by salt stress, enabled the seedlings to maintain a higher proline content and lower malondialdehyde accumulation. The functions of Hex-Cu in regulating the expression of proline synthetase (P5CS and P5CR) genes were investigated by quantitative real-time PCR (qPCR). Under 100mmolL(-1) NaCl stress, the expression of P5CS and P5CR in the seedlings by Hex-Cu pretreatment were significantly up-regulated. It attributed to the enhanced salt tolerance in plants.

  9. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements.

  10. Characterization of physiological responses of two alfalfa half-sib families with improved salt tolerance.

    PubMed

    Anower, M Rokebul; Mott, Ivan W; Peel, Michael D; Wu, Yajun

    2013-10-01

    Alfalfa (Medicago sativa L.) is a major forage crop worldwide that is relatively sensitive to soil salinity. Improved cultivars with high production on saline soil will benefit many producers and land managers. This study reports the characterization of physiological responses of two unrelated experimental alfalfa half-sib families, HS-A and HS-B, selected for their improved survival under saline conditions (up to EC 18). Six-week-old plants were subjected to NaCl-nutrient solution treatment for three weeks starting at an electrical conductivity (EC) of 3 dS m(-1) with incremental increases of 3 dS m(-1) every week, reaching 9 dS m(-1) in the third week. HS-B showed greater leaf number (72%) and stem length (44%) while HS-A showed better leaf production (84%) under salt treatment compared to the initial genetic backgrounds from which they were developed. This improved growth is associated with 208% and 78% greater accumulation of chlorophyll content in HS-B and HS-A, respectively. Both HS-A and HS-B also showed improved capability to maintain water content (RWC) under salt stress compared to the initial populations. Differing from its initial populations (P-B), HS-B did not accumulate Na in shoots after salt treatment. HS-B also maintained K(+)/Na(+) and Ca(2+)/Na(+) ratios, while P-B showed 59% and 69% decrease in these ion ratios, respectively. Na(+) content in HS-A was not different from its initial populations (P-A) after salt treatment. However, HS-A showed an enhanced accumulation of Ca(2+) and maintained the levels of Mg(2+) and K(+) in shoots compared to the P-A populations. This study provides physiological support of improved salt tolerance in HS-A and HS-B and suggests that these plants maintain ion homeostasis but have different mechanisms of coping with high salinity.

  11. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species

    PubMed Central

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P.; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P.; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in “La Albufera” Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves—where they are presumably compartmentalized in vacuoles—and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl− contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level—estimated from malondialdehyde accumulation—was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results

  12. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    PubMed

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  13. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  14. Recent progress in drought and salt tolerance studies in Brassica crops

    PubMed Central

    Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi

    2014-01-01

    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops. PMID:24987291

  15. Recent progress in drought and salt tolerance studies in Brassica crops.

    PubMed

    Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi

    2014-05-01

    Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.

  16. Potassium phosphite increases tolerance to UV-B in potato.

    PubMed

    Soledad, Oyarburo Natalia; Florencia, Machinandiarena Milagros; Laura, Feldman Mariana; Raúl, Daleo Gustavo; Balbina, Andreu Adriana; Pía, Olivieri Florencia

    2015-03-01

    The use of biocompatible chemical compounds that enhance plant disease resistance through Induced Resistance (IR) is an innovative strategy to improve the yield and quality of crops. Phosphites (Phi), inorganic salts of phosphorous acid, are environment friendly, and have been described to induce disease control. Phi, similar to other plant inductors, are thought to be effective against different types of biotic and abiotic stress, and it is assumed that the underlying signaling pathways probably overlap and interact. The signaling pathways triggered by UV-B radiation, for instance, are known to crosstalk with other signaling routes that respond that biotic stress. In the present work, the effect of potassium phosphite (KPhi) pre-treatment on UV-B stress tolerance was evaluated in potato leaves. Plants were treated with KPhi and, after 3 days, exposed to 2 h/day of UV-B (1.5 Watt m(-2)) for 0, 3 and 6 days. KPhi pre-treatment had a beneficial effect on two photosynthetic parameters, specifically chlorophyll content and expression of the psbA gene. Oxidative stress caused by UV-B was also prevented by KPhi. A decrease in the accumulation of hydrogen peroxide (H2O2) in leaves and an increase in guaiacol peroxidase (POD) and superoxide dismutase (SOD) activities were also observed. In addition, the expression levels of a gene involved in flavonoid synthesis increased in UV-B-stressed plants only when pre-treated with KPhi. Finally, accumulation of glucanases and chitinases was induced by UV-B stress and markedly potentiated by KPhi pre-treatment. Altogether, this is the first report that shows a contribution of KPhi in UV-B stress tolerance in potato plants.

  17. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress.

    PubMed

    Khan, M Nasir; Siddiqui, Manzer H; Mohammad, Firoz; Naeem, M

    2012-12-01

    Nitric oxide (NO), a small diffusible, ubiquitous bioactive molecule, acts as prooxidant as well as antioxidant, and also regulates remarkable spectrum of plant cellular mechanisms. The present work was undertaken to investigate the role of nitric oxide donor sodium nitroprusside (SNP) and/or calcium chloride (CaCl(2)) in the tolerance of excised mustard leaves to salt stress. After 24h, salt stressed leaves treated with SNP and/or CaCl(2), showed an improvement in the activities of carbonic anhydrase (CA) and nitrate reductase (NR), and leaf chlorophyll (Chl) content, leaf relative water content (LRWC) and leaf ion concentration as compared with the leaves treated with NaCl only. Salinity stress caused a significant increase in H(2)O(2) content and membrane damage which is witnessed by enhanced levels of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage. By contrast, such increases were blocked by the application of 0.2mM SNP and 10mM CaCl(2) to salt stressed leaves. Application of SNP and/or CaCl(2) alleviated NaCl stress by enhancing the activities of antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) and by enhancing proline (Pro) and glycinebetaine (GB) accumulation with a concomitant decrease in H(2)O(2) content, TBARS and electrolyte leakage, which is manifested in the tolerance of plants to salinity stress. Moreover, application of SNP with CaCl(2) was more effective to reduce the detrimental effects of NaCl stress on excised mustard leaves. In addition to this, ameliorating effect of SNP was not effective in presence of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]. To put all these in a nut shell, the results advocate that SNP in association with CaCl(2) plays a role in enhancing the tolerance of plants to salt stress by improving antioxidative defence system, osmolyte accumulation and ionic

  18. Increasing Intrusion Tolerance via Scalable Redundancy

    DTIC Science & Technology

    2006-07-01

    versioning can be used as a mechanism to aid the provision of strong concurrent semantics and intrusion tolerance in a very different way. To illustrate...need for services (e.g., namespace, key management, metadata, and LDAP ) and distributed data structures (e.g., b-trees, queues, and logs) to be...caption. Structures, enumerations and types used in the pseudo-code are given on lines 100-107. The definition of a Candidate includes the

  19. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  20. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K⁺ loss in seedlings of Medicago sativa.

    PubMed

    Lai, Diwen; Mao, Yu; Zhou, Heng; Li, Feng; Wu, Mingzhu; Zhang, Jing; He, Ziyi; Cui, Weiti; Xie, Yanjie

    2014-08-01

    Despite the external application of hydrogen sulfide (H2S) conferring plant tolerance against various environmental cues, the physiological significance of l-cysteine desulfhydrase (L-DES)-associated endogenous H2S production involved in salt-stress signaling was poorly understood. To address this gap, the participation of in planta changes of H2S homeostasis involved in alfalfa salt tolerance was investigated. The increasing concentration of NaCl (from 50 to 300 mM) progressively caused the induction of total l-DES activity and the increase of endogenous H2S production. NaCl-triggered toxicity symptoms (175 mM), including seedling growth inhibition and lipid peroxidation, were alleviated by sodium hydrosulfide (NaHS; 100 μM), a H2S donor, whereas aggravated by an inhibitor of l-DES or a H2S scavenger. A weaker or negative response was observed in lower or higher dose of NaHS. Further results showed that endogenous l-DES-related H2S modulated several genes/activities of antioxidant defence enzymes, and also regulated the contents of antioxidant compounds, thus counterbalancing the NaCl-induced lipid peroxidation. Moreover, H2S maintained K(+)/Na(+) homeostasis by preventing the NaCl-triggered K(+) efflux, which might be result form the impairment of SKOR expression. Together, our findings indicated that endogenous H2S homeostasis enhance salt tolerance by coupling the reestablishment of redox balance and restraining K(+) efflux in alfalfa seedlings.

  1. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model

    PubMed Central

    Song, Jie; Wang, Baoshan

    2015-01-01

    Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. PMID:25288631

  2. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress

    SciTech Connect

    Li, Hong-Tao; Liu, Hua; Gao, Xiao-Shu; Zhang, Hongxia

    2009-05-08

    AtNHX4 belongs to the monovalent cation:proton antiporter-1 (CPA1) family in Arabidopsis. Several members of this family have been shown to be critical for plant responses to abiotic stress, but little is known on the biological functions of AtNHX4. Here, we provide the evidence that AtNHX4 plays important roles in Arabidopsis responses to salt stress. Expression of AtNHX4 was responsive to salt stress and abscisic acid. Experiments with CFP-AtNHX4 fusion protein indicated that AtNHX4 is vacuolar localized. The nhx4 mutant showed enhanced tolerance to salt stress, and lower Na{sup +} content under high NaCl stress compared with wild-type plants. Furthermore, heterologous expression of AtNHX4 in Escherichia coli BL21 rendered the transformants hypersensitive to NaCl. Deletion of the hydrophilic C-terminus of AtNHX4 dramatically increased the hypersensitivity of transformants, indicating that AtNHX4 may function in Na{sup +} homeostasis in plant cell, and its C-terminus plays a role in regulating the AtNHX4 activity.

  3. [Effect of water-salt dietary supplements on tolerance to head-pelvis acceleration after 7 days of "dry" immersion and during normal motor activity].

    PubMed

    Kokova, N I

    1984-01-01

    The effect of water-salt supplements as an agent increasing human tolerance to head-to-feet acceleration with a slow onset was examined. The test subjects were rotated in a 7.25 m arm centrifuge after 7-day dry immersion or normal motor activity. The water-salt supplements were given at a dose of 0.15 g NaCl and 18 ml water per kg body weight (with the total daily dose consumed in four fractions). During immersion fluid retention was significantly higher than during normal activity (818 +/- 139.7 ml versus 478 +/- 69 ml). Water-salt supplements consumed produced a positive effect on tolerance to head-to-feet acceleration. During centrifugation after water-salt supplementation the physiological responses were less strained. Water-salt supplements taken on the last immersion day increased the tolerance level as compared to the control. The amount of the fluid retained in the body was found to be inversely proportional to the tolerance level. It is concluded that water-salt supplements may be recommended to increase tolerance to head-to-feet acceleration in aerospace medicine.

  4. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yumei; Liu, Zhenshan; Khan, Abul Awlad; Lin, Qi; Han, Yao; Mu, Ping; Liu, Yiguo; Zhang, Hongsheng; Li, Lingyan; Meng, Xianghao; Ni, Zhongfu; Xin, Mingming

    2016-02-19

    Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in 'Chinese Spring' (CS) and 'Qing Mai 6' (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates.

  5. Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass

    PubMed Central

    Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun

    2016-01-01

    The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327

  6. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.

    PubMed

    Yang, Le; Zhang, Yanjun; Zhu, Ning; Koh, Jin; Ma, Chunquan; Pan, Yu; Yu, Bing; Chen, Sixue; Li, Haiying

    2013-11-01

    Understanding the mechanisms of plant salinity tolerance can facilitate plant engineering for enhanced salt stress tolerance. Sugar beet monosomic addition line M14 obtained from the intercross between Beta vulgaris L. and Beta corolliflora Zoss exhibits tolerance to salt stress. Here we report the salt-responsive characteristics of the M14 plants under 0, 200, and 400 mM NaCl conditions using quantitative proteomics approaches. Proteins from control and the salt treated M14 plants were separated using 2D-DIGE. Eighty-six protein spots representing 67 unique proteins in leaves and 22 protein spots representing 22 unique proteins in roots were identified. In addition, iTRAQ LC-MS/MS was employed to identify and quantify differentially expressed proteins under salt stress. Seventy-five differentially expressed proteins in leaves and 43 differentially expressed proteins in roots were identified. The proteins were mainly involved in photosynthesis, energy, metabolism, protein folding and degradation, and stress and defense. Moreover, gene transcription data obtained from the same samples were compared to the corresponding protein data. Thirteen proteins in leaves and 12 in roots showed significant correlation in gene expression and protein levels. These results suggest the important processes for the M14 tolerance to salt stress include enhancement of photosynthesis and energy metabolism, accumulation of osmolyte and antioxidant enzymes, and regulation of methionine metabolism and ion uptake/exclusion.

  7. Biological treatment of tannery wastewater by using salt-tolerant bacterial strains

    PubMed Central

    Sivaprakasam, Senthilkumar; Mahadevan, Surianarayanan; Sekar, Sudharshan; Rajakumar, Susheela

    2008-01-01

    Background High salinity (1–10% w/v) of tannery wastewater makes it difficult to be treated by conventional biological treatment. Salt tolerant microbes can adapt to these saline conditions and degrade the organics in saline wastewater. Results Four salt tolerant bacterial strains isolated from marine and tannery saline wastewater samples were identified as Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Staphylococcus aureus. Growth factors of the identified strains were optimized. Tannery saline wastewater obtained from a Common Effluent Treatment Plant (CETP) near Chennai (southern India) was treated with pure and mixed consortia of four salt tolerant bacterial strains. Experiments with optimized conditions and varying salt content (between 2 and 10% (w/v) were conducted. Salt inhibition effects on COD removal rate were noted. Comparative analysis was made by treating the tannery saline wastewater with activated sludge obtained from CETP and with natural habitat microbes present in raw tannery saline wastewater. Conclusion Salt tolerant bacterial mixed consortia showed appreciable biodegradation at all saline concentrations (2%, 4%, 6%, 8% and 10% w/v) with 80% COD reduction in particular at 8% salinity level the consortia could be used as suitable working cultures for tannery saline wastewater treatment. PMID:18445252

  8. SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.).

    PubMed

    Zhao, Y L; Wang, H M; Shao, B X; Chen, W; Guo, Z J; Gong, H Y; Sang, X H; Wang, J J; Ye, W W

    2016-05-25

    The identification of simple sequence repeat (SSR) markers associated with salt tolerance in cotton contributes to molecular assisted selection (MAS), which can improve the efficiency of traditional breeding. In this study, 134 samples of upland cotton cultivars were selected. The seedling emergence rates were tested under 0.3% NaCl stress. A total of 74 SSR markers were used to scan the genomes of these samples. To identify SSR markers associated with salt tolerance, an association analysis was performed between salt tolerance and SSR markers using TASSEL 2.1, based on the analysis of genetic structure using Structure 2.3.4. The results showed that the seedling emergence rates of 134 cultivars were significantly different, and 27 salt-sensitive and 10 salt-tolerant cultivars were identified. A total of 148 loci were found in 74 SSR markers involving 246 allelic variations, which ranged from 2 to 7 with an average of 3.32 per SSR marker. The gene diversity ranged from 0.0295 to 0.4959, with the average being 0.2897. The polymorphic information content ranged from0.0290 to 0.3729, with the average being 0.2381. This natural population was classified into two subgroups by Structure 2.3.4, containing 89 and 45 samples, respectively. Finally, eight SSR sites associated with salt tolerance ware found through an association analysis, with the rate of explanation ranging from 2.91 to 7.82% and an average of 4.32%. These results provide reference data for the use MAS for salt tolerance in cotton.

  9. Increase of urban lake salinity by road deicing salt.

    PubMed

    Novotny, Eric V; Murphy, Dan; Stefan, Heinz G

    2008-11-15

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds.

  10. Nonlinear responses in salt marsh functioning to increased nitrogen addition.

    PubMed

    Vivanco, Lucía; Irvine, Irina C; Martiny, Jennifer B H

    2015-04-01

    Salt marshes provide storm protection to shorelines, sequester carbon (C), and mitigate coastal eutrophication. These valuable coastal ecosystems are confronted with increasing nitrogen (N) inputs from anthropogenic sources, such as agricultural runoff, wastewater, and atmospheric deposition. To inform predictions of salt marsh functioning and sustainability in the future, we characterized the response of a variety of plant, microbial, and sediment responses to a seven-level gradient of N addition in three Californian salt marshes after 7 and 14 months of N addition. The marshes showed variable responses to the experimental N gradient that can be grouped as neutral (root biomass, sediment respiration, potential carbon mineralization, and potential net nitrification), linear (increasing methane flux, decreasing potential net N mineralization, and increasing sediment inorganic N), and nonlinear (saturating aboveground plant biomass and leaf N content, and exponentially increasing sediment inorganic and organic N). The three salt marshes showed quantitative differences in most ecosystem properties and processes rates; however, the form of the response curves to N addition were generally consistent across the three marshes, indicating that the responses observed may be applicable to other marshes in the region. Only for sediment properties (inorganic and organic N pool) did the shape of the response differ significantly between marshes. Overall, the study suggests salt marshes are limited in their ability to sequester C and N with future increases in N, even without further losses in marsh area.

  11. Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar.

    PubMed

    Sun, Wei; Xu, Xinna; Zhu, Huishan; Liu, Aihua; Liu, Lei; Li, Junming; Hua, Xuejun

    2010-06-01

    Wild halophytic tomato has long been considered as an ideal gene donor for improving salt tolerance in tomato cultivars. Extensive research has been focused on physiological and quantitative trait locus (QTL) characterization of wild tomato species in comparison with cultivated tomato. However, the global gene expression modification of wild tomato in response to salt stress is not well known. A wild tomato genotype, Solanum pimpinellifolium 'PI365967' is significantly more salt tolerant than the cultivar, Solanum lycopersicum 'Moneymaker', as evidenced by its higher survival rate and lower growth inhibition at the vegetative stage. The Affymetrix Tomato Genome Array containing 9,200 probe sets was used to compare the transcriptome of PI365967 and Moneymaker. After treatment with 200 mM NaCl for 5 h, PI365967 showed relatively fewer responsive genes compared with Moneymaker. The salt overly sensitive (SOS) pathway was found to be more active in PI365967 than in Moneymaker, coinciding with relatively less accumulation of Na(+) in shoots of PI365967. A gene encoding salicylic acid-binding protein 2 (SABP2) was induced by salinity only in PI365967, suggesting a possible role for salicylic acid signaling in the salt response of PI365967. The fact that two genes encoding lactoylglutathione lyase were salt inducible only in PI365967, together with much higher basal expression of several glutathione S-transferase genes, suggested a more effective detoxification system in PI365967. The specific down-regulation in PI365967 of a putative high-affinity nitrate transporter, known as a repressor of lateral root initiation, may explain the better root growth of this genotype during salt stress.

  12. Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms.

    PubMed

    Fechner, Lise C; Gourlay-Francé, Catherine; Bourgeault, Adeline; Tusseau-Vuillemin, Marie-Hélène

    2012-03-01

    This study is a first attempt to investigate the impact of urban contamination on metal tolerance of heterotrophic river biofilms using a short-term test based on β-glucosidase activity. Tolerance levels to Cu, Cd, Zn, Ni and Pb were evaluated for biofilms collected at three sites along an urban gradient in the Seine river (France). Metallic pollution increased along the river, but concentrations remained low compared to environmental quality standards. Biofilm metal tolerance increased downstream from the urban area. Multivariate analysis confirmed the correlation between tolerance and contamination and between multi-metallic and physico-chemical gradients. Therefore, tolerance levels have to be interpreted in relation to the whole chemical and physical characteristics and not solely metal exposure. We conclude that community tolerance is a sensitive biological response to urban pressure and that mixtures of contaminants at levels lower than quality standards might have a significant impact on periphytic communities.

  13. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system.

    PubMed

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-02-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na(+), (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na(+)/K(+) homeostasis and hormonal balance.

  14. Functional validation of Phragmites communis glutathione reductase (PhaGR) as an essential enzyme in salt tolerance.

    PubMed

    Zhang, Xia; Quan, Geng; Wang, Jing; Han, Huiling; Chen, ShiHua; Guo, ShanLi; Yin, HaiBo

    2015-04-01

    Reed plants (Phragmites communis (Linn.) Trin) are hydrophilic perennial grasses growing in fresh and brackish waters. These plants readily adapt to arid and high salinity conditions; however, their resistance mechanism against abiotic stresses, especially high salinity, is largely unknown. In the present study, we cloned a glutathione reductase gene from P. communis and investigated its role in conferring salt tolerance in reed plants. The expression of PhaGR at the transcriptional level was affected by multiple abiotic stresses including NaCl, Cd(2+), heat, cold, PEG 6000, and abscisic acid (ABA). Furthermore, NaCl and Cd(2+) could increase its expressions at the translational level. NaCl and Cd(2+) also increased the biosynthesis of soluble protein and reduced glutathione (GSH). Reed seedlings that were challenged with NaCl showed higher levels of GR activities, which corroborated our gene expression data. The increase in GR possibly increased the salt tolerance of reed plants through GSH production. Thus, PhaGR is a potential target gene in improving the salt tolerance of crops through genetic manipulation.

  15. Aerobic digestion of tannery wastewater in a sequential batch reactor by salt-tolerant bacterial strains

    NASA Astrophysics Data System (ADS)

    Durai, G.; Rajasimman, M.; Rajamohan, N.

    2011-09-01

    Among the industries generating hyper saline effluents, tanneries are prominent in India. Hyper saline wastewater is difficult to treat by conventional biological treatment methods. Salt-tolerant microbes can adapt to these conditions and degrade the organics in hyper saline wastewater. In this study, the performance of a bench scale aerobic sequencing batch reactor (SBR) was investigated to treat the tannery wastewater by the salt-tolerant bacterial strains namely Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Styphylococcus aureus. The study was carried out under different operating conditions by changing the hydraulic retention time, organic loading rate and initial substrate concentration. From the results it was found that a maximum COD reduction of 90.4% and colour removal of 78.6% was attained. From this study it was found that the salt-tolerant microorganisms could improve the reduction efficiency of COD and colour of the tannery wastewater.

  16. Overexpression of the Lotus corniculatus Soloist Gene LcAP2/ERF107 Enhances Tolerance to Salt Stress.

    PubMed

    Sun, Zhan-Min; Zhou, Mei-Liang; Dan-Wang; Tang, Yi-Xiong; Lin, Min; Wu, Yan-Min

    2016-01-01

    The AP2/ERF play a key role in multiple stress responses in plants. we here report a novel salt stress-related gene, LcAP2/ERF107 that encodes an AP2/ERF protein in Lotus corniculatus cultivar Leo. LcAP2/ERF107 was classified into the soloist subfamiliy based on phylogenetic relationship. The transcription of LcAP2/ERF107 were strongly induced by salt and other phytohormones (ABA, ACC, MeJA). A subcellular localization experiment indicated that LcAP2/ERF107 is a nuclear protein that activates transcription. LcAP2/ERF107 overexpression in Arabidopsis resulted in pleiotropic phenotypes, including higher seed germination rate and transgenic plants with enhanced tolerance to salt stress. Further, under salt tolerance the transgenic lines elevated the relative moisture content; however, the relative electrolyte leakage was lower than in control plants. The expression levels of indicative genes RD22, RD29A, LEA4-5, P5CS1 and P5CS2 were found to be increased in the transgenic plants compared with the WT plants. These results indicated that LcAP2/ERF107 play an important role in the responses of plant to salt stress.

  17. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants.

    PubMed

    Almeida, Diego M; Oliveira, M Margarida; Saibo, Nelson J M

    2017-03-27

    Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.

  18. Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution.

    PubMed

    Zheng, Y H; Li, X; Li, Y G; Miao, B H; Xu, H; Simmons, M; Yang, X H

    2012-03-01

    Contrasting winter wheat cultivars, salt-tolerant DK961 and intolerant JN17, which sown in no salinity (-S) and salinity (+S) boxes were exposed to charcoal filtered air (CF) and elevated O(3) (+O(3)) in open top chambers (OTCs) for 30 days. In -S DK961 and JN17 plants, +O(3) DK961 and JN17 plants had significantly lower light-saturated net photosynthetic rates (A(sat), 26% and 24%), stomatal conductance (g(s), 20% and 32%) and chlorophyll contents (10% and 21%), while O(3) considerably increased foliar electrolyte leakage (13% and 39%), malondialdehyde content (9% and 23%), POD activity and ABA content. However, responses of these parameters to O(3) were significant in DK961 but not in JN17 in +S treatment. Correlation coefficient of DK961 reached significance level of 0.01, but it was not significant in JN17 under interaction of O(3) and salinity. O(3)-induced reductions were larger in shoot than in root in both cultivars. Results indicate that the salt-tolerant cultivar sustained less damage from salinity than did the intolerant cultivar but was severely injured by O(3) under +S condition. Therefore, selecting for greater salt tolerance may not lead to the expected gains in yield in areas of moderate (100 mM) salinity when O(3) is present in high concentrations. In contrast, salinity-induced stomatal closure effectively reduced sensitivity to O(3) in the salt-intolerant cultivar. Hence we suggest salt-tolerant winter wheat cultivars might be well adapted to areas of high (>100 mM) salinity and O(3) stress, while intolerant cultivars might be adaptable to areas of mild/moderate salinity but high O(3) pollution.

  19. Amplification of salt-induced polymer diffusiophoresis by increasing salting-out strength.

    PubMed

    McAfee, Michele S; Zhang, Huixiang; Annunziata, Onofrio

    2014-10-21

    The role of salting-out strength on (1) polymer diffusiophoresis from high to low salt concentration, and (2) salt osmotic diffusion from high to low polymer concentration was investigated. These two cross-diffusion phenomena were experimentally characterized by Rayleigh interferometry at 25 °C. Specifically, we report ternary diffusion coefficients for polyethylene glycol (molecular weight, 20 kg·mol(-1)) in aqueous solutions of several salts (NaCl, KCl, NH4Cl, CaCl2, and Na2SO4) as a function of salt concentration at low polymer concentration (0.5% w/w). We also measured polymer diffusion coefficients by dynamic light scattering in order to discuss the interpretation of these transport coefficients in the presence of cross-diffusion effects. Our cross-diffusion results, primarily those on salt osmotic diffusion, were utilized to extract N(w), the number of water molecules in thermodynamic excess around a macromolecule. This preferential-hydration parameter characterizes the salting-out strength of the employed salt. For chloride salts, changing cation has a small effect on N(w). However, replacing NaCl with Na2SO4 (i.e., changing anion) leads to a 3-fold increase in N(w), in agreement with cation and anion Hofmeister series. Theoretical arguments show that polymer diffusiophoresis is directly proportional to the difference N(w) - n(w), where n(w) is the number of water molecules transported by the migrating macromolecule. Interestingly, the experimental ratio, n(w)/N(w), was found to be approximately the same for all investigated salts. Thus, the magnitude of polymer diffusiophoresis is also proportional to salting-out strength as described by N(w). A basic hydrodynamic model was examined in order to gain physical insight on the role of n(w) in particle diffusiophoresis and explain the observed invariance of n(w)/N(w). Finally, we consider a steady-state diffusion problem to show that concentration gradients of strong salting-out agents such as Na2SO4 can

  20. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions.

    PubMed

    Kumar, Krishna; Manigundan, K; Amaresan, Natarajan

    2017-02-01

    In the present study, a total of 70 Trichoderma spp. were isolated from the rhizosphere soils of vegetable and spice crops that were grown in Andaman and Nicobar Islands, India. Initial screening of Trichoderma spp. for salt tolerant properties showed 32 isolates were able to tolerate 10% NaCl. Furthermore, these isolates were screened for their potential plant growth-promoting characteristics such as IAA production, phosphate solubilization, and siderophore production. Among 32 isolates, nine isolates were able to produce IAA, siderophore, and solubilize phosphate. Jar trial was carried out on maize under axenic conditions at 1.67, 6.25, 11.25, 17.2, and 22.9 dS m(-1) salt stress using the best nine isolates. Three isolates (TRC3, NRT2, and THB3) were effective in improving germination percentage, reducing reduction percentage of germination (RPG) and also in increasing the shoot and root length under axenic conditions. These three isolates were further tested under pot trial at 52 (sea water), 27, 15, 7, and 1.67 dS m(-1) . TRC3 was found to be the most effective isolate compared to the other isolates and significantly increased the physiological parameters like shoot, root length, leaf area, total biomass, and stem and leaf fresh weight at all stress levels. Similarly, total chlorophyll content also increased by TRC3 over control. All three isolates, NRT2, TRC3, and THB3 showed lower accumulation of malondialdehyde (MDA) content whereas, proline and phenol content were higher than the uninoculated control plants under both normal and saline conditions. The results suggest that these isolates could be utilized for the alleviation of salinity stress in maize.

  1. Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization.

    PubMed

    Diédhiou, Calliste J; Popova, Olga V; Golldack, Dortje

    2009-05-01

    We report an analysis of salt-stress responses in the monocotyledonous halophyte Festuca rubra ssp. litoralis. Salt-dependent expression of transcripts encoding a PIP2;1 aquaporin, V-ATPase subunit B, and the Na+/H+ antiporter NHX was characterized. Transcription of FrPIP2;1, FrVHA-B, and FrNHX1 was induced in root tissue of F. rubra ssp. litoralis by salt treatment, and during salt-stress F. rubra ssp. litoralis accumulated sodium in leaves and roots. Cell specificity of FrPIP2;1, FrVHA-B, and FrNHX1 transcription was analyzed by in situ PCR in roots of F. rubra ssp. litoralis. Expression of the genes was localized to the root epidermis, cortex cells, endodermis, and the vascular tissue. In plants treated with 500 mM NaCl, transcripts were repressed in the epidermis and the outer cortex cells, whereas endodermis and vasculature showed strong signals. These data demonstrate that transcriptional regulation of the aquaporin PIP2;1, V-ATPase, and the Na+/H+ antiporter NHX is correlated with salt tolerance in F. rubra ssp. litoralis and suggests coordinated control of ion homeostasis and water status at high salinity in plants. Salt-induced transcript accumulation in F. rubra ssp. litoralis was further monitored by cDNA-arrays with expressed sequence tags derived from a cDNA subtraction library. The salt-regulated transcripts included those involved in the control of gene expression and signal transduction elements such as a serine/threonine protein kinase, an SNF1-related protein kinase, and a WRKY-type transcription factor. Other ESTs with salt-dependent regulation included transcripts encoding proteins that function in metabolism, general stress responses, and defense and transport proteins.

  2. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato.

    PubMed

    Zhu, Tong; Deng, Xingguang; Zhou, Xue; Zhu, Lisha; Zou, Lijuan; Li, Pengxu; Zhang, Dawei; Lin, Honghui

    2016-10-14

    Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs. Scavenging of ethylene production or silencing of ethylene signaling components inhibited BR-induced salt tolerance and blocked BR-induced activities of several antioxidant enzymes. Previous studies have reported that BRs can induce plant tolerance to a variety of environmental stimuli by triggering the generation of H2O2 as a signaling molecule. We also found that H2O2 might be involved in the crosstalk between BRs and ethylene in the tomato response to salt stress. Simultaneously, BR-induced ethylene production was partially blocked by pretreated with a reactive oxygen species scavenger or synthesis inhibitor. These results strongly demonstrated that ethylene and H2O2 play important roles in BR-dependent induction of plant salt stress tolerance. Furthermore, we also investigated the relationship between BR signaling and ethylene signaling pathways in plant processes responding to salt stress.

  3. Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato

    PubMed Central

    Zhu, Tong; Deng, Xingguang; Zhou, Xue; Zhu, Lisha; Zou, Lijuan; Li, Pengxu; Zhang, Dawei; Lin, Honghui

    2016-01-01

    Crosstalk between phytohormone pathways is essential in plant growth, development and stress responses. Brassinosteroids (BRs) and ethylene are both pivotal plant growth regulators, and the interaction between these two phytohormones in the tomato response to salt stress is still unclear. Here, we explored the mechanism by which BRs affect ethylene biosynthesis and signaling in tomato seedlings under salt stress. The activity of 1-aminocyclopropane-1-carboxylate synthase (ACS), an ethylene synthesis enzyme, and the ethylene signaling pathway were activated in plants pretreated with BRs. Scavenging of ethylene production or silencing of ethylene signaling components inhibited BR-induced salt tolerance and blocked BR-induced activities of several antioxidant enzymes. Previous studies have reported that BRs can induce plant tolerance to a variety of environmental stimuli by triggering the generation of H2O2 as a signaling molecule. We also found that H2O2 might be involved in the crosstalk between BRs and ethylene in the tomato response to salt stress. Simultaneously, BR-induced ethylene production was partially blocked by pretreated with a reactive oxygen species scavenger or synthesis inhibitor. These results strongly demonstrated that ethylene and H2O2 play important roles in BR-dependent induction of plant salt stress tolerance. Furthermore, we also investigated the relationship between BR signaling and ethylene signaling pathways in plant processes responding to salt stress. PMID:27739520

  4. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance.

    PubMed

    Hu, Longxing; Li, Huiying; Pang, Huangcheng; Fu, Jinmin

    2012-01-15

    Salinity could damage cellular membranes through overproduction of reactive oxygen species (ROS), while antioxidant capacities play a vital role in protecting plants from salinity caused oxidative damages. The objective of this study was to investigate the toxic effect of salt on the antioxidant enzyme activities, isoforms and gene expressions in perennial ryegrass (Lolium perenne L.). Salt-tolerant 'Quickstart II' and salt-sensitive 'DP1' were subjected to 0 and 250 mM NaCl for 12 d. Salt stress increased the content of lipid peroxidation (MDA), electrolyte leakage (EL) and hydrogen peroxide (H₂O₂), to a greater extent in salt-sensitive genotype. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) at 4d after treatment (DAT), but a lower level of enzyme activity at 8 and 12d, when compared to the control. Catalase (CAT, EC 1.11.1.6) activity was greater at 4 DAT and thereafter decreased in salt tolerant genotype relative to the control, whereas lower than the control during whole experiment period for salt-sensitive genotype. There were different patterns of five isoforms of SOD, POD and two isoforms of APX between two genotypes. Antioxidant gene expression was positively related to isoenzymatic and total enzymatic activities during 12-d salt-treated leaves of two genotypes, with a relatively higher level in salt-tolerant genotype. Thus, salt tolerance could be related to the constitutive/induced antioxidant gene, leading to more efficient enzyme stimulation and protection in perennial ryegrass.

  5. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control

    PubMed Central

    Huang, Xin-Yuan; Chao, Dai-Yin; Gao, Ji-Ping; Zhu, Mei-Zhen; Shi, Min; Lin, Hong-Xuan

    2009-01-01

    Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO2 uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H2O2) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H2O2 level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)—a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H2O2 homeostasis—and identify a novel pathway for the signal transduction of DST-mediated H2O2-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops. PMID:19651988

  6. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.

    PubMed

    Huang, Xin-Yuan; Chao, Dai-Yin; Gao, Ji-Ping; Zhu, Mei-Zhen; Shi, Min; Lin, Hong-Xuan

    2009-08-01

    Abiotic stresses, such as drought and salinity, lead to crop growth damage and a decrease in crop yields. Stomata control CO(2) uptake and optimize water use efficiency, thereby playing crucial roles in abiotic stress tolerance. Hydrogen peroxide (H(2)O(2)) is an important signal molecule that induces stomatal closure. However, the molecular pathway that regulates the H(2)O(2) level in guard cells remains largely unknown. Here, we clone and characterize DST (drought and salt tolerance)-a previously unknown zinc finger transcription factor that negatively regulates stomatal closure by direct modulation of genes related to H(2)O(2) homeostasis-and identify a novel pathway for the signal transduction of DST-mediated H(2)O(2)-induced stomatal closure. Loss of DST function increases stomatal closure and reduces stomatal density, consequently resulting in enhanced drought and salt tolerance in rice. These findings provide an interesting insight into the mechanism of stomata-regulated abiotic stress tolerance, and an important genetic engineering approach for improving abiotic stress tolerance in crops.

  7. Biodiesel from salt-tolerant seashore mallow (Kosteletzkya virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seashore mallow (Kosteletzkya virginica) is a halophytic perennial dicot that produces up to 1500 kg of seeds (22% oil) per hectare and is tolerant of saline soils and brackish water. FAMEs were prepared in high yield by transesterification of hexane-extracted seashore mallow seed oil. The crude oil...

  8. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance.

    PubMed

    Sytar, Oksana; Brestic, Marian; Zivcak, Marek; Olsovska, Katarina; Kovar, Marek; Shao, Hongbo; He, Xiaolan

    2017-02-01

    Salinity represents an abiotic stress constraint affecting growth and productivity of plants in many regions of the world. One of the possible solutions is to improve the level of salt resistance using natural genetic variability within crop species. In the context of recent knowledge on salt stress effects and mechanisms of salt tolerance, this review present useful phenomic approach employing different non-invasive imaging systems for detection of quantitative and qualitative changes caused by salt stress at the plant and canopy level. The focus is put on hyperspectral imaging technique, which provides unique opportunities for fast and reliable estimate of numerous characteristics associated both with various structural, biochemical and physiological traits. The method also provides possibilities to combine plant and canopy analyses with a direct determination of salinity in soil. The future perspectives in salt stress applications as well as some limits of the method are also identified.

  9. Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis.

    PubMed

    Jin, Yakang; Jing, Wen; Zhang, Qun; Zhang, Wenhua

    2015-01-01

    A number of cyclic nucleotide gated channel (CNGC) genes have been identified in plant genomes, but their functions are mainly undefined. In this study, we identified the role of CNGC10 in the response of Arabidopsis thaliana to salt stress. The cngc10 T-DNA insertion mutant showed greater tolerance to salt than wild-type A. thaliana during seed germination and seedling growth. The cngc10 mutant accumulated less Na(+) and K(+), but not less Ca(2+), in shoots in response to salt stress. By contrast, overexpression of CNGC10 resulted in greater sensitivity to salt stress, and complementation of this gene recovered salt sensitivity. In response to salt stress, heterologous expression of CNGC10 in the Na(+) sensitive yeast mutant strain B31 inhibited growth due to accumulation of Na(+) at a rate greater than that of yeast transformed with an empty vector. Quantitative RT-PCR analysis demonstrated that CNGC10 was expressed mainly in roots and flowers. GUS analysis of a root cross section indicated that CNGC10 was expressed mainly in the endodermis and epidermis. Furthermore, the expression of CNGC10 in roots was dramatically inhibited by exposure to 200 mM NaCl for 6 h. These data suggest that CNGC10 negatively regulates salt tolerance in A. thaliana and may be involved in mediating Na(+) transport.

  10. SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis.

    PubMed

    Feng, Jinlin; Li, Jingjing; Gao, Zhaoxu; Lu, Yaru; Yu, Junya; Zheng, Qian; Yan, Shuning; Zhang, Wenjiao; He, Hang; Ma, Ligeng; Zhu, Zhengge

    2015-07-01

    Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the transcriptional level; however, little is known about this process at the posttranscriptional level. Recently, we demonstrated that SKIP is a component of spliceosome that interacts with clock gene pre-mRNAs and is essential for regulating their alternative splicing and mRNA maturation. In this study, we found that skip-1 plants are hypersensitive to both salt and osmotic stresses, and that SKIP is required for the alternative splicing and mRNA maturation of several salt-tolerance genes, including NHX1, CBL1, P5CS1, RCI2A, and PAT10. A genome-wide analysis revealed that SKIP mediates the alternative splicing of many genes under salt-stress conditions, and that most of the alternative splicing events in skip-1 involve intron retention and can generate a premature termination codon in the transcribed mRNA. SKIP also controls alternative splicing by modulating the recognition or cleavage of 5' and 3' splice donor and acceptor sites under salt-stress conditions. Therefore, this study addresses the fundamental question of how the mRNA splicing machinery in plants contributes to salt-stress responses at the posttranscriptional level, and provides a link between alternative splicing and salt tolerance.

  11. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice.

    PubMed

    Zhang, Shuxin; Haider, Imran; Kohlen, Wouter; Jiang, Li; Bouwmeester, Harro; Meijer, Annemarie H; Schluepmann, Henriette; Liu, Chun-Ming; Ouwerkerk, Pieter B F

    2012-12-01

    Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress. Trans-activation assays in yeast and transient expression analyses in rice protoplasts demonstrated that Oshox22 is able to bind the CAAT(G/C)ATTG element and acts as a transcriptional activator that requires both the HD and Zip domains. Rice plants homozygous for a T-DNA insertion in the promoter region of Oshox22 showed reduced Oshox22 expression and ABA content, decreased sensitivity to ABA, and enhanced tolerance to drought and salt stresses at the seedling stage. In contrast, transgenic rice over-expressing Oshox22 showed increased sensitivity to ABA, increased ABA content, and decreased drought and salt tolerances. Based on these results, we conclude that Oshox22 affects ABA biosynthesis and regulates drought and salt responses through ABA-mediated signal transduction pathways.

  12. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening.

    PubMed

    Chen, Yu; Zong, Junqin; Tan, Zhiqun; Li, Lanlan; Hu, Baoyun; Chen, Chuanming; Chen, Jingbo; Liu, Jianxiu

    2015-04-01

    Though a large number of salt-tolerant genes were identified from Glycophyte in previous study, genes involved in salt-tolerance of halophyte were scarcely studied. In this report, an important halophyte turfgrass, Zoysia matrella, was used for systematic excavation of salt-tolerant genes using full-length cDNA expression library in yeast. Adopting the Gateway-compatible vector system, a high quality entry library was constructed, containing 3 × 10(6) clones with an average inserted fragments length of 1.64 kb representing a 100% full-length rate. The yeast expression library was screened in a salt-sensitive yeast mutant. The screening yielded dozens of salt-tolerant clones harboring 16 candidate salt-tolerant genes. Under salt-stress condition, these 16 genes exhibited different transcription levels. According to the results, we concluded that the salt-tolerance of Z. matrella might result from known genes involved in ion regulation, osmotic adjustment, as well as unknown pathway associated with protein folding and modification, RNA metabolism, and mitochondrial membrane translocase, etc. In addition, these results shall provide new insight for the future researches with respect to salt-tolerance.

  13. Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis).

    PubMed

    El-Mashad, Ali Abdel Aziz; Mohamed, Heba Ibrahim

    2012-07-01

    Soil salinity is one of the most severe factors limiting growth and physiological response in Vigna sinensis plants. Plant salt stress tolerance requires the activation of complex metabolic activities including antioxidative pathways, especially reactive oxygen species and scavenging systems within the cells which can contribute to continued growth under water stress. The present investigation was carried out to study the role of brassinolide in enhancing tolerance of cowpea plants to salt stress (NaCl). Treatment with 0.05 ppm brassinolide as foliar spray mitigated salt stress by inducing enzyme activities responsible for antioxidation, e.g., superoxide dismutase, peroxidase, polyphenol oxidase, and detoxification as well as by elevating contents of ascorbic acid, tocopherol, and glutathione. On the other hand, total soluble proteins decreased with increasing NaCl concentrations in comparison with control plants. However, lipid peroxidation increased with increasing concentrations of NaCl. In addition to, the high concentrations of NaCl (100 and 150 mM) decreased total phenol of cowpea plants as being compared with control plants. SDS-PAGE of protein revealed that NaCl treatments alone or in combination with 0.05 ppm brassinolide were associated with the disappearance of some bands or appearance of unique ones in cowpea plants. Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase, acid phosphatase, and superoxide dismutase isoenzymes showed wide variations in their intensities and densities among all treatments.

  14. A novel salt-tolerant bacterial consortium for biodegradation of saline and recalcitrant petrochemical wastewater.

    PubMed

    Ahmadi, Mehdi; Jorfi, Sahand; Kujlu, Raheleh; Ghafari, Shokouh; Darvishi Cheshmeh Soltani, Reza; Jaafarzadeh Haghighifard, Nematollah

    2017-04-15

    Treatment of a saline petrochemical wastewater with BOD5/COD ratio of less than 0.1 was investigated using a consortium consisted of three isolated salt-tolerant bacteria namely, Kocuria turfanesis, Halomonas alkaliphila and Pseudomonas balearica. Selected bacteria were isolated from petrochemical wastewater containing mineral salt mediums of 3% salinity. A lab-scale activated sludge bioreactor was used for startup in batch mode operation and after obtaining the MLSS concentration of about 3000 mg/L, the operation was changed to continuous flow mode to determine the biokinetic coefficients under different organic loading rates of 0.33-1.21 kg CODm(-3) d(-1). The COD removal efficiency of 78.7%-61.5% was observed for treatment of real saline wastewater with a decreasing trend along with increasing the organic loading rate. In addition, results of kinetic investigation demonstrated that the yield(Y), endogenous decay coefficient (kd), maximum reaction rate (Kmax), maximum specific growth rate (μmax) and saturation constant (Ks) were 0.54 mg VSS mg COD(-1), 0.014 day(-1), 1.23 day(-1), 0.66 day(-1), and 1315 mg L(-1), respectively.

  15. "Salt tolerant" anion exchange chromatography for direct capture of an acidic protein from CHO cell culture.

    PubMed

    Champagne, Jérôme; Balluet, Guillaume; Gantier, René; Toueille, Magali

    2013-06-01

    The present study describes the use of the new HyperCel STAR AX "salt tolerant" anion exchange sorbent for the capture from Chinese Hamster Ovary (CHO) cell culture supernatant (CCS) of an acidic model protein (α-amylase). HyperCel STAR AX sorbent and other conventional anion exchangers were evaluated to purify biologically-active enzyme. Salt tolerance of the sorbent allowed reaching 5-fold higher dynamic binding capacity than conventional anion exchange during capture of the enzyme from neat (undiluted) CCS. After optimization of operating conditions, HyperCel STAR AX turned out to be the only sorbent allowing efficient protein capture directly from both neat and diluted CCS with consistent and satisfying purity, yield and productivity. Therefore implementation of the salt tolerant sorbent in industrial purification processes should allow avoiding time and cost consuming steps such as dilution or UF/DF that exclusively aim at establishing suitable conditions for ion exchange step without bringing any added value to the purification process performance. Altogether this study highlights the flexibility and cost-reduction potential brought in process design by the HyperCel STAR AX salt tolerant sorbent.

  16. Tolerance to road salt deicers in chronically exposed urban pond communities

    EPA Science Inventory

    Freshwater salinization is a concern in urban aquatic ecosystems that receive road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs and to assess the tolerance o...

  17. Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Sumardi

    2017-01-01

    This study descibes bioinformatics approach on the analyze of the salt tolerance genes in mangrove plant, Rhizophora stylosa on DDBJ/EMBL/GenBank as well as similarity, phylogenetic, potential peptide, and subcellular localization. The DNA sequence between salt tolerance gene from R. stylosa exhibited 42-11% between themselves The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the salt-tolerant genes in R. stylosa, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, first branch of Cu/Zn SOD and reverse transcriptase genes, the second branch consists of the majority genes and the last group was MAP3K alpha protein kinase only. The present study, therefore, suggested that salt tolerance genes form distinct clusters in the tree.

  18. Tomato salt tolerance: Impact of grafting and water composition on yield and ion relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the salt tolerance of tomato cv Big Dena under both non-grafted 2 conditions and when grafted on Maxifort rootstock, under a series of 5 salinity levels and two irrigation water composition types. The salinity levels of the irrigation water were -0.03, -0.15, -0.30, -0.45, and -0.60 MPa...

  19. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis.

    PubMed

    Kim, Woe-Yeon; Ali, Zahir; Park, Hee Jin; Park, Su Jung; Cha, Joon-Yung; Perez-Hormaeche, Javier; Quintero, Francisco Javier; Shin, Gilok; Kim, Mi Ri; Qiang, Zhang; Ning, Li; Park, Hyeong Cheol; Lee, Sang Yeol; Bressan, Ray A; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2013-01-01

    Environmental challenges to plants typically entail retardation of vegetative growth and delay or cessation of flowering. Here we report a link between the flowering time regulator, GIGANTEA (GI), and adaptation to salt stress that is mechanistically based on GI degradation under saline conditions, thus retarding flowering. GI, a switch in photoperiodicity and circadian clock control, and the SNF1-related protein kinase SOS2 functionally interact. In the absence of stress, the GI:SOS2 complex prevents SOS2-based activation of SOS1, the major plant Na(+)/H(+)-antiporter mediating adaptation to salinity. GI overexpressing, rapidly flowering, plants show enhanced salt sensitivity, whereas gi mutants exhibit enhanced salt tolerance and delayed flowering. Salt-induced degradation of GI confers salt tolerance by the release of the SOS2 kinase. The GI-SOS2 interaction introduces a higher order regulatory circuit that can explain in molecular terms, the long observed connection between floral transition and adaptive environmental stress tolerance in Arabidopsis.

  20. Identification of proteins associated with ion homeostasis and salt tolerance in barley.

    PubMed

    Wu, Dezhi; Shen, Qiufang; Qiu, Long; Han, Yong; Ye, Linzheng; Jabeen, Zahra; Shu, Qingyao; Zhang, Guoping

    2014-06-01

    Identification and characterization of proteins involved in salt tolerance are imperative for revealing its genetic mechanisms. In this study, ionic and proteomic responses of a Tibetan wild barley XZ16 and a well-known salt-tolerant barley cv. CM72 were analyzed using inductively coupled plasma-optical emission spectrometer, 2DE, and MALDI-TOF/TOF MS techniques to determine salt-induced differences in element and protein profiles between the two genotypes. In total, 41 differentially expressed proteins were identified in roots and leaves, and they were associated with ion homeostasis, cell redox homeostasis, metabolic process, and photosynthesis. Under salinity stress, calmodulin, Na/K transporters, and H(+) -ATPases were involved in establishment of ion homeostasis for barley plants. Moreover, ribulose-1,5-bisphosphate carboxylase/oxygenase activase and oxygen-evolving enhancer proteins were significantly upregulated under salinity stress, indicating the great impact of salinity on photosynthesis. In comparison with CM72, XZ16 had greater relative dry weight and lower Na accumulation in the shoots under salinity stress. A higher expression of HvNHX1 in the roots, and some specific proteins responsible for ion homeostasis and cell redox homeostasis, was also found in XZ16 exposed to salt stress. The current results showed that Tibetan wild barley XZ16 and cultivated barley cultivar CM72 differ in the mechanism of salt tolerance.

  1. High Tolerance to Salinity and Herbivory Stresses May Explain the Expansion of Ipomoea Cairica to Salt Marshes

    PubMed Central

    Liu, Gang; Huang, Qiao-Qiao; Lin, Zhen-Guang; Huang, Fang-Fang; Liao, Hui-Xuan; Peng, Shao-Lin

    2012-01-01

    Background Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes. Methodology/Principal Findings To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L−1 NaCl solutions) and simulated herbivory (0, 25 and 50% of the leaf area excised) treatments. The relative growth rate (RGR) of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species. Conclusions/Significance This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory) contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be ineffective for

  2. Mapping QTL for Sex and Growth Traits in Salt-Tolerant Tilapia (Oreochromis spp. X O. mossambicus)

    PubMed Central

    Lin, Grace; Chua, Elaine; Orban, Laszlo; Yue, Gen Hua

    2016-01-01

    In aquaculture, growth and sex are economically important traits. To accelerate genetic improvement in increasing growth in salt-tolerant tilapia, we conducted QTL mapping for growth traits and sex with an F2 family, including 522 offspring and two parents. We used 144 polymorphic microsatellites evenly covering the genome of tilapia to genotype the family. QTL analyses were carried out using interval mapping for all individuals, males and females in the family, respectively. Using all individuals, three suggestive QTL for body weight, body length and body thickness respectively were detected in LG20, LG22 and LG12 and explained 2.4% to 3.1% of phenotypic variance (PV). When considering only males, five QTL for body weight were detected on five LGs, and explained 4.1 to 6.3% of PV. Using only females from the F2 family, three QTL for body weight were detected on LG1, LG6 and LG8, and explained 7.9–14.3% of PV. The QTL for body weight in males and females were located in different LGs, suggesting that in salt-tolerant tilapia, different set of genes ‘switches’ control the growth in males and females. QTL for sex were mapped on LG1 and LG22, indicating multigene sex determination in the salt-tolerant tilapia. This study provides new insights on the locations and effects of QTL for growth traits and sex, and sets the foundation for fine mapping for future marker-assisted selection for growth and sex in salt-tolerant tilapia aquaculture. PMID:27870905

  3. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli

    PubMed Central

    Wang, Yanlong; Hu, Bin; Du, Shipeng; Gao, Shan; Chen, Xiwen; Chen, Defu

    2016-01-01

    We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli), Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification) approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species) scavenging, membrane proteins and ABC (ATP binding cassette) transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame) of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli. PMID:27135411

  4. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na(+) /K(+) and antioxidant competence.

    PubMed

    Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei

    2017-02-01

    High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na(+) but higher K(+) accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na(+) /K(+) homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance.

  5. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice

    PubMed Central

    Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel

    2016-01-01

    Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt

  6. Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants.

    PubMed

    Wei, Dandan; Zhang, Wen; Wang, Cuicui; Meng, Qingwei; Li, Gang; Chen, Tony H H; Yang, Xinghong

    2017-04-01

    Tomato (Solanum lycopersicum cv. 'Moneymaker') was transformed with the choline oxidase gene codA from Arthrobacter globiformis, which was modified to allow for targeting to both chloroplasts and the cytosol. Glycine betaine (GB) was accumulated in transformed plants, while no detectable GB was found in wild-type (WT) plants. Compared to WT plants, transgenic lines showed significantly higher photosynthetic rates (Pn) and antioxidant enzyme activities and lower reactive oxygen species (ROS) accumulation in the leaves when exposed to salt stress. Furthermore, compared with WT plants, K(+) efflux decreased and Na(+) efflux increased in roots of transgenic plants under salt stress; resulted in lower Na(+)/K(+) ratios in transgenic lines. The exogenous application of GB also significantly reduced NaCl-induced K(+) efflux and increased Na(+) efflux in WT plants. A qRT-PCR assay indicated that GB enhanced NaCl-induced expression of genes encoding the K(+) transporter, Na(+)/H(+) antiporter, and H(+)-ATPase. These results suggest that the enhanced salt tolerance conferred by codA in transgenic tomato plants might be due to the regulation of ion channel and transporters by GB, which would allow high potassium levels and low sodium levels to be maintained in transgenic plants under salt stress condition.

  7. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii.

    PubMed

    Perrineau, Marie-Mathilde; Zelzion, Ehud; Gross, Jeferson; Price, Dana C; Boyd, Jeffrey; Bhattacharya, Debashish

    2014-06-01

    Understanding the genetic underpinnings of adaptive traits in microalgae is important for the study of evolution and for applied uses. We used long-term selection under a regime of serial transfers with haploid populations of the green alga Chlamydomonas reinhardtii raised in liquid TAP medium containing 200 mM NaCl. After 1255 generations, evolved salt (ES) populations could grow as rapidly in high salt medium as progenitor cells (progenitor light [PL]). Transcriptome data were analysed to elucidate the basis of salt tolerance in ES cells when compared with PL cells and to cells incubated for 48 h in high salt medium (progenitor salt [PS], the short-term acclimation response). These data demonstrate that evolved and short-term acclimation responses to salt stress differ fundamentally from each other. Progenitor salt cells exhibit well-known responses to salt stress such as reduction in photosynthesis, upregulation of glycerophospholipid signaling, and upregulation of the transcription and translation machinery. In contrast, ES cells show downregulation of genes involved in the stress response and in transcription/translation. Our results suggest that gene-rich mixotrophic lineages such as C. reinhardtii may be able to adapt rapidly to abiotic stress engendered either by a rapidly changing climate or physical vicariance events that isolate populations in stressful environments.

  8. GmCLC1 Confers Enhanced Salt Tolerance through Regulating Chloride Accumulation in Soybean

    PubMed Central

    Wei, Peipei; Wang, Longchao; Liu, Ailin; Yu, Bingjun; Lam, Hon-Ming

    2016-01-01

    The family of chloride channel proteins that mediate Cl- transportation play vital roles in plant nutrient supply, cellular action potential and turgor pressure adjustment, stomatal movement, hormone signal recognition and transduction, Cl- homeostasis, and abiotic and biotic stress tolerance. The anionic toxicity, mainly caused by chloride ions (Cl-), on plants under salt stress remains poorly understood. In this work, we investigated the function of soybean Cl-/H+ antiporter GmCLC1 under salt stress in transgenic Arabidopsis thaliana, soybean, and yeast. We found that GmCLC1 enhanced salt tolerance in transgenic A. thaliana by reducing the Cl- accumulation in shoots and hence released the negative impact of salt stress on plant growth. Overexpression of GmCLC1 in the hairy roots of soybean sequestered more Cl- in their roots and transferred less Cl- to their shoots, leading to lower relative electrolyte leakage values in the roots and leaves. When either the soybean GmCLC1 or the yeast chloride transporter gene, GEF1, was transformed into the yeast gef1 mutant, and then treated with different chloride salts (MnCl2, KCl, NaCl), enhanced survival rate was observed. The result indicates that GmCLC1 and GEF1 exerted similar effects on alleviating the stress of diverse chloride salts on the yeast gef1 mutant. Together, this work suggests a protective function of GmCLC1 under Cl- stress. PMID:27504114

  9. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa.

    PubMed

    Wang, Zhi; Su, Guoxia; Li, Min; Ke, Qingbo; Kim, Soo Young; Li, Hongbing; Huang, Jin; Xu, Bingcheng; Deng, Xi-Ping; Kwak, Sang-Soo

    2016-12-01

    Arabidopsis ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3 (ABF3), a bZIP transcription factor, plays an important role in regulating multiple stress responses in plants. Overexpressing AtABF3 increases tolerance to various stresses in several plant species. Alfalfa (Medicago sativa L.), one of the most important perennial forage crops worldwide, has high yields, high nutritional value, and good palatability and is widely distributed in irrigated and semi-arid regions throughout the world. However, drought and salt stress pose major constraints to alfalfa production. In this study, we developed transgenic alfalfa plants (cv. Xinjiang Daye) expressing AtABF3 under the control of the sweetpotato oxidative stress-inducible SWPA2 promoter (referred to as SAF plants) via Agrobacterium tumefaciens-mediated transformation. After drought stress treatment, we selected two transgenic lines with high expression of AtABF3, SAF5 and SAF6, for further characterization. Under normal conditions, SAF plants showed smaller leaf size compared to non-transgenic (NT) plants, while no other morphological changes were observed. Moreover, SAF plants exhibited enhanced drought stress tolerance and better growth under drought stress treatment, which was accompanied by a reduced transpiration rate and lower reactive oxygen species contents. In addition, SAF plants showed an increased tolerance to salt and oxidative stress. Therefore, these transgenic AtABF3 alfalfa plants might be useful for breeding forage crops with enhanced tolerance to environmental stress for use in sustainable agriculture on marginal lands.

  10. Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition

    PubMed Central

    Parida, Asish K.; Veerabathini, Sairam K.; Kumari, Asha; Agarwal, Pradeep K.

    2016-01-01

    Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analyzing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500, and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area, and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem, and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, diameter of hypodermal cell, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by twofold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in NaCl treated seedlings as compared to control

  11. Computer-Delivered Social Norm Message Increases Pain Tolerance

    PubMed Central

    Pulvers, Kim; Schroeder, Jacquelyn; Limas, Eleuterio F.; Zhu, Shu-Hong

    2013-01-01

    Background Few experimental studies have been conducted on social determinants of pain tolerance. Purpose This study tests a brief, computer-delivered social norm message for increasing pain tolerance. Methods Healthy young adults (N=260; 44 % Caucasian; 27 % Hispanic) were randomly assigned into a 2 (social norm)×2 (challenge) cold pressor study, stratified by gender. They received standard instructions or standard instructions plus a message that contained artifically elevated information about typical performance of others. Results Those receiving a social norm message displayed significantly higher pain tolerance, F(1, 255)=26.95, p<.001, ηp2=.10 and pain threshold F(1, 244)=9.81, p=.002, ηp2=.04, but comparable pain intensity, p>.05. There were no interactions between condition and gender on any outcome variables, p>.05. Conclusions Social norms can significantly increase pain tolerance, even with a brief verbal message delivered by a video. PMID:24146086

  12. Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance.

    PubMed

    Yang, Yanjuan; Lu, Xiaomin; Yan, Bei; Li, Bin; Sun, Jin; Guo, Shirong; Tezuka, Takafumi

    2013-05-01

    The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway

  13. SpAHA1 and SpSOS1 Coordinate in Transgenic Yeast to Improve Salt Tolerance.

    PubMed

    Zhou, Yang; Yin, Xiaochang; Duan, Ruijun; Hao, Gangping; Guo, Jianchun; Jiang, Xingyu

    2015-01-01

    In plant cells, the plasma membrane Na+/H+ antiporter SOS1 (salt overly sensitive 1) mediates Na+ extrusion using the proton gradient generated by plasma membrane H+-ATPases, and these two proteins are key plant halotolerance factors. In the present study, two genes from Sesuvium portulacastrum, encoding plasma membrane Na+/H+ antiporter (SpSOS1) and H+-ATPase (SpAHA1), were cloned. Localization of each protein was studied in tobacco cells, and their functions were analyzed in yeast cells. Both SpSOS1 and SpAHA1 are plasma membrane-bound proteins. Real-time polymerase chain reaction (PCR) analyses showed that SpSOS1 and SpAHA1 were induced by salinity, and their expression patterns in roots under salinity were similar. Compared with untransformed yeast cells, SpSOS1 increased the salt tolerance of transgenic yeast by decreasing the Na+ content. The Na+/H+ exchange activity at plasma membrane vesicles was higher in SpSOS1-transgenic yeast than in the untransformed strain. No change was observed in the salt tolerance of yeast cells expressing SpAHA1 alone; however, in yeast transformed with both SpSOS1 and SpAHA1, SpAHA1 generated an increased proton gradient that stimulated the Na+/H+ exchange activity of SpSOS1. In this scenario, more Na+ ions were transported out of cells, and the yeast cells co-expressing SpSOS1 and SpAHA1 grew better than the cells transformed with only SpSOS1 or SpAHA1. These findings demonstrate that the plasma membrane Na+/H+ antiporter SpSOS1 and H+-ATPase SpAHA1 can function in coordination. These results provide a reference for developing more salt-tolerant crops via co-transformation with the plasma membrane Na+/H+ antiporter and H+-ATPase.

  14. Vesiculated Hairs: A Mechanism for Salt Tolerance in Atriplex halimus L

    PubMed Central

    Mozafar, Ahmad; Goodin, J. R.

    1970-01-01

    The concentration of salts in the vesiculated hairs of Atriplex halimus L. was measured and was remarkably higher than that of the leaf sap and xylem exudate. In spite of their unusually high salt content, these hairs when immersed seemed unable to absorb water, in apparent contradiction to the previously held hypothesis that vesiculated hairs make it possible for such plants to absorb water from the atmosphere. Although growing the plants under saline conditions increased the salt content of the hairs from 2.3 m Na+K to 11.6 m, salt content of the expressed leaf sap from young leaves did not change significantly. This observation indicates that in A. halimus the vesiculated hairs play a significant role in removing salt from the remainder of the leaf and preventing the accumulation of toxic salts in the parenchyma and vascular tissues. Thus, a nearly constant salt content is maintained in leaf cells other than the hairs. Images PMID:16657281

  15. Ability to Remove Na+ and Retain K+ Correlates with Salt Tolerance in Two Maize Inbred Lines Seedlings

    PubMed Central

    Gao, Yong; Lu, Yi; Wu, Meiqin; Liang, Enxing; Li, Yan; Zhang, Dongping; Yin, Zhitong; Ren, Xiaoyun; Dai, Yi; Deng, Dexiang; Chen, Jianmin

    2016-01-01

    Maize is moderately sensitive to salt stress; therefore, soil salinity is a serious threat to its production worldwide. Here, excellent salt-tolerant maize inbred line TL1317 and extremely salt-sensitive maize inbred line SL1303 were screened to understand the maize response to salt stress and its tolerance mechanisms. Relative water content, membrane stability index, stomatal conductance, chlorophyll content, maximum photochemical efficiency, photochemical efficiency, shoot and root fresh/dry weight, and proline and water soluble sugar content analyses were used to identify that the physiological effects of osmotic stress of salt stress were obvious and manifested at about 3 days after salt stress in maize. Moreover, the ion concentration of two maize inbred lines revealed that the salt-tolerant maize inbred line could maintain low Na+ concentration by accumulating Na+ in old leaves and gradually shedding them to exclude excessive Na+. Furthermore, the K+ uptake and retention abilities of roots were important in maintaining K+ homeostasis for salt tolerance in maize. RNA-seq and qPCR results revealed some Na+/H+ antiporter genes and Ca2+ transport genes were up-regulated faster and higher in TL1317 than those in SL1303. Some K+ transport genes were down-regulated in SL1303 but up-regulated in TL1317. RNA-seq results, along with the phenotype and physiological results, suggested that the salt-tolerant maize inbred line TL1317 possesses more rapidly and effectively responses to remove toxic Na+ ions and maintain K+ under salt stress than the salt-sensitive maize inbred line SL1303. This response should facilitate cell homoeostasis under salt stress and result in salt tolerance in TL1317. PMID:27899930

  16. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa.

    PubMed

    Wang, Fengxia; Xu, Yan-Ge; Wang, Shuai; Shi, Weiwei; Liu, Ranran; Feng, Gu; Song, Jie

    2015-10-01

    The effect of salinity on brown seeds/black seeds ratio, seed weight, endogenous hormone concentrations, and germination of brown and black seeds in the euhalophyte Suaeda salsa was investigated. The brown seeds/black seeds ratio, seed weight of brown and black seeds and the content of protein increased at a concentration of 500 mM NaCl compared to low salt conditions (1 mM NaCl). The germination percentage and germination index of brown seeds from plants cultured in 500 mM NaCl were higher than those cultured in 1 mM NaCl, but it was not true for black seeds. The concentrations of IAA (indole-3-acetic acid), ZR (free zeatin riboside) and ABA (abscisic acid) in brown seeds were much greater than those in black seeds, but there were no differences in the level of GAs (gibberellic acid including GA1 and GA3) regardless of the degree of salinity. Salinity during plant culture increased the concentration of GAs, but salinity had no effect on the concentrations of the other three endogenous hormones in brown seeds. Salinity had no effect on the concentration of IAA but increased the concentrations of the other three endogenous hormones in black seeds. Accumulation of endogenous hormones at different concentrations of NaCl during plant growth may be related to seed development and to salt tolerance of brown and black S. salsa seeds. These characteristics may help the species to ensure seedling establishment and population succession in variable saline environments.

  17. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives.

    PubMed

    Yaish, Mahmoud W; Kumar, Prakash P

    2015-01-01

    The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.

  18. Characterization of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573.

    PubMed

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem

    2015-09-01

    The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content.

  19. (p)ppGpp-dependent and -independent pathways for salt tolerance in Escherichia coli.

    PubMed

    Tarusawa, Takefusa; Ito, Shion; Goto, Simon; Ushida, Chisato; Muto, Akira; Himeno, Hyouta

    2016-07-01

    Addition of some kinds of translation inhibitors targeting the ribosome such as kasugamycin to the culture medium as well as removal of a ribosome maturation factor or a ribosomal protein provides Escherichia coli cells with tolerance to high salt stress. Here, we found that another kind of translation inhibitor, serine hydroxamate (SHX), which induces amino acid starvation leading to (p)ppGpp production, also has a similar effect, but via a different pathway. Unlike kasugamycin, SHX was not effective in (p)ppGpp-null mutant cells. SHX and depletion of RsgA, a ribosome maturation factor, had an additive effect on salt tolerance, while kasugamycin or depletion of RsgA did not. These results indicate the presence of two distinct pathways, (p)ppGpp-dependent and -independent pathways, for salt tolerance of E. coli cell. Both pathways operate even in the absence of σ(S), an alternative sigma factor involved in the stationary phase or stress response. Hastened activation of the exocytoplasmic stress-specific sigma factor, σ(E), after salt shock was observed in the cells treated with SHX, as has been observed in the cells treated with a translation inhibitor or depleted of a ribosome maturation factor.

  20. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion

    PubMed Central

    Cai, Shi-Ying; Lionarons, Daniël A.; Hagey, Lee; Soroka, Carol J.; Mennone, Albert; Boyer, James L.

    2012-01-01

    The sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the post-metamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys. Adult livers were severely cholestatic with levels of bile salts >1 mM, but no evidence of necrosis, fibrosis, or inflammation. Interestingly, both larvae and adults had normal plasma levels (~10 μM) of bile salts. In larvae, petromyzonol sulfate (PZS) was the predominant bile salt, whereas the major bile salts in adult liver were sulfated C27 bile alcohols. Cytotoxicity assays revealed that PZS was highly toxic. Pharmacokinetic studies in free-swimming adults revealed that ~35% of intravenously injected bromosulfophthalein (BSP) was eliminated over a 72 hr period. Collection of urine and feces demonstrated that both endogenous and exogenous organic anions, including biliverdin, bile salts and BSP, were predominantly excreted via the kidney with minor amounts also detected in feces. Gene expression analysis detected marked up-regulation of orthologs of known organic anion and bile salt transporters in the kidney with lesser effects in the intestine and gills in adults compared to larvae. These findings indicate that adult lampreys tolerate cholestasis by altering hepatic bile salt composition, while maintaining normal plasma bile salt levels predominantly through renal excretion of bile products. Therefore, we conclude that strategies to accelerate renal excretion of bile salt and other toxins should be beneficial for patients with cholestasis. PMID:23175353

  1. Low-salt diet increases insulin resistance in healthy subjects.

    PubMed

    Garg, Rajesh; Williams, Gordon H; Hurwitz, Shelley; Brown, Nancy J; Hopkins, Paul N; Adler, Gail K

    2011-07-01

    Low-salt (LS) diet activates the renin-angiotensin-aldosterone and sympathetic nervous systems, both of which can increase insulin resistance (IR). We investigated the hypothesis that LS diet is associated with an increase in IR in healthy subjects. Healthy individuals were studied after 7 days of LS diet (urine sodium <20 mmol/d) and 7 days of high-salt (HS) diet (urine sodium >150 mmol/d) in a random order. Insulin resistance was measured after each diet and compared statistically, unadjusted and adjusted for important covariates. One hundred fifty-two healthy men and women, aged 39.1 ± 12.5 years (range, 18-65) and with body mass index of 25.3 ± 4.0 kg/m(2), were included in this study. Mean (SD) homeostasis model assessment index was significantly higher on LS compared with HS diet (2.8 ± 1.6 vs 2.4 ± 1.7, P < .01). Serum aldosterone (21.0 ± 14.3 vs 3.4 ± 1.5 ng/dL, P < .001), 24-hour urine aldosterone (63.0 ± 34.0 vs 9.5 ± 6.5 μg/d, P < .001), and 24-hour urine norepinephrine excretion (78.0 ± 36.7 vs 67.9 ± 39.8 μg/d, P < .05) were higher on LS diet compared with HS diet. Low-salt diet was significantly associated with higher homeostasis model assessment index independent of age, sex, blood pressure, body mass index, serum sodium and potassium, serum angiotensin II, plasma renin activity, serum and urine aldosterone, and urine epinephrine and norepinephrine. Low-salt diet is associated with an increase in IR. The impact of our findings on the pathogenesis of diabetes and cardiovascular disease needs further investigation.

  2. Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance.

    PubMed

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-08-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na(+) into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of

  3. Comparative Proteomics of Thellungiella halophila Leaves from Plants Subjected to Salinity Reveals the Importance of Chloroplastic Starch and Soluble Sugars in Halophyte Salt Tolerance*

    PubMed Central

    Wang, Xuchu; Chang, Lili; Wang, Baichen; Wang, Dan; Li, Pinghua; Wang, Limin; Yi, Xiaoping; Huang, Qixing; Peng, Ming; Guo, Anping

    2013-01-01

    Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na+ into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of

  4. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    PubMed

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides.

  5. Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage.

    PubMed

    Gogile, A; Andargie, M; Muthuswamy, M

    2013-07-15

    The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p < 0.001) variation among cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.

  6. RhEXPA4, a rose expansin gene, modulates leaf growth and confers drought and salt tolerance to Arabidopsis.

    PubMed

    Lü, Peitao; Kang, Mei; Jiang, Xinqiang; Dai, Fanwei; Gao, Junping; Zhang, Changqing

    2013-06-01

    Drought and high salinity are major environmental conditions limiting plant growth and development. Expansin is a cell-wall-loosening protein known to disrupt hydrogen bonds between xyloglucan and cellulose microfibrils. The expression of expansin increases in plants under various abiotic stresses, and plays an important role in adaptation to these stresses. We aimed to investigate the role of the RhEXPA4, a rose expansin gene, in response to abiotic stresses through its overexpression analysis in Arabidopsis. In transgenic Arabidopsis harboring the Pro RhEXPA4 ::GUS construct, RhEXPA4 promoter activity was induced by abscisic acid (ABA), drought and salt, particularly in zones of active growth. Transgenic lines with higher RhEXPA4 level developed compact phenotypes with shorter stems, curly leaves and compact inflorescences, while the lines with relatively lower RhEXPA4 expression showed normal phenotypes, similar to the wild type (WT). The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under salt stress and ABA treatments. Transgenic plants showed enhanced tolerance to drought and salt stresses: they displayed higher survival rates after drought, and exhibited more lateral roots and higher content of leaf chlorophyll a under salt stress. Moreover, high-level RhEXPA4 overexpressors have multiple modifications in leaf blade epidermal structure, such as smaller, compact cells, fewer stomata and midvein vascular patterning in leaves, which provides them with more tolerance to abiotic stresses compared to mild overexpressors and the WT. Collectively, our results suggest that RhEXPA4, a cell-wall-loosening protein, confers tolerance to abiotic stresses through modifying cell expansion and plant development in Arabidopsis.

  7. The Opuntia streptacantha OpsHSP18 Gene Confers Salt and Osmotic Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions. PMID:22949853

  8. The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Salas-Muñoz, Silvia; Gómez-Anduro, Gracia; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Margarita; Jiménez-Bremont, Juan Francisco

    2012-01-01

    Abiotic stress limits seed germination, plant growth, flowering and fruit quality, causing economic decrease. Small Heat Shock Proteins (sHSPs) are chaperons with roles in stress tolerance. Herein, we report the functional characterization of a cytosolic class CI sHSP (OpsHSP18) from Opuntia streptacantha during seed germination in Arabidopsis thaliana transgenic lines subjected to different stress and hormone treatments. The over-expression of the OpsHSP18 gene in A. thaliana increased the seed germination rate under salt (NaCl) and osmotic (glucose and mannitol) stress, and in ABA treatments, compared with WT. On the other hand, the over-expression of the OpsHSP18 gene enhanced tolerance to salt (150 mM NaCl) and osmotic (274 mM mannitol) stress in Arabidopsis seedlings treated during 14 and 21 days, respectively. These plants showed increased survival rates (52.00 and 73.33%, respectively) with respect to the WT (18.75 and 53.75%, respectively). Thus, our results show that OpsHSP18 gene might have an important role in abiotic stress tolerance, in particular in seed germination and survival rate of Arabidopsis plants under unfavorable conditions.

  9. Potassium Retention under Salt Stress Is Associated with Natural Variation in Salinity Tolerance among Arabidopsis Accessions

    PubMed Central

    Sun, Yanling; Kong, Xiangpei; Li, Cuiling; Liu, Yongxiu; Ding, Zhaojun

    2015-01-01

    Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes) was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K+ content and a lower Na+/K+ ratio when exposed to salinity stress, but its Na+ content was the same as that of Col-0. The K+ transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K+ retention. PMID:25993093

  10. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes.

    PubMed

    Chakraborty, K; Sairam, Raj K; Bhattacharya, R C

    2012-02-01

    The objective of the present study was to examine the role of SOS pathway in salinity stress tolerance in Brassica spp. An experiment was conducted in pot culture with 4 Brassica genotypes, i.e., CS 52 and CS 54, Varuna and T 9 subjected to two levels of salinity treatments along with a control, viz., 1.65 (S(0)), 4.50 (S(1)) and 6.76 (S(2)) dS m(-1). Salinity treatment significantly decreased relative water content (RWC), membrane stability index (MSI) and chlorophyll (Chl) content in leaves and potassium (K) content in leaf, stem and root of all the genotypes. The decline in RWC, MSI, Chl and K content was significantly less in CS 52 and CS 54 as compared to Varuna and T 9. In contrast, the sodium (Na) content increased under salinity stress in all the plant parts in all the genotypes, however, the increase was less in CS 52 and CS 54, which also showed higher K/Na ratio, and thus more favourable cellular environment. Gene expression studies revealed the existence of a more efficient salt overly sensitive pathway composed of SOS1, SOS2, SOS3 and vacuolar Na(+)/H(+) antiporter in CS 52 and CS 54 compared to Varuna and T 9. Sequence analyses of partial cDNAs showed the conserved nature of these genes, and their intra and intergenic relatedness. It is thus concluded that existence of an efficient SOS pathway, resulting in higher K/Na ratio, could be one of the major factor determining salinity stress tolerance of Brassica juncea genotypes CS 52 and CS 54.

  11. Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line.

    PubMed

    Sreenivasulu, Nese; Miranda, Manoela; Prakash, Harischandra Sripathy; Wobus, Ulrich; Weschke, Winfriede

    2004-04-01

    Using a macro array filter with 711 cDNA inserts representing 620 unigenes selected from a barley EST collection, we identified transcripts differentially expressed in salt (NaCl)-treated tolerant (cv. Prasad) and sensitive (cv. Lepakshi) seedlings of foxtail millet (Setaria italica L.). Transcripts of hydrogen peroxide scavenging enzymes such as phospholipid hydroperoxide glutathione peroxidase (PHGPX), ascorbate peroxidase (APX) and catalase 1 (CAT1) in addition to some genes of cellular metabolism were found to be especially up-regulated at high salinity in the tolerant line. To analyse this process at the protein level we examined protein expression patterns under various stress conditions. A 25 kD protein with a pI of 4.8 was found to be induced prominently under high salt concentrations (250 mmol/L). This salt-induced 25 kD protein has been purified and identified by peptide sequencing as PHGPX protein. The increase of the PHGPX protein level under salt stress in the tolerant line parallels the PHGPX mRNA results of array analysis but was more pronounced. We cloned and characterized the foxtail millet PHGPX cDNA, which shows 85% and 95% homology at the DNA and protein level, respectively, to one stress-induced member of the small barley PHGPX gene family encoding non-selenium glutathione peroxidases. As shown by Southern blot analysis, a small family of PHGPX genes exists in foxtail millet, too. The specific expression pattern of the PHGPX gene in salt-induced tolerant millet seedlings suggests that its product plays an important role in the defense reaction against salt-induced oxidative damage and that the characterized glutathione peroxidase is one of the components conferring resistance against salt to the tolerant foxtail millet cultivar.

  12. Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize.

    PubMed

    Zhao, Ke-Fu; Song, Jie; Fan, Hai; Zhou, San; Zhao, Meng

    2010-05-01

    Salt-tolerant maize (STM) and salt-sensitive maize (SSM) were treated with 100 mM NaCl for 1, 3 and 6 d and the contents of Na+ and Cl(-) (cps) of different organelles of leaf cells determined by X-ray microanalysis. The results showed that Na+ and Cl(-) entered the cytoplasm, vacuole, chloroplast and apoplast simultaneously. When STM and SSM were treated in 100 mM NaCl at atmospheric pressure (-P) and with pressure equivalent to the osmotic pressure of the NaCl (+P), the dry weights of STM (+P) and SSM (+P) plants were greater than that of STM (-P) and SSM (-P) plants, showing that the inhibitory effect of salt on plant growth was at least partially due to the osmotic effect of the NaCl. When STM and SSM were treated with NaCl and iso-osmotic polyethlene glycol, the dry weights of plants given the iso-osmotic polyethlene glycol treatment were lower for both maize lines than that of the NaCl-treated plants. Our data show that under NaCl stress, both STM and SSM seedlings simultaneously suffered from osmotic and ion stresses.

  13. Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake.

    PubMed

    Sharma, Parbodh C; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C T; Yadav, Rattan S

    2014-06-01

    Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na(+) was recorded in roots. Further, the Na(+) concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m(-1) within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na(+) ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na(+) concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage

  14. Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis.

    PubMed

    Zhang, Yiyue; Li, Yin; Lai, Jianbin; Zhang, Huawei; Liu, Yuanyuan; Liang, Liming; Xie, Qi

    2012-04-01

    Thellungiella salsuginea is a valuable halophytic genetic model plant in the Brassicaceae family. Based on previous construction of a salt treated Thellungiella cDNA library carried by pGAD-GH shuttle vector which could directly express in Saccharomyces cerevisiae, a putative salt-tolerance gene TsLEA1 was identified by large-scale stress-tolerance screen in salt sensitive yeast strain G19. The longest 483 bp ORF of TsLEA1 cDNA coding a 160 amino acids protein with a predicted conserved pfam domain shared an 89% amino acid sequence similarity to Arabidopsis LEA group 4 proteins. The transcription level of TsLEA1 gene in T. salsuginea seedlings increased upon salt treatment and its transcript accumulated more in roots than in aerial parts. The ability of the TsLEA1 to facilitate salinity tolerance was analyzed in yeast and transgenic Arabidopsis. It was confirmed that TsLEA1 exhibits conserved salt tolerance in plant as well as in yeast. The results suggested that the TsLEA1 may participate in response to stresses in over expressed circumstance, protecting yeast and plant cells under stress conditions.

  15. Iodisation of Salt in Slovenia: Increased Availability of Non-Iodised Salt in the Food Supply

    PubMed Central

    Žmitek, Katja; Pravst, Igor

    2016-01-01

    Salt iodisation is considered a key public health measure for assuring adequate iodine intake in iodine-deficient countries. In Slovenia, the iodisation of all salt was made mandatory in 1953. A considerable regulatory change came in 2003 with the mandatory iodisation of rock and evaporated salt only. In addition, joining the European Union’s free single market in 2004 enabled the import of non-iodised salt. The objective of this study was to investigate the extent of salt iodising in the food supply. We examined both the availability and sale of (non-)iodised salt. Average sales-weighted iodine levels in salt were calculated using the results of a national monitoring of salt quality. Data on the availability and sales of salts were collected in major food retailers in 2014. Iodised salt represented 59.2% of the salt samples, and 95.9% of salt sales, with an average (sales-weighted) level of 24.2 mg KI/kg of salt. The average sales-weighted KI level in non-iodised salts was 3.5 mg KI/kg. We may conclude that the sales-weighted average iodine levels in iodised salt are in line with the regulatory requirements. However, the regulatory changes and the EU single market have considerably affected the availability of non-iodised salt. While sales of non-iodised salt are still low, non-iodised salt represented 33.7% of the salts in our sample. This indicates the existence of a niche market which could pose a risk of inadequate iodine intake in those who deliberately decide to consume non-iodised salt only. Policymakers need to provide efficient salt iodisation intervention to assure sufficient iodine supply in the future. The reported sales-weighting approach enables cost-efficient monitoring of the iodisation of salt in the food supply. PMID:27438852

  16. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    PubMed

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-02-20

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na(+) and Cl(-) than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H2O2) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation.

  17. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    PubMed

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  18. Constitutive overexpression of soybean plasma membrane intrinsic protein GmPIP1;6 confers salt tolerance

    PubMed Central

    2014-01-01

    Background Under saline conditions, plant growth is depressed via osmotic stress and salt can accumulate in leaves leading to further depression of growth due to reduced photosynthesis and gas exchange. Aquaporins are proposed to have a major role in growth of plants via their impact on root water uptake and leaf gas exchange. In this study, soybean plasma membrane intrinsic protein 1;6 (GmPIP1;6) was constitutively overexpressed to evaluate the function of GmPIP1;6 in growth regulation and salt tolerance in soybean. Results GmPIP1;6 is highly expressed in roots as well as reproductive tissues and the protein targeted to the plasma membrane in onion epidermis. Treatment with 100 mM NaCl resulted in reduced expression initially, then after 3 days the expression was increased in root and leaves. The effects of constitutive overexpression of GmPIP1;6 in soybean was examined under normal and salt stress conditions. Overexpression in 2 independent lines resulted in enhanced leaf gas exchange, but not growth under normal conditions compared to wild type (WT). With 100 mM NaCl, net assimilation was much higher in the GmPIP1;6-Oe and growth was enhanced relative to WT. GmPIP1;6-Oe plants did not have higher root hydraulic conductance (Lo) under normal conditions, but were able to maintain Lo under saline conditions compared to WT which decreased Lo. GmPIP1;6-Oe lines grown in the field had increased yield resulting mainly from increased seed size. Conclusions The general impact of overexpression of GmPIP1;6 suggests that it may be a multifunctional aquaporin involved in root water transport, photosynthesis and seed loading. GmPIP1;6 is a valuable gene for genetic engineering to improve soybean yield and salt tolerance. PMID:24998596

  19. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India.

    PubMed

    Dhakar, Kusum; Sharma, Avinash; Pandey, Anita

    2014-04-01

    Twenty five fungal cultures (Penicillium spp.), isolated from soil samples from the high altitudes in the Indian Himalayan region, have been characterized following polyphasic approach. Colony morphology performed on five different media gave varying results; potato dextrose agar being the best for the vegetative growth and sporulation as well. Microscopic observations revealed 18 isolates to be biverticillate and 7 monoverticillate. Based on the phenotypic characters (colony morphology and microscopy), all the isolates were designated to the genus Penicillium. Exposure to low temperature resulted in enhanced sporulation in 23 isolates, while it ceased in case of two. The fungal isolates produced watery exudates in varying amount that in many cases increased at low temperature. All the isolates could grow between 4 and 37 °C, (optimum 24 °C), hence considered psychrotolerant. While all the isolates could tolerate pH from 2 to 14 (optimum 5-9), 7 isolates tolerated pH 1.5 as well. While all the fungal isolates tolerated salt concentration above 10 %; 10 isolates showed tolerance above 20 %. Based on ITS region (ITS1-5.8S-ITS2) analysis the fungal isolates belonged to 25 different species of Penicillium (showing similarity between 95 and 100 %). Characters like tolerance for low temperature, wide range of pH, and high salt concentration, and enhancement in sporulation and production of secondary metabolites such as watery exudates at low temperature can be attributed to the ecological resilience possessed by these fungi for survival under low temperature environment of mountain ecosystem.

  20. Population structure and marker-trait association of salt tolerance in barley (Hordeum vulgare L.).

    PubMed

    Elakhdar, Ammar; El-Sattar, Mohamed Abd; Amer, Khairy; Rady, Assma; Kumamaru, Toshihiro

    Association mapping is becoming an important tool for identifying alleles and loci responsible for dissecting highly complex traits in barley. This study describes the population structure and marker-trait association using general linear model (GLM) analysis on a site of 60 barley genotypes, evaluated in six salinity environments. Ninety-eight SSR and SNP alleles were employed for the construction of a framework genetic map. The genetic structure analysis of the collection turned out to consist of two major sub-populations, mainly comprising hulled and naked types. LD significantly varied among the barley chromosomes, suggesting that this factor may affect the resolution of association mapping for QTL located on different chromosomes. Numerous significant marker traits were associated in different regions of the barley genome controlling salt tolerance and related traits; among them, 46 QTLs were detected on 14 associated traits over the two years, with a major QTL controlling salt tolerance on 1H, 2H, 4H and 7H, which are important factors in improving barley's salt tolerance.

  1. Deciphering the salinity adaptation mechanism in Penicilliopsis clavariiformis AP, a rare salt tolerant fungus from mangrove.

    PubMed

    Kashyap, Prem Lal; Rai, Anuradha; Singh, Ruchi; Chakdar, Hillol; Kumar, Sudheer; Srivastava, Alok Kumar

    2016-07-01

    Penicilliopsis clavariiformis AP, a rare salt tolerant fungus reported for the first time from India was identified through polyphasic taxonomy. Scanning electron microscopy showed that the fungus has unique features such as biverticillate penicilli bearing masses of oval to ellipsoidal conidia. The fungus has been characterized for salt tolerance and to understand the relevance of central carbon metabolism in salt stress adaptation. It showed optimal growth at 24 °C and able to tolerate up to 10% (w/v) NaCl. To understand the mechanism of adaptation to high salinity, activities of the key enzymes regulating glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle were investigated under normal (0% NaCl) and saline stress environment (10% NaCl). The results revealed a re-routing of carbon metabolism away from glycolysis to the pentose phosphate pathway (PPP), served as a cellular stress-resistance mechanism in fungi under saline environment. The detection and significant expression of fungus genes (Hsp98, Hsp60, HTB, and RHO) under saline stress suggest that these halotolerance conferring genes from the fungus could have a role in fungus protection and adaptation under saline environment. Overall, the present findings indicate that the rearrangement of the metabolic fluxes distribution and stress related genes play an important role in cell survival and adaptation under saline environment.

  2. Over-expression of Topoisomerase II Enhances Salt Stress Tolerance in Tobacco

    PubMed Central

    John, Riffat; Ganeshan, Uma; Singh, Badri N.; Kaul, Tanushri; Reddy, Malireddy K.; Sopory, Sudhir K.; Rajam, Manchikatla V.

    2016-01-01

    Topoisomerases are unique enzymes having an ability to remove or add DNA supercoils and untangle the snarled DNA. They can cut, shuffle, and religate DNA strands and remove the torsional stress during DNA replication, transcription or recombination events. In the present study, we over-expressed topoisomerase II (TopoII) in tobacco (Nicotiana tabaccum) and examined its role in growth and development as well as salt (NaCl) stress tolerance. Several putative transgenic plants were generated and the transgene integration and expression was confirmed by PCR and Southern blot analyses, and RT-PCR analysis respectively. Percent seed germination, shoot growth, and chlorophyll content revealed that transgenic lines over-expressing the NtTopoIIα-1 gene exhibited enhanced tolerance to salt (150 and 200 mM NaCl) stress. Moreover, over-expression of TopoII lead to the elevation in proline and glycine betaine levels in response to both concentrations of NaCl as compared to wild-type. In response to NaCl stress, TopoII over-expressing lines showed reduced lipid peroxidation derived malondialdehyde (MDA) generation. These results suggest that TopoII plays a pivotal role in salt stress tolerance in plants. PMID:27630644

  3. QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula Recombinant Inbred Lines.

    PubMed

    Arraouadi, Soumaya; Badri, Mounawer; Abdelly, Chedly; Huguet, Thierry; Aouani, Mohamed Elarbi

    2012-02-01

    In this study, QTL mapping of physiological traits in the model Legume (Medicago truncatula) was performed using a set of RILs derived from LR5. Twelve parameters associated with Na+ and K+ content in leaves, stems and roots were measured. Broad-sense heritability of these traits was ranged from 0.15 to 0.83 in control and from 0.14 to 0.61 in salt stress. Variation among RILs was dependent on line, treatment and line by treatment effect. We mapped 6 QTLs in control, 2 in salt stress and 5 for sensitivity index. No major QTL was identified indicating that tolerance to salt stress is governed by several genes with low effects. Detected QTL for leaf, stem and root traits did not share the same map locations, suggesting that genes controlling transport of Na+ and K+ may be different. The maximum of QTL was observed on chromosome 1, no QTL was detected on chromosomes 5 and 6.

  4. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  5. A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis.

    PubMed

    Guan, Qingmei; Wu, Jianmin; Yue, Xiule; Zhang, Yanyan; Zhu, Jianhua

    2013-08-01

    Salt stress is an important environmental factor that significantly limits crop productivity worldwide. Studies on responses of plants to salt stress in recent years have identified novel signaling pathways and have been at the forefront of plant stress biology and plant biology in general. Thus far, research on salt stress in plants has been focused on cytoplasmic signaling pathways. In this study, we discovered a nuclear calcium-sensing and signaling pathway that is critical for salt stress tolerance in the reference plant Arabidopsis. Through a forward genetic screen, we found a nuclear-localized calcium-binding protein, RSA1 (SHORT ROOT IN SALT MEDIUM 1), which is required for salt tolerance, and identified its interacting partner, RITF1, a bHLH transcription factor. We show that RSA1 and RITF1 regulate the transcription of several genes involved in the detoxification of reactive oxygen species generated by salt stress and that they also regulate the SOS1 gene that encodes a plasma membrane Na(+)/H(+) antiporter essential for salt tolerance. Together, our results suggest the existence of a novel nuclear calcium-sensing and -signaling pathway that is important for gene regulation and salt stress tolerance.

  6. Enhanced salt tolerance in tomato plants constitutively expressing heat-shock protein in the endoplasmic reticulum.

    PubMed

    Fu, C; Liu, X X; Yang, W W; Zhao, C M; Liu, J

    2016-07-14

    The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates the unfolded protein response (UPR) signaling pathway. The UPR signaling pathway is associated with plant responses to adverse environmental conditions. Thus, changes in the UPR signaling pathway might affect plant abiotic tolerance. Here, the role of ER small heat-shock protein (ER-sHSP) in improving plant resistance to salt stress was explored. Under salt stress conditions, ER-sHSP transgenic plants were found to have more vigorous roots, maintain a higher relative water content, absorb less Na(+), accumulate more osmolytes and Ca(2+), and sustain less damage to the photosystem, compared to wild-type non-transgenic plants. Furthermore, we found that the constitutive expression of ER-sHSP under salt stress depressed the expression of other ER molecular chaperones. These results indicate that the constitutive expression of ER-sHSP enhanced salinity tolerance of tomato plants significantly, and alleviated the ER stress caused by the salt stress in plant cells.

  7. Proteomic analysis of changes in the Kandelia candel chloroplast proteins reveals pathways associated with salt tolerance.

    PubMed

    Wang, Lingxia; Pan, Dezhuo; Li, Jian; Tan, Fanglin; Hoffmann-Benning, Susanne; Liang, Wenyu; Chen, Wei

    2015-02-01

    The plant chloroplast is one of the most sensitive organelles in response to salt stress. Chloroplast proteins extracted from seedling leaves were separated by two-dimensional gel electrophoresis (2-DE). More than 600 protein spots could be distinguished on each gel. Fifty-eight differentially expressed protein spots were detected, of which 46 could be identified through matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). These proteins were found to be involved in multiple aspects of chloroplast metabolism pathways such as photosynthesis, ATP synthesis, detoxification and antioxidation processes, nitrogen assimilation and fixation, protein metabolism, and tetrapyrrole biosynthesis. The results indicated that K. candel could withstand up to 500 mM NaCl stress for a measured period of 3 days, by maintaining normal or high photosynthetic electron transfer efficiency and an only slightly stimulated Calvin cycle. Meanwhile, we found that ROS scavenging, nitrogen assimilation, protein degradation and chaperone function in chloroplasts were also of importance for salt tolerance of K. candel. The ultrastructural and physiological data agree with chloroplast proteome results. These findings allow further exploration of our knowledge on salt adaptation in woody halophytes and may contribute to the development of more salt-tolerant plants in the future.

  8. In-vitro Screening for Salt Tolerance in Hibiscus Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity constitutes a major abiotic stress factor affecting plant growth in many areas of the world, including the U.S. Gulf Coast where extreme weather events such as hurricanes and coastal floodings can periodically increase soil salinity. The objective of this study was to use in vitro meristem ...

  9. Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance.

    PubMed

    Wu, Ying; Guo, Jing; Cai, Yimei; Gong, Xiaolin; Xiong, Xuemei; Qi, Wenwen; Pang, Qiuying; Wang, Xumin; Wang, Yang

    2016-08-01

    Eutrema salsugineum, a close relative of Arabidopsis thaliana, is a valuable halophytic model plant that has extreme tolerance to salinity. As posttranscriptional gene regulators, microRNAs (miRNAs) control gene expression and a variety of biological processes, including plant-stress responses. To identify salt-stress responsive miRNAs in E. salsugineum and reveal their possible roles in the adaptive response to salt stress, we chose the Solexa sequencing platform to screen the miRNAs in 4-week-old E. salsugineum seedlings under salt treatment. A total of 82 conserved miRNAs belonging to 27 miRNA families and 17 novel miRNAs were identified and 11 conserved miRNA families and 4 novel miRNAs showed a significant response to salt stress. To investigate the possible biological roles of miRNAs, 1060 potential targets were predicted. Moreover, 35 gene ontology (GO) categories and 1 pathway, including a few terms that were directly and indirectly related to salt stress, were significantly enriched in the salt-stress-responsive miRNAs targets. The relative expression analysis of six target genes was analyzed using quantitative real-time polymerase chain reaction (PCR) and showed a negative correlation with their corresponding miRNAs. Many stress regulatory and phytohormone regulatory cis-regulatory elements were widely present in the promoter region of the salt-responsive miRNA precursors. This study describes the large-scale characterization of E. salsugineum miRNAs and provides a useful resource for further understanding of miRNA functions in the regulation of the E. salsugineum salt-stress response.

  10. Combined methods of tolerance increasing for embedded SRAM

    NASA Astrophysics Data System (ADS)

    Shchigorev, L. A.; Shagurin, I. I.

    2016-10-01

    The abilities of combined use of different methods of fault tolerance increasing for SRAM such as error detection and correction codes, parity bits, and redundant elements are considered. Area penalties due to using combinations of these methods are investigated. Estimation is made for different configurations of 4K x 128 RAM memory block for 28 nm manufacturing process. Evaluation of the effectiveness of the proposed combinations is also reported. The results of these investigations can be useful for designing fault-tolerant “system on chips”.

  11. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    PubMed Central

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  12. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat.

    PubMed

    Rong, Wei; Qi, Lin; Wang, Aiyun; Ye, Xingguo; Du, Lipu; Liang, Hongxia; Xin, Zhiyong; Zhang, Zengyan

    2014-05-01

    Salinity and drought are major limiting factors of wheat (Triticum aestivum) productivity worldwide. Here, we report the function of a wheat ERF transcription factor TaERF3 in salt and drought responses and the underlying mechanism of TaERF3 function. Upon treatment with 250 mM NaCl or 20% polyethylene glycol (PEG), transcript levels of TaERF3 were rapidly induced in wheat. Using wheat cultivar Yangmai 12 as the transformation recipient, four TaERF3-overexpressing transgenic lines were generated and functionally characterized. The seedlings of the TaERF3-overexpressing transgenic lines exhibited significantly enhanced tolerance to both salt and drought stresses as compared to untransformed wheat. In the leaves of TaERF3-overexpressing lines, accumulation levels of both proline and chlorophyll were significantly increased, whereas H₂O₂ content and stomatal conductance were significantly reduced. Conversely, TaERF3-silencing wheat plants that were generated through virus-induced gene silencing method displayed more sensitivity to salt and drought stresses compared with the control plants. Real-time quantitative RT-PCR analyses showed that transcript levels of ten stress-related genes were increased in TaERF3-overexpressing lines, but compromised in TaERF3-silencing wheat plants. Electrophoretic mobility shift assays showed that the TaERF3 protein could interact with the GCC-box cis-element present in the promoters of seven TaERF3-activated stress-related genes. These results indicate that TaERF3 positively regulates wheat adaptation responses to salt and drought stresses through the activation of stress-related genes and that TaERF3 is an attractive engineering target in applied efforts to improve abiotic stress tolerances in wheat and other cereals.

  13. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed Central

    Buchwalter, David; Davis, Jenny

    2016-01-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680

  14. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed

    Kefford, Ben J; Buchwalter, David; Cañedo-Argüelles, Miguel; Davis, Jenny; Duncan, Richard P; Hoffmann, Ary; Thompson, Ross

    2016-03-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments.

  15. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato.

    PubMed

    Pan, Yu; Seymour, Graham B; Lu, Chungui; Hu, Zongli; Chen, Xuqing; Chen, Guoping

    2012-02-01

    A novel member of the AP2/ERF transcription factor family, SlERF5, was identified from a tomato mature leaf cDNA library screen. The complete DNA sequence of SlERF5 encodes a putative 244-amino acid DNA-binding protein which most likely acts as a transcriptional regulator and is a member of the ethylene responsive factor (ERF) superfamily. Analysis of the deduced SlERF5 protein sequence showed that it contained an ERF domain and belonged to the class III group of ERFs proteins. Expression of SlERF5 was induced by abiotic stress, such as high salinity, drought, flooding, wounding and cold temperatures. Over-expression of SlERF5 in transgenic tomato plants resulted in high tolerance to drought and salt stress and increased levels of relative water content compared with wild-type plants. This study indicates that SlERF5 is mainly involved in the responses to abiotic stress in tomato.

  16. ESKIMO1 is a key gene involved in water economy as well as cold acclimation and salt tolerance

    PubMed Central

    Bouchabke-Coussa, Oumaya; Quashie, Marie-Luce; Seoane-Redondo, Jose; Fortabat, Marie-Noelle; Gery, Carine; Yu, Agnes; Linderme, Daphné; Trouverie, Jacques; Granier, Fabienne; Téoulé, Evelyne; Durand-Tardif, Mylène

    2008-01-01

    Background Drought is a major social and economic problem resulting in huge yield reduction in the field. Today's challenge is to develop plants with reduced water requirements and stable yields in fluctuating environmental conditions. Arabidopsis thaliana is an excellent model for identifying potential targets for plant breeding. Drought tolerance in the field was successfully conferred to crops by transferring genes from this model species. While involved in a plant genomics programme, which aims to identify new genes responsible for plant response to abiotic stress, we identified ESKIMO1 as a key gene involved in plant water economy as well as cold acclimation and salt tolerance. Results All esk1 mutants were more tolerant to freezing, after acclimation, than their wild type counterpart. esk1 mutants also showed increased tolerance to mild water deficit for all traits measured. The mutant's improved tolerance to reduced water supply may be explained by its lower transpiration rate and better water use efficiency (WUE), which was assessed by carbon isotope discrimination and gas exchange measurements. esk1 alleles were also shown to be more tolerant to salt stress. Transcriptomic analysis of one mutant line and its wild-type background was carried out. Under control watering conditions a number of genes were differentially expressed between the mutant and the wild type whereas under mild drought stress this list of genes was reduced. Among the genes that were differentially expressed between the wild type and mutant, two functional categories related to the response to stress or biotic and abiotic stimulus were over-represented. Under salt stress conditions, all gene functional categories were represented equally in both the mutant and wild type. Based on this transcriptome analysis we hypothesise that in control conditions the esk1 mutant behaves as if it was exposed to drought stress. Conclusion Overall our findings suggest that the ESKIMO1 gene plays a major

  17. Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt tolerance.

    PubMed

    Yang, Rongchao; Yang, Ting; Zhang, Haijun; Qi, Yan; Xing, Yanxia; Zhang, Na; Li, Ren; Weeda, Sarah; Ren, Shuxin; Ouyang, Bo; Guo, Yang-Dong

    2014-04-01

    The response and adaptation of plants to different environmental stresses are of great interest as they provide the key to understanding the mechanisms underlying stress tolerance. In this study, the changing patterns of four endogenous hormones and various physiological and biochemical parameters of both a salt-tolerant (LA2711) and a salt-sensitive (ZS-5) tomato cultivar were examined under salt stress and non-stress conditions. Additionally, the transcription of key genes in the abscisic acid (ABA) biosynthesis and metabolism were analyzed at different time points. The results indicated that gene expression responsible for ABA biosynthesis and metabolism coincided with the hormone level, and SlNCED1 and SlCYP707A3 may play major roles in the process. LA2711 performed superior to ZS-5 on various parameters, including seed germination, Na(+) compartmentation, selective absorption of K(+), and antioxidant enzymes activity. The difference in salt tolerance between the two genotypes could be attributed to the different levels of ABA due to differences in gene expression of key genes in ABA biosynthesis and metabolism. Although gibberellin, cytokinin and auxin were involved, our results indicated that ABA signaling plays a major role in tomato salt tolerance. As compared to ZS-5, LA2711 had a higher capability to selectively absorb and redistribute K(+) and a higher tolerance to Na(+) in young leaves, which may be the main physiological mechanisms of salt tolerance.

  18. How to be moderately halophilic with a broad salt tolerance: Cluesfrom the genome of chromohalobacter salexigens

    SciTech Connect

    Oren, Aharon; Larimer, Frank; Richardson, Paul; Lapidus, Alla; Csonka, Laszlo N.

    2004-07-01

    There are two strategies that enable microorganisms to grow at high salt concentrations. Some groups balance the high osmolality of their environment with high intracellular concentrations of KCl1-4. Adaptation of all intracellular proteins is then necessary, and this is reflected in a large excess of acidic over basic residues and a low content of hydrophobic amino acids 2,5-7. Other halophilic and halotolerant microorganisms keep their intracellular ion concentrations low and synthesize or accumulate organic osmotic solutes 8. While halotolerance enables organisms to colonize highly saline environments,the ecological advantage for a salt-requirement is less obvious. We analyzed the amino acid composition of different categories of proteins of the moderately halophilic bacterium Chromohalobacter salexigens, as deduced from its genome sequence. Comparison with non-halophilic bacteria shows only a slight excess of acidic residues in the cytoplasmic proteins, no significant differences in membrane-bound components, but a distinctive halophilic signature of predicted periplasmic proteins, such as the substrate binding proteins of ABC-type transport systems. The salt requirement of proteins located external to the cytoplasmic membrane may thus determine salt requirement and salt tolerance of prokaryotes.

  19. Osmoadaptation in rhizobia: ectoine-induced salt tolerance.

    PubMed Central

    Talibart, R; Jebbar, M; Gouesbet, G; Himdi-Kabbab, S; Wróblewski, H; Blanco, C; Bernard, T

    1994-01-01

    After having shown that ectoine (a tetrahydropyrimidine) displays osmoprotective properties towards Escherichia coli (M. Jebbar, R. Talibart, K. Gloux, T. Bernard, and Blanco, J. Bacteriol. 174:5027-5035, 1992), we have investigated the involvement of this molecule in the osmotic adaptation of Rhizobium meliloti. Ectoine appeared almost as effective as glycine betaine in improving the growth of R. meliloti under adverse osmotic conditions (0.5 M NaCl). Moreover, improvement of growth of rhizobial strains insensitive to glycine betaine was also observed. Ectoine transport proved inducible, periplasmic protein dependent, and, as shown by competition experiments, distinct from the transport of glycine betaine. Medium osmolarity had little effect on the uptake characteristics, since the rate of influx increased from 12 to only 20 nmol min-1 mg of protein-1 when NaCl concentrations were raised from 0 to 0.3 or 0.5 M, with a constant of transport of 80 microM. Natural-abundance 13C-nuclear magnetic resonance and radiolabelling assays showed that ectoine, unlike glycine betaine, is not intracellularly accumulated and, as a consequence, does not repress the synthesis of endogenous compatible solutes (glutamate, N-acetylglutaminylglutamine amide, and trehalose). Furthermore, the strong rise in glutamate content in cells osmotically stressed in the presence of ectoine suggests that, instead of being involved in osmotic balance restoration, ectoine should play a key role in triggering the synthesis of endogenous osmolytes. Hence, we believe that there are at least two distinct classes of osmoprotectants: those such as glycine betaine or glutamate, which act as genuine osmolytes, and those such as ectoine, which act as chemical mediators. Images PMID:8071195

  20. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

    PubMed

    Gao, Weidong; Bai, Shuang; Li, Qingmei; Gao, Caiqiu; Liu, Guifeng; Li, Guangde; Tan, Feili

    2013-01-01

    Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  1. An Ethylene-responsive Factor BpERF11 Negatively Modulates Salt and Osmotic Tolerance in Betula platyphylla

    PubMed Central

    Zhang, Wenhui; Yang, Guiyan; Mu, Dan; Li, Hongyan; Zang, Dandan; Xu, Hongyun; Zou, Xuezhong; Wang, Yucheng

    2016-01-01

    Ethylene responsive factors (ERFs) play important roles in the abiotic stress; however, only a few ERF genes from woody plants have been functionally characterized. In the present study, an ERF gene from Betula platyphylla (birch), BpERF11, was functionally characterized in response to abiotic stress. BpERF11 is a nuclear protein, which could specifically bind to GCC boxes and DRE motifs. BpERF11-overexpressing and BpERF11 RNA interference (RNAi) knockdown plants were generated for gain- and loss-of-function analysis. BpERF11 negatively regulates resistance to salt and severe osmotic stress, and the transgenic birch plants overexpressing BpERF11 shows increased electrolyte leakage and malondialdehyde (MDA) contents. BpERF11 inhibits the expression of an AtMYB61 homologous gene, resulting in increased stomatal aperture, which elevated the transpiration rate. Furthermore, BpERF11 downregulates the expression of P5CS, SOD and POD genes, but upregulates the expression of PRODH and P5CDH, which results in reduced proline levels and increased reactive oxygen species (ROS) accumulation. BpERF11 also significantly inhibits the expression of LEA and dehydrin genes that involve in abiotic stress tolerance. Therefore, BpERF11 serves as a transcription factor that negatively regulates salt and severe osmotic tolerance by modulating various physiological processes. PMID:26980058

  2. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  3. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley.

    PubMed

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K

    2012-06-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na(+), Cl(-), and K(+) at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at EC(e) 7.2 [Spearman's rank correlation (rs)=0.79] and EC(e) 15.3 (rs=0.82) and the crucial parameter of leaf Na(+) (rs=0.72) and Cl(-) (rs=0.82) concentrations at EC(e) 7.2 dS m(-1). This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of

  4. Insular cortex mediates increased pain tolerance in yoga practitioners.

    PubMed

    Villemure, Chantal; Ceko, Marta; Cotton, Valerie A; Bushnell, M Catherine

    2014-10-01

    Yoga, an increasingly popular discipline among Westerners, is frequently used to improve painful conditions. We investigated possible neuroanatomical underpinnings of the beneficial effects of yoga using sensory testing and magnetic resonance imaging techniques. North American yogis tolerated pain more than twice as long as individually matched controls and had more gray matter (GM) in multiple brain regions. Across subjects, insular GM uniquely correlated with pain tolerance. Insular GM volume in yogis positively correlated with yoga experience, suggesting a causal relationship between yoga and insular size. Yogis also had increased left intrainsular white matter integrity, consistent with a strengthened insular integration of nociceptive input and parasympathetic autonomic regulation. Yogis, as opposed to controls, used cognitive strategies involving parasympathetic activation and interoceptive awareness to tolerate pain, which could have led to use-dependent hypertrophy of insular cortex. Together, these findings suggest that regular and long-term yoga practice improves pain tolerance in typical North Americans by teaching different ways to deal with sensory inputs and the potential emotional reactions attached to those inputs leading to a change in insular brain anatomy and connectivity.

  5. Structural and Functional Analysis of Transmembrane Segment IV of the Salt Tolerance Protein Sod2*

    PubMed Central

    Ullah, Asad; Kemp, Grant; Lee, Brian; Alves, Claudia; Young, Howard; Sykes, Brian D.; Fliegel, Larry

    2013-01-01

    Sod2 is the plasma membrane Na+/H+ exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) (126FPQINFLGSLLIAGCITSTDPVLSALI152) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125–154). NMR analysis yielded a model with two helical regions (amino acids 128–142 and 147–154) separated by an unwound region (amino acids 143–146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na+/H+ exchanger and TM VI of isoform 1 of mammalian Na+/H+ exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein. PMID:23836910

  6. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    PubMed Central

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in

  7. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress.

    PubMed

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S L; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σ(B) regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in

  8. Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Song, Xueqing; Yu, Xiang; Hori, Chiaki; Demura, Taku; Ohtani, Misato; Zhuge, Qiang

    2016-01-01

    Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. PMID:27242819

  9. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems.

    PubMed

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, [Formula: see text] generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth.

  10. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  11. Thiourea priming enhances salt tolerance through co-ordinated regulation of microRNAs and hormones in Brassica juncea

    PubMed Central

    Srivastava, Ashish Kumar; Sablok, Gaurav; Hackenberg, Michael; Deshpande, Uday; Suprasanna, Penna

    2017-01-01

    Activation of stress tolerance mechanisms demands transcriptional reprogramming. Salt stress, a major threat to plant growth, enhances ROS production and affects transcription through modulation of miRNAs and hormones. The present study delineates salt stress ameliorating action of thiourea (TU, a ROS scavenger) in Brassica juncea and provides mechanistic link between redox, microRNA and hormones. The ameliorative potential of TU towards NaCl stress was related with its ability to decrease ROS accumulation in roots and increase Na+ accumulation in shoots. Small RNA sequencing revealed enrichment of down-regulated miRNAs in NaCl + TU treated roots, indicating transcriptional activation. Ranking analysis identified three key genes including BRX4, CBL10 and PHO1, showing inverse relationship with corresponding miRNA expression, which were responsible for TU mediated stress mitigation. Additionally, ABA level was consistently higher till 24 h in NaCl, while NaCl + TU treated roots showed only transient increase at 4 h suggesting an effective stress management. Jasmonate and auxin levels were also increased, which prioritized defence and facilitated root growth, respectively. Thus, the study highlights redox as one of the “core” components regulating miRNA and hormone levels, and also strengthens the use of TU as a redox priming agent for imparting crop resilience to salt stress. PMID:28382938

  12. Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabaccum): photosynthesis, osmotic adjustment, and nitrogen partitioning.

    PubMed

    Moghaieb, R E A; Tanaka, N; Saneoka, H; Murooka, Y; Ono, H; Morikawa, H; Nakamura, A; Nguyen, N T; Suwa, R; Fujita, K

    2006-02-01

    Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) biosynthetic genes (ect. ABC) from Halomonas elongata were introduced to tobacco plants using an Agrobacterium-mediated gene delivery system. The genes for ectoine biosynthesis were integrated in a stable manner into the tobacco genome and the corresponding transcripts were expressed. The concentration of ectoine under salt-stress conditions was higher in the roots than in leaves. A close relationship was found between stomatal conductance and the amount of transported nitrogen, suggesting that water transport through the xylem in the stem and transpiration may be involved in nitrogen transport to leaves. The data indicate that the turgor values of the ectoine transgenic lines increased with increasing salt concentration. The data revealed two ways in which ectoine enhanced salinity tolerance of tobacco plants. First, ectoine improved the maintenance of root function so that water is taken up consistently and supplied to shoots under saline conditions. Second, ectoine enhanced the nitrogen supply to leaves by increasing transpiration and by protecting Rubisco proteins from deleterious effects of salt, thereby improving the rate of photosynthesis.

  13. Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana

    PubMed Central

    Hu, Wei; Ding, Zehong; Tie, Weiwei; Yan, Yan; Liu, Yang; Wu, Chunlai; Liu, Juhua; Wang, Jiashui; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2017-01-01

    The growth, development, and production of banana plants are constrained by multiple abiotic stressors. However, it remains elusive for the tolerance mechanisms of banana responding to multiple abiotic stresses. In this study, we found that Fen Jiao (FJ) was more tolerant to osmotic, cold, and salt stresses than BaXi Jiao (BX) by phenotypic and physiological analyses. Comparative transcriptomic analyses highlighted stress tolerance genes that either specifically regulated in FJ or changed more than twofold in FJ relative to BX after treatments. In total, 933, 1644, and 133 stress tolerance genes were identified after osmotic, cold, and salt treatments, respectively. Further integrated analyses found that 30 tolerance genes, including transcription factor, heat shock protein, and E3 ubiquitin protein ligase, could be commonly regulated by osmotic, cold, and salt stresses. Finally, ABA and ROS signaling networks were found to be more active in FJ than in BX under osmotic, cold, and salt treatments, which may contribute to the strong stress tolerances of FJ. Together, this study provides new insights into the tolerance mechanism of banana responding to multiple stresses, thus leading to potential applications in the genetic improvement of multiple abiotic stress tolerances in banana. PMID:28223714

  14. Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants.

    PubMed

    Lescano, Carlos Ignacio; Martini, Carolina; González, Claudio Alejandro; Desimone, Marcelo

    2016-07-01

    Allantoin, a metabolite generated in the purine degradation pathway, was primarily considered an intermediate for recycling of the abundant nitrogen assimilated in plant purines. More specifically, tropical legumes utilize allantoin and allantoic acid as major nodule-to-shoot nitrogen transport compounds. In other species, an increase in allantoin content was observed under different stress conditions, but the underlying molecular mechanisms remain poorly understood. In this work, Arabidopsis thaliana was used as a model system to investigate the effects of salt stress on allantoin metabolism and to know whether its accumulation results in plant protection. Plant seedlings treated with NaCl at different concentrations showed higher allantoin and lower allantoic acid contents. Treatments with NaCl favored the expression of genes involved in allantoin synthesis, but strongly repressed the unique gene encoding allantoinase (AtALN). Due to the potential regulatory role of this gene for allantoin accumulation, AtALN promoter activity was studied using a reporter system. GUS mediated coloration was found in specific plant tissues and was diminished with increasing salt concentrations. Phenotypic analysis of knockout, knockdown and stress-inducible mutants for AtALN revealed that allantoin accumulation is essential for salt stress tolerance. In addition, the possible role of allantoin transport was investigated. The Ureide Permease 5 (UPS5) is expressed in the cortex and endodermis of roots and its transcription is enhanced by salt treatment. Ups5 knockout plants under salt stress presented a susceptible phenotype and altered allantoin root-to-shoot content ratios. Possible roles of allantoin as a protectant compound in oxidative events or signaling are discussed.

  15. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance.

    PubMed

    Zarza, Xavier; Atanasov, Kostadin E; Marco, Francisco; Arbona, Vicent; Carrasco, Pedro; Kopka, Joachim; Fotopoulos, Vasileios; Munnik, Teun; Gómez-Cadenas, Aurelio; Tiburcio, Antonio F; Alcázar, Rubén

    2017-04-01

    The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine and its structural isomer thermospermine (tSpm) into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonate (JA) biosynthesis and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signalling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.

  16. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance.

    PubMed

    Li, Ruifen; Zhang, Junwen; Wu, Guangyu; Wang, Hongzhi; Chen, Yajuan; Wei, Jianhua

    2012-09-01

    Protein kinases play an important role in regulating the response to abiotic stress in plant. CIPKs are plant-specific signal transducers, and some members have been identified. However, the precise functions of novel CIPKs still remain unknown. Here we report that HbCIPK2 is a positive regulator of salt and osmotic stress tolerance. HbCIPK2 was screened out of the differentially expressed fragments from halophyte Hordeum brevisubulatum by cDNA-AFLP technique, and was a single-copy gene without intron. Expression of HbCIPK2 was increased by salt, drought and ABA treatment. HbCIPK2 is mainly localized to the plasma membrane and nucleus. Ectopic expression of 35S:HbCIPK2 not only rescued the salt hypersensitivity in Arabidopsis mutant sos2-1, but also enhanced salt tolerance in Arabidopsis wild type, and exhibited tolerance to osmotic stress during germination. The HbCIPK2 contributed to the ability to prevent K(+) loss in root and to accumulate less Na(+) in shoot resulting in K(+) /Na(+) homeostasis and protection of root cell from death, which is consistent with the gene expression profile of HbCIPK2-overexpressing lines. These findings imply possible novel HbCIPK2-mediated salt signalling pathways or networks in H. brevisubulatum.

  17. Salt tolerant Methylobacterium mesophilicum showed viable colonization abilities in the plant rhizosphere

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Alqarawi, Abdulaziz A.; Abd_Allah, E.F.

    2015-01-01

    The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 104 and 2.6 × 104 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions. PMID:26288563

  18. Knockout of AtMKK1 enhances salt tolerance and modifies metabolic activities in Arabidopsis.

    PubMed

    Conroy, Chad; Ching, Jacqueline; Gao, Yan; Wang, Xiaojing; Rampitsch, Christof; Xing, Tim

    2013-05-01

    Mitogen-activated protein kinase (MAPK) pathways represent a crucial regulatory mechanism in plant development. The ability to activate and inactivate MAPK pathways rapidly in response to changing conditions helps plants to adapt to a changing environment. AtMKK1 is a stress response kinase that is capable of activating the MAPK proteins AtMPK3, AtMPK4 and AtMPK6. To elucidate its mode of action further, several tests were undertaken to examine the response of AtMKK1 to salt stress using a knockout (KO) mutant of AtMKK1. We found that AtMKK1 mutant plants tolerated elevated levels of salt during both germination and adulthood. Proteomic analysis indicated that the level of the α subunit of mitochrondrial H(+)-ATPase, mitochrondial NADH dehydrogenase and mitochrondrial formate dehydrogenase was enhanced in AtMKK1 knockout mutants upon high salinity stress. The level of formate dehydrogenase was further confirmed by immunoblotting and enzyme assay. The possible involvement of these enzymes in salt tolerance is discussed.

  19. Isolation and characterization of plasma membrane Na(+)/H(+) antiporter genes from salt-sensitive and salt-tolerant reed plants.

    PubMed

    Takahashi, Ryuichi; Liu, Shenkui; Takano, Tetsuo

    2009-02-15

    We isolated cDNAs for Na(+)/H(+) antiporter genes (PhaNHA1s) from salt-sensitive and salt-tolerant reed plants. A phylogenetic analysis and localization analysis using yeast strains expressing PhaNHA1-GFP protein showed that PhaNHA1s were plasma membrane Na(+)/H(+) antiporters. Yeast strains expressing PhaNHA1 from salt-tolerant reed plants (PhaNHA1-n) grew well than yeast strains expressing PhaNHA1 from salt-sensitive reed plants (PhaNHA1-u) in the presence of 100mM NaCl. Furthermore, Na(+) contents of yeast cells expressing PhaNHA1-n were less than half of those of yeast cells expressing PhaNHA1-u. These results suggest that PhaNHA1-n is more efficient at excluding Na(+) from the cells than PhaNHA1-u.

  20. Chronic administration of the HNO donor Angeli's salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEA/NO.

    PubMed

    Irvine, Jennifer C; Kemp-Harper, Barbara K; Widdop, Robert E

    2011-05-01

    Nitroxyl (HNO) displays distinct pharmacology to its redox congener nitric oxide (NO(•)) with therapeutic potential in the treatment of heart failure. It remains unknown if HNO donors are resistant to tolerance development following chronic in vivo administration. Wistar-Kyoto rats received a 3-day subcutaneous infusion of one of the NO(•) donors, glyceryl trinitrate (GTN) or diethylamine/NONOate (DEA/NO), or the HNO donor Angeli's salt (AS). GTN infusion (10 μg/kg/min) resulted in significantly blunted depressor responses to intravenous bolus doses of GTN, demonstrating tolerance development. By contrast, infusion with AS (20 μg/kg/min) or DEA/NO (2 μg/kg/min) did not alter their subsequent depressor responses. Similarly, ex vivo vasorelaxation responses in isolated aortae revealed that GTN infusion elicited a significant 6-fold decrease in the sensitivity to GTN and reduction in the maximum response to acetylcholine (ACh). Chronic infusion of AS or DEA/NO had no effect on subsequent vasorelaxation responses to themselves or to ACh. No functional cross-tolerance between nitrovasodilators was evident, either in vivo or ex vivo, although an impaired ability of a nitrovasodilator to increase tissue cGMP content was not necessarily indicative of a reduced functional response. In conclusion, HNO donors may represent novel therapies for cardiovascular disease with therapeutic potential over clinically used organic nitrates.

  1. Molecular cloning and expression analysis of RrNHX1 and RrVHA-c genes related to salt tolerance in wild Rosa rugosa

    PubMed Central

    Feng, Liguo; Ding, Han; Wang, Jia; Wang, Meng; Xia, Wei; Zang, Shu; Sheng, Lixia

    2015-01-01

    Salt stress is one important factor influencing the growth and development of plants, and salt tolerance of plants is a result of combined action of multiple genes and mechanisms. Rosa rugosa is not only an important ornamental plant, but also the natural aromatic plant of high value. Wild R. rugosa which is naturally distributed on the coast and islands of China has a good salt tolerance due to the special living environment. Here, the vacuolar Na+/H+ reverse transporter gene (NHX1) and the vacuolar H+-ATPase subunit C gene (VHA-c) closely related to plant salt tolerance were isolated from wild R. rugosa, and the expression patterns in R. rugosa leaves of the two genes under NaCl stress were determined by real-time quantitative fluorescence PCR. The results showed that the RrNHX1 protein is a constitutive Na+/H+ reverse transporter, the expression of the RrNHX1 gene first increased and then decreased with the increasing salt concentration, and had a time-controlled effect. The RrVHA-c gene is suggestive of the housekeeping feature, its expression pattern showed a similar variation trend with the RrNHX1 gene under the stress of different concentrations of NaCl, and its temporal expression level under 200 mM NaCl stress presented bimodal change. These findings indicated that RrNHX1 and RrVHA-c genes are closely associated with the salt tolerance trait of wild R. rugosa. PMID:26150747

  2. Discovery and characterization of two novel salt-tolerance genes in Puccinellia tenuiflora.

    PubMed

    Li, Ying; Takano, Tetsuo; Liu, Shenkui

    2014-09-18

    Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9-10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR) and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.

  3. Increase of cellular hypoxic tolerance by erythromycin and other antibiotics.

    PubMed

    Huber, R; Kasischke, K; Ludolph, A C; Riepe, M W

    1999-05-14

    Antibiotics are used extensively, but in addition to their anti-infectious effects some inhibit cellular energy metabolism. We investigated hypoxic tolerance following in vivo pretreatment with erythromycin and kanamycin, or in vitro pretreatment with ampicillin. Recovery of the CA1 population spike amplitude in hippocampal slices upon 15 min hypoxia improved time-dependently following single i.p. in vivo pretreatment with erythromycin (maximum at 6 h: recovery 90+/-7% (mean s.d.) vs 30% in untreated controls; p<0.01). The hypoxia-induced increase in NADH was smaller in slices that recovered from hypoxia. We conclude that antibiotics increase cellular hypoxic tolerance to a varying extent. Use of antibiotics in experimental studies may, therefore, distort conclusions about hypoxic sensitivity and confounding mechanisms. In contrast, antibiotics may provide an effective strategy to induce chemical preconditioning in humans.

  4. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    PubMed

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  5. Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritima.

    PubMed

    Ellouzi, Hasna; Ben Hamed, Karim; Asensi-Fabado, Maria Amparo; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-05-01

    Plants are often exposed to a combination of stresses, which can occur simultaneously or at different times throughout their life. In this study, the effects of salinity, drought and cadmium pre-treatments were evaluated on the subsequent response of Cakile maritima, a halophytic species, to various levels of salinity (from 100 to 800 mM NaCl) after a recovery time of 2 weeks. Studies were performed in two sets of experiments in a glasshouse under short and long photoperiod (November and July, respectively). In both experiments and in contrast to control plants (not exposed to any previous stress), plants previously exposed to drought, salt or cadmium stress showed lower levels of hydrogen peroxide and malondialdehyde, an indicator of lipid peroxidation, upon salt treatment, particularly at high NaCl concentrations. Oxidative stress alleviation was not only observed at 800 mM NaCl under short photoperiod, but also at 600 and 800 mM NaCl under long photoperiod in terms of reduced salt-induced increases in hydrogen peroxide and malondialdehyde levels in plants previously exposed to drought, salt or cadmium stress. Previous exposure of plants to all stresses additionally caused decreased levels of jasmonic acid, which might be associated with a lower oxidative stress, differences being observed again at 800 mM NaCl only under short photoperiod and at 600 and 800 mM NaCl under long photoperiod. In conclusion, a relatively long-term stress memory was found in C. maritima pre-exposed to salinity, drought or cadmium, which resulted in a lower oxidative stress when subsequently exposed to salinity. The positive effects of drought and cadmium were of similar magnitude to those provided by salt pre-exposure, which indicated an effective cross-tolerance response in this species.

  6. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.

    PubMed

    Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo

    2014-08-18

    The osmotolerant and halotolerant food yeast Zygosaccharomyces rouxii is known for its ability to grow and survive in the face of stress caused by high concentrations of non-ionic (sugars and polyols) and ionic (mainly Na(+) cations) solutes. This ability determines the success of fermentation on high osmolarity food matrices and leads to spoilage of high sugar and high salt foods. The knowledge about the genes, the metabolic pathways, and the regulatory circuits shaping the Z. rouxii sugar and salt-tolerance, is a prerequisite to develop effective strategies for fermentation control, optimization of food starter culture, and prevention of food spoilage. This review summarizes recent insights on the mechanisms used by Z. rouxii and other osmo and halotolerant food yeasts to endure salts and sugars stresses. Using the information gathered from S. cerevisiae as guide, we highlight how these non-conventional yeasts integrate general and osmoticum-specific adaptive responses under sugar and salts stresses, including regulation of Na(+) and K(+)-fluxes across the plasma membrane, modulation of cell wall properties, compatible osmolyte production and accumulation, and stress signalling pathways. We suggest how an integrated and system-based knowledge on these mechanisms may impact food and biotechnological industries, by improving the yeast spoilage control in food, enhancing the yeast-based bioprocess yields, and engineering the osmotolerance in other organisms.

  7. Salt tolerant green crop species for sodium management in space agriculture

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  8. Polyamine Transporters and Polyamines Increase Furfural Tolerance during Xylose Fermentation with Ethanologenic Escherichia coli Strain LY180

    PubMed Central

    Geddes, Ryan D.; Wang, Xuan; Yomano, Lorraine P.; Miller, Elliot N.; Zheng, Huabao; Shanmugam, Keelnatham T.

    2014-01-01

    Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural. PMID:25063650

  9. Melatonin delays leaf senescence and enhances salt stress tolerance in rice.

    PubMed

    Liang, Chengzhen; Zheng, Guangyong; Li, Wenzhen; Wang, Yiqin; Hu, Bin; Wang, Hongru; Wu, Hongkai; Qian, Yangwen; Zhu, Xin-Guang; Tan, Dun-Xian; Chen, Shou-Yi; Chu, Chengcai

    2015-08-01

    Melatonin, an antioxidant in both animals and plants, has been reported to have beneficial effects on the aging process. It was also suggested to play a role in extending longevity and enhancing abiotic stress resistance in plant. In this study, we demonstrate that melatonin acts as a potent agent to delay leaf senescence and cell death in rice. Treatments with melatonin significantly reduced chlorophyll degradation, suppressed the transcripts of senescence-associated genes, delayed the leaf senescence, and enhanced salt stress tolerance. Genome-wide expression profiling by RNA sequencing reveals that melatonin is a potent free radical scavenger, and its exogenous application results in enhanced antioxidant protection. Leaf cell death in noe1, a mutant with over-produced H2O2, can be relieved by exogenous application of melatonin. These data demonstrate that melatonin delays the leaf senescence and cell death and also enhances abiotic stress tolerance via directly or indirectly counteracting the cellular accumulation of H2O2.

  10. Genome-Wide Screening of Salt Tolerant Genes by Activation-Tagging Using Dedifferentiated Calli of Arabidopsis and Its Application to Finding Gene for Myo-Inositol-1-P-Synthase

    PubMed Central

    Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Kobayashi, Kyoko; Shimizu, Masanori; Ito, Sohei; Usui, Yumiko; Nakayama, Tsutomu; Kobayashi, Hirokazu

    2015-01-01

    Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis. PMID:25978457

  11. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants

    PubMed Central

    Alavilli, Hemasundar; Awasthi, Jay Prakash; Rout, Gyana R.; Sahoo, Lingaraj; Lee, Byeong-ha; Panda, Sanjib Kumar

    2016-01-01

    We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes. PMID:27818670

  12. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.).

    PubMed

    Li, Zhigang; Baldwin, Christian M; Hu, Qian; Liu, Haibo; Luo, Hong

    2010-02-01

    The Arabidopsis vacuolar H(+)-pyrophosphatase (AVP1), when over-expressed in transgenic (TG) plants, regulates root and shoot development via facilitation of auxin flux, and enhances plant resistance to salt and drought stresses. Here, we report that TG perennial creeping bentgrass plants over-expressing AVP1 exhibited improved resistance to salinity than wild-type (WT) controls. Compared to WT plants, TGs grew well in the presence of 100 mm NaCl, and exhibited higher tolerance and faster recovery from damages from exposure to 200 and 300 mm NaCl. The improved performance of the TG plants was associated with higher relative water content (RWC), higher Na(+) uptake and lower solute leakage in leaf tissues, and with higher concentrations of Na(+), K(+), Cl(-) and total phosphorus in root tissues. Under salt stress, proline content was increased in both WT and TG plants, but more significantly in TGs. Moreover, TG plants exhibited greater biomass production than WT controls under both normal and elevated salinity conditions. When subjected to salt stress, fresh (FW) and dry weights (DW) of both leaves and roots decreased more significantly in WT than in TG plants. Our results demonstrated the great potential of genetic manipulation of vacuolar H(+)-pyrophosphatase expression in TG perennial species for improvement of plant abiotic stress resistance.

  13. Elevated levels of CYP94 family gene expression alleviate the jasmonate response and enhance salt tolerance in rice.

    PubMed

    Kurotani, Ken-ichi; Hayashi, Kenji; Hatanaka, Saki; Toda, Yosuke; Ogawa, Daisuke; Ichikawa, Hiroaki; Ishimaru, Yasuhiro; Tashita, Ryo; Suzuki, Takeshi; Ueda, Minoru; Hattori, Tsukaho; Takeda, Shin

    2015-04-01

    The plant hormone jasmonate and its conjugates (JAs) have important roles in growth control, leaf senescence and defense responses against insects and microbial attacks. JA biosynthesis is induced by several stresses, including mechanical wounding, pathogen attacks, drought and salinity stresses. However, the roles of JAs under abiotic stress conditions are unclear. Here we report that increased expression of the Cyt P450 family gene CYP94C2b enhanced viability of rice plants under saline conditions. This gene encodes an enzyme closely related to CYP94C1 that catalyzes conversion of bioactive jasmonate-isoleucine (JA-Ile) into 12OH-JA-Ile and 12COOH-JA-Ile. Inactivation of JA was facilitated in a rice line with enhanced CYP94C2b expression, and responses to exogenous JA and wounding were alleviated. Moreover, salt stress-induced leaf senescence but not natural senescence was delayed in the transgenic rice. These results suggest that bioactive JAs have a negative effect on viability under salt stress conditions and demonstrate that manipulating JA metabolism confers enhanced salt tolerance in rice.

  14. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    PubMed

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots.

  15. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis.

    PubMed

    Guo, Kun-Mei; Babourina, Olga; Christopher, David A; Borsics, Tamas; Rengel, Zed

    2008-11-01

    Cyclic nucleotide-gated channels (CNGCs) in the plasma membrane transport K+ and other cations; however, their roles in the response and adaptation of plants to environmental salinity are unclear. Growth, cation contents, salt tolerance and K+ fluxes were assessed in wild-type and two AtCNGC10 antisense lines (A2 and A3) of Arabidopsis thaliana (L.) Heynh. Compared with the wild-type, mature plants of both antisense lines had altered K+ and Na+ concentrations in shoots and were more sensitive to salt stress, as assessed by biomass and Chl fluorescence. The shoots of A2 and A3 plants contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared with wild-type, whereas roots contained higher K+ concentrations and lower Na+/K+ ratios. Four-day-old seedlings of both antisense lines exposed to salt stress had smaller Na+/K+ ratios and longer roots than the wild-type. Under sudden salt treatment, the Na+ efflux was higher and the K+ efflux was smaller in the antisense lines, indicating that AtCNGC10 might function as a channel providing Na+ influx and K+ efflux at the root/soil interface. We conclude that the AtCNGC10 channel is involved in Na+ and K+ transport during cation uptake in roots and in long-distance transport, such as phloem loading and/or xylem retrieval. Mature A2 and A3 plants became more salt sensitive than wild-type plants because of impaired photosynthesis induced by a higher Na+ concentration in the leaves.

  16. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.).

    PubMed

    Goel, D; Singh, A K; Yadav, V; Babbar, S B; Bansal, K C

    2010-09-01

    Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.

  17. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots

    PubMed Central

    Chen, Juan; Wang, Wen-Hua; Wu, Fei-Hua; He, En-Ming; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K+/Na+ balance by decreasing the net K+ efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K+ uptake system (HvHAK4). H2S and NO maintained the lower Na+ content in the cytoplast by increasing the amount of PM H+-ATPase, the transcriptional levels of PM H+-ATPase (HvHA1) and Na+/H+ antiporter (HvSOS1). H2S and NO modulated Na+ compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na+/H+ antiporter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na+/H+ antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal. PMID:26213372

  18. Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species.

    PubMed

    Liu, Changhai; Li, Chao; Liang, Dong; Wei, Zhiwei; Zhou, Shasha; Wang, Rongchao; Ma, Fengwang

    2012-09-01

    Maintaining ion and water homeostasis in plants is an important defense strategy against salinity stress. Divergence in ion homeostasis between the salt-tolerant Malus hupehensis Rehd. and salt-sensitive Malus prunifolia 'yingyehaitang' was studied to understand their mechanisms for tolerance. Compared with the control on Day 15, plants of those two genotypes under high-salinity treatment had less K(+) in the leaves, stems, and roots. Contents were higher in the roots but lower in the leaves of M. hupehensis while levels in the stems were similar to those from M. prunifolia. For both genotypes, the sodium content increased after salinity treatment in all tissue types. However, the leaves from M. hupehensis had less Na(+) and maintained a lower Na(+)/K(+) ratio. To understand the basis for these differences, we studied the ion transporters and regulation of aquaporin transcripts in the leaves. Transcript levels for both MdHKT1 and MdSOS1 were higher in M. hupehensis, implying that this species had better capacity to exclude sodium so that less Na(+) occurred in the leaves but more in the stems. M. hupehensis also had a greater amount of MdNHX1 transcripts, which could have assisted in sequestering excess Na(+) into the vacuoles and sustaining a better cellular environment. A relatively higher level of aquaporin transcript was also found in M. hupehensis, suggesting that those plants were more capable of maintaining a better leaf water status and diluting excess ions effectively under high-salinity conditions. Therefore, these tested transporters may play important roles in determining how salinity tolerance is conferred in Malus species.

  19. Improving salt tolerance of lowland rice cultivar 'Rassi' through marker-aided backcross breeding in West Africa.

    PubMed

    Bimpong, Isaac Kofi; Manneh, Baboucarr; Sock, Mamadou; Diaw, Faty; Amoah, Nana Kofi Abaka; Ismail, Abdelbagi M; Gregorio, Glenn; Singh, Rakesh Kumar; Wopereis, Marco

    2016-01-01

    Salt stress affects about 25% of the 4.4 million ha of irrigated and lowland systems for rice cultivation in West Africa (WA). A major quantitative trait locus (QTLs) on chromosome 1 (Saltol) that enhances tolerance to salt stress at the vegetative stage has enabled the use of marker-assisted selection (MAS) to develop salt-tolerant rice cultivar(s) in WA. We used 3 cycles of backcrossing with selection based on DNA markers and field-testing using 'FL478' as tolerant donor and the widely grown 'Rassi' as recurrent parent. In the BC3F2 stage, salt-tolerant lines with over 80% Rassi alleles except in the region around Saltol segment were selected. 429 introgression lines (Saltol-ILs) were identified as tolerant at vegetative stage, of which 116 were field-tested for four seasons at the reproductive stage. Sixteen Saltol-ILs had less yield loss (3-26% relative to control trials), and 8 Saltol-ILs showed high yield potential under stress and non-stress conditions. The 16 Saltol-ILs had been included for further African-wide testing prior to release in 6 WA countries. MAS reduced the time for germplasm improvement from at least 7 to about 4 years. Our objective is to combine different genes/QTLs conferring tolerance to stresses under one genetic background using MAS.

  20. Ternary cycle treatment of high saline wastewater from pesticide production using a salt-tolerant microorganism.

    PubMed

    Wu, Xiang; Du, Ya-guang; Qu, Yi; Du, Dong-yun

    2013-01-01

    The material of this study is provided by biological aerobic treatment of high saline wastewater from pesticide production. The microorganism used for biodegradation has been identified by gene-sequencing as a strain of Bacillus sp. SCUN. The best growth condition for the salt-tolerant microorganism has been studied by varying the pH, immobilized microorganism dosage and temperature conditions. The feasibility of pretreating wastewater in ethyl chloride production containing 4% NaCl has been discussed. It was found that under the pH range of 6.0-8.0, immobilized microorganism dosage of 1.5 g/L, temperature of 30 °C, and NaCl concentration of 0-3%, the microorganism achieves the best growth for biodegradation. After domestication, the strain can grow under 4% NaCl. This salt-tolerant microorganism is effective in the pretreated high saline wastewater. With a newly developed ternary cycle treatment, the chemical oxygen demand removal approaches 58.3%. The theoretical basis and a new method for biological treatments in biodegradation of high saline wastewater in ethyl chloride production are discussed.

  1. Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples.

    PubMed

    Bastos, A E; Moon, D H; Rossi, A; Trevors, J T; Tsai, S M

    2000-11-01

    Two phenol-degrading microorganisms were isolated from Amazonian rain forest soil samples after enrichment in the presence of phenol and a high salt concentration. The yeast Candida tropicalis and the bacterium Alcaligenes faecoalis were identified using several techniques, including staining, morphological observation and biochemical tests, fatty acid profiles and 16S/18S rRNA sequencing. Both isolates, A. faecalis and C. tropicalis, were used in phenol degradation assays, with Rhodococcus erythropolis as a reference phenol-degrading bacterium, and compared to microbial populations from wastewater samples collected from phenol-contaminated environments. C. tropicalis tolerated higher concentrations of phenol and salt (16 mM and 15%, respectively) than A. faecalis (12 mM and 5.6%). The yeast also tolerated a wider pH range (3-9) during phenol degradation than A. faecalis (pH 7-9). Phenol degradation was repressed in C. tropicalis by acetate and glucose, but not by lactate. Glucose and acetate had little effect, while lactate stimulated phenol degradation in A. faecalis. To our knowledge, these soils had never been contaminated with man-made phenolic compounds and this is the first report of phenol-degrading microorganisms from Amazonian forest soil samples. The results support the idea that natural uncontaminated environments contain sufficient genetic diversity to make them valid choices for the isolation of microorganisms useful in bioremediation.

  2. Salt tolerance (STO), a stress-related protein, has a major role in light signalling.

    PubMed

    Indorf, Martin; Cordero, Julio; Neuhaus, Gunther; Rodríguez-Franco, Marta

    2007-08-01

    The salt tolerance protein (STO) of Arabidopsis was identified as a protein conferring salt tolerance to yeast cells. In order to uncover its function, we isolated an STO T-DNA insertion line and generated RNAi and overexpressor Arabidopsis plants. Here we present data on the hypocotyl growth of these lines indicating that STO acts as a negative regulator in phytochrome and blue-light signalling. Transcription analysis of STO uncovered a light and circadian dependent regulation of gene expression, and analysis of light-regulated genes revealed that STO is involved in the regulation of CHS expression during de-etiolation. In addition, we could show that CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) represses the transcription of STO and contributes to the destabilization of the protein in etiolated seedlings. Microscopic analysis revealed that the STO:eGFP fusion protein is located in the nucleus, accumulates in a light-dependent manner, and, in transient transformation assays in onion epidermal cells, co-localizes with COP1 in nuclear and cytoplasmic aggregations. However, the analysis of gain- and loss-of-function STO mutants in the cop1-4 background points towards a COP1-independent role during photomorphogenesis.

  3. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices

    PubMed Central

    Singh, Y.P.; Mishra, V.K.; Singh, Sudhanshu; Sharma, D.K.; Singh, D.; Singh, U.S.; Singh, R.K.; Haefele, S.M.; Ismail, A.M.

    2016-01-01

    . Hence, 150 kg N ha−1 was considered the economic optimum N application rate for CSR43 in these sodic soils. Using 150–60–40–25 kg N–P2O5–K2O–ZnSO4·7H2O ha−1 in farmers’ fields grown to CSR43 produced an average of 5.5 t ha−1 grain. The results of on-farm evaluation trials of CSR43 showed that matching management practices (Mmp) increased yield by 8% over existing best management practices (Bmp) recommended by ICAR-CSSRI for sodic soils and by 16% over framers’ management practices; however, combining Mmp with CSR43 resulted in 35% higher yields over farmers’ current varieties and management. This approach of combining cost effective crop and nutrient management options and a salt-tolerant variety can maximize the productivity and profitability of sodic soils in the alluvial Indo-Gangetic plains and in neighboring salt-affected areas of the Ganges mega delta in South Asia. PMID:27212787

  4. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices.

    PubMed

    Singh, Y P; Mishra, V K; Singh, Sudhanshu; Sharma, D K; Singh, D; Singh, U S; Singh, R K; Haefele, S M; Ismail, A M

    2016-04-01

    kg N ha(-1) was considered the economic optimum N application rate for CSR43 in these sodic soils. Using 150-60-40-25 kg N-P2O5-K2O-ZnSO4·7H2O ha(-1) in farmers' fields grown to CSR43 produced an average of 5.5 t ha(-1) grain. The results of on-farm evaluation trials of CSR43 showed that matching management practices (Mmp) increased yield by 8% over existing best management practices (Bmp) recommended by ICAR-CSSRI for sodic soils and by 16% over framers' management practices; however, combining Mmp with CSR43 resulted in 35% higher yields over farmers' current varieties and management. This approach of combining cost effective crop and nutrient management options and a salt-tolerant variety can maximize the productivity and profitability of sodic soils in the alluvial Indo-Gangetic plains and in neighboring salt-affected areas of the Ganges mega delta in South Asia.

  5. Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use.

    PubMed

    Moya, José Luís; Gómez-Cadenas, Aurelio; Primo-Millo, Eduardo; Talon, Manuel

    2003-02-01

    In this work, seedlings of two citrus rootstocks, the salt-tolerant Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and the salt-sensitive Carrizo citrange (Citrus sinensis [L.] Osb. x Poncirus trifoliata [L.] Raf.) were used to study the relationship between chloride and water uptake. The results indicated that net chloride uptake rates in both genotypes were alike and decreased linearly with the time of salinity exposure, although they were more rapidly reduced in the tolerant genotype. In each rootstock, chloride uptake rates paralleled the decreases in transpiration rates. When transpiration was modified, concomitant changes in leaf Cl(-) concentrations were observed. There was a high positive correlation between total chloride content per plant and total water absorbed. In addition, the data indicate that the tolerant genotype "excluded" more chloride, i.e. it absorbed lower amounts of chloride per volume of water. Cleopatra also possessed a less efficient root system for water uptake and a higher shoot-to-root ratio. The results show that, overall, chloride absorption is linked to water use and that further tolerance in Cleopatra is mostly conferred by superior root resistance to Cl(-) uptake. Therefore, it is proposed that chloride absorption and, hence, salt tolerance in citrus depends to a great extent upon water use.

  6. Tolerance to Ischemia – an increasingly complex biology

    PubMed Central

    Meller, Robert; Simon, Roger P.

    2013-01-01

    In this review we identify and discuss some of the genomics studies of preconditioning and the ischemic tolerance phenomenon. Such studies have been attempted in multiple species, using different array technologies and with different preconditioning and tolerance models. In addition, studies are starting to reveal epigenetic mechanisms and modifiers of tolerance and preconditioning. Together these studies are starting to reveal some of the immense complexity of the ischemic tolerance phenomenon, yet further studies await to be performed. PMID:23504451

  7. The Effect of Exogenous Spermidine Concentration on Polyamine Metabolism and Salt Tolerance in Zoysiagrass (Zoysia japonica Steud) Subjected to Short-Term Salinity Stress

    PubMed Central

    Li, Shucheng; Jin, Han; Zhang, Qiang

    2016-01-01

    Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd. PMID:27582752

  8. Hydrogen production of a salt tolerant strain Bacillus sp. B2 from marine intertidal sludge.

    PubMed

    Liu, Hongyan; Wang, Guangce

    2012-01-01

    To isolate a salt tolerant hydrogen-producing bacterium, we used the sludge from the intertidal zone of a bathing beach in Tianjin as inoculum to enrich hydrogen-producing bacteria. The sludge was treated by heat-shock pretreatment with three different temperature (80, 100 and 121°C) respectively. A hydrogen-producing bacterium was isolated from the sludge pretreated at 80°C by sandwich plate technique and identified using microscopic examination and 16S rDNA gene sequence analysis. The isolated bacterium was named as Bacillus sp. B2. The present study examined the hydrogen-producing ability of Bacillus sp. B2. The strain was able to produce hydrogen over a wide range of initial pH from 5.0 to 10.0, with an optimum at pH 7.0. The level of hydrogen production was also affected by the salt concentration. Strain B2 has unique capability to adapt high salt concentration. It could produce hydrogen at the salt concentration from 4 to 60‰. The maximum of hydrogen-producing yield of strain B2 was 1.65 ± 0.04 mol H(2)/mol glucose (mean ± SE) at an initial pH value of 7.0 in marine culture conditions. Hydrogen production under fresh culture conditions reached a higher level than that in marine ones. As a result, it is likely that Bacillus sp. B2 could be applied to biohydrogen production using both marine and fresh organic waste.

  9. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene

    PubMed Central

    Karaba, Aarati; Dixit, Shital; Greco, Raffaella; Aharoni, Asaph; Trijatmiko, Kurniawan R.; Marsch-Martinez, Nayelli; Krishnan, Arjun; Nataraja, Karaba N.; Udayakumar, Makarla; Pereira, Andy

    2007-01-01

    Freshwater is a limited and dwindling global resource; therefore, efficient water use is required for food crops that have high water demands, such as rice, or for the production of sustainable energy biomass. We show here that expression of the Arabidopsis HARDY (HRD) gene in rice improves water use efficiency, the ratio of biomass produced to the water used, by enhancing photosynthetic assimilation and reducing transpiration. These drought-tolerant, low-water-consuming rice plants exhibit increased shoot biomass under well irrigated conditions and an adaptive increase in root biomass under drought stress. The HRD gene, an AP2/ERF-like transcription factor, identified by a gain-of-function Arabidopsis mutant hrd-D having roots with enhanced strength, branching, and cortical cells, exhibits drought resistance and salt tolerance, accompanied by an enhancement in the expression of abiotic stress associated genes. HRD overexpression in Arabidopsis produces thicker leaves with more chloroplast-bearing mesophyll cells, and in rice, there is an increase in leaf biomass and bundle sheath cells that probably contributes to the enhanced photosynthesis assimilation and efficiency. The results exemplify application of a gene identified from the model plant Arabidopsis for the improvement of water use efficiency coincident with drought resistance in the crop plant rice. PMID:17881564

  10. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance.

    PubMed

    Shen, Xinjie; Guo, Xinwei; Guo, Xiao; Zhao, Di; Zhao, Wei; Chen, Jingsheng; Li, Tianhong

    2017-03-01

    Plant R2R3-MYB transcription factors play crucial roles in stress responses. We previously isolated a R2R3-MYB homolog from sweet cherry cv. Hong Deng, designated PacMYBA (GenBank accession No. KF974774). To explore the role of PacMYBA in the plant stress response, we heterologously expressed PacMYBA in transgenic Arabidopsis thaliana plants. In a previous study, we demonstrated that PacMYBA is mainly localized to the nucleus and could be induced by abscisic acid (ABA). Analysis of the promoter sequence of PacMYBA revealed that it contains several stress-related cis-elements. QPCR results showed that PacMYBA is induced by salt, salicylic (SA), and jasmonic acid (JA) in sweet cherry leaves. Transgenic Arabidopsis plants heterologously expressing PacMYBA exhibited enhanced salt-tolerance and increased resistance to Pseudomonas syringe pv. tomato (Pst) DC3000 infection. Overexpression of PacMYBA decreased the osmotic potential (OP), increased the free proline content, and increased the peroxidase content in transgenic Arabidopsis plants. Furthermore, overexpression of PacMYBA also affected the expression levels of salt stress- and pathogen defense-related genes in the transgenic plants. These results indicate that PacMYBA is a positive regulator of salt stress tolerance and pathogen resistance.

  11. Development and characterization of seashore paspulum SSR markers and identification of markers associated with salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity is a major environmental factor limiting plant growth and productivity. Restrictions on water-use due to water shortages have resulted in the use of secondary water sources, which are often higher in salt, to irrigate turf. Furthermore, the increasing use of irrigation, which is highly...

  12. The role of salinity tolerance and competition in the distribution of an endangered desert salt marsh endemic

    USGS Publications Warehouse

    DeFalco, Lesley; Scoles, Sara; Beamguard, Emily R.

    2017-01-01

    Rare plants are often associated with distinctive soil types, and understanding why endemic species occur in unique environments is fundamental for their management. At Ash Meadows National Wildlife Refuge in southern Nevada, USA, we evaluated whether the limited distribution of endangered Amargosa niterwort (Nitrophila mohavensis) is explained by this species’ tolerance of saline soils on salt-encrusted mud flats compared with the broadly distributed desert saltgrass (Distichlis spicata var. stricta). We simultaneously explored whether niterwort distribution is restricted from expanding due to interspecific competition with saltgrass. Surface soils collected throughout niterwort’s range were unexpectedly less saline with lower extractable Na, seasonal electroconductivity, and Na absorption ratio, and higher soil moisture than in adjacent saltgrass or mixed shrub habitats. Comparison of niterwort and saltgrass growth along an experimental salinity gradient in a greenhouse demonstrated lower growth of niterwort at all but the highest NaCl concentrations. Although growth of niterwort ramets was similar when transplanted into both habitats at the refuge below Crystal Reservoir, niterwort reproductive effort was considerably higher in saltgrass compared to its own habitat, implying reallocation of resources to sexual reproduction to maximize fitness when the probability of ramet mortality increases with greater salinity stress. Saltgrass was not a demonstrated direct competitor of niterwort; however, this species is known to increase soil salinity by exuding salt ions and through litterfall. Niterwort conservation will benefit from protecting hydrological processes that reduce salinity stress and preventing saltgrass colonization into niterwort habitat.

  13. Proteomic study participating the enhancement of growth and salt tolerance of bottle gourd rootstock-grafted watermelon seedlings.

    PubMed

    Yang, Yanjuan; Wang, Liping; Tian, Jing; Li, Jing; Sun, Jin; He, Lizhong; Guo, Shirong; Tezuka, Takafumi

    2012-09-01

    An insertion grafting technique to do research on salt tolerance was applied using watermelon (Citrullus lanatus [Thunb.] Mansf. cv. Xiuli) as a scion and bottle gourd (Lagenaria siceraria Standl. cv. Chaofeng Kangshengwang) as a rootstock. Rootstock-grafting significantly relieved the inhibition of growth and photosynthesis induced by salt stress in watermelon plants. Proteomic analysis revealed 40 different expressed proteins in response to rootstock-grafting and/or salt stress. These proteins were involved in Calvin cycle, amino acids biosynthesis, carbohydrate and energy metabolism, ROS defense, hormonal biosynthesis and signal transduction. Most of these proteins were up-regulated by rootstock-grafting and/or susceptible to salt stress. The enhancement of the metabolic activities of Calvin cycle, biosynthesis of amino acids, carotenoids and peroxisomes, glycolytic pathway and tricarboxylic acid cycle will probably contribute to intensify the biomass and photosynthetic capacity in rootstock-grafted seedlings under condition without salt. The accumulation of key enzymes included in these biological processes described above seems to play an important role in the enhancement of salt tolerance of rootstock-grafted seedlings. Furthermore, leucine-rich repeat transmembrane protein kinase and phospholipase may be involved in transmitting the internal and external stimuli induced by grafting and/or salt stress.

  14. Increased salt appetite in patients with congenital adrenal hyperplasia 21-hydroxylase deficiency.

    PubMed

    Kochli, A; Tenenbaum-Rakover, Y; Leshem, M

    2005-06-01

    Salt appetite was investigated in 14 patients with congenital adrenal hyperplasia of the salt-wasting form (SW group), 12 patients with the simple virilized form who are not salt losing, and 18 healthy siblings. Salt appetite was evaluated by questionnaire, preference tests, and dietary analyses. The findings showed that SW who were not therapeutically normalized showed increased salt appetite but no change in sweet preference. Their salt appetite correlated with symptoms of salt wasting, namely, plasma renin activity, plasma K(+), and urine Na(+) and (inversely) with blood pressure. Sensitivity to the taste of NaCl was not altered. Factor analyses of a larger group confirmed the distinction between salt appetite and sweet preference, but intake of dietary Na(+) and sweet carbohydrates and intake of salty and sweet snacks did not reflect distinct salt or sweet preferences. We confirm that putative perinatal dehydration, due to maternal nausea and vomiting during pregnancy, childhood vomiting, and diarrhea with occasional saline infusion, was related to increased salt appetite in adolescence. The findings suggest that salt appetite in humans is determined by interdependent, innate, physiological, and acquired attributes. Salt appetite in SW patients is an adaptive response mediated by the renin-angiotensin system, an innate predisposition to acquire salt preference (in anticipation of both sodium loss and its consequence), and imprinting by perinatal hyponatremic occurrences. Our findings contribute to understanding human salt intake, provide insight into the motivation for salt in patients with congenital adrenal hyperplasia 21-OH deficiency, and may point the way to improvements in therapeutic compliance in these patients.

  15. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato.

    PubMed

    Zhang, Chanjuan; Liu, Junxia; Zhang, Yuyang; Cai, Xiaofeng; Gong, Pengjuan; Zhang, Junhong; Wang, Taotao; Li, Hanxia; Ye, Zhibiao

    2011-03-01

    GDP-Mannose 3',5'-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.

  16. Natural stiffening increases flaw tolerance of biological fibers

    NASA Astrophysics Data System (ADS)

    Giesa, Tristan; Pugno, Nicola M.; Buehler, Markus J.

    2012-10-01

    Many fibers in biomaterials such as tendon, elastin, or silk feature a nonlinear stiffening behavior of the stress-strain relationship, where the rigidity of the material increases severely as the material is being stretched. Here we show that such nonlinear stiffening is beneficial for a fiber's ability to withstand cracks, leading to a flaw tolerant state in which stress concentrations around cracks are diminished. Our findings, established by molecular mechanics and the derivation of a theoretical scaling law, explain experimentally observed fiber sizes in a range of biomaterials and point to the importance of nonlinear stiffening to enhance their fracture properties. Our study suggests that nonlinear stiffening provides a mechanism by which nanoscale mechanical properties can be scaled up, providing a means towards bioinspired fibrous material and structural design.

  17. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica.

    PubMed

    Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini

    2013-06-01

    Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.

  18. Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis.

    PubMed

    Liu, Liang; Wang, Ying; Wang, Nan; Dong, Yuan-Yuan; Fan, Xiu-Duo; Liu, Xiu-Ming; Yang, Jing; Li, Hai-Yan

    2011-09-01

    Salt, saline-alkali conditions, and drought are major environmental factors limiting plant growth and productivity. The vacuolar H(+)-translocating inorganic pyrophosphatase (V-H(+)-PPase) is an electrogenic proton pump that translocates protons into vacuoles in plant cells. Expression of V-H(+)-PPase increases in plants under a number of abiotic stresses, and is thought to have an important role in adaptation to abiotic stress. In this work, we report the isolation and characterization of the gene, ScVP, encoding a vacuolar inorganic pyrophosphatase (V-H(+)-PPase) from the halophyte, Suaeda corniculata. Semi-quantitative reverse transcription-polymerase chain reaction analysis showed that ScVP was induced in roots, stems and leaves under treatment with salt, saline-alkali and drought. Compared with wild-type (WT) Arabidopsis, transgenic plants overexpressing ScVP accumulated more Na(+) in leaves and roots, and showed increased tolerance to high salinity, saline-alkali and drought stresses. The germination percentage of transgenic Arabidopsis seeds was higher than that of WT seeds under the abiotic stresses. The root length of transgenic plants under salt stress was longer than that of WT plants. Furthermore, the rate of water loss during drought stress was higher in WT than in transgenic plants. Collectively, these results indicate that ScVP plays an important role in plant tolerance to salt, saline-alkali and drought stress.

  19. Hyperactive mutant of a wheat plasma membrane Na(+)/H(+) antiporter improves the growth and salt tolerance of transgenic tobacco.

    PubMed

    Zhou, Yang; Lai, Zesen; Yin, Xiaochang; Yu, Shan; Xu, Yuanyuan; Wang, Xiaoxiao; Cong, Xinli; Luo, Yuehua; Xu, Haixia; Jiang, Xingyu

    2016-12-01

    Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na(+) transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na(+) efflux and K(+) influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na(+) efflux and K(+) influx, resulting in less Na(+) and more K(+) accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions.

  20. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress.

    PubMed

    Lai, Shu-Jung; Lai, Mei-Chin; Lee, Ren-Jye; Chen, Yu-Hsuan; Yen, Hungchen Emilie

    2014-07-01

    Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.

  1. Genetic variation in salt tolerance during seed germination in a backcross inbred line population and advanced breeding lines derived from upland cotton x pima cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination is a crucial phase of the plant life cycle that affects its establishment and productivity. However, information on salt tolerance at this phase is limited. Pima cotton (Gossypium barbadense L.) may be more salt tolerant during germination than Upland cotton (G. hirsutum L.) based o...

  2. A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress.

    PubMed

    Egamberdieva, Dilfuza; Li, Li; Lindström, Kristina; Räsänen, Leena A

    2016-03-01

    Chinese liquorice (Glycyrrhiza uralensis Fish.) is a salt-tolerant medicinal legume that could be utilized for bioremediation of salt-affected soils. We studied whether co-inoculation of the symbiotic Mesorhizobium sp. strain NWXJ19 or NWXJ31 with the plant growth-promoting Pseudomonas extremorientalis TSAU20 could restore growth, nodulation, and shoot/root nitrogen contents of salt-stressed G. uralensis, which was grown in potting soil and irrigated with 0, 50, and 75 mM NaCl solutions under greenhouse conditions. Irrigation with NaCl solutions clearly retarded the growth of uninoculated liquorice, and the higher the NaCl concentration (75 and 100 mM NaCl), the more adverse is the effect. The two Mesorhizobium strains, added either alone or in combination with P. extremorientalis TSAU20, responded differently to the salt levels used. The strain NWXJ19 was a good symbiont for plants irrigated with 50 mM NaCl, whereas the strain NWXJ31 was more efficient for plants irrigated with water or 75 mM NaCl solution. P. extremorientalis TSAU20 combined with single Mesorhizobium strains alleviated the salt stress of liquorice plants and improved yield and nodule numbers significantly in comparison with single-strain-inoculated liquorice. Both salt stress and inoculation raised the nitrogen content of shoots and roots. The nitrogen contents were at their highest, i.e., 30 and 35 % greater compared to non-stressed uninoculated plants, when plants were inoculated with P. extremorientalis TSAU20 and Mesorhizobium sp. NWXJ31 as well as irrigated with 75 mM NaCl solution. From this study, we conclude that dual inoculation with plant growth-promoting rhizobacteria could be a new approach to improve the tolerance of G. uralensis to salt stress, thereby improving its suitability for the remediation of saline lands.

  3. The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance

    PubMed Central

    Liu, Lijing; Cui, Feng; Li, Qingliang; Yin, Bojiao; Zhang, Huawei; Lin, Baoying; Wu, Yaorong; Xia, Ran; Tang, Sanyuan; Xie, Qi

    2011-01-01

    Eukaryotic organisms have quality-control mechanisms that allow misfolded or unassembled proteins to be retained in the endoplasmic reticulum (ER) and subsequently degraded by ER-associated degradation (ERAD). The ERAD pathway is well studied in yeast and mammals; however, the biological functions of plant ERAD have not been reported. Through molecular and cellular biological approaches, we found that ERAD is necessary for plants to overcome salt stress. Upon salt treatment ubiquitinated proteins increased in plant cells, especially unfolded proteins that quickly accumulated in the ER and subsequently induced ER stress responses. Defect in HRD3A of the HRD1/HRD3 complex of the ERAD pathway resulted in alteration of the unfolded protein response (UPR), increased plant sensitivity to salt, and retention of ERAD substrates in plant cells. Furthermore, we demonstrated that Ca2+ release from the ER is involved in the elevation of UPR and reactive oxygen species (ROS) participates the ERAD-related plant salt response pathway. PMID:21187857

  4. Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1)in peanut to improve salt tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...

  5. De Novo Transcriptome Sequencing of Desert Herbaceous Achnatherum splendens (Achnatherum) Seedlings and Identification of Salt Tolerance Genes

    PubMed Central

    Liu, Jiangtao; Zhou, Yuelong; Luo, Changxin; Xiang, Yun; An, Lizhe

    2016-01-01

    Achnatherum splendens is an important forage herb in Northwestern China. It has a high tolerance to salinity and is, thus, considered one of the most important constructive plants in saline and alkaline areas of land in Northwest China. However, the mechanisms of salt stress tolerance in A. splendens remain unknown. Next-generation sequencing (NGS) technologies can be used for global gene expression profiling. In this study, we examined sequence and transcript abundance data for the root/leaf transcriptome of A. splendens obtained using an Illumina HiSeq 2500. Over 35 million clean reads were obtained from the leaf and root libraries. All of the RNA sequencing (RNA-seq) reads were assembled de novo into a total of 126,235 unigenes and 36,511 coding DNA sequences (CDS). We further identified 1663 differentially-expressed genes (DEGs) between the salt stress treatment and control. Functional annotation of the DEGs by gene ontology (GO), using Arabidopsis and rice as references, revealed enrichment of salt stress-related GO categories, including “oxidation reduction”, “transcription factor activity”, and “ion channel transporter”. Thus, this global transcriptome analysis of A. splendens has provided an important genetic resource for the study of salt tolerance in this halophyte. The identified sequences and their putative functional data will facilitate future investigations of the tolerance of Achnatherum species to various types of abiotic stress. PMID:27023614

  6. Genetic variation in salt tolerance at the seedling stage in an interspecific backcross inbred line population of cultivated tetraploid cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil salinity reduces cotton growth, yield, and fiber quality and has become a serious problem in the arid southwestern region of the Unites States. Development and planting of salt-tolerant cultivars could ameliorate the deleterious effects. The objectives of this study were to assess the genetic v...

  7. Molecular Breeding to Improve Salt Tolerance of Rice (Oryza sativa L.) in the Red River Delta of Vietnam.

    PubMed

    Linh, Le Hung; Linh, Ta Hong; Xuan, Tran Dang; Ham, Le Huy; Ismail, Abdelbagi M; Khanh, Tran Dang

    2012-01-01

    Rice is a stable food in Vietnam and plays a key role in the economy of the country. However, the production and the cultivating areas are adversely affected from the threats of devastation caused by the rise of sea level. Using marker-assisted backcrossing (MABC) to develop a new salt tolerance rice cultivar is one of the feasible methods to cope with these devastating changes. To improve rice salt tolerance in BT7 cultivar, FL478 was used as a donor parent to introgress the Saltol QTL conferring salt tolerance into BT7. Three backcrosses were conducted and successfully transferred positive alleles of Saltol from FL478 into BT7. The plants numbers IL-30 and IL-32 in BC(3)F(1) population expected recurrent genome recovery of up to 99.2% and 100%, respectively. These selected lines that carried the Saltol alleles were screened in field for their agronomic traits. All improved lines had Saltol allele similar to the donor parent FL478, whereas their agronomic performances were the same as the original BT7. We show here the success of improving rice salt tolerance by MABC and the high efficiency of selection in early generations. In the present study, MABC has accelerated the development of superior qualities in the genetic background of BT7.

  8. Long-Term Tolerability and Effectiveness of Once-Daily Mixed Amphetamine Salts (Adderall XR) in Children with ADHD

    ERIC Educational Resources Information Center

    McGough, James J.; Biederman, Joseph; Wigal, Sharon B.; Lopez, Frank A.; McCracken, James T.; Spencer, Thomas; Zhang, Yuxin; Tulloch, Simon J.

    2005-01-01

    Objective: To evaluate the long-term tolerability and effectiveness of extended-release mixed amphetamine salts (MAS XR; Adderall XR[R]) in children with attention-deficit/hyperactivity disorder (ADHD). Method: This was a 24-month, multicenter, open-label extension of TWO placebo-controlled studies of MAS XR in children with ADHD aged 6 to 12…

  9. Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis.

    PubMed

    Rai, Archana N; Tamirisa, Srinath; Rao, K V; Kumar, Vinay; Suprasanna, P

    2016-03-01

    'Early responsive to dehydration' (ERD) genes are a group of plant genes having functional roles in plant stress tolerance and development. In this study, we have isolated and characterized a Brassica juncea 'ERD' gene (BjERD4) which encodes a novel RNA binding protein. The expression pattern of ERD4 analyzed under different stress conditions showed that transcript levels were increased with dehydration, sodium chloride, low temperature, heat, abscisic acid and salicylic acid treatments. The BjERD4 was found to be localized in the chloroplasts as revealed by Confocal microscopy studies. To study the function, transgenic Arabidopsis plants were generated and analyzed for various morphological and physiological parameters. The overexpressing transgenic lines showed significant increase in number of leaves with more leaf area and larger siliques as compared to wild type plants, whereas RNAi:ERD4 transgenic lines showed reduced leaf number, leaf area, dwarf phenotype and delayed seed germination. Transgenic Arabidopsis plants overexpressing BjERD4 gene also exhibited enhanced tolerance to dehydration and salt stresses, while the knockdown lines were susceptible as compared to wild type plants under similar stress conditions. It was observed that BjERD4 protein could bind RNA as evidenced by the gel-shift assay. The overall results of transcript analysis, RNA gel-shift assay, and transgenic expression, for the first time, show that the BjERD4 is involved in abiotic stress tolerance besides offering new clues about the possible roles of BjERD4 in plant growth and development.

  10. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth.

    PubMed

    Zhang, Jiantao; Liu, Hua; Sun, Jian; Li, Bei; Zhu, Qiang; Chen, Shaoliang; Zhang, Hongxia

    2012-01-01

    Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis.

  11. A ginseng PgTIP1 gene whose protein biological activity related to Ser(128) residue confers faster growth and enhanced salt stress tolerance in Arabidopsis.

    PubMed

    Li, Jia; Cai, Weiming

    2015-05-01

    Water movement across cellular membranes is mostly regulated by aquaporins. A tonoplast intrinsic protein PgTIP1 from Panax ginseng has been found to play an important role in plant growth and development, and also in the response of plants to abiotic stress. However, the regulation of its function and activity remains unknown. To answer this question, mutated forms of PgTIP1 were made by replacing Ser(128) with Ala (named S128A) or Asp (named S128D), and also by replacing Thr(54) with Ala (named T54A) or Asp (named T54D). Then, wild type or mutated PgTIP1 was expressed in yeast and water transport was monitored in protoplasts. The substitution of Ser(128) abolished the water channel activity of PgTIP1, while the substitution of Thr(54) did not inhibit its activity. Moreover, the overexpression of PgTIP1 but not S128A or S128D in Arabidopsis significantly increased plant growth as determined by biomass production, it also had a beneficial effect on salt stress tolerance. Importantly, the overexpression of PgTIP1 led to the altered expression of stress-related genes, which made the plants more tolerant to salt stress. Our results demonstrated that PgTIP1 conferred faster growth and enhanced tolerance to salt in Arabidopsis, and that its biological activity related to Ser(128) residue.

  12. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis.

    PubMed

    Zhao, Junsheng; Zhi, Daying; Xue, Zheyong; Liu, Heng; Xia, Guangmin

    2007-10-01

    Salinity is a major abiotic stress factor limiting crop production. To generate salt-tolerant turf and forage, we had transformed tall fescue (Festuca arundinacea) with AtNHX1, a vacuolar Na(+)/H(+) antiporter gene from Arabidopsis thaliana. In this paper, we report that overexpression of the AtNHX1 gene confers enhanced salt tolerance to the transformed tall fescue progenies. DNA gel blot analysis and reverse transcription (RT) polymerase chain reaction (PCR) were carried out to confirm the inheritance and expression of the AtNHX1 gene in transgenic T(1) and T(2) lines. These transgenic lines showed no phenotypic changes or yield reduction. Plants carrying the AtNHX1 gene were more resistant to a 20 mM NaCl solution than control plants. The roots of the transgenic lines had a higher sodium content than controls, due to an increased Na(+)/H(+) antiporter activity in tonoplast vesicles. Our results suggest that this accumulation of sodium in vacuoles of root cells, mediated by vacuolar Na(+)/H(+) antiporters, reduced the toxic effects of salinity to tall fescue and thus enhanced its salt tolerance.

  13. Knocking Down the Expression of GMPase Gene OsVTC1-1 Decreases Salt Tolerance of Rice at Seedling and Reproductive Stages

    PubMed Central

    Liu, Hai; Zhao, Hui; Deng, Zaian; Zhang, Zhili; Huang, Rongfeng; Zhang, Zhijin

    2016-01-01

    Salinity is a severe environmental stress that greatly impairs production of crops worldwide. Previous studies have shown that GMPase plays an important role in tolerance of plants to salt stress at vegetative stage. However, the function of GMPase in plant responses to salt stress at reproductive stage remains unclear. Studies have shown that heterologous expression of rice GMPase OsVTC1-1 enhanced salt tolerance of tobacco seedlings, but the native role of OsVTC1-1 in salt stress tolerance of rice is unknown. To illustrate the native function of GMPase in response of rice to salt stress, OsVTC1-1 expression was suppressed using RNAi-mediated gene silencing. Suppressing OsVTC1-1 expression obviously decreased salt tolerance of rice varieties at vegetative stage. Intriguingly, grain yield of OsVTC1-1 RNAi rice was also significantly reduced under salt stress, indicating that OsVTC1-1 plays an important role in salt tolerance of rice at both seedling and reproductive stages. OsVTC1-1 RNAi rice accumulated more ROS under salt stress, and supplying exogenous ascorbic acid restored salt tolerance of OsVTC1-1 RNAi lines, suggesting that OsVTC1-1 is involved in salt tolerance of rice through the biosynthesis regulation of ascorbic acid. Altogether, results of present study showed that rice GMPase gene OsVTC1-1 plays a critical role in salt tolerance of rice at both vegetative and reproductive stages through AsA scavenging of excess ROS. PMID:27992560

  14. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient.

    PubMed

    Vasquez, Edward A; Glenn, Edward P; Guntenspergen, Glenn R; Brown, J Jed; Nelson, Stephen G

    2006-12-01

    An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na(+) for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.

  15. ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis.

    PubMed

    Kong, Xiangpei; Pan, Jiaowen; Zhang, Maoying; Xing, Xin; Zhou, Yan; Liu, Yang; Li, Dapeng; Li, Dequan

    2011-08-01

    Mitogen-activated protein kinase (MAPK) cascades are signalling modules that transduce extracellular signalling to a range of cellular responses. Plant MAPK cascades have been implicated in development and stress response. In this study, we isolated a novel group C MAPKK gene, ZmMKK4, from maize. Northern blotting analysis revealed that the ZmMKK4 transcript expression was up-regulated by cold, high salt and exogenous H(2)O(2,) but down-regulated by exogenous abscisic acid (ABA). Over-expression of ZmMKK4 in Arabidopsis conferred tolerance to cold and salt stresses by increased germination rate, lateral root numbers, plant survival rate, chlorophyll, proline and soluble sugar contents, and antioxidant enzyme [peroxidase (POD), catalase (CAT)] activities compared with control plants. Furthermore, ZmMKK4 enhanced a 37 kDa kinase activity after cold and salt stresses. RT-PCR analysis revealed that the transcript levels of stress-responsive transcription factors and functional genes were higher in ZmMKK4-over-expressing plants than in control plants. In addition, ZmMKK4 protein is localized in the nucleus. Taken together, these results indicate that ZmMKK4 is a positive regulator of salt and cold tolerance in plants.

  16. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient

    USGS Publications Warehouse

    Vasquez, Edward A.; Glenn, Edward P.; Guntenspergen, Glenn R.; Brown, J. Jed; Nelson, Stephen G.

    2006-01-01

    An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na+ for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.

  17. Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong

    2016-03-25

    Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance.

  18. Salt stabilizer for preventing chlorine depletion and increasing shelf-life of potable water - A concept

    NASA Technical Reports Server (NTRS)

    Copeland, E. J.; Edgerley, R. H.

    1971-01-01

    Proposed concept, based on law of mass action uses addition of salt to increase chlorine ions produced in sodium hydrochlorite solutions, thereby increasing solution shelf-life. This technique is not costly. Usefulness will be determined by acceptability of salt in product undergoing long shelf-life.

  19. OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa

    PubMed Central

    Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A.; Ruan, Songlin; Zhou, Weijun

    2016-01-01

    Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H2O2-producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na+/K+ ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters (OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1, and OsAKT1) involved in Na+/K+ homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na+ and K+ regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop. PMID:27695459

  20. Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance.

    PubMed

    Gouiaa, Sandra; Khoudi, Habib; Leidi, Eduardo O; Pardo, Jose M; Masmoudi, Khaled

    2012-05-01

    Abiotic stress tolerance of plants is a very complex trait and involves multiple physiological and biochemical processes. Thus, the improvement of plant stress tolerance should involve pyramiding of multiple genes. In the present study, we report the construction and application of a bicistronic system, involving the internal ribosome entry site (IRES) sequence from the 5'UTR of the heat-shock protein of tobacco gene NtHSF-1, to the improvement of salt tolerance in transgenic tobacco plants. Two genes from wheat encoding two important vacuolar ion transporters, Na(+)/H(+) antiporter (TNHXS1) and H(+)-pyrophosphatase (TVP1), were linked via IRES to generate the bicistronic construct TNHXS1-IRES-TVP1. Molecular analysis of transgenic tobacco plants revealed the correct integration of the TNHXS1-IRES-TVP1construct into tobacco genome and the production of the full-length bicistronic mRNA from the 35S promoter. Ion transport analyses with tonoplast vesicles isolated from transgenic lines confirmed that single-transgenic lines TVP1cl19 and TNHXS1cl7 had greater H(+)-PPiase and Na(+)/H(+) antiport activity, respectively, than the WT. Interestingly, the co-expression of TVP1 and TNHXS1 increased both Na(+)/H(+) antiport and H(+)-PPiase activities and induced the H(+) pumping activity of the endogenous V-ATPase. Transgenic tobacco plants expressing TNHXS1-IRES-TVP1 showed a better performance than either of the single gene-transformed lines and the wild type plants when subjected to salt treatment. In addition, the TNHXS1-IRES-TVP1 transgenic plants accumulated less Na(+) and more K(+) in their leaf tissue than did the wild type and the single gene-transformed lines. These results demonstrate that IRES system, described herein, can co-ordinate the expression of two important abiotic stress-tolerance genes and that this expression system is a valuable tool for obtaining transgenic plants with improved salt tolerance.

  1. A novel salt-inducible gene SbSI-1 from Salicornia brachiata confers salt and desiccation tolerance in E. coli.

    PubMed

    Yadav, Narendra Singh; Rashmi, Deo; Singh, Dinkar; Agarwal, Pradeep K; Jha, Bhavanath

    2012-02-01

    Salicornia brachiata is one of the extreme salt tolerant plants and grows luxuriantly in coastal areas. Previously we have reported isolation and characterization of ESTs from S. brachiata with large number of unknown gene sequences. Reverse Northern analysis showed upregulation and downregulation of few unknown genes in response to salinity. Some of these unknown genes were made full length and their functional analysis is being tested. In this study, we have selected a novel unknown salt inducible gene SbSI-1 (Salicornia brachiata salt inducible-1) for the functional validation. The SbSI-1 (Gen-Bank accession number JF 965339) was made full length and characterized in detail for its functional validation under desiccation and salinity. The SbSI-1 gene is 917 bp long, and contained 437 bp 3' UTR, and 480 bp ORF region encoding 159 amino acids protein with estimated molecular mass of 18.39 kDa and pI 8.58. The real time PCR analysis revealed high transcript expression in salt, desiccation, cold and heat stresses. However, the maximum expression was obtained by desiccation. The ORF region of SbSI-1 was cloned in pET28a vector and transformed in BL21 (DE3) E. coli cells. The SbSI-1 recombinant E. coli cells showed tolerance to desiccation and salinity stress compared to only vector in the presence of stress.

  2. Heat-shock protein ClpL/HSP100 increases penicillin tolerance in Streptococcus pneumoniae.

    PubMed

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-01-01

    Penicillin resistance and tolerance has been an increasing threat to the treatment of pneumococcal pneumoniae. However, no penicillin tolerance-related genes have been claimed. Here we show that a major heat shock protein ClpL/HSP100 could modulate the expression of a cell wall synthesis enzyme PBP2x, and subsequently increase cell wall thickness and penicillin tolerance in Streptococus pneumoniae.

  3. Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl- ions from aerial tissues.

    PubMed

    Ren, Shuxin; Weeda, Sarah; Li, Haiwen; Whitehead, Brodie; Guo, Yangdong; Atalay, Asmare; Parry, John

    2012-08-01

    Salt tolerance in plants is a complex trait involving multiple mechanisms. Understanding these mechanisms and their regulation will assist in developing novel strategies to engineer salt-tolerant crops. In the current study, we investigated salt-tolerant mechanisms in soybean (Glycine max) cultivar WF-7 in comparison to salt-sensitive Union. In vivo and in vitro salt assays demonstrated the salt tolerance of WF-7 at the seedling stage and during germination. After a 10-day 200 mM NaCl treatment, chlorophyll content in Union was reduced by 50 % compared to a 17 % reduction in WF-7. WF-7 was also less affected by abscisic acid (ABA) and NaCl during germination than Union. Upon ABA and NaCl treatment, the ABA-responsive genes SCOF1, ASN1, bZIP44, and AAPK1 are differentially expressed in WF-7 and Union seedlings. These results suggest that salt tolerance in WF-7 is in part regulated through an ABA-dependent pathway. In addition, following a 4-day 200 mM NaCl treatment, WF-7 produced more H₂O₂ than Union indicating the involvement of reactive oxygen species (ROS) in regulating salt tolerance in WF-7. Yet another mechanism WF-7 employs is withholding toxic chloride (Cl⁻) ions from aerial tissues. Following 200 mM NaCl treatment, Cl⁻ accumulation was mostly localized to the roots of WF-7. In contrast, most of the Cl⁻ in Union was transported into the stems and leaves. Taken together, our results demonstrated a role of ABA and ROS in regulating salt tolerance in WF-7, and the critical role of Cl⁻ in NaCl-induced mortality in soybean. Key message Withholding toxic Cl⁻ ions from leaves and, to a lesser extent, stems, confers salt tolerance to soybean WF-7. In addition, ABA and ROS may be involved in salt-stress signal transduction.

  4. The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic.

    PubMed

    Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K

    2013-03-01

    Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.

  5. Heterologous expression of the yeast HAL5 gene in tomato enhances salt tolerance by reducing shoot Na+ accumulation in the long term.

    PubMed

    García-Abellan, Jose O; Egea, Isabel; Pineda, Benito; Sanchez-Bel, Paloma; Belver, Andres; Garcia-Sogo, Begoña; Flores, Francisco B; Atares, Alejandro; Moreno, Vicente; Bolarin, Maria C

    2014-12-01

    For salt tolerance to be achieved in the long-term plants must regulate Na(+)/K(+) homeostasis over time. In this study, we show that the salt tolerance induced by overexpression of the yeast HAL5 gene in tomato (Solanum lycopersicum) was related to a lower leaf Na(+) accumulation in the long term, by reducing Na(+) transport from root to shoot over time regardless of the severity of salt stress. Furthermore, maintaining Na(+)/K(+) homeostasis over time was associated with changes in the transcript levels of the Na(+) and K(+) transporters such as SlHKT1;2 and SlHAK5. The expression of SlHKT1;2 was upregulated in response to salinity in roots of transgenic plants but downregulated in the roots of wild-type (WT) plants, which seems to be related to the lower Na(+) transport rate from root to shoot in transgenic plants. The expression of the SlHAK5 increased in roots and leaves of both WT and transgenic plants under salinity. However, this increase was much higher in the leaves of transgenic plants than in those of WT plants, which may be associated with the ability of transgenic leaves to maintain Na(+)/K(+) homeostasis over time. Taken together, the results show that the salt tolerance mechanism induced by HAL5 overexpression in tomato is related to the appropriate regulation of ion transport from root to shoot and maintenance of the leaf Na(+)/K(+) homeostasis through modulation of SlHKT1 and SlHAK5 over time.

  6. Halopriming mediated salt and iso-osmotic PEG stress tolerance and, gene expression profiling in sugarcane (Saccharum officinarum L.).

    PubMed

    Patade, Vikas Yadav; Bhargava, Sujata; Suprasanna, Penna

    2012-10-01

    Seed priming is a well known pre-germination strategy that improves seed performance. However, biochemical and molecular mechanisms underlying priming mediated stress tolerance are little understood. Here, we report results of the study on growth, physiological characteristics and expression of stress responsive genes in salt primed sugarcane cv. Co 86032 plants in response to salt (NaCl, 150 mM) or iso-osmotic (-0.7 MPa) polyethylene glycol-PEG 8000 (20 % w/v) stress exposure for 15 days. Variable growth, osmolyte accumulation and antioxidant capacity was revealed among the primed and non-primed plants. The primed plants showed better tolerance to the salt or PEG stress, as revealed by better growth and lower membrane damage, through better antioxidant capacity as compared to the respective non-primed controls. Further, steady state transcript expression analysis revealed up regulation of sodium proton antiporter (NHX) while, down regulation of sucrose transporter (SUT1), delta ( 1 )-pyrolline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (PDH) in primed plants on exposure to the stress as compared to the non-primed plants. Transcript abundance of catalase (CAT2) decreased by about 25 % in leaves of non-primed stressed plants, however, the expression was maintained in leaves of the stressed primed plants to that of non-stressed controls. Thus, the results indicated priming mediated salt and PEG stress tolerance through altered gene expression leading to improved antioxidant capacity in sugarcane.

  7. RAPD analysis of salt-tolerant yeasts from contaminated seasoned pickled plums and their growth inhibition using food additives.

    PubMed

    Ozaki, Shingen; Fukuda, Seiko; Fujita, Tokio; Kishimoto, Noriaki

    2008-12-01

    Eight salt-tolerant yeasts were isolated from contaminated pickled plums which were seasoned with honey and "Umami" seasoning. They were classified into four main groups according to random amplified polymorphic DNA analysis, and three of ten kinds of food additives tested inhibited their growth. The type strains of each group were identified as Zygosaccharomyces bisporus, Pichia subpeliculosa, and two strains of Candida apicola based on the D1/D2 region sequence of the 26S rRNA gene. They were able to grow in medium containing 6% (w/v) NaCI. A number of yeasts were isolated from production lines by the swab method, but not from the salted plums used as raw materials. These results show that the production lines require washing with antimicrobial agents effective against salt-tolerant yeasts. Three commercial food additives, San-keeper 381, Sunsoft No.700P-2, and potassium sorbate inhibited the growth of Z. bisporus at 125 to 250 microg/ml. In particular, San-keeper 381 altered the morphology of this species at 125 microg/ml. C. apicola and P. subpelliculosa were inhibited by Sunsoft No.700P-2 and potassium sorbate at 250 microg/ml. These results indicate that the washing of production lines with disinfectant and the use of food additives that effectively prevent salt-tolerant yeast contamination are necessary.

  8. Functional analyses of a putative plasma membrane Na+/H+ antiporter gene isolated from salt tolerant Helianthus tuberosus.

    PubMed

    Li, Qing; Tang, Zhong; Hu, Yibing; Yu, Ling; Liu, Zhaopu; Xu, Guohua

    2014-08-01

    Jerusalem artichokes (Helianthus tuberosus L.) can tolerate relatively higher salinity, drought and heat stress. In this paper, we report the cloning of a Salt Overly Sensitive 1 (SOS1) gene encoding a plasma membrane Na(+)/H(+) antiporter from a highly salt-tolerant genotype of H. tuberosus, NY1, named HtSOS1 and characterization of its function in yeast and rice. The amino acid sequence of HtSOS1 showed 83.4% identity with the previously isolated SOS1 gene from the Chrysanthemum crassum. The mRNA level in the leaves of H. tuberosus was significantly up-regulated by presence of high concentrations of NaCl. Localization analysis using rice protoplast expression showed that the protein encoded by HtSOS1 was located in the plasma membrane. HtSOS1 partially suppressed the salt sensitive phenotypes of a salt sensitive yeast strain. In comparison with wild type (Oryza sativa L., ssp. Japonica. cv. Nipponbare), the transgenic rice expressed with HtSOS1 could exclude more Na(+) and accumulate more K(+). Expression of HtSOS1 decreased Na(+) content much larger in the shoot than in the roots, resulting in more water content in the transgenic rice than WT. These data suggested that HtSOS1 may be useful in transgenic approaches to improving the salinity tolerance of glycophyte.

  9. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses.

    PubMed

    Goel, Deepa; Singh, Ajay K; Yadav, Vichita; Babbar, Shashi B; Murata, Norio; Bansal, Kailash C

    2011-07-15

    Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.

  10. A Ribosomal Protein AgRPS3aE from Halophilic Aspergillus glaucus Confers Salt Tolerance in Heterologous Organisms

    PubMed Central

    Liang, Xilong; Liu, Yiling; Xie, Lixia; Liu, Xiaodan; Wei, Yi; Zhou, Xiaoyang; Zhang, Shihong

    2015-01-01

    High salt in soils is one of the abiotic stresses that significantly reduces crop yield, although saline lands are considered potential resources arable for agriculture. Currently, genetic engineering for enhancing salt tolerance is being tested as an efficient and viable strategy for crop improvement. We previously characterized a large subunit of the ribosomal protein RPL44, which is involved in osmotic stress in the extremely halophilic fungus Aspergillus glaucus. Here, we screened another ribosomal protein (AgRPS3aE) that also produced high-salt tolerance in yeast. Bioinformatics analysis indicated that AgRPS3aE encodes a 29.2 kDa small subunit of a ribosomal protein belonging to the RPS3Ae family in eukaryotes. To further confirm its protective function against salinity, we expressed AgRPS3aE in three heterologous systems, the filamentous fungus Magnaporthe oryzae and two model plants Arabidopsis and tobacco. Overexpression of AgRPS3aE in all tested transformants significantly alleviated stress symptoms compared with controls, suggesting that AgRPS3aE functions not only in fungi but also in plants. Considering that ribosomal proteins are housekeeping components in organisms from prokaryotes to eukaryotes, we propose that AgRPS3aE is one of the optimal genes for improving high-salt tolerance in crops. PMID:25642759

  11. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species

    PubMed Central

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-01-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. PMID:27340231

  12. Transgenic rice expressing a cassava (Manihot esculenta Crantz) plasma membrane gene MePMP3-2 exhibits enhanced tolerance to salt and drought stresses.

    PubMed

    Yu, Y; Cui, Y C; Ren, C; Rocha, P S C F; Peng, M; Xu, G Y; Wang, M L; Xia, X J

    2016-02-05

    Plasma membrane proteolipid 3 (PMP3) is a class of small hydrophobic proteins found in many organisms including higher plants. Some plant PMP3 genes have been shown to respond to abiotic stresses and to participate in the processes of plant stress tolerance. In this study, we isolated the cassava (Manihot esculenta Crantz) MePMP3-2 gene and functionally characterized its role in tolerance to abiotic stress by expressing it in rice (Oryza sativa L.). MePMP3-2 encodes a 77-amino acid protein belonging to a subgroup of plant PMP3s that have long hydrophylic C-terminal tails of unknown function. In silico analysis and co-localization studies indicated that MePMP3-2 is a plasma membrane protein with two transmembrane domains, similar to other PMP3s. In cassava leaves, MePMP3-2 expression was up-regulated by salt and drought stresses. Heterologous constitutive expression of MePMP3-2 in rice did not alter plant growth and development but increased tolerance to salt and drought stresses. In addition, under stress conditions MePMP3-2 transgenic plants accumulated less malondialdehyde, had increased levels of proline, and exhibited greater up-regulation of the stress-related genes OsProT and OsP5CS, but led to only minor changes in OsDREB2A and OsLEA3 expression. These findings indicate that MePMP3-2 may play an important role in salt and drought stress tolerance in transgenic rice.

  13. Increased renal oxidative stress in salt-sensitive human GRK4γ486V transgenic mice.

    PubMed

    Diao, Zhenyu; Asico, Laureano D; Villar, Van Anthony M; Zheng, Xiaoxu; Cuevas, Santiago; Armando, Ines; Jose, Pedro A; Wang, Xiaoyan

    2017-05-01

    We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms.

  14. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco.

    PubMed

    George, Suja; Parida, Ajay

    2011-03-01

    Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. In our previous study, we used Prosopis juliflora, an abiotic stress tolerant tree species of Fabaceae, as a model plant system for isolating genes functioning in abiotic stress tolerance. Here we report the isolation and characterization of a Rab family GTPase from P. juliflora (Pj Rab7) and the ability of this gene to confer salt stress tolerance in transgenic tobacco. Northern analysis for Pj Rab7 in P. juliflora leaf tissue revealed up-regulation of this gene under salt stress under the concentrations and time points analyzed. Pj Rab7 transgenic tobacco lines survived better under conditions of 150 mM NaCl stress compared to control un-transformed plants. Pj Rab7 transgenic plants were found to accumulate more sodium than control plants during salt stress. The results of our studies could be used as a starting point for generation of crop plants tolerant to abiotic stress.

  15. Overexpression of soybean R2R3-MYB transcription factor, GmMYB12B2, and tolerance to UV radiation and salt stress in transgenic Arabidopsis.

    PubMed

    Li, X W; Wang, Y; Yan, F; Li, J W; Zhao, Y; Zhao, X; Zhai, Y; Wang, Q Y

    2016-05-25

    MYB, v-myb avian myeloblastosis viral oncogene homolog, proteins play central roles in plant stress response. Previously, we identified a novel R2R3-MYB transcription factor, GmMYB12B2, which affected the expression levels of some key enzyme genes involved in flavonoid biosynthesis in transgenic Arabidopsis. In the present study, we analyzed the expression levels of GmMYB12B2 under salt, low temperature, drought, abscisic acid (ABA), and ultraviolet (UV) radiation treatments in soybean using semi-quantitative reverse transcription polymerase chain reaction. The expression of GmMYB12B2 was drastically induced by UV irradiation and salt treatment, but no response was detected under low temperature, drought, and ABA stresses. A detailed characterization of the GmMYB12B2 overexpression lines revealed that GmMYB12B2 might be involved in response of plants to UV radiation and salt stresses. Transgenic Arabidopsis lines constitutively expressing GmMYB12B2 showed an increased tolerance to salt and UV radiation treatment compared with wild-type plants. The expression levels of certain salt stress-responsive genes, such as DREB2A and RD17, were found to be elevated in the transgenic plants. These results indicate that GmMYB12B2 acts as a regulator in the plant stress response.

  16. Purification and characterization of a salt-tolerant cellulase from the mangrove oyster, Crassostrea rivularis.

    PubMed

    An, Tianchen; Dong, Zhu; Lv, Junchen; Liu, Yujun; Wang, Manchuriga; Wei, Shuangshuang; Song, Yanting; Zhang, Yingxia; Deng, Shiming

    2015-04-01

    A cellulase with wide range of pH resistance and high salt tolerance was isolated from the digestive gland of the oyster Crassostrea rivularis living in mangrove forests. The 27 kDa cellulase named as CrCel was purified 40.6 folds by anion exchange chromatography and extraction from the gel after non-reducing sodium dodecylsufate-polyacrylamide gel electrophoresis. The specific activity of the purified cellulase was 23.4 U/mg against carboxymethyl cellulose (CMC). The N-terminal amino acid sequence of CrCel was determined to be NQKCQANSRV. CrCel preferably hydrolyzes β-1,4-glucosidic bonds in the amorphous parts of cellulose materials and displays degradation activity toward xylan. The Km and Vmax values of CrCel for CMC were determined to be 2.1% ± 0.4% and 73.5 ± 3.3 U mg(-1), respectively. The optimal pH value and temperature of CrCel were 5.5 and 40°C, respectively. The enzyme was stable in a wide range of pH, retaining over 60% activity after incubation for 80 min in the pH range of 3.0-9.0. In addition, CrCel showed remarkable tolerance to salt and remained active at high NaCl concentrations, but also retained over 70% activity after incubation in 0.5-2 M NaCl for up to 24 h. On the basis of the N-terminal sequence alignment and its similar properties to other animal cellulases, CrCel was regarded as a member of glycosyl hydrolase family 45 β-1,4-glucanases. CrCel is the first reported cellulase isolated from mangrove invertebrates, which suggests that it may participate in the assimilation of cellulolytic materials derived from the food sources of the oyster and contribute to the consumption of mangrove primary production. The unique properties of this enzyme make it a potential candidate for further industrial application.

  17. Generation of Wheat Transcription Factor FOX Rice Lines and Systematic Screening for Salt and Osmotic Stress Tolerance.

    PubMed

    Wu, Jinxia; Zhang, Zhiguo; Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui

    2015-01-01

    Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome.

  18. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress.

    PubMed

    Rodríguez-Vargas, Sonia; Sánchez-García, Alicia; Martínez-Rivas, Jose Manuel; Prieto, Jose Antonio; Randez-Gil, Francisca

    2007-01-01

    Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Delta(9) position. We expressed two sunflower (Helianthus annuus) oleate Delta(12) desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Delta(9,12), the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15 degrees C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp(+) or Trp(-) strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30 degrees C or 15 degrees C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.

  19. Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress▿

    PubMed Central

    Rodríguez-Vargas, Sonia; Sánchez-García, Alicia; Martínez-Rivas, Jose Manuel; Prieto, Jose Antonio; Randez-Gil, Francisca

    2007-01-01

    Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp− strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains. PMID:17071783

  20. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    PubMed

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  1. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance

    PubMed Central

    Xie, Yanjie; Mao, Yu; Lai, Diwen; Zhang, Wei; Zheng, Tianqing; Shen, Wenbiao

    2013-01-01

    Despite substantial evidence on the separate roles of Arabidopsis nitric oxide-associated 1 (NOA1)-associated nitric oxide (NO) production and haem oxygenase 1 (HY1) expression in salt tolerance, their integrative signalling pathway remains largely unknown. To fill this knowledge gap, the interaction network among nitrate reductase (NIA/NR)- and NOA1-dependent NO production and HY1 expression was studied at the genetic and molecular levels. Upon salinity stress, the majority of NO production was attributed to NIA/NR/NOA1. Further evidence confirmed that HY1 mutant hy1-100, nia1/2/noa1, and nia1/2/noa1/hy1-100 mutants exhibited progressive salt hypersensitivity, all of which were significantly rescued by three NO-releasing compounds. The salinity-tolerant phenotype and the stronger NO production in gain-of-function mutant of HY1 were also blocked by the NO synthetic inhibitor and scavenger. Although NO- or HY1-deficient mutants showed a compensatory mode of upregulation of HY1 or slightly increased NO production, respectively, during 2 d of salt treatment, downregulation of ZAT10/12-mediated antioxidant gene expression (cAPX1/2 and FSD1) was observed after 7 d of treatment. The hypersensitive phenotypes and stress-related genes expression profiles were differentially rescued or blocked by the application of NO- (in particular) or carbon monoxide (CO)-releasing compounds, showing a synergistic mode. Similar reciprocal responses were observed in the nia1/2/noa1/hy1-100 quadruple mutant, with the NO-releasing compounds exhibit the maximal rescuing responses. Overall, the findings present the combination of compensatory and synergistic modes, linking NIA/NR/NOA1-dependent NO production and HY1 expression in the modulation of plant salt tolerance. PMID:23744476

  2. Seagrass tolerance to herbivory under increased ocean temperatures.

    PubMed

    Garthwin, Ruby G; Poore, Alistair G B; Vergés, Adriana

    2014-06-30

    Climate change is acknowledged as a major threat to marine ecosystems, but the effect of temperature on species interactions remains poorly understood. We quantified the effects of long-term warming on plant-herbivore interactions of a dominant seagrass, Zostera muelleri. Growth, herbivory and tolerance to damage were compared between a meadow warmed by the thermal plume from a power station for 30 years (2-3 °C above background temperatures) and three control locations. Leaf growth rates and tissue loss were spatially variable but unrelated to temperature regimes. Natural herbivory was generally low. Simulated herbivory experiments showed that the tolerance of Z. muelleri to defoliation did not differ between warm and unimpacted meadows, with damaged and undamaged plants maintaining similar growth rates irrespective of temperature. These results suggest that the ability of temperate Z. muelleri to tolerate herbivory is not strongly influenced by warming, and this species may be relatively resilient to future environmental change.

  3. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.

    PubMed

    Xu, Chenping; Sibicky, Tim; Huang, Bingru

    2010-06-01

    Knowledge of stress-responsive proteins is critical for further understanding the molecular mechanisms of stress tolerance. The objectives of this study were to establish a proteomic map for a perennial grass species, creeping bentgrass (A. stolonifera L.), and to identify differentially expressed, salt-responsive proteins in two cultivars differing in salinity tolerance. Plants of two cultivars ('Penncross' and 'Penn-A4') were irrigated daily with water (control) or NaCl solution to induce salinity stress in a growth chamber. Salinity stress was obtained by adding NaCl solution of 2, 4, 6, and 8 dS m(-1) in the soil daily for 2-day intervals at each concentration, and then by watering soil with 10 dS m(-1) solution daily for 28 days. For proteomic map, using two-dimensional electrophoresis (2-DE), approximately 420 and 300 protein spots were detected in leaves and roots, respectively. A total of 148 leaf protein spots and 40 root protein spots were excised from the 2-DE gels and subjected to mass spectrometry analysis. In total, 106 leaf protein spots and 24 root protein spots were successfully identified. Leaves had more salt-responsive proteins than roots in both cultivars. The superior salt tolerance in 'Penn-A4', indicated by shoot extension rate, relative water content, and cell membrane stability during the 28-day salinity stress could be mainly associated with its higher level of vacuolar H(+)-ATPase in roots and UDP-sulfoquinovose synthase, methionine synthase, and glucan exohydrolase in leaves, as well as increased accumulation of catalase and glutathione S-transferase in leaves. Our results suggest that salinity tolerance in creeping bentgrass could be in part controlled by an alteration of ion transport through vacuolar H(+)-ATPase in roots, maintenance of the functionality and integrity of thylakoid membranes, sustained polyamine biosynthesis, and by the activation of cell wall loosening proteins and antioxidant defense mechanisms.

  4. The NPR1-dependent salicylic acid signalling pathway is pivotal for enhanced salt and oxidative stress tolerance in Arabidopsis.

    PubMed

    Jayakannan, Maheswari; Bose, Jayakumar; Babourina, Olga; Shabala, Sergey; Massart, Amandine; Poschenrieder, Charlotte; Rengel, Zed

    2015-04-01

    The role of endogenous salicylic acid (SA) signalling cascades in plant responses to salt and oxidative stresses is unclear. Arabidopsis SA signalling mutants, namely npr1-5 (non-expresser of pathogenesis related gene1), which lacks NPR1-dependent SA signalling, and nudt7 (nudix hydrolase7), which has both constitutively expressed NPR1-dependent and NPR1-independent SA signalling pathways, were compared with the wild type (Col-0) during salt or oxidative stresses. Growth and viability staining showed that, compared with wild type, the npr1-5 mutant was sensitive to either salt or oxidative stress, whereas the nudt7 mutant was tolerant. Acute salt stress caused the strongest membrane potential depolarization, highest sodium and proton influx, and potassium loss from npr1-5 roots in comparison with the wild type and nudt7 mutant. Though salt stress-induced hydrogen peroxide production was lowest in the npr1-5 mutant, the reactive oxygen species (ROS) stress (induced by 1mM of hydroxyl-radical-generating copper-ascorbate mix, or either 1 or 10mM hydrogen peroxide) caused a higher potassium loss from the roots of the npr1-5 mutant than the wild type and nudt7 mutant. Long-term salt exposure resulted in the highest sodium and the lowest potassium concentration in the shoots of npr1-5 mutant in comparison with the wild type and nudt7 mutant. The above results demonstrate that NPR1-dependent SA signalling is pivotal to (i) controlling Na(+) entry into the root tissue and its subsequent long-distance transport into the shoot, and (ii) preventing a potassium loss through depolarization-activated outward-rectifying potassium and ROS-activated non-selective cation channels. In conclusion, NPR1-dependent SA signalling is central to the salt and oxidative stress tolerance in Arabidopsis.

  5. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach.

    PubMed

    Sengupta, Sonali; Majumder, Arun Lahiri

    2009-03-01

    Salinity poses a serious threat to yield performance of cultivated rice in South Asian countries. To understand the mechanism of salt-tolerance of the wild halophytic rice, Porteresia coarctata in contrast to the salt-sensitive domesticated rice Oryza sativa, we have compared P. coarctata with the domesticated O. sativa rice varieties under salinity stress with respect to several physiological parameters and changes in leaf protein expression. P. coarctata showed a better growth performance and biomass under salinity stress. Relative water content was conserved in Porteresia during stress and sodium ion accumulation in leaves was comparatively lesser. Scanning electron microscopy revealed presence of two types of salt hairs on two leaf surfaces, each showing a different behaviour under stress. High salt stress for prolonged period also revealed accumulation of extruded NaCl crystals on leaf surface. Changes induced in leaf proteins were studied by two-dimensional gel electrophoresis and subsequent quantitative image analysis. Out of more than 700 protein spots reproducibly detected and analyzed, 60% spots showed significant changes under salinity. Many proteins showed steady patterns of up- or downregulation in response to salinity stress. Twenty protein spots were analyzed by MALDI-TOF, leading to identification of 16 proteins involved in osmolyte synthesis, photosystem functioning, RubisCO activation, cell wall synthesis and chaperone functions. We hypothesize that some of these proteins confer a physiological advantage on Porteresia under salinity, and suggest a pattern of salt tolerance strategies operative in salt-marsh grasses. In addition, such proteins may turn out to be potential targets for recombinant cloning and introgression in salt-sensitive plants.

  6. Improving the yield of (+)-terrein from the salt-tolerant Aspergillus terreus PT06-2.

    PubMed

    Zhao, Chengying; Guo, Lei; Wang, Liping; Zhu, Guoliang; Zhu, Weiming

    2016-05-01

    (+)-Terrein has a potential application for drug discovery. To improve the yield of (+)-terrein, two-level Plackett-Burman design and response surface methodology methods were used to optimize the condition of a salt-tolerant fungus, Aspergillus terreus PT06-2. As a result, the yield of (+)-terrein reached 8.20 ± 0.072 g/L in a 500-mL flask containing 150 mL optimal medium consisted of 13.1 % NaCl, 3.6 % starch, 2 % sodium glutamate, 0.05 % KCl, 3 % inoculum size, adjusting initial pH value to 5 with 10 % HCl and shaking for 18 days at 28 °C and 180 rpm. The production of (+)-terrein was 47.0 % higher than the highest production reported in shake flasks. The advantages of this optimization are uses of single carbon source and nitrogen source and easy separation and purification by recrystallization. The result exhibited the potential and advantages of A. terreus PT06-2 in industrial production of (+)-terrein by fermentation.

  7. Screening for Abiotic Stress Tolerance in Rice: Salt, Cold, and Drought.

    PubMed

    Almeida, Diego M; Almadanim, M Cecília; Lourenço, Tiago; Abreu, Isabel A; Saibo, Nelson J M; Oliveira, M Margarida

    2016-01-01

    Rice (Oryza sativa) is the primary source of food for more than half of the world population. Most rice varieties are severely injured by abiotic stresses, with strong social and economic impact. Understanding rice responses to stress may help breeding for more tolerant varieties. However, papers dealing with stress experiments often describe very different experimental designs, thus making comparisons difficult. The use of identical setups is the only way to generate comparable data. This chapter is organized into three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB to assess the response of rice plants to three different abiotic stresses--high salinity, cold stress, and drought. All sections include a detailed description of the materials and methodology, as well as useful notes gathered from the GPlantS team's experience. We use rice seedlings as plants at this stage show high sensitivity to abiotic stresses. For the salt and cold stress assays we use hydroponic cultures, while for the drought assay plants are grown in soil and subjected to water withholding. All setups enable visual score determination and are suitable for sample collection along the imposition of stress. The proposed methodologies are simple and affordable to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic level.

  8. Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana

    DOEpatents

    Zhu, Jian-Kang; Quintero-Toscano, Francisco Javier; Pardo-Prieto, Jose Manuel; Qiu, Quansheng; Schumaker, Karen Sue; Ohta, Masaru; Zhang, Changqing; Guo, Yan

    2007-09-04

    The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.

  9. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings.

    PubMed

    Li, Gezi; Peng, Xiaoqi; Wei, Liting; Kang, Guozhang

    2013-10-25

    Exogenous salicylic acid (SA) significantly improved abiotic tolerance in higher plants, and ascorbate (ASA) and glutathione (GSH) play important roles in abiotic tolerance. In this study, SA (0.5mM) markedly increased the contents of ASA and GSH in SA-treated plants during salt stress (250mM NaCl). The transcript levels of the genes encoding ASA and GSH cycle enzymes were measured using quantitative real-time PCR. The results indicated that, during salt stress, exogenous SA significantly enhanced the transcripts of glutathione peroxidase (GPX1), phospholipid hydroperoxide glutathione peroxidase (GPX2) and dehydroascorbate reductase (DHAR) genes at 12h, glutathione reductase (GR) at 24h, 48h and 72h, glutathione-S-transferase 1 (GST1), 2 (GST2), monodehydroascorbate reductase (MDHAR) and glutathione synthetase (GS) at the 48h and 72h after salt stress, respectively. The results implied that SA temporally regulated the transcript levels of the genes encoding ASA-GSH cycle enzymes, resulting in the increased contents of GSH and ASA and enhanced salt tolerance.

  10. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar.

    PubMed

    Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing

    2016-09-01

    The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar.

  11. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance.

    PubMed

    Navarro, Josefa M; Pérez-Tornero, Olaya; Morte, Asunción

    2014-01-01

    Seedlings of Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and Alemow (Citrus macrophylla Wester) were inoculated with a mixture of AM fungi (Rhizophagus irregularis and Funneliformis mosseae) (+AM), or left non-inoculated (-AM). From forty-five days after fungal inoculation onwards, half of +AM or -AM plants were irrigated with nutrient solution containing 50 mM NaCl. Three months later, AM significantly increased plant growth in both Cleopatra mandarin and Alemow rootstocks. Plant growth was higher in salinized +AM plants than in non-salinized -AM plants, demonstrating that AM compensates the growth limitations imposed by salinity. Whereas AM-inoculated Cleopatra mandarin seedlings had a very good response under saline treatment, inoculation in Alemow did not alleviate the negative effect of salinity. The beneficial effect of mycorrhization is unrelated with protection against the uptake of Na or Cl and the effect of AM on these ions did not explain the different response of rootstocks. This response was related with the nutritional status since our findings confirm that AM fungi can alter host responses to salinity stress, improving more the P, K, Fe and Cu plant nutrition in Cleopatra mandarin than in Alemow plants. AM inoculation under saline treatments also increased root Mg concentration but it was higher in Cleopatra mandarin than in Alemow. This could explain why AM fungus did not completely recovered chlorophyll concentrations in Alemow and consequently it had lower photosynthesis rate than control plants. AM fungi play an essential role in citrus rootstock growth and biomass production although the intensity of this response depends on the rootstock salinity tolerance.

  12. Enhanced V-ATPase activity contributes to the improved salt tolerance of transgenic tobacco plants overexpressing vacuolar Na(+)/H (+) antiporter AtNHX1.

    PubMed

    Zhou, Shufeng; Zhang, Zhiming; Tang, Qilin; Lan, Hai; Li, Yinxin; Luo, Ping

    2011-02-01

    AtNHX1, a vacuolar Na(+)/H(+) antiporter gene from Arabidopsis thaliana, was introduced into tobacco genome via Agrobacterium tumefaciens-mediated transformation to evaluate the role of vacuolar energy providers in plants salt stress response. Compared to the wild-type plants, over-expression of AtNHX1 increased salt tolerance in the transgenic tobacco plants, allowing higher germination rates of seeds and successful seedling establishment in the presence of toxic concentrations of NaCl. More importantly, the induced Na(+)/H(+) exchange activity in the transgenic plants was closely correlated to the enhanced activity of vacuolar H(+)-ATPase (V-ATPase) when exposed to 200 mM NaCl. In addition, inhibition of V-ATPase activity led to the malfunction of Na(+)/H(+) exchange activity, placing V-ATPase as the dominant energy provider for the vacuolar Na(+)/H(+) antiporter AtNHX1. V-ATPase and vacuolar Na(+)/H(+) antiporter thus function in an additive or synergistic way. Simultaneous overexpression of V-ATPase and vacuolar Na(+)/H(+) antiporter might be appropriate for producing plants with a higher salt tolerance ability.

  13. A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance.

    PubMed

    Asano, Takayuki; Hayashi, Nagao; Kobayashi, Michie; Aoki, Naohiro; Miyao, Akio; Mitsuhara, Ichiro; Ichikawa, Hiroaki; Komatsu, Setsuko; Hirochika, Hirohiko; Kikuchi, Shoshi; Ohsugi, Ryu

    2012-01-01

    Calcium-dependent protein kinases (CDPKs) regulate the downstream components in calcium signaling pathways. We investigated the effects of overexpression and disruption of an Oryza sativa (rice) CDPK (OsCPK12) on the plant's response to abiotic and biotic stresses. OsCPK12-overexpressing (OsCPK12-OX) plants exhibited increased tolerance to salt stress. The accumulation of hydrogen peroxide (H(2) O(2) ) in the leaves was less in OsCPK12-OX plants than in wild-type (WT) plants. Genes encoding reactive oxygen species (ROS) scavenging enzymes (OsAPx2 and OsAPx8) were more highly expressed in OsCPK12-OX plants than in WT plants, whereas the expression of the NADPH oxidase gene, OsrbohI, was decreased in OsCPK12-OX plants compared with WT plants. Conversely, a retrotransposon (Tos17) insertion mutant, oscpk12, and plants transformed with an OsCPK12 RNA interference (RNAi) construct were more sensitive to high salinity than were WT plants. The level of H(2) O(2) accumulation was greater in oscpk12 and OsCPK12 RNAi plants than in the WT. These results suggest that OsCPK12 promotes tolerance to salt stress by reducing the accumulation of ROS. We also observed that OsCPK12-OX seedlings had increased sensitivity to abscisic acid (ABA) and increased susceptibility to blast fungus, probably resulting from the repression of ROS production and/or the involvement of OsCPK12 in the ABA signaling pathway. Collectively, our results suggest that OsCPK12 functions in multiple signaling pathways, positively regulating salt tolerance and negatively modulating blast resistance.

  14. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae)

    USGS Publications Warehouse

    Vasquez, Edward A.; Glenn, Edward P.; Brown, J. Jed; Guntenspergen, Glenn R.; Nelson, Stephen G.

    2005-01-01

    A distinct, non-native haplotype of the common reed Phragmites australis has become invasive in Atlantic coastal Spartina marshes. We compared the salt tolerance and other growth characteristics of the invasive M haplotype with 2 native haplotypes (F and AC) in greenhouse experiments. The M haplotype retained 50% of its growth potential up to 0.4 M NaCl, whereas the F and AC haplotypes did not grow above 0.1 M NaCl. The M haplotype produced more shoots per gram of rhizome tissue and had higher relative growth rates than the native haplotypes on both freshwater and saline water treatments. The M haplotype also differed from the native haplotypes in shoot water content and the biometrics of shoots and rhizomes. The results offer an explanation for how the M haplotype is able to spread in coastal salt marshes and support the conclusion of DNA analyses that the M haplotype is a distinct ecotype of P. australis.

  15. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside.

    PubMed

    Vaishnav, Anukool; Kumari, Sarita; Jain, Shekhar; Varma, Ajit; Tuteja, Narendra; Choudhary, Devendra Kumar

    2016-11-01

    Increasing evidence shows that nitric oxide (NO), a typical signaling molecule plays important role in development of plant and in bacteria-plant interaction. In the present study, we tested the effect of sodium nitroprusside (SNP)-a nitric oxide donor, on bacterial metabolism and its role in establishment of PGPR-plant interaction under salinity condition. In the present study, we adopted methods namely, biofilm formation assay, GC-MS analysis of bacterial volatiles, chemotaxis assay of root exudates (REs), measurement of electrolyte leakage and lipid peroxidation, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for gene expression. GC-MS analysis revealed that three new volatile organic compounds (VOCs) were expressed after treatment with SNP. Two VOCs namely, 4-nitroguaiacol and quinoline were found to promote soybean seed germination under 100 mM NaCl stress. Chemotaxis assay revealed that SNP treatment, altered root exudates profiling (SS-RE), found more attracted to Pseudomonas simiae bacterial cells as compared to non-treated root exudates (S-RE) under salt stress. Expression of Peroxidase (POX), catalase (CAT), vegetative storage protein (VSP), and nitrite reductase (NR) genes were up-regulated in T6 treatment seedlings, whereas, high affinity K(+) transporter (HKT1), lipoxygenase (LOX), polyphenol oxidase (PPO), and pyrroline-5-carboxylate synthase (P5CS) genes were down-regulated under salt stress. The findings suggest that NO improves the efficiency and establishment of PGPR strain in the plant environment during salt condition. This strategy may be applied on soybean plants to increase their growth during salinity stress.

  16. [ITS-polymorphism of salt-tolerant and salt-sensitive native isolates of Sinorhizoblum meliloti--symbionts of alfalfa, clover and fenugreek plants].

    PubMed

    Rumiantseva, M L; Muntian, V S; Mengoni, A; Simarov, B V

    2014-04-01

    Polymorphism of rrs-rrl sequence of ribosomal operons (intergenic sequence, ITS) was studied among 81 isolates of Sinorhizobium meliloti (AK001-AK210) derived from the collection of alfalfa nodulating bacteria of the Laboratory of genetics of ARRIAM, by using species-specific primers FGPS 1490/FGPL132VM. Isolates were obtained from nodules of different species of wild host plants from Medicago, Melilotus and Trigonella genera grown in salinized North-Western region of Kazakhstan. The typical structure of ITS, similar to that of test strain Rm1021, was dominant in native rhizobia population, while in one third of the isolates (33.3%) this sequence was divergent. Among the latter, the ITS type of strain AK83 (RCAM00182) was dominant. Here, we show for the first time that isolates with reduced level of salt-tolerance had more diverse intergenic sequences of rrn-operons. No phylogenetic separation was observed between isolates grouped on the basis of their tolerance or sensitivity towards 0.6 M NaCl. However, the frequency of divergent ITS types within the two groups of rhizobia depended on the host symbiotic preference observed in natural environment, allowing to speculate about the existence of a chromosome types specific for S. meliloti isolates with differential salt tolerance. In conclusion, we propose that in the area subjected to secondary salinization, which are also the centre of introgressive hybridization of alfalfa, micro-evolutionary processes, affecting rrn-operons and associated with salt adaptation, are also occurring in symbiotic root nodule bacteria populations.

  17. Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments.

    PubMed

    Divya, L M; Prasanth, G K; Sadasivan, C

    2014-06-01

    Industrialization causes the generation of phenolic pollutants in the environment. The ability of laccases to oxidize phenolic compounds and reduce molecular oxygen to water has led to intensive studies on these enzymes. Although salt-tolerant fungi are potential sources of enzymes for industrial applications, they have been inadequately explored for laccase production. This study describes the isolation of a salt- and phenol-tolerant strain of Trichoderma sp. with the ability to produce laccase, and thus with the potential for industrial applications. The coconut husk retting ground in the estuaries of Kerala, India, a saline environment highly polluted with phenolic compounds, was selected for isolating the fungus. Enhanced laccase production was observed at 5-10 ppt salinity. The organism could grow even at 30 ppt salinity with reduced biomass production and laccase secretion. The optimum concentration of different phenolic compounds for enhanced laccase secretion ranged between 20 and 80 mg L(-1) . As the concentration of phenolic compounds increased beyond 200 mg L(-1) , the enzyme activity decreased and was completely inhibited at 800 mg L(-1) . The tolerance of Trichoderma viride Pers. NFCCI-2745 to salinity and various phenolic compounds can be utilized in the bioremediation of highly saline and phenolic compound-rich industrial effluents.

  18. An Arabidopsis Zinc Finger Protein Increases Abiotic Stress Tolerance by Regulating Sodium and Potassium Homeostasis, Reactive Oxygen Species Scavenging and Osmotic Potential

    PubMed Central

    Zang, Dandan; Li, Hongyan; Xu, Hongyun; Zhang, Wenhui; Zhang, Yiming; Shi, Xinxin; Wang, Yucheng

    2016-01-01

    Plant zinc finger proteins (ZFPs) comprise a large protein family and they are mainly involved in abiotic stress tolerance. Although Arabidopsis RING/FYVE/PHD ZFP At5g62460 (AtRZFP) is found to bind to zinc, whether it is involved in abiotic stress tolerance is still unknown. In the present study, we characterized the roles of AtRZFP in response to abiotic stresses. The expression of AtRZFP was induced significantly by salt and osmotic stress. AtRZFP positively mediates tolerance to salt and osmotic stress. Additionally, compared with wild-type Arabidopsis plants, plants overexpressing AtRZFP showed reduced reactive oxygen species (ROSs) accumulation, enhanced superoxide dismutase and peroxidase activity, increased soluble sugars and proline contents, reduced K+ loss, decreased Na+ accumulation, stomatal aperture and the water loss rate. Conversely, AtRZFP knockout plants displayed the opposite physiological changes when exposed to salt or osmotic stress conditions. These data suggested that AtRZFP enhances salt and osmotic tolerance through a series of physiological processes, including enhanced ROSs scavenging, maintaining Na+ and K+ homeostasis, controlling the stomatal aperture to reduce the water loss rate, and accumulating soluble sugars and proline to adjust the osmotic potential. PMID:27605931

  19. Salicornia europaea L. Na⁺/H⁺ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A

    2014-07-24

    In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.

  20. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na/H antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots.

    PubMed

    Liu, Hua; Wang, Qiuqing; Yu, Mengmeng; Zhang, Yanyan; Wu, Yingbao; Zhang, Hongxia

    2008-09-01

    In Arabidopsis thaliana, six vacuolar Na(+)/H(+) antiporters (AtNHX1-6) were identified. Among them, AtNHX1, 2 and 5 are functional Na(+)/H(+) antiporters with the most abundant expression levels in seedling shoots and roots. However, the expression of AtNHX3 in Arabidopsis can only be detected by RT-PCR, and its physiological function still remains unclear. In this work, we demonstrate that constitutive expression of AtNHX3 in sugar beet (Beta vulgaris L.) conferred augmented resistance to high salinity on transgenic plants. In the presence of 300 or 500 mm NaCl, transgenic plants showed very high potassium accumulation in the roots and storage roots. Furthermore, the transcripts of sucrose phosphate synthase (SPS), sucrose synthase (SS) and cell wall sucrose invertase (SI) genes were maintained in transgenic plants. The accumulation of soluble sugar in the storage roots of transgenic plants grown under high salt stress condition was also higher. Our results implicate that AtNHX3 is also a functional antiporter responsible for salt tolerance by mediating K(+)/H(+) exchange in higher plants. The salt accumulation in leaves but not in the storage roots, and the increased yield of storage roots with enhanced constituent soluble sugar contents under salt stress condition demonstrate a great potential use of this gene in improving the quality and yield of crop plants.

  1. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions.

    PubMed

    Porras-Soriano, Andrés; Soriano-Martín, María Luisa; Porras-Piedra, Andrés; Azcón, Rosario

    2009-09-01

    Inoculating olive plantlets with the arbuscular mycorrhizal fungi (AMF) Glomus mosseae, Glomus intraradices or Glomus claroideum increased plant growth and the ability to acquire nitrogen, phosphorus, and potassium from non-saline as well as saline media. AMF-colonized plants also increased in survival rate after transplant. Osmotic stress caused by NaCl supply reduced stem diameter, number of shoots, shoot length and nutrients in olive plants, but AMF colonization alleviated all of these negative effects on growth. G. mosseae was the most efficient fungus in reducing the detrimental effects of salinity; it increased shoot growth by 163% and root growth by 295% in the non-saline medium, and by 239% (shoot) and by 468% (root) under the saline conditions. AMF colonization enhanced salt tolerance in terms of olive growth and nutrient acquisition. Mycorrhizal olive plants showed the lowest biomass reduction under salinity (34%), while growth was reduced by 78% in control plants. This G. mosseae effect seems to be due to increased K acquisition; K content was enhanced under salt conditions by 6.4-fold with G. mosseae, 3.4-fold with G. intraradices, and 3.7-fold with G. claroideum. Potassium, as the most prominent inorganic solute, plays a key role in the osmoregulation processes and the highest salinity tolerance of G. mosseae-colonized olive trees was concomitant with an enhanced K concentration in olive plants.

  2. Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance.

    PubMed

    Khan, Hammad A; Siddique, Kadambot H M; Colmer, Timothy D

    2016-05-02

    Reproductive processes of chickpea (Cicer arietinum L.) are particularly sensitive to salinity. We tested whether limited photoassimilate availability contributes to reproductive failure in salt-stressed chickpea. Rupali, a salt-sensitive genotype, was grown in aerated nutrient solution, either with non-saline (control) or 30mM NaCl treatment. At flowering, stems were either infused with sucrose solution (0.44M), water only or maintained without any infusion, for 75 d. The sucrose and water infusion treatments of non-saline plants had no effect on growth or yield, but photosynthesis declined in response to sucrose infusion. Salt stress reduced photosynthesis, decreased tissue sugars by 22-47%, and vegetative and reproductive growth were severely impaired. Sucrose infusion of salt-treated plants increased total sugars in stems, leaves and developing pods, to levels similar to those of non-saline plants. In salt-stressed plants, sucrose infusion increased dry mass (2.6-fold), pod numbers (3.8-fold), seed numbers (6.5-fold) and seed yield (10.4-fold), yet vegetative growth and reproductive failure were not rescued completely by sucrose infusion. Sucrose infusion partly rescued reproductive failure in chickpea by increasing vegetative growth enabling more flower production and by providing sucrose for pod and seed growth. We conclude that insufficient assimilate availability limits yield in salt-stressed chickpea.

  3. Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence.

    PubMed

    Asif, Muhammad Ahsan; Zafar, Yusuf; Iqbal, Javaid; Iqbal, Muhammad Munir; Rashid, Umer; Ali, Ghulam Muhammad; Arif, Anjuman; Nazir, Farhat

    2011-11-01

    Salinity and drought are main threat to agriculture productivity, to avoid further losses it is necessary to improve the genetic material of crops against these stresses In this present study, AtNHX1, a vacuolar type Na(+)/H(+) antiporter gene driven by 35S promoter was introduced into groundnut using Agrobacterium tumefaciens transformation system. The stable integration of the AtNHX1 gene was confirmed by polymerase chain reaction (PCR) and southern blot analysis. It was found that transgenic plants having AtNHX1 gene are more resistant to high concentration of salt and water deprivation than the wild type plants. Salt and proline level in the leaves of the transgenic plants were also much higher than that of wild type plants. The results showed that overexpression of AtNHX1 gene not only improved salt tolerance but also drought tolerance in transgenic groundnut. Our results suggest that these plants could be cultivated in salt and drought-affected soils.

  4. Exogenous application of glycinebetaine increases chilling tolerance in tomato plants.

    PubMed

    Park, Eung-Jun; Jeknic, Zoran; Chen, Tony H H

    2006-06-01

    Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants are chilling sensitive, and do not naturally accumulate glycinebetaine (GB), a metabolite that functions as a stress protectant. We reported previously that exogenous GB application enhanced chilling tolerance in tomato. To understand its protective role better, we have further evaluated various parameters associated with improved tolerance. Although its effect was most pronounced in younger plants, this benefit was diminished 1 week after GB application. When administered by foliar spray, GB was readily taken up and translocated to various organs, with the highest levels being measured in meristematic tissues, including the shoot apices and flower buds. In leaves, the majority of endogenous GB was found in the cytosol; only 0.6-22.0% of the total leaf GB was localized in chloroplasts. Immediately after GB application, levels of H(2)O(2), catalase activity and expression of the catalase gene (CAT1) were all higher in GB-treated than in control plants. One day after exposure to chilling stress, the treated plants had significantly greater catalase activity and CAT1 expression, although their H(2)O(2) levels remained unchanged. During the following 2 d of this chilling treatment, GB-treated plants maintained lower H(2)O(2) levels but had higher catalase activity than the controls. These results suggest that, in addition to protecting macromolecules and membranes directly, GB-enhanced chilling tolerance may involve the induction of H(2)O(2)-mediated antioxidant mechanisms, e.g. enhanced catalase expression and catalase activity.

  5. Decreased capacity for sodium export out of Arabidopsis chloroplasts impairs salt tolerance, photosynthesis and plant performance.

    PubMed

    Müller, Maria; Kunz, Hans-Henning; Schroeder, Julian I; Kemp, Grant; Young, Howard S; Neuhaus, H Ekkehard

    2014-05-01

    Salt stress is a widespread phenomenon, limiting plant performance in large areas around the world. Although various types of plant sodium/proton antiporters have been characterized, the physiological function of NHD1 from Arabidopsis thaliana has not been elucidated in detail so far. Here we report that the NHD1-GFP fusion protein localizes to the chloroplast envelope. Heterologous expression of AtNHD1 was sufficient to complement a salt-sensitive Escherichia coli mutant lacking its endogenous sodium/proton exchangers. Transport competence of NHD1 was confirmed using recombinant, highly purified carrier protein reconstituted into proteoliposomes, proving Na(+) /H(+) antiport. In planta NHD1 expression was found to be highest in mature and senescent leaves but was not induced by sodium chloride application. When compared to wild-type controls, nhd1 T-DNA insertion mutants showed decreased biomasses and lower chlorophyll levels after sodium feeding. Interestingly, if grown on sand and supplemented with high sodium chloride, nhd1 mutants exhibited leaf tissue Na(+) levels similar to those of wild-type plants, but the Na(+) content of chloroplasts increased significantly. These high sodium levels in mutant chloroplasts resulted in markedly impaired photosynthetic performance as revealed by a lower quantum yield of photosystem II and increased non-photochemical quenching. Moreover, high Na(+) levels might hamper activity of the plastidic bile acid/sodium symporter family protein 2 (BASS2). The resulting pyruvate deficiency might cause the observed decreased phenylalanine levels in the nhd1 mutants due to lack of precursors.

  6. Glucocorticoids increase salt appetite by promoting water and sodium excretion.

    PubMed

    Thunhorst, Robert L; Beltz, Terry G; Johnson, Alan Kim

    2007-09-01

    Glucocorticoids [e.g., corticosterone and dexamethasone (Dex)], when administered systemically, greatly increase water drinking elicited by angiotensin and sodium ingestion in response to mineralocorticoids [e.g., aldosterone and deoxycorticosterone acetate (DOCA)], possibly by acting in the brain. In addition, glucocorticoids exert powerful renal actions that could influence water and sodium ingestion by promoting their excretion. To test this, we determined water and sodium intakes, excretions, and balances during injections of Dex and DOCA and their coadministration (DOCA+Dex) at doses commonly employed to stimulate ingestion of water and sodium. In animals having only water to drink, Dex treatment greatly increased water and sodium excretion without affecting water intake, thereby producing negative water and sodium balances. Similar results were observed when Dex was administered together with DOCA. In animals having water and saline solution (0.3 M NaCl) to drink, Dex treatment increased water and sodium excretion, had minimal effects on water and sodium intakes, and was associated with negative water and sodium balances. DOCA treatment progressively increased sodium ingestion, and both water and sodium intakes exceeded their urinary excretion, resulting in positive water and sodium balances. The combination of DOCA+Dex stimulated rapid, large increases in sodium ingestion and positive sodium balances. However, water excretion outpaced total fluid intake, resulting in large, negative water balances. Plasma volume increased during DOCA treatment and did not change during treatment with Dex or DOCA+Dex. We conclude that increased urinary excretion, especially of water, during glucocorticoid treatment may explain the increased ingestion of water and sodium that occurs during coadministration with mineralocorticoids.

  7. Responses of tolerant and susceptible Kentucky bluegrass (Poa pratensis L.) germplasm to salt stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of semi-arid western North America is salt-affected, and utilizing turfgrasses in salty areas can be challenging. Kentucky bluegrass is relatively susceptible to salt stress, showing reduced growth, osmotic and ionic stress, and eventual death at moderate or high salt concentrations. Consider...

  8. ET-1 increases reactive oxygen species following hypoxia and high salt diet in the mouse glomerulus

    PubMed Central

    Heimlich, J. Brett; Speed, Joshua S.; Bloom, Christopher J.; O'Connor, Paul M.; Pollock, Jennifer S.; Pollock, David M.

    2014-01-01

    Aim The current study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high salt diet and/or hypoxia. Methods C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to three-hour exposure to hypoxia (8% O2) and or 2 weeks of high salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for determination of reactive oxygen species (ROS). Results In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 hrs, but only in animals on a high salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high salt diet had approximately 150% higher glomerular ET-1 mRNA expression compared to a normal salt diet (p<0.05). High salt diet administration significantly increased glomerular ROS production in flox control, but not in glomeruli isolated from VEET KO mice. In C57BL6/J mice, the ETA receptor selective antagonist, ABT-627, significantly attenuated the increase in glomerular ROS production produced by high salt diet. In addition, chronic infusion of C57BL6/J mice with a sub-pressor dose of ET-1 (osmotic pumps) significantly increased levels of glomerular ROS that were prevented by ETA antagonist treatment. Conclusion These data suggest that both hypoxia and a high salt diet increases glomerular ROS production via endothelial derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1 induced nephropathy. PMID:25219340

  9. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment.

    PubMed

    Upadhyay, S K; Singh, D P

    2015-01-01

    Salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST-PGPR (ECe = 4.3 dS·m(-1) ; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST-PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST-PGPR, as compared to un-inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control.

  10. Salt-Induced Thirst Results in Increased Finickiness in Humans

    ERIC Educational Resources Information Center

    Stevenson, Richard J.; Case, Trevor I.; Oaten, Megan J.

    2010-01-01

    Common sense suggests that water-deprived or food-deprived organisms should be more willing to consume foods or fluids that would be deemed undesirable under lower states of deprivation. With food, evidence favoring this account has been observed; however other studies find that hungry participants demonstrate increased finickiness--avoiding less…

  11. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides.

    PubMed

    Cambrollé, J; Mancilla-Leytón, J M; Muñoz-Vallés, S; Luque, T; Figueroa, M E

    2012-03-01

    The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L(-1)) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg(-1)dry mass, when treated with 130 mmol Zn L(-1). Zinc concentrations greater than 70 mmol L(-1) in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg(-1)dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.

  12. A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: the Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter

    PubMed Central

    Mulet, Jose M.; Leube, Martin P.; Kron, Stephen J.; Rios, Gabino; Fink, Gerald R.; Serrano, Ramon

    1999-01-01

    The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases. PMID:10207057

  13. Increased salt sensitivity of ambulatory blood pressure in women with a history of severe preeclampsia.

    PubMed

    Martillotti, Gabriella; Ditisheim, Agnès; Burnier, Michel; Wagner, Ghislaine; Boulvain, Michel; Irion, Olivier; Pechère-Bertschi, Antoinette

    2013-10-01

    Cardiovascular diseases are the principal cause of death in women in developed countries and are importantly promoted by hypertension. The salt sensitivity of blood pressure (BP) is considered as an important cardiovascular risk factor at any BP level. Preeclampsia is a hypertensive disorder of pregnancy that arises as a risk factor for cardiovascular diseases. This study measured the salt sensitivity of BP in women with a severe preeclampsia compared with women with no pregnancy hypertensive complications. Forty premenopausal women were recruited 10 years after delivery in a case-control study. Salt sensitivity was defined as an increase of >4 mm Hg in 24-hour ambulatory BP on a high-sodium diet. The ambulatory BP response to salt was significantly increased in women with a history of preeclampsia compared with that of controls. The mean (95% confidence interval) daytime systolic/diastolic BP increased significantly from 115 (109-118)/79 (76-82) mm Hg on low-salt diet to 123 (116-130)/80 (76-84) on a high-salt diet in women with preeclampsia, but not in the control group (from 111 [104-119]/77 [72-82] to 111 [106-116]/75 [72-79], respectively, P<0.05). The sodium sensitivity index (SSI=Δmean arterial pressure/Δurinary Na excretion×1000) was 51.2 (19.1-66.2) in women with preeclampsia and 6.6 (5.8-18.1) mm Hg/mol per day in controls (P=0.015). The nocturnal dip was blunted on a high-salt diet in women with preeclampsia. Our study shows that women who have developed preeclampsia are salt sensitive before their menopause, a finding that may contribute to their increased cardiovascular risk. Women with a history of severe preeclampsia should be targeted at an early stage for preventive measures of cardiovascular diseases.

  14. Great Salt Lake halophilic microorganisms as models for astrobiology: evidence for desiccation tolerance and ultraviolet irradiation resistance

    NASA Astrophysics Data System (ADS)

    Baxter, Bonnie K.; Eddington, Breanne; Riddle, Misty R.; Webster, Tabitha N.; Avery, Brian J.

    2007-09-01

    Great Salt Lake (GSL) is home to halophiles, salt-tolerant Bacteria and Archaea, which live at 2-5M NaCl. In addition to salt tolerance, GSL halophiles exhibit resistance to both ultraviolet (UV) irradiation and desiccation. First, to understand desiccation resistance, we sought to determine the diversity of GSL halophiles capable of surviving desiccation in either recently formed GSL halite crystals or GSL Artemia (brine shrimp) cysts. From these desiccated environments, surviving microorganisms were cultured and isolated, and genomic DNA was extracted from the individual species for identification by 16S rRNA gene homology. From the surface-sterilized cysts we also extracted DNA of the whole microbial population for non-cultivation techniques. We amplified the archaeal or bacterial 16S rRNA gene from all genomic DNA, cloned the cyst population amplicons, and sequenced. These sequences were compared to gene databases for determination of closest matched species. Interestingly, the isolates from the crystal dissolution are distinct from those previously isolated from GSL brine. The cyst population results reveal species not found in crystals or brine, and may indicate microorganisms that live as endosymbionts of this hypersaline arthropod. Second, we explored UV resistance in a GSL haloarchaea species, "H. salsolis." This strain resists UV irradiation an order of magnitude better than control species, all of which have intact repair systems. To test the hypothesis that halophiles have a photoprotection system, which prevents DNA damage from occurring, we designed an immunoassay to detect thymine dimers following UV irradiation. "H. salsolis" showed remarkable resistance to dimer formation. Evidence for both UV and desiccation resistance in these salt-tolerant GSL halophiles makes them well-suited as models for Astrobiological studies in pursuit of questions about life beyond earth.

  15. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.).

    PubMed

    Tang, Lili; Cai, Hua; Ji, Wei; Luo, Xiao; Wang, Zhenyu; Wu, Jing; Wang, Xuedong; Cui, Lin; Wang, Yang; Zhu, Yanming; Bai, Xi

    2013-10-01

    GsZFP1 encodes a Cys2/His2-type zinc-finger protein. In our previous study, when GsZFP1 was heterologously expressed in Arabidopsis, the transgenic Arabidopsis plants exhibited enhanced drought and cold tolerance. However, it is still unknown whether GsZFP1 is also involved in salt stress. GsZFP1 is from the wild legume Glycine soja. Therefore, the aims of this study were to further elucidate the functions of the GsZFP1 gene under salt and drought stress in the forage legume alfalfa and to investigate its biochemical and physiological functions under these stress conditions. Our data showed that overexpression of GsZFP1 in alfalfa resulted in enhanced salt tolerance. Under high salinity stress, greater relative membrane permeability and malondialdehyde (MDA) content were observed and more free proline and soluble sugars accumulated in transgenic alfalfa than in the wild-type (WT) plants; in addition, the transgenic lines accumulated less Na(+) and more K(+) in both the shoots and roots. Overexpression of GsZFP1 also enhanced the drought tolerance of alfalfa. The fold-inductions of stress-responsive marker gene expression, including MtCOR47, MtRAB18, MtP5CS, and MtRD2, were greater in transgenic alfalfa than those of WT under drought stress conditions. In conclusion, the transgenic alfalfa plants generated in this study could be used for farming in salt-affected as well as arid and semi-arid areas.

  16. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicargo sativa L.) using Genotyping by Sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : In this study, we used a diverse panel of alfalfa accessions to identify molecular markers associated with salt tolerance during germination by genome-wide association (GWA) mapping and genotyping-by-sequencing (GBS). Three levels of salt treatments were applied during seed germination. Phenotypic...

  17. Regulated AtHKT1 Gene Expression by a Distal Enhancer Element and DNA Methylation in the Promoter Plays an Important Role in Salt Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Arabidopsis thaliana High-affinityK+ Transporter 1 (AtHKT1, At4g10310) is a crucial salt tolerance determinant, but its molecular mechanisms for Na+ uptake and transport in whole plant level still remains elusive. Through sos3 (salt overly sensitive 3) suppressors screening, two allelic suppress...

  18. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    PubMed Central

    Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping

    2016-01-01

    Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368

  19. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.

    PubMed

    Chen, Huatao; He, Hui; Yu, Deyue

    2011-01-01

    Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38-49% identity with other plant HKT-like sequences. RT-PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non-transgenic plants. To investigate the role of GmHKT1 in K(+) and Na(+) transport, we compared K(+) and Na(+) accumulation in roots and shoots of wild-type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K(+) and Na(+) transport in roots and shoots, and regulated Na(+) /K(+) homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress.

  20. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice.

    PubMed

    Hu, Honghong; You, Jun; Fang, Yujie; Zhu, Xiaoyi; Qi, Zhuyun; Xiong, Lizhong

    2008-05-01

    Plants respond to adverse environment by initiating a series of signaling processes including activation of transcription factors that can regulate expression of arrays of genes for stress response and adaptation. NAC (NAM, ATAF, and CUC) is a plant specific transcription factor family with diverse roles in development and stress regulation. In this report, a stress-responsive NAC gene (SNAC2) isolated from upland rice IRA109 (Oryza sativa L. ssp japonica) was characterized for its role in stress tolerance. SNAC2 was proven to have transactivation and DNA-binding activities in yeast and the SNAC2-GFP fusion protein was localized in the rice nuclei. Northern blot and SNAC2 promoter activity analyses suggest that SNAC2 gene was induced by drought, salinity, cold, wounding, and abscisic acid (ABA) treatment. The SNAC2 gene was over-expressed in japonica rice Zhonghua 11 to test the effect on improving stress tolerance. More than 50% of the transgenic plants remained vigorous when all WT plants died after severe cold stress (4-8 degrees C for 5 days). The transgenic plants had higher cell membrane stability than wild type during the cold stress. The transgenic rice had significantly higher germination and growth rate than WT under high salinity conditions. Over-expression of SNAC2 can also improve the tolerance to PEG treatment. In addition, the SNAC2-overexpressing plants showed significantly increased sensitivity to ABA. DNA chip profiling analysis of transgenic plants revealed many up-regulated genes related to stress response and adaptation such as peroxidase, ornithine aminotransferase, heavy metal-associated protein, sodium/hydrogen exchanger, heat shock protein, GDSL-like lipase, and phenylalanine ammonia lyase. Interestingly, none of the up-regulated genes in the SNAC2-overexpressing plants matched the genes up-regulated in the transgenic plants over-expressing other stress responsive NAC genes reported previously. These data suggest SNAC2 is a novel stress