Sample records for increases serum igf-i

  1. Serum insulin-like growth factor-I (IGF-I) levels during long-term IGF-I treatment of children and adults with primary GH resistance (Laron syndrome).

    PubMed

    Laron, Z; Klinger, B; Silbergeld, A

    1999-01-01

    Serum IGF-I levels were measured in 14 patients (9 children and 5 adults) with Laron syndrome (LS) during long-term treatment by IGF-I. Recombinant IGF-I (FK-780, Fujisawa Pharmaceutical Co. Ltd., Japan) was administered once daily subcutaneously before breakfast for 3-5 years to the children and for 9 months to the adults. The initial daily dose was 150 micrograms/kg for children and 120 micrograms/kg for adults. Before initiation of treatment the mean overnight fasting levels of serum IGF-I in the children was 3.2 +/- 0.8 nmol/l (mean +/- SEM), rising to 10 +/- 1.7 nmol/l during long-term treatment even on a dose of 120 micrograms/kg/day. The serum IGF-I levels 4 hours after injection rose from 31.2 +/- 3.5 to 48 +/- 2 nmol/l. In the adult patients, the initial basal IGF-I was 4.1 +/- 0.7 nmol/l, rising to 16.1 +/- 3.84 nmol/l after 8-9 months treatment. Serum IGF-I levels at 4 hours after injection rose in the adult patients from 24.1 +/- 5.8 up to 66.8 +/- 15.4 nmol/l. A progressively increasing half-life during long term exogenous administration of IGF-I to patients with Laron syndrome was demonstrated by following serum IGF-I dynamics after injection. Based on the fact that no antibodies to IGF-I were detected and on findings in previous studies, it is speculated that the increasing serum IGF-I levels during long-term IGF-I treatment are caused by an increase in serum IGFBP-3 induced by chronic IGF-I administration. It is concluded that treatment with IGF-I necessitates regular monitoring of serum IGF-I levels; in patients in whom the age adjusted maximal levels are exceeded, a reduction of the daily IGF-I dose is indicated to avoid undesirable effects.

  2. Low serum insulin-like growth factor-I (IGF-I) level is associated with increased risk of vascular dementia.

    PubMed

    Quinlan, Patrick; Horvath, Alexandra; Nordlund, Arto; Wallin, Anders; Svensson, Johan

    2017-12-01

    Insulin-like growth factor-I (IGF-I) is important for the adult brain, but little is known of the role of IGF-I in Alzheimeŕs disease (AD) or vascular dementia (VaD). A prospective study of 342 patients with subjective or objective mild cognitive impairment recruited at a single memory clinic. We determined whether serum IGF-I concentrations at baseline were associated with the risk of all-cause dementia, AD, or VaD. Patients developing mixed forms of AD and VaD were defined as suffering from VaD. The statistical analyses included Cox proportional hazards regression analysis. During the follow-up (mean 3.6 years), 95 (28%) of the patients developed all-cause dementia [AD, n=37 (11%) and VaD, n=42 (12%)]. Low as well as high serum IGF-I (quartile 1 or 4 vs. quartiles 2-3) did not associate with all-cause dementia [crude hazard ratio (HR) 1.30, 95% confidence interval (CI): 0.81-2.08 and crude HR 1.05, 95% CI: 0.63-1.75, respectively] or AD (crude HR 0.79, 95% CI: 0.35-1.79 and crude HR 0.94, 95% CI: 0.43-2.06, respectively]. In contrast, low serum IGF-I concentrations were associated with increased risk of VaD (quartile 1 vs. quartiles 2-3, crude HR 2.22, 95% CI: 1.13-4.36). The latter association remained significant also after adjustment for multiple covariates. In a memory clinic population, low serum IGF-I was a risk marker for subsequent VaD whereas low IGF-I did not associate with the risk of AD. High serum IGF-I was not related to the risk of conversion to dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice.

    PubMed

    Wu, Yingjie; Sun, Hui; Yakar, Shoshana; LeRoith, Derek

    2009-09-01

    IGF-I plays a vital role in growth and development and acts in an endocrine and an autocrine/paracrine fashion. The purpose of the current study was to clarify whether elevated levels of IGF-I in serum can rescue the severe growth retardation and organ development and function of igf-I null mice. To address that, we overexpressed a rat igf-I transgene specifically in the liver of igf-I null mice. We found that in the total absence of tissue IGF-I, elevated levels of IGF-I in serum can support normal body size at puberty and after puberty but are insufficient to fully support the female reproductive system (evident by irregular estrous cycle, impaired development of ovarian corpus luteum, reduced number of uterine glands and endometrial hypoplasia, all leading to decreased number of pregnancies and litter size). We conclude that most autocrine/paracrine actions of IGF-I that determine organ growth and function can be compensated by elevated levels of endocrine IGF-I. However, in mice, full compensatory responses are evident later in development, suggesting that autocrine/paracrine IGF-I is critical for neonatal development. Furthermore, we show that tissue IGF-I is necessary for the development of the female reproductive system and cannot be compensated by elevated levels of serum IGF-I.

  4. Gender and age influence the relationship between serum GH and IGF-I in patients with acromegaly.

    PubMed

    Parkinson, C; Renehan, A G; Ryder, W D J; O'Dwyer, S T; Shalet, S M; Trainer, P J

    2002-07-01

    In patients with acromegaly serum IGF-I is increasingly used as a marker of disease activity. As a result, the relationship between serum GH and IGF-I is of profound interest. Healthy females secrete three times more GH than males but have broadly similar serum IGF-I levels, and women with GH deficiency require 30-50% more exogenous GH to maintain the same serum IGF-I as GH-deficient men. In a selected cohort of patients with active acromegaly, studied off medical therapy using a single fasting serum GH and IGF-I measurement, we have reported previously that, for a given GH level, women have significantly lower circulating IGF-I. To evaluate the influence of age and gender on the relationship between serum GH and IGF-I in an unselected cohort of patients with acromegaly independent of disease control and medical therapy. Sixty (34 male) unselected patients with acromegaly (median age 51 years (range 24-81 years) attending a colonoscopy screening programme were studied. Forty-five had previously received pituitary radiotherapy. Patients had varying degrees of disease control and received medical therapy where appropriate. Mean serum GH was calculated from an eight-point day profile (n = 45) and values obtained during a 75-g oral glucose tolerance test (n = 15). Serum IGF-I, IGFBP-3 and acid-labile subunit were measured and the dependency of these factors on covariates such as log10 mean serum GH, sex, age and prior radiotherapy was assessed using regression techniques. The median calculated GH value was 4.7 mU/l (range 1-104). A significant linear association was observed between serum IGF-I and log10 mean serum GH for the cohort (R = 0.5, P < 0.0001). After simultaneous adjustment of the above covariates a significant difference in the relationship between mean serum GH and IGF-I was observed for males and females. On average, women had serum IGF-I levels 11.44 nmol/l lower than men with the same mean serum GH (P = 0.03, 95% CI 1.33-21.4 nmol/l). Age significantly

  5. Serum IGF-I, IGFBP-3 and ALS concentrations and physical performance in young swimmers during a training season.

    PubMed

    Tourinho Filho, H; Pires, M; Puggina, E F; Papoti, M; Barbieri, R; Martinelli, C E

    2017-02-01

    The GH/IGF-I axis is a system of growth mediators, receptors, and binding proteins that regulate somatic and tissue growth; and it has been shown that exercise programs are related to the anabolic function of this axis. The aim of this study was to analyse the changes of serum IGF-I concentration and that of its binding proteins IGFBP-3 and ALS in adolescent swimmers at different stages of a training season, and compare them with physical performance parameters and body composition of the athletes. Nine male athletes, aged 16 to 19years and who trained regularly throughout the season, were included in this study. Serum IGF-I, IGFBP-3, and ALS concentrations were recorded before and after (pre×post) standardized training sessions during the different stages of a training season (extensive×intensive×tapering). Endurance in freestyle, anaerobic fitness in tied swimming (Peak Force and Average Force), body mass, fat percentage, and lean body mass were also analysed at the different stages of training in order to compare the changes of the IGF-I/IGFBP/ALS system with the physical performance and body composition of the athletes. Variations in the IGF-I/IGFBP-3-ALS system before and after a standardized training session, and at the different stages of training were analysed by the Wilcoxon and Friedman non-parametric tests, respectively. Significance was considered at 5%. The results from this study demonstrate that IGF-I is sensitive to the acute and chronic effects of training, exhibiting biphasic behaviour throughout the season. The catabolic phase was characterized by a reduction in serum IGF-I concentrations during the intensive stage (∆ IGF-I : - 43.33±47.32ng/ml; P<0.05) while the anabolic phase was marked by similar basal concentrations at the different stages of training and an increase in post-training serum IGF-I concentrations during the tapering stage (320±40; 298±36 and 359±94ng/ml; P<0.05). IGFBP-3 was only sensitive to the chronic effects of

  6. Serum IGF-I and IGFBP-3 levels of Turkish children during childhood and adolescence: establishment of reference ranges with emphasis on puberty.

    PubMed

    Bereket, Abdullah; Turan, Serap; Omar, Anjumanara; Berber, Mustafa; Ozen, Ahmet; Akbenlioglu, Cengiz; Haklar, Goncagul

    2006-01-01

    We established age- and sex-related reference ranges for serum insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels in 807 healthy Turkish children (428 boys, 379 girls), and constructed a model for calculation of standard deviation scores of IGF-I and IGFBP-3 according to age, sex and pubertal stage. Serum IGF-I and IGFBP-3 concentrations tended to be higher in girls compared to boys of the same ages, but the differences were statistically significant only in pubertal ages (9-14 years) for IGF-I and only in prepubertal ages for IGFBP-3 (6-8 years) (p < 0.05). Peak IGF-I concentrations were observed earlier in girls than boys (14 vs. 15 years, Tanner stage IV vs. V) starting to decline thereafter. IGFBP-3 levels peaked at age 13 and at Tanner stage IV in both sexes with a subsequent fall. Serum levels of IGF-I and IGFBP-3 increased steadily with age in the prepubertal stage followed by a rapid increase in IGF-I in the early pubertal stages. A relatively steeper increase in IGF-I but not in IGFBP-3 levels was observed at age 10-11 years in girls and at 12-13 years in boys which preceded the reported age of pubertal growth spurt. At late pubertal stages, both IGF-I and IGFBP-3 either did not change or decreased by increasing age. Interrelationships between growth factors and anthropometric measurements have been described, and the physiologic consequences of these have been discussed in detail. Differences in the pattern of IGF-I and IGFBP-3 in the present paper and those reported in other studies emphasize the importance of locally established reference ranges. Establishment of this reference data and a standard deviation score prediction model based on age, sex and puberty will enhance the diagnostic power and utility of IGF-I and IGFBP-3 in evaluating growth disorders in our population. Copyright 2006 S. Karger AG, Basel

  7. Insulin-like growth factors (IGF-I, free IGF-I and IGF-II) and insulin-like growth factor binding proteins (IGFBP-2, IGFBP-3, IGFBP-6, and ALS) in blood circulation.

    PubMed

    Yu, H; Mistry, J; Nicar, M J; Khosravi, M J; Diamandis, A; van Doorn, J; Juul, A

    1999-01-01

    Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. Clinical and epidemiological studies have indicated that measuring IGFs and IGFBPs in blood has potential implications in assessing growth-related abnormalities and risks of certain types of cancer. To facilitate the application, we reported a large collection of reference ranges of IGFs and IGFBPs in normal population and evaluations of these molecules in serum and plasma as well as the impact of freeze-thaw cycles on the measurement. IGF-I, IGFBP-3 andALS showed a similar pattern of change associated with age. Levels of these molecules were low at birth and increased with age through puberty. After puberty the levels declined slowly with age. Overall, IGF-I, IGFBP-3 and ALS were slightly higher in females than in males. Free IGF-I accounted for about 1% of the total IGF-I and its variation with age was similar to total IGF-I. IGF-II levels were also increased with age from birth to puberty, but became stable after puberty. There was little difference in IGF-II levels between genders. IGFBP-2 levels declined with age from birth to puberty. Levels of IGFBP-6 in contrast were increased with age. These IGF binding proteins were higher in males than in females. IGFs, IGFBP-3 and ALS were 5-10% higher in serum than in plasma. IGFBP-2 and IGFBP-6 differed substantially between serum and plasma. Freeze-thaw treatment up to five cycles had little impact on plasma levels of IGFs and IGFBP-3. Our observations suggest that levels of IGFs and their binding proteins are varied with age, gender, and types of specimen and that these variations need to be taken into consideration when IGFs and their binding proteins are utilized in clinic and research.

  8. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice

    PubMed Central

    Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I

    2013-01-01

    Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648

  9. Lack of transferability between two automated immunoassays for serum IGF-I measurement.

    PubMed

    Gomez-Gomez, Carolina; Iglesias, Eva M; Barallat, Jaume; Moreno, Fernando; Biosca, Carme; Pastor, Mari-Cruz; Granada, Maria-Luisa

    2014-01-01

    IGF-I is a clinically relevant protein in the diagnosis and monitoring of treatment of growth disor- ders. The Growth Hormone Research Society and the International IGF Research Society have encouraged the adoption of a universal calibration for immunoassays to improve standardization of IGF-I measurements, but currently commercial assays are calibrated either against the old WHO IRR 87/518 or the new WHO 02/254. We compared two IGF-I immunochemiluminescent assays: IMMULITE® 2000 (Siemens) and LIAISON® (DiaSorin), which differ in their standardization, and verified their precision according to quality specifications based on biological variation and their linear range. 62 patient serum samples were analyzed for both assays and compared according to standards of the Clinical and Laboratory Standards Institute (CLSI), EP9-A2-IR. Precision was verified according to CLSI EP15- A2. Optimal coefficient of variation (CVo) and desirable coefficient of variation (CVd) for IGF-I assays were calculated as quality specifications based on the biological variability, in order to assess if the interassay analytical CV (CVa1) in the two methods were appropriate. Two dilution series using the 1st WHO International Standard (WHO IS) for IGF-I 02/254 were used to verify and compare the linearity range. The regression analysis showed constant and proportional differences for serum samples (slope b = 0.8115 (CI 95% CI; 0.7575-0.8556); intercept a = 33.6873 (95% CI: 23.3613-44.0133) between assays and similar pro- portional differences for WHO IS 02/254 standard dilutions series (slope b = 0.8024 (CI 95% CI; 0.7560-0.8616); intercept a = 6.9623 (95% CI: -2.0819-18.4383) between assays. Within-laboratory coefficients of variation for low and high levels were 2.82% and 3.80% for IMMULITE® 2000 and 3.58% and 2.14% for LIAISON®, respecttively. IGF-I concentrations measured by both assays are not transferable. The results emphasize the need to express IGF-I concentrations in standard

  10. Impact of the underlying etiology of growth hormone deficiency on serum IGF-I SDS levels during GH treatment in children.

    PubMed

    Léger, Juliane; Mohamed, Damir; Dos Santos, Sophie; Ben Azoun, Myriam; Zénaty, Delphine; Simon, Dominique; Paulsen, Anne; Martinerie, Laetitia; Chevenne, Didier; Alberti, Corinne; Carel, Jean-Claude; Guilmin-Crepon, Sophie

    2017-09-01

    Regular monitoring of serum IGF-I levels during growth hormone (GH) therapy has been recommended, for assessing treatment compliance and safety. To investigate serum IGF-I SDS levels during GH treatment in children with GH deficiency, and to identify potential determinants of these levels. This observational cohort study included all patients ( n  = 308) with childhood-onset non-acquired or acquired GH deficiency (GHD) included in the database of a single academic pediatric care center over a period of 10 years for whom at least one serum IGF-I SDS determination during GH treatment was available. These determinations had to have been carried out centrally, with the same immunoradiometric assay. Serum IGF-I SDS levels were determined as a function of sex, age and pubertal stage, according to our published normative data. Over a median of 4.0 (2-5.8) years of GH treatment per patient, 995 serum IGF-I SDS determinations were recorded. In addition to BMI SDS, height SDS and GH dose ( P  < 0.01), etiological group ( P  < 0.01) had a significant effect on serum IGF-I SDS levels, with patients suffering from acquired GHD having higher serum IGF-I SDS levels than those with non-acquired GHD, whereas sex, age, pubertal stage, treatment duration, hormonal status (isolated GHD (IGHD) vs multiple pituitary hormone deficiency (MPHD)) and initial severity of GHD, had no effect. These original findings have important clinical implications for long-term management and highlight the need for careful and appropriate monitoring of serum IGF-I SDS and GH dose, particularly in patients with acquired GHD, to prevent the unnecessary impact of potential comorbid conditions. © 2017 European Society of Endocrinology.

  11. Elevated Serum Pentosidine and Decreased Serum IGF-I Levels are Associated with Loss of Muscle Mass in Postmenopausal Women with Type 2 Diabetes Mellitus.

    PubMed

    Tanaka, K; Kanazawa, I; Sugimoto, T

    2016-03-01

    Advanced glycation end-products (AGEs) play important roles in the progression of diabetic complications. Although sarcopenia is recently recognized as another complication associated with diabetes mellitus, its mechanism still remains unclear. In this study, we investigated the relationship between serum levels of pentosidine, which is one of AGEs, and insulin-like growth factor-I (IGF-I) vs. skeletal muscle mass by whole body dual-energy x-ray absorptiometry in 133 postmenopausal women with type 2 diabetes. Relative skeletal muscle mass index (RSMI) was calculated by following formula; appendicular skeletal muscle mass divided by height in meters squared. Simple correlation analyses showed that serum pentosidine levels were significantly and negatively correlated with muscle mass of legs (r=-0.21, p=0.017) and RSMI (r=-0.18, p=0.022), and that IGF-I was significantly and positively correlated with muscle mass of arms and legs (r=0.23, p=0.008 and r=0.30, p=0.001, respectively) as well as RSMI (r=0.20, p=0.022). Moreover, after adjusting for age, duration of diabetes, serum creatinine, HbA1c, and IGF-I, pentosidine was significantly and negatively associated with RSMI (β=-0.27, p=0.018) and marginally with muscle mass of legs (β=-0.18, p=0.071). The associations between IGF-I and indices of muscle mass such as arms, legs and RSMI were still significant after additional adjustment for pentosidine (p=0.016, 0.019 and 0.021, respectively). These findings indicate that increased serum pentosidine and decreased IGF-I are independent risk factors for loss of muscle mass in postmenopausal women with type 2 diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Is further evaluation for growth hormone (GH) deficiency necessary in fibromyalgia patients with low serum insulin-like growth factor (IGF)-I levels?

    PubMed

    Yuen, Kevin C J; Bennett, Robert M; Hryciw, Cheryl A; Cook, Marie B; Rhoads, Sharon A; Cook, David M

    2007-02-01

    Fibromyalgia (FM) is characterized by diffuse pain, fatigue, and sleep disturbances; symptoms that resemble the adult growth hormone (GH) deficiency syndrome. Many FM patients have low serum GH levels, with a hypothesized aetiology of dysregulated GH/insulin-like growth factor (IGF)-I axis. The aim of this study was to assess the GH reserve in FM patients with low serum IGF-I levels using the GH-releasing hormone (GHRH)-arginine test. We retrospectively reviewed the GHRH-arginine data of 77 FM patients with low serum IGF-I levels referred to our tertiary unit over a 4-year period. Of the 77 FM patients, 13 patients (17%) failed the GHRH-arginine test. Further evaluation with pituitary imaging revealed normal pituitary glands (n=7), coincident microadenomas (n=4), empty sella (n=1) and pituitary cyst (n=1), and relevant medical histories such as previous head injury (n=4), Sheehan's syndrome (n=1), and whiplash injury (n=1). In contrast, the remaining 64 patients (83%) that responded to the GHRH-arginine test demonstrated higher peak GH levels compared to age and BMI-matched controls (n=24). Our data shows that a subpopulation of FM patients with low serum IGF-I levels will fail the GHRH-arginine test. We, thus, recommend that the GH reserve of these patients should be evaluated further, as GH replacement may potentially improve the symptomatology of those with true GH deficiency. Additionally, the increased GH response rates to GHRH-arginine stimulation in the majority of FM patients with low serum IGF-I levels further supports the hypothesis of a dysregulated GH/IGF-I axis in the pathophysiology of FM.

  13. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3

    PubMed Central

    Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A

    2001-01-01

    Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061

  14. Effects of selection for blood serum IGF-I concentration on reproductive performance of female Angus beef cattle.

    PubMed

    Zhang, X; Davis, M E; Moeller, S J; Ottobre, J S

    2013-09-01

    Reproductive performance of animals affects lifetime productivity. However, improvement of reproductive traits via direct selection is generally slow due to low heritability. Therefore, identification of indicator traits for reproductive performance may enhance genetic response. Previous studies showed that serum IGF-I concentration is a candidate indicator for growth and reproductive traits. The objective of our study was to estimate the variances or covariances of IGF-I concentration with reproductive traits. Data were collected from a divergent selection experiment for serum IGF-I concentration at the Eastern Agricultural Research Station owned by The Ohio State University. The study included a total of 2,662 calves in the 1989 to 2005 calf crops. Variance or covariance components were estimated for direct and maternal genetic effects, maternal environment effects, environment effects, and phenotypic effects using an animal model in a multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML, Boldman et al., 1995) computer program. Direct additive genetic correlations suggest that selection for greater IGF-I concentration (heritability = 0.50 ± 0.07) could lead to increased conception rate (heritability = 0.11 ± 0.06, r = 0.32, P < 0.001) and calving rate (heritability = 0.13 ± 0.06, r = 0.43, P < 0.001) and decreased age at first calving in heifers (heritability = 0.35 ± 0.20, r = -0.40, P < 0.001).

  15. Validation of serum IGF-I as a biomarker to monitor the bioactivity of exogenous growth hormone agonists and antagonists in rabbits

    PubMed Central

    Bielohuby, Maximilian; Zarkesh-Esfahani, Sayyed Hamid; Manolopoulou, Jenny; Wirthgen, Elisa; Walpurgis, Katja; Toghiany Khorasgani, Mohaddeseh; Aghili, Zahra Sadat; Wilkinson, Ian Robert; Hoeflich, Andreas; Thevis, Mario; Ross, Richard J.; Bidlingmaier, Martin

    2014-01-01

    The development of new growth hormone (GH) agonists and growth hormone antagonists (GHAs) requires animal models for pre-clinical testing. Ideally, the effects of treatment are monitored using the same pharmacodynamic marker that is later used in clinical practice. However, intact rodents are of limited value for this purpose because serum IGF-I, the most sensitive pharmacodynamic marker for the action of GH in humans, shows no response to treatment with recombinant human GH and there is little evidence for the effects of GHAs, except when administered at very high doses or when overexpressed. As an alternative, more suitable model, we explored pharmacodynamic markers of GH action in intact rabbits. We performed the first validation of an IGF-I assay for the analysis of rabbit serum and tested precision, sensitivity, linearity and recovery using an automated human IGF-I assay (IDS-iSYS). Furthermore, IGF-I was measured in rabbits of different strains, age groups and sexes, and we monitored IGF-I response to treatment with recombinant human GH or the GHA Pegvisomant. For a subset of samples, we used LC-MS/MS to measure IGF-I, and quantitative western ligand blot to analyze IGF-binding proteins (IGFBPs). Although recovery of recombinant rabbit IGF-I was only 50% in the human IGF-I assay, our results show that the sensitivity, precision (1.7–3.3% coefficient of variation) and linearity (90.4–105.6%) were excellent in rabbit samples. As expected, sex, age and genetic background were major determinants of IGF-I concentration in rabbits. IGF-I and IGFBP-2 levels increased after single and multiple injections of recombinant human GH (IGF-I: 286±22 versus 434±26 ng/ml; P<0.01) and were highly correlated (P<0.0001). Treatment with the GHA lowered IGF-I levels from the fourth injection onwards (P<0.01). In summary, we demonstrated that the IDS-iSYS IGF-I immunoassay can be used in rabbits. Similar to rodents, rabbits display variations in IGF-I depending on sex, age

  16. Relationship of serum insulin-like growth factor I (IGF-I) with nutritional status in pediatric patients with malignant diseases--a single Romanian center experience.

    PubMed

    Chinceşan, Mihaela Ioana; Mărginean, Oana; Pitea, Ana-Maria; Dobreanu, Minodora

    2013-10-01

    The aim of this study was to analyze insulin-like growth factor I (IGF-I) serum level in pediatric patients with cancer compared with pediatric patients with nononcological diseases and to assess the relationship between IGF-I and nutritional status of oncological patients. From January 2009 to July 2012, we assessed 151 consecutively hospitalized patients in a tertiary emergency pediatric hospital. The patients were divided into two groups: group I, consisting of patients with malignant diseases (64 patients), and group II, the control group, consisting of 87 age- and gender-matched patients with different pediatric diseases. The anthropometric parameters (weight, height, body mass index, middle upper arm circumference (MUAC), and tricipital skinfold thickness (TST) and biochemical parameters (proteins, albumin, and total IGF-I) were comparatively evaluated at the diagnosis and after intensive chemotherapy in the malignant group. Anthropometric and biochemical parameters in group I were significantly different from those in group II for height, MUAC, TST, total proteins, and albumin (p < 0.05). Twenty-five out of 64 patients with malignant diseases and 5 out of 87 patients in the control group had malnutrition. IGF-I in patients with cancer was much lower than in the control group (median 48.3 ng/ml, range 25.00-662.00 ng/ml vs 129.00 ng/ml, range 25.00-745.00 ng/ml) (p = 0.014). We found a positive correlation between IGF-I, MUAC, and TST at the diagnosis of the malignant disease. Also, we identified positive correlations between IGF-I, protein, and albumin. Serum IGF-I levels in cancer patients were significantly lower at diagnosis than after chemotherapy (48.3 ng/ml, range 25.00-662.00 ng/ml vs 110.0 ng/ml, range 25.00-573.00 ng/ml; p = 0.04). IGF-I seems to be an accurate biochemical parameter used in malnutrition assessment of children with cancer. IGF-I correlated with the anthropometric parameters of the arm, serum protein, and albumin. These parameters

  17. Associations of blood levels of insulin-like growth factor (IGF)-I, IGF-II and IGF binding protein (IGFBP)-3 in schizophrenic Arab subjects.

    PubMed

    Akanji, Abayomi O; Ohaeri, Jude U; Al-Shammri, Suhail A; Fatania, Hasmukh R

    2007-01-01

    Insulin-like growth factors (IGFs) are believed to be important in brain development and repair following neuronal damage. It is also speculated that IGFs are involved in the association of foetal and pre-adult growth with schizophrenia (SZ). The aim of this study was to assess levels of IGF-I, IGF-II and IGF binding protein (IGFBP)-3 and their associations in male Arab patients with SZ (n=53) and healthy control subjects (HC; n=52). Anthropometric and demographic data were collected for each subject for whom blood specimens were analysed for serum lipoproteins, apolipoprotein B (apoB), IGF-I, IGF-II and IGFBP-3. The SZ group had lower serum total cholesterol, apoB and uric acid levels than the HC group (p<0.05). IGF-II levels were significantly higher in the SZ group (p=0.02) and correlated positively with levels of atherogenic lipoproteins--total cholesterol, low-density lipoprotein, apoB--and IGFBP-3. The pattern of correlations between the IGFs and the various parameters differed somewhat between the HC and SZ groups. These results demonstrate that IGF-II levels are increased in patients with SZ and show significant associations with atherogenic lipoproteins. We suggest a possible link between IGF-II metabolism and atherogenesis in SZ.

  18. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; Fornace, Albert J; Datta, Kamal

    2016-08-25

    Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are hampered due to lack of tissue specific in vivo molecular data. We investigated long-term effects of (56)Fe radiation on adipokines and insulin-like growth factor 1 (IGF1) signaling axis in mouse intestine and colon. Six- to eight-week-old C57BL/6J mice were exposed to 1.6 Gy of (56)Fe ions. Serum and tissues were collected up to twelve months post-irradiation. Serum was analyzed for leptin, adiponectin, IGF1, and IGF binding protein 3. Receptor expressions and downstream signaling pathway alterations were studied in tissues. Irradiation increased leptin and IGF1 levels in serum, and IGF1R and leptin receptor expression in tissues. When considered along with upregulated Jak2/Stat3 pathways and cell proliferation, our data supports the notion that space radiation exposure is a risk to endocrine alterations with implications for chronic pathophysiologic changes in gastrointestinal tract.

  19. Determining skeletal maturation using insulin-like growth factor I (IGF-I) test.

    PubMed

    Gupta, Shreya; Jain, Sandhya; Gupta, Puneet; Deoskar, Anuradha

    2012-11-01

    To investigate the validity of Insulin like Growth Factor -1(IGF-1) as a skeletal maturity indicator by comparing serum IGF-1 levels with the stages in cervical vertebral maturation (CVM) and in the middle phalanx of the third finger (MP3). The study population was selected by using simple random sampling technique and consisted of 30 female subjects in the age range of 8-23 years who had blood sample, cephalometric and MP3 radiographs taken on the same day. Serum IGF-I estimation was carried out on the blood samples using chemiluminescence immunoassay (CLIA) method. CVM was evaluated using method by Baccetti et al and MP3 staging was done using Rajagopal & Kansal method. Mean IGF-1 level between the stages was compared by Kruskal-Wallis and Mann Whitney test. Serum IGF-1 levels in females correlate well with skeletal maturity determined by CVM and MP3 stages and increase sharply during early pubertal stages followed by a decrease in late puberty. In addition we hypothesis that serum IGF-1 testing can be undertaken as a preliminary screening test in patients in whom the orthodontist predicts the possibility of using myofunctional appliance but in whom the chronologic age is not suggestive for a growth modification therapy. The finding of the study highlights the fact that the serum IGF-1 estimation can be a valuable tool in assessing skeletal maturation. Copyright © 2012 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  20. Serum from Chronic Hepatitis B Patients Promotes Growth and Proliferation via the IGF-II/IGF-IR/MEK/ERK Signaling Pathway in Hepatocellular Carcinoma Cells.

    PubMed

    Ji, Yuanyuan; Wang, Zhidong; Chen, Haiyan; Zhang, Lei; Zhuo, Fei; Yang, Qingqing

    2018-05-09

    Chronic hepatitis B virus (HBV) infection (CHB) plays a central role in the etiology of hepatocellular carcinoma (HCC). Emerging evidence implicates insulin-like growth factor (IGF)-II as a major risk factor for the growth and development of HCC. However, the relationship between HBV infection and IGF-II functions remains to be elucidated. Levels of circulating IGF-II and IGF-I receptor (IGF-IR) in healthy donors (HDs) and CHB patients were tested by ELISA. Human HCC cell lines (HepG-2, SMMC-7721, MHCC97-H) were incubated with serum from HDs and CHB patients at various concentrations for 24, 48, and 72 h. MTT and plate colony formation assays, BrdU ELISA, ELISA, small-interfering RNA (siRNA) transfection, quantitative real-time PCR, and western blot were applied to assess the functional and molecular mechanisms in HCC cell lines. Serum levels of IGF-II and IGF-IR were significantly higher in CHB patients than in HDs. Additionally, serum from CHB patients directly induced cell growth, proliferation, IGF-II secretion, and HDGF-related protein-2 (HRP-2) and nuclear protein 1 (NUPR1) mRNA and protein expression in HCC cells. Moreover, serum from CHB patients increased IGF-II-induced cell growth, proliferation, and HRP-2 and NUPR1 mRNA and protein expression in HCC cells. Blockade of IGF-IR clearly inhibited the above effects. Most importantly, interference with IGF-II function markedly repressed the cell proliferation and HRP-2 and NUPR1 mRNA and protein expression induced by serum from CHB patients. Furthermore, serum from CHB patients induced ERK phosphorylation via IGF-IR, with the MEK inhibitor PD98059 significantly decreasing CHB patient serum-induced IGF-II secretion, cell proliferation, and HRP-2 and NUPR1 mRNA and protein expression. Serum from CHB patients increases cell growth and proliferation and enhances HRP-2 and NUPR1 expression in HCC cells via the IGF-II/IGF-IR/MEK/ERK signaling pathway. These findings help to explain the molecular mechanisms

  1. Positive correlation between serum IGF-1 and HDL-C in type 2 diabetes mellitus.

    PubMed

    Song, Xiaofei; Teng, Jiali; Wang, Aihong; Li, Xiang; Wang, Jing; Liu, Yanjun

    2016-08-01

    Dyslipidemia and low levels of high density lipoprotein cholesterol (HDL-C) can increase the risk of atherosclerosis development in people with type 2 diabetes mellitus (T2DM). This study aimed to investigate the correlation between serum HDL-C and insulin-like growth factor-1 (IGF-1), which are crucially involved inT2DM. Serum concentrations of IGF-1, total cholesterol, triglyceride, low density lipoprotein cholesterol, and HDL-C were measured in 498 participants with T2DM without any lipid-modifying medicine prior to study. Participants were divided into three groups according to the 25th and 75th percentile of IGF-1 levels: low IGF-1 group (G1), middle IGF-1 group (G2), and high IGF-1 group (G3), respectively. Serum levels of HDL-C were compared among the three groups. G1 presented a higher body mass index and higher fasting plasma insulin (FINS) than G2 (P<0.05), yet a lower HDL-C than G2 (P<0.05). Moreover, HDL-C, postprandial blood glucose, FINS, postprandial plasma insulin (PINS), hip circumference ratio, glycated hemoglobin A1c were significantly lower in G3 than in G2 (P<0.05). After adjusting for age and gender, serum levels of IGF-1 were negatively correlated with age, duration of disease, waist circumference, FINS, PINS, and insulin resistance, but positively correlated with HDL-C. Each increase of 2.71ng/dl in IGF-I concentration was associated with an increase of 1.34mg/dl in HDL level. IGF-1 serum level in people with T2DM is correlated positively with HDL-C. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Low serum IGF-1 and increased cytokine levels in tracheal aspirate samples are associated with bronchopulmonary dysplasia.

    PubMed

    Yılmaz, Cansu; Köksal, Nilgün; Özkan, Hilal; Dorum, Bayram Ali; Bağcı, Onur

    2017-01-01

    Yılmaz C, Köksal N, Özkan H, Dorum BA, Bağcı O. Low serum IGF-1 and increased cytokine levels in tracheal aspirate samples are associated with bronchopulmonary dysplasia. Turk J Pediatr 2017; 59: 122-129. Despite developments in the perinatal and neonatal care, bronchopulmonary dysplasia (BPD) is still the most frequently seen long-term complication in preterm infants. The aim of this prospective study is to investigate the association between the development of BPD and serial measurements of IGF-1 levels and their relationship with levels of IGF-1 and cytokine in tracheal aspirate fluids. A total of 40 premature infants, born at a gestational age of ≤ 32 weeks, were enrolled in the study. On postnatal day-1, 3, 7, 21 and 28 serum IGF-1 levels and IGF-1 levels, IL-6, IL-8, IL-10 and TNF-alpha levels in tracheal aspirate fluid samples of intubated cases were examined. Mean gestational age of 40 patients included in the study was 29.41 ± 2.23 weeks, and their mean birth weight was 1,256.85 ± 311.48 g. BPD was detected in 35% of cases. Mean gestational week and birth weight of the cases that developed BPD were 30 ± 3 weeks and 1,150 ± 295 g, respectively. Serum IGF-1 levels on postnatal day-1, 3, 7, 21 and 28 in cases who developed BPD were significantly lower when compared with those without BPD (p < 0.01). Levels of IL-6, IL-8, IL-10, and TNF-alpha in tracheal aspirate samples were significantly higher in cases with BPD compared to those without BPD (p < 0.05). IGF-1 levels in tracheal aspirate fluid samples did not differ significantly based on the presence of BPD (p > 0.05). Severity of BPD was associated with decreased serum IGF-1 levels and increased cytokine levels in tracheal aspirate samples.

  3. Insulin-like growth factor (IGF)-I, IGF-II and IGF-binding protein (IGFBP)-3 levels in Arab subjects with coronary heart disease.

    PubMed

    Akanji, A O; Suresh, C G; Al-Radwan, R; Fatania, H R

    2007-01-01

    Insulin-like growth factors (IGF-I, IGF-II) and their binding protein (IGFBP-3) may be risk markers for coronary heart disease (CHD). This study aimed to assess the levels and determinants of the serum levels of IGF-I, IGF-II and IGFBP-3 in Arab patients with established CHD. Two groups of subjects were matched for age, gender, BMI and waist-hip ratio (WHR): (i) CHD (n = 105), median age 51.0 (range 40.0-60.0) years; (ii) controls (n = 97) aged 49.0 (range 37.0-60.0) years. We measured fasting serum levels of glucose and lipoproteins (total cholesterol, triglycerides, LDL, HDL, apo B), insulin, HOMA-IR, IGF-I, IGF-II and IGFBP-3 and compared the results between groups. The effects of body mass and the metabolic syndrome (MS) on IGF levels were also examined, and linear correlations were sought between the various parameters. The levels of IGF-I, IGF-II and IGFBP-3 were significantly lower (all p<0.01) for the CHD group than for the control group. These differences were not influenced by BMI or with the presence of MS. In CHD, there were no significant correlations between levels of IGF-I and IGF-II and age, BMI, WHR, lipoprotein concentrations and insulin sensitivity, although IGFBP-3 had weakly significant relationships with some of the lipoproteins. Levels of IGF-I, IGF-II and IGFBP3 are reduced in male Arab patients with CHD, and did not appear influenced by traditional CHD risk factors such as age, BMI, insulin sensitivity and presence of MS. Perturbations in the IGF/IGFBP-3 axis may be potential additional targets for pharmacological manipulation in CHD.

  4. IGF-I gene variability is associated with an increased risk for AD.

    PubMed

    Vargas, Teo; Martinez-Garcia, Ana; Antequera, Desiree; Vilella, Elisabet; Clarimon, Jordi; Mateo, Ignacio; Sanchez-Juan, Pascual; Rodriguez-Rodriguez, Eloy; Frank, Ana; Rosich-Estrago, Marcel; Lleo, Alberto; Molina-Porcel, Laura; Blesa, Rafael; Gomez-Isla, Teresa; Combarros, Onofre; Bermejo-Pareja, Felix; Valdivieso, Fernando; Bullido, Maria Jesus; Carro, Eva

    2011-03-01

    Insulin-like growth factor I (IGF-I), a neuroprotective factor with a wide spectrum of actions in the adult brain, is involved in the pathogenesis of Alzheimer's disease (AD). Circulating levels of IGF-I change in AD patients and are implicated in the clearance of brain amyloid beta (Aβ) complexes. To investigate this hypothesis, we screened the IGF-I gene for various well known single nucleotide polymorphisms (SNPs) covering % of the gene variability in a population of 2352 individuals. Genetic analysis indicated different distribution of genotypes of 1 single nucleotide polymorphism, and 1 extended haplotype in the AD population compared with healthy control subjects. In particular, the frequency of rs972936 GG genotype was significantly greater in AD patients than in control subjects (63% vs. 55%). The rs972936 GG genotype was associated with an increased risk for disease, independently of apolipoprotein E genotype, and with enhanced circulating levels of IGF-I. These findings suggest that polymorphisms within the IGF-I gene could infer greater risk for AD through their effect on IGF-I levels, and confirm the physiological role IGF-I in the pathogenesis of AD. Copyright © 2011 IBRO. Published by Elsevier Inc. All rights reserved.

  5. Impaired skeletal growth in mice with haploinsufficiency of IGF-I: genetic evidence that differences in IGF-I expression could contribute to peak bone mineral density differences

    PubMed Central

    Mohan, S; Baylink, D J

    2010-01-01

    Although it is well established that there is considerable inter-individual variation in the circulating levels of IGF-I in normal, healthy individuals and that a genetic component contributes substantially to this variation, the direct evidence that inter-individual variation in IGF-I contributes to differences in peak bone mineral density (BMD) is lacking. To examine if differences in IGF-I expression could contribute to peak BMD differences, we measured skeletal changes at days 23 (prepubertal), 31 (pubertal) and 56 (postpubertal) in mice with haploinsufficiency of IGF-I (+/−) and corresponding control mice (+/+). Mice (MF1/DBA) heterozygous for the IGF-I knockout allele were bred to generate +/+ and +/− mice (n=18–20 per group). Serum IGF-I was decreased by 23% (P<0·001) in mice with IGF-I haploinsufficiency (+/−) group at day 56 compared with the control (+/+) group. Femoral bone mineral content and BMD, as determined by dual energy X-ray absorptiometry, were reduced by 20% (P<0·001) and 12% respectively in the IGF-I (+/−) group at day 56 compared with the control group. The peripheral quantitative computed tomography measurements at the femoral mid-diaphysis revealed that periosteal circumference (7%, P<0·01) and total volumetric BMD (5%, P<0·05) were decreased significantly in the +/− group compared with the +/+ group. Furthermore, serum IGF-I showed significant positive correlations with both areal BMD (r=0·55) and periosteal circumference (r=0·66) in the pooled data from the +/+ and +/− groups. Our findings that haploinsufficiency of IGF-I caused significant reductions in serum IGF-I level, BMD and bone size, together with the previous findings, are consistent with the notion that genetic variations in IGF-I expression could, in part, contribute to inter-individual differences in peak BMD among a normal population. PMID:15930167

  6. Long-term IGF-I treatment of children with Laron syndrome increases adiposity.

    PubMed

    Laron, Zvi; Ginsberg, Shira; Lilos, Pnina; Arbiv, Mira; Vaisman, Nahum

    2006-02-01

    Laron syndrome (LS) is an autosomal recessive disease caused by deletions or mutations in the GH receptor gene leading to an inability of insulin-like growth factor I (IGF-I) generation. Among the major resulting body changes are dwarfism and obesity. The only effective treatment is daily administration of biosynthetic IGF-I. Body composition determination by DEXA (dual energy X-ray absorptiometry) of three girls with LS treated by IGF-I for 1, 3 and 11 1/2 years, respectively, revealed that concomitantly with the increase in growth there was a significant increase in body adipose tissue to double or triple the normal values. Due to the underdevelopment of the muscular and skeletal systems body mass index (BMI) did not accurately reflect the degree of obesity. In conclusion, IGF-I similar to insulin, exerts an adipogenic effect.

  7. Prednisolone reduces the ability of serum to activate the IGF1 receptor in vitro without affecting circulating total or free IGF1.

    PubMed

    Frystyk, Jan; Schou, Anders J; Heuck, Carsten; Vorum, Henrik; Lyngholm, Mikkel; Flyvbjerg, Allan; Wolthers, Ole D

    2013-01-01

    End-point bioassays based on thymidine or sulfate incorporation have demonstrated that glucocorticoid (GC) treatment inhibits serum IGF1 action, but the mechanism is unknown as serum IGF1 concentrations have been reported to either increase or remain unchanged. To investigate whether GC treatment affects the ability of serum to activate the IGF1 receptor (IGF1R) in vitro (i.e. bioactive IGF1), using a specific cell-based IGF1 kinase receptor activation assay. Twenty children with stable asthma (age 7.7-13.8 years) treated for 1 week with 5 mg prednisolone in a randomized, double-blind, placebo-controlled crossover study. Non-fasting serum samples were collected in the afternoon after each 7-day period and assayed for bioactive IGF1, free IGF1, total IGFs, IGF-binding proteins (IGFBPs), and insulin. Prednisolone treatment reduced IGF1 bioactivity by 12.6% from 2.22±0.18 to 1.94±0.15 μg/l (P=0.01) compared with placebo. In contrast, no changes were observed for (μg/l; placebo vs prednisolone) total IGF1 (215±27 vs 212±24), free IGF1 (1.50±0.16 vs 1.43±0.17), total IGF2 (815±26 vs 800±31), IGFBP3 (3140±101 vs 3107±95), IGFBP2 (238±21 vs 220±19), IGFBP1 (32±6 vs 42±10), or IGFBP1-bound IGF1 (24±5 vs 26±7). Insulin remained unchanged as did IGFBP levels as estimated by western ligand blotting. Prednisolone had no direct effects on IGF1R phosphorylation. Our study gives evidence that GC treatment induces a circulating substance that is able to inhibit IGF1R activation in vitro without affecting circulating free or total IGF1. This may be one of the mechanisms by which GC inhibits IGF1 action in vivo. However, the nature of this circulating substance remains to be identified.

  8. High-intensity interval training (HIIT) increases insulin-like growth factor-I (IGF-I) in sedentary aging men but not masters' athletes: an observational study.

    PubMed

    Herbert, Peter; Hayes, Lawrence D; Sculthorpe, Nicholas; Grace, Fergal M

    2017-03-01

    The aim of this investigation was to examine the impact high-intensity interval training (HIIT) on serum insulin-like growth factor-I (IGF-I) in active compared with sedentary aging men. 22 lifetime sedentary (SED; 62 ± 2 years) and 17 masters' athletes (LEX; 60 ± 5 years) were recruited to the study. As HIIT requires preconditioning exercise in sedentary cohorts, the study required three assessment phases; enrollment (phase A), following preconditioning exercise (phase B), and post-HIIT (phase C). Serum IGF-I was determined by electrochemiluminescent immunoassay. IGF-I was higher in LEX compared to SED at baseline (p = 0.007, Cohen's d = 0.91), and phase B (p = 0.083, Cohen's d = 0.59), with only a small difference at C (p = 0.291, Cohen's d = 0.35). SED experienced a small increase in IGF-I following preconditioning from 13.1 ± 4.7 to 14.2 ± 6.0 μg·dl -1 (p = 0.376, Cohen's d = 0.22), followed by a larger increase post-HIIT (16.9 ± 4.4 μg·dl -1 ), which was significantly elevated compared with baseline (p = 0.002, Cohen's d = 0.85), and post-preconditioning (p = 0.005, Cohen's d = 0.51). LEX experienced a trivial changes in IGF-I from A to B (18.2 ± 6.4 to 17.2 ± 3.7 μg·dl -1 [p = 0.538, Cohen's d = 0.19]), and a small change post-HIIT (18.4 ± 4.1 μg·dl -1 [p = 0.283, Cohen's d = 0.31]). Small increases were observed in fat-free mass in both groups following HIIT (p < 0.05, Cohen's d = 0.32-0.45). In conclusion, HIIT with preconditioning exercise abrogates the age associated difference in IGF-I between SED and LEX, and induces small improvements in fat-free mass in both SED and LEX.

  9. Insulin-like growth factor I, IGF-binding protein 3, and lung cancer risk in a prospective study of men in China.

    PubMed

    London, Stephanie J; Yuan, Jian-Min; Travlos, Gregory S; Gao, Yu-Tang; Wilson, Ralph E; Ross, Ronald K; Yu, Mimi C

    2002-05-15

    Insulin-like growth factor I (IGF-I) stimulates cell proliferation and inhibits apoptosis in the lung and other tissues by interacting with the IGF-I receptor. The major binding protein for IGF-I, insulin-like growth factor-binding protein 3 (IGFBP-3), modulates the effects of IGF-I but also inhibits cell growth and induces apoptosis independent of IGF-I and its receptor. In a prospective study of men in Shanghai, China, we examined the association between serum levels of IGF-I and IGFBP-3 and the subsequent risk of lung cancer. From 1986 to 1989, serum was collected from 18,244 men aged 45-64 years living in Shanghai without a history of cancer. We analyzed IGF-I and IGFBP-3 levels in serum from 230 case patients who developed incident lung cancer during follow-up and from 740 control subjects. Among 230 case patients and 659 matched control subjects, increased IGF-I levels were not associated with increased risk of lung cancer. However, for subjects in the highest quartile relative to the lowest quartile of IGFBP-3, the odds ratio (OR) for lung cancer, adjusted for smoking and IGF-I, was 0.50 (95% confidence interval [CI] = 0.25 to 1.02). When the analysis was restricted to ever smokers (184 case patients and 344 matched control subjects), the OR for lung cancer in men in the highest quartile of IGFBP-3 relative to those in the lowest quartile, adjusted for smoking and IGF-I, was 0.41 (95% CI = 0.18 to 0.92). In this prospective study of Chinese men, higher serum levels of IGF-I did not increase the risk of lung cancer. However, subjects with higher serum levels of IGFBP-3 were at reduced risk of lung cancer. This finding is consistent with experimental data that indicate that IGFBP-3 can inhibit cellular proliferation and induce apoptosis independent of IGF-I and the IGF-I receptor.

  10. Enhanced production of IGF-I in the lungs of fibroproliferative ARDS patients.

    PubMed

    Andonegui, Graciela; Krein, Peter M; Mowat, Connie; Brisebois, Ronald; Doig, Christopher; Green, Francis H Y; Léger, Caroline; Winston, Brent W

    2014-11-01

    Insulin-Like Growth Factor I (IGF-I) has been identified in the lungs of individuals with fibrotic lung diseases. In a previous retrospective study, we showed enhanced IGF-I immunoreactivity in individuals with fibroproliferative acute respiratory distress syndrome (FP-ARDS), but we were unable to determine if this correlation was causative. This study was undertaken to prospectively investigate whether IGF-I expression correlated with the fibroproliferative process and whether IGF-I was induced and made in the lungs. We measured IGF-I and procollagen III peptide (PCP-III) in the epithelial lining fluid (ELF) from controls, early ALI/ARDS patients and FP-ARDS patients. We also measured IGF-I mRNA and immunoreactivity from controls and FP-ARDS patient lung biopsies. We determined the level of lung permeability by measuring albumin and urea levels in ELF and serum. Our data show that IGF-I is significantly increased in the ELF in FP-ARDS patients. A significant correlation between IGF-I and PCP-III in the ELF of FP-ARDS patients is found. IGF-I mRNA is elevated in the FP-ARDS lung biopsies. Our data suggest that IGF-I found in the lungs of FP-ARDS patients results from both increased lung permeability and local production of IGF-I. The role of IGF-I in the fibroproliferative process in the lungs has recently been confirmed in an animal model of lung fibroproliferation. This study importantly suggest that IGF-I protein is made in the lungs of FP-ARDS patients and correlates with increased levels of ELF PCP-III, implicating a role for IGF-I in the fibroproliferative process in humans. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  11. IGF-I and mammographic density in four geographic locations: a pooled analysis.

    PubMed

    Maskarinec, Gertraud; Takata, Yumie; Chen, Zhao; Gram, Inger Torhild; Nagata, Chisato; Pagano, Ian; Hayashi, Kentaro; Arendell, Leslie; Skeie, Guri; Rinaldi, Sabina; Kaaks, Rudolph

    2007-10-15

    Insulin-like growth factor (IGF-I) and prolactin have been found to be associated with breast cancer risk and with mammographic density. In a pooled analysis from 4 geographic locations, we investigated the association of percent mammographic density with serum levels of IGF-I, IGFBP-3 and prolactin. The pooled data set included 1,327 pre- and postmenopausal women: Caucasians from Norway, Arizona and Hawaii, Japanese from Hawaii and Japan, Latina from Arizona, and Native Hawaiians from Hawaii. Serum samples were assayed for IGF-I, IGFBP-3 and prolactin levels using ELISA assays. Mammographic density was quantified using a computer-assisted density method. After stratification by menopausal status, multiple regression models estimated the relation between serum analytes and breast density. All serum analytes except prolactin among postmenopausal women differed significantly by location/ethnicity group. Among premenopausal subjects, IGF-I levels and the molar ratio were highest in Hawaii, intermediate in Japan and lowest in Arizona. For IGFBP-3, the order was reversed. Among postmenopausal subjects, Norwegian women had the highest IGF-I levels and women in Arizona had the lowest while women in Japan and Hawaii had intermediate levels. We observed no significant relation between percent density and IGF-I or prolactin levels among pre-and postmenopausal women. The significant differences in IGF-I levels by location but not ethnicity suggest that environmental factors influence IGF-I levels, whereas percent breast density varies more according to ethnic background than by location. Based on this analysis, the influence of circulating levels of IGF-I, IGFBP-3, and prolactin on percent density appears to be very small. (c) 2007 Wiley-Liss, Inc.

  12. Decreased fractional urinary calcium excretion and serum 1,25-dihydroxyvitamin D and IGF-I levels in preeclampsia.

    PubMed

    Halhali, Ali; Díaz, Lorenza; Avila, Euclides; Ariza, Ana Carolina; Garabédian, Michèle; Larrea, Fernando

    2007-03-01

    During preeclampsia several alterations of calcium metabolism have been described, the most common of them is hypocalciuria, which pathophysiology is still unclear. In order to assess the contribution of calciotropic hormones to urinary calcium excretion, a cross-sectional study was done including 26 preeclamptic Mexican women (PE group) and 26 normotensive control pregnant women (NT group). Total and fractional urinary calcium excretion were significantly lower (P<0.0001) in the PE group than in the NT group (82+/-7 versus 171+/-7 mg/24h and 0.62+/-0.38 versus 1.38+/-0.71%, respectively), without significant differences in creatinine clearance, urinary sodium excretion and phosphate tubular reabsorption. In addition, serum 1,25-(OH)(2)D and IGF-I levels were significantly (P<0.05) lower in the PE than in NT group (43+/-9 versus 50+/-9 pg/mL and 195+/-67 versus 293+/-105 ng/mL, respectively), without significant differences in serum PTH levels. In the NT group, association analysis showed that total and fractional urinary calcium excretions positively correlated with serum levels of 1,25-(OH)(2)D (P<0.01) and IGF-I (P<0.001). In the PE group, total urinary calcium excretion positively correlated only with serum 1,25-(OH)(2)D (P<0.05). In conclusion, the results obtained in this study confirm that PE is associated with hypocalciuria and suggest that 1,25-(OH)(2)D and/or IGF-I may be involved in the regulation of urinary calcium excretion.

  13. Acute regulation of IGF-I by alterations in post-exercise macronutrients.

    PubMed

    Foster, E B; Fisher, G; Sartin, J L; Elsasser, T H; Wu, G; Cowan, W; Pascoe, D D

    2012-04-01

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise nutritional protocols: (1) placebo (EX); (2) carbohydrate only (CHO); and (3) essential amino acid/carbohydrate (EAA/CHO). Samples were analyzed for growth hormone (GH), free IGF-I, IGFBP-1, IGFBP-2, insulin, hematocrit, hemoglobin, serum leucine, matrix metalloproteinase-9 (MMP-9) proteolytic activity, and presence of IGFBP-3 protease activity. No evidence for IGFBP-3 proteolysis was observed. Significant increases in [free IGF-I] and [leucine] were observed in the EAA/CHO group only. Significant differences were noted in [IGFBP-1] and [IGFBP-2] across conditions. Significant increases in [GH] and MMP-9 activity were observed in all groups. These results indicate that post-exercise macronutrient ratio is a determinant of [free IGF-I], [IGFBP-1 and -2] and may play a role in modulating the IGF-I axis in vivo.

  14. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    PubMed

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  15. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    PubMed Central

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  16. Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles.

    PubMed

    List, Edward O; Berryman, Darlene E; Funk, Kevin; Jara, Adam; Kelder, Bruce; Wang, Feiya; Stout, Michael B; Zhi, Xu; Sun, Liou; White, Thomas A; LeBrasseur, Nathan K; Pirtskhalava, Tamara; Tchkonia, Tamara; Jensen, Elizabeth A; Zhang, Wenjuan; Masternak, Michal M; Kirkland, James L; Miller, Richard A; Bartke, Andrzej; Kopchick, John J

    2014-05-01

    GH is an important regulator of body growth and composition as well as numerous other metabolic processes. In particular, liver plays a key role in the GH/IGF-I axis, because the majority of circulating "endocrine" IGF-I results from GH-stimulated liver IGF-I production. To develop a better understanding of the role of liver in the overall function of GH, we generated a strain of mice with liver-specific GH receptor (GHR) gene knockout (LiGHRKO mice). LiGHRKO mice had a 90% decrease in circulating IGF-I levels, a 300% increase in circulating GH, and significant changes in IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, IGFBP-5, and IGFBP-7. LiGHRKO mice were smaller than controls, with body length and body weight being significantly decreased in both sexes. Analysis of body composition over time revealed a pattern similar to those found in GH transgenic mice; that is, LiGHRKO mice had a higher percentage of body fat at early ages followed by lower percentage of body fat in adulthood. Local IGF-I mRNA levels were significantly increased in skeletal muscle and select adipose tissue depots. Grip strength was increased in LiGHRKO mice. Finally, circulating levels of leptin, resistin, and adiponectin were increased in LiGHRKO mice. In conclusion, LiGHRKO mice are smaller despite increased local mRNA expression of IGF-I in several tissues, suggesting that liver-derived IGF-I is indeed important for normal body growth. Furthermore, our data suggest that novel GH-dependent cross talk between liver and adipose is important for regulation of adipokines in vivo.

  17. Endocrine and cardiac paracrine actions of insulin-like growth factor-I (IGF-I) during thyroid dysfunction in the rat: is IGF-I implicated in the mechanism of heart weight/body weight change during abnormal thyroid function?

    PubMed

    Thomas, M R; Miell, J P; Taylor, A M; Ross, R J; Arnao, J R; Jewitt, D E; McGregor, A M

    1993-06-01

    Thyroid hormones are essential for the normal growth and development of many tissues. In the rat, hypothyroidism is associated with growth impairment, and hyperthyroidism with the development of a hypercatabolic state and skeletal muscle wasting but, paradoxically, cardiac hypertrophy. The mechanism by which thyroid hormone produces cardiac hypertrophy and myosin isoenzyme changes remains unclear. The role of IGF-I, an anabolic hormone with both paracrine and endocrine actions, in producing cardiac hypertrophy was investigated during this study in hyperthyroid, hypothyroid and control rats. A treated hypothyroid group was also included in order to assess the effect of acute normalization of thyroid function. Body weight was significantly lower in the hyperthyroid (mean +/- S.E.M.; 535.5 +/- 24.9 g, P < 0.05), hypothyroid (245.3 +/- 9.8 g, P < 0.001) and treated hypothyroid (265.3 +/- 9.8 g, P < 0.001) animals when compared with controls (618.5 +/- 28.6 g). Heart weight/body weight ratios were, however, significantly increased in the hyperthyroid (2.74 +/- 0.11 x 10(-3), P < 0.01) and treated hypothyroid (2.87 +/- 0.07 x 10(-3), P < 0.001) animals when compared with controls (2.26 +/- 0.03 x 10(-3). Serum IGF-I concentrations were similar in the control and hyperthyroid rats (0.91 +/- 0.07 vs 0.78 +/- 0.04 U/ml, P = 0.26), but bioactivity was reduced by 70% in hyperthyroid serum, suggesting a circulating inhibitor of IGF. Serum IGF-I levels (0.12 +/- 0.03 U/ml, P < 0.001) and bioactivity (0.12 +/- 0.04 U/ml, P < 0.001) were significantly lower in the hypothyroid group. Liver IGF-I mRNA levels were not statistically different in the control and hyperthyroid animals, but were significantly reduced in the hypothyroid animals (P < 0.05 vs control). Heart IGF-I mRNA levels were similar in the control and hypothyroid rats, but were significantly increased in the hyperthyroid and treated hypothyroid animals (increased by 32% in hyperthyroidism, P < 0.05; increased by 57

  18. Postnatally elevated levels of insulin-like growth factor (IGF)-II fail to rescue the dwarfism of IGF-I-deficient mice except kidney weight.

    PubMed

    Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard

    2007-01-01

    This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.

  19. IGF-I abuse in sport.

    PubMed

    Guha, Nishan; Dashwood, Alexander; Thomas, Nicholas J; Skingle, Alexander J; Sönksen, Peter H; Holt, Richard I G

    2009-09-01

    It is widely believed that growth hormone (GH) is abused by athletes for its anabolic and lipolytic effects. Many of the physiological effects of GH are mediated by the production of insulin-like growth factor-I (IGF-I). Both GH and IGF-I appear on the World Anti-Doping Agency list of prohibited substances. Little is known, however, about the prevalence of abuse with exogenous IGF-I. IGF-I has effects on carbohydrate, lipid and protein metabolism and some of these actions could prove beneficial to competitive athletes. No studies have demonstrated a positive effect of IGF-I on physical performance in healthy individuals but this has not yet been studied in appropriately designed trials. Two pharmaceutical preparations of IGF-I have recently become available for the treatment of growth disorders in children. This availability is likely to increase the prevalence of IGF-I abuse. Combining IGF-I with its binding protein IGFBP-3 in one preparation has the potential to reduce the side-effect profile but the adverse effects of long term IGF-I abuse are currently unknown. Detection of abuse with IGF-I is a major challenge for anti-doping authorities. It is extremely difficult to distinguish the exogenous recombinant form of the hormone from endogenously-produced IGF-I. One approach currently being investigated is based on measuring markers of GH and IGF-I action. This has already proved successful in the fight against GH abuse and, it is hoped, will subsequently lead to a similar test for detection of IGF-I abuse.

  20. Postprandial hyperglycemia corrected by IGF-I (Increlex®) in Laron syndrome.

    PubMed

    Latrech, Hanane; Simon, Albane; Beltrand, Jacques; Souberbielle, Jean-Claude; Belmejdoub, Ghizlane; Polak, Michel

    2012-01-01

    Laron syndrome is caused by a mutation in the growth hormone (GH) receptor and manifests as insulin-like growth factor-I (IGF-I) deficiency, severe short stature, and early hypoglycemia. We report a case with postprandial hyperglycemia, an abnormality not reported previously. Postprandial hyperglycemia was due to chronic IGF-I deficiency, and was reversed by IGF-I replacement therapy. A Moroccan girl referred for short stature at 7 years and 8 months of age had dwarfism [height, 78 cm (-9 SDs); weight, 10 kg (-4 SDs)], hypoglycemia, and truncal obesity. Her serum IGF-I level was very low, and her baseline serum GH level was elevated to 47 mIU/l. Molecular analysis showed a homozygous mutation in the GH receptor gene. Continuous glucose monitoring before treatment showed asymptomatic hypoglycemia with postprandial hyperglycemia (2.5 g/l, 13.75 mmol/l). Treatment with recombinant human IGF-I (mecasermin, Increlex®) was started. The blood glucose profile improved with 0.04 µg/kg/day and returned to normal with 0.12 µg/kg/day. Postprandial hyperglycemia is a metabolic consequence of chronic IGF-I deficiency. The beneficial effect of IGF-I replacement therapy may be ascribable to improved postprandial transfer of glucose. Copyright © 2012 S. Karger AG, Basel.

  1. Purification, amino acid sequence and characterisation of kangaroo IGF-I.

    PubMed

    Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z

    1998-01-01

    Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar.

  2. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.

    1987-05-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of /sup 125/I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of /sup 125/I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of /sup 125/I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of /sup 125/I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGFmore » I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I.« less

  3. IGF-1R mRNA expression is increased in obese children.

    PubMed

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Serum levels of IGF-1 and IGF-BP3 are associated with event-free survival in adult Ewing sarcoma patients treated with chemotherapy.

    PubMed

    de Groot, Stefanie; Gelderblom, Hans; Fiocco, Marta; Bovée, Judith Vmg; van der Hoeven, Jacobus Jm; Pijl, Hanno; Kroep, Judith R

    2017-01-01

    Activation of the insulin-like growth factor 1 (IGF-1) pathway is involved in cell growth and proliferation and is associated with tumorigenesis, tumor progression, and therapy resistance in solid tumors. We examined whether variability in serum levels of IGF-1, IGF-2, and IGF-binding protein 3 (IGF-BP3) can predict event-free survival (EFS) and overall survival (OS) in Ewing sarcoma patients treated with chemotherapy. Serum levels of IGF-1, IGF-2, and IGF-BP3 of 22 patients with localized or metastasized Ewing sarcoma treated with six cycles of vincristine/ifosfamide/doxorubicin/etoposide (VIDE) chemotherapy were recorded. Baseline levels were compared with presixth cycle levels using paired t -tests and were tested for associations with EFS and OS. Continuous variables were dichotomized according to the Contal and O'Quigley procedure. Survival analyses were performed using Cox regression analysis. High baseline IGF-1 and IGF-BP3 serum levels were associated with EFS (hazard ratio [HR] 0.075, 95% confidence interval [CI] 0.009-0.602 and HR 0.090, 95% CI 0.011-0.712, respectively) in univariate and multivariate analyses (HR 0.063, 95% CI 0.007-0.590 and HR 0.057, 95% CI 0.005-0.585, respectively). OS was improved, but this was not statistically significant. IGF-BP3 and IGF-2 serum levels increased during treatment with VIDE chemotherapy ( P =0.055 and P =0.023, respectively). High circulating serum levels of IGF-1 and IGF-BP3 and the molar ratio of IGF-1:IGF-BP3 serum levels were associated with improved EFS and a trend for improved OS in Ewing sarcoma patients treated with VIDE chemotherapy. These findings suggest the need for further investigation of the IGF-1 pathway as a biomarker of disease progression in patients with Ewing sarcoma.

  5. The IGF-I system component concentrations that decrease with ageing are lower in obesity in relationship to body mass index and body fat.

    PubMed

    Gómez, José Manuel; Maravall, Francisco Javier; Gómez, Núria; Navarro, Miguel Angel; Casamitjana, Roser; Soler, Juan

    2004-04-01

    The aim of this study was to investigate the GH-IGF-I axis in healthy adults and its relationship to obesity. We studied 268 subjects: 134 men and 134 women, and determined anthropometric and body composition variables. Serum total IGF-I was measured by radioimmunoassay, serum free IGF-I concentrations by enzyme linked immunosorbant assay and serum IGFBP3 concentrations by radioimmunoassay. In men, we observed a decrease in total IGF-I, free IGF-I and IGFBP-3 throughout decades. In women, the body mass index and fat mass were higher throughout decades, and we observed a similar decrease to that in men in total IGF-I, free IGF-I and IGFBP3. In men with obesity, as measured by body fat, free IGF-I concentrations were lower than those without obesity; in women with obesity, total IGF-I concentrations and free IGF-I concentrations were lower than in those with obesity. These changes were observed in relationship to obesity when the subjects were adjusted for differences in age. We showed that in controls randomly selected, the GH-IGF-I axis component concentrations that decrease with increasing age are lower in obesity, especially in women, and that this decrease is related to body mass index and body fat.

  6. A novel, non-invasive transdermal fluid sampling methodology: IGF-I measurement following exercise

    USDA-ARS?s Scientific Manuscript database

    This study tested the hypothesis that transdermal fluid (TDF) provides a more sensitive and accurate measure of exercise-induced increases in insulin-like growth factor-I (IGF-I) than serum, and that these increases are detectable proximal, but not distal, to the exercising muscle. A novel, noninvas...

  7. IGFBP-1 and IGF-I as markers for advanced fibrosis in NAFLD - a pilot study.

    PubMed

    Hagström, Hannes; Stål, Per; Hultcrantz, Rolf; Brismar, Kerstin; Ansurudeen, Ishrath

    2017-12-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease globally. Advanced fibrosis (stage 3-4) is the most robust marker for future mortality, but diagnosis requires liver biopsy. Current non-invasive scoring systems aimed to identify advanced fibrosis are imperfect. Insulin-like growth factor I (IGF-I) and its binding protein IGFBP-1 are liver derived proteins, that are involved in various liver disorders. The aim of this study was to examine the possible association between advanced fibrosis and IGF-I and IGFBP-1 in NAFLD. Fasting blood samples were obtained from 52 patients diagnosed with NAFLD by liver biopsy. Total IGF-I and IGFBP-1 concentrations were determined in serum by in-house radio-immuno-assays. IGF-I levels were age-standardized (IGF-SD). A logistic regression model was used to investigate the association of IGF-SD and IGFBP-1 with advanced fibrosis (stage 3-4). Patients with advanced fibrosis (stage 3-4 vs. 0-2) had lower IGF-SD (-1.17 vs. 0.11, p = .01) and higher mean levels of IGFBP-1 (29.9 vs. 18.8 µg/l, p = .02). IGFBP-1 was associated with presence of advanced fibrosis (OR 1.04 per unit increase, 95%CI 1.0-1.07, p = .05), while IGF-1 was negatively associated with advanced fibrosis (OR 0.63 per standard deviation, 95%CI 0.44-0.92, p = .02). This pilot study suggests an association between serum IGFBP-1 and IGF-I levels with advanced fibrosis in NAFLD patients. IGFBP1 and IGF-1 could be of interest as future biomarkers. Similar studies in larger cohorts are needed.

  8. Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy

    PubMed Central

    2011-01-01

    Background Caused by Mycobacterium leprae (ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems. Methods In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-α) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method. Results The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF-I

  9. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    PubMed Central

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  10. Leptin does not mediate short-term fasting-induced changes in growth hormone pulsatility but increases IGF-I in leptin deficiency states.

    PubMed

    Chan, Jean L; Williams, Catherine J; Raciti, Patricia; Blakeman, Jennifer; Kelesidis, Theodore; Kelesidis, Iosif; Johnson, Michael L; Thorner, Michael O; Mantzoros, Christos S

    2008-07-01

    States of acute and chronic energy deficit are characterized by increased GH secretion and decreased IGF-I levels. The objective of the study was to determine whether changes in levels of leptin, a key mediator of the adaptation to starvation, regulate the GH-IGF system during energy deficit. We studied 14 healthy normal-weight men and women during three conditions: baseline fed and 72-h fasting (to induce hypoleptinemia) with administration of placebo or recombinant methionyl human leptin (r-metHuLeptin) (to reverse the fasting associated hypoleptinemia). We also studied eight normal-weight women with exercise-induced chronic energy deficit and hypothalamic amenorrhea at baseline and during 2-3 months of r-metHuLeptin treatment. GH pulsatility, IGF levels, IGF and GH binding protein (GHBP) levels were measured. During short-term energy deficit, measures of GH pulsatility and disorderliness and levels of IGF binding protein (IGFBP)-1 increased, whereas leptin, insulin, IGF-I (total and free), IGFBP-4, IGFBP-6, and GHBP decreased; r-metHuLeptin administration blunted the starvation-associated decrease of IGF-I. In chronic energy deficit, total and free IGF-I, IGFBP-6, and GHBP levels were lower, compared with euleptinemic controls; r-metHuLeptin administration had no major effect on GH pulsatility after 2 wk but increased total IGF-I levels and tended to increase free IGF-I and IGFBP-3 after 1 month. The GH/IGF system changes associated with energy deficit are largely independent of leptin deficiency. During acute energy deficit, r-metHuLeptin administration in replacement doses blunts the starvation-induced decrease of IGF-I, but during chronic energy deficit, r-metHuLeptin administration increases IGF-I and tends to increase free IGF-I and IGFBP-3.

  11. Serum IGF-1 Concentrations Change With Soy and Seaweed Supplements in Healthy Postmenopausal American Women

    PubMed Central

    Teas, Jane; Irhimeh, Mohammad R.; Druker, Susan; Hurley, Thomas G.; Hébert, James R.; Savarese, Todd M.; Kurzer, Mindy S.

    2011-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone important for growth and development. However, high-circulating serum concentrations in adults are associated with increased risk of postmenopausal breast cancer. Nutritional status and specific foods influence serum IGF-1 concentrations. Breast cancer incidence is typically low in Asian countries where soy is commonly consumed. Paradoxically, soy supplement trials in American women have reported significant increases in IGF-1. Seaweed also is consumed regularly in Asian countries where breast cancer risk is low. We investigated the possibility that seaweed could modify soy-associated increases in IGF-1 in American women. Thirty healthy postmenopausal women (mean age 58 yr) participated in this 14-wk double-blinded, randomized, placebo-controlled crossover clinical trial. Participants consumed 5 g/day placebo or seaweed (Alaria esculenta) in capsules for 7 wk. During the 7th wk, a high-soy protein isolate powder was added (2 mg/kg body weight aglycone equivalent isoflavones). Overnight fasting blood samples were collected after each intervention period. Soy significantly increased serum IGF-1 concentrations compared to the placebo (21.2 nmol/L for soy vs. 16.9 nmol/L for placebo; P = 0.0001). The combination of seaweed and soy significantly reduced this increase by about 40% (21.2 nmol/L for soy alone vs. 19.4 nmol/L; P = 0.01). Concurrent seaweed and soy consumption may be important in modifying the effect of soy on IGF-1 serum concentrations. PMID:21711174

  12. Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women.

    PubMed

    Teas, Jane; Irhimeh, Mohammad R; Druker, Susan; Hurley, Thomas G; Hébert, James R; Savarese, Todd M; Kurzer, Mindy S

    2011-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone important for growth and development. However, high-circulating serum concentrations in adults are associated with increased risk of postmenopausal breast cancer. Nutritional status and specific foods influence serum IGF-1 concentrations. Breast cancer incidence is typically low in Asian countries where soy is commonly consumed. Paradoxically, soy supplement trials in American women have reported significant increases in IGF-1. Seaweed also is consumed regularly in Asian countries where breast cancer risk is low. We investigated the possibility that seaweed could modify soy-associated increases in IGF-1 in American women. Thirty healthy postmenopausal women (mean age 58 yr) participated in this 14-wk double-blinded, randomized, placebo-controlled crossover clinical trial. Participants consumed 5 g/day placebo or seaweed (Alaria esculenta) in capsules for 7 wk. During the 7th wk, a high-soy protein isolate powder was added (2 mg/kg body weight aglycone equivalent isoflavones). Overnight fasting blood samples were collected after each intervention period. Soy significantly increased serum IGF-1 concentrations compared to the placebo (21.2 nmol/L for soy vs. 16.9 nmol/L for placebo; P = 0.0001). The combination of seaweed and soy significantly reduced this increase by about 40% (21.2 nmol/L for soy alone vs. 19.4 nmol/L; P = 0.01). Concurrent seaweed and soy consumption may be important in modifying the effect of soy on IGF-1 serum concentrations.

  13. Relationship between serum IGF-1 and skeletal muscle IGF-1 mRNA expression to phosphocreatine recovery after exercise in obese men with reduced GH.

    PubMed

    Hamarneh, Sulaiman R; Murphy, Caitlin A; Shih, Cynthia W; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E; Makimura, Hideo

    2015-02-01

    GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent (31)P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P < .0001) and IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = -0.53; P = .04), trunk fat (r = -0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations.

  14. Relationship Between Serum IGF-1 and Skeletal Muscle IGF-1 mRNA Expression to Phosphocreatine Recovery After Exercise in Obese Men With Reduced GH

    PubMed Central

    Hamarneh, Sulaiman R.; Murphy, Caitlin A.; Shih, Cynthia W.; Frontera, Walter; Torriani, Martin; Irazoqui, Javier E.

    2015-01-01

    Context: GH and IGF-1 are believed to be physiological regulators of skeletal muscle mitochondria. Objective: The objective of this study was to examine the relationship between GH/IGF-1 and skeletal muscle mitochondria in obese subjects with reduced GH secretion in more detail. Design: Fifteen abdominally obese men with reduced GH secretion were treated for 12 weeks with recombinant human GH. Subjects underwent 31P-magnetic resonance spectroscopy to assess phosphocreatine (PCr) recovery as an in vivo measure of skeletal muscle mitochondrial function and percutaneous muscle biopsies to assess mRNA expression of IGF-1 and mitochondrial-related genes at baseline and 12 weeks. Results: At baseline, skeletal muscle IGF-1 mRNA expression was significantly associated with PCr recovery (r = 0.79; P = .01) and nuclear respiratory factor-1 (r = 0.87; P = .001), mitochondrial transcription factor A (r = 0.86; P = .001), peroxisome proliferator-activated receptor (PPAR)γ (r = 0.72; P = .02), and PPARα (r = 0.75; P = .01) mRNA expression, and trended to an association with PPARγ coactivator 1-α (r = 0.59; P = .07) mRNA expression. However, serum IGF-1 concentration was not associated with PCr recovery or any mitochondrial gene expression (all P > .10). Administration of recombinant human GH increased both serum IGF-1 (change, 218 ± 29 μg/L; P < .0001) and IGF-1 mRNA in muscle (fold change, 2.1 ± 0.3; P = .002). Increases in serum IGF-1 were associated with improvements in total body fat (r = −0.53; P = .04), trunk fat (r = −0.55; P = .03), and lean mass (r = 0.58; P = .02), but not with PCr recovery (P > .10). Conversely, increase in muscle IGF-1 mRNA was associated with improvements in PCr recovery (r = 0.74; P = .02), but not with body composition parameters (P > .10). Conclusion: These data demonstrate a novel association of skeletal muscle mitochondria with muscle IGF-1 mRNA expression, but independent of serum IGF-1 concentrations. PMID:25375982

  15. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    PubMed

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.

  16. Transcriptional regulation of IGF-I expression in skeletal muscle

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.

    2003-01-01

    The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

  17. Recombinant IGF-I: Past, present and future.

    PubMed

    Bright, George M

    2016-06-01

    Normal linear growth in humans requires GH and IGF-I. Diminished GH action resulting in reduced availability of IGF-I and IGF-binding proteins is the hallmarks of GH Insensitivity Syndromes (GHIS). The deficiencies are the perceived mechanisms for the growth failure of affected patients and the therapeutic targets for the restoration of normal growth. Early treatment attempts with pituitary-derived GH had limited effects in GHIS patients. Recombinant human insulin-like growth factor-I (rhIGF-I) treatment initially provides accelerated growth to GHIS children and provides substantial benefit. But, in general, catch up growth is less substantial with rhIGF-I treatment of GHIS than with rhGH treatment of GH Deficiency. Few classic GHIS patients have reached heights in the normal range (height SD score between -2.0 SD and +2.0 SD) with rhIGF-I monotherapy. A potential explanation is that while rhIGF-I treatment increases circulating concentrations of IGF-1 and IGFBP-3, such treatment reduces endogenous GH levels by negative feedback inhibition of pituitary GH release. In as much as both GH and IGF-I are required for good catch up growth, the loss of any residual GH signaling during IGF-I monotherapy in GHIS patients may attenuate possible catch up growth. Consistent with this explanation is the finding that, as predicted by the preclinical studies by Ross Clark, combination of rhGH & rhIGF-1 provides better growth responses than rhIGF-1 monotherapy in prepubertal children with short stature and low IGF-I levels despite normal stimulated GH responses. In the future, rhGH and rhIGF-I combination therapy can potentially improve growth outcomes over that seen with rhIGF-I monotherapy in all GHIS patients except in those with a total lack of functional GH signaling. Future alternative treatments for GHIS subjects may also include the use of post-growth hormone receptor signaling agonists which restore both GH signaling and IGF-I exposures or the addition of long-acting rh

  18. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy

    PubMed Central

    Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-01-01

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. PMID:26219865

  19. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    PubMed

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  20. Decreased IGF-I bioavailability after ethanol abuse in alcoholics: partial restitution after short-term abstinence.

    PubMed

    Röjdmark, S; Brismar, K

    2001-01-01

    IGF-I stimulates protein synthesis, lowers blood glucose, and affects cell differentiation. The main production site of IGF-I is the liver. One of its binding proteins, IGFBP-1, is also produced by the liver. It is well known that ethanol affects the function of the human liver. Long-term alcohol abuse may therefore not only cause considerable IGF-I and IGFBP-1 production changes, but also changes in IGF-I bioavailability, which at least in part is determined by the IGF-I/IGFBP-1 ratio. Not much is known about how the bioavailability of IGF-I is changed in alcohol abusers. Therefore, the objective of this investigation was to study that matter, and to elucidate how abstinence affects IGF-I bioavailability in man. Three study groups were formed: group N including normal non-addicted subjects, group E ethanol abusers without gross liver insufficiency, and group C alcohol abusers with liver cirrhosis and ascites. Serum concentrations of insulin, GH, IGF-1, and IGFBP-1 were determined in the morning in all participants, and the IGF-I/IGFBP-1 ratios were calculated. These values were compared in the three study groups. In group E comparison was also made between values recorded in the ethanol intoxicated and in the detoxicated states. Patients in group C had low IGF-I levels, high IGFBP-1 levels, and low IGF-I bioavailability as reflected by the IGF-I/IGFBP-1 ratios, which were several-fold reduced compared with subjects in group N (0.6+/-0.2 vs 10.2+/-2.3; p<0.001). Patients in group E had also a low IGF-I/IGFBP-1 ratio in the acute ethanol intoxicated state, which increased after detoxication (from 1.5+/-0.4 to 5.6+/-1.2; p<0.01). It is concluded that alcohol abuse lowers the hepatic production of IGF-I and increases the production of IGFBP-1. This results in a reduced IGF-I bioavailability. However, in patients with not yet clinically apparent liver damage the IGF-I bioavailability increases if the alcohol abuse is stopped. These findings could reflect an important

  1. High serum IGF-1 levels are associated with pregnancy loss following frozen-thawed euploid embryo transfer cycles.

    PubMed

    Irani, Mohamad; Nasioudis, Dimitrios; Witkin, Steven S; Gunnala, Vinay; Spandorfer, Steven D

    2018-06-01

    An elevated level of insulin growth factor (IGF-1) in rat uterine fluid has been shown to exert detrimental effects of embryo development possibly leading to an increase in pregnancy loss. Interestingly, the administration of somatostatin to rats undergoing superovulation reduced IGF-1 levels in uterine luminal fluid and thus reversed its deleterious effects on embryo development and increased the number of normal embryos. Therefore, we investigated whether serum levels of IGF-1 correlate with the incidence of pregnancy loss following IVF. To account for aneuploidy and the effect of hormonal supplementation on serum IGF levels, we only included natural frozen-thawed euploid embryo transfer (N-FET) cycles. Sera collected in the follicular phase (cycle day 10) were tested for levels of IGF-1, IGF-2, and IGF-binding protein 1 (IGFBP-1) using quantitative ELISA. A total of 156 N-FET cycles were included: 120 resulted in a live birth whereas 36 led to a first trimester pregnancy loss. Women with a pregnancy loss had significantly higher serum IGF-1 levels compared to those who achieved a live birth (18.0 ± 1.1 vs. 14.6 ± 0.7 ng/mL, respectively). The two groups had comparable serum IGF-2 and IGFBP-1 levels. There was no significant difference in maternal age, body mass index, gravidity, parity, number of prior miscarriages, peak endometrial thickness, or infertility diagnosis between the two groups. In conclusion, women undergoing euploid blastocyst transfer with elevated serum IGF-1 concentrations may be at increased risk of pregnancy loss. This may constitute a novel molecular explanation of pregnancy loss of euploid conceptus. Copyright © 2018. Published by Elsevier B.V.

  2. Elevated serum IGF-1 level enhances retinal and choroidal thickness in untreated acromegaly patients.

    PubMed

    Zhang, Xia; Ma, Jin; Wang, Yuhan; Li, Lüe; Gao, Lu; Guo, Xiaopeng; Xing, Bing; Zhong, Yong

    2018-03-01

    1) To compare the retinal, choroidal, Haller's layer, and Sattler's/choriocapillaris thicknesses of untreated acromegaly patients without chiasm compression or diabetes mellitus and healthy controls. 2) To evaluate the correlations of retinal and choroidal thicknesses with serum growth hormone (GH) and insulin-like growth factor 1 (IGF) burden. This prospective, case-control study included 27 untreated acromegaly patients and 27 sex-matched and age-matched controls. Subfoveal choroidal, Haller's layer and Sattler's/choriocapillaris thicknesses were determined by enhanced-depth imaging optical coherence tomography (EDI-OCT). Foveal and macular retinal thicknesses were determined with SD-OCT. GH and IGF-1 burdens were defined as the product of disease duration and treatment-naïve serum GH and IGF-1 levels. Compared with healthy controls, patients with acromegaly exhibited significantly increased foveal retinal (p = 0.003), subfoveal choroidal (p < 0.001), and Haller's layer (p < 0.001) thicknesses, with no differences in Sattler's/choriocapillaris layer thickness. Multiple point measurements in the posterior pole area showed equally increased nasal and temporal parts of the choroid. The retinal thickness maps of the two groups did not significantly differ. Correlation analysis indicated that choroidal thickness was significantly correlated with disease duration (p = 0.01), serum IGF-1 level (p = 0.03) and IGF-1 burden (p = 0.009). No significant correlations were detected between choroidal thickness and GH burden (p = 0.44). Retinal thickness was not significantly correlated with any factor. The choroidal thickness of acromegaly patients was greater than that of healthy controls and was significantly correlated with disease duration, IGF-1 level and IGF-1 burden, indicating that excessive serum IGF-1 and its exposure time have a combined effect on choroidal thickness.

  3. Salivary and serum insulin-like growth factor (IGF-1) assays in anorexic patients.

    PubMed

    Paszynska, Elzbieta; Dmitrzak-Weglarz, Monika; Slopien, Agnieszka; Tyszkiewicz-Nwafor, Marta; Rajewski, Andrzej

    2016-12-01

    The purpose of this study was to measure the salivary and serum free IGF-1 concentration of patients with anorexia nervosa (AN) in comparison to an average population. A controlled clinical trial was designed for an age- and gender-matched group of 121 AN patients and 77 healthy individuals. A clinical examination was made and blood and salivary samples were taken during the acute stage of AN (BMI < 15 kg/m 2 ) in the first week of hospitalization. An enzyme immunoassay (ELISA) suitable for measuring free IGF-1 was used. Anorexic patients had significant reductions in salivary unstimulated flow rate (UFR), pH and free IGF-1 levels in their saliva and serum. Significant correlations between serum IGF-1 and BMI; salivary IGF-1 and UFR and pH were detected. Salivary and serum IGF-1 analyses appear to be a reliable biochemical indicator of malnutrition in AN patients. Measurement of salivary IGF-1 levels would allow new perspectives in monitoring AN in its early stages.

  4. Association of IGF-I and IGF-II with myofiber regeneration in vivo.

    PubMed

    Keller, H L; St Pierre Schneider, B; Eppihimer, L A; Cannon, J G

    1999-03-01

    This study examined expression of insulinlike growth factor (IGF) in the myofibers and nonmyofibrillar structures of murine soleus muscle following contraction-induced damage. Identifying the cellular sources of this myogenic growth factor could improve muscle rehabilitation strategies. Immunohistochemical analysis of muscle sections indicated that the number of myofibers expressing both IGF-I and IGF-II increased significantly at 4, 7, and 10 days following injury, compared with control. Muscle spindles and vascular tissue expressed only IGF-II, and staining intensity did not change following injury. The number of fibers expressing developmental myosin heavy chain increased significantly at 7 and 10 days postinjury, and these usually coexpressed IGF. No IGF-specific staining of interstitial/inflammatory cells was observed. Therefore, expression of IGF after mechanically induced fiber damage occurs exclusively within regenerating fibers without supplemental delivery of IGF to the tissue by inflammatory cells or changes in constitutive expression of IGF-II in vascular tissue.

  5. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate.

    PubMed

    Botusan, Ileana Ruxandra; Zheng, Xiaowei; Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes.

  6. The pro-Forms of Insulin-Like Growth Factor I (IGF-I) Are Predominant in Skeletal Muscle and Alter IGF-I Receptor Activation

    PubMed Central

    Durzyńska, Julia; Philippou, Anastassios; Brisson, Becky K.; Nguyen-McCarty, Michelle

    2013-01-01

    IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor. PMID:23407451

  7. Serum insulin-like growth factor-1 (IGF-1) during CF pulmonary exacerbation: trends and biomarker correlations.

    PubMed

    Gifford, A H; Nymon, A B; Ashare, A

    2014-04-01

    Cystic fibrosis (CF) is characterized by low circulating levels of insulin-like growth factor-1 (IGF-1), a hormone produced by the liver that governs anabolism and influences immune cell function. Because treatment of CF pulmonary exacerbation (CFPE) often improves body weight and lung function, we questioned whether serum IGF-1 trends were emblematic of these responses. Initially, we compared serum levels between healthy adults with CF and controls of similar age. We then measured serum IGF-1 throughout the CFPE cycle. We also investigated correlations among IGF-1 and other serum biomarkers during CFPE. Anthopometric, spirometric, and demographic data were collected. Serum IGF-1 concentrations were measured by ELISA. CF subjects in their usual state of health had lower serum IGF-1 levels than controls. Serum IGF-1 concentrations fell significantly from baseline at the beginning of CFPE. Treatment with intravenous antibiotics was associated with significant improvement in serum IGF-1 levels, body mass index (BMI), and percent-predicted forced expiratory volume in 1 sec (FEV1 %). At early and late CFPE, serum IGF-1 was directly correlated with FEV1 %, serum iron, hemoglobin concentration, and transferrin saturation (TSAT) and indirectly correlated with alpha-1-antitrypsin. This study not only supports the paradigm that CF is characterized by IGF-1 deficiency but also that trends in lung function, nutritional status, and serum IGF-1 are related. Improvements in all three parameters after antibiotics for CFPE likely highlight the connection between lung function and nutritional status in CF. Close correlations among IGF-1 and iron-related hematologic parameters suggest that IGF-1 may participate in CF iron homeostasis, another process that is known to be influenced by CFPE. © 2013 Wiley Periodicals, Inc.

  8. Sleep extension increases IGF-I concentrations before and during sleep deprivation in healthy young men.

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Drogou, Catherine; Sauvet, Fabien; Gomez-Merino, Danielle

    2016-09-01

    Sleep deprivation is known to suppress circulating trophic factors such as insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF). This experiment examined the effect of an intervention involving 6 nights of extended sleep before total sleep deprivation on this catabolic profile. In a randomized crossover design, 14 young men (age range: 26-37 years) were either in an extended (EXT; time in bed: 2100-0700 h) or habitual (HAB: 2230-0700 h) sleep condition, followed by 3 days in the laboratory with blood sampling at baseline (B), after 24 h of sleep deprivation (24h-SD), and after 1 night of recovery sleep (R). In the EXT condition compared with the HAB condition, free IGF-I levels were significantly higher at B, 24h-SD, and R (P < 0.001), and those of total IGF-I at B and 24h-SD (P < 0.05). EXT did not influence growth hormone, IGF binding protein 3, BDNF, insulin, and glucose levels. The only effect of 24 h of sleep deprivation was for insulin levels, which were significantly higher after R compared with B. In a healthy adult, additional sleep over 1 week increased blood concentrations of the anabolic factor IGF-I before and during 24 h of sleep deprivation and after the subsequent recovery night without effects on BDNF. With further research, these findings may prove to be important in guiding effective lifestyle modifications to limit physical or cognitive deficits associated with IGF-I decrease with age.

  9. Serum insulin-like growth factor-I and amyloid beta protein in Alzheimer's disease: relationship with cognitive function.

    PubMed

    Kimoto, Ayako; Kasanuki, Koji; Kumagai, Ryo; Shibata, Nobuto; Ichimiya, Yosuke; Arai, Heii

    2016-07-01

    Previous studies have suggested that insulin-like growth factor-I (IGF-I) deficiency may lead to cognitive deficits in neurodegenerative diseases such as Alzheimer's disease. The present study aimed to investigate the possible relationship between cognitive function and concentration of IGF-I or amyloid beta protein (Aβ) in serum in Alzheimer's patients. A total of 81 Japanese patients were enrolled in this study. Concentrations of IGF-I, Aβ42, and Aβ40 in serum were measured. Two neuropsychological tests, Mini-Mental State Examination and Hasegawa's Dementia Scale-Revised (HDS-R), were also performed. Linear correlations among the age, serum IGF-I, serum Aβ42 or Aβ40, Aβ42/Aβ40 ratio, Mini-Mental State Examination or HDS-R total score, and the scores for six HDS-R subscales were analyzed by regression analysis. IGF-I showed a significant negative correlation with age (β = -0.357, P = 0.002) and a positive correlation with Aβ42/Aβ40 ratio (β = 0.318, P = 0.007). Serum IGF-I and both the Mini-Mental State Examination and the HDS-R total score also correlated (β = 0.505, β = 0.524, P < 0.01). Among the HDS-R subscales, 'Recall' (ρ = 0.379, P < 0.01), 'Verbal fluency' (ρ = 0.360, P < 0.01), and 'Attention and calculation' (ρ = 0.389, P < 0.01) showed significant positive correlations with serum IGF-I. The results, specifically that lower serum IGF-I was associated with cognitive impairment, suggest that metabolism of IGF-I may be involved in the pathogenesis of cognitive deficits in Alzheimer's disease. © 2015 The Authors. Psychogeriatrics © 2015 Japanese Psychogeriatric Society.

  10. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice.

    PubMed

    Kleinberg, David L; Ruan, Weifeng; Yee, Douglas; Kovacs, Kalman T; Vidal, Sergio

    2007-03-01

    Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both

  11. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    PubMed Central

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  12. Phosphatidylinositol 3-Kinase (PI3K) Activity Bound to Insulin-like Growth Factor-I (IGF-I) Receptor, which Is Continuously Sustained by IGF-I Stimulation, Is Required for IGF-I-induced Cell Proliferation*

    PubMed Central

    Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2012-01-01

    Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591

  13. Elevated serum IGF-I, but unaltered sex steroid levels, in healthy boys with pubertal gynaecomastia.

    PubMed

    Mieritz, Mikkel G; Sorensen, Kaspar; Aksglaede, Lise; Mouritsen, Annette; Hagen, Casper P; Hilsted, Linda; Andersson, Anna-Maria; Juul, Anders

    2014-05-01

    Pubertal gynaecomastia is a very common condition. Although the underlying aetiology is poorly understood, it is generally accepted that excess of oestrogens and deficit of androgens are involved in the pathogenesis. Furthermore, adiposity as well as the GH/IGF-I axis may play a role. In this study, we elucidate the association of adiposity and levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), sex hormone-binding globulin (SHBG), testosterone, oestrogen, IGF-I and IGFBP-3 with the presence of pubertal gynaecomastia in a large cohort of healthy boys. A total of 501 healthy Danish school boys (aged 6·1-19·8 year) from the COPENHAGEN Puberty Study. Anthropometry and pubertal stages (PH1-6 and G1-5) were evaluated, and the presence of gynaecomastia was assessed. Body fat percentage was calculated by means of four skin folds and impedance. Nonfasting blood samples were analysed for FSH, LH, testosterone, SHBG, oestradiol, IGF-I, IGFBP-3 and prolactin. We found that 23% (31/133) of all pubertal boys had gynaecomastia. More specifically, 63% (10/16) of boys in genital stage 4 had gynaecomastia. Boys with gynaecomastia had significantly higher IGF-I levels compared with controls (IGF-I SD-score 0·72 vs -0·037, P < 0·001). This difference was maintained after adjusting for confounders (age and pubertal stage). Sex steroid levels, oestradiol/testosterone ratio or free testosterone were not associated with the presence of gynaecomastia with or without adjustment for confounders. IGF-I levels were elevated in healthy boys with pubertal gynaecomastia compared with boys without gynaecomastia, whereas sex steroid levels did not differ. We speculate that the GH-IGF-I axis may be involved in the pathogenesis of pubertal gynaecomastia. © 2013 John Wiley & Sons Ltd.

  14. Influence of a fermented protein-fortified dairy product on serum insulin-like growth factor-I in women with anorexia nervosa: A randomized controlled trial.

    PubMed

    Trombetti, Andrea; Carrier, Edouard; Perroud, Alain; Lang, François; Herrmann, François R; Rizzoli, René

    2016-10-01

    Patients with anorexia nervosa (AN) have low serum IGF-I levels that may contribute to a lower bone mineral mass. We investigated the effects of a fermented, protein-fortified, dairy product on serum IGF-I levels in patients with AN during an in-hospital refeeding program. In this multicenter, randomized, double-blind, placebo-controlled, clinical trial conducted at 3 university hospitals and 3 private clinics in France and Switzerland, 62 women recently admitted with confirmed AN and with a baseline low serum IGF-I level were randomized to 2 daily isocaloric fresh cheese pots containing either 15 g/150 g or 3 g/150 g (controls) of protein for 4 weeks. The primary outcome was the change in IGF-I levels. In the primary intention-to-treat analysis, mean serum IGF-I levels increased during the intervention phase from 22.9 ± 1.5 to 28.6 ± 1.3 nmol/L (means ± SEM) (+20.2%) in the intervention group and from 20.2 ± 1.2 to 25.7 ± 1.5 nmol/L (+16.8%) in controls. In a preplanned analysis of covariance with repeated measures, the between-group difference was close to statistical significance (P = 0.071). In a post-hoc mixed-regression model analysis, the difference was statistically significant (4.9 nmol/l increase; P = 0.003), as was the change of the ratio IGF-I/IGF-BP3 (P=0.004). There was no between-group difference in biochemical markers of bone turnover (osteocalcin, P1NP, CTX) or in serum parathyroid hormone level. Serum calcium levels slightly increased during the intervention phase in the higher protein group (P = 0.02). IGF-BP2 decreased significantly more in the intervention group during the follow up period at week 4 after supplements cessation (P = 0.019). Intake of a fermented, protein-fortified, isocaloric dairy product during 4 weeks may slightly increase serum IGF-I levels in women with AN, without significant changes in bone turnover markers. NCT01823822 (www.clinicaltrials.gov). Copyright © 2015 Elsevier Ltd and European

  15. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety.

    PubMed

    Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E H; Hård, Anna-Lena; Hellström, Ann

    2013-01-01

    In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900-1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47-168) h in dosages between 21 and 111 µg/kg/24 h. Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75-100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe.

  16. Serum levels of bioactive IGF1 and physiological markers of ageing in healthy adults.

    PubMed

    Vestergaard, Poul Frølund; Hansen, Mette; Frystyk, Jan; Espelund, Ulrick; Christiansen, Jens S; Jørgensen, Jens Otto Lunde; Fisker, Sanne

    2014-02-01

    Senescent changes in body composition and muscle strength are accompanied by reduced production of GH and IGF1, but the causal relationship remains elusive. We speculate that serum bioactive IGF1, measured by the IGF1 kinase receptor activation assay, is closer related to human physiological ageing than total IGF1 measured by immunoassay. We conducted a cross-sectional study in 150 adult males and females, between 20 and 70 years. After an overnight fasting, serum levels of bioactive IGF1, total IGF1 and IGF-binding protein 1 (IGFBP1) and IGFBP3 were assessed. Furthermore, body composition and muscle strength was measured. Total IGF1 levels were higher in females (P=0.048). Bioactive IGF1 were identical in males and females (P=0.31), decreasing with age. Total IGF1 tended to decrease more with age compared with bioactive IGF1 (-1.48 vs -0.89 percent/year, P=0.052). Total body fat (TBF) was lower and BMI was higher in males (P<0.001 and P=0.005), and both increased with age. Knee extension and elbow flexion force were higher in males (P=0.001 and P=0.001), but decreased with age in both genders.  Total but not bioactive IGF1 was positively correlated to TBF, knee extension and muscle function in males. In multiple linear regression, only age predicted total IGF1, whereas age and IGFBP1 predicted bioactive IGF1. Bioactive IGF1 tends to decrease to a lesser extent than total IGF1 with age and was not correlated with measures of body composition or muscle strength. Therefore, levels of circulating bioactive IGF1 does not appear to be a better biomarker of physiological ageing than total IGF1.

  17. Conditional VHL Gene Deletion Causes Hypoglycemic Death Associated with Disproportionately Increased Glucose Uptake by Hepatocytes through an Upregulated IGF-I Receptor

    PubMed Central

    Kurabayashi, Atsushi; Kakinuma, Yoshihiko; Morita, Taku; Inoue, Keiji; Sato, Takayuki; Furihata, Mutsuo

    2013-01-01

    Our conditional VHL knockout (VHL-KO) mice, having VHL gene deletion induced by tamoxifen, developed severe hypoglycemia associated with disproportionately increased storage of PAS-positive substances in the liver and resulted in the death of these mice. This hypoglycemic state was neither due to impaired insulin secretion nor insulin receptor hypersensitivity. By focusing on insulin-like growth factor I (IGF-I), which has a similar effect on glucose metabolism as the insulin receptor, we demonstrated that IGF-I receptor (IGF-IR) protein expression in the liver was upregulated in VHL-KO mice compared to that in the mice without VHL deletion, as was the expression of glucose transporter (GLUT) 1. The interaction of the receptor for activated C kinase (RACK) 1, which predominantly binds to VHL, was enhanced in VHL-KO livers with IGF-IR, because VHL deletion increased free RACK1 and facilitated the IGF-IR-RACKI interaction. An IGF-IR antagonist retarded hypoglycemic progression and sustained an euglycemic state. These IGF-IR antagonist effects on restoring blood glucose levels also attenuated PAS-positive substance storage in the liver. Because the effect of IGF-I on HIF-1α protein synthesis is mediated by IGF-IR, our results indicated that VHL inactivation accelerated hepatic glucose storage through the upregulation of IGF-IR and GLUT1 and that IGF-IR was a key regulator in VHL-deficient hepatocytes. PMID:23874892

  18. Serum insulin-like growth factor (IGF)-I and IGF binding protein-3 in relation to terminal duct lobular unit involution of the normal breast in Caucasian and African American women: The Susan G. Komen Tissue Bank.

    PubMed

    Oh, Hannah; Pfeiffer, Ruth M; Falk, Roni T; Horne, Hisani N; Xiang, Jackie; Pollak, Michael; Brinton, Louise A; Storniolo, Anna Maria V; Sherman, Mark E; Gierach, Gretchen L; Figueroa, Jonine D

    2018-08-01

    Lesser degrees of terminal duct lobular unit (TDLU) involution, as reflected by higher numbers of TDLUs and acini/TDLU, are associated with elevated breast cancer risk. In rodent models, the insulin-like growth factor (IGF) system regulates involution of the mammary gland. We examined associations of circulating IGF measures with TDLU involution in normal breast tissues among women without precancerous lesions. Among 715 Caucasian and 283 African American (AA) women who donated normal breast tissue samples to the Komen Tissue Bank between 2009 and 2012 (75% premenopausal), serum concentrations of IGF-I and binding protein (IGFBP)-3 were quantified using enzyme-linked immunosorbent assay. Hematoxilyn and eosin-stained tissue sections were assessed for numbers of TDLUs ("TDLU count"). Zero-inflated Poisson regression models with a robust variance estimator were used to estimate relative risks (RRs) for association of IGF measures (tertiles) with TDLU count by race and menopausal status, adjusting for potential confounders. AA (vs. Caucasian) women had higher age-adjusted mean levels of serum IGF-I (137 vs. 131 ng/mL, p = 0.07) and lower levels of IGFBP-3 (4165 vs. 4684 ng/mL, p < 0.0001). Postmenopausal IGFBP-3 was inversely associated with TDLU count among AA (RR T3vs.T1  = 0.49, 95% CI = 0.28-0.84, p-trend = 0.04) and Caucasian (RR T3vs.T1 =0.64, 95% CI = 0.42-0.98, p-trend = 0.04) women. In premenopausal women, higher IGF-I:IGFBP-3 ratios were associated with higher TDLU count in Caucasian (RR T3vs.T1 =1.33, 95% CI = 1.02-1.75, p-trend = 0.04), but not in AA (RR T3vs.T1 =0.65, 95% CI = 0.42-1.00, p-trend = 0.05), women. Our data suggest a role of the IGF system, particularly IGFBP-3, in TDLU involution of the normal breast, a breast cancer risk factor, among Caucasian and AA women. © 2018 UICC.

  19. Recombinant insulin-like growth factor (IGF)-I treatment in short children with low IGF-I levels: first-year results from a randomized clinical trial.

    PubMed

    Midyett, L Kurt; Rogol, Alan D; Van Meter, Quentin L; Frane, James; Bright, George M

    2010-02-01

    Short stature in children may be associated with low IGF-I despite normal stimulated GH levels and without other causes. Our objective was to assess the safety and efficacy of recombinant human IGF-I (rhIGF-I) in short children with low IGF-I levels. This was a 1-yr, randomized, open-label trial (MS301). The study was conducted at 30 U.S. pediatric endocrinology clinics. A total of 136 short, prepubertal subjects with low IGF-I (height and IGF-I sd scores <-2, stimulated GH > or =7 ng/ml); 124 completed the study, and six withdrew for adverse events and six for other reasons. rhIGF-I was administered sc, twice daily using weight-based dosing (40, 80, or 120 microg/kg; n = 111) or subjects were observed (n = 25). First-year height velocity (centimeters per year, cm/yr), height sd score, IGF-I, and adverse events were prespecified outcomes. First-year height velocities for subjects completing the trial were increased for the 80- and 120-microg/kg twice-daily vs. the untreated group (7.0 +/- 1.0, 7.9 +/- 1.4, and 5.2 +/- 1.0 cm/yr, respectively; all P < 0.0001) and for the 120- vs. 80-microg/kg group (P = 0.0002) and were inversely related to age. They were not predicted by GH stimulation or IGF-I generation test results and were not correlated with IGF-I antibody status. The most commonly reported adverse events of special interest during treatment were headache (38% of subjects), vomiting (25%), and hypoglycemia (14%). rhIGF-I treatment was associated with age- and dose-dependent increases in first-year height velocity. Adverse events during treatment were less common than in previous studies and were generally transient, easily managed, and without known sequelae.

  20. Chronic alcohol consumption, type 2 diabetes mellitus, insulin-like growth factor-I (IGF-I), and growth hormone (GH) in ethanol-treated diabetic rats.

    PubMed

    Kim, Soo-Jeong; Ju, Anes; Lim, Seul-Gi; Kim, Dai-Jin

    2013-11-13

    Alcohol has deleterious influences on glucose metabolism which may contribute to the development of type 2 diabetes mellitus (T2DM). Insulin-like growth factor I (IGF-I) and growth hormone (GH), which interact with insulin to modulate metabolic control, have been shown to be related to impaired glucose tolerance. This study was conducted to assess the possibility that altered circulating IGF-I and GH levels contribute to the exacerbation of T2DM by alcohol use in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats. OLETF rats were pair-fed a Lieber-DeCarli Regular Ethanol diet and LETO rats were pair-fed a control diet for 6 weeks. At 6 weeks, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and IGF-I and GH levels were evaluated. Prior to an IP-GTT, OLETF-Ethanol (O-E) group had significantly a decrease in the mean glucose levels compared to OLETF-Control (O-C) group. At 120 min post IP-GTT, the O-E group had significantly an increase in the mean glucose levels compared to O-C group. The serum IGF-I levels were significantly lower and the serum GH levels were significantly higher in the O-E group than in L-C group. These results suggest that IGF-I and GH are prominent in defining the risk and development of T2DM, and may be adversely affected by heavy alcohol use, possibly mediating its diabetogenic effects. Thus, the overall glucose intolerance in the setting of alcoholism may be attributable to inappropriate alteration of IGF-I and GH levels. © 2013. Published by Elsevier Inc. All rights reserved.

  1. Elevated circulating IGF-I promotes mammary gland development and proliferation.

    PubMed

    Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek

    2010-12-01

    Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.

  2. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  3. Determination of LongR3-IGF-I, R3-IGF-I, Des1-3 IGF-I and their metabolites in human plasma samples by means of LC-MS.

    PubMed

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Fichant, Eric; Schänzer, Wilhelm; Thevis, Mario

    2017-08-01

    According to the regulations of the World Anti-Doping Agency (WADA), growth promoting peptides such as the insulin-like growth factor-I (IGF-I) and its synthetic analogues belong to the class of prohibited compounds. While several assays to quantify endogenous IGF-I have been established, the potential misuse of synthetic analogues such as LongR 3 -IGF-I, R 3 -IGF-I and Des1-3-IGF-I remains a challenge and superior pharmacokinetic properties have been described for these analogues. Within the present study, it was demonstrated that the target peptides can be successfully detected in plasma samples by means of magnetic beads-based immunoaffinity purification and subsequent nanoscale liquid chromatographic separation with high resolution mass spectrometric detection. Noteworthy, the usage of a specific antibody for LongR 3 -IGF-I enables the determination in low ng/mL levels despite the presence of an enormous excess of endogenous human IGF-I. In addition, different metabolism studies (in-vitro and in-vivo) were performed using sophisticated strategies such as incubation with skin tissue microsomes, degradation in biological fluids (for all analogues), and administration to rats (for LongR 3 -IGF-I). Herewith, several C-and N-terminally truncated metabolites were identified and their relevancy was additionally confirmed by in-vivo experiments with rodents. Especially for LongR 3 -IGF-I, a metabolite ((Des1-11)-LongR 3 -IGF-I) was identified that prolonged the detectability in-vivo by a factor of approximately 2. The method was validated for qualitative interpretation considering the parameters specificity, identification capability, recovery (26-60%), limit of detection (0.5ng/mL), imprecision (<25%), linearity, stability, and matrix effects. A stable isotope labelled ( 15 N)-IGF-I was used as internal standard to control all sample preparation steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Low circulating IGF-I levels in hyperthyroidism are associated with decreased GH response to GH-releasing hormone.

    PubMed

    Ramos-Dias, J C; Yateman, M; Camacho-Hübner, C; Grossman, A; Lengyel, A M

    1995-11-01

    Several abnormalities in the GH response to pharmacological stimuli have been described in hyperthyroidism. Both normal and high serum IGF-I levels have been reported, as well as a decrease in IGF-I bioactivity. We have evaluated the GH response to GH-releasing hormone (GHRH) in hyperthyroid patients and the effects of hyperthyroidism on serum IGF-I levels. The possible relations between nutritional status, thyroid hormones and IGF-I levels were also investigated. We also studied the influence of long-term beta-adrenoceptor blockade on the GH response to GHRH in these patients. In 18 hyperthyroid patients and in 12 control subjects, GHRH (100 micrograms) was administered as an i.v. bolus injection. Eight hyperthyroid patients and 8 control subjects received 50 micrograms GHRH i.v. Seven hyperthyroid patients were reevaluated after beta-adrenoceptor blockade. IGF-I and albumin levels were measured initially in all hyperthyroid patients and control subjects. Body composition was determined in 11 hyperthyroid patients and in a group of 33 matched normal controls. Hyperthyroid patients were compared to control subjects. GH, TSH and free T4 were measured by immunofluorometric assay. IGF-I, total T3 and total T4 were measured by radioimmunoassay. Body composition was determined using a dual-energy X-ray absorptiometer. The GH response to 100 micrograms GHRH in hyperthyroid patients was blunted compared to control subjects. The mean peak GH levels and the area under the curve were significantly lower in hyperthyroid patients compared to control subjects (11 +/- 1 vs 27 +/- 5 micrograms/l and 820 +/- 113 vs 1879 +/- 355 micrograms/l 120 min, respectively; P < 0.01). IGF-I levels were significantly reduced in hyperthyroid patients compared to controls (131 +/- 10 vs 201 +/- 16 micrograms/l, respectively; P < 0.01). Ideal body weight, serum albumin levels and the lean body mass were also reduced in hyperthyroid patients. After beta-adrenoceptor blockade there were no changes

  5. The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis.

    PubMed

    Morales, Teresa I

    2008-04-01

    A previous hypothesis stated that during osteoarthritis (OA) increased insulin-like growth factor (IGF) binding proteins (IGFBPs) sequester IGFs and limit their access to the cell. The objective of this article was to test this by: (1) quantifying IGF and IGFBP-3 as well as their ratios in human OA cartilages, and (2) measuring the metabolic responses of diseased cartilage to IGF-I and its IGFBP-insensitive analogs. Knee or hip OA cartilages were staged for OA by histology. Cartilage slices were either extracted for assays of IGF proteins, or maintained intact as organ cultures. Proteoglycan (PG) metabolism +/- IGFs was measured by use of the (35)S-sulfate precursor. IGFBP-3 (ng/mg protein) was weakly correlated with OA score by regression analysis (R(2) = 0.122; p = 0.040; n = 35). IGF-I (ng/mg protein) was constant across all OA groups (ANOVA; p = .428, n = 18) and the IGF-I/IGFBP-3 ratios were > 1 in most samples. All OA cartilages responded to hrIGF-I by increasing PG synthesis [average 2.29-fold +/- 0.55 (+/-SD) at saturation, n = 12] irrespective of OA score. The des (1-3) IGF-I analog (which lacks the three N-terminal amino acids) had similar maximal effects (average 2.23-fold stimulation +/- 0.71, n = 10), but it was more effective in two out of three samples at suboptimal doses. The effect of hrIGF-I, des (1-3) IGF-I, or the B-chain analog on degradation was minimal. In summary, catabolism was insensitive to IGF-I, and this was probably not due to IGFBPs. By contrast, IGF-I exerted a robust stimulation of anabolism at sufficiently high doses, even though IGFBPs could tone down the ligand effect at low doses. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. IGF-I and GH: potential use in gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2009-08-01

    Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.

  7. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety

    PubMed Central

    Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E.; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E.H.; Hård, Anna-Lena; Hellström, Ann

    2014-01-01

    BACKGROUND In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. METHODS In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900–1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47–168) h in dosages between 21 and 111 µg/kg/24 h. RESULTS Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75–100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. CONCLUSION In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe. PMID:23095978

  8. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA.

    PubMed

    Park, Soohyun; Brisson, Becky K; Liu, Min; Spinazzola, Janelle M; Barton, Elisabeth R

    2014-04-01

    Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.

  9. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA

    PubMed Central

    Park, SooHyun; Brisson, Becky K.; Liu, Min; Spinazzola, Janelle M.

    2013-01-01

    Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy. PMID:24371018

  10. Clinical implications of the reduced activity of the GH-IGF-I axis in older men.

    PubMed

    Ceda, G P; Dall'Aglio, E; Maggio, M; Lauretani, F; Bandinelli, S; Falzoi, C; Grimaldi, W; Ceresini, G; Corradi, F; Ferrucci, L; Valenti, G; Hoffman, A R

    2005-01-01

    During the last decade, a significant body of evidence has accumulated, indicating that IGF-I might play a role in several pathological conditions commonly seen during aging, such as atherosclerosis and cardiovascular disease (CVD), cognitive decline, dementia, sarcopenia and frailty. A vascular protective role for IGF-I has been suggested because of its ability to stimulate nitric oxide production from endothelial and vascular smooth muscle cells. In cross sectional studies, low IGF-I levels have been associated with unfavorable CVD risk factors profile, such as atherosclerosis, abnormal lipoprotein levels and hypertension, while in prospective studies, lower IGF-I levels predict future development of ischemic heart disease. The fall in IGF-I levels with aging correlates with cognitive decline and it has been suggested that IGF-I plays a role in the development of dementia. IGF-I is highly expressed within the brain and is essential for normal brain development. IGF-I has anti-apoptotic and neuroprotective effects and promotes projection neuron growth, dendritic arborization and synaptogenesis. Collectively, these data are consistent with a causal link between the age-related decline in GH and IGF-I levels and cognitive deficits in older persons. Finally, there is evidence of a relationship between declining GH and IGF-I levels and age-related changes in body composition and physical function. However, few studies have documented a precise role of IGF-I in the development of sarcopenia, frailty and poor mobility. We have recently documented that serum IGF-I is significantly associated with measures of muscle strength and physical performance in men and to a lesser extent in women. In conclusion, IGF-I is a pleiotropic hormone that in older persons may positively affect the cardiovascular system, the central nervous system and physical function.

  11. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    PubMed

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the

  12. Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity.

    PubMed

    Chernausek, Steven D; Backeljauw, Philippe F; Frane, James; Kuntze, Joyce; Underwood, Louis E

    2007-03-01

    Children with severe IGF-I deficiency due to congenital or acquired defects in GH action have short stature that cannot be remedied by GH treatment. The objective of the study was to examine the long-term efficacy and safety of recombinant human IGF-I (rhIGF-I) therapy for short children with severe IGF-I deficiency. Seventy-six children with IGF-I deficiency due to GH insensitivity were treated with rhIGF-I for up to 12 yr under a predominantly open-label design. The study was conducted at general clinical research centers and with collaborating endocrinologists. Entry criteria included: age older than 2 yr, sd scores for height and circulating IGF-I concentration less than -2 for age and sex, and evidence of resistance to GH. rhIGF-I was administered sc in doses between 60 and 120 microg/kg twice daily. Height velocity, skeletal maturation, and adverse events were measured. Height velocity increased from 2.8 cm/yr on average at baseline to 8.0 cm/yr during the first year of treatment (P < 0.0001) and was dependent on the dose administered. Height velocities were lower during subsequent years but remained above baseline for up to 8 yr. The most common adverse event was hypoglycemia, which was observed both before and during therapy. It was reported by 49% of treated subjects. The next most common adverse events were injection site lipohypertrophy (32%) and tonsillar/adenoidal hypertrophy (22%). Treatment with rhIGF-I stimulates linear growth in children with severe IGF-I deficiency due to GH insensitivity. Adverse events are common but are rarely of sufficient severity to interrupt or modify treatment.

  13. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma

    PubMed Central

    Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; Ørtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Høgdall, Claus; Høgdall, Estrid; Oxvig, Claus; Frystyk, Jan

    2015-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825

  14. Reduced insulin-like growth factor-I serum levels in formerly obese women subjected to laparoscopic-adjustable gastric banding or diet-induced long-term caloric restriction.

    PubMed

    Mitterberger, Maria C; Mattesich, Monika; Klaver, Elise; Piza-Katzer, Hildegunde; Zwerschke, Werner

    2011-11-01

    Life-span extension in laboratory rodents induced by long-term caloric restriction correlates with decreased serum insulin-like growth factor-I (IGF-I) levels. Reduced activity of the growth hormone/IGF-I signaling system slows aging and increases longevity in mutant mouse models. In the present study, we show that long-term caloric restriction achieved by two different interventions for 4 years, either laparoscopic-adjustable gastric banding or reducing diet, leads to reduced IGF-I serum levels in formerly obese women relative to normal-weight women eating ad libitum. Moreover, we present evidence that the long-term caloric restriction interventions reduce fasting growth hormone serum levels. The present study indicates that the activity of the growth hormone/IGF-I axis is reduced in long-term calorically restricted formerly obese humans. Furthermore, our findings suggest that the duration and severity of the caloric restriction intervention are important for the outcome on the growth hormone/IGF-I axis in humans.

  15. Regulation of cell proliferation and estrogen synthesis by ovine LH, IGF-I, and EGF in theca interstitial cells of the domestic hen cultured in defined media.

    PubMed

    Onagbesan, O M; Peddie, M J; Williams, J

    1994-05-01

    There is relatively little information on the factors which regulate the proliferation and alterations in the steroidogenic capacity of avian theca cells during follicular maturation. The development of culture conditions for these cells to determine the effects of gonadotrophin (LH) and the growth factors epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) on DNA synthesis and estrogen production is reported. Cultures were established in serum-supplemented (with fetal calf serum or chicken serum) or ITS+ (insulin, transferrin, and selenium plus additives) supplemented serum-free media. Cell replication occurred throughout the 72-hr culture period as indicated by a linear increase in the DNA content of the culture dishes. Aromatase activity of the cells as defined by conversion of androstenedione to estrogen was best maintained in serum-free medium while sera inhibited this activity. Ovine LH enhanced the aromatase activity of cultured cells from medium and small-sized follicles, while IGF-I and EGF inhibited both basal and LH-stimulated aromatase activity. LH, IGF-I, and EGF all stimulated cell proliferation as reflected by increased DNA. The responses of cells to these peptides varied with the size of the follicle, with the greatest effects on cells from F4/5.

  16. Serum IGF-1, IGFBP-3 levels and circulating tumor cells (CTCs) in early breast cancer patients.

    PubMed

    Papadakis, Georgios Z; Mavroudis, Dimitrios; Georgoulias, Vasilios; Souglakos, John; Alegakis, Athanasios K; Samonis, George; Bagci, Ulas; Makrigiannakis, Antonis; Zoras, Odysseas

    2017-04-01

    Insulin-like growth factor (IGF)-axis is involved in human oncogenesis and metastasis development for various solid tumors including breast cancer. Aim of this study was to assess the association between IGF-1, IGF-binding protein-3 (IGFBP-3) serum levels and the presence of circulating tumor cells (CTCs) in the peripheral blood of women diagnosed with early breast cancer (EBC), before and after adjuvant chemotherapy. 171 patients with early-stage breast adenocarcinomas were retrospectively evaluated. Immunoradiometric (IRMA) assays were employed for the in-vitro determination of IGF-1 and IGFBP-3 serum levels in blood samples collected after surgical treatment and before initiation of adjuvant chemotherapy. CTCs' presence was assessed through detection of cytokeratin-19 (CK-19) mRNA transcripts using quantitative real time reverse transcription polymerase chain reaction (RT-PCR). IGF-1, IGFBP-3 serum levels were correlated with CTCs' presence before and after adjuvant chemotherapy as well as with tumor characteristics including tumor size, axillary lymph node status, oestrogen (ER)/progestorene (PR) and human epidermural growth factor receptor 2 (HER2) receptor status. Log-rank test was applied to investigate possible association between IGF-1, IGFBP-3 serum levels and disease-free interval (DFI) and overall survival (OS). Before initiation of adjuvant therapy IGF-1, IGFBP-3 serum levels were moderately associated (Spearman's rho=0.361, p<0.001) with each other, while presenting significant differences across age groups (all p values<0.05). IGF-1 serum levels did not correlate with the presence of CTCs before initiation (p=0.558) or after completion (p=0.474) of adjuvant chemotherapy. Similarly, IGFBP-3 serum levels did not show significant association with detectable CTCs either before (p=0.487) or after (p=0.134) completion of adjuvant chemotherapy. There was no statistically significant association between the clinical outcome of patients in terms of DFI, OS

  17. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.

    1998-01-01

    Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that direct IGF-I infusion would result in an increase in muscle DNA as well as in various measurements of muscle size. Either 0.9% saline or nonsystemic doses of IGF-I were infused directly into a non-weight-bearing muscle of rats, the tibialis anterior (TA), via a fenestrated catheter attached to a subcutaneous miniosmotic pump. Saline infusion had no effect on the mass, protein content, or DNA content of TA muscles. Local IGF-I infusion had no effect on body or heart weight. The absolute weight of the infused TA muscles was approximately 9% greater (P < 0.05) than that of the contralateral TA muscles. IGF-I infusion resulted in significant increases in the total protein and DNA content of TA muscles (P < 0.05). As a result of these coordinated changes, the DNA-to-protein ratio of the hypertrophied TA was similar to that of the contralateral muscles. These results suggest that IGF-I may be acting to directly stimulate processes such as protein synthesis and satellite cell proliferation, which result in skeletal muscle hypertrophy.

  18. Reference values for serum levels of insulin-like growth factor 1 (IGF-1) and IGF-binding protein 3 (IGFBP-3) in the West Black Sea region of Turkey.

    PubMed

    Guven, Berrak; Can, Murat; Mungan, Gorkem; Acіkgoz, Serefden

    2013-03-01

    The aim of this study was to determine the normal values of serum IGF-1 and IGFBP-3 in Turkish children and adults (1-79 years). The study included 571 healthy children and 625 healthy adults from the West Black Sea region of Turkey. Serum IGF-1 and IGFBP-3 concentrations were determined using a chemiluminescent immunometric assay on an Immulite 1000 analyzer. IGF-1 and IGFBP-3 levels tended to be higher in girls compared to boys among the children. The differences were statistically significant in puberty from age 12-14 years for IGF-1 and prepubertally from age 9-10 years for IGFBP-3. Peaks of serum IGF-1 levels were observed 2 years earlier in girls (14 years) than boys (16 years). The general pattern of IGFBP-3 was similar to IGF-1 during puberty. In adults, IGF-1 and IGFBP-3 levels decreased by age. There was no significant difference in IGF-1 and IGFBP3 values between men and women in any age group. This study established age- and sex-specific reference values for serum IGF-1 and IGFBP-3 in healthy Turkish children and adults.

  19. Serum IGF-1, IGFBP-3 and their ratio: Potential biochemical growth maturity indicators.

    PubMed

    Jain, Nimisha; Tripathi, Tulika; Gupta, S K; Rai, Priyank; Kanase, Anup; Kalra, Shilpa

    2017-12-01

    Determination of skeletal maturation and remaining growth potential is an essential part of treatment planning in orthodontics. The aim of our study was to determine the relationship between IGF-1 levels, IGFBP-3 levels with CVM staging to track the pre pubertal and pubertal growth spurts in female patients in North Indian population. This cross-sectional study was conducted on ninety female subjects in the age group of 8-20 years. Blood samples were collected and centrifuged and serum samples were then analysed by Human IGF-1 and IGFBP-3 enzyme-linked immunosorbent assay kits, specific for IGF-1 and IGFBP-3, respectively. CVM staging on lateral cephalometric radiograph was determined for all patients. Analysis of variance test followed by a post hoc test was used to compare mean IGF-1 and IGFBP-3 corresponding to six stages of cervical vertebrae maturation stages. Linear Pearson's correlations were performed to determine the trends of IGF-1, IGFBP-3, and its ratio relating to CVM stage. The kappa statistic was used to measure inter and intra examiner reliability. P value <0.05 was considered as statistically significant. Mean serum IGF-1 levels were found to be highest (403.3 ± 12.3 ng/ml) at CVMI3 stage of CVMI. The post-hoc test revealed a significant difference in IGF-1 levels between all stages of CVMI, thereby indicating a specific range of IGF-1 levels for a specific skeletal stage. Mean serum IGFBP-3 levels were found to be highest (5186.8 ± 1384.2 ng/ml) at CVMI4 stage of CVMI. The mean serum IGFBP-3 levels at CVMI4 were found to be significantly higher than the levels at all other CVMI stages except CVMI3 stage. IGF-1 and IGFBP-3 can serve as a potential biochemical indicator for assessment of skeletal maturity.

  20. Interactions between serum leptin, the insulin-like growth factor-I system, and sex, age, anthropometric and body composition variables in a healthy population randomly selected.

    PubMed

    Gómez, José Manuel; Maravall, Francisco Javier; Gómez, Núria; Navarro, Miguel Angel; Casamitjana, Roser; Soler, Juan

    2003-02-01

    Leptin secretion is influenced by many factors and the GH/IGF axis plays an important role in the regulation of body composition, but the physiological interactions between leptin and the IGF-I system remain unknown. In this study we investigated the relationship between leptin, the IGF-I system, and sex, age, anthropometric and body composition variables in a group of healthy adults randomly selected. A cross-sectional study. The study included 268 subjects, representative of the whole population of the city of L'Hospitalet de Llobregat in sex and age distribution: 134 men aged 41.4 years, range 15-70 years; and 134 women, aged 40.7 years, range 15-70 years. Body mass index (BMI) was calculated, and body composition was determined by using a bioelectrical impedance analyser. Serum leptin concentrations were determined by using a radioimmunoassay (RIA). Serum total IGF-I concentrations, after acid-ethanol extraction, were also measured by RIA. Serum free IGF-I concentrations were determined by an enzymoimmunometric assay. Serum IGFBP3 concentrations were determined by RIA. Plasma basal TSH concentrations were determined by a specific electrochemiluminescence assay. In men the BMI was similar in all decades and waist/hip ratio increased in the last three decades. Fat-free mass decreased by decade. We observed an increase in leptin in the fourth decade with a decrease in IGF-I, free IGF-I and IGFBP3 throughout the decades. Basal TSH showed an increase in the last two decades. In women, BMI, waist/hip ratio and fat mass increased significantly in the last decades. Leptin concentrations increased in the last decades and total IGF-I, free IGF-I and IGFBP3 decreased by decade without changes in basal TSH concentration. In men, there was a positive correlation between leptin and BMI, waist/hip ratio, total body water, fat-free mass and fat mass, and these anthropometric and body composition variables showed a negative correlation with free IGF-I and IGFBP3, without any

  1. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts.

    PubMed

    Fansa, Hisham; Schneider, Wolfgang; Wolf, Gerald; Keilhoff, Gerburg

    2002-07-01

    To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal. Copyright 2002 Wiley Periodicals, Inc.

  2. Nandrolone and stanozolol upregulate aromatase expression and further increase IGF-I-dependent effects on MCF-7 breast cancer cell proliferation.

    PubMed

    Sirianni, Rosa; Capparelli, Claudia; Chimento, Adele; Panza, Salvatore; Catalano, Stefania; Lanzino, Marilena; Pezzi, Vincenzo; Andò, Sebastiano

    2012-11-05

    Several doping agents, such as anabolic androgenic steroids (AAS) and peptide hormones like insulin-like growth factor-I (IGF-I), are employed without considering the potential deleterious effects that they can cause. In addition, androgens are used in postmenopausal women as replacement therapy. However, there are no clear guidelines regarding the optimal therapeutic doses of androgens or long-term safety data. In this study we aimed to determine if two commonly used AAS, nandrolone and stanozolol, alone or in combination with IGF-I, could activate signaling involved in breast cancer cell proliferation. Using a human breast cancer cell line, MCF-7, as an experimental model we found that both nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and, consequently, estradiol production. Moreover, when nandrolone and stanozolol were combined with IGF-I, higher induction in aromatase expression was observed. This increase involved phosphatidylinositol 3-kinase (PI3K)/AKT and phospholipase C (PLC)/protein kinase C (PKC), which are part of IGF-I transductional pathways. Specifically, both AAS were able to activate membrane rapid signaling involving IGF-I receptor, extracellular regulated protein kinases 1/2 (ERK1/2) and AKT, after binding to estrogen receptor (ER), as confirmed by the ability of the ER antagonist ICI182, 780 to block such activation. The estrogenic activity of nandrolone and stanozolol was further confirmed by their capacity to induce the expression of the ER-regulated gene, CCND1 encoding for the cell cycle regulator cyclin D1, which represents a key protein for the control of breast cancer cell proliferation. In fact, when nandrolone and stanozolol were combined with IGF-I, they increased cell proliferation to levels higher than those elicited by the single factors. Taken together these data clearly indicate that the use of high doses of AAS, as occurs in doping practice, may increase the risk of breast cancer. This

  3. Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive: diagnostic value of serum IGF1 and height at presentation.

    PubMed

    Storr, Helen L; Dunkel, Leo; Kowalczyk, Julia; Savage, Martin O; Metherell, Louise A

    2015-02-01

    GH insensitivity (GHI) encompasses growth failure, low serum IGF1 and normal/elevated serum GH. By contrast, IGF1 insensitivity results in pre- and postnatal growth failure associated with relatively high IGF1 levels. From 2008 to 2013, 72 patients from 68 families (45M), mean age 7.1 years (0.4-17.0) with short stature (mean height SDS -3.9; range -9.4 to -1.5), were referred for sequencing. As a genetics referral centre, we have sequenced appropriate candidate genes (GHR, including its pseudoexon (6Ψ), STAT5B, IGFALS, IGF1, IGF1R, OBSL1, CUL7 and CCDC8) in subjects referred with suspected GHI (n=69) or IGF1 insensitivity (n=3). Mean serum IGF1 SDS was -2.7 (range -0.9 to -8.2) in GHI patients and 2.0, 3.7 and 4.4 in patients with suspected IGF1 insensitivity. Out of 69 GHI patients, 16 (23%) (19% families) had mutations in GH-IGF1 axis genes: homozygous GHR (n=13; 6 6Ψ, two novel IVS5ds+1 G to A) and homozygous IGFALS (n=3; one novel c.1291delT). In the GHI groups, two homozygous OBSL1 mutations were also identified (height SDS -4.9 and -5.7) and two patients had hypomethylation in imprinting control region 1 in 11p15 or mUPD7 consistent with Silver-Russell syndrome (SRS) (height SDS -3.7 and -4.3). A novel heterozygous IGF1R (c.112G>A) mutation was identified in one out of three (33%) IGF1-insensitive subjects. Genotyping contributed to the diagnosis of children with suspected GHI and IGF1 insensitivity, particularly in the GHI subjects with low serum IGF1 SDS (<-2.0) and height SDS (<-2.5). Diagnoses with similar phenotypes included SRS and 3-M syndrome. In 71% patients, no diagnosis was defined justifying further genetic investigation. © 2015 European Society of Endocrinology.

  4. The effect of growth hormone on bioactive IGF in overweight/obese women.

    PubMed

    Dichtel, Laura E; Bjerre, Mette; Schorr, Melanie; Bredella, Miriam A; Gerweck, Anu V; Russell, Brian M; Frystyk, Jan; Miller, Karen K

    2018-03-10

    Overweight/obesity is characterized by decreased growth hormone (GH) secretion whereas circulating IGF-I levels are less severely reduced. Yet, the activity of the circulating IGF-system appears to be normal in overweight/obese subjects, as estimated by the ability of serum to activate the IGF-I receptor in vitro (bioactive IGF). We hypothesized that preservation of bioactive IGF in overweight/obese women is regulated by an insulin-mediated suppression of IGF-binding protein-1 (IGFBP-1) and IGFBP-2, and by suppression of IGFBP-3, mediated by low GH. We additionally hypothesized that increases in bioactive IGF would drive changes in body composition with low-dose GH administration. Cross-sectional analysis and 3-month interim analysis of a 6-month randomized, placebo-controlled study of GH administration in 50 overweight/obese women without diabetes mellitus. Bioactive IGF (kinase receptor activation assay) and body composition (DXA) were measured. Prior to treatment, IGFBP-3 (r = -0.33, p = 0.02), but neither IGFBP-1 nor IGFBP-2, associated inversely with bioactive IGF. In multivariate analysis, lower IGFBP-3 correlated with lower peak stimulated GH (r = 0.45, p = 0.05) and higher insulin sensitivity (r = -0.74, p = 0.003). GH administration resulted in an increase in mean serum IGF-I concentrations (144 ± 56 to 269 ± 66 μg/L, p < 0.0001) and bioactive IGF (1.29 ± 0.39 to 2.60 ± 1.12 μg/L, p < 0.0001). The treatment-related increase in bioactive IGF, but not total IGF-I concentration, predicted an increase in lean mass (r = 0.31, p = 0.03) and decrease in total adipose tissue/BMI (r = -0.43, p = 0.003). Our data suggest that in overweight/obesity, insulin sensitivity and GH have opposing effects on IGF bioactivity through effects on IGFBP-3. Furthermore, increases in bioactive IGF, rather than IGF-I concentration, predicted GH administration-related body composition changes. NCT00131378

  5. IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis.

    PubMed

    Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing

    2016-08-01

    Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.

  6. TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia

    PubMed Central

    Müller, Kathrin; Führer, Dagmar; Mittag, Jens; Klöting, Nora; Blüher, Matthias; Weiss, Roy E.; Many, Marie-Christine; Schmid, Kurt Werner

    2011-01-01

    Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r+/−, and Igf1r−/− genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r+/− and Igf1r−/− mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis. PMID:21980075

  7. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    USDA-ARS?s Scientific Manuscript database

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  8. Clinical significance of serum circulating insulin-like growth factor-1 (IGF-1) mRNA in hepatocellular carcinoma.

    PubMed

    Karabulut, S; Duranyıldız, D; Tas, F; Gezer, U; Akyüz, F; Serilmez, M; Ozgür, E; Yasasever, C T; Vatansever, S; Aykan, N F

    2014-03-01

    The principal aim of our study was to investigate the usefulness of serum protein and circulating mRNA of insulin-like growth factor-1 (IGF-1) as a diagnostic and prognostic tool in hepatocellular carcinoma (HCC). Fifty-four HCC patients and age- and sex-matched 20 healthy controls were enrolled into this study. Pretreatment serum IGF-1 and IGF-1 mRNA were determined by the solid-phase sandwich ELISA and quantitative RT-PCR method, respectively. The median age at diagnosis was 60 years, range 36-77 years; where majority of group were male (n = 48, 88.8%). All patients had cirrhotic history. Forty-six percent (n = 25) of patients had Child-Pugh score A, 30% (n = 16) had score B or C. All of the patients were treated with local therapies and none of them received sorafenib. The baseline serum IGF-1 mRNA levels were significantly higher in HCC patients than in the control group (p = 0.04), whereas no significant difference was observed for IGF-1 protein levels between the two group (p = 0.18). Patients with history of HBV infection, who were not treated, and who received multiple palliative treatment for HCC had higher serum IGF-1 mRNA levels (p = 0.03, 0.03, and 0.05, respectively). Poor performance status (p < 0.001), viral etiology of cirrhosis (p = 0.03), larger tumor size (p = 0.01), lower serum hemoglobin levels (p = 0.03), and not be treated for HCC (p = 0.001) related to worse survival. However, neither serum IGF-1 nor serum IGF-1 mRNA had significantly adverse effect on survival (p = 0.53 and 0.42, respectively).

  9. Hypothalamic IGF-I Gene Therapy Prolongs Estrous Cyclicity and Protects Ovarian Structure in Middle-Aged Female Rats

    PubMed Central

    Rodríguez, Silvia S.; Schwerdt, José I.; Barbeito, Claudio G.; Flamini, Mirta A.; Han, Ye; Bohn, Martha C.

    2013-01-01

    There is substantial evidence that age-related ovarian failure in rats is preceded by abnormal responsiveness of the neuroendocrine axis to estrogen positive feedback. Because IGF-I seems to act as a permissive factor for proper GnRH neuronal response to estrogen positive feedback and considering that the hypothalamic content of IGF-I declines in middle-aged (M-A) rats, we assessed the effectiveness of long-term IGF-I gene therapy in the mediobasal hypothalamus (MBH) of M-A female rats to extend regular cyclicity and preserve ovarian structure. We used 3 groups of M-A rats: 1 group of intact animals and 2 groups injected, at 36.2 weeks of age, in the MBH with either a bicistronic recombinant adeno-associated virus (rAAV) harboring the genes for IGF-I and the red fluorescent protein DsRed2, or a control rAAV expressing only DsRed2. Daily vaginal smears were taken throughout the study, which ended at 49.5 weeks of age. We measured serum levels of reproductive hormones and assessed ovarian histology at the end of the study. Although most of the rats injected with the IGF-I rAAV had, on the average, well-preserved estrous cyclicity as well as a generally normal ovarian histology, the intact and control rAAV groups showed a high percentage of acyclic rats at the end of the study and ovaries with numerous enlarged cysts and scarce corpora lutea. Serum LH was higher and hyperprolactinemia lower in the treated animals. These results suggest that overexpression of IGF-I in the MBH prolongs normal ovarian function in M-A female rats. PMID:23584855

  10. Association of serum IGF1 with endothelial function: results from the population-based study of health in Pomerania.

    PubMed

    Empen, Klaus; Lorbeer, Roberto; Völzke, Henry; Robinson, Daniel M; Friedrich, Nele; Krebs, Alexander; Nauck, Matthias; Reffelmann, Thorsten; Ewert, Ralf; Felix, Stephan B; Wallaschofski, Henri; Dörr, Marcus

    2010-10-01

    IGF1 mediates multiple physiological and pathophysiological responses in the cardiovascular system. The aim of this study was to analyze the association between serum IGF1 as well as IGF-binding protein 3 (IGFBP3) levels and endothelial function measured by flow-mediated dilation (FMD). Cross-sectional population-based observational study. The study population comprised 1482 subjects (736 women) aged 25-85 years from the Study of Health in Pomerania. Serum IGF1 and IGFBP3 levels were determined by chemiluminescence immunoassays. FMD measurements were performed using standardized ultrasound techniques. FMD values below the sex-specific median were considered low. In males, logistic regression analyses revealed an odds ratio (OR) of 1.27 (95% confidence interval (CI) 1.07-1.51; P=0.008) for decreased FMD for each decrement of IGF1 s.d. after adjustment for major cardiovascular confounders. In females, no significant relationship between serum IGF1 and FMD was found (OR 0.88, CI 0.74-1.05; P=0.147). After exclusion of subjects with the current use of antihypertensive medication, these findings were similar (males: OR 1.40, CI 1.12-1.75; P=0.003; females: OR 0.95, CI 0.77-1.16; P=0.595). There was no association between serum IGFBP3 levels and FMD in both sexes. Low serum IGF1 levels are associated with impaired endothelial function in males. In women, serum IGF1 is not associated with endothelial function.

  11. Caloric restriction and IGF-I administration promote rabbit fecundity: Possible interrelationships and mechanisms of action.

    PubMed

    Sirotkin, Alexander V; Florkovičová, Iveta Koničková; Švarcová, Olga Østrup; Rafay, Jan; Laurincik, Jozef; Harrath, Abdel Halim

    2017-03-01

    The aim of these in vivo and in vitro studies was to examine the influence of caloric restriction (CR), and the administration of insulin-like growth factor (IGF-I), on rabbit fecundity and to understand the interrelationships between CR and IGF-I, as well as the endocrine and intracellular mechanisms of their effects. Female rabbits were subjected to 50% CR, injections of IGF-I (20 μg/animal/day) and a combination of the two for 10 d before and 2 d after ovulation induced by 25 IU PMSG and 0.25 IU hCG. On the day of ovulation blood samples were collected and analyzed IGF-I, leptin, progesterone (P 4 ) and estradiol (E 2 ) concentrations by RIA. Some animals from each group were killed in their periovulatory period and weighed, as were their ovaries. Granulosa cells isolated from ovaries of does subjected or not to CR were cultured for 2 d with and without IGF-I (100 ng/mL). Accumulation of markers of cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA) and IGF-I were evaluated by immunocytochemistry. In addition, E 2 release by cells isolated from ovaries of animals subjected or not to CR and cultured with and without IGF-I (1, 10, 100, 1000 or 10000 ng/mL) was assessed by RIA. The remaining animals were kept until parturition, when the number of pups was recorded. CR did not affect animal and ovarian weight, but significantly increased the number of pups per litter and plasma levels of IGF-I and decreased plasma leptin and P 4 , but not E 2 concentration. Injections of IGF-I did not influence body and ovarian weights, but increased the number of pups per litter and plasma IGF-I and leptin concentration and reduced plasma E 2 but not P 4 level. IGF-I administration did not modify the main effects of CR, although it prevented the CR-induced decrease in plasma P 4 level. CR reduced accumulation of PCNA, bax, promoted accumulation of cyclin B1 but not of MAPK, PKA or IGF-I within ovarian granulosa cells

  12. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence.

    PubMed

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I.

  13. Chronic effect of static stretching on strength performance and basal serum IGF-1 levels.

    PubMed

    Borges Bastos, Carmen L; Miranda, Humberto; Vale, Rodrigo Gomes de Souza; Portal, Maria de Nazaré; Gomes, M Thiago; Novaes, Jefferson da Silva; Winchester, Jason B

    2013-09-01

    Improving the process of how physical performance is enhanced is one of the main topics evaluated by physiologists. This process often involves athletes and nonathletic populations. The purpose of this study was to assess the chronic response to 10 weeks of static stretching exercises carried out before and during a strength training program for 8 exercises on an 8 repetition maximum (8RM) test performance, and basal serum insulinlike growth factor (IGF-1) levels. Thirty recreationally trained volunteers were randomly assigned to 1 of 3 training groups: (a) SBST (performed a warm-up with a static stretching protocol before each strength training session); (b) SDST (before each training set, a static stretching exercise was performed); and (c) OST (entire session was performed without any type of stretching exercise). Strength and IGF-1 levels were collected at the beginning (pretest) and end (posttest) of the entire experimental procedure. All the exercises showed a significant increase in muscle strength for the OST group. However, the results revealed a significant increase in the muscle strength for only a few exercises in the SBST (LP, LE) and SDST (LP) experimental conditions. Significant statistical differences were found between SBST and SDST for all the exercises in the OST experimental condition. Furthermore, the IGF-1 expression showed no significant differences in the intragroup analysis. However, the OST group showed higher values (p < 0.05) in the posttest when compared with those of the other groups (increased significantly only in the OST experimental condition). It has been concluded that, although all the groups showed an increase in muscular strength, the strength training performed without any type of stretching exercise, regardless of whether the stretching is performed before or during the lifting session, can more effectively increase muscle strength and basal serum IGF-1 levels. It was concluded that strength training, with or without the use

  14. Associations of food and nutrient intakes with serum IGF-I, IGF-II, IGFBP-3, TGF-b1, total SOD activity and sFas levels among middle-aged Japanese: the Japan Collaborative Cohort study.

    PubMed

    Maruyama, Koutatsu; Iso, Hiroyasu; Ito, Yoshinori; Watanabe, Yoshiyuki; Inaba, Yutaka; Tajima, Kazuo; Nakachi, Kei; Tamakoshi, Akiko

    2009-12-01

    No observational study has examined whether cancer-related biomarkers are associated with diet in Japanese. We therefore assessed sex-specific food and nutrient intakes according to serum IGF-I, IGF-II, IGFBP-3, TGF-b1, total SOD activity and sFas levels, under a cross-sectional study of 10,350 control subjects who answered the food frequency questionnaire in the first-wave nested case-control study within the Japan Collaborative Cohort Study. For both men and women, IGF-I levels were associated with higher intakes of milk, fruits, green tea, calcium and vitamin C. IGF-II levels were associated with higher intakes of milk, yogurt, fruits and miso soup, and lower intakes of rice, coffee and carbohydrate. IGFBP-3 levels were associated with higher intakes of milk, yogurt, fruits and vitamin C, and lower intakes of rice, energy, protein, carbohydrate, sodium and polyunsaturated fatty acids. TGF-b1 levels were associated with lower intakes of coffee intakes, and higher intakes of miso soup and sodium. Total SOD activity levels were associated with lower intakes of most nutrients other than energy, carbohydrate, iron, copper, manganese, retinol equivalents, vitamin A, B2, B12, niacin, folic acid, vitamin C and fish fat. sFas levels were associated with higher intakes of manganese and folic acids. The results of the present study should help to account for findings on those biomarkers regarding risks of cancer and other lifestyle-related diseases in terms of dietary confounding as causality.

  15. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.; Bautista, C.M.; Wergedal, J.

    1989-11-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodiummore » dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.« less

  16. Liver-derived IGF-I contributes to GH-dependent increases in lean mass and bone mineral density in mice with comparable levels of circulating GH.

    PubMed

    Nordstrom, Sarah M; Tran, Jennifer L; Sos, Brandon C; Wagner, Kay-Uwe; Weiss, Ethan J

    2011-07-01

    The relative contributions of circulating and locally produced IGF-I in growth remain controversial. The majority of circulating IGF-I is produced by the liver, and numerous mouse models have been developed to study the endocrine actions of IGF-I. A common drawback to these models is that the elimination of circulating IGF-I disrupts a negative feedback pathway, resulting in unregulated GH secretion. We generated a mouse with near total abrogation of circulating IGF-I by disrupting the GH signaling mediator, Janus kinase (JAK)2, in hepatocytes. We then crossed these mice, termed JAK2L, to GH-deficient little mice (Lit). Compound mutant (Lit-JAK2L) and control (Lit-Con) mice were treated with equal amounts of GH such that the only difference between the two groups was hepatic GH signaling. Both groups gained weight in response to GH but there was a reduction in the final weight of GH-treated Lit-JAK2L vs. Lit-Con mice. Similarly, lean mass increased in both groups, but there was a reduction in the final lean mass of Lit-JAK2L vs. Lit-Con mice. There was an equivalent increase in skeletal length in response to GH in Lit-Con and Lit-JAK2L mice. There was an increase in bone mineral density (BMD) in both groups, but Lit-JAK2L had lower BMD than Lit-Con mice. In addition, GH-mediated increases in spleen and kidney mass were absent in Lit-JAK2L mice. Taken together, hepatic GH-dependent production of IGF-I had a significant and nonredundant role in GH-mediated acquisition of lean mass, BMD, spleen mass, and kidney mass; however, skeletal length was dependent upon or compensated for by locally produced IGF-I.

  17. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence

    PubMed Central

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Objective Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. Methods We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Results Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R 2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Conclusion Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I. PMID:26448623

  18. The relationship between serum IGF-1, handgrip strength, physical performance and falls in elderly men and women.

    PubMed

    Van Nieuwpoort, Caroline; Vlot, Mariska; Schaap, Laura; Lips, Paul; Drent, Madeleine

    2018-05-22

    Human aging is accompanied by a decrease in growth hormone secretion and serum IGF-1 levels. Also, loss of muscle mass, strength and impairment of physical performance, ending in a state of frailty, are seen in elderly. We aimed to investigate whether handgrip strength, physical performance and recurrent falls are related to serum IGF-1 levels in community dwelling elderly. Observational cohort study (cross-sectional and prospective). We studied the association between IGF-1 and handgrip strength, physical performance and falls in participants of the Longitudinal Aging Study Amsterdam. 1292 participants were included (633 men, 659 women). Serum IGF-1 levels were divided into quartiles (IGF-1-Q1 to IGF-1-Q4). Data on falls were collected prospectively for a period of three years. All analyses were stratified for age and physical activity and adjusted for relevant confounders. Men with a low physical activity score in IGF-1-Q1 and IGF-1-Q2 of the younger age group had a lower handgrip strength compared to IGF-1-Q4. In younger more active males in IGF-1-Q2 physical performance was worse. Recurrent fallers were less prevalent in older, low active males with low IGF-1 levels. In females, recurrent fallers were more prevalent in older, more active females in IGF-1-Q2. IGF-1 quartile may predict changes in handgrip strength and physical performance in men and women. Our results indicate that lower IGF-1 levels are associated with lower handgrip strength and worse physical performance, but less recurrent fallers especially in men. Associations were often more robust in IGF-1-Q2. Future studies on this topic are desirable.

  19. [Physiological significance of IGF-I and its binding proteins on fetal growth and maturation].

    PubMed

    Iwashita, M

    1994-08-01

    Insulin-like growth factor-I (IGF-I) is one of growth factors that circulates bound to specific, high affinity binding proteins (IGFBPs). Physiological significance of IGF-I and IGFBPs on fetal growth is investigated in this study. In mother, circulating levels of IGF-I are increased during pregnancy in which placental hormones take the place of pituitary GH to regulate IGF-I during pregnancy and correlates with fetal birth weight. IGFBPs except IGFBP-1 in the maternal circulation are markedly reduced compared to those of non pregnant women due to increased activity of protease(s) while IGFBP-1 gradually increased throughout pregnancy and negatively correlates with fetal weight. IGF-I stimulated 3H-AIB uptake and release by cultured trophoblast cells in a dose dependent manner. Furthermore, fetal growth and the transfer of 3H-AIB to fetus is inhibited when IGF-I is neutralized by polyclonal antibody. These results indicate that maternal IGF-I stimulates fetal growth by activating placental transport of nutrients to fetus. In contrast, IGFBP-1 inhibits both 125I-IGF-I binding to placental membrane and 3H-glycine uptake of trophoblast cells by IGF-I in a dose dependent manner. Moreover, fetal growth and the transfer of 3H-AIB to fetus are accelerated when IGFBP-1 is neutralized by polyclonal antibody, suggesting that maternal IGFBP-1 inhibits fetal growth by inhibiting IGF-I action on the placenta. IGF-I and four IGFBPs including IGFBP-1, -2, -3, and -4 are localized in cytotrophoblast of term placenta. Similarly IGFBP-1, -2, and -4 are detected in medium conditioned by term decidua cells by Western ligand blot in which release of IGFBP-1 and -4 are diminished by IGF-I and all three IGFBPs are increased by progesterone. Thus, there is a complicated autocrine/paracrine regulation between decidua and placenta and IGF-I action on fetal growth is presumed to be modified by this local regulation. Fetal levels of IGF-I and IGFBP-1 are positively and negatively correlate

  20. Methodology for Anti-Gene Anti-IGF-I Therapy of Malignant Tumours

    PubMed Central

    Trojan, Jerzy; Pan, Yuexin X.; Wei, Ming X.; Ly, Adama; Shevelev, Alexander; Bierwagen, Maciej; Ardourel, Marie-Yvonne; Trojan, Ladislas A.; Alvarez, Alvaro; Andres, Christian; Noguera, Maria C.; Briceno, Ignacio; Aristizabal, Beatriz H.; Kasprzak, Heliodor; Duc, Huynh T.; Anthony, Donald D.

    2012-01-01

    The aim of this study was to establish the criteria for methodology of cellular “anti-IGF-I” therapy of malignant tumours and particularly for glioblastoma multiforme. The treatment of primary glioblastoma patients using surgery, radiotherapy, and chemotherapy was followed by subcutaneous injection of autologous cancer cells transfected by IGF-I antisense/triple helix expression vectors. The prepared cell “vaccines” should it be in the case of glioblastomas or other tumours, have shown a change of phenotype, the absence of IGF-I protein, and expression of MHC-I and B7. The peripheral blood lymphocytes, PBL cells, removed after each of two successive vaccinations, have demonstrated for all the types of tumour tested an increasing level of CD8+ and CD8+28+ molecules and a switch from CD8+11b+ to CD8+11. All cancer patients were supervised for up to 19 months, the period corresponding to minimum survival of glioblastoma patients. The obtained results have permitted to specify the common criteria for “anti-IGF-I” strategy: characteristics sine qua non of injected “vaccines” (cloned cells IGF-I(−) and MHC-I(+)) and of PBL cells (CD8+ increased level). PMID:22400112

  1. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration.

    PubMed

    de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R

    2009-06-01

    Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.

  2. [GHBP, IGF-1 and IGFBP-3 serum levels in familial short-statured and normal-statured children].

    PubMed

    del Valle Núñez, Cristóbal Jorge; López-Siguero, Juan Pedro; López-Canti, Luis Fernando; Lechuga Campoy, José Luis; Espigares Martín, Rosa; Martínez-Aedo Ollero, María José

    2004-10-09

    Growth hormone binding protein (GHBP), insuline-like growth factor 1 (IGF-1) and insuline-like growth factor binding protein 3 (IGFBP-3) serum concentrations were studied in familial short-statured patients (FSS) and age-matched normal-statured subjects. The aim of the study was to ascertain whether differences in growth factors concentrations between groups could be shown and whether they may contribute to explaining the different patterns of growth in both groups. Serum samples of 38 FSS patients (20 boys) and 31 normal-statured subjects (15 boys) in Tanner I stage (prepubertal), were analysed in a central laboratory. All auxological parameters (height, growth velocity, target height, body mass index (BMI) and biochemical parameters (IGF-1 and IGFBP-3) were standardised for age and sex-matched subjects. GHBP values were expressed as percentage of specific binding. The studied populations were similar and no statistically-significant differences in chronological age, bone age and BMI were found. Height, growth velocity and target height were significantly lower in FSS patients compared with normal subjects (p < 0.0001). IGF-1, IGFBP-3 and GHBP concentrations were significantly lower in the FSS group (p < 0.01). Correlations were found between IGF-1 and IGFBP-3 (r = 0.56; p = 0.0004) and between IGF-1 and GHBP (r = 0.34; p = 0.03) in the FSS group. However, in the normal-statured group only BMI and GHBP were correlated (r = 0.5; p = 0.02). These results strongly support the importance of the GH/IGF-1 functional axis in the pattern of growth and probably contribute to understanding of the pathophysiologic basis of the auxological differences found between groups.

  3. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first

  4. Unbound (bioavailable) IGF1 enhances somatic growth.

    PubMed

    Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J; Frystyk, Jan; Yakar, Shoshana

    2011-09-01

    Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or 'free IGF1'. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions.

  5. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the presentmore » study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.« less

  6. Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.

    PubMed

    Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P

    2013-09-01

    Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Serum IGFBP-3 is a more effective predictor than IGF-1 and IGF-2 for the development of hepatocellular carcinoma in patients with chronic HCV infection

    PubMed Central

    ALEEM, EIMAN; ELSHAYEB, AYMAN; ELHABACHI, NIHAL; MANSOUR, AMAL REFAAT; GOWILY, AHMED; HELA, ASMAA

    2011-01-01

    Hepatocellular carcinoma (HCC) contributes to 14.8% of all cancer mortality in Egypt, which has a high prevalence of hepatitis C virus (HCV). We have previously shown alterations in the insulin-like growth factor-1 (IGF-1) receptor signalling pathway during experimental hepatocarcinogenesis. The aim of this study was to determine whether serum levels of IGF-1, IGF-2 and IGFBP-3 can be used to discriminate between HCC and the stages of hepatic dysfunction in patients with liver cirrhosis assessed by the Child-Pugh (CP) score, and to correlate these levels with HCC stages. We recruited 241 subjects to the present study; 79 with liver cirrhosis, 62 with HCV-induced HCC and 100 age-matched controls. Results showed that serum levels of IGF-1, IGF-2 and IGFBP-3 were reduced significantly in cirrhosis and HCC patients in comparison to the controls, and that this reduction negatively correlated with the CP scores. However, only IGFBP-3 levels showed significant negative correlation with α-fetoprotein levels. The reduction in IGF-1 and IGFBP-3 but not IGF-2 levels was significant in HCC in comparison to patients with cirrhosis. None of the parameters significantly correlated with the HCC stage. IGFBP-3 levels discriminated between cirrhosis and HCC at a sensitivity of 87%, a specificity of 80% and a cut-off value of <682.6 ng/ml. In conclusion, although our results showed that serum IGF-1, IGF-2 and IGFBP-3 are reduced with the progression of hepatic dysfunction, only IGFBP-3 may be considered as the most promising serological marker for the prediction of the development of HCC in the chronic HCV patients with liver cirrhosis. PMID:22740980

  8. Role of IGF-I Signaling in Muscle Bone Interactions

    PubMed Central

    Bikle, Daniel D; Tahimic, Candice; Chang, Wenhan; Wang, Yongmei; Philippou, Anastassios; Barton, Elisabeth R.

    2015-01-01

    Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. PMID:26453498

  9. FOXO1 content is reduced in cystic fibrosis and increases with IGF-I treatment.

    PubMed

    Smerieri, Arianna; Montanini, Luisa; Maiuri, Luigi; Bernasconi, Sergio; Street, Maria E

    2014-10-08

    Cystic fibrosis-related diabetes is to date the most frequent complication in cystic fibrosis (CF). The mechanisms underlying this condition are not well understood, and a possible role of insulin resistance is debated. We investigated insulin signal transduction in CF. Total insulin receptor, IRS1, p85 PI3K, and AKT contents were substantially normal in CF cells (CFBE41o-), whereas winged helix forkhead (FOX)O1 contents were reduced both in baseline conditions and after insulin stimulation. In addition, CF cells showed increased ERK1/2, and reduced β2 arrestin contents. No significant change in SOCS2 was observed. By using a CFTR inhibitor and siRNA, changes in FOXO1 were related to CFTR loss of function. In a CF-affected mouse model, FOXO1 content was reduced in the muscle while no significant difference was observed in liver and adipose tissue compared with wild-type. Insulin-like growth factor 1 (IGF-I) increased FOXO1 content in vitro and in vivo in muscle and adipose tissue. In conclusion; we present the first description of reduced FOXO1 content in CF, which is compatible with reduced gluconeogenesis and increased adipogenesis, both features of insulin insensitivity. IGF-I treatment was effective in increasing FOXO1, thereby suggesting that it could be considered as a potential treatment in CF patients possibly to prevent and treat cystic fibrosis-related diabetes.

  10. Unbound (bioavailable) IGF1 enhances somatic growth

    PubMed Central

    Elis, Sebastien; Wu, Yingjie; Courtland, Hayden-William; Cannata, Dara; Sun, Hui; Beth-On, Mordechay; Liu, Chengyu; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Basta-Pljakic, Jelena; Cardoso, Luis; Rosen, Clifford J.; Frystyk, Jan; Yakar, Shoshana

    2011-01-01

    SUMMARY Understanding insulin-like growth factor-1 (IGF1) biology is of particular importance because, apart from its role in mediating growth, it plays key roles in cellular transformation, organ regeneration, immune function, development of the musculoskeletal system and aging. IGF1 bioactivity is modulated by its binding to IGF-binding proteins (IGFBPs) and the acid labile subunit (ALS), which are present in serum and tissues. To determine whether IGF1 binding to IGFBPs is necessary to facilitate normal growth and development, we used a gene-targeting approach and generated two novel knock-in mouse models of mutated IGF1, in which the native Igf1 gene was replaced by Des-Igf1 (KID mice) or R3-Igf1 (KIR mice). The KID and KIR mutant proteins have reduced affinity for the IGFBPs, and therefore present as unbound IGF1, or ‘free IGF1’. We found that both KID and KIR mice have reduced serum IGF1 levels and a concomitant increase in serum growth hormone levels. Ternary complex formation of IGF1 with the IGFBPs and the ALS was markedly reduced in sera from KID and KIR mice compared with wild type. Both mutant mice showed increased body weight, body and bone lengths, and relative lean mass. We found selective organomegaly of the spleen, kidneys and uterus, enhanced mammary gland complexity, and increased skeletal acquisition. The KID and KIR models show unequivocally that IGF1-complex formation with the IGFBPs is fundamental for establishing normal body and organ size, and that uncontrolled IGF bioactivity could lead to pathological conditions. PMID:21628395

  11. A Coordinated Action of Blood-Borne and Brain Insulin-Like Growth Factor I in the Response to Traumatic Brain Injury.

    PubMed

    Santi, A; Genis, L; Torres Aleman, I

    2018-06-01

    In response to injury, the brain produces different neuroprotective molecules, such as insulin-like growth factor I (IGF-I). However, IGF-I is also taken up by the brain from the circulation in response to physiological stimuli. Herein, we analyzed in mice the relative contribution of circulating and locally produced IGF-I to increased brain IGF-I levels after insult. Traumatic brain injury (TBI) induced by a controlled impact resulted in increased IGF-I levels in the vicinity of the lesion, but mice with low serum IGF-I showed significantly lower increases. Indeed, in normal mice, peripheral IGF-I accumulated at the lesion site after injury, and at the same time serum IGF-I levels decreased. Collectively, these data suggest that serum IGF-I enter into the brain after TBI and contributes to increased brain IGF-I levels at the injury site. This connection between central and circulating IGF-I provides an amenable route for treatment, as subcutaneous administration of IGF-I to TBI mice led to functional recovery. These latter results add further support to the use of systemic IGF-I or its mimetics for treatment of brain injuries.

  12. Assessing skeletal maturity by using blood spot insulin-like growth factor I (IGF-I) testing.

    PubMed

    Masoud, Mohamed; Masoud, Ibrahim; Kent, Ralph L; Gowharji, Nour; Cohen, Laurie E

    2008-08-01

    Accurate determination of skeletal maturity and remaining growth is crucial to many orthodontic, orthognathic, and dental-implant timing decisions. Cervical vertebral stages and hand-wrist radiographs are currently used to identify peak mandibular bone growth. These are highly subjective techniques that not only involve radiographic exposure but also lack the ability to determine the intensity of the growth spurt and the end of growth. Insulin-like growth factor I (IGF-I) is a circulating growth hormone-dependent factor whose level correlates with sexual maturity; it is used to diagnose growth hormone deficiency and excess. We hypothesized that IGF-I levels would also correlate with cervical skeletal maturity and would be highest at the cervical stages that correspond to the greatest amount of facial growth. We measured mean blood spot IGF-I levels in a cross-sectional study of 83 patients (44 female, 39 male) on recall to begin orthodontic treatment, in active treatment, or in posttreatment follow-up. Mean blood spot IGF-I levels were significantly higher in the late pubertal stages than in the prepubertal, early pubertal, and postpubertal stages. Linear correlation showed that IGF-I levels had a significant positive correlation with cervical skeletal maturity from the prepubertal to the late pubertal stages, and a significant negative correlation from the late pubertal to the postpubertal stages. In the postpubertal stage, IGF-I levels had a negative linear correlation with increasing time since the onset of puberty and with chronological age. Blood spot IGF-I could be used as a skeletal maturity indicator and might be useful in detecting residual mandibular growth in young adults.

  13. Crosstalk Between Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance

    DTIC Science & Technology

    2011-04-01

    were serum-starved overnight, then stimulated with IGF-I (100 ng/mL) for 5 min, and/or treated with the IGF-IR kinase inhibitor I-OMe-AG538 (10 Amol /L...1 mmol/L in PBS and used at 10 Amol /L in culture. Cell Culture MDA-MB-231 (MDA231), MCF7, BT474, and SKBR3 breast cancer cells were purchased from the...were serum starved, treated with the IGF-IR kinase inhibitor I-OMe-AG538 (10 Amol /L overnight), and stimulated with IGF-I (100 ng/mL

  14. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    PubMed

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  15. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression.

    PubMed

    Chen, Yeung-Jen; Wang, Ching-Jen; Yang, Kuender D; Kuo, Yur-Ren; Huang, Hui-Chen; Huang, Yu-Ting; Sun, Yi-Chih; Wang, Feng-Sheng

    2004-07-01

    Extracorporeal shock waves (ESW) have recently been used in resolving tendinitis. However, mechanisms by which ESW promote tendon repair is not fully understood. In this study, we reported that an optimal ESW treatment promoted healing of Achilles tendintis by inducing TGF-beta1 and IGF-I. Rats with the collagenease-induced Achilles tendinitis were given a single ESW treatment (0.16 mJ/mm(2) energy flux density) with 0, 200, 500 and 1000 impulses. Achilles tendons were subjected to biomechanical (load to failure and stiffness), biochemical properties (DNA, glycosaminoglycan and hydroxyproline content) and histological assessment. ESW with 200 impulses restored biomechanical and biochemical characteristics of healing tendons 12 weeks after treatment. However, ESW treatments with 500 and 1000 impulses elicited inhibitory effects on tendinitis repair. Histological observation demonstrated that ESW treatment resolved edema, swelling, and inflammatory cell infiltration in injured tendons. Lesion site underwent intensive tenocyte proliferation, neovascularization and progressive tendon tissue regeneration. Tenocytes at the hypertrophied cellular tissue and newly developed tendon tissue expressed strong proliferating cell nuclear antigen (PCNA) after ESW treatment, suggesting that physical ESW could increase the mitogenic responses of tendons. Moreover, the proliferation of tenocytes adjunct to hypertrophied cell aggregate and newly formed tendon tissue coincided with intensive TGF-beta1 and IGF-I expression. Increasing TGF-beta1 expression was noted in the early stage of tendon repair, and elevated IGF-I expression was persisted throughout the healing period. Together, low-energy shock wave effectively promoted tendon healing. TGF-beta1 and IGF-I played important roles in mediating ESW-stimulated cell proliferation and tissue regeneration of tendon.

  16. Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo.

    PubMed

    Fernández, María Celia; Venara, Marcela; Nowicki, Susana; Chemes, Héctor E; Barontini, Marta; Pennisi, Patricia A

    2012-08-01

    IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.

  17. IGF-I levels reflect hypopituitarism severity in adults with pituitary dysfunction.

    PubMed

    Tirosh, Amit; Toledano, Yoel; Masri-Iraqi, Hiba; Eizenberg, Yoav; Tzvetov, Gloria; Hirsch, Dania; Benbassat, Carlos; Robenshtok, Eyal; Shimon, Ilan

    2016-08-01

    To evaluate the utility of Insulin-like growth factor I (IGF-I) standard deviation score (SDS) as a surrogate marker of severity of hypopituitarism in adults with pituitary pathology. We performed a retrospective data analysis, including 269 consecutive patients with pituitary disease attending a tertiary endocrine clinic in 1990-2015. The medical files were reviewed for the complete pituitary hormone profile, including IGF-I, and clinical data. Age-adjusted assay reference ranges of IGF-I were used to calculate IGF-I SDS for each patient. The main outcome measures were positive and negative predictive values of low and high IGF-I SDS, respectively, for the various pituitary hormone deficiencies. IGF-I SDS correlated negatively with the number of altered pituitary axes (p < 0.001). Gonadotropin was affected in 76.6 % of cases, followed by thyrotropin (58.4 %), corticotropin (49.1 %), and prolactin (22.7 %). Positive and negative predictive values yielded a clear trend for the probability of low/high IGF-I SDS for all affected pituitary axes. Rates of diabetes insipidus correlated with IGF-I SDS values both for the full study population, and specifically for patients with non-functioning pituitary adenomas. IGF-I SDS can be used to evaluate the somatotroph function, as a valid substitute to absolute IGF-I levels. Moreover, IGF-I SDS predicted the extent of hypopituitarism in adults with pituitary disease, and thus can serve as a marker of hypopituitarism severity.

  18. [Impact of acupuncture to IGF-I expression in spared dorsal root ganglion of cats].

    PubMed

    Liu, Fen; Wang, Ting-Hua; Zhang, Yi; Hong, Sun-quan; Song, Xin-bo

    2006-05-01

    To explore the relationship between Insulin-like growth factor-I (IGF-I) and acupuncture promoting the spinal cord plasticity, the changes of IGF- I expressing in spared dorsal root ganglia (DRG,L6) after operation and acupuncture were investigated. 25 adult cats were divided into 5 groups: normal control group; 7th day and 14th day group after unilateral partial rhizotomy (unilateral L1-L5,L7-S2 DRG Were transected, but L6 DRG was spared); 7th day and 14th day group of acupuncture stimulating the spared DRG (electro-needle stimulation was performed by following unilateral partial root rhizotomy). Animals survived for 7 or 14 days after operation respectively. Unilateral L6 dorsal root ganglia of each group were made into 20 microm frozen sections. By immunohistochemistry ABC method, the sections were stained with specific IGF-I (1:200) antibody. The distribution and the number of IGF-I positive neurons in spared DRG (L6) that located the operated/acupuncture side of each animal were observed and counted. For 7th day group after acupuncture stiumlation, the number of IGF-I positive neurons of spared DRG of acupuncture side showed significantly more than that of 7th day operation group (P<0.05), but still less than that of normal group (P < 0.05); In 14th day group, IGF- I expression in neuron of L6 DRG also increased apparently more than that of 14th day operation group, with coming back to normal level. After acupuncture stimulating the spared DRG for 14 days, the numbers of IGF- I positive neurons in spared DRG increased significantly more than that of 7th day group after acupuncture (P<0.05). Acupuncture can significantly increase the number of IGF- I positive neurons. Our results indicate that the expression changes of IGF-I in spared DRG associate with acupuncture promoting the spinal cord plasticity.

  19. Ontogenic and nutritional changes in circulating insulin-like growth factor (IGF)-I, IGF-II and IGF-binding proteins in growing ewe and ram lambs.

    PubMed

    Gatford, K L; Quinn, K J; Walton, P E; Grant, P A; Hosking, B J; Egan, A R; Owens, P C

    1997-10-01

    The ontogeny of the IGF endocrine system was investigated in 15 young lambs before and after weaning at 62 days of age. Before weaning, plasma IGF-I concentrations were higher in rams than ewes, and plasma concentrations of IGF-II and IGF-binding protein-3 (IGFBP-3) also tended to be higher in rams than in ewes. Feed intake of ewes and rams was restricted after weaning to remove sex differences in feed intake. Plasma concentrations of IGF-I and IGFBP-3 did not differ between rams and ewes at 100 days of age, but plasma IGF-II was higher in rams than in ewes at this time. Since circulating concentrations of GH were higher in rams than in ewes at 100 days of age, this implies that the restricted feed intake blocked the IGF-I and IGFBP-3 responses to GH. We conclude that sex differences in circulating IGF-I and IGFBP-3 concentrations in the growing lamb alter with age, and are not present when nutrition is restricted.

  20. IGF-I replacement therapy in children with congenital IGF-I deficiency (Laron syndrome) maintains heart dimension and function.

    PubMed

    Scheinowitz, Mickey; Feinberg, Micha S; Laron, Zvi

    2009-06-01

    Untreated patients with congenital growth hormone deficiency (GHD) and IGF-I deficiency are characterized not only by dwarfism but also by acromicria and organomicria, such as the heart. We assessed cardiac dimensions and function in very young patients with Laron syndrome (LS) undergoing IGF-I replacement therapy. Two to seven echocardiographic measurements were performed during IGF-I replacement therapy on male (n=4) and female (n=4) LS -patients, mean+/-SD age of 7.1+/-3.6 years (range 1.6-11.6 years), weight 16.1+/-9.7 kg, and height 89.9+/-18.5 cm. As aged- and gender-matched controls served 44 healthy children, age: 8.7+/-5.5 years, weight: 36.1+/-22.4 kg, and height: 129.7+/-33.1cm. Data of LS patients were normalized to body surface area and compared to the control group as well as nomograms of normal echocardiographic parameters for this age group. Left ventricular diastolic and systolic dimensions (LVDD/ LVSD, mm) and LV mass (gr) were significantly smaller in boys and girls with IGF-I treated LS compared with controls while the shortening fraction (%) and intraventricular septum thickness (mm) were similar. When compared with standard values for this age group, all treated LS patients were within 1 standard deviation of the mean. IGF-I therapy of young patients with Laron syndrome maintain LV dimensions and function within the normal range of aged-matched controls.

  1. Predictors of variation in serum IGF1 and IGFBP3 levels in healthy African American and white men.

    PubMed

    Hoyo, Cathrine; Grubber, Janet; Demark-Wahnefried, Wendy; Lobaugh, Bruce; Jeffreys, Amy S; Grambow, Steven C; Marks, Jeffrey R; Keku, Temitope O; Walther, Phillip J; Schildkraut, Joellen M

    2009-07-01

    Individual variation in circulating insulinlike growth factor-1 (IGF1) and its major binding protein, insulinlike growth factor binding protein-3 (IGFBP3), have been etiologically linked to several chronic diseases, including some cancers. Factors associated with variation in circulating levels of these peptide hormones remain unclear. Multiple linear regression models were used to determine the extent to which sociodemographic characteristics, lifestyle factors, personal and family history of chronic disease, and common genetic variants, the (CA)n repeat polymorphism in the IGF1 promoter and the IGFBP3-202 A/C polymorphism (rs2854744) predict variation in IGF1 or IGFBP3 serum levels in 33 otherwise healthy African American and 37 white males recruited from Durham Veterans Administration Medical Center. Predictors of serum IGF1, IGFBP3, and the IGF1:IGFBP3 molar ratio varied by race. In African Americans, 17% and 28% of the variation in serum IGF1 and the IGF1:IGFBP3 molar ratio, were explained by cigarette smoking and carrying the IGF1 (CA)19 repeat allele, respectively. Not carrying at least 1 IGF1 (CA)19 repeat allele and a high body mass index explained 8% and 14%, respectively, of the variation IGFBP3 levels. These factors did not predict variation of these peptides in whites. If successfully replicated in larger studies, these findings would add to recent evidence, suggesting known genetic and lifestyle chronic disease risk factors influence IGF1 and IGFBP3 circulating levels differently in African Americans and whites.

  2. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritvos, O.; Ranta, T.; Jalkanen, J.

    1988-05-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purifiedmore » 34 K IGF-BP specifically bound (125I)iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of (125I) iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of (125I) iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with (125I)iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-(3H)aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells.« less

  3. Can IGF-I polymorphism affect power and endurance athletic performance?

    PubMed

    Ben-Zaken, Sigal; Meckel, Yoav; Nemet, Dan; Eliakim, Alon

    2013-10-01

    Insulin-like growth factor-I (IGF-I) plays a key role in exercise-associated muscle growth and development. The regulatory region of the promoter of the IGF-I gene is labile, but changes in this region were studied mostly in the elderly and in relation to pathological states. C-1245T (rs35767) is a genetic variation in the promoter region of the IGF-I gene. The minor allele T was found to be associated with higher circulating IGF-I levels, and possibly with increased muscle mass. The aim of the current study was to analyze the frequency distribution of C-1245T SNP in athletic and nonathletic Israeli populations. One hundred and sixty-five athletes (78 endurance-type athletes, and 87 power-type athletes) and 159 nonathletic healthy individuals participated in the current study. Genomic DNA was extracted from peripheral EDTA treated anti-coagulated blood using a standard protocol. Genotyping of the IGF1 C-1245T polymorphism was performed using polymerase chain reaction (PCR). We found that the endurance and power athletes' allele and genotype frequencies were significantly different from those of the control group. Only 4.8% of the athletes were TT carriers, but none of the controls carried this genotype. The T allele was found to be more frequent in the top-level power athletes (international and Olympic level) compared to national level athletes, but such a difference was not found in endurance athletes. Our findings suggest a possible contribution for the relatively rare IGF-I TT genotype to endurance performance, and in particular to power sport excellence in Israeli athletes. © 2013.

  4. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    skeletal unloading. We have focussed on the role of IGF- 1 as the local factor mediating the effects of skeletal unloading on bone formation. IGF-I is produced by bone cells and chondrocytes; these cells have receptors for IGF-I, and respond to IGF-I with an increase in proliferation and function (e.g. collagen, and glycosaminoglycan production, respectively). IGF-I production by bone is under hormonal control, principally by GH and PTH, and IGF-I is thought to mediate some if not all of the effects of GH and PTH on bone growth. Thus, systemic changes in hormones such as GH and PTH may still have effects which vary from bone to bone depending on the loading history.

  5. Genetic variants in IGF-I, IGF-II, IGFBP-3, and adiponectin genes and colon cancer risk in African Americans and Whites

    PubMed Central

    Keku, Temitope O.; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J.; Omofoye, Seun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S.; Millikan, Robert

    2014-01-01

    Purpose Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)n repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Methods Participants were African Americans (231cases, 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens, and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5′-exonuclease (Taqman) assay. The IGF-I (CA)n repeat was assayed by PCR, and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression. Results The IGF-I (CA)19 repeat was higher in White controls (50%) than African American controls (31%). Whites homozygous for the IGF-I (CA)19 repeat had a nearly two fold increase in risk of colon cancer (OR=1.77; 95%CI=1.15–2.73), but not African Americans (OR= 0.73, 95%CI 0.50–1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR= 0.49, 95%CI 0.28–0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p- trend < 0.05). Conclusions These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans. PMID:22565227

  6. Genetic variants in IGF-I, IGF-II, IGFBP-3, and adiponectin genes and colon cancer risk in African Americans and Whites.

    PubMed

    Keku, Temitope O; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J; Omofoye, Oluwaseun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S; Millikan, Robert

    2012-07-01

    Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.

  7. GH/IGF-I Transgene Expression on Muscle Homeostasis

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  8. IGF-1 and Survival in ESRD

    PubMed Central

    Jia, Ting; Gama Axelsson, Thiane; Heimbürger, Olof; Bárány, Peter; Stenvinkel, Peter; Qureshi, Abdul Rashid

    2014-01-01

    Summary Background and objectives IGF-1 deficiency links to malnutrition in CKD patients; however, it is not clear to what extent it associates with survival among these patients. Design, setting, participants, & measurements Serum IGF-1 and other biochemical, clinical (subjective global assessment), and densitometric (dual energy x-ray absorptiometry) markers of nutritional status and mineral and bone metabolism were measured in a cohort of 365 Swedish clinically stable CKD stage 5 patients (median age of 53 years) initiating dialysis between 1994 and 2009; in 207 patients, measurements were also taken after 1 year of dialysis. Deaths were registered during a median follow-up of 5 years. Associations of mortality with baseline IGF-1 and changes of IGF-1 after 1 year of dialysis were evaluated by Cox models. Results At baseline, IGF-1 concentrations associated negatively with age, diabetes mellitus, cardiovascular disease, poor nutritional status, IL-6, and osteoprotegerin and positively with body fat mass, bone mineral density, serum phosphate, calcium, and fibroblast growth factor-23. At 1 year, IGF-1 had increased by 33%. In multivariate regression, low age, diabetes mellitus, and high serum phosphate and calcium associated with IGF-1 at baseline, and in a mixed model, these factors, together with high fat body mass, associated with changes of IGF-1 during the first 1 year of dialysis. Adjusting for calendar year of inclusion, age, sex, diabetes mellitus, cardiovascular disease, IL-6, and poor nutritional status, a 1 SD higher level of IGF-1 at baseline associated with lower mortality risk (hazard ratio, 0.57; 95% confidence interval, 0.32 to 0.98). Persistently low or decreasing IGF-1 levels during the first 1 year on dialysis predicted worse survival (adjusted hazard ratio, 2.19; 95% confidence interval, 1.06 to 4.50). Conclusion In incident dialysis patients, low serum IGF-1 associates with body composition and markers of mineral and bone metabolism, and it

  9. The effect of economic status on height, insulin-like growth factor (IGF)-I and IGF binding protein-3 concentrations in healthy Turkish children.

    PubMed

    Turan, S; Bereket, A; Furman, A; Omar, A; Berber, M; Ozen, A; Akbenlioglu, C; Haklar, G

    2007-06-01

    The effect of economic status (ES) on growth, insulin-like growth factor (IGF)-I and IGF-binding protein (IGFBP)-3 in healthy children is not well characterized. We aimed to study the interrelationship between height, weight, IGF-I, IGFBP-3, mid-parental height (MPH) and ES. Eight hundred and fourteen healthy children (428 boys, 386 girls; age 3-18 years) were classified according to income of the families as low, middle and high. Standard deviation scores (SDSs) of height, weight, MPH, IGF-I and IGFBP-3 were compared between the groups. The combined effect of these parameters and ES on height SDS was investigated with complex statistical models. There was a significant trend for height and weight SDSs to increase with higher income levels in boys, but not in girls. Body mass index (BMI) SDSs were similar in three groups. There was a general trend for MPH SDS to increase with income levels in both sexes. In boys, IGF-I SDS was significantly higher in high ES group than low ES. In girls, IGFBP-3 SDSs were significantly higher in high ES group than in middle ES group. For both genders, height SDS was highly correlated with weight SDS and moderately correlated with BMI SDS, MPH SDS and IGF-1 SDS. All correlations were significant and positive. Complex models showed that MPH (19%), IGF-I (13%) and ES (3%) in boys, and MPH (16%) and IGF-I (7%) in girls have significant contribution to height SDSs. ES per se, independent of overt malnutrition, affects height, weight, IGF-I and IGFBP-3 with some gender differences in healthy children. Influence of income on height and weight show sexual dimorphism, a slight but significant effect is observed only in boys. MPH is the most prominent variable effecting height in healthy children. Higher height and MPH SDSs observed in higher income groups suggest that secular trend in growth still exists, at least in boys, in a country of favorable economic development.

  10. A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer

    PubMed Central

    Suman, Vera J.; Goetz, Matthew; Haluska, Paul; Moynihan, Timothy; Nanda, Rita; Olopade, Olufunmilayo; Pluard, Timothy; Guo, Zhanfang; Chen, Helen X.; Erlichman, Charles; Ellis, Matthew J.; Fleming, Gini F.

    2015-01-01

    The mammalian target of rapamycin (mTOR) plays a critical role in promoting tumor cell growth and is frequently activated in breast cancer. In preclinical studies, the antitumor activity of mTOR inhibitors is attenuated by feedback up-regulation of AKT mediated in part by Insulin-like growth factor type 1 receptor (IGF-1R). We designed a phase I trial to determine the maximum-tolerated dose (MTD) and pharmacodynamic effects of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer refractory to standard therapies. A 3 + 3 Phase I design was chosen. Temsirolimus and Cixutumumab were administered intravenously on days 1, 8, 15, and 22 of a 4-week cycle. Of the 26 patients enrolled, four did not complete cycle 1 because of disease progression (n = 3) or comorbid condition (n = 1) and were replaced. The MTD was determined from the remaining 22 patients, aged 34–72 (median 48) years. Most patients (86 %) had estrogen receptor positive cancer. The median number of prior chemotherapy regimens for metastatic disease was 3. The MTD was determined to be Cixutumumab 4 mg/kg and temsirolimus 15 mg weekly. Dose-limiting toxicities (DLTs) included mucositis, neutropenia, and thrombocytopenia. Other adverse events included grade 1/2 fatigue, anemia, and hyperglycemia. No objective responses were observed, but four patients experienced stable disease that lasted for at least 4 months. Compared with baseline, there was a significant increase in the serum levels of IGF-1 (p < 0.001) and IGFBP-3 (p = 0.019) on day 2. Compared with day 2, there were significant increases in the serum levels of IGF-1 (p < 0.001), IGF-2 (p = 0.001), and IGFBP-3 (p = 0.019) on day 8. A phase II study in women with metastatic breast cancer is ongoing. PMID:23605083

  11. The effect of polymorphism in gene of insulin-like growth factor-I on the serum periparturient concentration in Holstein dairy cows.

    PubMed

    Mirzaei, A; Sharifiyazdi, H; Ahmadi, M R; Ararooti, T; Ghasrodashti, A Rowshan; Kadivar, A

    2012-10-01

    To investigate the relationship between polymorphism within the 5'-untranslated region (5'-UTR) of IGF-I gene and its periparturient concentration in Iranian Holstein dairy cows. Blood samples (5 mL, n = 37) were collected by caudal venipuncture from each animal into sample tubes containing the EDTA and DNA was extracted from blood. In order to measure IGF-I concentration the collection of blood samples (n = 111) was also done at 14 d before calving (prepartum), 25 and 45 d postpartum. We found evidence for a significant effect of C to T mutation in position 512 of IGF-I gene on its serum concentration in dairy cows in Iran. Cows with CC genotype had significantly higher concentration (Mean±SD) of IGF-I at 14 d prepartum (91.8±18.1) µg/L compared to those with TT genotype (73.3±14.4) µg/L (P=0.04). A significant trend (quadratic) was found for IGF-I concentration, as higher in CC cows compared to ones with TT genotype, during the 14 d before calving to 45 d postpartum (P=0.01). We concluded that C/T transition in the promoter region of IGF-I gene can influence the serum concentration of IGF-I in periparturient dairy cows.

  12. Reduced utility of serum IGF-1 levels in predicting retinopathy of prematurity reflects maternal ethnicity.

    PubMed

    Reddy, M Ashwin; Patel, Himanshu I; Karim, Shah M; Lock, Helen; Perry, Leslie; Bunce, Catey; Kempley, Steve; Sinha, Ajay K

    2016-04-01

    To validate known risk factors and identify a threshold level for serum insulin-like growth factor 1 (IGF-1) in the development of severe retinopathy of prematurity (ROP) in an ethnically diverse population at a tertiary neonatal unit, 2011-2013. A prospective cohort masked study was conducted. Serum IGF-1 levels at 31, 32 and 33 weeks were measured and risk factor data collected including gestational age (GA), birth weight (BW), absolute weight gain (AWG) and maternal ethnicity. The eventual ROP outcome was divided into two groups: minimal ROP (Stages 0 and 1) and severe ROP (Stage 2 or worse including Type 1 ROP). 36 patients were recruited: 14 had minimal ROP and 22 severe ROP. Significant differences between the groups were found in GA, BW, AWG and IGF-1 at 32 and 33 weeks. There was minimal rise in IGF-1 in Stage 2 patients and/or black patients (p=0.0013) between 32 and 33 weeks but no pragmatic threshold level of IGF-1 that could distinguish between minimal or severe ROP. There were significant differences in GA, BW, AWG and IGF-1 at 32 and 33 weeks between those babies with severe ROP and those with minimal ROP. However, there was no threshold level of IGF-1 at a time point between 31 and 33 weeks that can be used to exclude a large proportion of babies from screening. We also found ethnic differences in IGF-1 levels with infants born to black mothers having significantly lower IGF-1 levels at 32 and 33 weeks gestation. The determination of ROP risk using IGF-1 is a race-specific phenomenon. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast muscles of hypophysectomized rats

    NASA Technical Reports Server (NTRS)

    Grossman, E. J.; Grindeland, R. E.; Roy, R. R.; Talmadge, R. J.; Evans, J.; Edgerton, V. R.

    1997-01-01

    The effects of growth hormone (GH) or insulin-like growth factor I (IGF-I) with or without exercise (ladder climbing) in countering the effects of unweighting on fast muscles of hypophysectomized rats during 10 days of hindlimb suspension were determined. Compared with untreated suspended rats, muscle weights were 16-29% larger in GH-treated and 5-15% larger in IGF-I-treated suspended rats. Exercise alone had no effect on muscle weights. Compared with ambulatory control, the medial gastrocnemius weight in suspended, exercised rats was larger after GH treatment and maintained with IGF-I treatment. The combination of GH or IGF-I plus exercise in suspended rats resulted in an increase in size of each predominant fiber type, i.e., types I, I + IIa and IIa + IIx, in the medial gastrocnemius compared with untreated suspended rats. Normal ambulation or exercise during suspension increased the proportion of fibers expressing embryonic myosin heavy chain in hypophysectomized rats. The phenotype of the medial gastrocnemius was minimally affected by GH, IGF-I, and/or exercise. These results show that there is an IGF-I, as well as a GH, and exercise interactive effect in maintaining medial gastrocnemius fiber size in suspended hypophysectomized rats.

  14. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  15. Decreased Serum IGF-1/IGFBP-3 Molar Ratio is Associated with Executive Function Behaviors in Type 2 Diabetic Patients with Mild Cognitive Impairment.

    PubMed

    Huang, Rong; Wang, Pin; Han, Jing; Xia, Wenqing; Cai, Rongrong; Sun, Haixia; Sun, Jie; Wang, Shaohua

    2015-01-01

    Insulin-like growth factor (IGF)-1, through insulin/IGF-1 signaling pathway, is involved in the pathogenesis of type 2 diabetes mellitus (T2DM) and Alzheimer's disease. This study aimed to assess the association of serum IGF-1 and IGF binding protein (IGFBP)-3 levels with cognition status and to determine whether IGF-1 rs972936 polymorphism is associated with T2DM with mild cognitive impairment (MCI). A total of 150 T2DM patients, 75 satisfying the MCI diagnostic criteria and 75 exhibiting healthy cognition, were enrolled in this study. The cognitive function of the subjects was extensively assessed. Serum IGF-1 and IGFBP-3 levels were measured through enzyme-linked immunosorbent assay; IGF-1/IGFBP-3 molar ratio was calculated. Single nucleotide polymorphisms of the IGF-1-(rs972936) gene were analyzed. Serum IGF-1/IGFBP-3 molar ratio in MCI patients was significantly lower than that in the control group (p = 0.003). Significant negative correlations were found between IGF-1/IGFBP-3 molar ratio and Trail Making Test A and B (TMT-A and TMT-B) scores (p = 0.003; p <  0.001, respectively), which indicated executive function. Further multiple step-wise regression analysis revealed that the TMT-A or TMT-B score was significantly associated only with serum IGF-1/IGFBP-3 molar ratio (p = 0.016; p <  0.001, respectively). No significant difference was found in the genotype or allele distribution of IGF-1 rs972936 polymorphism between MCI and control groups. A low serum IGF-1/IGFBP-3 molar ratio is associated with the pathogenesis of MCI, particularly executive function in T2DM populations. Further investigation with a large population size should be conducted to confirm this observed association.

  16. IGF-II gene region polymorphisms related to exertional muscle damage.

    PubMed

    Devaney, Joseph M; Hoffman, Eric P; Gordish-Dressman, Heather; Kearns, Amy; Zambraski, Edward; Clarkson, Priscilla M

    2007-05-01

    We examined the association of a novel single-nucleotide polymorphism (SNP) in IGF-I (IGF-I -C1245T located in the promoter) and eight SNPs in the IGF-II gene region with indicators of muscle damage [strength loss, muscle soreness, and increases in circulating levels of creatine kinase (CK) and myoglobin] after eccentric exercise. We also examined two SNPs in the IGF binding protein-3 (IGFBP-3). The age, height, and body mass of the 151 subjects studied were 24.1 +/- 5.2 yr, 170.8 +/- 9.9 cm, and 73.3 +/- 17.0 kg, respectively. There were no significant associations of phenotypes with IGF-I. IGF-II SNP (G12655A, rs3213216) and IGFBP-3 SNP (A8618T, rs6670) were not significantly associated with any variable. The most significant finding in this study was that for men, IGF-II (C13790G, rs3213221), IGF-II (ApaI, G17200A, rs680), IGF-II antisense (IGF2AS) (G11711T, rs7924316), and IGFBP-3 (-C1592A, rs2132570) were significantly associated with muscle damage indicators. We found that men who were 1) homozygous for the rare IGF-II C13790G allele and rare allele for the ApaI (G17200A) SNP demonstrated the greatest strength loss immediately after exercise, greatest soreness, and highest postexercise serum CK activity; 2) homozygous wild type for IGF2AS (G11711T, rs7924316) had the greatest strength loss and most muscle soreness; and 3) homozygous wild type for the IGF2AS G11711T SNP showed the greatest strength loss, highest muscle soreness, and greater CK and myoglobin response to exercise. In women, fewer significant associations appeared.

  17. Effect of insulin-like growth factor-I during the early postnatal period in intrauterine growth-restricted rats.

    PubMed

    Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki

    2016-05-01

    Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.

  18. IGF and IGFBP as an index for discrimination between vitamin D supplementation responders and nonresponders in overweight Saudi subjects.

    PubMed

    Al-Daghri, Nasser M; Yakout, Sobhy M; Wani, Kaiser; Khattak, Malak Nawaz Khan; Garbis, Spiro D; Chrousos, George P; Al-Attas, Omar S; Alokail, Majed S

    2018-05-01

    Vitamin D deficiency is common in the Kingdom of Saudi Arabia (KSA). Therefore, it is significant to recognize which biochemical markers modulate serum 25 hydroxyvitamin D (25(OH)D) in response to vitamin D supplementation in such a population. Our aim was to study the correlation of insulin-like growth factor (IGF) and insulin growth factor binding protein (IGFBP) with serum 25(OH)D in response to vitamin D supplementation in a Saudi population. A total of 199 (89 males/110 females) vitamin D deficient subjects (25(OH)D level <50 nmol/L), aged 40.4 ± 11.4 years, were given vitamin D supplements (50,000 IU/mL every week) for the first 2 months, then twice a month for 2 months, followed by daily 1000 IU in the last 2 months. Fasting blood samples were taken at baseline and 6 months after the final dose of vitamin D. Serum 25(OH)D, IGF-1 and IGF-2, and IGFBPs 2-5 were measured. Vitamin D response was computed for all subjects as the difference in levels of serum 25(OH)D concentration at the end of 6 months compared to baseline. After intervention, serum 25(OH)D concentration significantly increased from 35.6 nmol/L (26.6-43.5) to 61.8 nmol/L (54.8-73.3) in responder subjects (P < .01) and from 35.1 nmol/L (21.2-58.2) to 38.3 nmol/L (25.5-48.3) in nonresponders (P = .13). Subjects with lower baseline serum IGF-II, IGFBP-2, and IGF-1/IGFBP-3 ratio are more sensitive to acute vitamin D status changes. IGF1 and IGF-1/IGFBP-3 ratio significantly increased in all subjects after 6 months (P = .01). Changes in 25(OH)D was significantly associated with changes in IGFBP-2 and IGF-1/IGFBP-3 ratio in responders only. This study proposes that changes in circulating IGF-I and IGFBP-3 are modulated by vitamin D supplementation and can be taken into consideration in investigations involving vitamin D correction. Moreover, increase in serum 25(OH)D and IGF-I/IGFBP-3 molar ratio are more sensitive markers for the response to vitamin D supplementation in

  19. Differential basal and exercise-induced IGF-I system responses to resistance vs. calisthenic-based military readiness training programs.

    PubMed

    Nindl, Bradley C; Alemany, Joseph A; Rarick, Kevin R; Eagle, Shawn R; Darnell, Mathew E; Allison, Katelyn F; Harman, Everett A

    2017-02-01

    The purpose of this study was to: 1) evaluate differential responses of the IGF-I system to either a calisthenic- or resistance exercise-based program and 2) determine if this chronic training altered the IGF-I system during an acute resistance exercise protocol. Thirty-two volunteers were randomly assigned into a resistance exercise-based training (RT) group (n=15, 27±5y, 174±6cm, 81±12kg) or a calisthenic-based training group (CT) (n=17, 29±5y, 179±8cm, 85±10kg) and all underwent 8weeks of exercise training (1.5h/d, 5d/wk). Basal blood was sampled pre- (Week 0), mid- (Week 4) and post-training (Week 8) and assayed for IGF-I system analytes. An acute resistance exercise protocol (AREP) was conducted preand post-training consisting of 6 sets of 10 repetitions in the squat with two minutes of rest in between sets and the IGF-I system analytes measured. A repeated measures ANOVA (p≤0.05) was used for statistical analysis. No interaction or within-subject effects were observed for basal total IGF-I, free IGF-I, or IGFBP-1. IGFBP-2 (pre; 578.6±295.7post-training; 14.3±1.9μg/mL; p=0.01). An interaction was observed for the RT group as IGFBP-3 increased from pre to mid (3462.4±216.4 vs. 3962.2±227.9ng/mL), but was not significant at the post-training time point (3770.3±228.7ng/mL). AREP caused all analytes except free IGF-I (40% decrease) to increase (17-27%; p=0.001) during exercise, returning to baseline concentration into recovery. Post-training, bioavailable IGF-I recovered more rapidly post-exercise. 8wks of chronic physical training resulted in increased basal IGFBP-2 and IGFBP-3, decreased ALS, increased pre-AREP free IGF-I and a more rapid free IGF-I recovery post-AREP. While total IGF-I was insensitive to chronic physical training, changes were observed with circulating IGFBPs and bioavailable IGF-I

  20. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    PubMed Central

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated

  1. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells.

    PubMed

    Avino, Silvia; De Marco, Paola; Cirillo, Francesca; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele

    2016-08-16

    Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.

  2. Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF-I treatment

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Linderman, J. K.; Grindeland, R. E.; Roy, R. R.; Mukku, V. R.; Edgerton, V. R.

    1998-01-01

    The purpose of this study was to determine the effects of functional overload (FO) combined with growth hormone/insulin-like growth factor I (GH/IGF-I) administration on myonuclear number and domain size in rat soleus muscle fibers. Adult female rats underwent bilateral ablation of the plantaris and gastrocnemius muscles and, after 7 days of recovery, were injected three times daily for 14 days with GH/IGF-I (1 mg/kg each; FO + GH/IGF-I group) or saline vehicle (FO group). Intact rats receiving saline vehicle served as controls (Con group). Muscle wet weight was 32% greater in the FO than in the Con group: 162 +/- 8 vs. 123 +/- 16 mg. Muscle weight in the FO + GH/IGF-I group (196 +/- 14 mg) was 59 and 21% larger than in the Con and FO groups, respectively. Mean soleus fiber cross-sectional area of the FO + GH/IGF-I group (2,826 +/- 445 microm2) was increased compared with the Con (2,044 +/- 108 microm2) and FO (2,267 +/- 301 microm2) groups. The difference in fiber size between the FO and Con groups was not significant. Mean myonuclear number increased in FO (187 +/- 15 myonuclei/mm) and FO + GH/IGF-I (217 +/- 23 myonuclei/mm) rats compared with Con (155 +/- 12 myonuclei/mm) rats, although the difference between FO and FO + GH/IGF-I animals was not significant. The mean cytoplasmic volume per myonucleus (myonuclear domain) was similar across groups. These results demonstrate that the larger mean muscle weight and fiber cross-sectional area occurred when FO was combined with GH/IGF-I administration and that myonuclear number increased concomitantly with fiber volume. Thus there appears to be some mechanism(s) that maintains the myonuclear domain when a fiber hypertrophies.

  3. Endocrine and Local IGF-I in the Bony Fish Immune System.

    PubMed

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  4. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    PubMed

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  5. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling

    PubMed Central

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian

    2018-01-01

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)−1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. PMID:29661273

  6. The association of plasma IGF-I with dietary, lifestyle, anthropometric, and early life factors in postmenopausal women.

    PubMed

    Bradbury, Kathryn E; Balkwill, Angela; Tipper, Sarah J; Crowe, Francesca L; Reeves, Gillian K; Green, Jane; Beral, Valerie; Key, Timothy J

    2015-04-01

    Higher circulating concentrations of insulin like growth factor (IGF-I) are associated with an increased risk of breast cancer. The objective of this study was to investigate associations between circulating IGF-I concentrations and dietary factors (intakes of protein, dairy protein, and alcohol), lifestyle factors (smoking and HT use), anthropometric indices (height and adiposity) and factors in early life (birth weight, having been breastfed, body size at age 10, and at age 20) in postmenopausal women in the UK. An analysis of plasma IGF-I concentrations (measured by immunoassay) in 1883 postmenopausal women. Multivariate analysis was used to examine correlates of plasma IGF-I concentrations. Women in the highest quintile of total protein and dairy protein intakes had, respectively, 7.6% and 5.5% higher plasma IGF-I concentrations than women in the lowest quintile (p trend <0.05 for both). Other factors significantly (p<0.05) associated with reduced IGF-I concentrations were: consuming 14 or more vs 3-7 alcoholic drinks per week (8.8% lower IGF-I); current vs non-current HT users (9.9% lower IGF-I); current use of oestrogen alone vs oestrogen+progestagen (16.9% lower IGF-I); obese vs overweight (6.8% lower IGF-I); and women who reported wearing larger vs smaller clothes sizes at age 20 (4.9% lower IGF-I). This study in post-menopausal women identified several potentially modifiable determinants of circulating IGF-I concentrations. There is now strong evidence from this and other studies that IGF-I concentrations are associated with dietary protein intakes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.

    PubMed

    Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio

    2017-01-01

    Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.

  8. Low circulating levels of IGF-1 in healthy adults are associated with reduced β-cell function, increased intramyocellular lipid, and enhanced fat utilization during fasting.

    PubMed

    Thankamony, Ajay; Capalbo, Donatella; Marcovecchio, M Loredana; Sleigh, Alison; Jørgensen, Sine Wanda; Hill, Nathan R; Mooslehner, Katrin; Yeo, Giles S H; Bluck, Les; Juul, Anders; Vaag, Allan; Dunger, David B

    2014-06-01

    Low serum IGF-1 levels have been linked to increased risk for development of type 2 diabetes. However, the physiological role of IGF-1 in glucose metabolism is not well characterized. Our objective was to explore glucose and lipid metabolism associated with variations in serum IGF-1 levels. IGF-1 levels were measured in healthy, nonobese male volunteers aged 18 to 50 years from a biobank (n = 275) to select 24 subjects (age 34.8 ± 8.9 years), 12 each in the lowest (low-IGF) and highest (high-IGF) quartiles of age-specific IGF-1 SD scores. Evaluations were undertaken after a 24-hour fast and included glucose and glycerol turnover rates using tracers, iv glucose tolerance test to estimate peripheral insulin sensitivity (IS) and acute insulin and C-peptide responses (indices of insulin secretion), magnetic resonance spectroscopy to measure intramyocellular lipids (IMCLs), calorimetry, and gene expression studies in a muscle biopsy. Acute insulin and C-peptide responses, IS, and glucose and glycerol rate of appearance (Ra) were evaluated. Fasting insulin and C-peptide levels and glucose Ra were reduced (all P < .05) in low-IGF compared with high-IGF subjects, indicating increased hepatic IS. Acute insulin and C-peptide responses were lower (both P < .05), but similar peripheral IS resulted in reduced insulin secretion adjusted for IS in low-IGF subjects (P = 0.044). Low-IGF subjects had higher overnight levels of free fatty acids (P = .028) and β-hydroxybutyrate (P = .014), increased accumulation of IMCLs in tibialis anterior muscle (P = .008), and a tendency for elevated fat oxidation rates (P = .058); however, glycerol Ra values were similar. Gene expression of the fatty acid metabolism pathway (P = .0014) was upregulated, whereas the GLUT1 gene was downregulated (P = .005) in the skeletal muscle in low-IGF subjects. These data suggest that serum IGF-1 levels could be an important marker of β-cell function and glucose as well as lipid metabolic responses during

  9. IGF-I and NEFA concentrations in fetal fluids of term pregnancy dogs.

    PubMed

    Meloni, Tea; Comin, Antonella; Rota, Alessandro; Peric, Tanja; Contri, Alberto; Veronesi, Maria Cristina

    2014-06-01

    Insulin-like growth factor-I (IGF-I) and non-esterified fatty acids (NEFA) play an essential role in fetal growth and development. To date, fetal fluids IGF-I and NEFA levels at term canine pregnancy are unknown and could be related to the neonatal development and breed size. For these reasons, the aims of the present study were as follows: (1) to evaluate IGF-I and NEFA concentrations in fetal fluids collected from normally developed and viable newborn puppies born at term of normal pregnancies; (2) to assess possible differences between IGF-I and NEFA levels in amniotic compared with allantoic fluid; (3) to detect possible relationship between breed body size and IGF-I and NEFA amniotic and allantoic concentrations; (4) to evaluate possible differences in IGF-I fetal fluids levels between male and female puppies; and (5) to assess possible correlations between the two hormones in each type of fluid. The study enrolled 25 pure breed bitches submitted to elective Cesarean section at term because of the high risk of dystocia or previous troubles at parturition. At surgery, amniotic and allantoic fluids were collected and assayed for IGF-I and NEFA. IGF-I and NEFA amounts in both amniotic and allantoic fluids of different breed size bitches (small: ≤10 kg; medium: 11-25 kg; large: 26-40 kg) were detected, as well as the effect of gender on IGF-I levels. On a total of 73 amniotic and 76 allantoic samples collected by normal, viable, and mature newborns, the mean IGF-I concentration was significantly higher in amniotic than in allantoic fluid in all three groups, but the amniotic IGF-I levels were significantly lower in small and medium size bitches when compared with large ones. No significant differences were found in allantoic IGF-I concentrations among size groups. A significant effect of the puppy gender on IGF-I content in both fetal fluids was not reported. Regarding NEFA, in all the three groups, the mean NEFA concentration did not significantly differ

  10. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells

    PubMed Central

    Cirillo, Francesca; Santolla, Maria Francesca; Francesco, Ernestina Marianna De; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele

    2016-01-01

    Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies. PMID:27384677

  11. IGF1R blockade with ganitumab results in systemic effects on the GH–IGF axis in mice

    PubMed Central

    Moody, Gordon; Beltran, Pedro J; Mitchell, Petia; Cajulis, Elaina; Chung, Young-Ah; Hwang, David; Kendall, Richard; Radinsky, Robert; Cohen, Pinchas; Calzone, Frank J

    2014-01-01

    Ganitumab is a fully human MAB to the human type 1 IGF receptor (IGF1R). Binding assays showed that ganitumab recognized murine IGF1R with sub-nanomolar affinity (KD=0.22 nM) and inhibited the interaction of murine IGF1R with IGF1 and IGF2. Ganitumab inhibited IGF1-induced activation of IGF1R in murine lungs and CT26 murine colon carcinoma cells and tumors. Addition of ganitumab to 5-fluorouracil resulted in enhanced inhibition of tumor growth in the CT26 model. Pharmacological intervention with ganitumab in naïve nude mice resulted in a number of physiological changes described previously in animals with targeted deletions of Igf1 and Igf1r, including inhibition of weight gain, reduced glucose tolerance and significant increase in serum levels of GH, IGF1 and IGFBP3. Flow cytometric analysis identified GR1/CD11b-positive cells as the highest IGF1R-expressing cells in murine peripheral blood. Administration of ganitumab led to a dose-dependent, reversible decrease in the number of peripheral neutrophils with no effect on erythrocytes or platelets. These findings indicate that acute IGF availability for its receptor plays a critical role in physiological growth, glucose metabolism and neutrophil physiology and support the presence of a pituitary IGF1R-driven negative feedback loop that tightly regulates serum IGF1 levels through Gh signaling. PMID:24492468

  12. Effects of GH/IGF-I Axis on Retinal Vascular Morphology: Retinal Vascular Characteristics in a Clinical Setting with Severe IGF-I Deficiency.

    PubMed

    Sekeroglu, Hande Taylan; Kadayıfcılar, Sibel; Kasım, Burcu; Arslan, Umut; Ozon, Alev

    2016-01-01

    The purpose of this study was to assess retinal vascular characteristics of patients with Laron syndrome (LS) as a genetic model of IGF-I deficiency before and after rhIGF1/IGFBP3 treatment and to compare them with healthy controls. A total of 28 subjects (11 LS, and 17 controls) were enrolled. Patients with LS received combined rhIGF1/rhIGFBP3 1-2 mg/kg/d in a single dose and digital fundus imaging was performed. The number of branching points and tortuosity of retinal vessels were studied. Pre- and post-treatment findings were compared with each other and with controls. The number of branching points was significantly lower in patients with LS in comparison to controls (12.73 ± 3.41, and 17.47 ± 5.82 respectively, p = 0.012). This difference persisted after treatment (12.09 ± 2.66 post-treatment LS versus controls, p = 0.017). Tortuosity indices of nasal arteries (NA) were significantly less in LS than that of controls (upper NA 1.07 ± 0.04 and 1.12 ± 0.06 respectively p = 0.022; lower NA 1.07 ± 0.03 and 1.13 ± 0.07 respectively, p = 0.004). This difference also persisted following treatment (p < 0.05). Remaining vessels did not differ in tortuosity index. There was no significant difference of tortuosity index and number of branching points before and after treatment in patients with LS. Retinal vascular development may be adversely affected in the setting of severe IGF-I deficiency confirming a major role for GH/IGF-I axis during retinal vascular development in humans antenatally. Resolution of IGF-I deficiency following birth using rhIGF1, however, may not reverse these changes, suggesting that IGF-I may be necessary but insufficient by itself for postnatal angiogenesis.

  13. Differential effects of hGH and IGF-I on body proportions.

    PubMed

    Laron, Zvi; Silbergeld, Aviva; Kauli, Rivka

    2012-07-01

    The differential growth effects of hGH and IGF-I on the upper/lower (U/L) body segment in relation to height (Ht) were analyzed in 15 patients with isolated Growth hormone deficiency (IGHD,:7M, 8F) mean age 5.0 +/- 3.2 (SD) years treated with hGH; 21 patients with multiple pituitary hormone deficiency including growth hormone (MPHD: 14M, 7F) aged 10.0 +/- 3.8, treated with hGH; 9 patients with Laron Syndrome (LS) (4M,5F) aged 6.9 +/- 5.6 years treated with IGF-I; 9 boys with intrauterine growth retardation (IUGR) aged 6.3 +/- 1.25 years treated by hGH; and 22 boys with idiopathic short stature (ISS) aged 8.0 +/- 1.55 years treated by hGH. The dose of hGH was 33 microg/kg/day, that of IGF-I 180-200 microg/kg/day. the U/L body segment ratio in IGHD patients decreased from 2.3 +/- 0.7 to 1.1 +/- 0.7 (p <0.001), and the Ht SDS increased from -4.9 +/- 1.3 to 2.3 +/- 1 (p < 0.001) following treatment. In MPHD patients the U/L body segment decreased from 1.1 +/- 1.1 to -0.6 +/- 1.0 (p < 0.001), and the Ht SDS increased from -3.3 +/- 1.4 to -2.5 +/- 1.0 (p < 0.009). In the LS group the U/L body segment ratio did not change with IGF-I treatment but Ht improved from -6.1 +/- 1.3 to -4.6 +/- 1.2 (p < 0.001), The differential growth response of the children with IUGR and with ISS resembled that of the children with LS. hGH and IGF-I act differentially on the spine and limbs.

  14. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling.

    PubMed

    Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D

    1996-04-19

    The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.

  15. Polymorphic CA repeats in the IGF-I gene and breast cancer.

    PubMed

    Yu, H; Li, B D; Smith, M; Shi, R; Berkel, H J; Kato, I

    2001-11-01

    Insulin-like growth factor (IGF)-I is a potent mitogen for breast cancer cells and may play a role in the disease. Although the involvement of IGF-I phenotype in breast cancer has been studied extensively, little is known about IGF-I genotype in relation to the disease. The IGF-I gene contains a polymorphic region composed of multiple cytosine-adenine dinucleotides (CA repeats). Studies of other genes indicate that the CA-repeat region in the promoter of a gene may affect transcription activity and that the length of the repeat is inversely correlated with transactivation. To examine if the IGF-I polymorphism is associated with breast cancer, we compared the length of CA repeats in the IGF-I gene between 53 breast cancer patients and 53 controls. Genomic DNA extracted from peripheral blood was used to determine the number of CA repeats through PCR amplification and DNA sequencing. Associations between CA repeats and breast cancer were assessed using unconditional logistic regression analysis. The results showed that the median number of CA repeats was 19, ranging from 15 to 23, and that compared to women without 19 CA repeats, women with 19 CA repeats were more likely to be breast cancer patients (OR = 2.87, 95%CI: 1.16-7.06) after adjusting for age, race, menopausal status, age at menopause, and alcohol use. The study also suggested possible synergistic interplay between IGF-I genotype and phenotype as women with 19 CA repeats and high plasma IGF-I had a much higher odds ratio for breast cancer (OR = 5.12, 95%CI: 1.42-18.5) than those with only one of the conditions. If our observations can be confirmed in larger studies, the findings will provide further evidence to support the role of IGF-I in breast cancer and the link between genetic polymorphism and cancer susceptibility.

  16. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    PubMed

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Serum Levels of IGF-1 and IGFBP-3 in Relation to Clinical and Pathobiological Aspects of Head and Neck Squamous Cell Carcinomas.

    PubMed

    Kalfert, David; Ludvikova, Marie; Topolcan, Ondrej; Celakovsky, Petr; Kucera, Radek; Windrichova, Jindra; Ludvik, Jaroslav; Skalova, Katerina; Kulda, Vlastimil; Pesta, Martin; Plzak, Jan

    2017-06-01

    Head and neck squamous cell carcinoma (HNSCC) includes tumors of various anatomical sites sharing multifactorial etiopathogenesis and generally dismal response to conventional treatment. The objective of this study was to determine the clinical significance of serum levels of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-binding protein-3 (IGFBP-3) in HNSCC. A total of 46 patients, with histologically-confirmed diagnosis of HNSCC (21 oropharyngeal, 21 laryngeal, and 4 hypopharyngeal cancers) were enrolled in this study. IGF-1 and IGFBP-3 serum levels were measured by an immunoradiometric assay using commercial kits. The adjustment of serum levels at 60 years of age was performed. Significant differences were found in IGF-1 serum concentrations between patients with p16 positive and p16 negative HNSCC (p=0.0062), with higher IGF-1 levels in p16 positive tumors, between low-grade and high-grade cancers (p=0.0323) only in larynx, with elevated IGF-1 concentrations associated with high-grade and between recurrent and non-recurrent HNSCC (p=0.0354), with lower IGF-1 levels in recurrent tumors. The conflicting results of this study may reflect some abnormality of IGF axis regulation in HNSCC, as well as the influence of other etiological factors (e.g. smoking, HPV infection). Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. [Effects of Gukang on bone-source alkaline phosphatase (BALP) and insulin-like growth factor-1 (IGF-1) in serum of spaying rats].

    PubMed

    Chen, Yi-fan; Huang, Hong-xing; Li, Ying

    2009-02-01

    To investigate the effects of Gukang on bone-source alkaline phosphatase (BALP) and insulin-like growth factor 1 (IGF-1) in serum of spaying rats and the mechanism of curative effect of Gukang on osteoporosis. Sixty-eight 6-month-old SD rats were chosen and randomly divided into blank control group (22 rats with sham operation) and operation group (46 rats with spaying operation). Three months after operation, 10 rats were randomly chosen from each group and tested with bone mineral density in order to determine models of osteoporosis made. After modeling, operation group was divided into 3 sub-groups: operation model group, estrogen group and Gukang group, 12 rars in each group. Twelve rats remained in blank control group. Every group were treated through intragastric administration therapy (volume 10 ml/kg). Blank control group and operation model group were irrigated with distilled water,estrogen group with estrogen and Gukang group with Gukang. Three months after treatment, serum of all groups were collected and tested for E2, BALP and IGF-1 with ELISA. The concentration of serum E2, BALP in estrogen group and Gukang group were higher than operation model group, there were significant difference (P < 0.05), but no significant difference in serum E2 between estrogen group and Gukang group (P > 0.05). The concentration of serum IGF-1 in Gukang group was higher than operation model group and blank control group, there were significant difference (P < 0.05). Gukang can increase the level of E2, BALP and IGF-1 in serum of spaying rats. Thus, it can indirectly promote reproduction of osteoblasts, inhibit activity of osteoclasts and promote bone formation.

  19. Circulating IGF-I and IGFBP3 Levels Control Human Colonic Stem Cell Function and Are Disrupted in Diabetic Enteropathy.

    PubMed

    D'Addio, Francesca; La Rosa, Stefano; Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Ben Nasr, Moufida; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo

    2015-10-01

    The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report that T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-I) and its binding protein 3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-I-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-I/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-I/IGFBP3 controls CoSCs and their dysfunction in DE. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The role of selenium in insulin-like growth factor I receptor (IGF-IR) expression and regulation of apoptosis in mouse osteoblasts.

    PubMed

    Ren, Gaixian; Ali, Tariq; Chen, Wei; Han, Dandan; Zhang, Limei; Gu, Xiaolong; Zhang, Shiyao; Ding, Laidi; Fanning, Séamus; Han, Bo

    2016-02-01

    Selenium (Se) is an essential component for animals and human beings. The chemoprotective role of Se, via the regulation of the cell cycle, stimulation of apoptosis and activation of some cytokines among others, is well known; however, the comprehensive effects of Se on the expression of IGF-IR and its regulation of apoptosis have not been investigated. Thus the aim of this study was to report on the effects that different concentrations of Se extert on body weight, blood serum IGF-IR levels and histopathology in mice; and on IGF-IR expression, proliferation and apoptosis in mouse osteoblasts. In vivo experiments showed a significant decrease in body weight, serum levels of IGF-IR and prominent toxicant effects on the liver, kidney, heart and spleen following the administration of defined concentrations of Se for 30 d. However, moderate levels (0.1 mg/kg) of Se gradually improved weight and serum IGF-IR. In vitro osteoblast experiments revealed that at concentrations of 5 × 10(-6) and 10(-5) mol/L Se, MTT activity decreased in comparison with control cells. Cell cycle, TEM and caspase-3 activity supported these observations including an increase in the sub-G1 phase and notable apoptosis in osteoblasts, along with a decrease in the expression of mRNA and protein levels of IGF-IR. Moreover, the MTT activity, mRNA and protein levels of IGF-IR in osteoblasts were decreased and caspase-3 activity was increased in siRNA groups as compared with non-siRNA groups. These data suggest that Se significantly affects IGF-IR expression, and that it contributes to the proliferation and regulation of apoptosis in osteoblasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Serum n-6 and n-9 Fatty Acids Correlate With Serum IGF-1 and Growth Up to 4 Months of Age in Healthy Infants.

    PubMed

    Kjellberg, Emma; Roswall, Josefine; Bergman, Stefan; Strandvik, Birgitta; Dahlgren, Jovanna

    2018-01-01

    The aim of this study was to study the relationship between insulin-like growth factor-1 (IGF-1), serum phospholipid fatty acids, and growth in healthy full-term newborns during infancy. Prospective observational study of a population-based Swedish cohort comprising 126 healthy, term infants investigating cord blood and serum at 2 days and 4 months of age for IGF-1 and phospholipid fatty acid profile and breast milk for fatty acids at 2 days and 4 months, compared with anthropometric measurements (standard deviation scores). At all time-points arachidonic acid (AA) was negatively associated with IGF-1. IGF-1 had positive associations with linoleic acid (LA) at 2 days and 4 months and mead acid (MA) showed positive associations in cord blood. Multiple regression analyses adjusted for maternal factors (body mass index, weight gain, smoking, education), sex, birth weight and feeding modality confirmed a negative association for the ratio AA/LA to IGF-1. MA in cord blood correlated to birth size. Changes in the ratios of n-6/n-3 and AA/docosahexaenoic acid from day 2 to 4 months together with infants' weight and feeding modality determined 55% of the variability of delta-IGF-1. Breast-fed infants at 4 months had lower IGF-1 correlating with lower LA and higher AA concentrations, which in girls correlated with lower weight gain from birth to 4 months of age. Our data showed interaction of n-6 fatty acids with IGF-1 during the first 4 months of life, and an association between MA and birth size when adjusted for confounding factors. Further follow-up may indicate whether these correlations are associated with later body composition.

  2. High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit.

    PubMed

    Henning, Paul C; Margolis, Lee M; McClung, James P; Young, Andrew J; Pasiakos, Stefan M

    2014-05-01

    Energy deficit (ED) diminishes fat-free mass (FFM) with concomitant reductions in anabolic hormone secretion. A modest increase in protein to recommended dietary allowance (RDA) levels during ED minimally attenuates decrements in insulin-like growth factor-I (IGF-I). The impact of dietary protein above the RDA on circulating anabolic hormones and their relationships with FFM in response to ED are not well described. Thirty-three adults were assigned diets providing protein at 0.8 (RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g/kg/d for 31days. Testosterone, sex-hormone binding globulin (SHBG) and IGF-I system components were assessed after a 10-day period of weight-maintenance (WM) and after a 21-day period of ED (40%) achieved by an increase in energy expenditure and decreased energy intake. Associations between the change in FFM and anabolic hormone levels were determined. As compared to WM and regardless of dietary protein intake, total and free testosterone, total IGF-I, and acid-labile subunit decreased (P<0.05), whereas SHBG and IGF binding proteins-1, -2, and -3 increased (P<0.05) during ED. There were no energy-by-protein interactions on any hormones or IGF-I system components measured. Changes in FFM in response to ED were negatively associated with acid-labile subunit (ALS) (r=-0.62, P<0.05) in 2×-RDA; however, no other relationships were observed. Consuming a high protein diet does not impact the androgenic and IGF-I system response to ED. These data suggest that the protective effects of high protein diets on FFM during ED are likely not influenced by anabolic hormone concentrations. Published by Elsevier Inc.

  3. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in nonobese men and women: a randomized clinical trial.

    PubMed

    Fontana, Luigi; Villareal, Dennis T; Das, Sai K; Smith, Steven R; Meydani, Simin N; Pittas, Anastassios G; Klein, Samuel; Bhapkar, Manjushri; Rochon, James; Ravussin, Eric; Holloszy, John O

    2016-02-01

    Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2-year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m(-2) ) young and middle-aged (20-50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2-years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP-1 and a 42% reduction in IGF-1:IGFBP-1 ratio at 2 years (P < 0.008), but did not change IGF-1 and IGF-1:IGFBP-3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF-AB and TGFβ-1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF-1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long-term CR in humans significantly and persistently increases serum IGFBP-1 concentration. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women

    PubMed Central

    Li, Hui; McCullough, Lauren E.; Qi, Ya-na; Li, Jia-yuan; Zhang, Jing; Miller, Erline; Yang, Chun-xia; Smith, Jennifer S.

    2014-01-01

    Background Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations. Methods From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels. Results Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L). Conclusions IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more. PMID:25285521

  5. Reappraisal of serum insulin-like growth factor-I (IGF-1) measurement in the detection of isolated and combined growth hormone deficiency (GHD) during the transition period.

    PubMed

    Boguszewski, Cesar L; Lacerda, Claudio Silva de; Lacerda Filho, Luiz de; Carvalho, Julienne A R de; Boguszewski, Margaret C S

    2013-12-01

    To evaluate the accuracy of serum IGF-1 in the detection of isolated (IGHD) or combined growth hormone deficiency (CGHD) at the transition phase. Forty nine patients with GHD during childhood [16 with IGHD (10 men) and 33 with CGHD (24 men); age 23.2 ± 3.5 yrs.] were submitted to an insulin tolerance test (ITT) with a GH peak < 5 µg/L used for the diagnosis of GHD at the transition phase. Pituitary function and IGF-1 measurements were evaluated in the basal sample of the ITT. Transition patients were reclassified as GH-sufficient (SGH; n = 12), IGHD (n = 7), or CGHD (n = 30). Five (31%) patients with IGHD and 32 (97%) with CGHD at childhood persisted with GHD at retesting. One patient with IGHD was reclassified as CGHD, whereas 3 patients with CGHD were reclassified as IGHD. Mean GH peak was 0.2 ± 0.3 µg/L in the CGHD, 1.3 ± 1.5 µg/L in the IGHD, and 18.1 ± 13.1 µg/L in the SGH group. Serum IGF-1 level was significantly higher in the SGH (272 ± 107 ng/mL) compared to IGHD (100.2 ± 110) and CGHD (48.7 ± 32.8) (p < 0.01). All patients reclassified as CGHD, 86% reclassified as IGHD, and 8.3% reclassified as SGH had low IGF-1 level, resulting in 97.3% sensitivity and 91.6% specificity in the detection of GHD at the transition period; the cutoff value of 110 ng/mL showed 94.5% sensitivity and 100% specificity. Mean IGF-1 values did not differ in IGHD or CGHD associated with one, two, three, or four additional pituitary deficiencies. IGF-1 measurement is accurate to replace ITT as initial diagnostic test for IGHD and CGHD detection at the transition phase.

  6. The IGF-I/IGFBP-3 system in gingival crevicular fluid and dependence on application of fixed force.

    PubMed

    Toia, M; Galazzo, R; Maioli, C; Granata, R; Scarlatti, F

    2005-12-01

    During application of orthodontic force on the tooth, various molecular parameters associated with tissue remodeling are changed. IGF-I is a regulatory protein produced during periodontal regeneration. IGF binding proteins-3 (IGFBP-3), a specific IGF-I binding protein, is the major regulatory factor of IGF-I activity. We tested the hypothesis that changes in the IGF-I/ IGFBP-3 system occur during fixed force application to the tooth and that these changes are detectable in the gingival crevicular fluid (GCF). IGFBP-3 and IGF-I secretion into gingival crevicular fluid (GCF) was analyzed by Western blotting and immunoradiometric assay (IRMA), respectively, in GCF of 6 healthy subjects just prior to and during orthodontics treatment using fixed appliances. We observed a significant time-dependent decrease of IGFBP-3 content in GCF during orthodontic treatment (4 h and 10 days). Reduction in levels of intact, glycosylated 47 kDa form of IGFBP-3 was associated with its degradation and the appearance of intermediate breakdown products. IGF-I levels were significantly increased 4 h after application of orthodontic force, while they were significantly reduced 10 days after the start of treatment. IGFBP-3 secretion into GCF and its molecular structure are modified by the fixed force of orthodontic treatment. Alterations in IGFBP-3 appear to be unrelated to the binding to IGF-I, suggesting an IGF-independent role of this binding protein in tooth movement.

  7. Challenge with 17alpha-ethinylestradiol (EE2) during early development persistently impairs growth, differentiation, and local expression of IGF-I and IGF-II in immune organs of tilapia.

    PubMed

    Shved, Natallia; Berishvili, Giorgi; Häusermann, Eliane; D'Cotta, Helena; Baroiller, Jean-François; Eppler, Elisabeth

    2009-03-01

    The enormous expansion of world-wide aquaculture has led to increasing interest in the regulation of fish immune system. Estrogen has recently been shown to inhibit the endocrine (liver-derived) and autocrine/paracrine local insulin-like growth factor-I system in fish. In order to address the potential actions of estrogen on the IGF system in immune organs, tilapia were fed with 17alpha-ethinylestradiol (EE2)-enriched food from 10 to 40 days post fertilization (DPF) to induce functional feminization, an approach commonly used in aquaculture. EE2-treated and control fish were sampled at 75 and 165 DPF. The expression levels of ER-alpha, IGF-I, IGF-II and growth hormone receptor (GH-R) mRNA in spleen and head kidney were determined by real-time PCR and the expressing sites of IGF-I mRNA identified by in situ hybridisation. Ratios of spleen length and weight to body length and weight were determined. At 165 DPF, the length (4.9% vs. 7.6%) and weight (0.084% vs. 0.132%) ratios were significantly lowered in EE2-treated fish and number and size of the melanomacrophage centres were considerably reduced. At 75 DPF, both in spleen and head kidney of EE2-treated fish the expression levels of IGF-I and IGF-II mRNA were markedly diminished. The suppression was more pronounced for IGF-I (spleen: -12.071-fold; head kidney: -8.413-fold) than for IGF-II (spleen: -4.102-fold; head kidney: -1.342-fold). In agreement, clearly fewer leucocytes and macrophages in head kidney and spleen of EE2-treated fish contained IGF-I mRNA as shown by in situ hybridisation. ER-alpha mRNA expression in spleen was increased at 75 DPF but unchanged in head kidney. GH-R gene expression showed a mild upregulation at 165 DPF in both tissues. Thus, exposure to EE2 during early development affected distinctly the IGF system in tilapia immune organs. It led to lasting impairment of spleen growth and differentiation that can be attributed to an interaction of EE2 with IGF-I and, less pronouncedly, IGF

  8. IGF-I, IGFBPs, and inflammatory cytokine responses during gender-integrated Israeli Army basic combat training.

    PubMed

    Nindl, Bradley C; Scofield, Dennis E; Strohbach, Cassandra A; Centi, Amanda J; Evans, Rachel K; Yanovich, Ran; Moran, Daniel S

    2012-07-01

    fat mass. The only significant (p ≤ 0.05) correlations observed for percent changes were in men between total IGF-I and V[Combining Dot Above]O₂max (r = 0.49) and body mass (r = -0.42) During gender-integrated Israeli Army BCT, men and women generally respond in a similar fashion with regard to blood measures (IGF-I system and inflammatory cytokines) and V[Combining Dot Above]O₂max. Initial fitness level only influenced the IGF-I response to training in women. Although the training-induced changes in total IGF-I (increase), IGFBP-2 (decrease), and TNF-α (decrease) are all indicative of an enhanced circulating anabolic milieu, only total IGF-I for the men was correlated with body composition and fitness improvements.

  9. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    PubMed

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  10. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer.

    PubMed

    Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K

    2017-05-02

    Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.

  11. Effects of 2-year calorie restriction on circulating levels of IGF-1, IGF-binding proteins and cortisol in non-obese men and women: a randomized clinical trial

    USDA-ARS?s Scientific Manuscript database

    Young-onset calorie restriction (CR) in rodents decreases serum IGF-1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anti-cancer and anti-aging effects. However, little is known on the effects of CR on the IGF-1 system and c...

  12. Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth.

    PubMed

    Fiorotto, Marta L; Schwartz, Robert J; Delaughter, M Craig

    2003-01-01

    Adult transgenic mice with muscle-specific overexpression of insulin-like growth factor (IGF)-I have enlarged skeletal muscles. In this study, we; 1) characterized the development of muscle hypertrophy with respect to fiber type, age, and sex; 2) determined the primary anabolic process responsible for development of hypertrophy; and 3) identified secondary effects of muscle hypertrophy on body composition. Transgene expression increased with age and was present only in fibers expressing type IIB fast myosin heavy chain. Muscle masses were greater by 5 wk of age, and by 10 wk of age the differences were maximal despite continued transgene expression. Total DNA and RNA contents of the gastrocnemius muscle were greater for transgenic mice than for nontransgenic littermates. The differences were maximal by 5 wk of age and preceded the increase in protein mass. The accelerated protein deposition ceased when the protein/DNA ratio attained the same value as in nontransgenic controls. Despite localization of IGF-I expression to muscle without changes in plasma IGF-I concentrations, genotype also modified the normal age and sex effects on fat deposition and organ growth. Thus, enhanced DNA accretion by IGF-I was primarily responsible for stimulating muscle growth. In turn, secondary effects on body composition were incurred that likely reflect the impact of muscle mass on whole body metabolism.

  13. Activation of the GH/IGF-1 axis by CJC-1295, a long-acting GHRH analog, results in serum protein profile changes in normal adult subjects.

    PubMed

    Sackmann-Sala, Lucila; Ding, Juan; Frohman, Lawrence A; Kopchick, John J

    2009-12-01

    To identify biomarkers of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) action in human serum. The search for new markers of GH activity has received extensive attention given that the current biomarkers (IGF-1, IGFBP-3 and collagen peptides) show substantial variability in the population, and are not reliably predictive of either the physiologic effects of GH therapy or the detection of GH abuse by athletes. GH releasing hormone (GHRH) is a polypeptide synthesized in the hypothalamus that binds to receptors on pituitary somatotropes to promote the synthesis and release of GH. Serum GH and IGF-1 levels have been shown to increase with administration of GHRH or CJC-1295, a long-acting GHRH analog. Sera from 11 healthy young adult men before and one week after CJC-1295 injection were analyzed by two-dimensional gel electrophoresis for proteomic changes. Serum proteins displaying significant changes before and after treatment were subsequently identified using mass spectrometry. In addition, correlations between these proteins and GH or IGF-1 levels were evaluated. Two protein spots that displayed decreased intensities after treatment were identified as an apolipoprotein A1 isoform and a transthyretin isoform. Three protein spots upregulated by CJC-1295 treatment included beta-hemoglobin, a C-terminal fragment of albumin, and a mix of an immunoglobulin fragment and another C-terminal albumin fragment. A linear relationship was found between the spot containing immunoglobulin and albumin fragments and IGF-1 levels. Although the molecular mechanisms linking the identified proteins to GH and IGF-1 biological activity remain to be clarified, the results suggest that they represent potential biomarkers of GH and/or IGF-1 action.

  14. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetalmore » bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.« less

  15. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  16. Serum sclerostin decreases following 12months of resistance- or jump-training in men with low bone mass.

    PubMed

    Hinton, Pamela S; Nigh, Peggy; Thyfault, John

    2017-03-01

    We previously reported that 12months of resistance training (RT, 2×/wk, N=19) or jump training (JUMP, 3×/wk, N=19) increased whole body and lumbar spine BMD and increased serum bone formation markers relative to resorption in physically active (≥4h/wk) men (mean age: 44±2y; median: 44y) with osteopenia of the hip or spine. The purpose of this secondary analysis was to examine the effects of the RT or JUMP intervention on potential endocrine mediators of the exercise effects on bone, specifically IGF-I, PTH and sclerostin. Fasting blood samples were collected after a 24-h period of no exercise at baseline and after 12months of RT or JUMP. IGF-I, PTH and sclerostin were measured in serum by ELISA. The effects of RT or JUMP on IGF-I, PTH and sclerostin were evaluated using 2×2 repeated measures ANOVA (time, group). This study was conducted in accordance with the Declaration of Helsinki and was approved by the University of Missouri IRB. Sclerostin concentrations in serum significantly decreased and IGF-I significantly increased after 12months of RT or JUMP; while PTH remained unchanged. The beneficial effects of long-term, progressive-intensity RT or JUMP on BMD in moderately active men with low bone mass are associated with decreased sclerostin and increased IGF-I. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Kangaroo IGF-II is structurally and functionally similar to the human [Ser29]-IGF-II variant.

    PubMed

    Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z

    1999-06-01

    Kangaroo IGF-II has been purified from western grey kangaroo (Macropus fuliginosus) serum and characterised in a number of in vitro assays. In addition, the complete cDNA sequence of mature IGF-II has been obtained by reverse-transcription polymerase chain reaction. Comparison of the kangaroo IGF-II cDNA sequence with known IGF-II sequences from other species revealed that it is very similar to the human variant, [Ser29]-hIGF-II. Both the variant and kangaroo IGF-II contain an insert of nine nucleotides that encode the amino acids Leu-Pro-Gly at the junction of the B and C domains of the mature protein. The deduced kangaroo IGF-II protein sequence also contains three other amino acid changes that are not observed in human IGF-II. These amino acid differences share similarities with the changes described in many of the IGF-IIs reported for non-mammalian species. Characterisation of human IGF-II, kangaroo IGF-II, chicken IGF-II and [Ser29]-hIGF-II in a number of in vitro assays revealed that all four proteins are functionally very similar. No significant differences were observed in the ability of the IGF-IIs to bind to the bovine IGF-II/cation-independent mannose 6-phosphate receptor or to stimulate protein synthesis in rat L6 myoblasts. However, differences were observed in their abilities to bind to IGF-binding proteins (IGFBPs) present in human serum. Kangaroo, chicken and [Ser29]-hIGF-II had lower apparent affinities for human IGFBPs than did human IGF-II. Thus, it appears that the major circulating form of IGF-II in the kangaroo and a minor form of IGF-II found in human serum are structurally and functionally very similar. This suggests that the splice site that generates both the variant and major form of human IGF-II must have evolved after the divergence of marsupials from placental mammals.

  18. Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells.

    PubMed

    Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.

  19. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis.

    PubMed

    Parvaneh Tafreshi, Azita; Talebi, Farideh; Ghorbani, Samira; Bernard, Claude; Noorbakhsh, Farshid

    2017-10-01

    There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE. © 2017 Wiley Periodicals, Inc.

  20. Gut microbiota induce IGF-1 and promote bone formation and growth.

    PubMed

    Yan, Jing; Herzog, Jeremy W; Tsang, Kelly; Brennan, Caitlin A; Bower, Maureen A; Garrett, Wendy S; Sartor, Balfour R; Aliprantis, Antonios O; Charles, Julia F

    2016-11-22

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.

  1. Gut microbiota induce IGF-1 and promote bone formation and growth

    PubMed Central

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  2. Growth hormone, IGF-I and insulin and their abuse in sport

    PubMed Central

    Holt, R I G; Sönksen, P H

    2008-01-01

    There is widespread anecdotal evidence that growth hormone (GH) is used by athletes for its anabolic and lipolytic properties. Although there is little evidence that GH improves performance in young healthy adults, randomized controlled studies carried out so far are inadequately designed to demonstrate this, not least because GH is often abused in combination with anabolic steroids and insulin. Some of the anabolic actions of GH are mediated through the generation of insulin-like growth factor-I (IGF-I), and it is believed that this is also being abused. Athletes are exposing themselves to potential harm by self-administering large doses of GH, IGF-I and insulin. The effects of excess GH are exemplified by acromegaly. IGF-I may mediate and cause some of these changes, but in addition, IGF-I may lead to profound hypoglycaemia, as indeed can insulin. Although GH is on the World Anti-doping Agency list of banned substances, the detection of abuse with GH is challenging. Two approaches have been developed to detect GH abuse. The first is based on an assessment of the effect of exogenous recombinant human GH on pituitary GH isoforms and the second is based on the measurement of markers of GH action. As a result, GH abuse can be detected with reasonable sensitivity and specificity. Testing for IGF-I and insulin is in its infancy, but the measurement of markers of GH action may also detect IGF-I usage, while urine mass spectroscopy has begun to identify the use of insulin analogues. PMID:18376417

  3. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    PubMed

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  4. Addition of IGF-I to storage-cooled boar semen and its effect on sperm quality.

    PubMed

    Silva, D M; Zangeronimo, M G; Murgas, L D S; Rocha, L G P; Chaves, B R; Pereira, B A; Cunha, E C P

    2011-12-01

    To evaluate in vitro IGF-I treatment during warming of storage-cooled boar semen and its effect on seminal quality parameters and metabolism in spermatic cells. Semen samples (n=7) warmed after stored at 15°C for 24 or 72h were divided into four equal parts. Different IGF-I concentrations (0, 50, 100 and 150ng/mL) were added to the semen samples. The samples were incubated at 37°C, and assessments were made after 0 and 120min of incubation. For semen samples that were stored for 24h, the addition of IGF-I had no effect (p>0.05) on the total motility and intensity of movements by spermatic cells, osmotic resistance, live:dead cell ratio or total spermatic abnormalities. However, incubation with 150ng/mL IGF-I did decrease glutathione peroxidase activity (p<0.05) and reduce lipid peroxidation after 120min of incubation. For semen samples stored for 72h and incubated with IGF-I for 120min, there was a linear relationship between the IGF-I concentration and the live:dead ratio (p<0.05). There was a quadratic relationship between the IGF-I concentration and both the osmotic resistance (peak results at IGF-I=62.4ng/mL) and glutathione peroxidase activity (peak results at IGF-I=77.8ng/mL). There was no effect on lipid peroxidation (p>0.05) after 120min of incubation. Addition of IGF-I also decreased fructose utilization by spermatic cells regardless of semen storage time (p<0.05). This study suggests that IGF-I may be beneficial to semen stored for longer periods of time. Adding 150ng/mL IGF-I improved the quality of semen stored for 24h, and adding 78ng/mL IGF-I improved the quality of semen stored for 72h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2016-09-01

    There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.

  6. Bone Growth, Mechanical Stimulus and IGF-I

    DTIC Science & Technology

    2005-10-01

    children, stress fractures in military recruits, and osteoporotic fractures in elderly women. Insulin-like growth factor-I (IGF-I), a major regulator...subjects completed the intervention arm of the study and returned for the short-term post-intervention appointment, which included anthropometrie

  7. IGF-II Promotes Stemness of Neural Restricted Precursors

    PubMed Central

    Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.

    2016-01-01

    Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020

  8. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process.

    PubMed

    McCarty, Mark F

    2003-06-01

    A considerable amount of evidence is consistent with the proposition that systemic IGF-I activity acts as pacesetter in the aging process. A reduction in IGF-I activity is the common characteristic of rodents whose maximal lifespan has been increased by a wide range of genetic or dietary measures, including caloric restriction. The lifespans of breeds of dogs and strains of rats tend to be inversely proportional to their mature weight and IGF-I levels. The link between IGF-I and aging appears to be evolutionarily conserved; in worms and flies, lifespan is increased by reduction-of-function mutations in signaling intermediates homologous to those which mediate insulin/IGF-I activity in mammals. The fact that an increase in IGF-I activity plays a key role in the induction of sexual maturity, is consistent with a broader role for-IGF-I in aging regulation. If down-regulation of IGF-I activity could indeed slow aging in humans, a range of practical measures for achieving this may be at hand. These include a low-fat, whole-food, vegan diet, exercise training, soluble fiber, insulin sensitizers, appetite suppressants, and agents such as flax lignans, oral estrogen, or tamoxifen that decrease hepatic synthesis of IGF-I. Many of these measures would also be expected to decrease risk for common age-related diseases. Regimens combining several of these approaches might have a sufficient impact on IGF-I activity to achieve a useful retardation of the aging process. However, in light of the fact that IGF-I promotes endothelial production of nitric oxide and may be of especial importance to cerebrovascular health, additional measures for stroke prevention-most notably salt restriction-may be advisable when attempting to down-regulate IGF-I activity as a pro-longevity strategy.

  9. Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice

    PubMed Central

    Fiore, Esteban J.; Bayo, Juan M.; Garcia, Mariana G.; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M. Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A.; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B.

    2015-01-01

    Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis. PMID:25315017

  10. Insulin-like growth factor I enhances the expression of aromatase P450 by inhibiting autophagy.

    PubMed

    Zhang, Bo; Shozu, Makio; Okada, Masahiko; Ishikawa, Hiroshi; Kasai, Tadayuki; Murakami, Kouich; Nomura, Kazuhito; Harada, Nobuhiro; Inoue, Masaki

    2010-10-01

    Aromatase, a key enzyme of estrogen biosynthesis, is transcriptionally regulated by many growth factors. IGF-I enhances aromatase activity in a variety of cells, but the mechanism of action has not been determined. We herein report our finding of a novel mechanism of action for IGF-I. IGF-I enhanced the dexamethasone (DEX)-induced aromatase activity by 30% in serum-starved THP-1 cells. The increase was associated with a corresponding increase in the level of aromatase protein but not with any change in the mRNA level. Metabolic labeling experiments revealed that IGF-I inhibited the degradation of aromatase. We identified pepstatin A as the most effective inhibitor of aromatase degradation by in vitro assay. Using a nontoxic concentration of pepstatin A, we examined IGF-I's action on aromatase distribution in microsomes and lysosomes. In the presence of pepstatin A, DEX caused an increase in the amount of aromatase in both microsomes and lysosomes, and IGF-I attenuated the DEX-induced accumulation of aromatase in lysosomes and, conversely, enhanced its accumulation in the microsomes. The addition of serum abolished the IGF-I-induced changes. The transport from microsome to lysosome was fluorescently traced in cells using a recombinant aromatase. IGF-I selectively reduced the aromatase signal in the lysosomes. Finally, we observed that IGF-I enhanced the aromatase activity by 50% as early as 1 h after treatment; furthermore, rapamycin, an enhancer of autophagy, completely negated the effect of IGF-I on the enzyme. These results indicate that IGF-I enhances aromatase by the inhibition of autophagy.

  11. Growth hormone mediates pubertal skeletal development independent of hepatic IGF-1 production.

    PubMed

    Courtland, Hayden-William; Sun, Hui; Beth-On, Mordechay; Wu, Yingjie; Elis, Sebastien; Rosen, Clifford J; Yakar, Shoshana

    2011-04-01

    Deficiencies in either growth hormone (GH) or insulin-like growth factor 1 (IGF-1) are associated with reductions in bone size during growth in humans and animal models. Liver-specific IGF-1-deficient (LID) mice, which have 75% reductions in serum IGF-1, were created previously to separate the effects of endocrine (serum) IGF-1 from autocrine/paracrine IGF-1. However, LID mice also have two- to threefold increases in GH, and this may contribute to the observed pubertal skeletal phenotype. To clarify the role of GH in skeletal development under conditions of significantly reduced serum IGF-1 levels (but normal tissue IGF-1 levels), we studied the skeletal response of male LID and control mice to GH inhibition by pegvisomant from 4 to 8 weeks of age. Treatment of LID mice with pegvisomant resulted in significant reductions in body weight, femur length (Le), and femur total area (Tt.Ar), as well as further reductions in serum IGF-1 levels by 8 weeks of age, compared with the mean values of vehicle-treated LID mice. Reductions in both Tt.Ar and Le were proportional after treatment with pegvisomant. On the other hand, the relative amount of cortical tissue formed (RCA) in LID mice treated with pegvisomant was significantly less than that in both vehicle-treated LID and control mice, indicating that antagonizing GH action, either directly (through GH receptor signaling inhibition) or indirectly (through further reductions in serum/tissue IGF-1 levels), results in disproportionate reductions in the amount of cortical bone formed. This resulted in bones with significantly reduced mechanical properties (femoral whole-bone stiffness and work to failure were markedly decreased), suggesting that compensatory increases of GH in states of IGF-1 deficiency (LID mice) act to protect against a severe inhibition of bone modeling during growth, which otherwise would result in bones that are too weak for normal and/or extreme loading conditions. Copyright © 2011 American Society for

  12. Human antral fluid IGF-I and oocyte maturity: effect of stimulation therapy.

    PubMed

    Roussi, M; Royère, M; GuillonueauM; Lansac, J; Muh, J P

    1989-07-01

    Studies in animals have highlighted a possible role for growth factors, particularly IGF-I on cellular replication and cytodifferentiation in the ovary. At this time, few studies have been performed about IGF-I in the human ovary. From 38 women undergoing in Vitro Fertilization 293 antral antral fluids were collected and assessed for steroids (estradiol and progesterone), FSH and IGF-I. Two induction treatments were compared: clomiphene citrate hMG (group A,N = 15), triptoreline/hMG (group B,N = 23). We also studied relationships between quantitative parameters and oocyte collection or oocyte corona cumulus complex maturity, In group B, the highest antral estradiol levels were found in follicles yielding an oocyte (p less than 0.05). Concerning antral progesterone, higher levels were observed in follicles collected from group A than follicles collected from group B (p less than 0.05): for this parameter, the highest levels were observed when an oocyte was harvested, whatever the treatment (p less than 0.05). Highest antral FSH levels were observed in group B (p less than 0.05). IGF-I levels were higher in follicles collected from group B than in follicles collected from group A (p less than 0.05) and antral IGF-I levels differed between mature and immature oocyte corona cumulus complex in group B (p less than 0.05). These results, which are in keeping with studies about biological action of IGF-I in animal or human follicles or granulosa cells, led us to hypothesize a role for IGF-I in human follicular recruitment and maturation, a role that possible is enhanced during GnRH analogue and gonadotropin therapy.

  13. IGF-I slightly improves nuclear maturation and cleavage rate of bovine oocytes exposed to acute heat shock in vitro.

    PubMed

    Meiyu, Qi; Liu, Di; Roth, Zvi

    2015-08-01

    An in vitro model of embryo production was used to examine the effects of insulin-like growth factor (IGF)-I on maturation and developmental competence of oocytes exposed to heat shock. Cumulus-oocyte complexes were matured at 38.5°C or exposed to acute heat shock (HS; 41.5°C), with or without 100 ng/ml IGF-I, for 22 h through in vitro maturation. The experimental groups were control (C), C + IGF-I, HS, and HS + IGF-I. Oocytes were fertilized at the end of maturation, and the proportion of cleaved embryos was recorded 44 h later. HS during maturation increased the proportion of TUNEL-positive oocytes (P < 0.05). HS did not have any effect on cortical granule translocation but impaired resumption of meiosis, expressed as a decreased proportion of oocytes with nuclei in metaphase I (P < 0.05) and metaphase II (MII; P < 0.05). HS decreased the proportion of oocytes that cleaved (P < 0.05), in particular those oocytes that further developed to 4-cell-stage embryos (P < 0.05). IGF-I alleviated, to some extent, the deleterious effects of HS on the oocytes as reflected by a reduced proportion of TUNEL-positive oocytes (P < 0.03). While not significant, IGF-I tended to increase the proportion of MII-stage oocytes (P < 0.08) and 4-cell-stage cleaved embryos (P < 0.06). Further examination is required to explore whether IGF-I also affects the developmental competence of oocytes exposed to HS.

  14. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer systemmore » in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.« less

  15. Side effects resulting from the use of growth hormone and insulin-like growth factor-I as combined therapy to frail elderly patients.

    PubMed

    Sullivan, D H; Carter, W J; Warr, W R; Williams, L H

    1998-05-01

    The objective of this study was to examine the relationship between serum IGF-I concentration and the incidence of side effects of therapy with recombinant human growth hormone (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I). Thirteen high-risk, undernourished elderly males were started on a 15-day course of rhGH and rhIGF-I by subcutaneous injection. The dose of rhGH was held constant at .0125 mg/kg/day, whereas the dose of rhIGF-I was increased in a stepwise fashion from 10 micrograms/kg to the targeted dose of 40 micrograms/kg twice a day. Nine subjects completed the protocol and reached the full target dose of both hormones. Fluid retention, gynecomastia, and orthostatic hypotension were the most common complications. The hormone injections increased the serum concentration of IGF-I (from 72.7 +/- 40.9 to 483.7 +/- 251.4 eta g/ml, p = .001) and IGFBP-3 (from 1.82 +/- 0.66 to 2.72 +/- 1.18 mg/L, p = .012), and decreased serum albumin (from 34.3 +/- 5.5 to 31.4 +/- 4.6 g/L, p = .009). The magnitude of the initial increase in the serum IGF-I concentration was a powerful risk factor for severe orthostatic hypotension, diffuse myalgias, and drug-induced hepatitis. There was no association between the serum IGF-I concentration and fluid retention or gynecomastia. Treatment of the undernourished frail elderly with the anabolic agents rhGH and rhIGF-I at the specified dosages may produce undesirable side effects including fluid retention, gynecomastia, and orthostatic hypotension. Although these agents hold therapeutic promise, they must be used with caution in this high-risk population.

  16. Nandrolone and stanozolol induce Leydig cell tumor proliferation through an estrogen-dependent mechanism involving IGF-I system.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Zolea, Fabiana; De Luca, Arianna; Lanzino, Marilena; Catalano, Stefania; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-01

    Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin-like growth factor-I (IGF-I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF-I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF-I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)-dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS-dependent aromatase expression. Up-regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS- and AAS + IGF-induced cell proliferation, confirmed a role for estrogens in AAS-dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS and testicular cancer. Copyright © 2011 Wiley Periodicals, Inc.

  17. The effect of HMB ingestion on the IGF-I and IGF binding protein response to high intensity military training.

    PubMed

    Redd, Michael J; Hoffman, Jay R; Gepner, Yftach; Stout, Jeffrey R; Hoffman, Mattan W; Ben-Dov, Daniel; Funk, Shany; Church, David D; Avital, Guy; Chen, Yacov; Frankel, Hagai; Ostfeld, Ishay

    2017-02-01

    Insulin-like growth factor-I (IGF-I) is a metabolic and anabolic biomarker that has been proposed to reflect physiological adaptations resulting from multistressor environments. The bioactivity of IGF-I is regulated by seven different insulin-like growth factor binding proteins (IGFBPs) which act not only as carriers of IGF-1, but also function as a modulator of IGF-I availability and activity. Supplementing with β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance physiological outcomes associated with intense training, and has been reported to augment the IGF-1 response. The purpose of this study was to examine the effect of 23days of HMB supplementation on circulating levels of IGF-I and IGFBPs in combat soldiers during highly intense military training. Thirteen male soldiers from an elite infantry unit volunteered to participate in this double-blind, parallel design study. Soldiers were provided 3g·day -1 of either HMB (n=6) or placebo (PL; n=7). During the study soldiers performed advanced military training with periods of restricted sleep and severe environmental stressors. Blood samples were obtained prior to (PRE) and approximately 18h following the final supplement consumption (POST). No significant differences were observed for circulating IGF-1 concentrations between HMB and PL (p=0.568). In addition, no differences were seen between the groups for IGFBP-1 (p=1.000), IGFBP-2 (p=0.855), IGFBP-3 (p=0.520), IGFBP-4 (p=0.103), IGFBP-5 (p=0.886), or IGFBP-6 (p=0.775). A significant difference was noted between HMB (169.9±23.0ng·ml -1 ) and PL (207.2±28.0ng·ml -1 ) for IGFBP-7 at POST (p=0.042). Although the results of this study do not support the influence of HMB supplementation on circulating concentrations of IGF-1 or IGFBPs1-6 during high intensity military training, it does present initial evidence that it may lower circulating IGFBP-7 concentrations. This may provide some indication of a reduced stress response, but further investigation on

  18. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy

    PubMed Central

    Li, Chao; Vu, Kent; Hazelgrove, Krystina

    2015-01-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. PMID:26428636

  19. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    PubMed

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  20. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin.

    PubMed

    Villa-Osaba, Alicia; Gahete, Manuel D; Cordoba-Chacon, José; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-10-15

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.

    PubMed

    Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle

    2011-11-01

    To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  2. IGF-I binding and receptor signal transduction in primary cell culture of muscle cells of gilthead sea bream: changes throughout in vitro development.

    PubMed

    Montserrat, N; Sánchez-Gurmaches, J; García de la Serrana, D; Navarro, M I; Gutiérrez, J

    2007-12-01

    We examined the possibility of culturing muscle cells of gilthead sea bream in vitro and assessed variations in insulin-like growth factor-I (IGF-I) binding during myocyte development. The viability of the cell culture was determined by fluorescence-activated cell-sorting analysis, which showed that the percentage of dead cells decreased with cell differentiation. The intracellular reduction of MTT into formazan pigment was preferentially carried out as cells differentiated (from day 4) indicating an increase in metabolic activity. IGF-I-binding assays demonstrated that the number of receptors increased from 190 +/- 0.09 fmol/mg protein in myocytes at day 5 to 360 +/- 0.09 fmol/mg protein in myotubes at day 12. The affinity of IGF-I receptors did not change significantly during cell development (from 0.89 +/- 0.09 to 0.98 +/- 0.09 nM). The activation of various kinase (ERK 1/2 MAPK and Akt/PKB) proteins by IGFs and insulin was studied by means of Western blot analysis. Levels of MAPK-P increased after IGF and insulin treatment during the first stages of cell culture, with a low response being observed at day 15, whereas IGFs displayed a stimulatory effect on Akt-P throughout the cell culture period, even on day 15. This study thus shows that (1) gilthead sea bream myocytes can be cultured, (2) they express functional IGF-I receptors that increase in number as they differentiate in vitro; (3) IGF signalling transduction through IGF-I receptors stimulates the MAPK and Akt pathways, depending on the development stage of the muscle cell culture.

  3. Effect of the addition of IGF-I and vitamin E to stored boar semen.

    PubMed

    Mendez, M F B; Zangeronimo, M G; Rocha, L G P; Faria, B G; Pereira, B A; Fernandes, C D; Chaves, B R; Murgas, L D S; Sousa, R V

    2013-05-01

    The objective of this study was to evaluate the addition of IGF-I to pig insemination doses stored at 15°C, in conjunction with the addition of different amounts of vitamin E (α-tocopherol). Semen samples (n = 12) from four boars were treated by the addition of different concentrations of vitamin E, ranging up to 400 μg/ml. Immediately after processing and after the doses had been stored at 15°C for 24 or 72 h, samples were warmed at 37°C and 30 ng/ml of IGF-I was added. The assessments were made after 10 and 120 min of IGF-I addition. There was a minor effect of the vitamin E added before cooling and IGF-I added after storage on sperm quality. The addition of 400 μg/ml of vitamin E to diluted semen reduced (P < 0.01) the malondialdehyde (MDA) production in boar semen stored at 15°C for 72 h, regardless of the addition of IGF-I as additive during a 120 min incubation period at 37°C. In these conditions, IGF-I also reduced (P < 0.05) the MDA production in semen samples without addition of vitamin E. IGF-I in the presence of vitamin E reduced (P = 0.03) the glucose intake in freshly diluted boar semen samples before cooling. It was concluded that the addition of 400 μg/ml of vitamin E reduces the MDA production in boar semen stored at 15°C for 72 h, regardless of the presence of IGF-I additive. The addition of IGF-I in doses stored for 72 h with vitamin E ensures higher sperm motility after 120 min of incubation at 37°C.

  4. Utility of serum IGF-1 for diagnosis of growth hormone deficiency following traumatic brain injury and sport-related concussion.

    PubMed

    Lithgow, Kirstie; Chin, Alex; Debert, Chantel T; Kline, Gregory A

    2018-04-02

    Growth hormone deficiency (GHD) is a potential consequence of traumatic brain injury (TBI), including sport-related concussion (SRC). GH stimulation testing is required for definitive diagnosis; however, this is resource intensive and can be associated with adverse symptoms or risks. Measurement of serum IGF-1 is more practical and accessible, and pituitary tumour patients with hypopituitarism and low serum IGF-1 have been shown to have a high probability of GHD. We aimed to evaluate IGF-1 measurement for diagnosing GHD in our local TBI population. We conducted a retrospective chart review of patients evaluated for GHD at the TBI clinic and referred for GH stimulation testing with insulin tolerance test (ITT) or glucagon stimulation test (GST) since December 2013. We obtained demographics, TBI severity, IGF-1, data pertaining to pituitary function, and GH stimulation results. IGF-1 values were used to calculate z-scores per age and gender specific reference ranges. Receiver operator curve analysis was performed to evaluate diagnostic threshold of IGF-1 z-score for determining GHD by GST or ITT. Sixty four patient charts were reviewed. 48 patients had mild, six had moderate, eight had severe TBI, and two had non-traumatic brain injuries. 47 patients underwent ITT or GST. 27 were confirmed to have GHD (peak hGH < 5 μg/L). IGF-1 level was within the age and gender specific reference range for all patients with confirmed GHD following GH stimulation testing. Only one patient had a baseline IGF-1 level below the age and gender specific reference range; this patient had a normal response to GH stimulation testing. ROC analysis showed IGF-1 z-score AUC f, confirming lack of diagnostic utility. Baseline IGF-1 is not a useful predictor of GHD in our local TBI population, and therefore has no value as a screening tool. TBI patients undergoing pituitary evaluation will require a dynamic test of GH reserve.

  5. Genetic Mutations, Birth Lengths, Weights and Head Circumferences of Children with IGF-I Receptor Defects. Comparison with other Congenital Defects in the GH/IGF-I axis.

    PubMed

    Essakow, Jenna Lee; Lauterpacht, Aharon; Lilos, Pearl; Kauli, Rivka; Laron, Zvi

    2016-09-01

    In recent years more and more genetic defects along the GHRH-GH-IGF-I axis have been reported. Mutations of the IGF-I receptor (R) are a rare abnormality of whom only the heterozygote progenies survive. To summarize, from the literature, data on birth length, weight and head circumference of neonates with IGF-I-R mutations, and to correlate the data with that of other types of mutations in the GH/IGF-I axis. Sixty seven neonates from 24 published articles were included and forty seven different mutations of the IGF-I (R) located on chromosome 15 have been identified. Mean (±SD) birth length (BL), available for 26, (10 M, 16F) neonates with a gestational age of 34-41weeks, was 44.2±4cm; one was premature (30cm at 31 weeks). There was a significant correlation between birth length and gestational age (GA) r=0.71 (p>.001). Mean birth weight (BW) of 41 neonates (18M, 23F) was 2388±743gr. Two premature neonates weighed 650gr and 950gr respectively. The BW correlated significantly with gestational age, (males: r=0.68; p=0.007, females: r=0.49; p=0.024). The BMI of 25 neonates ranged from 6 to 13. In 22 records marked microcephaly was ascertained or stated. Nine of 16 mothers were short (133 -148cm), m±SD = 150.5±7.3cm. Copyright© of YS Medical Media ltd.

  6. Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome).

    PubMed

    Laron, Zvi; Weinberger, Dov

    2004-07-01

    Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy. Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20-62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported. Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease. Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.

  7. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    PubMed

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  8. Astrocyte Resilience to Oxidative Stress Induced by Insulin-like Growth Factor I (IGF-I) Involves Preserved AKT (Protein Kinase B) Activity*

    PubMed Central

    Dávila, David; Fernández, Silvia; Torres-Alemán, Ignacio

    2016-01-01

    Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury. PMID:26631726

  9. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKTmore » Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.« less

  10. POSTNATAL SERUM INSULIN-LIKE GROWTH FACTOR I AND RETINOPATHY OF PREMATURITY.

    PubMed

    Jensen, Anne K; Ying, Gui-Shuang; Huang, Jiayan; Quinn, Graham E; Binenbaum, Gil

    2017-05-01

    Low serum IGF-1 has been associated with development of severe ROP, but no U.S. studies have been reported. We sought to determine the relationship between postnatal serum IGF-1 levels and severe ROP in a racially diverse U.S. cohort. Prospective cohort study of 74 infants with birth weight <1,251 g and a known ROP outcome at 3 Philadelphia hospitals. Weekly postnatal filter paper blood spot IGF-1 assays were measured through 42 weeks postmenstrual age. The cohort included 20 white, 45 black, 2 Asian, and 9 other infants; median gestational age was 27.6 weeks (range 23-33 weeks), and median birth weight was 975 g (range 490-1,250 g). During postmenstrual age Weeks 28 to 33, mean IGF-1 was 20.0 ng/mL (standard error 0.52) for no ROP (n = 46), 18.0 (0.49) for Stage 1 or 2 (n = 23), and 17.0 (0.70) for Stage 3 (n = 5, 2 lasered) (P = 0.003). Adjustment for birth weight and gestational age showed similar results. The presence and timing of an association between low postnatal serum IGF and ROP in a racially diverse U.S. sample were found to be consistent with those of European cohorts. This association provides the pathophysiological basis for growth-based predictive models, which could improve efficiency of ROP screening.

  11. E-Peptides Control Bioavailability of IGF-1

    PubMed Central

    Piszczek, Agnieszka; Perlas, Emarald; Winn, Nadine; Nastasi, Tommaso; Rosenthal, Nadia

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is a potent cytoprotective growth factor that has attracted considerable attention as a promising therapeutic agent. Transgenic over-expression of IGF-1 propeptides facilitates protection and repair in a broad range of tissues, although transgenic mice over-expressing IGF-1 propeptides display little or no increase in IGF-1 serum levels, even with high levels of transgene expression. IGF-1 propeptides are encoded by multiple alternatively spliced transcripts including C-terminal extension (E) peptides, which are highly positively charged. In the present study, we use decellularized mouse tissue to show that the E-peptides facilitate in vitro binding of murine IGF-1 to the extracellular matrix (ECM) with varying affinities. This property is independent of IGF-1, since proteins consisting of the E-peptides fused to relaxin, a related member of the insulin superfamily, bound equally avidly to decellularized ECM. Thus, the E-peptides control IGF-1 bioavailability by preventing systemic circulation, offering a potentially powerful way to tether IGF-1 and other therapeutic proteins to the site of synthesis and/or administration. PMID:23251442

  12. IGF-1 as a Drug for Preterm Infants: A Step-Wise Clinical Development.

    PubMed

    Hellstrom, Ann; Ley, David; Hallberg, Boubou; Lofqvist, Chatarina; Hansen-Pupp, Ingrid; Ramenghi, Luca A; Borg, Jan; Smith, Lois E H; Hard, Anna-Lena

    2017-01-01

    Insulin-like growth factor 1 (IGF-1) is a mitogenic hormone involved in many processes such as growth, metabolism, angiogenesis and differentiation. After very preterm birth, energy demands increase while maternal supplies of nutrients and other factors are lost and the infant may become dependent on parenteral nutrition for weeks. Low postnatal IGF-1 concentrations in preterm infants are associated with poor weight gain, retinopathy of prematurity (ROP) and other morbidities. We will describe the process by which we aim to develop supplementation with recombinant human (rh) IGF-1 and its binding protein rhIGFBP-3 as a possible therapy to promote growth and maturation and reduce morbidities in extremely preterm infants. In order to calculate a dose of IGF-1 tolerated by neonates, a pharmacokinetic study of transfusion with fresh frozen plasma was performed, which provided a relatively low dose of IGF-1, (on average 1.4 µg/kg), that increased serum IGF-1 to levels close to those observed in fetuses and preterm infants of similar GAs. Thereafter, a Phase I 3 hours IV infusion of rhIGF-1/rhIGFBP-3 was conducted in 5 infants, followed by a Phase II study with four sections (A-D). In the Phase II, sections A-D studies, time on infusion increased and younger gestational ages were included. IV infusion increased IGF-1 but with short half-life (0.5h) implying a need for continuous infusion. In order to obtain in utero levels of IGF-I, the dose was increased from 100 to 250 µg/kg/24 h and the infusion was prolonged from 3 weeks postnatal age until a postmenstrual age of 29 weeks and 6 days. The purpose has been to ensure high-quality research into the development of a new drug for preterm infants. We hope that our work will help to establish a new standard for the testing of medications for preterm infants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Does IGF-1 play a role in the biology of ovarian cancer?

    PubMed

    Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej; Głowacka, Ewa; Wilczyński, Miłosz

    2018-01-01

    The aim of the study was to investigate serum concentrations of the insulin-like growth factor-1 in women with ovarian cancer and healthy controls, and to compare free IGF-1 levels with selected clinical and pathological param-eters. Correlation analysis was used to measure the following: IGF-1 concentration and Ca125; IGF-1 level and the height of the OC patients. The study included 70 patients with OC and 50 healthy controls. Serum concentrations of free IGF-1 were measured in all subjects. Routine diagnostic tests (CBC and USG and Ca125) were performed. Significantly higher serum concentrations of free IGF-1 were found in the study group as compared to controls. No statistically significant relationships between IGF-1 serum concentrations and tumor differentiation, histological type, and disease stage were detected. No statistically significant correlations between IGF-1 and Ca125 level or between IGF-1 and growth of OC patients were found. Serum IGF-1 participates in the etiopathogenesis of ovarian cancer in menstruating women, while local synthesis of this factor and other components of the autocrine loop of the IGF-1 system play a greater role in their post-menopausal peers.

  14. Insulin-like growth factor-I (IGF-1), IGF-binding protein-3 (IGFBP-3) and mammographic features.

    PubMed

    Izzo, L; Meggiorini, M L; Nofroni, I; Pala, A; De Felice, C; Meloni, P; Simari, T; Izzo, S; Pugliese, F; Impara, L; Merlini, G; Di Cello, P; Cipolla, V; Forcione, A R; Paliotta, A; Domenici, L; Bolognese, A

    2012-05-01

    compared to breast density after stratification of the study population by menopausal status (premenopausal and postmenopausal) showed that there was no association between the plasma of growth factors and breast density, neither in premenopausal nor in postmenopausal patients. Multivariate analysis showed that only nulliparity, premenopausal status and body mass index (BMI) are determinants of breast density. Our study provides a strong evidence of a crude association between breast density and plasma levels of IGF-1 and molar ratio. On the basis of our results, it is reasonable to assume that the role of IGF-1 and molar ratio in the pathogenesis of breast cancer might be mediated through mammographic density. IGF-1 and molar ratio might thus increase the risk of cancer by increasing mammographic density.

  15. Mind over hormones: sex differences in associations of well-being with IGF-I, IGFBP-3 and physical activity in the KORA-Age study.

    PubMed

    Emeny, R T; Bidlingmaier, M; Lacruz, M E; Linkohr, B; Peters, A; Reincke, M; Ladwig, K H

    2014-11-01

    A ssociations between well-being, serum levels of insulin-like growth factor 1 (IGF-I), and its primary binding protein IGFBP-3, were examined in an epidemiologic study. The influence of physical activity on the effect of hormones on well-being was considered. Cross-sectional data from participants of the KORA-Age study (n=985, age 64-93) was analyzed in sex-specific multivariable regressions of well-being (World Health Organization (WHO) -5) or ill-being (geriatric depression scale (GDS) -15). Models were adjusted for age, physical activity, sleep, BMI, smoking, and cognition. Adjusted WHO-5 means demonstrated the interaction between hormone quintiles with physical activity. Full models indicated that increased IGFBP-3 positively associated with well-being in women (β estimate=0.14, standard error (SE)=0.06) and less so in men (β=0.11, SE=0.07). IGF-I associated positively with depression (β=0.11, SE=0.06) and negatively with well-being (β=-0.11, SE=0.06) in women. Similar but not statistically discernable effects were observed in men. Adjusted mean WHO-5 scores illustrated the positive effect of physical activity and IGFBP-3 on well-being in women only. Opposite and independent associations of IGF-I and IGFBP-3 on well-being observed in women suggests neuroprotective effects of IGFBP-3 in age. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Increased (/sup 125/I)trypsin-binding in serum from cystic fibrosis patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, K.L.; Frates, R.C. Jr.; Sheikholislam, B.M.

    1982-01-01

    The capacities of normal and cystic fibrosis (CF) sera to bind to exogenous human (/sup 125/I)trypsin were compared. Sera from eight older CF patients bound significantly more exogenous human (/sup 125/I)trypsin than did sera from eight normal subjects (p less than 0.001). Disregarding the increased trypsin-binding (TB) of CF sera, serum immunoreactive trypsinogen (SIRT) levels were not detectable in these eight older CF patients. However, when SIRT levels were corrected for TB, four CF patients had normal SIRT concentrations and four had low but detectable SIRT levels. As compared to five normal newborns' sera, serum from a newborn with CFmore » had normal TB and the SIRT levels were very high. In conclusion, increased TB in CF serum lowers results of SIRT assays. Therefore, unless SIRT levels are corrected for TB, results obtained from currently available SIRT kits may be invalid.« less

  17. Changes of Cerebral and/or Peripheral Adenosine A₁ Receptor and IGF-I Concentrations under Extended Sleep Duration in Rats.

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Dorey, Rodolphe; Sauvet, Fabien; Ciret, Sylvain; Gallopin, Thierry; Leger, Damien; Drogou, Catherine; Gomez-Merino, Danielle

    2017-11-17

    Extended sleep improves sustained attention and reduces sleep pressure in humans. Downregulation of adenosine A₁ receptor (A₁R) and modulation of the neurotrophic factor insulin growth factor-1 (IGF-I) in brain structures controlling attentional capacities could be involved. In the frontal cortex and hippocampus of rats, we measured adenosine A₁R and IGF-I protein concentrations after photoperiod-induced sleep extension. Two groups of twelve rats were adapted over 14 days to a habitual (CON) 12:12 light-dark (LD) schedule and an extended (EXT) 16:8 LD schedule. IGF-I content was also measured in plasma, liver, and skeletal muscle. In EXT, compared to CON rats, A₁R content in the frontal cortex was significantly lower ( p < 0.05), while IGF-I content was higher ( p < 0.001), and no significant change was observed in the hippocampus. IGF-I content in plasma and muscle was higher ( p < 0.001 and p < 0.01), while it was lower in liver ( p < 0.001). The absolute weight and weight gain were higher in EXT rats ( p < 0.01). These data suggest that 14 days under a 16:8 LD photoperiod respectively down- and upregulated cortical A₁R and IGF-I levels. This photoperiod induced an anabolic profile with increased weight gain and circulating and muscular IGF-I levels. An extension of sleep duration might favor cerebral and peripheral anabolism, which may help attentional and physical capacities.

  18. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats.

    PubMed

    Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P

    2013-04-01

    The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion.

  19. The GH-IGF-I response to typical field sports practices in adolescent athletes: a summary.

    PubMed

    Eliakim, Alon; Cooper, Dan M; Nemet, Dan

    2014-11-01

    The present study compares previous reports on the effect of "real-life" typical field individual (i.e., cross-country running and wrestling--representing combat versus noncombat sports) and team sports (i.e., volleyball and water polo-representing water and land team sports) training on GH and IGF-1, the main growth factors of the GH→IGF axis, in male and female late pubertal athletes. Cross-country running practice and volleyball practice in both males and females were associated with significant increases of circulating GH levels, while none of the practices led to a significant increase in IGF-I levels. The magnitude (percent change) of the GH response to the different practices was determined mainly by preexercise GH levels. There was no difference in the training-associated GH response between individual and team sports practices. The GH response to the different typical practices was not influenced by the practice-associated lactate change. Further studies are needed to better understand the effect of real-life typical training in prepubertal and adolescent athletes and their role in exercise adaptations.

  20. Effects of Growth Hormone/IGF-I and Exercise on Unloaded Bones

    NASA Technical Reports Server (NTRS)

    Harper, J. S.; Arnaud, S. B.; Gosselink, K. L.; Grindeland, R. E.

    1994-01-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) in combination with exercise prevent muscle atrophy induced by unloading in the tail-suspension rat model for space flight (Gosselink et al, FASEB J 1994). This study evaluated the effects of these treatments on bone. Hypophysectomized rats were suspended (S) and treated with 1mg/kg/day CH plus IGF-I (H) or vehicle (Sal) daily by injection and exercised (Ex) by 3 climbs up a 1m ladder carrying a load equal to 30% the initial body weight (BW) 3x/day for 10 days. Tibial epiphysis (Epi) widths were measured by micrometry and femoral Bone Mineral Content (fBMC) in excised femurs by DEXA (Lunar DPX-L). Serum calcium (Ca) and phosphorus (Pi) were measured by COBAS Autoanalyzer (Roche Diag.). Ambulatory (Amb)-H treated rats showed growth rates of 6.6+-0.9 g/day, similar to S-H-Ex and higher than S-H (3.210.6, p less than 0.05) and S-Sal (-0.711.0, p less than 0.05). Epi widths were 10% lower in S-Sal, and S-Sal-Ex, and increased 100% in all H groups. fBMC was less in S than Amb, only when all S groups are compared to both Amb groups (p less than 0.03). H treatment increased fBMC (p less than 0.05) but reduced fBMC/100g BW in all H groups (p less than 0.001). The reduced density of H bone cannot be attributed to low circulating Ca. and Pi since they were higher in H than Sal (p less than 0.001). H treatment for 10 days in doses sufficient to support normal growth in BW failed to produce normal Epi widths or fBMC, even when combined with exercise. The suspension effect observed in Epi widths was not corrected by H or Ex alone, but was improved by H plus a This regimen. although effective in preventing muscle atrophy, failed to return bone measures, Epi widths and fBMC, to normal.

  1. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  2. Increased IGF-1 in muscle modulates the phenotype of severe SMA mice

    PubMed Central

    Bosch-Marcé, Marta; Wee, Claribel D.; Martinez, Tara L.; Lipkes, Celeste E.; Choe, Dong W.; Kong, Lingling; Van Meerbeke, James P.; Musarò, Antonio; Sumner, Charlotte J.

    2011-01-01

    Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by the mutation of the survival motor neuron 1 (SMN1) gene and deficiency of the SMN protein. Severe SMA mice have abnormal motor function and small, immature myofibers early in development suggesting that SMN protein deficiency results in retarded muscle growth. Insulin-like growth factor 1 (IGF-1) stimulates myoblast proliferation, induces myogenic differentiation and generates myocyte hypertrophy in vitro and in vivo. We hypothesized that increased expression of IGF-1 specifically in skeletal muscle would attenuate disease features of SMAΔ7 mice. SMAΔ7 mice overexpressing a local isoform of IGF-1 (mIGF-1) in muscle showed enlarged myofibers and a 40% increase in median survival compared with mIGF-1-negative SMA littermates (median survival = 14 versus 10 days, respectively, log-rank P = 0.025). Surprisingly, this was not associated with a significant improvement in motor behavior. Treatment of both mIGF-1NEG and mIGF-1POS SMA mice with the histone deacetylase inhibitor, trichostatin A (TSA), resulted in a further extension of survival and improved motor behavior, but the combination of mIGF-1 and TSA treatment was not synergistic. These results show that increased mIGF-1 expression restricted to muscle can modulate the phenotype of SMA mice indicating that therapeutics targeted to muscle alone should not be discounted as potential disease-modifying therapies in SMA. IGF-1 may warrant further investigation in mild SMA animal models and perhaps SMA patients. PMID:21325354

  3. IGF-1 levels may increase paradoxically with dopamine agonist treatment for prolactinomas.

    PubMed

    Akirov, Amit; Greenman, Yona; Glaser, Benjamin; S'chigol, Irena; Mansiterski, Yossi; Eizenberg, Yoav; Shraga-Slutzky, Ilana; Shimon, Ilan

    2018-05-04

    Hyperprolactinemia is common in acromegaly and in these patients, insulin-like growth factor (IGF)-1 level may decrease with dopamine agonist. We report a series of patients with prolactinoma and a paradoxical increase of IGF-1 levels during cabergoline treatment. Clinical characteristics and response to treatment of patients with prolactinomas, in whom normal or slightly elevated baseline IGF-1 levels increased with cabergoline. The cohort consisted of ten prolactinoma patients (nine males, mean age 48 ± 14 years). Mean adenoma size was 23.8 ± 16.2 mm, with cavernous sinus invasion in eight. In five patients baseline IGF-1 levels were normal and in four levels were 1.2-1.5-fold the upper limit of the normal (ULN). One patient had IGF-1 measured shortly after initiating cabergoline and it was 1.4 × ULN. During cabergoline treatment (dose range 0.5-2 mg/week) PRL normalization was achieved in all and tumor shrinkage occurred in seven patients. The mean IGF-1 increase on cabergoline was 1.7 ± 0.4 × ULN. Cabergoline dose reduction or interruption was attempted in five patients and resulted in decreased IGF-1 levels in all, including normalization in two patients. Three patients were eventually diagnosed with acromegaly, one was referred for pituitary surgery followed by complete remission, another patient was switched to somatostatin analogue, and the third was treated by combination of somatostatin analogues with pegvisomant, with reduction of IGF-1 in all these patients. IGF-1 levels may increase to clinically significant levels during cabergoline treatment for PRL-adenoma. We suggest IGF-1 monitoring in all patients treated with dopamine agonists and not only in those presenting symptoms of acromegaly.

  4. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng

    2018-05-01

    Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Serum IGF-1 linking visceral obesity with esophageal adenocarcinoma: unconvincing evidence.

    PubMed

    McColl, K E L

    2012-02-01

    There is a strong positive association between body mass index (BMI) and risk of esophageal adenocarcinoma. This is likely to be largely or entirely explained by the established association between central obesity and gastroesophageal reflux and between the latter and risk of esophageal adenocarcinoma. Visceral fat is also metabolically active and there is interest in the possibility that humoral factors released by this fat might promote esophageal carcinogenesis. Insulin growth factor I (IGF-1) has been studied but current data do not support circulating total IGF-1 as a humoral factor linking BMI and esophageal carcinogenesis.

  6. Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging.

    PubMed

    Chaker, Zayna; Aïd, Saba; Berry, Hugues; Holzenberger, Martin

    2015-10-01

    Downregulation of insulin-like growth factor (IGF) pathways prolongs lifespan in various species, including mammals. Still, the cellular mechanisms by which IGF signaling controls the aging trajectory of individual organs are largely unknown. Here, we asked whether suppression of IGF-I receptor (IGF-1R) in adult stem cells preserves long-term cell replacement, and whether this may prevent age-related functional decline in a regenerating tissue. Using neurogenesis as a paradigm, we showed that conditional knockout of IGF-1R specifically in adult neural stem cells (NSC) maintained youthful characteristics of olfactory bulb neurogenesis within an aging brain. We found that blocking IGF-I signaling in neural precursors increased cumulative neuroblast production and enhanced neuronal integration into the olfactory bulb. This in turn resulted in neuro-anatomical changes that improved olfactory function. Interestingly, mutants also displayed long-term alterations in energy metabolism, possibly related to IGF-1R deletion in NSCs throughout lifespan. We explored Akt and ERK signaling cascades and revealed differential regulation downstream of IGF-1R, with Akt phosphorylation preferentially decreased in IGF-1R(-/-) NSCs within the niche, and ERK pathway downregulated in differentiated neurons of the OB. These challenging experimental results were sustained by data from mathematical modeling, predicting that diminished stimulation of growth is indeed optimal for tissue aging. Thus, inhibiting growth and longevity gene IGF-1R in adult NSCs induced a gain-of-function phenotype during aging, marked by optimized management of cell renewal, and enhanced olfactory sensory function. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Short-term effects of growth hormone and insulin-like growth factor I on cancellous bone in rhesus macaque monkeys.

    PubMed

    Sass, D A; Jerome, C P; Bowman, A R; Bennett-Cain, A; Ginn, T A; LeRoith, D; Epstein, S

    1997-04-01

    The purpose of our study was to determine the effects of GH and insulin-like growth factor I (IGF-I) administration singly and in combination on vertebral, tibial, and femoral bone in aged female monkeys as well as the various treatment effects on serum hormone levels and osteocalcin gene expression. Twenty-one ovulating female monkeys (rhesus macaque), aged 16-20 yr (5-6 kg), were divided into four groups to receive the following treatment for 7 weeks via Alzet pumps inserted sc: A, eluant (control group); B, recombinant human IGF-I (rhIGF-I; 120 micrograms/kg.day); C) rhGH (100 micrograms/kg.day); D, combination of rhIGF-I (120 micrograms/kg.day) and rhGH (100 micrograms/kg.day). Serum was assayed serially for glucose, IGF-I, GH, and IGF-binding protein-3 levels. All groups received double labeling with calcein. On the day of death, the primates' second lumbar vertebrae, tibiae, and femora were carefully dissected, fixed in 70% ethanol, and subjected to histomorphometric analysis. Ribonucleic acid was extracted from contralateral tibiae for the purpose of osteocalcin gene expression analysis. Serum glucose was unaffected by treatment. Serum GH was significantly elevated in groups C and D, whereas serum IGF-I and IGFBP-3 were only significantly increased in group D. Histomorphometric analysis showed no significant differences or trends for bone volume in any treatment group. Bone formation rate, surface and/or bone volume referent were significantly higher in both groups treated with GH (C and D) in tibia and femur, with a similar trend in vertebrae. The increase in bone formation rate was due mainly to a significant increase in mineral apposition rate, but there was also an increase in tibial mineralizing surface by GH by factorial analysis (P < 0.05). There were significant treatment effects on osteoid surface and osteoclastic surface in femur in the combination treatment group vs. the controls. Osteocalcin gene expression analysis supported an enhanced

  8. Inhibitory effect of transforming growth factor-. beta. (TGF-. beta. ) on insulin-like growth factor 1 (IGF-1)-induced proliferation and differentiation in primary cultures of pig preadipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R.L.; Hausman, G.J.; Gaskins, H.R.

    1990-02-26

    The influence of serum, IGF-1 and TGF-{beta} on the differentiation of preadipocytes was examined in primary cultures of porcine adipose tissue cells. In serum-supplemented or serum-free, IGF-1 (1 and 10 nM) had no effect on total cell number. However, IGF-1 (10nM) increased adipocyte number only in serum-supplemented (1% pig serum) cultures, whereas TGF-{beta} (15 pm) reduced the adipocyte number in the presence and absence of IGF-1. Replication of preadipocytes was analyzed with a ({sup 3}H) thymidine assay. Preadipocyte proliferation (cpm in adipocyte fraction) was increased by IGF-1 (10nM) only in cultures containing pig serum. TGF-{beta} had no effect on preadipocytemore » proliferation specifically, but slightly increased total ({sup 3}H) thymidine incorporation in cultures with serum. Glycerol phosphate dehydrogenase (GPDH) specific activity was decreased by adding TGF-{beta} to serum-free cultures but TGF-{beta} had little effect in serum-supplemented cultures. Cellular secretion of IGF-1 was decreased when TGF-{beta} was added to serum-free or serum-supplemented cultures. These studies indicate that TGF-{beta} does not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy at a later stage of development.« less

  9. Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBP-3 are associated with weakness in people with chronic stroke.

    PubMed

    Silva-Couto, Marcela de Abreu; Prado-Medeiros, Christiane Lanatovitz; Oliveira, Ana Beatriz; Alcântara, Carolina Carmona; Guimarães, Araci Teixeira; Salvini, Tania de Fatima; Mattioli, Rosana; de Russo, Thiago Luiz

    2014-07-01

    The muscle weakness that is exhibited poststroke is due to a multifactorial etiology involving the central nervous system and skeletal muscle changes. Insulinlike growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) have been described as biomarkers of neuromuscular performance in many conditions. However, no information about these biomarkers is available for people with chronic hemiparesis. The purpose of this study was to investigate possible factors involved in muscle weakness, such as IGF-1 and IGFBP-3 serum concentrations, muscle volume, and neuromuscular performance of the knee flexors and extensors, in people with chronic hemiparesis poststroke. This was a cross-sectional study. A cross-sectional study was performed on 14 individuals poststroke who were paired with healthy controls. Mobility, function, balance, and quality of life were recorded as outcome measures. Knee flexor and extensor muscle volumes and neuromuscular performance were measured using nuclear magnetic resonance imaging, dynamometry, and electromyography. The serum concentrations of IGF-1 and IGFBP-3 were quantified by enzyme-linked immunosorbent assay (ELISA). The hemiparetic group had low serum concentrations of IGF-1 (25%) and IGFBP-3 (40%); reduced muscle volume in the vastus medialis (32%), vastus intermedius (29%), biceps femoris (16%), and semitendinosus and semimembranosus (12%) muscles; reduced peak torque, power, and work of the knee flexors and extensors; and altered agonist and antagonist muscle activation compared with controls. Low serum concentrations of IGF-1 and IGFBP-3, deficits in neuromuscular performance, selective muscle atrophy, and decreased agonist muscle activation were found in the group with chronic hemiparesis poststroke. Both hemorrhagic and ischemic stroke were considered, and the data reflect a chronic poststroke population with good function. © 2014 American Physical Therapy Association.

  10. IGF-IEc expression is increased in secondary compared to primary foci in neuroendocrine neoplasms.

    PubMed

    Alexandraki, Krystallenia I; Philippou, Anastassios; Boutzios, Georgios; Theohari, Irini; Koutsilieris, Michael; Delladetsima, Ioanna Kassiani; Kaltsas, Gregory A

    2017-10-03

    Different Insulin-like growth factor-I (IGF-I) mRNA transcripts are produced by alternative splicing and particularly the IGF-IEc isoform has been implicated in the development and/or progression of various types of cancer. In the present study, we examined the potential role of IGF-IEc expression as a new immunohistochemical marker of aggressiveness in neuroendocrine neoplasms (NENs). We utilized immunohistochemical analysis in tissue specimens of 47 patients with NENs, to evaluate the expression of IGF-IEc (%) and Ki-67 proliferation index (%). Specimens from patients with tumors of different tissue origin, of either primary or metastatic lesions and of different grade were examined. Cytoplasmic IGF-IEc staining was found in 23 specimens of NENs or NECs: 10 pancreatic, 4 small bowel, 3 gastric, 1 lung, 1 uterine and 4 poorly differentiated of unknown primary origin. Ki-67 and IGF-IEc expression was positively correlated in all the samples studied (r=0.31, p=0.03). IGF-1Ec expression was more prevalent in specimens originating from metastatic foci with high Ki-67 compared to primary sites with low Ki-67 expression (p=0.036). These findings suggest a possible role of IGF-IEc in NEN tumorigenesis and progression to metastases that could be used as an additional new marker of a more aggressive behavior and a potential drugable target.

  11. Cord IGF-I concentrations in Indian newborns: associations with neonatal body composition and maternal determinants.

    PubMed

    Wiley, A S; Lubree, H G; Joshi, S M; Bhat, D S; Ramdas, L V; Rao, A S; Thuse, N V; Deshpande, V U; Yajnik, C S

    2016-04-01

    Indian newborns have been described as 'thin-fat' compared with European babies, but little is known about how this phenotype relates to the foetal growth factor IGF-I (insulin-like growth factor I) or its binding protein IGFBP-3. To assess cord IGF-I and IGFBP-3 concentrations in a sample of Indian newborns and evaluate their associations with neonatal adiposity and maternal factors. A prospective cohort study of 146 pregnant mothers with dietary, anthropometric and biochemical measurements at 28 and 34 weeks gestation. Neonatal weight, length, skin-folds, circumferences, and cord blood IGF-I and IGFBP-3 concentrations were measured at birth. Average cord IGF-I and IGFBP-3 concentrations were 46.6 (2.2) and 1269.4 (41) ng mL(-1) , respectively. Girls had higher mean IGF-I than boys (51.4 ng mL(-1) vs. 42.9 ng mL(-1) ; P < 0.03), but IGFBP-3 did not differ. Cord IGF-I was positively correlated with all birth size measures except length, and most strongly with neonatal sum-of-skin-folds (r = 0.50, P < 0.001). IGFBP-3 was positively correlated with ponderal index, sum-of-skin-folds and placenta weight (r = 0.21, 0.19, 0.16, respectively; P < 0.05). Of maternal demographic and anthropometric characteristics, only parity was correlated with cord IGF-I (r = 0.27, P < 0.001). Among dietary behaviours, maternal daily milk intake at 34 weeks gestation predicted higher cord IGF-I compared to no-milk intake (51.8 ng mL(-1) vs. 36.5 ng mL(-1) , P < 0.01) after controlling for maternal characteristics, placental weight, and newborn gestational age, sex, weight and sum-of-skin-folds. Sum-of-skin-folds were positively associated with cord IGF-I in this multivariate model (57.3 ng mL(-1) vs. 35.1 ng mL(-1) for highest and lowest sum-of skin-fold quartile, P < 0.001). IGFBP-3 did not show significant relationships with these covariates. In this Indian study, cord IGF-I concentration was associated with greater

  12. IGF-1, IGFBP-3 and ALS in adult patients with chronic kidney disease.

    PubMed

    Lepenies, Julia; Wu, Zida; Stewart, Paul M; Strasburger, Christian J; Quinkler, Marcus

    2010-04-01

    Insulin-like growth factor I (IGF-1) is for the most part bound in a ternary complex with IGF-binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). This ternary complex is a storage form of IGF-1 in blood and passes not through the renal glomerulus. Little information is available in regard to the components of the ternary complex in adult renal disease. To investigate levels of serum IGF-1, IGFBP-3 and ALS in relation to renal function and extent of proteinuria. We measured IGF-1, IGFBP-3 and ALS concentrations in 137 patients who were investigated due to proteinuria and/or haematuria and/or renal impairment. The patients received renal biopsies and the histological diagnosis was documented. Urinary albumin excretion and relevant clinical parameter were evaluated. IGF-1 showed a highly positive correlation to IGFBP-3 and ALS, and the latter to IGFBP-3. IGF-1, IGFBP-3 and ALS decreased with increasing age. IGF-1 and IGFBP-3 showed no significant change depending on the creatinine clearance. However, ALS decreased with decreasing renal function. In patients with heavy proteinuria ALS levels, but not IGF-1 and IGFBP-3 levels, decreased significantly. Patients with chronic ischaemic renal damage and diabetic glomerulopathy showed higher IGF-1 and IGFBP-3 levels compared to patients with thin glomerular basement membrane disease despite their older age. IGF-1 and IGFBP-3 levels seem to be independent of renal function and severity of proteinuria. However, ALS levels are altered in renal failure and nephrotic syndrome, which may be due to increased renal loss or diminished hepatic production or both. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Retinopathy of prematurity and serum level of insulin-like growth factor-1.

    PubMed

    Banjac, Lidija; Bokan, Vesna

    2012-06-01

    The aim of our study was to measure and compare serum insulin-like growth factor-1 (IGF-1) levels at postmenstrual age of 33 weeks between preterm infants with and without retinopathy of prematurity (ROP). ROP occurs in two phases. Low serum levels of IGF-1 during ROP phase 1 have been found to correlate with the severity of ROP. ROP phase 2 begins around postmenstrual week 33. We conducted a prospective cohort study to measure serum IGF-1 levels in premature infants at postmenstrual age of 33 weeks. The study included all premature infants (N = 74), gestational age < or = 33 weeks, hospitalized at Department of Neonatology, Clinical Center of Montenegro, from April 2008 to July 2009. The incidence of ROP in the study cohort was 50.7%. Infants with ROP had a significantly lower birth weight and significantly shorter gestational age. The mean level of IGF-1 at postmenstrual age of 33 weeks was 23.7 mcg/L. Study results showed that there was no significant difference in serum IGF-1 level between newborns with and without ROP at postmenstrual age of 33 weeks (in newborns with ROP, it was the beginning of ROP phase 2). A large controlled study with repeated measurement of IGF-1 level in the neonatal period is needed to confirm that restoration of IGF-I level occurs in ROP phase 2, i.e. that the low level of IGF-1 is only a feature of ROP phase 1.

  14. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-11-30

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. Asmore » expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo.« less

  15. Oral contraceptives increase insulin-like growth factor binding protein-1 concentration in women with polycystic ovarian disease.

    PubMed

    Suikkari, A M; Tiitinen, A; Stenman, U H; Seppälä, M; Laatikainen, T

    1991-05-01

    Insulin-like growth factor-I (IGF-I) stimulates ovarian androgen production. Insulin-like growth factor binding protein-1 (IGFBP-1) inhibits IGF actions in vitro. To investigate the effect of oral contraceptive (OC) pills, given for 3 months, on serum gonadotropin, androgen, IGF-I, and IGFBP-1 concentrations, and glucose tolerance in seven women with polycystic ovarian disease (PCOD) and in five healthy control subjects. Seven women with PCOD and five healthy control subjects. An oral glucose tolerance test (OGTT) was performed before and after treatment with OC. After treatment with OC, serum luteinizing hormone, androstenedione, and free testosterone levels decreased, and sex hormone-binding globulin concentration increased in the women with PCOD as well as in the control subjects. The cumulative response of serum insulin to OGTT was larger in the women with PCOD than in the control subjects both before and after treatment. Serum IGF-I concentration, which was unchanged during OGTT, decreased from basal level of 326 +/- 70 micrograms/L to 199 +/- 28 micrograms/L after treatment with OC in the women with PCOD, whereas no change was found in the control subjects (from 235 +/- 11 micrograms/L to 226 +/- 11 micrograms/L). Treatment with OC caused an increase of the mean basal IGFBP-1 concentration from 24 +/- 7 micrograms/L to 73 +/- 14 micrograms/L in the women with PCOD. This increase was constant during the OGTT. In the control subjects, treatment with OC did not result in any significant change in IGFBP-1 concentrations (from 44 +/- 11 micrograms/L to 61 +/- 9 micrograms/L). The combination of decreased total IGF-I concentration and increased IGFBP-1 concentration induced by OC may decrease ovarian androgen production in PCOD.

  16. Circulating levels of IGF-1 directly regulate bone growth and density

    PubMed Central

    Yakar, Shoshana; Rosen, Clifford J.; Beamer, Wesley G.; Ackert-Bicknell, Cheryl L.; Wu, Yiping; Liu, Jun-Li; Ooi, Guck T.; Setser, Jennifer; Frystyk, Jan; Boisclair, Yves R.; LeRoith, Derek

    2002-01-01

    IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1–deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis. PMID:12235108

  17. Insulin-like growth factor I gene deletion causing intrauterine growth retardation and severe short stature.

    PubMed

    Woods, K A; Camacho-Hübner, C; Barter, D; Clark, A J; Savage, M O

    1997-11-01

    The first human case of a homozygous molecular defect in the gene encoding insulin-like growth factor I (IGF-I) is described. The patient was a 15-year-old boy from a consanguineous pedigree who presented with severe intrauterine growth failure, sensorineural deafness and mild mental retardation. Endocrine evaluation of the growth hormone (GH)--IGF-I axis revealed elevated GH secretion, undetectable serum IGF-I and normal serum IGF-binding protein-3, acid-labile subunit, and GH-binding activity. Analysis of the IGF-I gene revealed a homozygous partial IGF-I gene deletion involving exons 4 and 5, which encodes a severely truncated mature IGF-I peptide. This patient demonstrates that complete disruption of the IGF-I gene in man is compatible with life, and indicates a major role for IGF-I in human fetal growth. In addition, his neurological abnormalities suggest that IGF-I may be involved in central nervous system development.

  18. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways *

    PubMed Central

    Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.

    2016-01-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  19. Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis

    USDA-ARS?s Scientific Manuscript database

    The insulin-like growth factor-1 (IGF-1) signaling axis is important for cell growth, differentiation, and survival, and increased serum IGF is a risk factor for prostate and other cancers. To study IGF-1 action on the prostate, we created transgenic (PB-Des) mice that specifically express human IGF...

  20. IGF-I Polymorphism is Associated with Lean Mass, Exercise Economy and Performance Among Premenopausal Women

    PubMed Central

    López-Alarcón, Mardya; Hunter, Gary R.; Gower, Barba A.; Fernández, José R.

    2007-01-01

    Background We undertook this study to investigate the association of a genetic polymorphism of the insulin-like growth factor, IGF-I189, on body composition, exercise performance and exercise economy, after controlling for the independent effect of race as assessed by African genetic admixture (AFADM). Methods A total of 114 premenopausal sedentary women were genotyped for IGF-I189, obtaining measures of fat mass, lean body mass, VO2 during cycling and stairclimbing, time on treadmill and leg strength. A quantitative value for AFADM was derived from genotypic information of approximately 40 ancestry informative markers and used as covariate in statistical models. Results After adjusting for AFADM, IGF-I189 was negatively associated with lean body mass (p = 0.029) and lean leg mass (p = 0.050). Leg strength was not associated with the presence/absence of IGF-I189 (p = 0.380), but carriers of the allele demonstrated a longer time on the treadmill (p = 0.015) after adjusting for AFADM. There was also a negative relationship between oxygen uptake during cycling and presence of the IGF-I189 independent of AFADM (p = 0.010). Conclusion Independent of AFADM, individuals with IGF-I189 are more likely to have low leg lean mass and to perform better in activities requiring exercise economy and endurance performance. PMID:17174724

  1. Decreased IGF-1 concentration during the first trimester of pregnancy in women with normal somatotroph function.

    PubMed

    Persechini, Marie-Laure; Gennero, Isabelle; Grunenwald, Solange; Vezzosi, Delphine; Bennet, Antoine; Caron, Philippe

    2015-08-01

    A decrease of insulin-like growth factor-I levels (IGF-I) has been reported during the first trimester of pregnancy in women with acromegaly before the secretion of placental growth hormone (GH) progressively increases IGF-1 concentration. To evaluate variations of concentrations of IGF-1, insulin-like growth factor (IGF)-binding protein-3 (IGF-BP3) and GH during the first trimester of pregnancy in women with normal somatotroph function. Sixteen women (median age 31 years) with as who were followed for benign thyroid disorders (n = 15) or prolactin-secreting microadenoma (n = 1) were evaluated before and in the first trimester of pregnancy. Serum concentrations of GH, IGF-1, IGF-BP3, TSH and estradiol (E2) were measured before and in the first trimester (5.4 ± 2.2 weeks of gestation). Before pregnancy, somatotroph and thyroid functions (median TSH 1.2 mU/L) were normal in all women. At the first trimester IGF-1 levels decreased significantly (before = 210 ng/mL, first trimester = 145 ng/mL, p < 0.001) with no significant change in GH (before = 1.5 ng/mL, first trimester = 0.84 ng/mL) or IGF-BP3 levels (before = 2.3 ng/mL, first trimester = 2.2 ng/mL), while estradiol levels increased significantly (before = 46.5 pg/100 mL, first trimester = 448.5 pg/100 mL, p < 0.001). In women with normal somatotroph function, IGF-1 levels decrease in the first trimester of pregnancy without changes in GH or IGF-BP3 levels. These results confirm liver resistance to GH as a consequence of the physiological increase of estrogens during the first trimester.

  2. Genetic influence on the associations between IGF-I and glucose metabolism in a cohort of elderly twins.

    PubMed

    Jensen, Rikke Beck; Thankamony, Ajay; Holst, Klaus K; Janssen, Joseph A M J L; Juul, Anders; Dunger, David; Poulsen, Pernille; Scheike, Thomas

    2018-02-01

    IGF-I may be a marker of later metabolic and cardiovascular disease. The interactions between IGF-I and glucose metabolism are multifactorial, and there is potential confounding from several secondary effects. In this study, we examined the interaction between IGF-I and glucose metabolism in a large cohort of clinically well-characterized elderly twins. A total of 303 twin pairs of the same gender (606 twins) were included in the study; 125 monozygotic and 178 dizygotic twin pairs. A clinical examination including a standard oral glucose tolerance test (OGTT) and anthropometric measurements was performed. The heritability estimates were high for IGF-I and IGFBP-3 (h 2 : 0.65 (95% CI: 0.55-0.74) and 0.71 (0.48-0.94), respectively) and for insulin secretion (h 2  = 0.56, P  < 0.0001), whereas the heritability estimates for insulin sensitivity were low (h 2  = 0.14, P  = 0.11). In a multiple regression analysis (adjusting for age, gender and twin status), there was a negative association between IGF-I and insulin sensitivity (B: -0.13, SE 0.03, P  < 0.0001) and IGF-I and disposition index (B: -0.05, SE 0.02, P  < 0.001) in the entire cohort of 606 twins. The associations between IGF-I and both DI and HOMA-S did not differ between the DZ and MZ twins. Forty-five twin pairs were discordant for T2D, but the discordant twins had similar concentrations of IGF-I or IGFBP-3. There was a high heritability for IGF-I and IGFBP-3, but a low heritability for insulin secretion and insulin sensitivity in a group of elderly twins. In addition, we found a strong negative relationship between IGF-I and insulin sensitivity, which did not seem to be strongly genetically determined. © 2018 European Society of Endocrinology.

  3. Expression of serum insulin-like growth factors, insulin-like growth factor-binding proteins, and the growth hormone-binding protein in heterozygote relatives of Ecuadorian growth hormone receptor deficient patients.

    PubMed

    Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G

    1992-04-01

    Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the

  4. IGF-1 decreases portal vein endotoxin via regulating intestinal tight junctions and plays a role in attenuating portal hypertension of cirrhotic rats.

    PubMed

    Zhao, Tian-Yu; Su, Li-Ping; Ma, Chun-Ye; Zhai, Xiao-Han; Duan, Zhi-Jun; Zhu, Ying; Zhao, Gang; Li, Chun-Yan; Wang, Li-Xia; Yang, Dong

    2015-07-08

    Intestinal barrier dysfunction is not only the consequence of liver cirrhosis, but also an active participant in the development of liver cirrhosis. Previous studies showed that external administration of insulin-like growth factor 1 (IGF-1) improved intestinal barrier function in liver cirrhosis. However, the mechanism of IGF-1 on intestinal barrier in liver cirrhosis is not fully elucidated. The present study aims to investigate the mechanisms of IGF-1 improving intestinal barrier function via regulating tight junctions in intestines. We used carbon tetrachloride induced liver cirrhotic rats to investigate the effect of IGF-1 on intestinal claudin-1 and occludin expressions, serum alanine transaminase (ALT) and aspartate transaminase (AST) levels, severity of liver fibrosis, portal pressures, enterocytic apoptosis and lipopolysaccharides (LPS) levels in portal vein. The changes of IGF-1 in serum during the development of rat liver cirrhosis were also evaluated. Additionally, we assessed the effect of IGF-1 on claudin-1 and occludin expressions, changes of transepithelial electrical resistance (TEER) and apoptosis in Caco-2 cells to confirm in vivo findings. Serum IGF-1 levels were decreased in the development of rat liver cirrhosis, and external administration of IGF-1 restored serum IGF-1 levels. External administration of IGF-1 reduced serum ALT and AST levels, severity of liver fibrosis, LPS levels in portal vein, enterocytic apoptosis and portal pressure in cirrhotic rats. External administration of IGF-1 increased the expressions of claudin-1 and occludin in enterocytes, and attenuated tight junction dysfunction in intestines of cirrhotic rats. LPS decreased TEER in Caco-2 cell monolayer. LPS also decreased claudin-1 and occludin expressions and increased apoptosis in Caco-2 cells. Furthermore, IGF-1 attenuated the effect of LPS on TEER, claudin-1 expression, occludin expression and apoptosis in Caco-2 cells. Tight junction dysfunction develops during the

  5. The Impact of Continuous Positive Airway Pressure on Circulating IGF-1 in Patients With Obstructive Sleep Apnea.

    PubMed

    Palm, Andreas; Berne, Christian; Igelström, Helena; Åsenlöf, Pernilla; Janson, Christer; Lindberg, Eva

    2018-03-15

    Obstructive sleep apnea (OSA) is a disease with metabolic and cardiovascular consequences and is associated with decreased serum concentrations of insulin-like growth factor-1 (IGF-1). The aim of this study was to investigate whether continuous positive airway pressure (CPAP) will increase serum IGF-1 concentration in patients with OSA. Patients with moderate to severe OSA were recruited from a sleep clinic and serum IGF-1 was measured before initiation of CPAP and at follow-up after 4.8 ± 2.5 months. Patients adherent to CPAP treatment (usage ≥ 4 h/night) were compared with those considered to be nonadherent (usage < 4 h/night). Complete data were obtained from 69 patients (86% male, age 56 ± 12 years, respiratory event index 43 ± 21 events/h, Epworth Sleepiness Scale score 12 ± 5). In those adherent to CPAP (n = 42), there was an increase in serum IGF-1 concentration with 21.1 (95% confidence interval [CI]: 13.1 to 29.2) μg/L compared to 4.7 (95% CI: -4.1 to 13.5) μg/L in the nonadherent group (n = 27) ( P = .0083). In a linear multivariate model adjusting for sex, age, body mass index, respiratory event index, and mean oxygen saturation during the night recording, the change in serum IGF-1 concentration was significantly associated with adherence to CPAP treatment (adjusted β coefficient: 21.8, 95% CI: 10.2 to 33.4) and inversely associated with change in body mass index (adjusted β coefficient: -7.1, 95% CI: -11.3 to -3.0) and change in hemoglobin A1c (adjusted β coefficient: -1.8, 95% CI: -33 to -0.3). CPAP usage ≥ 4 h/night is associated with increased serum IGF-1 concentration in male patients with OSA. © 2018 American Academy of Sleep Medicine.

  6. Adiponectin, Leptin, IGF-1, and Tumor Necrosis Factor Alpha As Potential Serum Biomarkers for Non-Invasive Diagnosis of Colorectal Adenoma in African Americans.

    PubMed

    Ashktorab, Hassan; Soleimani, Akbar; Nichols, Alexandra; Sodhi, Komal; Laiyemo, Adeyinka O; Nunlee-Bland, Gail; Nouraie, Seyed Mehdi; Brim, Hassan

    2018-01-01

    The potential role of adiponectin, leptin, IGF-1, and tumor necrosis factor alpha (TNF-α) as biomarkers in colorectal adenoma is not clear. Therefore, we aimed to investigate the blood serum levels of these biomarkers in colorectal adenoma. The case-control study consisted of serum from 180 African American patients with colon adenoma (cases) and 198 healthy African Americans (controls) at Howard University Hospital. We used ELISA for adiponectin, leptin, IGF-1, and TNF-α detection and quantification. Statistical analysis was performed by t -test and multivariate logistic regression. The respective differences in median leptin, adiponectin, IGF-1, and TNF-α levels between control and case groups (13.9 vs. 16.4), (11.3 vs. 46.0), (4.5 vs. 12.9), and (71.4 vs. 130.8) were statistically significant ( P  < 0.05). In a multivariate model, the odds ratio for adiponectin, TNF-α, and IGF-1 were 2.0 (95% CI = 1.6-2.5; P  < 0.001), 1.5 (95% CI = 1.5(1.1-2.0); P  = 0.004), and 1.6 (95% CI = 1.3-2.0; P  < 0.001), respectively. There was a positive correlation between serum adiponectin and IGF-1 concentrations with age ( r  = 0.17, P  < 0.001 and r  = 0.13, P  = 0.009), TNF-α, IGF-1, and leptin concentration with body mass index (BMI) ( r  = 0.44, P  < 0.001; r  = 0.11, P  = 0.03; and r  = 0.48, P  < 0.001), respectively. Also, there was a negative correlation between adiponectin and leptin concentrations with BMI ( r  = -0.40, P  < 0.001), respectively. These data support the hypothesis that adiponectin, IGF-1, and TNF-α high levels correlate with higher risk of colon adenoma and can thus be used for colorectal adenomas risk assessment.

  7. IGF-I and IGFBP-3 concentrations at 2 years: associations with anthropometry and milk consumption in an Indian cohort.

    PubMed

    Wiley, Andrea S; Joshi, Suyog M; Lubree, Himangi G; Bhat, Dattatray S; Memane, Neelam S; Raut, Deepa A; Yajnik, Chittaranjan S

    2018-04-01

    To ascertain associations between plasma insulin-like growth factor I (IGF-I), insulin-like growth factor-binding protein 3 (IGFBP-3) and their molar ratio at 2 y with neonatal size, infant growth, body composition at 2 y, and feeding practices in an Indian cohort. A cohort of 209 newborns, with 122 followed at 2 y. Anthropometry was conducted at birth and 2 y. IGF-I and IGFBP-3 concentrations were measured in cord blood and at 2 y. Maternal and child diet was assessed by food frequency questionnaires and maternal interviews. Multivariate regression was used to test for associations adjusting for confounding factors. Mean 2 y plasma IGF-I and IGFBP-3 concentrations and IGF-I/IGFBP-3 were 49.4 ng/ml (95% CI: 44.1, 54.8), 1953.8 ng/ml (CI: 1870.6, 2036.9) ng/ml, and 0.088 (CI: 0.081, 0.095), respectively. IGF-I and IGF-I/IGFBP-3 were positively associated with current length, but not body mass index or adiposity. IGF-I was higher among those with greater change in length since birth. IGF-I concentrations were higher in children who drank the most milk (>500 vs. <250 ml per day: 65.6 vs. 42.8 ng/ml, p < 0.04), received other milk <6 months compared to ≥6 months (56.3 vs. 44.8 ng/ml, p < 0.05), and in those whose mothers consumed milk daily vs. less frequently in late pregnancy (56.4 vs. 42.7 ng/ml, p < 0.01). In multivariate regression, 2 y IGF-I concentration and IGF-I/IGFBP-3 were each positively associated with current length and milk intake. IGFBP-3 was not related to anthropometry or milk intake. Plasma IGF-I concentrations and IGF-I/IGFBP-3 at 2 y are positively associated with length at 2 y and current milk intake.

  8. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    NASA Astrophysics Data System (ADS)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  9. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    PubMed

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  10. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The relationship between IGF-I concentration, cognitive function and quality of life in adults with Prader-Willi syndrome.

    PubMed

    van Nieuwpoort, I C; Deijen, J B; Curfs, L M G; Drent, M L

    2011-04-01

    Mental retardation is one of the clinical characteristics of Prader-Willi syndrome (PWS) and in part of the patients growth hormone deficiency is demonstrable. Cognitive function seems to be influenced by insulin-like growth factor I (IGF-I); however, little is known about cognitive function in relation to IGF-I levels in PWS adults. The aim of the present study was to evaluate cognitive function in adult PWS patients in comparison to healthy siblings and to investigate whether there is a correlation between cognitive function and IGF-I levels. Anthropometric measurements, IGF-I levels, quality of life (QoL), Appetite Assessment Score, IQ (GIT and Raven) and cognitive function (by four subtests of the Cambridge Neuropsychological Automated Testing Battery, CANTAB) were evaluated in PWS patients and their healthy siblings served as control group. PWS patients had significantly lower IGF-I levels, IQ and QoL when compared to controls. Reaction times were longer and performance was worse on CANTAB subtests in PWS adults. IGF-I on one hand and IQ, Appetite Assessment Score and cognitive performance on the other hand seem to be correlated in PWS patients. In conclusion, IGF-I levels, IQ and QoL are significantly lower in PWS subjects when compared to healthy siblings. In PWS adults, temporal as well as prefrontal cognitive functions are impaired. Higher IGF-I levels appear to be related to better intellectual skills and faster temporal memory processing in PWS patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Are Elevated Levels of IGF-1 Caused by Coronary Arteriesoclerosis?: Molecular and Clinical Analysis

    PubMed Central

    Gozdzicka-Jozefiak, Anna; Zurawski, Jakub; Nowak, Witold; Durzynska, Julia; Link, Rafał; Grotowski, Tomasz; Siminiak, Tomasz

    2010-01-01

    The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with “3 vessel disease” and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2–4) nor in internal domain (exon 16–21). The effect of increased IGF-1 serum level in our study was probably

  13. Are elevated levels of IGF-1 caused by coronary arteriesoclerosis?: Molecular and clinical analysis.

    PubMed

    Burchardt, Pawel; Gozdzicka-Jozefiak, Anna; Zurawski, Jakub; Nowak, Witold; Durzynska, Julia; Link, Rafał; Grotowski, Tomasz; Siminiak, Tomasz

    2010-11-01

    The importance of insulin-like growth factor-1 (IGF-1) in coronary artery disease (CAD) due to wide range of its biological effects and its therapeutic potential, has already been described. Our aim was to evaluate possible influence of IGF-1 serum level changes on coronary atherosclerosis. In case of existence of such association our further aim was to verify and explain this phenomenon by examination of promoter P1 of IGF-1gene and receptor gene for IGF-1. The study was performed in 101 consecutive patients undergo for routine coronary angiography. Quantitative and qualitative assessment of coronary atherosclerosis was performed respectively by estimation of the number of culprit lesions in coronary arteries and by Gensini score calculation. IGF-1, IGFBP3 and plasma lipoproteins were measured in all patients. In addition, we evaluated DNA from 101 patients, isolated from blood cells, which was amplified by using PCR with sophisticated primers for P1 promoter of IGF-1 gene and IGF-1 receptor gene, then analyzed utilizing SSCP technique and automatically sequenced. We observed significant increase of serum IGF-1 levels in patients with "3 vessel disease" and with high score in Gensini scale when compared to those without any narrowing lesions in coronary arteries and 0 Gensini score (in group with 3 vessel disease 215.0 ± 71.3 versuss 176.7 ± 34.2 ng/ml p = 0.04 and with high Gensini score 231.4 ± 59.3 versus 181.0 ± 37.8 ng/ml p = 0.01).We found different genotypes for five P1 promoter polymorphisms of IGF-1 gene (RS35767, RS5742612, RS228837, RS11829693, RS17879774). There were no significant associations between the observed single nucleotide polymorphism (SNP) and coronary atherosclerosis nor with levels of circulating IGF-1. We found no structural polymorphism in receptor gene for IGF-1 nor in its extracellular domain(exon 2-4) nor in internal domain (exon 16-21). The effect of increased IGF-1 serum level in our study was probably independent

  14. Serum growth hormone (GH)-binding protein/receptor: an important determinant of GH responsiveness.

    PubMed

    Martha, P M; Reiter, E O; Dávila, N; Shaw, M A; Holcombe, J H; Baumann, G

    1992-12-01

    Individual growth rates (or responses to GH therapy) and adult heights vary over a wide range. The reasons for this variation are poorly understood. Based on the reciprocal relationship between GH production and serum GH-binding protein/receptor (GH-BP), we hypothesized that genetic growth potential was achieved by a specific combination of GH-BP/receptor and GH production in each individual. To address the question whether GH production regulates GH-BP, or vice versa, we studied GH-deficient children, where one of the parameters, GH exposure, could be controlled through exogenous administration. Forty-three untreated prepubertal GH-deficient children were studied before and after 6 and 12 months of GH replacement therapy (0.18 mg/kg.week). Growth velocity, height, bone age, weight and their respective Z scores, serum GH-BP, and serum insulin-like growth factor I (IGF-I) were measured at each time point. The patients responded with significant increases in serum IGF-I, age-adjusted growth velocity, and height (P < 10(-6) for all). Before therapy, GH-BP correlated directly with chronologic and bone age (P < 10(-4), but not with either growth velocity or IGF-I. In contrast, GH-BP correlated strongly with the response to therapy whether assessed as the incremental change in IGF-I (P < 10(-6)) or as the increase in growth velocity (P approximately 0.003). GH treatment had no consistent effect on GH-BP/receptor levels. These findings support the concept that the GH-BP/receptor endowment is characteristic for an individual and plays a pivotal role in somatic growth. The GH-BP/receptor system and its ontogeny appears relatively independent of regulation by GH. Differences in individual GH-BP/GH receptor complement account for some of the variability in the response to GH, and GH-BP levels may serve as a predictor for the degree of response. The reciprocal relationship between GH production and GH-BP in normal subjects probably results from adjustment of GH secretion to

  15. Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors.

    PubMed

    Hughes, David C; Stewart, Claire E; Sculthorpe, Nicholas; Dugdale, Hannah F; Yousefian, Farzad; Lewis, Mark P; Sharples, Adam P

    2016-06-01

    We have previously highlighted the ability of testosterone (T) to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy via multiple population doublings (PD) versus their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (picropodophyllin/PPP, 150 nM) for 72 h and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin gene expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was also unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-IR, myoD and myogenin with increases in myostatin mRNA in both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger T induced increases in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. Importantly, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed

  16. Modulation of GH/IGF-1 axis: potential strategies to counteract sarcopenia in older adults.

    PubMed

    Giovannini, Silvia; Marzetti, Emanuele; Borst, Stephen E; Leeuwenburgh, Christiaan

    2008-10-01

    Aging is associated with progressive decline of skeletal muscle mass and function. This condition, termed sarcopenia, is associated with several adverse outcomes, including loss of autonomy and mortality. Due to the high prevalence of sarcopenia, a deeper understanding of its pathophysiology and possible remedies represents a high public health priority. Evidence suggests the existence of a relationship between declining growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels and age-related changes in body composition and physical function. Therefore, the age-dependent decline of GH and IGF-1 serum levels may promote frailty by contributing to the loss of muscle mass and strength. Preclinical studies showed that infusion of angiotensin II produced a marked reduction in body weight, accompanied by decreased serum and muscle levels of IGF-1. Conversely, overexpression of muscle-specific isoform of IGF-1 mitigates angiotensin II-induced muscle loss. Moreover, IGF-1 serum levels have been shown to increase following angiotensin converting enzyme inhibitors (ACEIs) treatment. Here we will review the most recent evidence regarding age-related changes of the GH/IGF-1 axis and its modulation by several interventions, including ACEIs which might represent a potential novel strategy to delay the onset and impede the progression of sarcopenia.

  17. Cloning, characterization and tissue specific expression of Amur tiger (Panthera tigris altaica) IGF-I.

    PubMed

    Hu, Xi-Lian; Zhu, Mu-Yuan; Zhang, Zhi-He; Hou, Rong; Shen, Fu-Jun; Li, Fu-Zhen; Zhang, An-Ju

    2006-08-01

    Insulin-like growth factor I (IGF-I) plays an important role in regulating gonad function, which is essential for normal reproduction in animals, especially in sexual receptivity and reproductive behavior. In this study, a cDNA encoding Amur tiger (Panthera tigris altaica) IGF-I was isolated from liver total RNA using RT-PCR. The IGF-I cDNA of Amur tiger (ATIGF-I) was highly homologous to that of other animals, 84.8% to rat, 93.7% to human and horse. Alignment analysis showed that the cysteine residues and many amino acid residues of putative mature ATIGF-I are highly conserved in mammalian species, confirming the high sequence homology observed in other species. DNA encoding the mature ATIGF-I peptide was ligated with pET-DsbA expression vector and highly expressed in Escherichia coli BL21 with IPTG induction. The recombinant proteins expressed existed mostly in the soluble protein fraction, and were purified with metal affinity resins. Western blotting confirmed that the recombinant proteins reacted with antibodies against IGF-I. The results obtained here should be useful for large-scale production of biological active ATIGF-I protein, as well as for further research on growth, development, and reproduction in the Amur tiger. Tissue specific expression of ATIGF-I mRNA in the Amur tiger was examined by reverse transcription-polymerase chain reaction (RT-PCR), The major ATIGF-I mRNA expression tissue was the liver, while medium signals were found in the uterus, ovary, and pituitary, and minor signals were detected in various tissues including the heart, spleen, pancreas, and kidney. The results indicate that IGF-I might play an important role in the reproductive system and in cub development in the Amur tiger.

  18. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits.

    PubMed

    Teumer, Alexander; Qi, Qibin; Nethander, Maria; Aschard, Hugues; Bandinelli, Stefania; Beekman, Marian; Berndt, Sonja I; Bidlingmaier, Martin; Broer, Linda; Cappola, Anne; Ceda, Gian Paolo; Chanock, Stephen; Chen, Ming-Huei; Chen, Tai C; Chen, Yii-Der Ida; Chung, Jonathan; Del Greco Miglianico, Fabiola; Eriksson, Joel; Ferrucci, Luigi; Friedrich, Nele; Gnewuch, Carsten; Goodarzi, Mark O; Grarup, Niels; Guo, Tingwei; Hammer, Elke; Hayes, Richard B; Hicks, Andrew A; Hofman, Albert; Houwing-Duistermaat, Jeanine J; Hu, Frank; Hunter, David J; Husemoen, Lise L; Isaacs, Aaron; Jacobs, Kevin B; Janssen, Joop A M J L; Jansson, John-Olov; Jehmlich, Nico; Johnson, Simon; Juul, Anders; Karlsson, Magnus; Kilpelainen, Tuomas O; Kovacs, Peter; Kraft, Peter; Li, Chao; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lorentzon, Mattias; Lu, Yingchang; Maggio, Marcello; Magi, Reedik; Meigs, James; Mellström, Dan; Nauck, Matthias; Newman, Anne B; Pollak, Michael N; Pramstaller, Peter P; Prokopenko, Inga; Psaty, Bruce M; Reincke, Martin; Rimm, Eric B; Rotter, Jerome I; Saint Pierre, Aude; Schurmann, Claudia; Seshadri, Sudha; Sjögren, Klara; Slagboom, P Eline; Strickler, Howard D; Stumvoll, Michael; Suh, Yousin; Sun, Qi; Zhang, Cuilin; Svensson, Johan; Tanaka, Toshiko; Tare, Archana; Tönjes, Anke; Uh, Hae-Won; van Duijn, Cornelia M; van Heemst, Diana; Vandenput, Liesbeth; Vasan, Ramachandran S; Völker, Uwe; Willems, Sara M; Ohlsson, Claes; Wallaschofski, Henri; Kaplan, Robert C

    2016-10-01

    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype-phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders.

    PubMed

    Chen, Jianling; Alberts, Ian; Li, Xiaohong

    2014-06-01

    The IGF-I/PI3K/AKT/mTOR signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, motility, survival, metabolism and protein synthesis. Insulin-like growth factor-I (IGF-I) is synthesized in the liver and fibroblasts, and its biological actions are mediated by the IGF-I receptor (IGF-IR). The binding of IGF-I to IGF-IR leads to the activation of phosphatidylinositol 3-kinase (PI3K). Activated PI3K stimulates the production of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3]. The PH domain of AKT (protein kinase B, PKB) (v-AKT murine thymoma viral oncogene homolog) binds to PI(4,5)P2 and PI(3,4,5)P3, followed by phosphorylation of the Thr308 and Ser473 regulatory sites. Tuberous sclerosis complex 1 (TSC1) and TSC2 are upstream regulators of mammalian target of rapamycin (mTOR) and downstream effectors of the PI3K/AKT signaling pathway. The activation of AKT suppresses the TSC1/TSC2 heterodimer, which is an upstream regulator of mTOR. Dysregulated IGF-I/PI3K/AKT/mTOR signaling has been shown to be associated with autism spectrum disorders (ASDs). In this review, we discuss the emerging evidence for a functional relationship between the IGF-I/PI3K/AKT/mTOR pathway and ASDs, as well as a possible role of this signaling pathway in the diagnosis and treatment of ASDs. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.

    1990-03-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blotmore » analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin.« less

  1. Granulosa cells of the cumulus oophorus are different from mural granulosa cells in their response to gonadotrophins and IGF-I.

    PubMed

    Khamsi, F; Roberge, S

    2001-09-01

    There are two types of granulosa cells: those which surround the oocyte are cumulus cells (CC) and those which surround the antrum are mural granulosa cells (MGC). These cells are under the influence of several hormones and growth factors, the most important of which are gonadotrophins and IGF-I. In this article, we report novel observations on the differences between these two types of granulosa cells and their interaction with gonadotrophins and IGF-I. We were able to conduct physiological studies on the role of IGF-I by using an analogue of IGF-I which does not bind to IGF-I-binding proteins (LR3-IGF-I). Immature rats received saline, equine chorionic gonadotrophin (eCG), LR3-IGF-I or eCG plus LR3-IGF-I by infusion using a pump from 24-29 days of age. The rats were killed and the ovaries removed. Surface follicles were punctured and MGC and oocyte cumulus complexes were removed. These were cultured in saline (control) and in three different doses of FSH. Cell replication was assessed by 3H-thymidine incorporation and differentiation was evaluated by the measurement of progesterone secretion. It was noted that CC replicated ten times more than MGC. Similarly, progesterone secretion by CC was six times more than by MGC. In vivo exposure to gonadotrophins (eCG) positively influenced in vitro treatment with FSH in both cell types. This phenomenon was observed in both cell replication and progesterone secretion. The IGF-I analogue had a positive effect on cell replication of MGC but a negative effect on the cell replication of CC. With respect to progesterone secretion, the IGF-I analogue had a negative effect on CC but a positive effect on MGC. In conclusion, CC behaved differently from MGC in response to gonadotrophins and the IGF-I analogue. IGF-I and FSH acted additively, synergistically or antagonistically in different circumstances.

  2. Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I.

    PubMed

    Lang, Charles H; Huber, Danuta; Frost, Robert A

    2007-01-01

    The present study determined whether thermal injury increases the expression of the ubiquitin (Ub) E3 ligases referred to as muscle ring finger (MuRF)-1 and muscle atrophy F-box (MAFbx; aka atrogin-1), which are muscle specific and responsible for the increased protein breakdown observed in other catabolic conditions. After 48 h of burn injury (40% total body surface area full-thickness scald burn) gastrocnemius weight was reduced, and this change was associated with an increased mRNA abundance for atrogin-1 and MuRF-1 (3.1- to 8-fold, respectively). Similarly, burn increased polyUb mRNA content in the gastrocnemius twofold. In contrast, there was no burn-induced atrophy of the soleus and no significant change in atrogin-1, MuRF-1, or polyUb mRNA. Burns also did not alter E3 ligase expression in heart. Four hours after administration of the anabolic agent insulin-like growth factor (IGF)-I to burned rats, the mRNA content of atrogin-1 and polyUb in gastrocnemius had returned to control values and the elevation in MuRF-1 was reduced 50%. In contrast, leucine did not alter E3 ligase expression. In a separate study, in vivo administration of the proteasome inhibitor Velcade prevented burn-induced loss of muscle mass determined at 48 h. Finally, administration of the glucocorticoid receptor antagonist RU-486 did not prevent burn-induced atrophy of the gastrocnemius or the associated elevation in atrogin-1, MuRF-1, or polyUb. In summary, the acute muscle wasting accompanying thermal injury is associated with a glucocorticoid-independent increase in the expression of several Ub E3 ligases that can be downregulated by IGF-I.

  3. Little effects of Insulin-like Growth Factor-I on testicular atrophy induced by hypoxia

    PubMed Central

    Diez-Caballero, Fernando; Castilla-Cortázar, Inma; Garcia-Fernandez, Maria; Puche, Juan Enrique; Diaz-Sanchez, Matias; Casares, Amelia Diaz; Aliaga-Montilla, M Aurelia; Rodriguez-Borrajo, Coronación; Gonzalez-Barón, Salvador

    2006-01-01

    Background Insulin-like Growth Factor-I (IGF-I) supplementation restores testicular atrophy associated with advanced liver cirrhosis that is a condition of IGF-I deficiency. The aim of this work was to evaluate the effect of IGF-I in rats with ischemia-induced testicular atrophy (AT) without liver disease and consequently with normal serum level of IGF-I. Methods Testicular atrophy was induced by epinephrine (1, 2 mg/Kg intra-scrotal injection five times per week) during 11 weeks. Then, rats with testicular atrophy (AT) were divided into two groups (n = 10 each): untreated rats (AT) receiving saline sc, and AT+IGF, which were treated with IGF-I (2 μg.100 g b.w.-1.day-1, sc.) for 28d. Healthy controls (CO, n = 10) were studied in parallel. Animals were sacrificed on day 29th. Hypophyso-gonadal axis, IGF-I and IGFBPs levels, testicular morphometry and histopathology, immuno-histochemical studies and antioxidant enzyme activity phospholipid hydroperoxide glutathione peroxidase (PHGPx) were assessed. Results Compared to controls, AT rats displayed a reduction in testicular size and weight, with histological testicular atrophy, decreased cellular proliferation and transferrin expression, and all of these alterations were slightly improved by IGF-I at low doses. IGF-I therapy increased signifincantly steroidogenesis and PHGPx activity (p < 0.05). Interestingly, plasma IGF-I did not augment in rats with testicular atrophy treated with IGF-I, while IGFBP3 levels, that reduces IGF-I availability, was increased in this group (p < 0.05). Conclusion In testicular atrophy by hypoxia, condition without IGF-I deficiency, IGF-treatment induces only partial effects. These findings suggest that IGF-I therapy appears as an appropriate treatment in hypogonadism only when this is associated to conditions of IGF-I deficiency (such as Laron Syndrom or liver cirrhosis). PMID:16504030

  4. Fetal programming of insulin-like growth factor (IGF)-I and IGF-binding protein-3: evidence for an altered response to undernutrition in late gestation following exposure to periconceptual undernutrition in the sheep.

    PubMed

    Gallaher, B W; Breier, B H; Keven, C L; Harding, J E; Gluckman, P D

    1998-12-01

    It has been demonstrated in several animal models that undernutrition in utero has significant long lasting effects on subsequent fetal and postnatal development. To address the hypothesis that the insulin-like growth factors (IGFs) may mediate such effects, our study examined whether a period of periconceptual maternal undernutrition could have a lasting influence on the IGF axis in the fetal sheep. Ewes were either allowed to feed ad libitum or kept undernourished from day 60 prior to mating until day 30 after conception, and then both groups were allowed to feed ad libitum. These groups were further divided at day 105 of gestation, either being fed ad libitum or undernourished until day 115 of gestation. Fetal and maternal blood samples were obtained at both day 105 and 115 of gestation. We describe the development of a specific homologous RIA to measure ovine IGF-binding protein-3 (IGFBP-3) in fetal and maternal sheep plasma. Fetal plasma IGFBP-3 and IGF-I concentrations were significantly (P<0.05) reduced at day 115 of gestation after maternal undernutrition. The fetal plasma IGFBP-2 levels were unchanged. The degree of reduction in fetal plasma IGFBP-3 and IGF-I between day 105 and 115 of gestation as a response to acute maternal undernutrition was significantly greater (P<0.05) in fetuses of mothers receiving low periconceptual nutrition. The response of maternal plasma IGFBP-3 and IGF-I to undernutrition did not depend on the level of periconceptual nutrition. Western blot data indicate that changes in either maternal or fetal plasma IGFBP-3 concentrations were not the result of increased proteolytic activity. These results suggest that exposure to maternal periconceptual undernutrition reprograms IGFBP-3 and IGF-I regulation in the developing sheep fetus, altering its response to undernutrition in late gestation.

  5. Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles

    NASA Technical Reports Server (NTRS)

    Allen, D. L.; Linderman, J. K.; Roy, R. R.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.

    1997-01-01

    In the present study of rats, we examined the role, during 2 wk of hindlimb suspension, of growth hormone/insulin-like growth factor I (GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleus muscle that express type I myosin heavy chain. Hindlimb suspension resulted in a significant decrease in mean soleus wet weight that was attenuated either by exercise alone or by exercise plus GH/IGF-I treatment but was not attenuated by hormonal treatment alone. Both mean myonuclear number and mean fiber cross-sectional area (CSA) of fibers expressing type I myosin heavy chain decreased after 2 wk of suspension compared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 micron2, respectively). Neither GH/IGF-I treatment nor exercise alone affected myonuclear number or fiber CSA, but the combination of exercise and growth-factor treatment attenuated the decrease in both variables. A significant correlation was found between mean myonuclear number and mean CSA across all groups. Thus GH/IGF-I administration and brief bouts of muscle loading had an interactive effect in attenuating the loss of myonuclei induced by chronic unloading.

  6. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromisniloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts.

  7. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years.

    PubMed

    Kindler, Joseph M; Pollock, Norman K; Laing, Emma M; Oshri, Assaf; Jenkins, Nathan T; Isales, Carlos M; Hamrick, Mark W; Ding, Ke-Hong; Hausman, Dorothy B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2017-07-01

    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (p Interaction  < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (β Indirect Effect  = 0.321, p < 0.001). However, this relationship was moderated in the children with high (β Indirect Effect  = 0.200, p

  8. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  9. Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.

    PubMed

    Seti, Hila; Leikin-Frenkel, Alicia; Werner, Haim

    2009-07-01

    The insulin-like growth factor (IGF) system plays a critical role in normal growth and development as well as in malignant states. Most of the biological activities of the IGFs are mediated by the IGF-IR, which is over-expressed in most tumours and cancer cell lines. Fatty acids have critical roles in both systemic physiological processes (e.g. metabolism) and cellular events (e.g. proliferation, apoptosis, signal transduction, and gene expression). Alpha-linolenic acid (ALA) and linoleic acid (LA) are essential fatty acids of the omega-3 and omega-6 families, respectively. The aim of this study was to investigate the potential interactions between fatty acids and the IGF signal transduction pathways, and to evaluate the impact of this interplay on colon cancer cells survival and proliferation. Results of Western blot analyses revealed that ALA and LA enhanced the ligand-induced IGF-IR phosphorylation and, in addition, increased receptor phosphorylation in an IGF-I independent manner. Furthermore, fatty acid treatment led to phosphorylation of downstream signalling molecules, including Akt and Erk. In addition, FACS analysis and apoptosis measurements indicated that ALA and LA have a potential mitogenic effect on HCT116 cells, as reflected by the number of cells in S phase and by a reduction of PARP cleavage, implying a reduction in apoptotic activity. In summary, our results provide evidence that omega-3 and omega-6 fatty acids modulate IGF-I action in colon cancer cells.

  10. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  11. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  12. Protective effect of IGF-1 on experimental liver cirrhosis-induced common bile duct ligation.

    PubMed

    Cantürk, Nuh Zafer; Cantürk, Zeynep; Ozden, Meltem; Dalçik, Hakki; Yardimoglu, Melda; Tülübas, Feti

    2003-01-01

    The causes of malnutrition in liver cirrhosis are multifactorial. Levels of IGF-1 (insulin like growth factor-1) that is a crucial regulator of intermediary metabolism decreases. The aim of this study was to analyze the effect of IGF-1 supplementation during liver cirrhosis induced by common bile duct ligation. Rats were divided into five different groups: One sham and four experimental groups. Rats in three of four groups were treated with 2 micrograms/day IGF-1 with a different time of experiment in each group. Blood biochemical parameters, tissue malondialdehyde, glutathione levels and the activity of tissue antioxidant enzymes and conventional and immunohistochemical analysis of liver samples were studied for each group. Serum albumin, total protein, fibrinogen levels decreased and prothrombin time was prolonged in the bile duct ligated and transected experimental group but not in the IGF-I treated rats compared with the rats in sham group. Liver malondialdehyde levels significantly increased in control group but not in IGF-1 treated groups. The activities of antioxidant enzymes were decreased compared with the other groups. Histopathology findings of liver biopsy demonstrated intense degree fibrosis and overexpression of fibroblast growth factor and desmin in the control group but a lesser degree of those in the IGF-1 treated groups. IGF-1 treatment improves liver function and decreases oxidative liver damage and histopathological findings. Further studies are required to delineate the mechanisms of protective effects of IGF-1.

  13. Relationship of leptin and insulin-like growth factor I to nutritional status in hemodialyzed children.

    PubMed

    Besbas, Nesrin; Ozaltin, Fatih; Coşkun, Turgay; Ozalp, Sila; Saatçi, Umit; Bakkaloğlu, Aysin; El Nahas, A Meguid

    2003-12-01

    Malnutrition is prevalent in patients with end-stage renal disease (ESRD). Elevated serum leptin levels were thought to contribute to the anorexia and poor nutrition in renal failure. However, studies of the relationship between nutritional status and leptin concentration in chronic renal failure have yielded conflicting results. Plasma insulin-like growth factor I (IGF-I) level has been used as an indicator of nutritional status in patients with renal failure. The relationship between leptin and IGF-I is controversial. The present study was conducted with the aim of assessing the relationship between nutritional status, hyperleptinemia, and serum IGF-I. Seventeen ESRD patients (8 male, 9 female), aged 8-18 years (mean 15.3+/-3.3 years) and undergoing standard hemodialysis for 58.8+/-23.1 months were enrolled. Nine age-matched healthy children served as controls. In all patients, energy and protein intakes were 40-70 kcal/kg per day and 1-1.54 g/kg per day, respectively. Predialysis serum leptin and IGF-I levels were measured by radioimmunoassay. Body mass index was decreased in 13 (76%) patients. Triceps skinfold thickness (TST) was reduced (below the 5th percentile) in 7 (41%), whereas mid arm circumference and mid arm muscle circumference were reduced in 14 (82.5%) and 13 (76.5%), respectively. The median serum leptin level was significantly higher in patients than in controls [13.7 interquartile range (IQR) 30.50 pg/ml vs. 6.50 IQR 8.65 pg/ml, P=0.01]. The median serum IGF-I level was lower in the patients (205.1 ng/ml IQR 194.4 ng/l) than controls (418.0 ng/l IQR 310.5 ng/ml) ( P=0.01). IGF-I levels were more decreased in patients with severe malnutrition, defined according to TST (145.0 ng/ml IQR 125.5 ng/l) than patients without malnutrition (301.2 ng/l IQR 218.8 ng/ml) ( P=0.03) and healthy children ( P=0.002). Although statistically not significant, IGF-I levels tended to be decreased, while leptin levels were increased. The median plasma insulin

  14. Dried plum prevents bone loss in a male osteoporosis model via IGF-I and the RANK pathway.

    PubMed

    Franklin, M; Bu, S Y; Lerner, M R; Lancaster, E A; Bellmer, D; Marlow, D; Lightfoot, S A; Arjmandi, B H; Brackett, D J; Lucas, E A; Smith, B J

    2006-12-01

    Previously, dietary supplementation with dried plums, a rich source of polyphenolic compounds with antioxidant and anti-inflammatory properties, has been shown to improve bone density, microstructure and biomechanics in female animal models of osteopenia. We designed this study to determine the extent to which dried plum prevents skeletal deterioration in gonadal hormone deficient male animals and to begin to understand its mechanism of action. Sixty 6-month-old male Sprague-Dawley rats were either sham-operated (Sham = 1 group) or orchidectomized (ORX = 4 groups) and randomly assigned to dietary treatments: standard semi-purified diet (Control) with either LD = 5%, MD = 15%, or HD = 25% (w/w) dried plum for 90 days. At the end of the treatment period, both the MD and HD dried plum completely prevented the ORX-induced decrease in whole body, femur, and lumbar vertebra bone mineral density (BMD). Biomechanical testing indicated that the MD and HD of dried plum prevented the ORX-induced decrease in ultimate load of the cortical bone as well as the compressive force and stiffness of trabecular bone within the vertebrae. Analyses of trabecular microarchitecture of the distal femur metaphysis and vertebral body revealed that HD dried plum protected against the decrease in trabecular bone volume (BV/TV) induced by ORX. In the distal femur, all doses of dried plum improved trabecular number (TbN) and separation (TbSp) compared to the ORX-control group, while MD and HD dried plum prevented the ORX-induced changes in vertebral TbN and TbSp. At the end of the 90-day treatment, no remarkable changes in serum osteocalcin or alkaline phosphatase in any of the treatment groups were observed, while serum insulin-like growth factor (IGF)-I was increased by dried plum. The ORX-induced increase in urinary deoxypyridinoline (DPD) excretion was completely prevented by all doses of dried plum coinciding with down-regulation of gene expression for receptor activator of NFkappa-B ligand

  15. Children with severe Osteogenesis imperfecta and short stature present on average with normal IGF-I and IGFBP-3 levels.

    PubMed

    Hoyer-Kuhn, Heike; Höbing, Laura; Cassens, Julia; Schoenau, Eckhard; Semler, Oliver

    2016-07-01

    Osteogenesis imperfecta (OI) is characterized by bone fragility and short stature. Data about IGF-I/IGFBP-3 levels are rare in OI. Therefore IGF-I/IGFBP-3 levels in children with different types of OI were investigated. IGF-I and IGFBP-3 levels of 60 children (male n=38) were assessed in a retrospective cross-sectional setting. Height/weight was significant different [height z-score type 3 versus type 4: p=0.0011 and weight (p≤0.0001)] between OI type 3 and 4. Mean IGF-I levels were in the lower normal range (mean±SD level 137.4±109.1 μg/L). Mean IGFBP-3 measurements were in the normal range (mean±SD 3.105±1.175 mg/L). No significant differences between OI type 3 and 4 children have been observed (IGF-I: p=0.0906; IGFBP-3: p=0.2042). Patients with different severities of OI have IGF-I and IGFBP-3 levels in the lower normal range. The type of OI does not significantly influence these growth factors.

  16. Association of insulin-like growth factor-1 and IGF binding protein-3 with 25-hydroxy vitamin D in pre-pubertal and adolescent Indian girls.

    PubMed

    Marwaha, Ramank K; Garg, M K; Gupta, Sushil; Ganie, Mohd Ashraf; Gupta, Nandita; Narang, Archna; Shukla, Manoj; Arora, Preeti; Singh, Annie; Chadha, Aditi; Mithal, Ambrish

    2018-03-28

    There is a high prevalence of vitamin D deficiency (VDD) in India. Molecular mechanisms suggest a strong relationship between vitamin D and growth factors. However, there is a paucity of literature with regard to a relationship between insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) and vitamin D particularly in subjects with VDD. The objective of the study was to assess the relationship between growth factors and serum vitamin D-parathormone (PTH) status in school girls and study the impact of vitamin D supplementation on growth factors in pre-pubertal girls with VDD. Our study subjects were apparently healthy school girls aged 6-18 years. The baseline height, weight, body mass index (BMI), pubertal status, serum 25-hydroxy vitamin D (25OHD), PTH, IGF-1 and IGFBP-3 were assessed in 847 girls aged 6-18 years and in 190 pre-pubertal girls with VDD following supplementation. The mean age, BMI and serum 25OHD of girls were 11.5±3.2 years, 18.7±4.8 kg/m2 and 9.9±5.6 ng/mL, respectively. VDD was observed in 94.6% of girls. Unadjusted serum IGF-1 levels and IGF-1/IGFBP-3 molar ratio were significantly higher in girls with severe VDD as compared to girls with mild-to-moderate VDD. However, these differences disappeared when adjusted for age, height or sexual maturation. The serum IGF-1 and IGFBP-3 levels increased significantly post supplementation with vitamin D. There were no differences in serum IGF-1 levels and the IGF-1/IGFBP-3 molar ratio among VDD categories when adjusted for age, height and sexual maturation in girls. Vitamin D supplementation resulted in a significant increase in serum IGF-1 levels in VDD pre-pubertal girls.

  17. Postpartum IGF-I and IGFBP-2 levels are prospectively associated with the development of type 2 diabetes in women with previous gestational diabetes mellitus.

    PubMed

    Lappas, M; Jinks, D; Shub, A; Willcox, J C; Georgiou, H M; Permezel, M

    2016-12-01

    Women with previous gestational diabetes mellitus (GDM) are at greater risk of developing type 2 diabetes. In the general population, the insulin-like growth factor (IGF) system has been implicated in the development of type 2 diabetes. The aim of this study was to determine if circulating IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels 12weeks following a GDM pregnancy are associated with an increased risk of developing type 2 diabetes. IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels were measured in 98 normal glucose tolerant women, 12weeks following an index GDM pregnancy using enzyme immunoassay. Women were assessed for up to 10years for the development of overt type 2 diabetes. Among the 98 women with previous GDM, 21 (21%) developed diabetes during the median follow-up period of 8.5years. After adjusting for age and BMI, IGF-I and IGFBP-2 were significantly associated with the development of type 2 diabetes. In a clinical model of prediction of type 2 diabetes that included age, BMI, pregnancy fasting glucose and postnatal fasting glucose, the addition of IGF-I and IGFBP-2 resulted in an improvement in the net reclassification index of 17.8%. High postpartum IGF-I and low postpartum IGFBP-2 levels are a significant risk factor for the development of type 2 diabetes in women with a previous history of GDM. This is the first report that identifies IGF-I and IGFBP-2 as a potential biomarker for the prediction of type 2 diabetes in women with a history of GDM. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. The association between insulin-like growth factor 1 (IGF-1), IGF-binding proteins (IGFBPs), and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis.

    PubMed

    Szeremeta, A; Jura-Półtorak, A; Komosińska-Vassev, K; Zoń-Giebel, A; Kapołka, D; Olczyk, K

    2017-05-01

    To assess the association between plasma levels of the insulin-like growth factor (IGF) system including IGF-1, IGF-binding proteins (IGFBPs) including IGFBP-1, total (t-)IGFBP-3 and functional (f-)IGFBP-3, and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis (RA). Plasma concentrations of IGF-1, IGFBP-1, t-IGFBP-3, f-IGFBP-3, and PICP were measured by immunoassay. No significant difference was observed in plasma IGF-1 levels between pre- and postmenopausal subjects. Plasma levels of IGFBP-1 were elevated in RA. PICP and f-IGFBP-3 were greatly affected by menopausal status. Of the three IGFBPs tested, only f-IGFBP-3 plasma levels in RA women correlated negatively with age and disease duration. A positive correlation was demonstrated between PICP and erythrocyte sedimentation rate (ESR) in RA. Moreover, there was no correlation between PICP and IGF-1 and any of the IGFBPs in RA women. Considerable disruption of the IGF system in RA was found to be related to disease activity and duration. Changes in the IGF-IGFBP axis and PICP levels were different in pre- and postmenopausal women with RA. Elevated plasma PICP concentrations may indicate an increased rate of bone formation in postmenopausal RA women. Additionally, the observed changes in the IGF/IGFBP system did not affect bone formation during RA.

  19. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromis niloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts. Copyright (C) 1998 Elsevier Science Inc.

  20. Atheroprotective Properties of Serum IGF-1 in the Carotid and Coronary Territories and Beneficial Role on the Physical Fitness of the Oldest Old.

    PubMed

    Córdova, Claudio; Boullosa, Daniel A; Custódio, Misael R M; Quaglia, Luiz A; Santos, Simone N; Freitas, Wladimir M; Sposito, Andrei C; Nóbrega, Otávio T

    2016-10-01

    Our aim was to investigate whether physiological levels of soluble insulin-like growth factor-1 (IGF-1) associate with coronary and carotid atherosclerotic burden and physical fitness in the oldest old by means of a cross-sectional study including 100 community-dwelling individuals with no previous cardiovascular events. Linear correlation was found between IGF-1 and intima-media thickness, number of carotid plaques, and walking speed. Individuals in the upper IGF-1 tertile had smaller right and left intima-media thickness compared with the intermediate and lower tertiles, along with reduced atherosclerotic plaques. Also, walking speed was greater in the upper IGF-1 tertile. On the other hand, a nonlinear correlation was observed between IGF-1 and coronary calcification scores, with the intermediate IGF-1 tertile associated to the lowest scores of calcification and participants with lower circulating levels of IGF-1 showing higher frequency of high-risk morphology plaques. All in all, our report supports a territory-dependent, atherorefractory phenotype in the oldest old carrying middle and/or higher serum levels of IGF-1. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk

    PubMed Central

    Travis, Ruth C.; Appleby, Paul N.; Martin, Richard M.; Holly, Jeff M.P.; Albanes, Demetrius; Black, Amanda; Bueno-de-Mesquita, H.B(as).; Chan, June M.; Chen, Chu; Chirlaque, Maria-Dolores; Cook, Michael B.; Deschasaux, Mélanie; Donovan, Jenny L.; Ferrucci, Luigi; Galan, Pilar; Giles, Graham G.; Giovannucci, Edward L.; Gunter, Marc J.; Habel, Laurel A.; Hamdy, Freddie C.; Helzlsouer, Kathy J.; Hercberg, Serge; Hoover, Robert N.; Janssen, Joseph A.M.J.L.; Kaaks, Rudolf; Kubo, Tatsuhiko; Le Marchand, Loic; Metter, E. Jeffrey; Mikami, Kazuya; Morris, Joan K.; Neal, David E.; Neuhouser, Marian L.; Ozasa, Kotaro; Palli, Domenico; Platz, Elizabeth A.; Pollak, Michael; Price, Alison J.; Roobol, Monique J.; Schaefer, Catherine; Schenk, Jeannette M.; Severi, Gianluca; Stampfer, Meir J.; Stattin, Pär; Tamakoshi, Akiko; Tangen, Catherine M.; Touvier, Mathilde; Wald, Nicholas J.; Weiss, Noel S.; Ziegler, Regina G.

    2016-01-01

    The role of insulin-like growth factors (IGFs) in prostate cancer development is not fully understood. To investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. Conditional logistic regression was used to estimate the odds ratios (ORs) for prostate cancer based on the study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was weakly inversely associated with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies (with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest versus the lowest fifth of each analyte was 1.29 (95% confidence interval=1.16-1.43) for IGF-I, 0.81 (0.68-0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-to-diagnosis or tumor stage or grade. After mutual adjustment for each of the other analytes, only IGF-I remained associated with risk. Our collaborative study represents the largest pooled analysis of the relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence that IGF-I is highly likely to be involved in prostate cancer development. PMID:26921328

  2. Is Serum Serotonin Involved in the Bone Loss of Young Females with Anorexia Nervosa?

    PubMed

    Maïmoun, L; Guillaume, S; Lefebvre, P; Philibert, P; Bertet, H; Picot, M-C; Courtet, P; Mariano-Goulart, D; Renard, E; Sultan, C

    2016-03-01

    Recent experimental data suggest that circulating serotonin interacts with bone metabolism, although this is less clear in humans. This study investigated whether serum serotonin interferes with bone metabolism in young women with anorexia nervosa (AN), a clinical model of energy deprivation. Serum serotonin, markers of bone turnover [osteocalcin (OC), procollagen type I N-terminal propeptide (PINP), type I-C telopeptide breakdown products (CTX)], leptin, soluble leptin receptor (sOB-R), and insulin-like growth factor-1 (IGF-1) and its binding protein (IGFBP-3) were assessed. Whole body, spine, hip, and radius areal bone mineral density BMD (aBMD) were assessed by dual-energy X-ray absorptiometry in 21 patients with AN and 19 age-matched controls. Serum serotonin, leptin, IGF-1, IGFBP-3, OC, PINP, and aBMD at all sites, radius excepted, were significantly reduced in AN whereas CTX and sOB-R were increased compared with controls. Serum serotonin levels were positively correlated with weight, body mass index, whole body fat mass, leptin, and IGF-1, and negatively with CTX for the entire population. Low serum serotonin levels are observed in patients with AN. Although no direct link between low serum serotonin levels and bone mass was identified in these patients, the negative relationship between serotonin and markers of bone resorption found in all population nevertheless suggests the implication of serotonin in bone metabolism. Impact of low serum serotonin on bone in AN warrants further studies. © Georg Thieme Verlag KG Stuttgart · New York.

  3. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy

    PubMed Central

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95–nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95–nNOS interactions in MHE. PMID:28932186

  4. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy.

    PubMed

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95-nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95-nNOS interactions in MHE.

  5. Acute regulation of IGF-I by alterations in post-exercise macronutrients

    USDA-ARS?s Scientific Manuscript database

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise ...

  6. Survivin as a Novel Biomarker in the Pathogenesis of Acne Vulgaris and Its Correlation to Insulin-Like Growth Factor-I

    PubMed Central

    Assaf, Hanan A.; Abdel-Maged, Wafaa M.; Elsadek, Bakheet E. M.; Adly, Mohamed A.; Ali, Soher A.

    2016-01-01

    Survivin, a member of the inhibitor of apoptosis protein family, has an important role in cell cycle regulation. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone with wide range of biologic effects including stimulation of lipogenesis in sebaceous glands. Their overexpression in some fibrotic disorders suggests a possible implication of both IGF-I and survivin in the pathogenesis of acne and/or acne scars. The current study aimed to assess and correlate serum levels of IGF-I and survivin in patients with active acne vulgaris and postinflammatory acne scars and to evaluate their lesional expressions in comparison to healthy controls. Serum IGF-I and survivin were estimated using commercially available ELISA kits and their tissues expressions were investigated using Western blotting. Our findings suggest that IGF-I and survivin could play potential roles in the pathogenesis of active acne vulgaris and more importantly in postinflammatory acne scars with significant positive correlation coefficient between serum levels of IGF-I and survivin which support IGF-I-/PI3K-/AKT-mediated downregulation of nuclear expression of FoxO transcription factors resulting in enhanced survivin expression. PMID:27803511

  7. Survivin as a Novel Biomarker in the Pathogenesis of Acne Vulgaris and Its Correlation to Insulin-Like Growth Factor-I.

    PubMed

    Assaf, Hanan A; Abdel-Maged, Wafaa M; Elsadek, Bakheet E M; Hassan, Mohammed H; Adly, Mohamed A; Ali, Soher A

    2016-01-01

    Survivin, a member of the inhibitor of apoptosis protein family, has an important role in cell cycle regulation. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone with wide range of biologic effects including stimulation of lipogenesis in sebaceous glands. Their overexpression in some fibrotic disorders suggests a possible implication of both IGF-I and survivin in the pathogenesis of acne and/or acne scars. The current study aimed to assess and correlate serum levels of IGF-I and survivin in patients with active acne vulgaris and postinflammatory acne scars and to evaluate their lesional expressions in comparison to healthy controls. Serum IGF-I and survivin were estimated using commercially available ELISA kits and their tissues expressions were investigated using Western blotting. Our findings suggest that IGF-I and survivin could play potential roles in the pathogenesis of active acne vulgaris and more importantly in postinflammatory acne scars with significant positive correlation coefficient between serum levels of IGF-I and survivin which support IGF-I-/PI3K-/AKT-mediated downregulation of nuclear expression of FoxO transcription factors resulting in enhanced survivin expression.

  8. Serum reference value of two potential doping candidates-myostatin and insulin-like growth factor-I in the healthy young male.

    PubMed

    Han, Der-Sheng; Huang, Chi-Huang; Chen, Ssu-Yuan; Yang, Wei-Shiung

    2017-01-01

    Myostatin negatively regulates muscle growth, and its inhibition by suitable proteins can increase muscle bulk and exercise performance. However, the reference values of serum myostatin in athletes performing strength training are still lacking. A cross-sectional study recruiting28 male collegiate athletes performing strength training and 29 age-matched normal controls was conducted. The serum concentration of myostatin and insulin-like growth factor 1 (IGF-1), grip strength, and body composition were the main outcome measures. We used regression models to analyze the correlation between serum markers and the physiological parameters. The athlete group had greater height, weight, body mass index (BMI), fat mass percentage, fat-free mass, muscle mass, waist girth, grip strength, and estimated daily energy expenditure. The IGF-1 concentration was higher in the athlete group (324 ± 80 vs. 263 ± 134 ng/ml), but the myostatin levels did not differ (12.1 ± 3.7 vs. 12.4 ± 3.5 ng/ml). The reference value for IGF-1 among the healthy young males was 293 ± 114 ng/ml, correlated with age and height; the value for myostatin was 12.3 ± 3.6 ng/ml, correlated negatively with BMI, fat mass percentage, and waist girth after adjustment for age. Myostatin level is negatively related to fat percentage, and serum IGF-1 is positively related to height. The reference values could provide a basis for future doping-related study.

  9. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p-CREB.

    PubMed

    Chen, Bai Hui; Ahn, Ji Hyeon; Park, Joon Ha; Song, Minah; Kim, Hyunjung; Lee, Tae-Kyeong; Lee, Jae Chul; Kim, Young-Myeong; Hwang, In Koo; Kim, Dae Won; Lee, Choong-Hyun; Yan, Bing Chun; Kang, Il Jun; Won, Moo-Ho

    2018-04-25

    Rufinamide is a novel antiepileptic drug and commonly used in the treatment of Lennox-Gastaut syndrome. In the present study, we investigated effects of rufinamide on cognitive function using passive avoidance test and neurogenesis in the hippocampal dentate gyrus using Ki-67 (a marker for cell proliferation), doublecortin (DCX, a marker for neuroblast) and BrdU/NeuN (markers for newly generated mature neurons) immunohistochemistry in aged gerbils. Aged gerbils (24-month old) were treated with 1 mg/kg and 3 mg/kg rufinamide for 4 weeks. Treatment with 3 mg/kg rufinamide, not 1 mg/kg rufinamide, significantly improved cognitive function and increased neurogenesis, showing that proliferating cells (Ki-67-immunoreactive cells), differentiating neuroblasts (DCX-immunoreactive neuroblasts) and mature neurons (BrdU/NeuN-immunoreactive cells) in the aged dentate gyrus compared with those in the control group. When we examined its mechanisms, rufinamide significantly increased immunoreactivities of insulin-like growth factor-1 (IGF-1), its receptor (IGF-1R), and phosphorylated cAMP response element binding protein (p-CREB). However, rufinamide did not show any increase in immunoreactivities of brain-derived neurotrophic factor and its receptor. Therefore, our results indicate that rufinamide can improve cognitive function and increase neurogenesis in the hippocampus of the aged gerbil via increasing expressions of IGF-1, IGF-1R and p-CREB. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    PubMed

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  11. Transformation of a MGUS to overt multiple myeloma: the possible role of a pituitary macroadenoma secreting high levels of insulin-like growth factor 1 (IGF-1).

    PubMed

    Tucci, Alessandra; Bonadonna, Stefania; Cattaneo, Chiara; Ungari, Marco; Giustina, Andrea; Guiseppe, Rossi

    2003-03-01

    We present a female patient with monoclonal gammopathy of undetermined significance who has remained stable for five years but evolved to overt myeloma in strict temporal relationship with the diagnosis of GH-secreting pituitary macroadenoma. IGF-I serum levels correlated with serum and urine M component. Since the in vitro role of IGF-I on proliferation and survival of normal and neoplastic plasma cells has been recently emphasized, the pathogenetic link between acromegaly and transformation of gammopathy to overt myeloma in this case is discussed.

  12. Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation.

    PubMed

    Wan, Xiaojuan; Wang, Songbo; Xu, Jingren; Zhuang, Lu; Xing, Kongping; Zhang, Mengyuan; Zhu, Xiaotong; Wang, Lina; Gao, Ping; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Li, Tiejun; Shu, Gang; Jiang, Qingyan

    2017-01-01

    Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.

  13. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less

  14. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    PubMed Central

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  15. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    PubMed

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  16. Growth responses in a mutant dwarf rat to human growth hormone and recombinant human insulin-like growth factor I.

    PubMed

    Skottner, A; Clark, R G; Fryklund, L; Robinson, I C

    1989-05-01

    A new mutant GH-deficient dwarf rat has been used to study the effects of iv infusions of human GH (hGH) and recombinant human insulin-like growth factor I (hIGF-I). This animal has only about 5% of normal pituitary GH content, low circulating GH levels, and no regular GH surges. The defect seems to be specific for GH. Infusions of hIGF-I at 180 micrograms/day for 9 days elevated serum IGF-I concentrations significantly over those in the saline-infused controls (713 +/- 20 ng/ml vs. 395 +/- 31 ng/ml); hGH infusions did not raise IGF-I levels significantly (435 +/- 20 ng/ml). Gel filtration of serum samples showed that the high-dose hIGF-I infusions increased free IGF concentrations, without apparently altering the pattern of IGF-I binding whereas hGH infusions increased the amount of high mol wt IGF-I binding protein. Neither IGF-I nor hGH infusions affected the small amounts of rat GH present in the dwarf rat pituitary glands. Continuous iv infusions of hGH (200 mU/day for 9 days) stimulated body wt gain (2.1 +/- 0.2 g/day) and bone growth (96 +/- 9 microns/day) significantly compared to saline-infused dwarf rats (1.2 +/- 0.3 g/day and 43 +/- 3 microns/day). Infusions of hIGF-I at 180 micrograms/day produced a body wt gain (2.1 +/- 0.5 g/day) similar to that seen in the hGH-infused group but a significantly smaller stimulation of bone growth (63 +/- 3 microns/day). Infusion of a 5-fold lower dose of hIGF-I (36 micrograms/day for 9 days) had no effect on body wt or bone growth. Food intake was unaffected by either hGH or hIGF-I infusions. The pattern of tissue growth was affected differentially by hGH and IGF-I infusions that produced the same overall body wt gain. hGH induced a relatively proportional growth in most of the organs studied, whereas hIGF-I infusion at 180 micrograms/day stimulated a disproportionately greater growth of the kidney, adrenals, and spleen. In some of the animals, tissues were extracted for RIA of IGF-I; the amounts of IGF-I in the liver

  17. Assessment of insulin like growth factor-1 and IGF binding protein-3 in healthy Indian girls from Delhi and their correlation with age, pubertal status, obesity and thyroid hormonal status.

    PubMed

    Marwaha, Raman K; Garg, M K; Gupta, Sushil; Khurana, A K; Narang, Archna; Shukla, Manoj; Arora, Preeti; Chadha, Aditi; Nayak, Deb Datta; Manchanda, R K

    2017-07-26

    Population specific data and influence of sub-clinical hypothyroidism on insulin like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3) in Indian children is lacking. This study was undertaken to evaluate serum IGF-1 and IGFBP-3 and their correlation with age, gender, pubertal status and thyroid functions. A total of 840 apparently healthy school girls aged 6-18 years, were recruited for the study and underwent assessment of height, weight, body mass index, pubertal status and serum T3, T4, TSH, IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio. The mean serum levels of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio were 381.8±240.5 ng/mL, 4.19±2.08 μg/mL and 40.5±37.2%, respectively. The serum IGF-1 and IGF-1/IGFBP-3 molar ratio increased significantly (p<0.0001) at 11 years followed by a steady yet non-significant rise till 16 years of age. A similar pattern was observed for IGFBP-3 showing a steep rise at 12 years and peaking at 16 years. Likewise, serum levels of IGF-1 and molar ratio of IGF-1/IGFBP-3 increased significantly with pubertal maturation from stage 1 to 3 and were higher in overweight girls compared to normal weight and obese girls. The growth factors were no different in girls with or without subclinical hypothyroidism. There was no significant impact of age on IGF-1 and IGFBP-3 in pre-pubertal girls. A sudden marked increase at 11 years followed by a gradual rise in growth factors till 16 years is indicative of pubertal initiation and maturation. Subclinical hypothyroidism did not influence growth factors in girls.

  18. Increased cardiogenesis in P19-GFP teratocarcinoma cells expressing the propeptide IGF-1Ea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Bhawana; Bilbao, Daniel; Sarathchandra, Padmini

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer In this study, we explored the function of IGF-1Ea propeptide in inducing cardiogenesis of stem cells. Black-Right-Pointing-Pointer IGF-1Ea promoted cardiac mesodermal induction in uncommitted cells. Black-Right-Pointing-Pointer Under differentiation condition, IGF-1Ea increased expression of cardiac differentiation markers. Black-Right-Pointing-Pointer Furthermore, it promoted formation of finely organized sarcomeric structure. Black-Right-Pointing-Pointer IGF-1Ea propeptide may be a good candidate to improve production of cardiomyocytes from pluripotent cells. -- Abstract: The mechanism implicated in differentiation of endogenous cardiac stem cells into cardiomyocytes to regenerate the heart tissue upon an insult remains elusive, limiting the therapeutical goals to exogenous cell injection and/or gene therapy. Wemore » have shown previously that cardiac specific overexpression of the insulin-like growth factor 1 propeptide IGF-1Ea induces beneficial myocardial repair after infarct. Although the mechanism is still under investigation, the possibility that this propeptide may be involved in promoting stem cell differentiation into the cardiac lineage has yet to be explored. To investigate whether IGF-1Ea promote cardiogenesis, we initially modified P19 embryonal carcinoma cells to express IGF-1Ea. Taking advantage of their cardiomyogenic nature, we analyzed whether overexpression of this propeptide affected cardiac differentiation program. The data herein presented showed for the first time that constitutively overexpressed IGF-1Ea increased cardiogenic differentiation program in both undifferentiated and DMSO-differentiated cells. In details, IGF-1Ea overexpression promoted localization of alpha-actinin in finely organized sarcomeric structure compared to control cells and upregulated the cardiac mesodermal marker NKX-2.5 and the ventricular structural protein MLC2v. Furthermore, activated IGF-1 signaling promoted cardiac

  19. Is there a role for IGF-1 in the development of second primary cancers?

    PubMed

    Shanmugalingam, Thurkaa; Bosco, Cecilia; Ridley, Anne J; Van Hemelrijck, Mieke

    2016-11-01

    Cancer survival rates are increasing, and as a result, more cancer survivors are exposed to the risk of developing a second primary cancer (SPC). It has been hypothesized that one of the underlying mechanisms for this risk could be mediated by variations in insulin-like growth factor-1 (IGF-1). This review summarizes the current epidemiological evidence to identify whether IGF-1 plays a role in the development of SPCs. IGF-1 is known to promote cancer development by inhibiting apoptosis and stimulating cell proliferation. Epidemiological studies have reported a positive association between circulating IGF-1 levels and various primary cancers, such as breast, colorectal, and prostate cancer. The role of IGF-1 in increasing SPC risk has been explored less. Nonetheless, several experimental studies have observed a deregulation of the IGF-1 pathway, which may explain the association between IGF-1 and SPCs. Thus, measuring serum IGF-1 may serve as a useful marker in assessing the risk of SPCs, and therefore, more translational experimental and epidemiological studies are needed to further disentangle the role of IGF-1 in the development of specific SPCs. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1.

    PubMed

    Dobie, Ross; Ahmed, Syed F; Staines, Katherine A; Pass, Chloe; Jasim, Seema; MacRae, Vicky E; Farquharson, Colin

    2015-11-01

    Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like-growth factor-1 (IGF-1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling-2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF-1 levels. Wild-type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF-1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF-1 levels were unchanged in GH-challenged postnatal Socs2(-/-) conditioned medium despite metatarsals showing enhanced linear growth. Growth-plate Igf1 mRNA levels were not elevated in juvenile Socs2(-/-) mice. GH did however elevate IGF-binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2(-/-) metatarsals. GH did not enhance the growth of Socs2(-/-) metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF-2 may be responsible as IGF-2 promoted metatarsal growth and Igf2 expression was elevated in Socs2(-/-) (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2(-/-) mice, promoting growth via a mechanism that is independent of IGF-1. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  1. G Allele of the IGF2 ApaI Polymorphism Is Associated With Judo Status.

    PubMed

    Itaka, Toshio; Agemizu, Kenichiro; Aruga, Seiji; Machida, Shuichi

    2016-07-01

    Itaka, T, Agemizu, K, Aruga, S, and Machida, S. G allele of the IGF2 ApaI polymorphism is associated with judo status. J Strength Cond Res 30(7): 2043-2048, 2016-Previous studies have reported that the insulin-like growth factor 2 (IGF2) ApaI polymorphism is associated with body mass index, fat mass, and grip strength. Competitive judo requires high levels of strength and power. The purpose of this study was to investigate the association between the IGF2 ApaI and ACTN3 R577X polymorphisms and judo status. The subjects were 156 male judo athletes from a top-level university in Japan. They were divided into 3 groups based on their competitive history: international-level athletes, national-level athletes, and others. Genomic DNA was extracted from the saliva of each athlete, and the maximal isometric strength of the trunk muscles and handgrip strength were measured. Genotyping by polymerase chain reaction-restriction fragment length polymorphism was used to detect IGF2 (rs680) and α-actinin-3 (ACTN3) (rs1815739) gene polymorphisms. The genotype frequencies of the 2 gene polymorphisms were compared among the 3 groups of judo athletes and controls. International-level judo athletes showed a higher frequency of the GG + GA genotype of the IGF2 gene than that of the national-level athletes and others. There was an inverse linear correlation between the frequency of the IGF2 AA genotype and level of judo performance (p = 0.041). Back muscle strength relative to height and weight was higher in subjects with the GG + GA genotype than in those with the AA genotype. Conversely, the ACTN3 R577X polymorphism was not associated with judo status. Additionally, no differences were found in back muscle or handgrip strength among the ACTN3 genotypes. In conclusion, the results indicate that the IGF2 gene polymorphism may be associated with judo status.

  2. Hand size and growth in untreated and IGF-I treated patients with Laron syndrome.

    PubMed

    Konen, O; Silbergeld, A; Lilos, P; Kornreich, L; Laron, Z

    2009-03-01

    We have previously reported on the linear growth, growth of the head circumference and foot length in untreated and IGF-I treated patients with Laron syndrome (LS) (primary GH insensitivity). To assess the size and growth of the hands in patients with LS from early childhood to adult age. Ten IGF-I treated children with LS (4 M, 6 F) and 24 untreated patients (10 M, 14 F) were studied. Measurements of palm length were made on available standardized hand X-rays from infancy to adult age. The measurements were compared to normal references and SD values were calculated for each measurement. The growth of the hand was compared to the concomitant height of the body. Hand SDS in untreated patients with LS decreased with age, from a mean of -2.8 +/- 0.7 (age 1-3 years) to -7.3 +/- 0.8 (age 13-15 years) and to -9.0 +/- 3.9 (age 40-50 years). During 9 years of IGF-I treatment the hand size deficit SDS did not improve in contradistinction to the height SDS which decreased from -6.2 +/- 1.2 to -3.9 +/- 0.5. Congenital IGF-I deficiency, as in Laron syndrome, profoundly affects the size and growth of the hand as part of its growth retardation characteristics, resulting in acromicria.

  3. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    PubMed Central

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  4. Feed restriction and insulin-like growth factor-I (IGF-I) affect the oocyte maturation in matrinxã Brycon amazonicus.

    PubMed

    Montrezor, Luís Henrique; Urbinati, Elisabeth Criscuolo

    2017-02-01

    The feeding and nutrition of breeders are crucial aspects in the reproductive process. During the maturation period, metabolic changes occur aiming at mobilizing energy for growth and follicular development. The involvement of IGF-1 in metabolic and reproductive events is important. The aim of this work was to evaluate if alternate feed restriction and re-feeding have permissive effects on in vitro actions of IGF-1 on oocytes development of matrinxã. In vivo experiments were performed during vitellogenesis period. Females (n = 60) were fed with a commercial feed (2% of biomass) and they were divided into two treatments: fish receiving food daily (control - fed), and fish submitted to cycles of 3 days of feed restriction and 2 days of re-feeding (no-fed group). For the in vitro experiments, oocytes (n = 20) were obtained from the ovaries removed at the end of the in vivo experiment and were divided into four groups: fed -IGF-1; fed +IGF-1; no-fed -IGF-1 and no-fed +IGF-1. Fish under restriction had lower body weights, decreased plasma glucose, increased triglycerides levels, and their final maturation and mature oocyte were reduced and the atresic ones were in higher number. Moreover, IGF-1, in vitro, increased the percentage of mature oocytes in fed females and decreased the atresic ones. In no-fed females, IGF-1 increased the final maturation and mature oocytes and reduced the atresic ones. This study demonstrates the importance of the feeding management of female breeders of matrinxã during the vitellogenesis period.

  5. Insulin-Like Growth Factor-I is a Marker for the Nutritional State

    PubMed Central

    Hawkes, Colin P; Grimberg, Adda

    2017-01-01

    Measurement of the serum concentration of insulin-like growth factor-1 (IGF-I) is generally used as a screening investigation for disorders of the growth hormone (GH)/IGF-I axis in children and adolescents with short stature. IGF-I concentration is sensitive to short-term and chronic alterations in the nutritional state, and the interpretation of IGF-I measurements requires knowledge of the child’s nutritional status. In this review, we summarize the effects of nutrition on the GH/IGF-I axis, and review the clinical implications of these interactions throughout childhood, both in under-nutrition and over-nutrition. PMID:26841638

  6. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats.

    PubMed

    Lékó, András H; Cservenák, Melinda; Dobolyi, Árpád

    2017-12-01

    Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and p<0.001) and caused a marked increase of IGF-1 level 30min after the start of suckling (p<0.001). We demonstrated a significant (p<0.05; the correlation coefficient was 0.29) correlation to PRL level during suckling which supports that PRL could induce IGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and p<0.001) while the acute treatment did not have any effect compared to artificial cerebrospinal fluid injection, analysed with two-way repeated measures ANOVA. In conclusion, suckling induces IGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [The influence of partial dorsal root rhizotomy on IGF-I expression in spared root ganglion and spinal cord].

    PubMed

    Wang, Wei-min; Guan, Yu-guang; Liu, Fen; Wang, Ting-hua; Xu, Xin-yun; Ke, Qing; Lu, Yong-chao; Yuan, Yuan

    2005-01-01

    To explore the temporospatial changes of IGF-I expression in the spared dorsal root ganglia (DRG, L6) on the operated side and un-operated side, in the spinal lamina II (L3, L5, L6) and Clarke's nucleus (L3) of the adult cats that have undergone partial dorsal rhizotomy, and compare them against those of the normal adult cats so as to unveil the relation between IGF-I and the plasticity of spinal cord. Fifteen male adult cats were divided into three groups. The cats of two groups were subjected to unilateral partial dorsal root rhizotomy (L1-L5, L7-S2 DRG were sectioned, but L6 was spared) and were sacrificed at 7 days and 14 days after operation. The bilateral L6 dorsal root ganglia and L3, L5, L6 spinal cord of all groups were made into frozen sections 20 microm thick. Then, the sections were stained by the immunohistochemistry ABC method using IGF-I (1:200, Santa Cruz) antibody. The distribution and the number of IGF-I positive neurons in bilateral spared DRG (L6) on the operated/un-operated side, in spinal lamina I (L3, L5, L6) and in Clarke' nucleus (L3) of each animal were observed and counted. All data were analyzed by one-way ANOVA, SNK-q test and paired-t test. (1) Seven days after partial dorsal root rhizotomy, the number of IGF-I positive neurons in spared DRG on the operated side declined as compared with that of normal group (P<0.05), but it was not significantly different from that of L6 spared DRG on the un-operated side (P>0.05). On the 14th day, the IGF-I expression in neurons of L6 DRG on the operated side was significantly lower than that of normal group and that of L6 spared DRG on the unoperated side (P<0.01), but it was not significantly different from that of the 7th day group (P>0.05). (2) There was no difference in number of IGF-I positive neuron in L3, L5, L6 spinal lamina II between normal group, 7th day post-operation group and 14th day post-operation group (P>0.05). After operation, IGF-I expression in Clarke's nucleus declined on the 7

  8. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats.

    PubMed

    Tang, Xiahong; Chen, Feng; Lin, Qinming; You, Yan; Ke, Jun; Zhao, Shen

    2017-11-01

    The present study aimed to investigate the beneficial effects and underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on global ischemic hypoxic brain injury. Cells collected from the femurs and tibias of male Sprague Dawley rats were used to generate BMSCs following three culture passages. A rate model of cardiac arrest (CA) was induced by asphyxia. One hour following return of spontaneous circulation (ROSC), BMSCs were transplanted through injection into the tail vein. Neurological status was assessed using modified neurological severity score (mNSS) tests 1, 3 and 7 days following ROSC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining were used to detect insulin-like growth factor 1 (IGF-1) expression in the hippocampus. Furthermore, double-fluorescent labeling of green fluorescent protein (GFP) and IGF-1 was used to detect the IGF-1 expression in transplanted BMSCs. Serum levels of protein S100-B were examined using ELISA. GFP-labeled BMSCs were observed in the hippocampus at 1, 3 and 7 days post transplantation through fluorescent microscopy. BMSC transplantation resulted in reduced protein S100-B levels. The mNSS of the BMSC-treatment group was significantly reduced compared with that of the CA group. The RT-qPCR analysis and immunohistochemistry results demonstrated that BMSC treatment significantly increased IGF-1 expression in the hippocampus. In addition, the double-fluorescent labeling results demonstrated that transplanted BMSCs expressed IGF-1 in the hippocampus. The results of the present study suggest that BMSC treatment promotes the recovery of cerebral function following CA in rats possibly through the secretion of IGF-1.

  9. Influence of energy deficiency on the insulin-like growth factor I axis in a military training program.

    PubMed

    Gomez-Merino, D; Chennaoui, M; Drogou, C; Guezennec, C Y

    2004-07-01

    The aim of this study was to determine wether continuous heavy physical activities as well as lack of food and sleep during military training (three weeks of conditioning followed by a five-day combat course) alter serum concentrations of IGF-I and/or its binding proteins, evaluating the relationship to metabolic changes. Before and after training, we measured serum levels of both total and free IGF-I, IGFBP-1 and IGFBP-3 as well as plasma levels of branched-chain amino acids (valine, leucine and isoleucine) and glucose from 26 cadets (21 +/- 2 yr). Total and free IGF-I levels were decreased after training from 228 +/- 12 to 160 +/- 7 ng/ml and from 0.80 +/- 0.08 to 0.52 +/- 0.06 ng/ml, p < 0.001 respectively) as well as IGFBP-3 (p < 0.001), while IGFBP-1 levels were increased (p < 0.001). BCAA levels were decreased from 245.4 +/- 7.5 to 215.9 +/- 5.1 micromol/l, p < 0.001, while those of glucose remained unchanged. There were correlations between changes in total IGF-I and IGFBP-3 (p < 0.05) and between free IGF-I and IGFBP-1 (p < 0.01). Several correlations appeared between changes in all the components of the IGF-I axis and branched-chain amino acids. We concluded that responses of the IGF-I system during an intense training could represent an adaptative response to the encountered energy deficiency, resulting a diversion of substrate from growth to acute metabolic needs.

  10. Short-term increase of serum troponin I and serum heart-type fatty acid-binding protein (H-FABP) in dogs following administration of formoterol.

    PubMed

    Strauss, Volker; Wöhrmann, Thomas; Frank, Ilona; Hübel, Ulrich; Luft, Jörg; Bode, Gerd; Germann, Paul-Georg

    2010-07-01

    In this paper, changes in serum levels of the cardiac biomarkers troponin I and the heart-type fatty acid-binding protein (H-FABP) following administration of a long-acting beta(2)-sympathicomimeticum (long-acting beta-agonist, LABA) to dogs were measured. We measured troponin I in dogs in a 4-week repeated-dose study with inhalative administration of formoterol (13microg/kgd) and a glucocorticoid/formoterol combination (143/16microg/kgd). The medians of troponin I increased within 3 days in both groups, far beyond the cut-off level (0.1microg/L), but returned to baseline levels on study day 9. The increase was more pronounced in the formoterol-only group (3.29microg/L) compared to the glucocorticoid/formoterol combination group (1.32microg/L). In a second study, we measured serum troponin I as well as serum H-FABP levels in several samples over 7 days in dogs, receiving a single inhalative dose of a glucocorticoid/formoterol combination (120/12mug/kgd). The median of the troponin I concentration increased above the cut-off level within 2h and that of H-FABP within 4h. The medians of both parameters were temporarily above the cut-off levels even on study day 7. Both studies were conducted according to national animal welfare guidelines. To our knowledge, this is the first report that shows a corresponding increase of troponin I and H-FABP in dogs treated with formoterol. Both parameters are more sensitive in detecting a drug-induced cardiac injury compared to total LDH, total CK as well as CK MB activity. However, it is recommended to take at least three blood samples per day to assess a temporary increase of troponin I.

  11. IGF-I and relation to growth in infancy and early childhood in very-low-birth-weight infants and term born infants.

    PubMed

    de Jong, Miranda; Cranendonk, Anneke; Twisk, Jos W R; van Weissenbruch, Mirjam M

    2017-01-01

    In very-low-birth-weight infants IGF-I plays an important role in postnatal growth restriction and is probably also involved in growth restriction in childhood. We compared IGF-I and its relation to growth in early childhood in very-low-birth-weight infants and term appropriate for gestational age born infants. We included 41 very-low-birth-weight and 64 term infants. Anthropometry was performed at all visits to the outpatient clinic. IGF-I and insulin were measured in blood samples taken at 6 months and 2 years corrected age (very-low-birth-weight children) and at 3 months, 1 and 2 years (term children). Over the first 2 years of life growth parameters are lower in very-low-birth-weight children compared to term children, but the difference in length decreases significantly. During the first 2 years of life IGF-I is higher in very-low-birth-weight children compared to term children. In both groups there is a significant relationship between IGF-I and (change in) length and weight over the first 2 years of life and between insulin and change in total body fat. Considering the relation of IGF-I to growth and the decrease in difference in length, higher IGF-I levels in very-low-birth-weight infants in early childhood probably have an important role in catch-up growth in length.

  12. Effects of space flight and IGF-1 on immune function

    NASA Astrophysics Data System (ADS)

    1999-01-01

    We tested the hypothesis that insulin-like growth factor-1 (IGF-1) would ameliorate space flight-induced effects on the immune system. Twelve male, Sprague-Dawley rats, surgically implanted with mini osmotic pumps, were subjected to space flight for 10 days on STS-77. Six rats received 10 mg/kg/day of IGF-1 and 6 rats received saline. Flight animals had a lymphocytopenia and granulocytosis which were reversed by IGF-1. Flight animals had significantly higher corticosterone levels than ground controls but IGF-1 did not impact this stress hormone. Therefore, the reversed granulocytosis did not correlate with serum corticosterone. Space flight and IGF-1 also combined to induce a monocytopenia that was not evident in ground control animals treated with IGF-1 or in animals subjected to space flight but given physiological saline. There was a significant increase in spleen weights in vivarium animals treated with IGF-1, however, this change did not occur in flight animals. We observed reduced agonist-induced lymph node cell proliferation by cells from flight animals compared to ground controls. The reduced proliferation was not augmented by IGF-1 treatment. There was enhanced secretion of TNF, IL-6 and NO by flight-animal peritoneal macrophages compared to vivarium controls, however, O2- secretion was not affected. These data suggest that IGF-1 can ameliorate some of the effects of space flight but that space flight can also impact the normal response to IGF-1.

  13. Congenital hypothyroidism in a kitten resulting in decreased IGF-I concentration and abnormal liver function tests.

    PubMed

    Quante, Saskia; Fracassi, Federico; Gorgas, Daniela; Kircher, Patrick R; Boretti, Felicitas S; Ohlerth, Stefanie; Reusch, Claudia E

    2010-06-01

    A 7-month-old male kitten was presented with chronic constipation and retarded growth. Clinical examination revealed disproportional dwarfism with mild skeletal abnormalities and a palpable thyroid gland. The presumptive diagnosis of congenital hypothyroidism was confirmed by low serum total thyroxine (tT(4)) concentration prior to and after the administration of thyroid stimulation hormone (TSH), increased endogenous TSH concentration and abnormal thyroid scintigraphic scan. The kitten had abnormal liver function tests and decreased insulin-like growth factor 1 (IGF-1) concentration, both of which returned to normal in correspondence with an improvement of the clinical signs after 6 weeks of thyroxine therapy. Congenital hypothyroidism is a rare disease that may present with considerable variation in clinical manifestation. In cases in which clinical signs are ambiguous, disorders such as portosystemic shunt and hyposomatotropism have to be taken into account as differential diagnosis. As hypothyroidism may be associated with abnormal liver function tests and low IGF-1 concentrations, test results have to be interpreted carefully. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  14. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    PubMed Central

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  15. Insulin-Like Growth Factor 1 (IGF-1) in Parkinson's Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors.

    PubMed

    Bernhard, Felix P; Heinzel, Sebastian; Binder, Gerhard; Weber, Karin; Apel, Anja; Roeben, Benjamin; Deuschle, Christian; Maechtel, Mirjam; Heger, Tanja; Nussbaum, Susanne; Gasser, Thomas; Maetzler, Walter; Berg, Daniela

    2016-01-01

    Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson's disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1). IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated. PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters. Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders.

  16. Using mass spectrometry to detect, differentiate, and semiquantitate closely related peptide hormones in complex milieu: measurement of IGF-II and vesiculin.

    PubMed

    Lee, Kate L; Middleditch, Martin J; Williams, Geoffrey M; Brimble, Margaret A; Cooper, Garth J S

    2015-03-01

    The search for an islet β-cell growth factor has been a key objective in recent diabetes research, because the ability to regenerate and/or protect the functioning β-cell population in patients could result in a great advancement for diabetes treatment. IGF-I and IGF-II are known to play crucial roles in fetal growth and prenatal development, and there is growing evidence that IGF-II increases β-cell proliferation and survival in vitro and in vivo. A search for the source of IGF-II-like immunoreactivity in isolated β-cell secretory granules from the murine cell line βTC6-F7 revealed a novel 2-chain IGF-II-derived peptide, which we named vesiculin and which has been shown to be a full insulin agonist. Here, we present a liquid chromatography-tandem mass spectrometry method that enables selective detection and semiquantitation of the highly related IGF-II and vesiculin molecules. We have used this method to measure these 2 peptides in conditioned media from 2 β-cell lines, produced under increasing glucose concentrations. This technique detected both IGF-II and vesiculin in media conditioned by MIN6 and βTC6-F7 cells at levels in the range of 0 to 6 μM (total insulin, 80-450 μM) and revealed a glucose-stimulated increase in insulin, IGF-II, and vesiculin. IGF-II was detected in adult human and neonatal mouse serum in high levels, but vesiculin was not present. The methodology we present herein has utility for detecting and differentiating active peptides that are highly related and of low abundance.

  17. The Protective Effects of IGF-I against β-Amyloid-related Downregulation of Hippocampal Somatostatinergic System Involve Activation of Akt and Protein Kinase A.

    PubMed

    Aguado-Llera, David; Canelles, Sandra; Frago, Laura M; Chowen, Julie A; Argente, Jesús; Arilla, Eduardo; Barrios, Vicente

    2018-03-15

    Somatostatin (SRIF), a neuropeptide highly distributed in the hippocampus and involved in learning and memory, is markedly reduced in the brain of Alzheimer's disease patients. The effects of insulin-like growth factor-I (IGF-I) against β amyloid (Aβ)-induced neuronal death and associated cognitive disorders have been extensively reported in experimental models of this disease. Here, we examined the effect of IGF-I on the hippocampal somatostatinergic system in Aβ-treated rats and the molecular mechanisms associated with changes in this peptidergic system. Intracerebroventricular Aβ25-35 administration during 14 days (300 pmol/day) to male rats increased Aβ25-35 levels and cell death and markedly reduced SRIF and SRIF receptor 2 levels in the hippocampus. These deleterious effects were associated with reduced Akt and cAMP response element-binding protein (CREB) phosphorylation and activation of c-Jun N-terminal kinase (JNK). Subcutaneous IGF-I co-administration (50 µg/kg/day) reduced hippocampal Aβ25-35 levels, cell death and JNK activation. In addition, IGF-I prevented the reduction in the components of the somatostatinergic system affected by Aβ infusion. Its co-administration also augmented protein kinase A (PKA) activity, as well as Akt and CREB phosphorylation. These results suggest that IGF-I co-administration may have protective effects on the hippocampal somatostatinergic system against Aβ insult through up-regulation of PKA activity and Akt and CREB phosphorylation. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Insulin-like growth factor-binding protein-3 (IGFBP-3) but not insulin-like growth factor-I (IGF-I) remains elevated in euthyroid TSH-suppressed Graves' disease.

    PubMed

    Wan Nazaimoon, W M; Khalid, B A

    1998-04-01

    Thyroid hormones have been shown to be involved in the regulation of insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (IGFBP-3) expression. This is a cross-sectional study to look at the effects of thyroid hormone status on the circulating levels of IGF-I and IGFBP-3 in a group of 127 patients, aged 20-80 years, who were hyperthyroid, hypothyroid, rendered euthyroid and clinically euthyroid with normal free thyroxine (fT4), but suppressed thyroid stimulating hormone (TSH) levels. TSH was measured by the IMx (Abbott) ultrasensitive assay, while radioimmunoassays for total T3 and T4 were performed using kits from ICN, USA; fT4 and fT3 using kits from DPC USA; IGF-I and IGFBP-3 using kits from Nichols Institute Diagnostics B.V., Netherlands. Differences in the levels of IGF-I between the 4 groups of patients were significant only in the patients aged 20-40. Mean (+/-SEM) IGF-I levels of hypothyroid patients (169+/-19ng/ml) was significantly lower than hyperthyroid (315+/-26 ng/ml, p=0.003), euthyroid patients (241+/-19 ng/ml, p=0.002) and patients with suppressed TSH (308+/-29 ng/ml, p=0.02). The IGF-I levels of the hyperthyroid and suppressed TSH patients were, however, comparable to age-matched normal subjects (281+/-86 ng/ml). Although there was no difference in mean IGFBP-3 levels between the 4 groups of patients, the levels in the patients aged 20-40 with hyperthyroidism (3.7+/-0.9 microg/ml) and suppressed TSH (3.9+/-1.2 microg/ml) were significantly higher (p=0.02) than age-matched normal subjects (3.1+/-0.8 microg/ml). The IGF-I levels of the thyroid patients aged 20-40 showed significant negative correlation to TSH and positive correlations to the thyroid hormones. Hence, whilst low IGF-I is associated with hypothyroidism, high IGFBP-3 is associated with hyperthyroidism. Our finding that IGFBP-3 remained significantly elevated in patients with suppressed TSH but normalised fT4 and fT3 is important as it suggests a prolonged tissue effect of

  19. IGF-1 levels are significantly correlated with patient-reported measures of sexual function.

    PubMed

    Pastuszak, A W; Liu, J S; Vij, A; Mohamed, O; Sathyamoorthy, K; Lipshultz, L I; Khera, M

    2011-01-01

    Growth hormone (GH) supplementation may help to preserve erectile function. We assessed whether serum insulin-like growth factor 1 (IGF-1) levels, a surrogate for GH levels, correlate with sexual function scores in 65 men who completed the Sexual Health Inventory for Men (SHIM) and Expanded Prostate Cancer Index Composite (EPIC) questionnaires, and had serum IGF-1 and testosterone levels determined. Median±s.d. IGF-1 level, SHIM and EPIC scores were 235.0±86.4, 19.5±8.7 and 56.4±28.3 mg ml(-1), respectively. IGF-1 levels and total SHIM score correlate significantly (r=0.31, P=0.02), as do IGF-1 levels and all individual SHIM question scores, and IGF-1 levels and the sexual domain of the EPIC questionnaire (r=0.30, P=0.02). No correlation was observed between IGF-1 levels and Gleason score, IGF-1 and testosterone level or SHIM score and testosterone level. These data support a potential role for the GH axis in erectile function.

  20. Reducing blood glucose levels in TIDM mice with an orally administered extract of sericin from hIGF-I-transgenic silkworm cocoons.

    PubMed

    Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2014-05-01

    In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Short children with familial short stature show enhancement of somatotroph secretion but normal IGF-I levels.

    PubMed

    Bellone, S; Corneli, G; Bellone, J; Baffoni, C; Rovere, S; de Sanctis, C; Bona, G; Ghigo, E; Aimaretti, G

    2002-05-01

    The aim of the present study was to evaluate the GH status in children with familial, idiopathic short stature (FSS). To this goal we evaluated the GH response to GHRH (1 microg/kg iv) + arginine (ARG) (0.5 g/kg iv) test which is one of the most potent and reproducible provocative tests of somatotroph secretion, in 67 children with FSS [50 boys and 17 girls, age 10.8+/-0.4 yr, pubertal stages I-III, height between -3.6 and -1.6 standard deviation score (SDS), target height <10 degrees centile, normality of both spontaneous and stimulated GH secretion as well as of IGF-I levels]. The results in FSS were compared with those in groups of children of normal height (NHC) (42 NHC, 35 boys and 7 girls, age 12.0+/-0.5 yr, pubertal stages I-III, height between -1.3 and 1.4 SDS, height velocity standard deviation score (HVSDS)>25 degrees centile, GH peak >20 microg/l after GHRH+ARG test, mean GH concentration [mGHc]>3 microg/l) and children with organic GH deficiency (GHD) (38 GHD, 29 boys and 9 girls, age 11.2+/-3.7 yr, pubertal stages I-III, height between -5.7 and -1.3 SDS, GH peak <20 microg/l after GHRH +ARG test, mGHc <3 mg/l). Basal IGF-I levels and mGHc were also evaluated in each group over 8 nocturnal hours. IGF-I levels in FSS (209.2+/-15.6 microg/l) were similar to those in NHC (237.2+/-17.2 microg/l) and both were higher (p<0.0001) than those in GHD (72.0+/-4.0 microg/l). The GH response to GHRH +ARG test in FSS (peak: 66.4+/-5.6 microg/l) was very marked and higher (p<0.01) than that in NHC (53.3+/-4.5 microg/l) which, in turn, was higher (p<0.01) than in GHD (8.2+/-0.8 microg/l). Similarly, the mGHc in FSS was higher than in NHC (6.7+/-0.5 microg/l vs 5.1+/-0.7 microg/l, p<0.05) which, in turn, was higher than in GHD (1.5+/-0.2 microg/l, p<0.0001). In conclusion, our present study demonstrates that short children with FSS show enhancement of both basal and stimulated GH secretion but normal IGF-I levels. These findings suggest that increased somatotroph

  2. Exercise and obesity in fibromyalgia: beneficial roles of IGF-1 and resistin?

    PubMed Central

    2013-01-01

    Introduction Severe fatigue is a major health problem in fibromyalgia (FM). Obesity is common in FM, but the influence of adipokines and growth factors is not clear. The aim was to examine effects of exercise on fatigue, in lean, overweight and obese FM patients. Methods In a longitudinal study, 48 FM patients (median 52 years) exercised for 15 weeks. Nine patients were lean (body mass index, BMI 18.5 to 24.9), 26 overweight (BMI 25 to 29.9) and 13 obese. Fatigue was rated on a 0 to 100 mm scale (fibromyalgia impact questionnaire [FIQ] fatigue) and multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Higher levels in FIQ fatigue and MFIGF indicate greater degree of fatigue. Free and total IGF-1, neuropeptides, adipokines were determined in serum and cerebrospinal fluid (CSF). Results Baseline FIQ fatigue correlated negatively with serum leptin (r = -0.345; P = 0.016) and nerve growth factor (NGF; r = -0.412; P = 0.037). In lean patients, baseline MFIGF associated negatively with serum resistin (r = -0.694; P = 0.038). FIQ Fatigue associated negatively with CSF resistin (r = -0.365; P = 0.073). Similarly, FIQ fatigue (r = -0.444; P = 0.026) and MFIGF correlated negatively with CSF adiponectin (r = -0.508; P = 0.01). In lean patients, FIQ fatigue (P = 0.046) decreased after 15 weeks. After 30 weeks, MFIGF decreased significantly in lean (MFIGF: P = 0.017), overweight (MFIGF: P = 0.001), and obese patients (MFIGF: P = 0.016). After 15 weeks, total IGF-1 increased in lean (P = 0.043) patients. ∆Total IGF-1 differed significantly between lean and obese patients (P = 0.010). ∆Total IGF-1 related negatively with ∆MFIGF after 15 weeks (r = -0.329; P = 0.050). After 30 weeks, ∆FIQ fatigue negatively correlated with ∆NGF (r = -0.463; P = 0.034) and positively with ∆neuropeptide Y (NPY) (r = 0.469; P = 0.032). Resistin increased after 30 weeks (P = 0.034). ∆MFIGF correlated negatively with ∆resistin (r = -0.346; P = 0.031), being strongest in

  3. Exercise and obesity in fibromyalgia: beneficial roles of IGF-1 and resistin?

    PubMed

    Bjersing, Jan L; Erlandsson, Malin; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2013-02-27

    Severe fatigue is a major health problem in fibromyalgia (FM). Obesity is common in FM, but the influence of adipokines and growth factors is not clear. The aim was to examine effects of exercise on fatigue, in lean, overweight and obese FM patients. In a longitudinal study, 48 FM patients (median 52 years) exercised for 15 weeks. Nine patients were lean (body mass index, BMI 18.5 to 24.9), 26 overweight (BMI 25 to 29.9) and 13 obese. Fatigue was rated on a 0 to 100 mm scale (fibromyalgia impact questionnaire [FIQ] fatigue) and multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Higher levels in FIQ fatigue and MFIGF indicate greater degree of fatigue. Free and total IGF-1, neuropeptides, adipokines were determined in serum and cerebrospinal fluid (CSF). Baseline FIQ fatigue correlated negatively with serum leptin (r=-0.345; P=0.016) and nerve growth factor (NGF; r=-0.412; P=0.037). In lean patients, baseline MFIGF associated negatively with serum resistin (r=-0.694; P=0.038). FIQ Fatigue associated negatively with CSF resistin (r=-0.365; P=0.073). Similarly, FIQ fatigue (r=-0.444; P=0.026) and MFIGF correlated negatively with CSF adiponectin (r=-0.508; P=0.01). In lean patients, FIQ fatigue (P=0.046) decreased after 15 weeks. After 30 weeks, MFIGF decreased significantly in lean (MFIGF: P=0.017), overweight (MFIGF: P=0.001), and obese patients (MFIGF: P=0.016). After 15 weeks, total IGF-1 increased in lean (P=0.043) patients. ∆Total IGF-1 differed significantly between lean and obese patients (P=0.010). ∆Total IGF-1 related negatively with ∆MFIGF after 15 weeks (r=-0.329; P=0.050). After 30 weeks, ∆FIQ fatigue negatively correlated with ∆NGF (r=-0.463; P=0.034) and positively with ∆neuropeptide Y (NPY) (r=0.469; P=0.032). Resistin increased after 30 weeks (P=0.034). ∆MFIGF correlated negatively with ∆resistin (r=-0.346; P=0.031), being strongest in obese patients (r=-0.815; P=0.007). In obese patients, ∆FIQ fatigue after 30 weeks

  4. IGF-I and relation to growth in infancy and early childhood in very-low-birth-weight infants and term born infants

    PubMed Central

    de Jong, Miranda; Cranendonk, Anneke; Twisk, Jos W. R.; van Weissenbruch, Mirjam M.

    2017-01-01

    Background In very-low-birth-weight infants IGF-I plays an important role in postnatal growth restriction and is probably also involved in growth restriction in childhood. We compared IGF-I and its relation to growth in early childhood in very-low-birth-weight infants and term appropriate for gestational age born infants. Methods We included 41 very-low-birth-weight and 64 term infants. Anthropometry was performed at all visits to the outpatient clinic. IGF-I and insulin were measured in blood samples taken at 6 months and 2 years corrected age (very-low-birth-weight children) and at 3 months, 1 and 2 years (term children). Results Over the first 2 years of life growth parameters are lower in very-low-birth-weight children compared to term children, but the difference in length decreases significantly. During the first 2 years of life IGF-I is higher in very-low-birth-weight children compared to term children. In both groups there is a significant relationship between IGF-I and (change in) length and weight over the first 2 years of life and between insulin and change in total body fat. Conclusions Considering the relation of IGF-I to growth and the decrease in difference in length, higher IGF-I levels in very-low-birth-weight infants in early childhood probably have an important role in catch-up growth in length. PMID:28182752

  5. Does IGF-1 play a role in the etiopathogenesis of non-functioning adrenocortical adenoma?

    PubMed

    Bahadir, C T; Ecemis, G C; Atmaca, H

    2018-03-14

    The aim of this study was to investigate the possible association of insulin-like growth factor-1 (IGF-1) with the pathogenesis of non-functioning adrenocortical adenomas (NFAs). This study included 50 female patients (mean age 54 years) with NFAs, 55 patients (mean age 48 years; 20 male, 35 female) with acromegaly and 38 female control subjects (mean age 58 years). Body mass index (BMI) and waist circumference (WC) of the subjects were recorded and blood samples for IGF-1 were taken. Insulin resistance was calculated using the homeostatic model assessment (HOMA) score. Since most of the acromegaly patients had been using medicine that could have effected insulin resistance, HOMA scores were calculated only in patients with NFAs and the controls. Computerized tomography or magnetic resonance imaging was taken of the acromegalics and controls to detect adrenal mass frequency. The mean age was similar among the groups. As expected, the serum IGF-1 levels were significantly higher in patients with acromegaly than in patients with NFAs and the controls (p < 0.001). Although BMI, WC, and serum IGF-1 levels were significantly higher (p < 0.001) in patients with NFAs, the HOMA scores were similar between patients with NFAs and control groups. Although none of the control subjects had adrenal masses, NFAs were detected in 14 (25%) out of 55 acromegalic patients. Higher serum IGF-1 levels in patients with NFAs compared to the control group and an increased prevalence of NFAs in acromegaly patients compared to control subjects and the general population suggest an association of IGF-1 with the etiopathogenesis of NFA.

  6. The growth hormone–insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders

    PubMed Central

    Blum, Werner F; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-01-01

    The growth hormone (GH)–insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management. PMID:29724795

  7. Higher Maternal Protein Intake during Pregnancy Is Associated with Lower Cord Blood Concentrations of Insulin-like Growth Factor (IGF)-II, IGF Binding Protein 3, and Insulin, but Not IGF-I, in a Cohort of Women with High Protein Intake.

    PubMed

    Switkowski, Karen M; Jacques, Paul F; Must, Aviva; Hivert, Marie-France; Fleisch, Abby; Gillman, Matthew W; Rifas-Shiman, Sheryl; Oken, Emily

    2017-07-01

    Background: Prenatal exposure to dietary protein may program growth-regulating hormones, consequently influencing early-life growth patterns and later risk of associated chronic diseases. The insulin-like growth factor (IGF) axis is of particular interest in this context given its influence on pre- and postnatal growth and its sensitivity to the early nutritional environment. Objective: Our objective was to examine associations of maternal protein intake during pregnancy with cord blood concentrations of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3), and insulin. Methods: We studied 938 mother-child pairs from early pregnancy through delivery in the Project Viva cohort. Using multivariable linear regression models adjusted for maternal race/ethnicity, education, income, smoking, parity, height, and gestational weight gain and for child sex, we examined associations of second-trimester maternal protein intake [grams per kilogram (weight before pregnancy) per day], as reported on a food frequency questionnaire, with IGF-I, IGF-II, IGFBP-3, and insulin concentrations in cord blood. We also examined how these associations may differ by child sex and parity. Results: Mothers were predominantly white (71%), college-educated (64%), and nonsmokers (67%). Mean ± SD protein intake was 1.35 ± 0.35 g ⋅ kg -1 ⋅ d -1 Each 1-SD increment in second-trimester protein intake corresponded to a change of -0.50 ng/mL (95% CI: -2.26, 1.26 ng/mL) in IGF-I and -0.91 μU/mL (95% CI: -1.45, -0.37 μU/mL) in insulin. Child sex and parity modified associations of maternal protein intake with IGF-II and IGFBP-3: protein intake was inversely associated with IGF-II in girls ( P -interaction = 0.04) and multiparous mothers ( P -interaction = 0.05), and with IGFBP-3 in multiparous mothers ( P -interaction = 0.04). Conclusions: In a cohort of pregnant women with relatively high mean protein intakes, higher intake was associated with lower concentrations of growth-promoting hormones in cord

  8. Insulin-like growth factor I: a biologic maturation indicator.

    PubMed

    Ishaq, Ramy Abdul Rahman; Soliman, Sanaa Abou Zeid; Foda, Manal Yehya; Fayed, Mona Mohamed Salah

    2012-11-01

    Determination of the maturation level and the subsequent evaluation of growth potential during preadolescence and adolescence are important for optimal orthodontic treatment planning and timing. This study was undertaken to evaluate the applicability of insulin-like growth factor I (IGF-I) blood level as a maturation indicator by correlating it to the cervical vertebral maturation index. The study was conducted with 120 subjects, equally divided into 60 males (ages, 10-18 years) and 60 females (ages, 8-16 years). A lateral cephalometric radiograph and a blood sample were taken from each subject. For each subject, cervical vertebral maturation and IGF-I serum level were assessed. Mean values of IGF-I in each stage of cervical vertebral maturation were calculated, and the means in each stage were statistically compared with those of the other stages. The IGF-I mean value at each cervical vertebral maturation stage was statistically different from the mean values at the other stages. The highest mean values were observed in stage 4, followed by stage 5 in males and stage 3 in females. IGF-I serum level is a reliable maturation indicator that could be applied in orthodontic diagnosis. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Secondary IGF-I deficiency as a prognostic factor of growth hormone (GH) therapy effectiveness in children with isolated, non-acquired GH deficiency.

    PubMed

    Smyczyńska, J; Stawerska, R; Hilczer, M; Lewiński, A

    2015-04-01

    Growth hormone (GH) deficiency (GHD) has recently been classified as secondary IGF-I deficiency but the significance of IGF-I measurement in diagnosing GHD is still discussed. The aim of the study was to assess the relationships between IGF-I secretion and GH therapy effectiveness in children with GHD. The analysis comprised 300 children with isolated, non-acquired GHD (GH peak below 10 μg/l) who completed GH therapy and attained final height (FH). In all patients IGF-I concentration was measured before the treatment and IGF-I deficiency was diagnosed if IGF-I SDS for age and sex was below -1.0. The following auxological indices were assessed: patients' height SDS before treatment (H₀SDS), FH SDS and improvement of FHSDS vs. H₀SDS (ΔHSDS). In the patients with IGF-I deficiency when compared with those with normal IGF-I secretion before treatment, significantly better FH SDS (-1.42±0.90 vs. -1.74±0.86, p=0.004) and ΔHSDS (1.64±1.01 vs. 1.32±1.05, p=0.010) were observed, despite similar H₀SDS (- 3.07±0.78 vs. - 3.11±0.77, p=0.63) and GH peak (7.0±3.1 μg/l vs. 6.8±2.1 μg/l, p=0.55). The patients who achieved FH over 10(th) centile had significantly lower IGF-I SDS before treatment than those with FH below 10(th) centile (- 1.59±1.54 vs. - 1.20±1.64, p=0.04), despite similar GH peak (7.0±2.3 μg/l vs. 6.7±3.1 μg/l, p=0.45). The patients with ΔHSDS over the median value had significantly lower IGF-I SDS than those with ΔHSDS below the median value (- 1.59±1.71 vs. - 1.09±1.47, p<0.0001), despite similar GH peak (6.8±2.5 μg/l vs. 7.0±2.7 μg/l, p=0.86). In children with isolated, non-acquired GHD, secondary IGF-I deficiency is an important predictor of better GH therapy effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Insulin and insulin-like growth factor-1 increased in preterm neonates following massage therapy.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Dieter, John N I; Kumar, Adarsh M; Schanberg, Saul; Kuhn, Cynthia

    2008-12-01

    To determine if massage therapy increased serum insulin and insulin-like growth factor-1 (IGF-1) in preterm neonates. Forty-two preterm neonates who averaged 34.6 weeks (M = 29.5 wk gestational age; M birth weight = 1237 g) and were in the "grower" (step-down) nursery were randomly assigned to a massage therapy group (body stroking and passive limb movements for three, 15-minute periods per day for 5 days) or a control group that received the standard nursery care without massage therapy. On Days 1 and 5, the serum collected by clinical heelsticks was also assayed for insulin and IGF-1, and weight gain and kilocalories consumed were recorded daily. Despite similar formula intake, the massaged preterm neonates showed greater increases during the 5-day period in (1) weight gain; (2) serum levels of insulin; and (3) IGF-1. Increased weight gain was significantly correlated with insulin and IGF-1. Previous data suggested that preterm infant weight gain following massage therapy related to increased vagal activity, which suggests decreased stress and gastric motility, which may contribute to more efficient food absorption. The data from this study suggest for the first time that weight gain was also related to increased serum insulin and IGF-1 levels following massage therapy. Preterm infants who received massage therapy not only showed greater weight gain but also a greater increase in serum insulin and IGF-1 levels, suggesting that massage therapy might be prescribed for all growing neonates.

  11. Maternal exposure to UV filters: associations with maternal thyroid hormones, IGF-I/IGFBP3 and birth outcomes.

    PubMed

    Krause, M; Frederiksen, H; Sundberg, K; Jørgensen, F S; Jensen, L N; Nørgaard, P; Jørgensen, C; Ertberg, P; Petersen, J H; Feldt-Rasmussen, U; Juul, A; Drzewiecki, K T; Skakkebaek, N E; Andersson, A M

    2018-02-01

    Several chemical UV filters/absorbers ('UV filters' hereafter) have endocrine-disrupting properties in vitro and in vivo . Exposure to these chemicals, especially during prenatal development, is of concern. To examine maternal exposure to UV filters, associations with maternal thyroid hormone, with growth factor concentrations as well as to birth outcomes. Prospective study of 183 pregnant women with 2nd trimester serum and urine samples available. Maternal concentrations of the chemical UV filters benzophenone-1 (BP-1) and benzophenone-3 (BP-3) in urine and 4-hydroxy-benzophenone (4-HBP) in serum were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The relationships between 2nd trimester maternal concentrations of the three chemical UV filters and maternal serum concentrations of thyroid hormones and growth factors, as well as birth outcomes (weight, height, and head and abdominal circumferences) were examined. Positive associations between maternal serum concentrations of 4-HBP and triiodothyronine (T 3 ), thyroxine (T 4 ), insulin-like growth factor I (IGF-I) and its binding protein IGFBP3 were observed in mothers carrying male fetuses. Male infants of mothers in the middle 4-HBP exposure group had statistically significantly lower weight and shorter head and abdominal circumferences at birth compared to the low exposure group. Widespread exposure of pregnant women to chemical UV filters and the possible impact on maternal thyroid hormones and growth factors, and on fetal growth, calls for further studies on possible long-term consequences of the exposure to UV filters on fetal development and children's health. © 2018 The authors.

  12. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    PubMed

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  13. Role of insulin-like growth factor-I in the regulation of skeletal muscle adaptation to increased loading

    NASA Technical Reports Server (NTRS)

    Adams, G. R.

    1998-01-01

    Adaptations in muscle mass stimulated by changes in muscle loading state entail alternations in the synthesis and degradation of myofiber proteins and the modulation of myonuclear number such that the ratio between the number of myonuclei and the size of the myofibers remains relatively constant. As depicted schematically in Figure 2.6, the literature regarding the role of IGF-in mediating muscle adaptation to alterations in loading state suggests the following conclusions: During periods of increased loading, myofibers upregulate the expression and secretion of IGF-I. Acting as an autocrine and/or paracrine growth factor, IGF-I stimulates myofiber anabolic processes. Acting as a paracrine growth factor, IGF-I also stimulates adjacent satellite cells to enter the cell cycle and proliferate. Continued myofiber production of IGF-I stimulates some satellite cells to differentiate and then fuse with myofibers, thus providing additional myonuclei in order to maintain or reestablish the myonucleus to myofiber size ratios of the enlarged myofibers.

  14. Testosterone-induced increase of insulin-like growth factor I levels depends upon normal levels of growth hormone.

    PubMed

    Saggese, G; Cesaretti, G; Franchi, G; Startari, L

    1996-08-01

    Pubertal development is associated with a rise in plasma insulin-like growth factor I (IGF-I) levels that is related both to the increase in sex steroids and/or to the sex steroid-induced augmentation in endogenous growth hormone (GH) secretion. In order to investigate the relationship between IGF-I, GH and testosterone, we examined 42 male subjects with various clinical conditions (classical GH deficiency (CGHD, N = 5), non-classical GH deficiency (NCGHD, N = 7), short idiopathic stature (N = 6), nutritional obesity (N = 8), GH-treated CGHD (N = 4), GH-treated NCGHD (N = 5) and normal stature (N = 7)) in which , for evaluation of hypogonadism (i.e. the absence of one or both testes from the scrotal sac), human chorionic gonadotropin (hCG) tests were performed. We measured IGF-I, total and free testosterone and dehydroepiandrosterone sulfate (DHEAS) by radioimmunoassays before and 48 and 96 h after the start of the test. The values of IGF-I were lower (0.001 < p < 0.005) in CGHD and NCGHD than in the other groups. In comparison to basal levels, IGF-I values increased (0.005 < p < 0.05) both 48 and 96 h after the start of the hCG test in short idiopathic and normal stature children and in GH-treated subjects with NCGHD, but only 96 h in subjects with untreated NCGHD and GH-treated CGHD. No difference was demonstrated in basal values of total testosterone among any of the groups, while basal free testosterone levels were higher (0.001 < p < 0.05) in GH-treated subjects with NCGHD than in all the other groups except nutritional obesity; furthermore, free testosterone was higher (p < 0.05) in nutritional obesity than in CGHD. The values of total and free testosterone obtained both 48 and 96 h after the start of the hCG test were higher (0.001 < p < 0.05) than basal values in all groups. The DHEAS values did not show any significant change during the hCG test. Basal values were higher (0.01 < p < 0.05) in nutritional obesity than in the other groups. Considering all

  15. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  16. Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor

    PubMed Central

    Zeng, Xianke; Zhang, Hua; Oh, Annabell; Zhang, Yan; Yee, Douglas

    2015-01-01

    The type I insulin-like growth factor receptor (IGF1R) contributes to cancer cell biology. Disruption of IGF1R signaling alone or in combination with cytotoxic agents has emerged as a new therapeutic strategy. Our laboratory has shown that sequential treatment with doxorubicin (DOX) and anti-IGF1R antibodies significantly enhanced the response to chemotherapy. In this study, we examined whether inhibition of the tyrosine kinase activity of this receptor family would also enhance chemotherapy response. Cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP) inhibited IGF1R and insulin receptor (InsR) kinase activity and downstream activation of ERK1/2 and Akt in MCF-7 and LCC6 cancer cells. PQIP inhibited both monolayer growth and anchorage-independent growth in a dose-dependent manner. PQIP did not induce apoptosis, but rather, PQIP treatment was associated with an increase in autophagy. We examined whether sequential or combination therapy of PQIP with DOX could enhance growth inhibition. PQIP treatment together with DOX or DOX followed by PQIP significantly inhibited anchorage-independent growth in MCF-7 and LCC6 cells compared to single agent alone. In contrast, pre-treatment with PQIP followed by DOX did not enhance the cytotoxicity of DOX in vitro. Furthermore, OSI-906, a PQIP derivative, inhibited IGF-I signaling in LCC6 xenograft tumors in vivo. When given once a week, simultaneous administration of OSI-906 and DOX significantly enhanced the anti-tumor effect of DOX. In summary, these results suggest that timing and duration of the IGF1R/InsR tyrosine kinase inhibitors with chemotherapeutic agents should be evaluated in clinical trials. Long-term disruption of IGF1R/InsR may not be necessary when combined with cytotoxic chemotherapy. PMID:21850397

  17. MECHANISMS IN ENDOCRINOLOGY: The multiple facets of GHRH/GH/IGF-I axis: lessons from lifetime, untreated, isolated GH deficiency due to a GHRH receptor gene mutation.

    PubMed

    Aguiar-Oliveira, Manuel H; Souza, Anita H O; Oliveira, Carla R P; Campos, Viviane C; Oliveira-Neto, Luíz A; Salvatori, Roberto

    2017-08-01

    Twenty years ago, we described kindred of 105 individuals with isolated GH deficiency (IGHD) in Itabaianinha County, in northeast Brazil, carrying a homozygous mutation in the GH-releasing hormone receptor gene. These subjects exhibit markedly reduced GH responsiveness to stimulatory tests, and anterior pituitary hypoplasia. Serum concentrations of IGF-I, IGF binding protein type 3 and the acid-labile subunit are markedly reduced, with a lesser reduction of IGF-II. The most striking physical findings of these IGHD individuals are the proportionate short stature, doll facies, high-pitched voice and visceral obesity with reduced fat-free mass. There is neither microphallus, nor neonatal hypoglycemia. Puberty is delayed, menopause anticipated, but fertility is preserved in both genders. The reduction in bone sizes is not even, with mean standard deviation scores for height of -7.2, total maxillary length of -6.5, total facial height of -4.3 and cephalic perimeter of -2.7. In addition, the non-osseous growth is not uniform, preserving some organs, like pancreas, liver, kidney, brain and eyes, and compromising others such as thyroid, heart, uterus and spleen. These subjects present higher prevalence of dizziness, mild high-tones sensorineural hearing loss, reduction of vascular retinal branching points, increase of optic disk, genu valgum and increased systolic blood pressure. Biochemically, they have high low density lipoprotein cholesterol and C-reactive protein levels, but maintain increased insulin sensitivity, and do not show premature atherosclerosis. Finally, they have normal immune function, and normal longevity. This review details the findings and summarizes 20 years of clinical research carried out in this unique population. © 2017 European Society of Endocrinology.

  18. Insulin-Like Growth Factor 1 (IGF-1) in Parkinson's Disease: Potential as Trait-, Progression- and Prediction Marker and Confounding Factors

    PubMed Central

    Binder, Gerhard; Weber, Karin; Apel, Anja; Roeben, Benjamin; Deuschle, Christian; Maechtel, Mirjam; Heger, Tanja; Nussbaum, Susanne; Gasser, Thomas; Maetzler, Walter; Berg, Daniela

    2016-01-01

    Introduction Biomarkers indicating trait, progression and prediction of pathology and symptoms in Parkinson's disease (PD) often lack specificity or reliability. Investigating biomarker variance between individuals and over time and the effect of confounding factors is essential for the evaluation of biomarkers in PD, such as insulin-like growth factor 1 (IGF-1). Materials and Methods IGF-1 serum levels were investigated in up to 8 biannual visits in 37 PD patients and 22 healthy controls (HC) in the longitudinal MODEP study. IGF-1 baseline levels and annual changes in IGF-1 were compared between PD patients and HC while accounting for baseline disease duration (19 early stage: ≤3.5 years; 18 moderate stage: >4 years), age, sex, body mass index (BMI) and common medical factors putatively modulating IGF-1. In addition, associations of baseline IGF-1 with annual changes of motor, cognitive and depressive symptoms and medication dose were investigated. Results PD patients in moderate (130±26 ng/mL; p = .004), but not early stages (115±19, p>.1), showed significantly increased baseline IGF-1 levels compared with HC (106±24 ng/mL; p = .017). Age had a significant negative correlation with IGF-1 levels in HC (r = -.47, p = .028) and no correlation in PD patients (r = -.06, p>.1). BMI was negatively correlated in the overall group (r = -.28, p = .034). The annual changes in IGF-1 did not differ significantly between groups and were not correlated with disease duration. Baseline IGF-1 levels were not associated with annual changes of clinical parameters. Discussion Elevated IGF-1 in serum might differentiate between patients in moderate PD stages and HC. However, the value of serum IGF-1 as a trait-, progression- and prediction marker in PD is limited as IGF-1 showed large inter- and intraindividual variability and may be modulated by several confounders. PMID:26967642

  19. Upregulation of GH, but not IGF1, in the hippocampus of the lactating dam after kainic acid injury

    PubMed Central

    Arellanes-Licea, Elvira C; Ávila-Mendoza, José; Ramírez-Martínez, Elizabeth C; Ramos, Eugenia; Uribe-González, Nancy; Arámburo, Carlos

    2018-01-01

    Lactation embodies a natural model of morphological, neurochemical, and functional brain plasticity. In this reproductive stage, the hippocampus of the female is less sensitive to excitotoxins in contrast to nulliparity. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are known to be neuroprotective in several experimental models of brain lesion. Here, activation of the GH–IGF1 pituitary–brain axis following kainic acid (7.5 mg/kg i.p. KA) lesion was studied in lactating and nulliparous rats. Serum concentrations of GH and IGF1 were uncoupled in lactation. Compared to virgin rats, the basal concentration of GH increased up to 40% but IGF1 decreased 58% in dams, and only GH increased further after KA treatment. In the hippocampus, basal expression of GH mRNA was higher (2.8-fold) in lactating rats than in virgin rats. GH mRNA expression in lactating rats increased further after KA administration in the hippocampus and in the hypothalamus, in parallel to GH protein concentration in the hippocampus of KA-treated lactating rats (43% vs lactating control), as detected by Western blot and immunofluorescence. Except for the significantly lower mRNA concentration in the liver of lactating rats, IGF1 expression was not altered by the reproductive condition or by KA treatment in the hippocampus and hypothalamus. Present results indicate upregulation of GH expression in the hippocampus after an excitotoxic lesion, suggesting paracrine/autocrine actions of GH as a factor underlying neuroprotection in the brain of the lactating dam. Since no induction of IGF1 was detected, present data suggest a direct action of GH. PMID:29321175

  20. Assessment of systemic administration of PEGylated IGF-1 in a mouse model of traumatic brain injury.

    PubMed

    Sama, Diana M; Carlson, Shaun W; Joseph, Binoy; Saenger, Stefanie; Metzger, Friedrich; Saatman, Kathryn E

    2018-06-06

    Traumatic brain injury can result in lasting cognitive dysfunction due to degeneration of mature hippocampal neurons as well as the loss of immature neurons within the dentate gyrus. While endogenous neurogenesis affords a partial recovery of the immature neuron population, hippocampal neurogenesis may be enhanced through therapeutic intervention. Insulin-like growth factor-1 (IGF-1) has the potential to improve cognitive function and promote neurogenesis after TBI, but its short half-life in the systemic circulation makes it difficult to maintain a therapeutic concentration. IGF-1 modified with a polyethylene glycol moiety (PEG-IGF-1) exhibits improved stability and half-life while retaining its ability to enter the brain from the periphery, increasing its viability as a translational approach. The goal of this study was to evaluate the ability of systemic PEG-IGF-1 administration to attenuate acute neuronal loss and stimulate the recovery of hippocampal immature neurons in brain-injured mice. In a series of studies utilizing a well-established contusion brain injury model, PEG-IGF-1 was administered subcutaneously after injury. Serum levels of PEG were verified using ELISA and histological staining was used to investigate numbers of degenerating neurons and cortical contusion size at 24 h after injury. Immunofluorescent staining was used to evaluate numbers of immature neurons at 10 d after injury. Although subcutaneous injections of PEG-IGF-1 increased serum IGF-1 levels in a dose-dependent manner, no effects were observed on cortical contusion size, neurodegeneration within the dentate gyrus, or recovery of hippocampal immature neuron numbers. In contrast to its efficacy in rodent models of neurodegenerative diseases, PEG- IGF-1 was not effective in ameliorating early neuronal loss after contusion brain trauma.

  1. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between. alpha. beta. heterodimeric receptor halves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.

    1989-12-12

    Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less

  2. Microsatellite polymorphism in the P1 promoter region of the IGF-1 gene is associated with endometrial cancer

    PubMed Central

    KWASNIEWSKI, WOJCIECH; GOZDZICKA-JOZEFIAK, ANNA; WOLUN-CHOLEWA, MARIA; POLAK, GRZEGORZ; SIEROCINSKA-SAWA, JADWIGA; KWASNIEWSKA, ANNA; KOTARSKI, JAN

    2016-01-01

    Endometrial carcinoma (EC) is the most common type of gynecological malignancy. Studies have demonstrated that the insulin growth factor (IGF) pathway is implicated in the development of endometrial tumors and that the serum levels of IGF-1 are affected by estrogen. Most EC cells with high microsatellite instability (MSI-H) accumulate mutations at a microsatellite sequence in the IGF-1 gene. The present study investigated the CA repeat polymorphism in the P1 promoter region of the IGF-1 gene among Caucasian females with endometrial hyperplasia, EC and healthy control subjects, whose blood serum and surgical tissue specimens were analyzed. Differences or correlations between the analyzed parameters [serum levels of IGF-1 and IGF binding protein (IGFBP)-1 and IGFBP-3 as well as estrogens among the polymorphisms] were verified using the χ2, Mann-Whitney U, Kruskal-Wallis or Spearman's rank correlation tests. A PCR amplification and DNA sequencing analysis was used for identification of (CA)n repeats in the P1 region of IGF-1. ELISA was used to determine the blood serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrogens. Furthermore, IGF-1 was assessed in endometrial tissues by immunohistochemical analysis. The present study indicated no statistically significant differences between serum levels of IGF-1, IGFBP-1, IGFBP-3 and estrone, estriol and estradiol in the control and study groups. A significant correlation was identified between the IGF-1 levels and estrone levels in the MSI-H polymorphism (r=−0.41, P=0.012) as well as a highly negative correlation between IGF-1 levels and the estradiol levels in the MSI-H polymorphism (r=−0.6, P=0.002). Genotypes without the 19 CA allele were predominantly found in EC. Furthermore, statistical analysis indicated that the number of IGF-1-expressing cells was significantly elevated in MSI-H type 18-20 (P= 0.0072), MSI-L type 19-20 (P=0.025) and microsatellite-stable MSS type 19-19 (P=0.024) compared with those in the MSI-H 20

  3. A Longitudinal Study of Growth, Sex Steroids, and IGF-1 in Boys With Physiological Gynecomastia.

    PubMed

    Mieritz, Mikkel G; Rakêt, Lars L; Hagen, Casper P; Nielsen, John E; Talman, Maj-Lis M; Petersen, Jørgen H; Sommer, Stefan H; Main, Katharina M; Jørgensen, Niels; Juul, Anders

    2015-10-01

    Physiological gynecomastia is common and affects a large proportion of otherwise healthy adolescent boys. It is thought to be caused by an imbalance between estrogen and testosterone, although this is rarely evident in analyses of serum. This study aimed to describe the frequency of physiological gynecomastia and to determine possible etiological factors (eg, auxology and serum hormone levels) in a longitudinal setup. A prospective cohort study of 106 healthy Danish boys (5.8-16.4 years) participated in the longitudinal part of the COPENHAGEN Puberty Study. The boys were examined every 6 months during an 8-year follow-up. Median number of examinations was 10 (2-15). Blood samples were analyzed for FSH, LH, testosterone, estradiol, SHBG, inhibin B, anti-Müllerian hormone, IGF-1, and IGF binding protein-3 by immunoassays. Auxological parameters, pubertal development, and the presence of gynecomastia were evaluated at each visit. Fifty-two of 106 boys (49%) developed gynecomastia, of which 10 (19%) presented with intermittent gynecomastia. Boys with physiological gynecomastia reached peak height velocity at a significantly younger age than boys who did not develop gynecomastia (13.5 versus 13.9 years, P = .027), and they had significantly higher serum levels of IGF-1 (P = .000), estradiol (P = .013), free testosterone (P < .001), and FSH (P = .030) during pubertal transition. However, no differences in serum LH or in the estradiol to testosterone ratio were found. Gynecomastia is frequent in pubertal boys. Increased IGF-1 levels and pubertal growth appear to be associated, whereas changes in estrogen to testosterone ratio seem negligible.

  4. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  5. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders.

    PubMed

    Blum, Werner; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-05-03

    The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGFBP-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.

  6. Insulin-like growth factor-I increases bone sialoprotein (BSP) expression through fibroblast growth factor-2 response element and homeodomain protein-binding site in the proximal promoter of the BSP gene.

    PubMed

    Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Mezawa, Masaru; Araki, Shouta; Sodek, Jaro; Ogata, Yorimasa

    2006-08-01

    Insulin-like growth factor-I (IGF-I) promotes bone formation by stimulating proliferation and differentiation of osteoblasts. Bone sialoprotein (BSP), is thought to function in the initial mineralization of bone, is selectively expressed by differentiated osteoblast. To determine the molecular mechanism of IGF-I regulation of osteogenesis, we analyzed the effects of IGF-I on the expression of BSP in osteoblast-like Saos2 and in rat stromal bone marrow (RBMC-D8) cells. IGF-I (50 ng/ml) increased BSP mRNA levels at 12 h in Saos2 cells. In RBMC-D8 cells, IGF-I increased BSP mRNA levels at 3 h. From transient transfection assays, a twofold increase in transcription by IGF-I was observed at 12 h in pLUC3 construct that included the promoter sequence from -116 to +60. Effect of IGF-I was abrogated by 2-bp mutations in either the FGF2 response element (FRE) or homeodomain protein-binding site (HOX). Gel shift analyses showed that IGF-I increased binding of nuclear proteins to the FRE and HOX elements. Notably, the HOX-protein complex was supershifted by Smad1 antibody, while the FRE-protein complex was shifted by Smad1 and Cbfa1 antibodies. Dlx2 and Dlx5 antibodies disrupted the formation of the FRE- and HOX-protein complexes. The IGF-I effects on the formation of FRE-protein complexes were abolished by tyrosine kinase inhibitor herbimycin A (HA), PI3-kinase/Akt inhibitor LY249002, and MAP kinase kinase inhibitor U0126, while IGF-I effects on HOX-protein complexes were abolished by HA and LY249002. These studies demonstrate that IGF-I stimulates BSP transcription by targeting the FRE and HOX elements in the proximal promoter of BSP gene.

  7. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    NASA Technical Reports Server (NTRS)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  8. Osteocalcin and serum insulin-like growth factor-1 as biochemical skeletal maturity indicators.

    PubMed

    Tripathi, Tulika; Gupta, Prateek; Rai, Priyank; Sharma, Jitender; Gupta, Vinod Kumar; Singh, Navneet

    2017-10-02

    With change in concepts of growth determination methods, there is a surge in the measurement of biomarkers for appraisal of growth status. Osteocalcin is a bone-specific protein and was observed to parallel the normal growth curve. Hence, the present study was intended to assess the levels of serum osteocalcin and serum insulin-like growth factor-1 (IGF-1) and compare them with cervical vertebral maturation index (CVMI) stages. The cross-sectional study was performed on 150 subjects (75 males and 75 females) in the age group of 8-20 years and segregated into six CVMI stages. Serum osteocalcin and IGF-1 were estimated by ELISA. Mann-Whitney U test was used to compare the mean ranks of serum osteocalcin and serum IGF-1 with different CVMI stages. Spearman correlation was performed to find association between serum osteocalcin and serum IGF-1 across six CVMI stages. Peak serum IGF-1 levels were obtained at CVMI stages 4 and 3 for males and females, respectively, with insignificant difference between stages 3 and 4 in females. Peak serum osteocalcin levels were found at stage 5 and 3 for males and females with insignificant difference from other stages except stages 5 and 6 in males. A statistically significant correlation was seen between serum IGF-1 and serum osteocalcin across six CVMI stages (P < 0.01). Osteocalcin followed IGF-1 across all CVMI stages but showed insignificant interstage differences.

  9. Short-term effects of replacing milk with cola beverages on insulin-like growth factor-I and insulin-glucose metabolism: a 10 d interventional study in young men.

    PubMed

    Hoppe, Camilla; Kristensen, Mette; Boiesen, Marlene; Kudsk, Jane; Fleischer Michaelsen, Kim; Mølgaard, Christian

    2009-10-01

    In the Western world, a trend towards increased consumption of carbonated soft drinks combined with a decreasing intake of milk is observed. This may affect circulating insulin-like growth factor I (IGF-I) and fasting insulin, as seen in pre-pubertal children. The present study was designed to reflect the trend of replacing milk with carbonated beverages in young men and to study the effects of this replacement on IGF-I, IGF-binding protein 3 (IGFBP-3), IGF-I:IGFBP-3 and glucose-insulin metabolism. A randomised, controlled crossover intervention study, in which eleven men aged 22-29 years were given a low-Ca diet in two 10 d periods with 10 d washout in between. In one period, they drank 2.5 litres of Coca Cola(R) per day and the other period 2.5 litres of semi-skimmed milk. Serum IGF-I, IGFBP-3 (RIA), insulin (fluoro immunoassay) and glucose (Cobas) were determined at baseline and end point of each intervention period. Insulin resistance and beta-cell function were calculated with the homeostasis model assessment. A decrease in serum IGF-I was observed in the cola period compared with the milk period (P < 0.05). No effects of treatment were observed on IGFBP-3, IGF-I:IGFBP-3, insulin, glucose, insulin resistance or beta-cell function. The present study demonstrates that high intake of cola over a 10 d period decreases total IGF-I compared with a high intake of milk, with no effect on glucose-insulin metabolism in adult men. It is unknown whether this is a transient phenomenon or whether it has long-term consequences.

  10. Impaired growth in Rabson-Mendenhall syndrome: lack of effect of growth hormone and insulin-like growth factor-I.

    PubMed

    Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J

    1994-09-01

    Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF-I

  11. Predictors of variation in serum IGFI and IGFBP3 levels in healthy African-American and white men

    PubMed Central

    Grubber, Janet; Demark-Wahnefried, Wendy; Lobaugh, Bruce; Jeffreys, Amy S.; Grambow, Steven C.; Marks, Jeffrey R.; Keku, Temitope O.; Walther, Phillip J.; Schildkraut, Joellen M.

    2010-01-01

    Background Individual variation in circulating insulin-like growth factor-I (IGF1) and its major binding protein, insulin-like growth factor binding protein-3 (IGFBP3) have been etiologically linked to several chronic diseases, including some cancers. Factors associated with variation in circulating levels of these peptide hormones remain unclear. Methods Multiple linear regression models were used to determine the extent to which socio-demographic characteristics, lifestyle factors, personal and family history of chronic disease, and common genetic variants, the (CA)n repeat polymorphism in the IGF1 promoter and the IGFBP3 -202 A/C polymorphism (rs2854744) predict variation in IGF1 or IGFBP3 serum levels in 33 otherwise healthy African American and 37 white males recruited from Durham Veterans Administration Medical Center. Results Predictors of serum IGF1, IGFBP3 and the IGF1:IGFBP3 molar ratio varied by race. In African Americans, 17% and 28% of the variation in serum IGF1 and the IGF1:IGFBP3 molar ratio, respectively, was explained by cigarette smoking and carrying the IGF1 (CA)19 repeat allele, respectively. Not carrying at least one IGF1 (CA)19 repeat allele and a high BMI explained 8% and 14%, respectively, of the variation IGFBP3 levels. These factors did not predict variation of these peptides in whites. Conclusion If successfully replicated in larger studies, these findings add to recent evidence suggesting known genetic and lifestyle chronic disease risk factors influence IGF1 and IGFBP3 circulating levels differently in African Americans and whites. PMID:19634593

  12. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    PubMed

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Effects of Moderate Aerobic Exercise Combined With Caloric Restriction on Circulating Estrogens and IGF-1 in Premenopausal Women

    DTIC Science & Technology

    2005-08-01

    Doctoral Students 1998 Jeff Volek "Fasting and postprandial serum lipoprotein responses to a hypocaloric low carbohydrate diet rich in...serum estrone. IGF-I did not change significantly either, indicating that chronic exercise and dieting do not result in favorable changes in two...role of physical activity and or diet in the risk of breast cancer, the battery of metabolic hormones that comprise the proposed method must be

  14. Possible effects of insulin-like growth factor-I, IGF-binding protein-3 and IGF-1/IGFBP-3 molar ratio on mammographic density: a cross-sectional study.

    PubMed

    Meggiorini, M L; Cipolla, V; Borgoni, G; Nofroni, I; Pala, A; de Felice, C

    2012-01-01

    The purpose of this study was to examine the possible effects of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density and assess whether this relationship was similar in subgroups of pre- and postmenopausal women. A group of 341 Italian women of childbearing age or naturally postmenopausal who had performed mammographic examination at the section of radiology of our department a maximum three months prior to recruitment were enrolled. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio was calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). To assess the association between mammographic density and IGF-1, IGFBP-3 and Molar ratio Student's t-test was employed before and after stratified by menopausal status. The analysis of the relationship between mammographic density and plasma levels of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group whereas IGFBP-3 showed similar values in both groups (DB and NDB). After stratification of the study population by menopausal status, no association was found. Our study provides strong evidence of a crude association between breast density, and plasma levels of IGF-1 and molar ratio. IGF-1 and molar ratio might increase mammographic density and thus the risk of developing breast cancer.

  15. Insulin-like growth factor-I treatment of children with Laron syndrome (primary growth hormone insensitivity).

    PubMed

    Laron, Zvi

    2008-03-01

    Laron syndrome (LS, congenital primary GH insensitivity) is caused by deletions or mutations in the GH receptor gene, resulting in an inability to generate insulin-like growth factor-I (IGF-I). If untreated, the deficiency of IGF-I results in severe dwarfism, as well as skeletal and muscular underdevelopment. The only treatment is the daily administration of recombinant IGF-I. This review summarizes the present experience by several groups worldwide. The main conclusions are: A. The one or two injections regimen result in the same growth velocity; B. The growth velocity obtained with IGF-I administration is smaller than that observed with hGH in children with congenital isolated GH deficiency; C. Overdosage of IGF-I causes a series of adverse effects which can be avoided by carefully monitoring the serum IGF-I and GH levels.

  16. Desalted deep-sea water improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus.

    PubMed

    Harada, Naoaki; Zhao, Juan; Kurihara, Hiroki; Nakagata, Naomi; Okajima, Kenji

    2011-08-01

    The stimulation of sensory neurons in the gastrointestinal (GI) tract improves cognitive function by increasing the hippocampal production of insulin-like growth factor-I (IGF-I) in mice. In the current study, we examined whether oral administration of desalted deep-sea water (DSW) increases the hippocampal production of IGF-I by stimulating sensory neurons in the GI tract, thereby improving cognitive function in mice. Desalted DSW increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice by activating transient receptor potential vanilloid 1. The plasma levels of IGF-I and tissue levels of CGRP, IGF-I, and IGF-I mRNA in the hippocampus were increased by oral administration of desalted DSW in WT mice. In these animals, nociceptive information originating from the GI tract was transmitted to the hippocampus via the spinothalamic pathway. Improvement of spatial learning was observed in WT mice after administration of desalted DSW. Distilled DSW showed results similar to those of desalted DSW in vitro and in vivo. None of the effects of desalted DSW in WT mice were observed after the administration of desalted DSW in CGRP-knockout (CGRP-/-) mice. No volatile compounds were detected in distilled DSW on GC-MS analysis. These observations suggest that desalted DSW may increase the hippocampal IGF-I production via sensory neuron stimulation in the Gl tract, thereby improving cognitive function in mice. Such effects of desalted DSW might not be dependent on the minerals but are dependent on the function of the water molecule itself. Copyright © 2011 Mosby, Inc. All rights reserved.

  17. IGF-1 levels across the spectrum of normal to elevated in acromegaly: relationship to insulin sensitivity, markers of cardiovascular risk and body composition.

    PubMed

    Reid, Tirissa J; Jin, Zhezhen; Shen, Wei; Reyes-Vidal, Carlos M; Fernandez, Jean Carlos; Bruce, Jeffrey N; Kostadinov, Jane; Post, Kalmon D; Freda, Pamela U

    2015-12-01

    Activity of acromegaly is gauged by levels of GH and IGF-1 and epidemiological studies demonstrate that their normalization reduces acromegaly's excess mortality rate. However, few data are available linking IGF-1 levels to features of the disease that may relate to cardiovascular (CV) risk. Therefore, we tested the hypothesis that serum IGF-1 levels relative to the upper normal limit relate to insulin sensitivity, serum CV risk markers and body composition in acromegaly. In this prospective, cross-sectional study conducted at a pituitary tumor referral center we studied 138 adult acromegaly patients, newly diagnosed and previously treated surgically, with fasting and post-oral glucose levels of endocrine and CV risk markers and body composition assessed by DXA. Active acromegaly is associated with lower insulin sensitivity, body fat and CRP levels than acromegaly in remission. %ULN IGF-1 strongly predicts insulin sensitivity, better than GH and this persists after adjustment for body fat and lean tissue mass. %ULN IGF-1 also relates inversely to CRP levels and fat mass, positively to lean tissue and skeletal muscle estimated (SM(E)) by DXA, but not to blood pressure, lipids, BMI or waist circumference. Gender interacts with the IGF-1-lean tissue mass relationship. Active acromegaly presents a unique combination of features associated with CV risk, reduced insulin sensitivity yet lower body fat and lower levels of some serum CV risk markers, a pattern that is reversed in remission. %ULN IGF-1 levels strongly predict these features. Given the known increased CV risk of active acromegaly, these findings suggest that of these factors insulin resistance is most strongly related to disease activity and potentially to the increased CV risk of active acromegaly.

  18. Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy

    PubMed Central

    Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Nasr, Moufida Ben; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo

    2016-01-01

    Summary The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-1) and its binding protein-3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-1-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-1/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-1/IGFBP3 control CoSCs and their dysfunction in DE. PMID:26431183

  19. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  20. Detection of His-tagged Long-R³-IGF-I in a black market product.

    PubMed

    Kohler, Maxie; Thomas, Andreas; Walpurgis, Katja; Terlouw, Koen; Schänzer, Wilhelm; Thevis, Mario

    2010-10-01

    Performance-enhancing substances are illicitly used in elite or amateur sports and may be obtained from the black market due to a cheaper and easier availability. Although various studies have shown that black market products frequently do not contain the declared substances, enormous amounts of illegally produced and/or imported drugs are confiscated from athletes or at customs with alarming results concerning the outcome of the analyses of the ingredients. This case report describes the identification of His-tagged Long-R³-IGF-I, which is usually produced for biochemical studies, in an injection vial. The ingredients were isolated by immunoaffinity purification and identified by nano-UPLC, high-resolution/high accuracy mass spectrometry of the intact and trypsinated substance and by an enzyme-linked immunosorbent assay. (Tandem) mass spectra characterized the protein as Long-R³-IGF-I with a His₆-tag attached to the C-terminus by the linker amino acids Leu-Glu. His-tags are commonly added to proteins during synthesis to allow a convenient and complete purification of the final product and His-tags are subsequently removed by specific enzymes when being attached to the N-terminus. The effects of His-tagged Long-R³-IGF-I in humans have not been elucidated or described and the product may rather be a by-product from biochemical studies than synthesized for injection purposes. Copyright © 2010 Growth Hormone Research Society. Published by Elsevier Ltd. All rights reserved.

  1. Changes in serum growth factors in stroke rehabilitation patients and their relation to hemiparesis improvement.

    PubMed

    Okazaki, Hideto; Beppu, Hidehiko; Mizutani, Kenmei; Okamoto, Sayaka; Sonoda, Shigeru

    2014-07-01

    Predicting recovery from hemiparesis after stroke is important for rehabilitation. A few recent studies reported that the levels of some growth factors shortly after stroke were positively correlated with the clinical outcomes during the chronic phase. The aim of this study was to examine the relationships between the serum levels of growth factors (vascular endothelial growth factor [VEGF], insulin-like growth factor-I [IGF-I], and hepatocyte growth factor [HGF]) and improvement in hemiparesis in stroke patients who received rehabilitation in a postacute rehabilitation hospital. Subjects were 32 stroke patients (cerebral infarction: 21 and intracerebral hemorrhage [ICH]: 11). We measured serum levels of VEGF, IGF-I, and HGF and 5 items of the Stroke Impairment Assessment Set (SIAS) for hemiparesis on admission and at discharge. Age-matched healthy subjects (n=15) served as controls. Serum levels of VEGF and HGF in cerebral infarct patients on admission were higher than those in control subjects, and the serum levels of IGF-I in stroke patients were lower than those in controls. The level of HGF in ICH patients on admission was negatively correlated with gains in SIAS, and higher outliers in HGF concentration were correlated with lower gains in SIAS. Focusing on the extremely high levels of these factors may be a predictor of the low recovery from hemiparesis after stroke. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  2. Low Levels of IGF-1 Contribute to Alveolar Macrophage Dysfunction in Cystic Fibrosis1

    PubMed Central

    Bessich, Jamie L.; Nymon, Amanda B.; Moulton, Lisa A; Dorman, Dana; Ashare, Alix

    2013-01-01

    Alveolar macrophages are major contributors to lung innate immunity. Although alveolar macrophages from CFTR−/− mice have impaired function, no study has investigated primary alveolar macrophages in adults with cystic fibrosis (CF). CF patients have low levels of insulin-like growth factor 1 (IGF-1), and our prior studies demonstrate a relationship between IGF-1 and macrophage function. We hypothesize that reduced IGF-1 in CF leads to impaired alveolar macrophage function and chronic infections. Serum and bronchoalveolar lavage (BAL) samples were obtained from 8 CF subjects and 8 healthy subjects. Macrophages were isolated from BAL fluid. We measured the ability of alveolar macrophages to kill Pseudomonas aeruginosa. Subsequently, macrophages were incubated with IGF-1 prior to inoculation with bacteria to determine the effect of IGF-1 on bacterial killing. We found a significant decrease in bacterial killing by CF alveolar macrophages compared to controls. CF subjects had lower serum and BAL IGF-1 levels compared to healthy controls. Exposure to IGF-1 enhanced alveolar macrophage macrophages in both groups. Finally, exposing healthy alveolar macrophages to CF BAL fluid decreased bacterial killing, and this was reversed by the addition of IGF-1, while IGF-1 blockade worsened bacterial killing. Our studies demonstrate that alveolar macrophage function is impaired in patients with CF. Reductions in IGF-1 levels in CF contribute to the impaired alveolar macrophage function. Exposure to IGF-1 ex vivo, results in improved function of CF alveolar macrophages. Further studies are needed to determine whether alveolar macrophage function can be enhanced in vivo with IGF-1 treatment. PMID:23698746

  3. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    PubMed

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  4. Insulin-like growth factor-I and risk of differentiated thyroid carcinoma in the European Prospective Investigation into Cancer and Nutrition

    PubMed Central

    Schmidt, Julie A.; Allen, Naomi E.; Almquist, Martin; Franceschi, Silvia; Rinaldi, Sabina; Tipper, Sarah J.; Tsilidis, Konstantinos K.; Weiderpass, Elisabete; Overvad, Kim; Tjønneland, Anne; Boutron-Ruault, Marie-Christine; Dossus, Laure; Mesrine, Sylvie; Kaaks, Rudolf; Lukanova, Annekatrin; Boeing, Heiner; Lagiou, Pagona; Trichopoulos, Dimitrios; Trichopoulou, Antonia; Palli, Domenico; Krogh, Vittorio; Panico, Salvatore; Tumino, Rosario; Zanetti, Roberto; Bueno-de-Mesquita, H Bas; Peeters, Petra H; Lund, Eiliv; Menéndez, Virginia; Agudo, Antonio; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Larrañaga, Nerea; Hennings, Joakim; Sandström, Maria; Khaw, Kay-Tee; Wareham, Nick; Romieu, Isabelle; Gunter, Marc J.; Riboli, Elio; Key, Timothy J.; Travis, Ruth C.

    2014-01-01

    Background Little is known about the causes of thyroid cancer, but insulin-like growth factor-I (IGF-I) might play an important role in its development due to its mitogenic and anti-apoptotic properties. Methods This study prospectively investigated the association between serum IGF-I concentrations and risk of differentiated thyroid carcinoma in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition. 345 incident cases of differentiated thyroid carcinoma were individually matched to 735 controls by study centre, sex, and age, date, time, and fasting status at blood collection, follow-up duration, and for women menopausal status, use of exogenous hormones, and phase of menstrual cycle at blood collection. Serum IGF-I concentrations were measured by immunoassay, and risk of differentiated thyroid cancer in relation to IGF-I concentration was estimated using conditional logistic regression. Results There was a positive association between IGF-I concentrations and risk of differentiated thyroid carcinoma: the odds ratio for a doubling in IGF-I concentration was 1.48 (95% confidence interval: 1.06 – 2.08; ptrend = 0.02). The positive association with IGF-I was stable over time between blood collection and cancer diagnosis. Conclusion These findings suggest that IGF-I concentrations may be positively associated with risk of differentiated thyroid carcinoma. Impact This study provides the first prospective evidence of a potential association between circulating IGF-I concentrations and risk of differentiated thyroid carcinoma and may prompt the further investigations needed to confirm the association. PMID:24646451

  5. Serum cardiac troponin I in canine syncope and seizures.

    PubMed

    Dutton, E; Dukes-McEwan, J; Cripps, P J

    2017-02-01

    To determine if serum cardiac troponin I (cTnI) concentration distinguishes between cardiogenic syncope and collapsing dogs presenting with either generalized epileptic seizures (both with and without cardiac disease) or vasovagal syncope. Seventy-nine prospectively recruited dogs, grouped according to aetiology of collapse: generalized epileptic seizures (group E), cardiogenic syncope (group C), dogs with both epileptic seizures and cardiac disease (group B), vasovagal syncope (group V) or unclassified (group U). Most patients had ECG (n = 78), echocardiography (n = 78) and BP measurement (n = 74) performed. Dogs with a history of intoxications, trauma, evidence of metabolic disorders or renal insufficiency (based on serum creatinine concentrations >150 μmol/L and urine specific gravity <1.030) were excluded. Serum cTnI concentrations were measured and compared between groups using non-parametric statistical methods. Multivariable regression analysis investigated factors associated with cTnI. Receiver operator characteristic curve analysis examined whether cTnI could identify cardiogenic syncope. Median cTnI concentrations were higher in group C than E (cTnI: 0.165 [0.02-27.41] vs. 0.03 [0.01-1.92] ng/mL; p<0.05). Regression analysis found that serum cTnI concentrations decreased with increasing time from collapse (p=0.015) and increased with increasing creatinine concentration (p=0.028). Serum cTnI diagnosed cardiogenic syncope with a sensitivity of 75% and specificity of 80%. Serum cTnI concentrations were significantly different between groups C and E. However, due to the overlap in cTnI concentrations between groups cTnI, measurement in an individual is not optimally discriminatory to differentiate cardiogenic syncope from collapse with generalized epileptic seizures (both with and without cardiac disease) or vasovagal syncope. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 17beta-estradiol potently suppresses cAMP-induced insulin-like growth factor-I gene activation in primary rat osteoblast cultures

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Shu, H.; Casinghino, S.; Crothers, K.; Rotwein, P.; Centrella, M.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) is a key factor in bone remodeling. In osteoblasts, IGF-I synthesis is enhanced by parathyroid hormone and prostaglandin E2 (PGE2) through cAMP-activated protein kinase. In rats, estrogen loss after ovariectomy leads to a rise in serum IGF-I and an increase in bone remodeling, both of which are reversed by estrogen treatment. To examine estrogen-dependent regulation of IGF-I expression at the molecular level, primary fetal rat osteoblasts were co-transfected with the estrogen receptor (hER, to ensure active ER expression), and luciferase reporter plasmids controlled by promoter 1 of the rat IGF-I gene (IGF-I P1), used exclusively in these cells. As reported, 1 microM PGE2 increased IGF-I P1 activity by 5-fold. 17beta-Estradiol alone had no effect, but dose-dependently suppressed the stimulatory effect of PGE2 by up to 90% (ED50 approximately 0.1 nM). This occurred within 3 h, persisted for at least 16 h, required ER, and appeared specific, since 17alpha-estradiol was 100-300-fold less effective. By contrast, 17beta-estradiol stimulated estrogen response element (ERE)-dependent reporter expression by up to 10-fold. 17beta-Estradiol also suppressed an IGF-I P1 construct retaining only minimal promoter sequence required for cAMP-dependent gene activation, but did not affect the 60-fold increase in cAMP induced by PGE2. There is no consensus ERE in rat IGF-I P1, suggesting novel downstream interactions in the cAMP pathway that normally enhances IGF-I expression in skeletal cells. To explore this, nuclear extract from osteoblasts expressing hER were examined by electrophoretic mobility shift assay using the atypical cAMP response element in IGF-I P1. Estrogen alone did not cause DNA-protein binding, while PGE2 induced a characteristic gel shift complex. Co-treatment with both hormones caused a gel shift greatly diminished in intensity, consistent with their combined effects on IGF-I promoter activity. Nonetheless, hER did not bind

  7. Long-term deficiency of circulating and hippocampal insulin-like growth factor I induces depressive behavior in adult mice: A potential model of geriatric depression

    PubMed Central

    Mitschelen, Matthew; Yan, Han; Farley, Julie A.; Warrington, Junie P.; Han, Song; Hereñú, Claudia B.; Csiszar, Anna; Ungvari, Zoltan; Bailey-Downs, Lora C.; Bass, Caroline E.; Sonntag, William E.

    2011-01-01

    Numerous studies support the hypothesis that deficiency of insulin-like growth factor I (IGF-1) in adults contributes to depression, but direct evidence is limited. Many psychological and pro-cognitive effects have been attributed to IGF-1, but appropriate animal models of adult-onset IGF-1 deficiency are lacking. In this study, we use a viral-mediated Cre-loxP system to knockout the Igf1 gene in either the liver, neurons of the CA1 region of the hippocampus, or both. Knockout of liver Igf1 reduced serum IGF-1 levels by 40% and hippocampal IGF-1 levels by 26%. Knockout of Igf1 in CA1 reduced hippocampal IGF-1 levels by 13%. The most severe reduction in hippocampal IGF-1 occurred in the group with knockouts in both liver and CA1 (36% reduction), and was associated with a 3.5-fold increase in immobility in the forced swim test. Reduction of either circulating or hippocampal IGF-1 levels did not alter anxiety measured in an open field and elevated plus maze, nor locomotion in the open field. Furthermore, local compensation for deficiencies in circulating IGF-1 did not occur in the hippocampus, nor were serum levels of IGF-1 upregulated in response to the moderate decline of hippocampal IGF-1 caused by the knockouts in CA1. We conclude that adult-onset IGF-1 deficiency alone is sufficient to induce a depressive phenotype in mice. Furthermore, our results suggest that individuals with low brain levels of IGF-1 are at increased risk for depression and these behavioral effects are not ameliorated by increased local IGF-1 production or transport. Our study supports the hypothesis that the natural IGF-1 decline in aging humans may contribute to geriatric depression. PMID:21524689

  8. Effects of different dietary intake on mRNA levels of MSTN, IGF-I, and IGF-II in the skeletal muscle of Dorper and Hu sheep hybrid F1 rams.

    PubMed

    Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F

    2014-07-24

    MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.

  9. Stimulation of liver IGF-1 expression promotes peak bone mass achievement in growing rats: a study with pomegranate seed oil.

    PubMed

    Bachagol, Deepa; Joseph, Gilbert Stanley; Ellur, Govindraj; Patel, Kalpana; Aruna, Pamisetty; Mittal, Monika; China, Shyamsundar Pal; Singh, Ravendra Pratap; Sharan, Kunal

    2018-02-01

    Peak bone mass (PBM) achieved at adulthood is a strong determinant of future onset of osteoporosis, and maximizing it is one of the strategies to combat the disease. Recently, pomegranate seed oil (PSO) has been shown to have bone-sparing effect in ovariectomized mice. However, its effect on growing skeleton and its molecular mechanism remain unclear. In the present study, we evaluated the effect of PSO on PBM in growing rats and associated mechanism of action. PSO was given at various doses to 21-day-old growing rats for 90 days by oral gavage. The changes in bone parameters were assessed by micro-computed tomography and histology. Enzyme-linked immunosorbent assay was performed to analyze the levels of serum insulin-like growth factor type 1 (IGF-1). Western blotting from bone and liver tissues was done. Chromatin immunoprecipitation assay was performed to study the histone acetylation levels at IGF-1 gene. The results of the study show that PSO treatment significantly increases bone length, bone formation rate, biomechanical parameters, bone mineral density and bone microarchitecture along with enhancing muscle and brown fat mass. This effect was due to the increased serum levels of IGF-1 and stimulation of its signaling in the bones. Studies focusing on acetylation of histones in the liver, the major site of IGF-1 synthesis, showed enrichment of acetylated H3K9 and H3K14 at IGF-1 gene promoter and body. Further, the increased acetylation at H3K9 and H3K14 was associated with a reduced HDAC1 protein level. Together, our data suggest that PSO promotes the PBM achievement via increased IGF-1 expression in liver and IGF-1 signaling in bone. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Helicobacter pylori Infection in Children: Nutritional Status and Associations with Serum Leptin, Ghrelin, and IGF-1 Levels.

    PubMed

    Erdemir, Gulin; Ozkan, Tanju Basarir; Ozgur, Taner; Altay, Derya; Cavun, Sinan; Goral, Guher

    2016-08-01

    Helicobacter pylori is associated with gastrointestinal diseases such as gastritis, peptic ulcers, malignancy and lymphoma, and extra-gastrointestinal conditions. H. pylori infection is negatively associated with children's growth. Chronic inflammation of the stomach that results in the loss of appetite and, dysregulation of neuroendocrine hormones such as leptin, and ghrelin are the probable reasons of this negative association. The objective of this study is to determine the serum levels of leptin, ghrelin, and IGF-1 in H. pylori-infected children and their relations with growth. A hundred and sixty-one school children aged between 6 and 14 years were selected randomly from five primary schools representing a cross section of population. Demographic and sociocultural characteristics, and anthropometric measurements were recorded. Serum H. pylori IgG, insulin-like growth factor-1, leptin, and ghrelin levels were measured in all children. The children were grouped according to the nutritional status and Helicobacter pylori seropositivity. Nutritional indices were compared among groups in association with serum leptin, ghrelin, and insulin-like growth factor-1 levels. H. pylori IgG positivity was found in 34.2%, and 14.9% of children were malnourished. H. pylori seropositivity was significantly higher in older ages (10.32 ± 2.26 vs 9.53 ± 2.36 years, p = .036), and body weight and height Z scores were significantly lower in H. pylori-seropositive children (-0.33 ± 1.08 vs 0.04 ± 1.26, p = .044 and 0.13 ± 0.92 vs 0.23 ± 0.91, p = .018 respectively). H. pylori seropositivity was found to be an independent risk factor for shorter body height (p = .01). Serum leptin, ghrelin, and IGF-1 levels were not associated with H. pylori IgG seropositivity (0.35 vs 0.55 ng/mL, p = .3; 3267.4 ± 753.0 vs 2808.3 ± 911.4 pg/mL, p = .06; 470 ± 176 vs 521 ± 179 ng/mL, p = .32, respectively). Children infected with H. pylori are prone to short stature. This effect seems to be

  11. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs.

    PubMed

    Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen

    2016-07-01

    To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P < 0.01), and the levels of GH, INS, IGF-1, and IGFBP-3 in serum were elevated significantly from the 20th to the 40th day of the experiment (P < 0.01). It is concluded that effects of copper supplemented in the diet on the growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs.

  12. The essential role of IGF-I: lessons from the long-term study and treatment of children and adults with Laron syndrome.

    PubMed

    Laron, Z

    1999-12-01

    Fifty patients with primary GH resistance (Laron syndrome) due to molecular defects of the GH receptor or post-receptor pathways were followed from infancy through adulthood. This condition leading to long-term insulin-like growth factor-I (IGF-I) deprivation caused marked growth retardation (-4 to 8 height SD), acromicia, organomicria, retarded development of the skeletal and muscular systems, a small cranium, slow motor development, and impairment of intellectual development in some of the patients. In addition, there was progressive obesity, insulin resistance, a tendency for hypoglycemia, followed later in life by hypercholesterolemia and by glucose intolerance and even diabetes. IGF-I treatment of children with Laron syndrome, by our and other groups (150-240 microg/day sc), stimulated growth (8 cm in the first year and 4-5 cm in the following years) and normalized the biochemical abnormalities. Overdosage led to adverse effects such as hypoglycemia, edema, swelling of soft tissues, and hyperandrogenism. It is concluded that primary IGF-I deprivation induces severe auxological, biochemical, and hormonal changes, the only treatment being biosynthetic IGF-I administration.

  13. Relative IGF-1 and IGF-2 gene expression in maternal and fetal tissues from diabetic swine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolverton, C.K.; Leaman, D.W.; White, M.E.

    1990-02-26

    Fourteen pregnant, crossbred gilts were utilized in this study. Seven gilts were injected with alloxan (50 mg/kg) at day 75 of gestation to induce diabetes. Gilts underwent caesarean section on day 105 of gestation. Samples were collected from maternal skeletal muscle, adipose tissue, uterus and endometrium; and from fetal skeletal muscle, adipose tissue, placenta, liver, lung, kidney, heart, brain and spleen. Tissues were frozen in liquid nitrogen for later analysis of IGF-1 and IGF-2 gene expression. Samples were pooled and total RNA was isolated using the guanidine isothiocynate method. Total mRNA was analyzed by dot blot hybridization. Blots were probedmore » with {sup 32}P-cDNA for porcine IGF-1 and rat IGF-2. IGF-1 gene expression in maternal tissues was unaffected by diabetes. Maternal diabetes increased IGF-2 mRNA in maternal adipose tissue but exhibited no effect in muscle or uterus. Expression of IGF-2 by maternal endometrium was decreased by diabetes. Maternal diabetes induced an increase in IGF-1 gene expression in muscle and placenta while causing an increase in IGF-2 expression in fetal liver and placenta. IGF-2 mRNA was lower in lung from fetuses of diabetic mothers than in controls. These results suggest that maternal diabetes alters IGF-1 and IGF-2 gene expression in specific tissues and differential regulation of these genes appears to exist in the mother and developing fetus.« less

  14. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    PubMed

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  15. [Correlation of age, IGF-1 serum levels, muscular mass index and their influence as determinants of isokinetic variables in patients with osteoporosis].

    PubMed

    Coronado-Zarco, Roberto; Diez-García, María del Pilar; Chávez-Arias, Daniel; León-Hernández, Saúl Renán; Cruz-Medina, Eva; Arellano-Hernández, Aurelia

    2005-01-01

    Bone and skeletal muscle mass loss is related to age. Mechanisms by which they interact have not been well established. To establish a relationship of age with serum levels of IGF-1, skeletal muscle and appendicular muscle mass index, and their influence in isokinetic parameters in osteoporotic female patients. Pearson correlation coefficient and linear regression analyses were used. There were 38 patients with a mean age of 65.16 years (range: 50-84 years), mean appendicular skeletal mass index (ASMI) of 6.3 kg/m2 (range: 4.3-8.3) and mean skeletal mass index (SMI) of 12.4 kg/m2 (range: 9.6-15.7), mean serum IGF-1 levels of 82.97 ng/ml (range: 22-177). Linear regression predicted hip mineral bone density by SMI (p = 0.19) and age (p = 0.017, r = 0.50). Some isokinetic parameters had a positive correlation for work with age. Knee acceleration time had a positive correlation with age. Osteoporosis and sarcopenia may have related pathophysiologic mechanisms. Growth factor study must include the influence of sex hormones. Some isokinetic parameters are determined by the predominant muscle fiber, skeletal mass index and age.

  16. Perifollicular blood flow and its relationship with endometrial vascularity, follicular fluid EG-VEGF, IGF-1, and inhibin-a levels and IVF outcomes.

    PubMed

    Vural, Fisun; Vural, Birol; Doğer, Emek; Çakıroğlu, Yiğit; Çekmen, Mustafa

    2016-10-01

    The aim of this study is to investigate the association of perifollicular blood flow (PFBF) with follicular fluid EG-VEGF, inhibin-a, and insulin-like growth factor-1 (IGF-1) concentrations, endometrial vascularity, and IVF outcomes. Forty women with tubal factor infertility were included in a prospective cohort study. Each woman underwent IVF/ICSI procedure. Individual follicles of ≥16 mm (n = 156) were evaluated by power Doppler analysis and categorized as well-vascularized follicles (WVFs) or poorly vascularized follicles (PVFs). WVFs referred to those with perifollicular vascularity of 51-100 %. Each follicular fluid (FF) was individually aspirated and FF/serum EG-VEGF, inhibin-a, and FF IGF-1 levels were evaluated. Zones III-IV endometrial vascularity was classified as a well-vascularized endometrium (WVE). The presence of a WVE and mature oocytes, in addition to the embryo quality and clinical pregnancy rate (CPR), were recorded for each follicle. The main outcome measures were FF serum EG-VEGF, inhibin-a, IGF-1 levels, and WVE and IVF outcome per PFBF. For WVFs, the level of FF EG-VEGF (p = 0.008), oocyte quality (p = 0.001), embryo quality (p = 0.002), a WVE (p = 0.001), and CPR (p = 0.04) increased significantly. The pregnant group was characterized by increased numbers of WVFs (p = 0.044), a WVE (p = 0.022), and increased levels of FF IGF-1 (p = 0.001) and serum EG-VEGF (p = 0.03). FF IGF-1 >50 ng/mL (AUC 0.72) had 75 % sensitivity and 64 % specificity for predicting CPR. WVFs yield high-quality oocytes and embryos, a WVE, increased FF EG-VEGF levels, and increased CPRs.

  17. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.

    PubMed

    Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando

    2016-10-01

    The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.

  18. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1.

    PubMed

    Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian

    2016-06-28

    Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury.

  19. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1

    PubMed Central

    Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury. PMID:27175593

  20. Effect of insulin-like growth factor-1 (IGF-1) plus alendronate on bone density during puberty in IGF-1-deficient MIDI mice.

    PubMed

    Stabnov, L; Kasukawa, Y; Guo, R; Amaar, Y; Wergedal, J E; Baylink, D J; Mohan, S

    2002-06-01

    Insulin-like growth factor-1 (IGF-1) increases both bone formation and bone resorption processes. To test the hypothesis that treatment with an antiresorber along with IGF-1, during the pubertal growth phase, would be more effective than IGF-1 alone to increase peak bone mass, we used an IGF-1 MIDI mouse model, which exhibits a >60% reduction in circulating IGF-1 levels. We first determined an optimal IGF-1 delivery by evaluating IGF-1 administration (2 mg/kg body weight/day) by either a single daily injection, three daily injections, or by continuous delivery via a minipump during puberty. Of the three regimens, the three daily IGF-1 injections and IGF-1 through a minipump produced a significant increase in total body bone mineral density (BMD) (6.0% and 4.4%, respectively) and in femoral BMD (4.3% and 6.2%, respectively) compared with the control group. Single subcutaneous (s.c.) administration did not increase BMD. We chose IGF-1 administration three times daily for testing the combined effects of IGF-1 and alendronate (100 microg/kg per day). The treatment of IGF-1 + alendronate for a period of 2 weeks increased total body BMD at 1 week and 3 weeks after treatment (21.1% and 20.5%, respectively) and femoral BMD by 29% at 3 weeks after treatment. These increases were significantly greater than those produced by IGF-1 alone. IGF-1, but not alendronate, increased bone length. IGF-1 and/or alendronate increased both periosteal and endosteal circumference. Combined treatment caused a greater increase in the total body bone mineral content (BMC) and periosteal circumference compared with individual treatment with IGF-1 or alendronate. Our data demonstrate that: (1) inhibition of bone turnover during puberty increases net bone density; and (2) combined treatment with IGF-1 and alendronate is more effective than IGF-1 or alendronate alone in increasing peak bone mass in an IGF-1-deficient MIDI mouse model.

  1. Human placental growth hormone is increased in maternal serum at 20 weeks of gestation in pregnancies with large-for-gestational-age babies.

    PubMed

    Liao, Shutan; Vickers, Mark H; Taylor, Rennae S; Jones, Beatrix; Fraser, Mhoyra; McCowan, Lesley M E; Baker, Philip N; Perry, Jo K

    2016-12-01

    To investigate the relationship between maternal serum concentrations of placental growth hormone (GH-V), insulin-like growth factor (IGF)-1 and 2, IGF binding proteins (IGFBP)-1 and 3 and birth weight in appropriate-for-gestational-age (AGA), large-for-gestational-age (LGA) and small-for-gestational-age (SGA) cases in a nested case-control study. Maternal serum samples were selected from the Screening for Pregnancy Endpoints (SCOPE) biobank in Auckland, New Zealand. Serum hormone concentrations were determined by ELISA. We found that maternal serum GH-V concentrations at 20 weeks of gestation in LGA pregnancies were significantly higher than in AGA and SGA pregnancies. Maternal GH-V concentrations were positively correlated to birth weights and customized birth weight centiles, while IGFBP-1 concentrations were inversely related to birth weights and customized birth weight centiles. Our findings suggest that maternal serum GH-V and IGFBP-1 concentrations at 20 weeks' gestation are associated with fetal growth.

  2. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis

    PubMed Central

    Vella, Veronica; Nicolosi, Maria Luisa; Giuliano, Stefania; Bellomo, Maria; Belfiore, Antonino; Malaguarnera, Roberta

    2017-01-01

    It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments. PMID:28275367

  3. IgA Enhances IGF-1 Mitogenic Activity Via Receptor Modulation in Glomerular Mesangial Cells: Implications for IgA-Induced Nephropathy.

    PubMed

    Al-Eisa, Amal; Dhaunsi, Gursev S

    2017-01-01

    Glomerulonephritis due to mesangial proliferation is responsible for renal dysfunction in IgA nephropathy (IgAN), however molecular mechanisms of pathogenesis are not well known. We examined the effect of IgA on Insulin-like Growth Factor-1 (IGF-1) activity, a potent mitogen with vital role in growth and development of children, and IGF-1 receptor (IGF-1R) in cultures of glomerular mesangial cells (GMC). GMC were isolated from rat kidneys using sieving and enzymatic digestion of tissue homogenates, and cultured in RPMI 1640 medium. GMC cultures were treated with IgA (0-10 µg/ml) in the presence or absence of IGF-1 and fetal bovine serum (FBS), and BrdU incorporation was measured. IGF-1 levels were assayed along with real-time PCR quantification of IGF-1R mRNA. Treatment of GMC with IgA (5 -10 µg/ml) significantly (p < 0.01) increased the BrdU incorporation in the presence or absence of FBS or IGF-1. IgA-mediated effects were more pronounced in IGF-1 treated cells that were significantly (p < 0.01) blocked by pretreatment of cells with IGF-1 receptor antibody or genistein. IgA significantly increased the levels of IGF-1 in culture supernatants and GMC homogenates. IGF-1R mRNA was significantly (p < 0.01) increased in IgA treated cells particularly by co-treatment with IGF-1. These findings show that IgA enhances the IGF-1 activity in GMC via stimulation of IGF-1R gene transcription and suggest a role for IGF-1 in pathogenesis of IgAN. © 2017 The Author(s). Published by S. Karger AG, Basel.

  4. The association between peripheral total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 and functional and cognitive outcomes in the Mayo Clinic Study of Aging.

    PubMed

    Wennberg, Alexandra M V; Hagen, Clinton E; Machulda, Mary M; Hollman, John H; Roberts, Rosebud O; Knopman, David S; Petersen, Ronald C; Mielke, Michelle M

    2018-06-01

    Levels of insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3, and their ratio in the blood may be useful for monitoring those at risk of cognitive and functional decline. However, the association between IGF measures and functional and cognitive outcomes has been mixed, and the associations may vary by sex. The present study investigated the cross-sectional, sex-specific associations between serum measures total IGF-1, IGFBP-3, and the IGF-1/IGFBP-3 ratio, gait speed, and cognition in 1320 cognitively unimpaired participants aged 50-95 years enrolled in the Mayo Clinic Study of Aging. We used multivariable linear regression models to determine the association between IGF measures and gait speed or cognitive test performance by sex. IGF measures were not associated with cognitive or functional performance among men. Among women, higher levels of log total IGF-1 and IGFBP-3 were associated with better performance in attention, visuospatial, and global cognitive domains, independent of the gait speed. These findings suggest that among women, IGF measures are associated with cognition, and these associations are independent of function. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Increase in serum magnesium level in haemodialysis patients receiving sevelamer hydrochloride.

    PubMed

    Mitsopoulos, Efstathios; Griveas, Ioannis; Zanos, Stavros; Anagnostopoulos, Konstantinos; Giannakou, Anastasia; Pavlitou, Aikaterini; Sakellariou, Georgios

    2005-01-01

    Clinical studies have shown that sevelamer hydrochloride improves lipid profiles and attenuates the progression of the cardiovascular calcifications in haemodialysis patients. It is known that both of these properties are associated with increased magnesium levels. The effect of sevelamer on serum magnesium level is not well documented. The aim of this study was to determine the effects of sevelamer treatment on serum magnesium in haemodialysis patients and to assess the association of magnesium levels with lipid profiles and intact parathyroid hormone (iPTH). Phosphate binders were discontinued during a two week washout period. Forty-seven patients, whose serum phosphate was greater than 6.0 mg/dl at the end of washout, received sevelamer hydrochloride for eight weeks. The patients were then washed off sevelamer for another two weeks. Mean serum phosphorus concentration declined from 7.5 +/- 1.3 to 6.4 +/- 1.2 mg/dl (P < 0.001), mean serum magnesium levels increased from 2.75 +/- 0.35 to 2.90 +/- 0.41 mg/dl (P < 0.001) and median serum iPTH levels decreased from 297 to 213 pg/ml (P=0.001) during the eight weeks of sevelamer treatment. After the two week post-treatment washout phosphorus levels increased to 7.3 +/- 1.3 mg/dl (P < 0.001), magnesium levels were reduced to 2.77 +/- 0.39 mg/dl (P < 0.001) and iPTH levels increased to 240 pg/ml (P=0.012). No change was observed in serum calcium levels during the sevelamer treatment period and the subsequent washout period. The mean decline in total and low density lipoprotein (LDL) cholesterol during sevelamer treatment was 16.3 and 28.3 (P < 0.001), respectively. The mean increase in high density lipoprotein (HDL) cholesterol and in apolipoprotein A1 was 2.9 +/- 5.8 mg/dl (P=0.004) and 6.8 +/- 11.1 mg/dl (P=0.001), respectively. Multivariate analysis showed that the rise in serum magnesium concentration significantly correlated with reductions in iPTH levels (r=-0.40, P=0.016), but did not have any significant

  6. Increased prenatal IGF2 expression due to the porcine intron3-G3072A mutation may be responsible for increased muscle mass.

    PubMed

    Clark, D L; Clark, D I; Beever, J E; Dilger, A C

    2015-05-01

    A SNP (IGF2 G3072A) within intron 3 of disrupts a binding site for the repressor zinc finger BED-type containing 6 (ZBED6), leading to increased carcass lean yields in pigs. However, the relative contributions of prenatal as opposed to postnatal increased IGF2 expression are unclear. As muscle fiber number is set at birth, prenatal and neonate skeletal muscle development is critical in determining mature growth potential. Therefore, the objectives of this study were to determine the contributions of hyperplasia and hypertrophy to increased muscle mass and to delineate the effect of the mutation on the expression of myogenic genes during prenatal and postnatal growth. Sows (IGF2 A/A) were bred to a single heterozygous (IGF2 A/G) boar. For fetal samples, sows were euthanized at 60 and 90 d of gestation (d60 and d90) to obtain fetuses. Male and female offspring were also euthanized at birth (0d), weaning (21d), and market weight of approximately 130 kg (176d). At each sampling time, the LM, psoas major (PM), and semitendinosus (ST) muscles were weighed. Samples of the LM were used to quantify the expression of IGF family members, myogenic regulatory factors (MRF), myosin heavy chain isoforms, and growth factors, myostatin, and . Liver samples were used to quantify and expression. At 176d, weights of LM, PM, and ST muscles were all increased approximately 8% to 14% (P < 0.01) in pigs with paternal A (A(Pat)) alleles compared with those with paternal G (G(Pat)) alleles. Additionally, total muscle fiber number in the ST at 176d tended to be greater (P = 0.10), whereas muscle fiber cross-sectional area tended to be reduced ( P= 0.08) in A(Pat) pigs compared with G(Pat) pigs. In addition to the expected 2.7- to 4.5-fold increase (P ≤ 0.02) in expression in the LM in A(Pat) compared with G(Pat) pigs at postnatal sampling times (21d and 176d), IGF2 expression was also increased (P ≤ 0.06) 1.4- to 1.5-fold at d90 of gestation and at birth. At d90, expression of myogenic

  7. Height velocity and IGF-I assessment in the diagnosis of childhood onset GH insufficiency: do we still need a second GH stimulation test?

    PubMed

    Cianfarani, Stefano; Tondinelli, Tiziana; Spadoni, Gian Luigi; Scirè, Giuseppe; Boemi, Sergio; Boscherini, Brunetto

    2002-08-01

    The diagnosis of GH insufficiency (GHI) in childhood is not straightforward. Our aim was to test the sensitivity and specificity of height velocity (HV), IGF-I, IGFBP-3 and GH stimulation tests alone or in combination in the diagnosis of GHI. A retrospective review of patients with GHI and idiopathic short stature (ISS) diagnosed in our centre and followed up to the completion of linear growth. Thirty-three GHI children and 56 children with ISS were evaluated. GHI diagnosis was based on fulfilment of anthropometric, endocrine and neuroradiological criteria: stature < or = -2 z-score, delayed bone age (at least 1 year), GH peak response to at least two different provocative tests < 10 micro g/l (20 mU/l), brain MRI positive for hypothalamus-pituitary abnormalities, catch-up growth during the first year of GH replacement therapy > or = 75th centile, peak GH response to a third provocative test after growth completion < 10 micro g/l (20 mU/l). Children with anthropometry resembling that of GHI but with peak GH responses > 10 micro g/l (20 mU/l) were diagnosed as ISS. All subjects underwent standard anthropometry. GH secretory status was assessed by clonidine, arginine and GHRH plus arginine stimulation tests. IGF-I and IGFBP-3 circulating levels were measured by immunoradiometric assay (IRMA). The following cut-off values were chosen to discriminate between GHI and nonGHI short children: HV < 25th centile over the 6-12 months prior to the initiation of GH therapy, peak GH responses < 10 or < 7 micro g/l (< 20 or < 14 mU/l) and IGF-I and IGFBP-3-values < -1.9 z-score. Sensitivity (true positive ratio) and specificity (true negative ratio) were evaluated. Taking 10 micro g/l (20 mU/l) as the cut-off value, sensitivity was 100% and specificity 57% for GH provocative tests, whereas taking 7 as the cut-off value, sensitivity was 66% and specificity rose to 78%. Sensitivity was 73% for IGF-I and 30% for IGFBP-3 measurement, whilst specificity was 95% for IGF-I and 98% for

  8. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group.

    PubMed

    Lai, E C; Felice, K J; Festoff, B W; Gawel, M J; Gelinas, D F; Kratz, R; Murphy, M F; Natter, H M; Norris, F H; Rudnicki, S A

    1997-12-01

    The objective of this study was to investigate the safety and efficacy of recombinant human insulinlike growth factor-I (rhIGF-I) in the treatment of sporadic ALS. A double-blind, placebo-controlled, randomized study of 266 patients was conducted at eight centers in North America. Placebo or rhIGF-I (0.05 mg/kg/day or 0.10 mg/kg/day) was administered for 9 months. The primary outcome measure was disease symptom progression, assessed by the rate of change (per patient slope) in the Appel ALS rating scale total score. The Sickness Impact Profile (SIP), a patient-perceived, health-related quality of life assessment, was a secondary outcome variable. Progression of functional impairment in patients receiving high-dose (0.10 mg/kg/day) rhIGF-I was 26% slower than in patients receiving placebo (p = 0.01). The high-dose treatment group was less likely to terminate the study due to protocol-defined markers of disease symptom progression, and members in this group exhibited a slower decline in quality of life, as assessed by the SIP. Patients receiving 0.05 mg/kg/day of rhIGF-I exhibited trends similar to those associated with high-dose treatment, suggesting a dose-dependent response. The incidence of clinically significant adverse experiences was comparable among the three treatment groups. Recombinant human insulin-like growth factor-I slowed the progression of functional impairment and the decline in health-related quality of life in patients with ALS with no medically important adverse effects.

  9. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  10. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1.

    PubMed

    Faxén, Ulrika Ljung; Hage, Camilla; Benson, Lina; Zabarovskaja, Stanislava; Andreasson, Anna; Donal, Erwan; Daubert, Jean-Claude; Linde, Cecilia; Brismar, Kerstin; Lund, Lars H

    2017-04-01

    Anabolic drive is impaired in heart failure with reduced ejection fraction (HFrEF) but insufficiently studied in heart failure with preserved ejection fraction (HFpEF). Insulin-like growth factor 1 (IGF-1) mediates growth hormone effects and IGF binding protein 1 (IGFBP-1) regulates IGF-1 activity. We tested the hypothesis that HFpEF and HFrEF are similar with regard to IGF-1 and IGFBP-1. In patients with HFpEF (n = 79), HFrEF (n = 85), and controls (n = 136), we analyzed serum IGF-1 and IGFBP-1 concentrations, correlations, and associations with outcome. Age-standardized scores of IGF-1 were higher in HFpEF, median arbitrary units (interquartile range); 1.21 (0.57-1.96) vs HFrEF, 0.09 (-1.40-1.62), and controls, 0.22 (-0.47-0.96), P overall <.001. IGFBP-1 was increased in HFpEF, 48 (28-79), and HFrEF, 65 (29-101), vs controls, 27(14-35) µg/L, P overall <.001. These patterns persisted after adjusting for metabolic and HF severity confounders. IGF-1 was associated with outcomes in HFrEF, hazard ratio per natural logarithmic increase in IGF-1 SD score 0.51 (95% confidence interval 0.32-0.82, P = .005), but not significantly in HFpEF. IGFBP-1 was not associated with outcomes in either HFpEF nor HFrEF. HFpEF and HFrEF phenotypes were similar with regard to increased IGFBP-1 concentrations but differed regarding IGF-1 levels and prognostic role. HFrEF and HFpEF may display different impairment in anabolic drive. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media.

    PubMed

    Miki, Hideo; Takagi, Mutsumi

    2015-08-01

    The design of serum-free media for suspension culture of genetically engineered Chinese hamster ovary (CHO) cells using general commercial media as a basis was investigated. Subcultivation using a commercial serum-free medium containing insulin-like growth factor (IGF)-1 with or without FCS necessitated additives other than IGF-1 to compensate for the lack of FCS and improve cell growth. Suspension culture with media containing several combinations of growth factors suggested the effectiveness of addition of both IGF-1 and the lipid signaling molecule lysophosphatidic acid (LPA) for promoting cell growth. Subcultivation of CHO cells in suspension culture using the commercial serum-free medium EX-CELL™302, which contained an IGF-1 analog, supplemented with LPA resulted in gradually increasing specific growth rate comparable to the serum-containing medium and in almost the same high antibody production regardless of the number of generations. The culture with EX-CELL™302 supplemented with LPA in a jar fermentor with pH control at 6.9 showed an apparently higher cell growth rate than the cultures without pH control and with pH control at 6.8. The cell growth in the medium supplemented with aurintricarboxylic acid (ATA), which was much cheaper than IGF-1, in combination with LPA was synergistically promoted similarly to that in the medium supplemented with IGF-1 and LPA. In conclusion, the serum-free medium designed on the basis of general commercial media could support the growth of CHO cells and antibody production comparable to serum-containing medium in suspension culture. Moreover, the possibility of cost reduction by the substitution of IGF-1 with ATA was also shown.

  12. Stocking density affects the growth performance and metabolism of Amur sturgeon by regulating expression of genes in the GH/IGF axis

    NASA Astrophysics Data System (ADS)

    Ren, Yuanyuan; Wen, Haishen; Li, Yun; Li, Jifang

    2017-07-01

    The effects of stocking density on the growth and metabolism of Amur sturgeon were assessed. Amur sturgeon were grown for 70 days at three different stocking densities (low stocking density, LSD: 5.5 kg/m3; medium stocking density, MSD: 8.0 kg/m3; and high stocking density, HSD: 11.0 kg/m3), and the biometric index, muscle composition, and serum biochemical parameters were evaluated. In addition, pituitary, liver, and muscle samples were collected for gene cloning and expression analyses. After 70 days of growth, the fish maintained at HSD had significantly lower final body weight and specific growth rate, and a higher feed conversion ratio than those of the fish in the MSD and LSD groups. The HSD group had the lowest lipid and protein concentrations in serum and muscle. The serum cortisol concentration increased significantly in the HSD group, indicating that the stress-response system was activated in these fish. There was no change in the concentration of serum insulin-like growth factor 2 (IGF-2), while the concentrations of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-1) decreased in the HSD group. The full-length cDNAs of GH and IGF-2 genes (995-bp and 1 207-bp long, respectively), were cloned and analyzed. In the HSD group, the expressions of GH in the pituitary and growth hormone receptor (GHR) and IGF-1 in the liver were down-regulated at the end of the 70-day experiment. In the HSD group, the transcript level of IGF-2 significantly decreased in the liver, but did not change in muscle. Overall, our results indicated that a HSD negatively affects the growth performance and leads to changes in lipid and protein metabolism in Amur sturgeon. The down-regulated expression of genes related to the GH/IGF axis may be responsible for the poor growth performance of Amur sturgeon under crowding stress.

  13. Up-Regulation of MicroRNA-190b Plays a Role for Decreased IGF-1 That Induces Insulin Resistance in Human Hepatocellular Carcinoma

    PubMed Central

    Hung, Tzu-Min; Ho, Cheng-Maw; Liu, Yen-Chun; Lee, Jia-Ling; Liao, Yow-Rong; Wu, Yao-Ming; Ho, Ming-Chih; Chen, Chien-Hung; Lai, Hong-Shiee; Lee, Po-Huang

    2014-01-01

    Background & Aims Insulin-like growth factor, (IGF)-1, is produced mainly by the liver and plays important roles in promoting growth and regulating metabolism. Previous study reported that development of hepatocellular carcinoma (HCC) was accompanied by a significant reduction in serum IGF-1 levels. Here, we hypothesized that dysregulation of microRNAs (miRNA) in HCC can modulate IGF-1 expression post-transcriptionally. Methods The miRNAs expression profiles in a dataset of 29 HCC patients were examined using illumina BeadArray. Specific miRNA (miR)-190b, which was significantly up-regulated in HCC tumor tissues when compared with paired non-tumor tissues, was among those predicted to interact with 3′-untranslated region (UTR) of IGF-1. In order to explore the regulatory effects of miR-190b on IGF-1 expression, luciferase reporter assay, quantitative real-time PCR, western blotting and immunofluorecence analysis were performed in HCC cells. Results Overexpression of miR-190b in Huh7 cells attenuated the expression of IGF-1, whereas inhibition of miR-190b resulted in up-regulation of IGF-1. Restoration of IGF-1 expression reversed miR-190b-mediated impaired insulin signaling in Huh7 cells, supporting that IGF-1 was a direct and functional target of miR-190b. Additionally, low serum IGF-1 level was associated with insulin resistance and poor overall survival in HCC patients. Conclusions Increased expression of miR-190 may cause decreased IGF-1 in HCC development. Insulin resistance appears to be a part of the physiopathologic significance of decreased IGF-1 levels in HCC progression. This study provides a novel miRNA-mediated regulatory mechanism for controlling IGF-1 expression in HCC and elucidates the biological relevance of this interaction in HCC. PMID:24586785

  14. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model.

    PubMed

    Madry, H; Kaul, G; Zurakowski, D; Vunjak-Novakovic, G; Cucchiarini, M

    2013-04-16

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-overexpressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects.

  15. CARTILAGE CONSTRUCTS ENGINEERED FROM CHONDROCYTES OVEREXPRESSING IGF-I IMPROVE THE REPAIR OF OSTEOCHONDRAL DEFECTS IN A RABBIT MODEL

    PubMed Central

    Madry, Henning; Kaul, Gunter; Zurakowski, David; Vunjak-Novakovic, Gordana; Cucchiarini, Magali

    2015-01-01

    Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes over expressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cultured on biodegradable polyglycolic acid scaffolds in dynamic flow rotating bioreactors for either 10 or 28 d. The resulting cartilaginous constructs were implanted into osteochondral defects in rabbit knee joints. After 28 weeks of in vivo implantation, immunoreactivity to ß-gal was detectable in the repair tissue of defects that received lacZ constructs. Engineered cartilaginous constructs based on IGF-I-over expressing chondrocytes markedly improved osteochondral repair compared with control (lacZ) constructs. Moreover, IGF-I constructs cultivated for 28 d in vitro significantly promoted osteochondral repair vis-à-vis similar constructs cultivated for 10 d, leading to significantly decreased osteoarthritic changes in the cartilage adjacent to the defects. Hence, the combination of spatially defined overexpression of human IGF-I within a tissue-engineered construct and prolonged bioreactor cultivation resulted in most enhanced articular cartilage repair and reduction of osteoarthritic changes in the cartilage adjacent to the defect. Such genetically enhanced tissue engineering provides a versatile tool to evaluate potential therapeutic genes in vivo and to improve our comprehension of the development of the repair tissue within articular cartilage defects. Insights gained with additional exploration using this model may lead to more effective treatment options for acute cartilage defects. PMID:23588785

  16. Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus.

    PubMed

    Chen, Mark Hung-Chih; Li, Yen-Hsing; Chang, Yvonne; Hu, Shao-Yang; Gong, Hong-Yi; Lin, Gen-Hwa; Chen, Thomas T; Wu, Jen-Leih

    2007-01-15

    Like IGF-I, progranulin (pgrn) is a growth factor involved in tumorigenesis and wound healing. We report here the identification and characterization of pgrn cDNA in tilapia and the regulation of its expression by growth hormone (GH). The tilapia pgrn cDNA was cloned by RT-PCR amplification, using gene specific oligonucleotides as amplification primers. The cDNA contains an open reading frame encoding a peptide of 206 amino acid residues (aa) that contains a presumptive signal peptide (23 aa) and two repeat units of granulin (grn, 51 and 52 aa, respectively) franked by a GAP of 49 aa and the carboxyl terminus with 31 aa. The two predicted grn peptides are arranged in tandem repeats interrupted by a GAP peptide. RT-PCR analysis revealed that high levels of prgn mRNA were present in several tissues such as spleen, gastric cecum, intestine, fat tissue, gill, kidney, eye and pancreas, and lower levels in liver, muscle, heart, brain, skin and stomach. Administration of a single dose (500 ng/g body weight) of recombinant seabream growth hormone (rbGH) by intraperitoneal (ip) injection into one-month-old tilapia resulted in an obvious increase of IGF-I and pgrn mRNA (2.7-fold and 2.5-fold, respectively) in the liver at three hours post-GH treatment. The peptide levels of pgrn in the liver of GH-treated fish also were substantially induced over controls at 12h post-GH treatment as detected by western immuno-blot analysis. The co-induction of IGF-I and pgrn following GH treatment may suggest the involvement of pgrn in GH regulated growth in tilapia.

  17. Essential Role of Growth Hormone and IGF-1 in Therapeutic Effect of Ghrelin in the Course of Acetic Acid-Induced Colitis.

    PubMed

    Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Kuśnierz-Cabala, Beata; Bonior, Joanna; Jaworek, Jolanta; Ambroży, Tadeusz; Gil, Krzysztof; Olszanecki, Rafał; Pihut, Małgorzata; Dembiński, Artur

    2017-05-24

    Previous studies have shown that ghrelin exhibits a protective and therapeutic effect in the gut. The aim of the present study was to examine whether administration of ghrelin affects the course of acetic acid-induced colitis and to determine what is the role of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in this effect. In sham-operated or hypophysectomized male Wistar rats, colitis was induced by enema with 1 mL of 3% solution of acetic acid. Saline or ghrelin (given at the dose of 8 nmol/kg/dose) was administered intraperitoneally twice a day. Seven days after colitis induction, rats were anesthetized and the severity of the colitis was assessed. Treatment with ghrelin reduced the area of colonic mucosa damage in pituitary-intact rat. This effect was associated with increase in serum levels of GH and IGF-1. Moreover, administration of ghrelin improved blood flow in colonic mucosa and mucosal cell proliferation, as well as reduced mucosal concentration of proinflammatory interleukin-1β (IL-1β) and activity of myeloperoxidase. Hypophysectomy reduced serum levels of GH and IGF-1 and increased the area of colonic damage in rats with colitis. These effects were associated with additional reduction in mucosal blood follow and DNA synthesis when compared to pituitary-intact rats. Mucosal concentration of IL-1β and mucosal activity of myeloperoxidase were maximally increased. Moreover, in hypophysectomized rats, administration of ghrelin failed to affect serum levels of GH or IGF-1, as well as the healing rate of colitis, mucosal cell proliferation, and mucosal concentration of IL-1β, or activity of myeloperoxidase. We conclude that administration of ghrelin accelerates the healing of the acetic acid-induced colitis. Therapeutic effect of ghrelin in experimental colitis is mainly mediated by the release of endogenous growth hormone and IGF-1.

  18. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    PubMed

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of oral and transdermal estrogen on IGF1, IGFBP3, IGFBP1, serum lipids, and glucose in patients with hypopituitarism during GH treatment: a randomized study.

    PubMed

    Isotton, Ana Lúcia; Wender, Maria Celeste Osorio; Casagrande, Alessandra; Rollin, Guilherme; Czepielewski, Mauro Antônio

    2012-02-01

    To evaluate the effects of oral estradiol and transdermal 17β-estradiol on serum concentrations of IGF1 and its binding proteins in women with hypopituitarism. Prospective, comparative study. Eleven patients with hypopituitarism were randomly allocated to receive 2 mg oral estradiol (n=6) or 50 μg/day of transdermal 17β-estradiol (n=5) for 3 months. The oral estrogen group showed a significant reduction in IGF1 levels (mean: 42.7%±41.4, P=0.046); no difference was observed in the transdermal estrogen group. There was a significant increase in IGFBP1 levels (mean: 170.2%±230.9, P=0.028) in the oral group, but not in the transdermal group. There was no significant difference within either group in terms of median IGFBP3 levels. In relation to lipid profiles, there was a significant increase in mean high-density lipoprotein cholesterol levels in the oral group after 3 months of treatment, (27.8±9.3, P=0.003). We found no differences in the anthropometric measurements, blood pressure, heart rate, glucose, insulin, C-peptide, or the homeostasis model assessment index after treatment. Our preliminary data indicate that different estrogen administration routes can influence IGF1 and IGFBP1 levels. These findings in patients with hypopituitarism have an impact on their response to treatment with GH, since patients receiving oral estrogen require increased GH dosage. These results suggest that oral estrogens may reduce the beneficial effects of GH replacement on fat and protein metabolism, body composition, and quality of life.

  20. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners.

    PubMed

    Sarfstein, Rive; Friedman, Yael; Attias-Geva, Zohar; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2013-01-01

    Accumulating epidemiological evidence shows that obesity is associated with an increased risk of several types of adult cancers, including endometrial cancer. Chronic hyperinsulinemia, a typical hallmark of diabetes, is one of the leading factors responsible for the obesity-cancer connection. Numerous cellular and circulating factors are involved in the biochemical chain of events leading from hyperinsulinemia and insulin resistance to increased cancer risk and, eventually, tumor development. Metformin is an oral anti-diabetic drug of the biguanide family used for treatment of type 2 diabetes. Recently, metformin was shown to exhibit anti-proliferative effects in ovarian and Type I endometrial cancer, although the mechanisms responsible for this non-classical metformin action remain unclear. The insulin-like growth factors (IGFs) play a prominent role in cancer biology and their mechanisms of action are tightly interconnected with the insulin signaling pathways. Given the cross-talk between the insulin and IGF signaling pathways, the aim of this study was to examine the hypothesis that the anti-proliferative actions of metformin in uterine serous carcinoma (USC) are potentially mediated via suppression of the IGF-I receptor (IGF-IR) pathway. Our results show that metformin interacts with the IGF pathway, and induces apoptosis and inhibition of proliferation and migration of USC cell lines with both wild type and mutant p53. Taken together, our results suggest that metformin therapy could be a novel and attractive therapeutic approach for human USC, a highly aggressive variant of endometrial cancer.

  1. Effects of tryptophan supplementation on cashmere fiber characteristics, serum tryptophan, and related hormone concentrations in cashmere goats.

    PubMed

    Ma, H; Zhang, W; Song, W H; Sun, P; Jia, Z H

    2012-10-01

    This study was designed to investigate the effects of tryptophan (Trp) supplementation on cashmere fiber characteristics and on serum Trp, melatonin (MEL), prolactin (PRL), insulin-like growth factor 1 (IGF-1), triiodothyronine (T3), and thyroxine (T4) concentrations in cashmere goats during the cashmere fast-growth period. Thirty-six Liaoning cashmere wether goats were stratified on the basis of body weight (28±0.8 kg) and assigned randomly to 1 of the following 4 rumen-protected Trp treatments: 0, 2.0, 4.0, and 6.0 g per goat per day. The experimental period lasted 137 d. Blood samples were collected monthly during the daytime (8:00 AM) and at night (8:00 PM). Tryptophan supplementation improved cashmere growth rates, cashmere weight, and body weight (P=0.001) and increased serum Trp levels, nighttime MEL concentrations, IGF-1, and T3 and T4 concentrations (P<0.05). Across the treatments and sampling months, a highly positive correlation between cashmere growth rate and nighttime serum MEL concentrations was observed (r=0.879, P=0.001). A moderately negative correlation between cashmere growth rates and serum PRL concentrations during the day and at night (rday=-0.645, P=0.007; rnight=-0.583, P=0.018) was observed. A moderately positive correlation between the cashmere growth rate and the daytime serum IGF-1 concentration (r=0.536, P=0.032) was observed, and no correlation was found between the cashmere growth rate and the other serum hormone concentrations. These data indicate that changes in serum concentrations of MEL, IGF-1, and PRL are related to cashmere growth in Liaoning cashmere goats during the cashmere fast-growth period. Under the experimental conditions of the current trial, we suggest that Trp may promote cashmere growth by increasing daytime IGF-1 and nighttime MEL secretion. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Lang; Liu, Zhongfen; Gong, Jun

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growthmore » factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure

  3. The effect of adenotonsillectomy on serum insulin like growth factors and the adenoid/nasopharynx ratio in pediatric patients: a blind, prospective clinical study.

    PubMed

    Tatlıpınar, Arzu; Atalay, Sacide; Esen, Erkan; Yılmaz, Gökalp; Köksal, Sema; Gökçeer, Tanju

    2012-02-01

    Obstructive adenoid and tonsillar hyperplasia may present with retardation of growth. An adenoid-nasopharynx (A/N) ratio determined by means of lateral cephalometric radiographs has long been used as a diagnostic tool in the assessment of adenoid size. This study was designed to investigate the effect of adenotonsillectomy on insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels and correlation between A/N ratio and IGF-I and IGFBP-3 levels. Patients (n=48) that had been operated on our clinic with a diagnosis of adenotonsillar hypertrophy between July 2009 and January 2010 were included in the study. The routine ear-nose and throat examination was done in all patients. Blood samples were taken, and lateral cephalometric radiographs were obtained preoperatively and repeated at 6-9 months (mean 7.2 ± 1.0 mo) following tonsillectomy and adenoidectomy. The chemiluminescent enzyme-linked immunosorbent method was used to IGF-I and IGFBP-3 levels. Each cephalometric radiograph was evaluated by a blinded radiologist. The A/N ratio was calculated using the Fujioka method. When the preoperative and postoperative results were compared, a statistically significant increase in serum IGF-I and IGFBP-3 and a decreased A/N ratio were found. However, although correlation between the Δ(preoperative-postoperative difference) IGFBP-3 and ΔA/N ratio was 40%, it was not statistically significant. Additionally, no statistically significant correlation between the ΔIGF-I and ΔA/N ratio was found. The results of the present study indicate that adenotonsillectomy could result in the relief of nasopharyngeal obstruction and have a positive effect on growth in children by decreasing the A/N ratio and increasing IGF-I and IGFBP-3. There was no correlation between the ΔA/N ratio and ΔIGF-I and ΔIGFBP-3 levels. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Indications, limitations and pitfalls in the determination of human growth hormone, IGF-I and their binding proteins.

    PubMed

    Laron, Zvi; Bidlingmaier, Martin; Strasburger, Christian Joseph

    2007-10-01

    Deviations from normal growth are a major part of Pediatric Endocrinology. The principal post-natal growth promoting hormones are pituitary growth hormone (GH) and insulin-like growth factor-I (IGF-I). The GH-IGF-I axis has many links and portals, the secrets of which have been disclosed in recent years by scientific advances (genetic and biochemical technologies). In this article, we describe the players in the GH axis, the auxological indications for performing GH evaluation tests, enumerate the most frequently used tests and discuss the laboratory tests which help to define the pathological entities along the GH axis. Emphasis is put on the limitations of methods used, lack of standards, norms and the possible errors in diagnosis and treatment indications that may evolve. As both hGH and IGF-I immunoassay measurements represent cornerstones in the diagnosis and monitoring of the different etiological entities presenting with short stature, clinicians must have an insight into the variability and limitations of these analytical techniques. Interpretation of biochemical results without proper reference data and without knowledge of the assay-inherent characteristics inevitably leads to misdiagnosis, unnecessary further testing and treatment and imposes a burden on the child, family and the health care system.

  5. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  6. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams.

    PubMed

    Yang, Shu; Zhao, Nannan; Yang, Yang; Hu, Yun; Dong, Haibo; Zhao, Ruqian

    2018-03-21

    The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.

  7. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Tighe, Rachel L; Bonde, Robert K.; Avery, Julie P.

    2016-01-01

    Seasonal changes in light, temperature, and food availability stimulate a physiological response in an animal. Seasonal adaptations are well studied in Arctic, Sub-Arctic, and hibernating mammals; however, limited studies have been conducted in sub-tropical species. The Florida manatee (Trichechus manatus latirostris), a sub-tropical marine mammal, forages less during colder temperatures and may rely on adipose stores for maintenance energy requirements. Metabolic hormones, growth hormone (GH), insulin-like growth factor (IGF)-I, and ghrelin influence growth rate, accretion of lean and adipose tissue. They have been shown to regulate seasonal changes in body composition. The objective of this research was to investigate manatee metabolic hormones in two seasons to determine if manatees exhibit seasonality and if these hormones are associated with seasonal changes in body composition. In addition, age related differences in these metabolic hormones were assessed in multiple age classes. Concentrations of GH, IGF-I, and ghrelin were quantified in adult manatee serum using heterologous radioimmunoassays. Samples were compared between short (winter) and long (summer) photoperiods (n = 22 male, 20 female) and by age class (adult, juvenile, and calf) in long photoperiods (n = 37). Short photoperiods tended to have reduced GH (p = 0.08), greater IGF-I (p = 0.01), and greater blubber depth (p = 0.03) compared with long photoperiods. No differences were observed in ghrelin (p = 0.66). Surprisingly, no age related differences were observed in IGF-I or ghrelin concentrations (p > 0.05). However, serum concentrations of GH tended (p = 0.07) to be greater in calves and juveniles compared with adults. Increased IGF-I, greater blubber thickness, and reduced GH during short photoperiod suggest a prioritization for adipose deposition. Whereas, increased GH, reduced blubber thickness, and decreased IGF-I in long photoperiod suggest prioritization of lean tissue

  8. BRCA1 is expressed in uterine serous carcinoma (USC) and controls insulin-like growth factor I receptor (IGF-IR) gene expression in USC cell lines.

    PubMed

    Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan

    2012-06-01

    The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.

  9. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort.

    PubMed

    Kaaks, Rudolf; Johnson, Theron; Tikk, Kaja; Sookthai, Disorn; Tjønneland, Anne; Roswall, Nina; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Dossus, Laure; Rinaldi, Sabina; Romieu, Isabelle; Boeing, Heiner; Schütze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Sacerdote, Carlotta; Panico, Salvatore; Buckland, Genevieve; Argüelles, Marcial; Sánchez, María-José; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Bueno-de-Mesquita, H Bas; van Gils, Carla H; Peeters, Petra H; Andersson, Anne; Sund, Malin; Weiderpass, Elisabete; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Merritt, Melissa A; Gunter, Marc J; Riboli, Elio; Lukanova, Annekatrin

    2014-06-01

    Experimental evidence shows cross-talk in mammary cells between estrogen, insulin-like growth factor I (IGF-I) and their respective receptors and possible synergistic effects of estrogen receptor (ER) activation and increased IGF-I signaling with regard to breast tumor development, and epidemiological evidence suggests that circulating IGF-I levels may be related more to the risk of ER-positive than ER-negative breast cancer. Using a case-control study nested within the prospective European EPIC cohort (938 breast cancer cases and 1,394 matched control subjects), we analyzed the relationships of prediagnostic serum IGF-I levels with the risk of estrogen and progesterone receptor-positive and -negative breast tumors. IGF-I levels were positively associated with the risk of ER+ breast tumors overall (pre- and postmenopausal women combined, odds ratio (OR)Q4-Q1 = 1.41 [95% confidence interval (CI) 1.01-1.98] for the highest vs. lowest quartile; OR = 1.17 [95% CI 1.04-1.33] per 1-standard deviation (SD) increase in IGF-I, ptrend = 0.01) and among women who were diagnosed with breast cancer at 50 years or older (ORQ3-Q1 = 1.38 [95% CI 1.01-1.89]; OR = 1.19 [95% CI 1.04-1.36] per 1-SD increase in IGF-I, ptrend = 0.01) but not with receptor-positive disease diagnosed at an earlier age. No statistically significant associations were observed for ER- breast tumors overall and by age at diagnosis. Tests for heterogeneity by receptor status of the tumor were not statistically significant, except for women diagnosed with breast cancer at 50 years or older (phet = 0.03 for ER+/PR+ vs. ER-/PR- disease). Our data add to a global body of evidence indicating that higher circulating IGF-I levels may increase risk specifically of receptor-positive, but not receptor-negative, breast cancer diagnosed at 50 years or older. © 2013 UICC.

  10. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis

    PubMed Central

    Mahran, Yasmen F.; El-Demerdash, Ebtehal; Nada, Ahmed S.; El-Naga, Reem N.; Ali, Azza A.; Abdel-Naim, Ashraf B.

    2015-01-01

    Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis. PMID:26465611

  11. Growth Hormone Ameliorates the Radiotherapy-Induced Ovarian Follicular Loss in Rats: Impact on Oxidative Stress, Apoptosis and IGF-1/IGF-1R Axis.

    PubMed

    Mahran, Yasmen F; El-Demerdash, Ebtehal; Nada, Ahmed S; El-Naga, Reem N; Ali, Azza A; Abdel-Naim, Ashraf B

    2015-01-01

    Radiotherapy is one of the standard cytotoxic therapies for cancer. However, it has a profound impact on ovarian function leading to premature ovarian failure and infertility. Since none of the currently available methods for fertility preservation guarantees future fertility, the need for an effective radioprotective agent is highly intensified. The present study investigated the mechanisms of the potential radioprotective effect of growth hormone (GH) on γ irradiation-induced ovarian failure and the impact of the insulin like growth factor 1 (IGF-1) in the underlying protection. Immature female Sprague-Dawley rats were either exposed to single whole body irradiation (3.2 Gy) and/or treated with GH (1 mg/kg s.c). Experimental γ-irradiation produced an array of ovarian dysfunction that was evident by assessment of hormonal changes, follicular development, proliferation marker (PCNA), oxidative stress as well as apoptotic markers. In addition, IGF-1/IGF-1R axis expression was assessed using real-time PCR and immunolocalization techniques. Furthermore, after full maturity, fertility assessment was performed. GH significantly enhanced follicular development and restored anti-Mullerian hormone serum level as compared with the irradiated group. In addition, GH significantly ameliorated the deleterious effects of irradiation on oxidative status, PCNA and apoptosis. Interestingly, GH was shown to enhance the ovarian IGF-1 at transcription and translation levels, a property that contributes significantly to its radioprotective effect. Finally, GH regained the fertility that was lost following irradiation. In conclusion, GH showed a radioprotective effect and rescued the ovarian reserve through increasing local IGF-1 level and counteracting the oxidative stress-mediated apoptosis.

  12. 26S proteasome and insulin-like growth factor-1 in serum of dogs suffering from malignant tumors.

    PubMed

    Gerke, Ingrid; Kaup, Franz-Josef; Neumann, Stephan

    2018-04-01

    Studies in humans have shown that the ubiquitin-proteasome pathway and the insulin-like growth factor axis are involved in carcinogenesis, thus, components of these systems might be useful as prognostic markers and constitute potential therapeutic targets. In veterinary medicine, only a few studies exist on this topic. Here, serum concentrations of 26S proteasome (26SP) and insulin-like growth factor-1 (IGF-1) were measured by canine enzyme-linked immunosorbent assay (ELISA) in 43 dogs suffering from malignant tumors and 21 clinically normal dogs (control group). Relationships with tumor size, survival time, body condition score (BCS), and tumor entity were assessed. The median 26SP concentration in the tumor group was non-significantly higher than in the control group. However, dogs with mammary carcinomas displayed significantly increased 26SP levels compared to the control group and dogs with tumor size less than 5 cm showed significantly increased 26SP concentrations compared to dogs with larger tumors and control dogs. 26SP concentrations were not correlated to survival time or BCS. No significant difference in IGF-1 levels was found between the tumor group and the control group; however, IGF-1 concentrations displayed a larger range of values in the tumor group. Dogs with tumors greater than 5 cm showed significantly higher IGF-1 levels than dogs with smaller tumors. The IGF-1 concentrations were positively correlated to survival time, but no correlation with BCS was found. Consequently, serum 26SP concentrations seem to be increased in some dogs suffering from malignant tumors, especially in dogs with mammary carcinoma and smaller tumors. Increased serum IGF-1 concentrations could be an indication of large tumors and a poor prognosis.

  13. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  14. Experimental approach to IGF-1 therapy in CCl4-induced acute liver damage in healthy controls and mice with partial IGF-1 deficiency.

    PubMed

    Morales-Garza, Luis A; Puche, Juan E; Aguirre, Gabriel A; Muñoz, Úrsula; García-Magariño, Mariano; De la Garza, Rocío G; Castilla-Cortazar, Inma

    2017-05-04

    Cell necrosis, oxidative damage, and fibrogenesis are involved in cirrhosis development, a condition in which insulin-like growth factor 1 (IGF-1) levels are diminished. This study evaluates whether the exogenous administration of low doses of IGF-1 can induce hepatoprotection in acute carbon tetrachloride (CCl 4 )-induced liver damage compared to healthy controls (Wt Igf +/+ ). Additionally, the impact of IGF-1 deficiency on a damaged liver was investigated in mice with a partial deficit of this hormone (Hz Igf1 +/- ). Three groups of 25 ± 5-week-old healthy male mice (Wt Igf +/+ ) were included in the protocol: untreated controls (Wt). Controls that received CCl 4 (Wt + CCl 4 ) and Wt + CCl 4 were treated subcutaneously with IGF-1 (2 µg/100 g body weight/day) for 10 days (Wt + CCl 4  + IGF1). In parallel, three IGF-1-deficient mice (Hz Igf1 +/- ) groups were studied: untreated Hz, Hz + CCl 4 , and Hz + CCl 4  + IGF-1. Microarray and real-time quantitative polymerase chain reaction (RT-qPCR) analyses, serum aminotransferases levels, liver histology, and malondialdehyde (MDA) levels were assessed at the end of the treatment in all groups. All data represent mean ± SEM. An altered gene coding expression pattern for proteins of the extracellular matrix, fibrosis, and cellular protection were found, as compared to healthy controls, in which IGF-1 therapy normalized in the series including healthy mice. Liver histology showed that Wt + CCl 4  + IGF1 mice had less oxidative damage, fibrosis, lymphocytic infiltrate, and cellular changes when compared to the Wt + CCl 4 . Moreover, there was a correlation between MDA levels and the histological damage score (Pearson's r = 0.858). In the IGF-1-deficient mice series, similar findings were identified, denoting a much more vulnerable hepatic parenchyma. IGF1 treatment improved the biochemistry, histology, and genetic expression of pro-regenerative and cytoprotective factors in both series

  15. Insulin-like growth factor-I stimulates H{sub 4}II rat hepatoma cell proliferation: Dominant role of PI-3'K/Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele

    2006-04-15

    Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h aftermore » the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.« less

  16. The introduction of the IDS-iSYS total IGF-1 assay may have far-reaching consequences for diagnosis and treatment of GH deficiency.

    PubMed

    Varewijck, A J; Lamberts, S W J; van der Lely, A J; Neggers, S J C M M; Hofland, L J; Janssen, J A M J L

    2015-01-01

    IGF-1 measurements are used for screening and monitoring GH deficiency (GHD) and acromegaly. Our objective was to study whether the introduction of the IDS-iSYS IGF-1 assay would lead to different clinical interpretations in GHD and acromegaly. In 106 GHD subjects and in 15 acromegalic subjects visiting our university hospital, total IGF-1 levels were measured before and during therapy by using the Immulite (IM) assay and IDS-iSYS (ID) assay. Z-scores were calculated by using assay-specific age-specific normative range values. All treatment decisions were based upon results obtained by the IM assay. In GHD subjects, absolute IGF-1 concentrations differed significantly between both IGF-1 assays before treatment (P < .001) but not during GH treatment (P = .32), and mean Z-scores for IGF-1 differed significantly before starting (IM, -2.23, vs ID, -1.43; P < .001) and during GH treatment (IM, -0.60, vs ID, +0.21; P < .001). In acromegalic subjects, absolute IGF-1 concentrations did not differ between both IGF-1 assays before treatment (P = .18) but were significantly different during treatment (P = 0.009), and mean Z-scores for IGF-1 were not different before starting (IM, 10.93, vs ID, 10.78; P = .41) or during treatment (IM, 3.60, vs ID, 3.18; P = .23). In GHD subjects, mean IGF-1 Z-scores significantly differed when measured by the IM assay compared with the ID assay irrespective of treatment. In contrast, in acromegaly, mean IGF-1 Z-scores did not differ significantly between both assays. Our study suggests that replacement of the IM assay by the ID assay may have far-reaching consequences for the clinical diagnosis and treatment of GHD.

  17. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review.

    PubMed

    Frater, Julanne; Lie, David; Bartlett, Perry; McGrath, John J

    2018-03-01

    Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A comparison of the effects of IGF-I and insulin on glucose metabolism, fat metabolism and the cardiovascular system in normal human volunteers.

    PubMed

    Russell-Jones, D L; Bates, A T; Umpleby, A M; Hennessy, T R; Bowes, S B; Hopkins, K D; Jackson, N; Kelly, J; Shojaee-Moradie, F; Jones, R H

    1995-06-01

    The metabolic and cardiovascular effects of recombinant human IGF-I were compared to insulin in six normal subjects. Subjects were studied twice and intravenously received an infusion of [6,6-2H2]glucose (0-480 min) and in random order either IGF-I 20 micrograms kg-1 h-1 (43.7 pmol kg-1 min-1 or insulin 0.5 mU kg-1 min-1 (3.4 pmol kg-1 min-1) with an euglycaemic clamp. One subject was withdrawn following a serious adverse event. During the IGF-I infusion glucose appearance rate (Ra) decreased from 1.79 +/- 0.13 at baseline (150-180 min) to 0.35 +/- 0.26 mg kg-1 min-1 (P < 0.01) at 360 min, and glucose utilization rate (Rd) increased from 1.79 +/- 0.28 to 4.17 +/- 0.84 mg kg-1 min-1 (P < 0.01). There was no change in free fatty acids (FFA) and an increase (percentage change from pre-infusion mean) in cardiac output +l37.3% +/- 9% (P < 0.01), heart rate +13% +/- 2% (P < 0.01) and stroke volume +21% +/- 7% (P < 0.05). During the insulin infusion glucose Ra decreased from 1.89 +/- 0.13 to 0.34 +/- 0.33 mg kg-1 min-1 (P < 0.01) and FFA from 0.546 mmol l-1 to 0.198 mmol l-1 (P < 0.01), glucose Rd increased from 1.89 +/- 0.18 to 5.41 +/- 1.47 mg kg-1 min-1 (P < 0.01) and there were no significant changes in the cardiovascular variables.

  19. Effect of carbamezapine and valproic acid on bone mineral density, IGF-I and IGFBP-3.

    PubMed

    Kumandas, Sefer; Koklu, Esad; Gümüs, Hakan; Koklu, Selmin; Kurtoglu, Selim; Karakukcu, Musa; Keskin, Mehmet

    2006-04-01

    To examine the effect of carbamezapine and valproate on bone mineral density (BMD), IGF-I and IGFBP-3 levels in children. The effects of at least 2 years valproic acid and carbamazepine therapy on BMD were evaluated in a cross-sectional and retrospective study. All children were ambulatory, prepubertal, and had normal activity and nutritionally adequate diets. Ambulatory epileptic patients were divided into two groups. Thirty-three patients (group 1; 17 boys, 16 girls; mean age: 8.8 +/- 2.0 years) were treated with valproic acid and 33 patients were treated with carbamazepine (group 2; 20 boys, 13 girls; mean age: 9.7 +/- 1.6 years). The control group consisted of 22 healthy children (13 boys, 9 girls; mean age: 8.9 +/- 2.3 years), who were age- and sex-matched with the patient groups. Children with metabolic bone disease, growth and neurological impairment, signs of malnutrition, or any chronic disease were excluded from the study. BMD values at lumbar spine in both the carbamazepine (-1.69 +/- 0.85 mean L1-4 BMD z-scores, mean 35.5 +/- 12.8 months treatment, and 19,478.6 +/- 6,301.3 mg/kg cumulative dose) and valproic acid (-1.28 +/- 0.80 mean L1-4 BMD z-scores, mean 33.7 +/- 15.0 months treatment, and 22,852.4 +/- 12,477.4 mg/kg cumulative dose) groups were significantly lower than that of the control group (-0.23 +/- 0.87 mean L1-4 BMD z-score). Serum ALP and PTH levels were significantly higher in the carbamazepine-treated group (65.4 +/- 21.1 pg/ml, 767 +/- 267 U/l, respectively) than those of the valproic acid-treated (39.1 +/- 12.8 pg/ml, 561 +/- 166 U/l, respectively) and control groups (36.3 +/- 4.9 pg/ml, 487 +/- 82 U/l, respectively). Serum 25-hydroxyvitamin D of the carbamazepine-treated group (9.8 +/- 3.2 microg/l) was significantly lower than the other groups (15.1 +/- 3.5, 16.6 +/- 4.7 microg/l, respectively). There were eight and 13 patients with plasma intact PTH above reference values in groups 1 and 2, respectively. Valproic acid and

  20. Serum and urine insulin-like growth factor-1 as biochemical growth maturity indicators.

    PubMed

    Sinha, Mohita; Tripathi, Tulika; Rai, Priyank; Gupta, Santosh Kumar

    2016-12-01

    Biochemical markers are agents directly involved in bone growth and remodeling and can be quantitatively evaluated from various biologic fluids. The aim of this study was to assess the changes in the levels of insulin-like growth factor-1 (IGF-1) in serum and urine as a growth maturity indicator and to compare them with the cervical vertebral maturation radiographic stages. The study was conducted with 72 female subjects aged 8 to 20 years. Cervical vertebral maturation stages, and serum and urine IGF-1 levels were recorded for all subjects, and the subjects were equally divided into the 6 cervical vertebral maturation groups. Median values of IGF-1 for each stage of cervical vertebral maturation were calculated and statistically compared with those of the other stages. The levels of serum and urine IGF-1 at stage 4 of cervical vertebral maturation were significantly higher than those from the other stages (P <0.01). Stage 4 corresponded to a mean age of 13.67 years. A significant correlation was observed between serum and urine IGF-1 (P <0.001). Urine IGF-1 follows the growth curve similar to serum IGF-1. Thus, urine IGF-1 may be regarded as a promising noninvasive tool for growth assessment. Further research is necessary to validate these results in a different population and with a larger sample. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  1. Increases in IGF-1 After Anti-TNF-α Therapy Are Associated With Bone and Muscle Accrual in Pediatric Crohn Disease.

    PubMed

    DeBoer, Mark D; Lee, Arthur M; Herbert, Kirabo; Long, Jin; Thayu, Meena; Griffin, Lindsay M; Baldassano, Robert N; Denson, Lee A; Zemel, Babette S; Denburg, Michelle R; Herskovitz, Rita; Leonard, Mary B

    2018-03-01

    Low levels of insulinlike growth factor 1 (IGF-1) in pediatric and adolescent Crohn disease (CD) likely contribute to bone and muscle deficits. Assess changes in IGF-1 levels and associations with bone and muscle accrual following initiation of anti-tumor necrosis factor α (TNF-α) therapy in pediatric and adolescent CD. Participants (n = 75, age 5 to 21 years) with CD were enrolled in a prospective cohort study; 63 completed the 12-month visit. IGF-1 levels at baseline and 10 weeks, as well as dual-energy x-ray absorptiometry (DXA) and tibia peripheral quantitative computed tomography (pQCT) measures of bone and muscle at baseline and 12 months after initiation of anti-TNF-α therapy. Outcomes were expressed as sex-specific z scores. IGF-1 z scores increased from a median (interquartile range) of -1.0 (-1.58 to -0.17) to -0.36 (-1.04 to 0.36) over 10 weeks (P < 0.001). Lesser disease severity and systemic inflammation, as well as greater estradiol z scores (in girls), was significantly associated with greater IGF-1 z scores over time. DXA whole-body bone mineral content, leg lean mass, and total hip and femoral neck bone mineral density (BMD) z scores were low at baseline (P < 0.0001 vs reference data) and increased significantly (P < 0.001) over 12 months. Greater increases in IGF-1 z scores over 10 weeks predicted improvement in DXA bone and muscle outcomes and pQCT trabecular BMD and cortical area. Adjustment for changes in muscle mass markedly attenuated the associations between IGF-1 levels and bone outcomes. Short-term improvements in IGF-1 z scores predicted recovery of bone and muscle outcomes following initiation of anti-TNF-α therapy in pediatric CD. These data suggest that disease effects on growth hormone metabolism contribute to musculoskeletal deficits in CD.

  2. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla

    PubMed Central

    Ma, Shu; Liu, Genxia; Jin, Lin; Pang, Xiyao; Wang, Yanqiu; Wang, Zilu; Yu, Yan; Yu, Jinhua

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways. PMID:27833148

  3. Salinity and temperature variations reflecting on cellular PCNA, IGF-I and II expressions, body growth and muscle cellularity of a freshwater fish larvae.

    PubMed

    Martins, Y S; Melo, R M C; Campos-Junior, P H A; Santos, J C E; Luz, R K; Rizzo, E; Bazzoli, N

    2014-06-01

    The present study assessed the influence of salinity and temperature on body growth and on muscle cellularity of Lophiosilurus alexaxdri vitelinic larvae. Slightly salted environments negatively influenced body growth of freshwater fish larvae and we observed that those conditions notably act as an environmental influencer on muscle growth and on local expression of hypertrophia and hypeplasia markers (IGFs and PCNA). Furthermore, we could see that salinity tolerance for NaCl 4gl(-)(1) diminishes with increasing temperature, evidenced by variation in body and muscle growth, and by irregular morphology of the lateral skeletal muscle of larvae. We saw that an increase of both PCNA and autocrine IGF-II are correlated to an increase in fibre numbers and fibre diameter as the temperature increases and salinity diminishes. On the other hand, autocrine IGF-I follows the opposite way to the other biological parameters assessed, increasing as salinity increases and temperature diminishes, showing that this protein did not participate in muscle cellularity, but participating in molecular/cellular repair. Therefore, slightly salted environments may provide adverse conditions that cause some obstacles to somatic growth of this species, suggesting some osmotic expenditure with a salinity increment. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Liver Fat Content in People with Pituitary Diseases: Influence of Serum IGF1 Levels.

    PubMed

    Nguyen, Amandine; Ricolfi, Fréderic; Lemogne, Brivel; Aho, Serge; Lemaire, Stéphanie; Bouillet, Benjamin; Duvillard, Laurence; Denimal, Damien; Fourmont, Coralie; Loffroy, Romaric; Cercueil, Jean Pierre; Verges, Bruno; Petit, Jean Michel

    2018-04-01

    Non-alcoholic fatty liver disease (NAFLD) is commonly associated with obesity, metabolic syndrome, and type 2 diabetes. NAFLD is also seen in patients with endocrinopathies. However, the relationship between endocrine diseases and the development of NAFLD is not well known. In this study, we set out to determine whether liver fat content (LFC) was associated with IGF1 levels in people with pituitary diseases (PD). Eighty-nine patients with pituitary diseases and 74 healthy controls were included in this study. LFC was measured using MRI. Hepatic steatosis was defined as LFC>5.5%. Patients with PD were older, and had a higher BMI than healthy controls. LFC was significantly higher in people with PD than in controls (6.5% vs. 3.2%; p<0.001). LFC was negatively associated with the IGF1 level. The prevalence of steatosis was higher in PD patients than in controls (36.3% vs. 14.8%; p=0.002). In multivariate analysis, which included patients and controls, the predictive variables for steatosis were age, BMI and IGF1 levels, whereas the presence of pituitary diseases and gender were not associated with steatosis. Our data showed that LFC was strongly associated with IGF1 levels. These results suggest that steatosis associated with PD is probably a consequence of a low IGF1 level in these patients. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway.

    PubMed

    Tang, Wenqing; Feng, Xuemei; Zhang, Si; Ren, Zhenggang; Liu, Yinkun; Yang, Biwei; lv, Bei; Cai, Yu; Xia, Jinglin; Ge, Ningling

    2015-01-01

    Anoikis resistance is a prerequisite for hepatocellular carcinoma (HCC) metastasis. The role of Caveolin-1 (CAV1) in anoikis resistance of HCC remains unclear. The oncogenic effect of CAV1 on anchor-independent growth and anoikis resistance was investigated by overexpression and knockdown of CAV1 in hepatoma cells. IGF-1 pathway and its downstream signals were detected by immunoblot analysis. Caveolae invagination and IGF-1R internalization was studied by electron microscopy and (125)I-IGF1 internalization assay, respectively. The role of IGF-1R and tyrosine-14 residue (Y-14) of CAV1 was explored by deletion experiment and mutation experiment, respectively. The correlation of CAV1 and IGF-1R was further examined by immunochemical analysis in 120 HCC specimens. CAV1 could promote anchor-independent growth and anoikis resistance in hepatoma cells. CAV1-overexpression increased the expression of IGF-1R and subsequently activated PI3K/Akt and RAF/MEK/ERK pathway, while CAV1 knockdown showed the opposite effect. The mechanism study revealed that CAV1 facilitated caveolae invagination and (125)I-IGF1 internalization. IGF-1R deletion or Y-14 mutation reversed CAV1 mediated anchor-independent growth and anoikis resistance. In addition, CAV1 expression was positively related to IGF-1R expression in human HCC tissues. CAV1 confers resistance of hepatoma cells to anoikis by activating IGF-1 pathway, providing a potential therapeutic target for HCC metastasis. © 2015 S. Karger AG, Basel.

  6. IGF-1 receptor cleavage in hypertension.

    PubMed

    Cirrik, Selma; Schmid-Schönbein, Geert W

    2018-06-01

    Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.

  7. Body shape throughout life and correlations with IGFs and GH.

    PubMed

    Schernhammer, Eva S; Tworoger, Shelley S; Eliassen, A Heather; Missmer, Stacey A; Holly, Jeff M; Pollak, Michael N; Hankinson, Susan E

    2007-09-01

    Both insulin-like growth factors (IGF) and body size have been linked to premenopausal breast cancer risk. However, observational studies of IGF have not been consistent, and they suggest that perhaps earlier levels of IGF might be more strongly related to breast cancer than those measured at mid-age. We therefore sought to explore associations between several measures of body size throughout life and IGF levels in premenopausal women. We examined cross-sectional associations of birth weight, body shape (or somatotype) at ages 5 and 10, body mass index (BMI) at age 18 and adulthood, bra cup size at age 20, adult waist circumference and waist-to-hip ratio (WHR), and attained height with plasma levels of IGF-I, IGF binding protein 3 (IGFBP-3), IGFBP-1, and GH. Participants were 592 healthy premenopausal women aged 34-52 from the Nurses' Health Study II. Using multiple linear regression, we computed least-square mean hormone levels across the categories of early life anthropometric factors. We observed consistent and strong inverse associations between body shape at various stages in life and IGF levels. Somatotype at ages 5 and 10 was inversely associated with IGF-I (P for difference, < 0.01) and positively with IGFBP-3 measured later in adulthood. Further, comparing women with a BMI > or = 25 kg/m(2) at age 18 vs < 19 kg/m(2), similar associations were observed for IGF-I (P for trend, 0.005) and IGFBP-3 (P for trend, 0.01), which were even stronger for BMI at blood collection (BMI< 20 versus BMI > or = 30, mean IGF-I 254 ng/ml, 95% CI, 239-271 vs 208 ng/ml, 95% CI, 195-222). Both waist circumference and WHR were strongly and inversely related to IGFBP-1 levels (top versus bottom quartile of waist circumference: 14.5 vs 40.0 ng/ml, P for trend 0.0005; WHR: 18.3 vs 39.4 ng/ml, P for trend 0.002), with similar results for bra cup size at age 20 although they did not reach statistical significance. There was no association between height and IGF or GH levels. Birth

  8. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  9. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    PubMed

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  10. Differential requirement for nitric oxide in IGF-1-induced anti-apoptotic, anti-oxidant and anti-atherosclerotic effects

    PubMed Central

    Sukhanov, Sergiy; Higashi, Yusuke; Shai, Shaw-Yung; Blackstock, Christopher; Galvez, Sarah; Vaughn, Charlotte; Titterington, Jane; Delafontaine, Patrick

    2011-01-01

    We have shown previously that insulin like-growth factor I (IGF-1) suppressed atherosclerosis in Apoe−/− mice and activated endothelial nitric oxide (NO) synthase. To determine whether IGF-1-induced atheroprotection depends on NO, IGF-1- or saline-infused mice were treated with L-NAME, the pan-NO synthase inhibitor or with D-NAME (control). IGF-1 reduced atherosclerosis in both the D-NAME and L-NAME groups suggesting that IGF-1’s anti-atherogenic effect was NO-independent. IGF-1 increased plaque smooth muscle cells, suppressed cell apoptosis and downregulated lipoprotein lipase and these effects were also NO-independent. On the contrary, IGF-1 decreased oxidative stress and suppressed TNF-α levels and these effects were blocked by L-NAME. Thus IGF-1’s anti-oxidant effect is dependent on its ability to increase NO but is distinct from its anti-atherosclerotic effect which is NO-independent. PMID:21872589

  11. IGF-1 Regulates Cyr61 Induced Breast Cancer Cell Proliferation and Invasion

    PubMed Central

    Sarkissyan, Suren; Sarkissyan, Marianna; Wu, Yanyuan; Cardenas, Jessica; Koeffler, H. Phillip; Vadgama, Jaydutt V.

    2014-01-01

    Background Studies from our laboratory and others have shown that cysteine-rich 61 (Cyr61) may be involved in tumor proliferation and invasion. In earlier studies, we demonstrated increased insulin-like growth factor-I (IGF-1) is associated with breast tumor formation and poor clinical outcomes. In our current study we have investigated IGF-1 regulation of Cyr61 and whether targeting IGF-1 could inhibit Cyr61 induced tumor growth and proliferation. Methods Several ATCC derived normal and breast cancer cell lines were used in this study: MDA-MB231, BT474, MCF-7, and SKBR3. We also tested cells stably transfected in our laboratory with active Akt1 (pAkt; SKBR3/AA and MCF-7/AA) and dominant negative Akt1 (SKBR3/DN and MCF-7/DN). In addition, we used MCF-7 cells transfected with full length Cyr61 (CYA). Monolayer cultures treated with IGF-1 were analyzed for Cyr61 expression by RT-PCR and immunohistochemical staining. Migration assays and MTT based proliferation assays were used to determine invasive characteristics in response to IGF-1/Cyr61 activation. Results Cells with activated Akt have increased levels of Cyr61. Conversely, cells with inactive Akt have decreased levels of Cyr61. IGF-1 treatment increased Cyr61 expression significantly and cells with high level of Cyr61 demonstrate increased invasiveness and proliferation. Cyr61 overexpression and activation led to decrease in E-cadherin and decrease in FOXO1. Inhibition of the PI3K and MAPK pathways resulted in significant decrease in invasiveness and proliferation, most notably in the PI3K pathway inhibited cells. Conclusion The findings of this study show that IGF-1 upregulates Cyr61 primarily through activation of the Akt-PI3K pathway. IGF-1 induced MAPK plays a partial role. Increase in Cyr61 leads to increase in breast cancer cell growth and invasion. Hence, targeting Cyr61 and associated pathways may offer an opportunity to inhibit IGF-1 mediated Cyr61 induced breast cancer growth and invasion. PMID

  12. Does soy protein affect circulating levels of unbound IGF-1?

    PubMed

    Messina, Mark; Magee, Pamela

    2018-03-01

    Despite the enormous amount of research that has been conducted on the role of soyfoods in the prevention and treatment of chronic disease, the mechanisms by which soy exerts its physiological effects are not fully understood. The clinical data show that neither soyfoods nor soy protein nor isoflavones affect circulating levels of reproductive hormones in men or women. However, some research suggests that soy protein, but not isoflavones, affects insulin-like growth factor I (IGF-1). Since IGF-1 may have wide-ranging physiological effects, we sought to determine the effect of soy protein on IGF-1 and its major binding protein insulin-like growth factor-binding protein (IGFBP-3). Six clinical studies were identified that compared soy protein with a control protein, albeit only two studies measured IGFBP-3 in addition to IGF-1. Although the data are difficult to interpret because of the different experimental designs employed, there is some evidence that large amounts of soy protein (>25 g/day) modestly increase IGF-1 levels above levels observed with the control protein. The clinical data suggest that a decision to incorporate soy into the diet should not be based on its possible effects on IGF-1.

  13. Maternal insulin-like growth factor-II promotes placental functional development via the type 2 IGF receptor in the guinea pig.

    PubMed

    Sferruzzi-Perri, A N; Owens, J A; Standen, P; Roberts, C T

    2008-04-01

    In guinea pigs, maternal insulin-like growth factor (IGF) infusion in early-pregnancy enhances placental transport near-term, increasing fetal growth and survival. The effects of IGF-II, but not IGF-I, appear due to enhanced placental labyrinthine (exchange) development. To determine if the type-2 IGF receptor (IGF2R) mediates these distinct actions of exogenous IGF-II in the mother, we compared the impact of IGF-II with an IGF-II analogue, Leu(27)-IGF-II, which only binds the IGF2R. IGF-II, Leu(27)-IGF-II (1mg/kg per day.sc) or vehicle were infused from days 20-38 of pregnancy (term = 67 days) and placental structure and uptake and transfer of [(3)H]-methyl-D-glucose (MG) and [(14)C]-amino-isobutyric acid (AIB) and fetal growth and plasma metabolites, were measured on day 62. Both IGF-II and Leu(27)-IGF-II increased the volume of placental labyrinth, trophoblast and maternal blood space within the labyrinth and total surface area of trophoblast for exchange, compared to vehicle. Leu(27)-IGF-II also reduced the barrier to diffusion (trophoblast thickness) compared to vehicle and IGF-II. Both IGF-II and Leu(27)-IGF-II increased fetal plasma amino acid concentrations and placental transfer of MG to the fetus compared to vehicle, with Leu(27)-IGF-II also increasing AIB transport compared with vehicle and IGF-II. In addition, Leu(27)-IGF-II increased fetal weight compared to vehicle. In conclusion, maternal treatment with IGF-II or Leu(27)-IGF-II in early gestation, induce similar placental and fetal outcomes near term. This suggests that maternal IGF-II in early gestation acts in part via the IGF2R to persistently enhance placental functional development and nutrient delivery and promote fetal growth.

  14. Aging, Atherosclerosis, and IGF-1

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1–induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging. PMID:22491965

  15. Glypican-3 induces oncogenicity by preventing IGF-1R degradation, a process that can be blocked by Grb10

    PubMed Central

    Cheng, Wei; Huang, Po-Chun; Chao, Hsiao-Mei; Jeng, Yung-Ming; Hsu, Hey-Chi; Pan, Hung-Wei; Hwu, Wuh-Liang; Lee, Yu-May

    2017-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is a major cause of cancer-related death worldwide. Previously, we demonstrated that glypican-3 (GPC3) is highly expressed in HCC, and that GPC3 induces oncogenicity and promotes the growth of cancer cells through IGF-1 receptor (IGF-1R). In the present study, we investigated the mechanisms of GPC3-mediated enhancement of IGF-1R signaling. We demonstrated that GPC3 decreased IGF-1-induced IGF-1R ubiquitination and degradation and increased c-Myc protein levels. GPC3 bound to Grb10, a mediator of ligand-induced receptor ubiquitination, and the overexpression of Grb10 blocked GPC3-enhanced IGF-1-induced ERK phosphorylation. GPC3 promoted the growth of NIH3T3 and PLC-PRF-5 cells in serum-free medium but did not promote the growth of IGF-1R negative R- cells. Grb10 overexpression decreased GPC3-promoted cell growth. Therefore, the present study elucidates the mechanisms of GPC3-induced oncogenicity, which may highlight new strategies for the treatment of HCC. PMID:29113314

  16. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    PubMed

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  17. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome.

    PubMed

    Laron, Zvi; Kauli, Rivka; Lapkina, Lena; Werner, Haim

    Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Increased insulin-like growth factor-1 in relation to cardiovascular function in polycystic ovary syndrome: friend or foe?

    PubMed

    Desai, Namrata Ajaykumar; Patel, Snehal S

    2015-10-01

    The incidence of cardiovascular disease (CVD) in patients with polycystic ovary syndrome (PCOS) is very high and conventional risk factors only partially explain excessive risk of developing CVD in patients of PCOS. The pathophysiology of PCOS is very unique, and several hormonal and metabolic changes occur. Several observations suggest that serum IGF-1 levels decrease in insulin resistance, which results in IGF-1 deficiency. In patient of PCOS, close relationships have been demonstrated between insulin resistance and serum IGF-1 levels. Hyperinsulinemic insulin resistance results in a general augmentation of steroidogenesis and LH release in PCOS. The action of IGF-1 varies in different tissues possibly via autocrine or paracrine mechanisms. The increase or decrease in IGF-1 in different tissues results in differential outcomes. Several studies suggest that lowered circulating IGF-1 levels play important role in the initiation of the cardiac hypertrophic response which results in the risk of cardiovascular disease. While recent results suggests that individual with elevated IGF-1 is protected against cardiovascular disease. Thus IGF-1 shows versatile pleiotropic actions. This review provides a current perspective on increased level of IGF-1 in PCOS and also adds to the current controversy regarding the roles of IGF-1 in cardiovascular disease.

  19. Serum Insulin-Like Growth Factor 1 and the Risk of Ischemic Stroke: The Framingham Study.

    PubMed

    Saber, Hamidreza; Himali, Jayandra J; Beiser, Alexa S; Shoamanesh, Ashkan; Pikula, Aleksandra; Roubenoff, Ronenn; Romero, Jose R; Kase, Carlos S; Vasan, Ramachandran S; Seshadri, Sudha

    2017-07-01

    Low insulin-like growth factor 1 (IGF-1) has been associated with increased risk of atherosclerosis and atrial fibrillation in cross-sectional studies. Yet, prospective data linking IGF-1 levels to the development of ischemic stroke remain inconclusive. We examined prospectively the association between serum IGF-1 levels and incident ischemic stroke. We measured serum IGF-1 levels in 757 elderly individuals (mean age 79±5, 62% women), free of prevalent stroke, from the Framingham original cohort participants at the 22nd examination cycle (1990-1994) and were followed up for the development of ischemic stroke. Cox models were used to relate IGF-1 levels to the risk for incident ischemic stroke, adjusted for potential confounders. During a mean follow-up of 10.2 years, 99 individuals developed ischemic stroke. After adjustment for age, sex, and potential confounders, higher IGF-1 levels were associated with a lower risk of incident ischemic stroke, with subjects in the lowest quintile of IGF-1 levels having a 2.3-fold higher risk of incident ischemic stroke (95% confidence interval, 1.09-5.06; P =0.03) as compared with those in the top quintile. We observed an effect modification by diabetes mellitus and waist-hip ratio for the association between IGF-1 and ischemic stroke ( P <0.1). In subgroup analyses, the effects were restricted to subjects with diabetics and those in top waist-hip ratio quartile, in whom each standard deviation increase in IGF-1 was associated with a 61% (hazard ratio, 0.39; 95% confidence interval, 0.20-0.78; P =0.007) and 41% (hazard ratio, 0.59; 95% confidence interval, 0.37-0.95; P =0.031) lower risk of incident ischemic stroke, respectively. IGF-1 levels were inversely associated with ischemic stroke, especially among persons with insulin resistance. © 2017 American Heart Association, Inc.

  20. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain.

    PubMed

    Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. © 2015 Authors; published by Portland Press Limited.

  1. [Correlation of insulin-like growth factor-1 (IGF-1) to angiogenesis of breast cancer in IGF-1-deficient mice].

    PubMed

    Tang, Hong-Bo; Ren, Yu-Ping; Zhang, Jun; Ma, Shi-Hui; Gao, Feng; Wu, Yi-Ping

    2007-11-01

    Insulin-like growth factors (IGFs) play important roles in the development and progression of tumors. But the mechanism of tumorigenesis in relation to IGF-1 is unclear yet. This study was to explore the correlation of circulating IGF-1 level to the angiogenesis of breast cancer in IGF-1-deficient mice. The liver-specific IGF-1-deficient (LID) mice and control mice were injected with 7,12-dimethybenz(a)anthracene (DMBA) to develop breast cancer. Ginsenoside Rg3 was used to intervene tumor growth. The occurrence rates of breast cancer were compared. The expression of vascular endothelial growth factor (VEGF) and microvessel density (MVD) was detected by immunohistochemistry. The occurrence rate of breast cancer was 66.67% in untreated control mice, 33.33% in untreated LID mice, 36.00% in Rg3-treated control mice, and 12.00% in Rg3-treated LID mice. The tumor size was (0.79+/-0.20) cm in untreated control mice, (0.37+/-0.08) cm in untreated LID mice, (0.32+/-0.08) cm in Rg3-treated control mice, and (0.15+/-0.05) cm in Rg3-treated LID mice. The average light density and positive rate of VEGF were the highest in untreated control mice (0.34+/-0.10 and 0.04+/-0.02, P<0.05), and the lowest in Rg3-treated LID mice (0.13+/-0.03 and 0.01+/-0.00, P<0.05). The MVD was 31.9+/-5.3 in untreated control mice, 26.8+/-4.9 in untreated LID mice, 20.1+/-4.9 in Rg3-treated control mice, and 14.4+/-4.9 in Rg3-treated LID mice. Circulating IGF-1 plays a role in the onset and development of breast cancer. Degrading serum IGF-1 level could inhibit angiogenesis and growth of breast cancer. Rg3 could promote this effect.

  2. Gender, body weight, disease activity, and previous radiotherapy influence the response to pegvisomant.

    PubMed

    Parkinson, Craig; Burman, Pia; Messig, Michael; Trainer, Peter J

    2007-01-01

    To effectively normalize IGF-I in patients with acromegaly, various covariates may affect dosing and plasma concentrations of pegvisomant. We assessed whether sex, age, weight, and previous radiotherapy influence dosing of pegvisomant in patients with active disease. Data from 69 men and 49 women participating in multicenter, open-label trials of pegvisomant were retrospectively evaluated using multiple regression techniques. Sixty-nine subjects (39 men, 30 women) had undergone external beam pituitary radiotherapy. Serum IGF-I was at least 30% above age-related upper limit of normal in all patients at study entry. After a loading dose of pegvisomant (80 mg), patients were commenced on 10 mg/d. Pegvisomant dose was adjusted by 5 mg every eighth week until serum IGF-I was normalized. At baseline, men had significantly higher mean serum IGF-I levels than women despite similar GH levels. After treatment with pegvisomant, IGF-I levels were similar in men and women. A significant correlation between baseline GH, IGF-I, body weight, and the dose of pegvisomant required to normalize serum IGF-I was observed (all P < 0.001). Women required an average of 0.04 mg/kg more pegvisomant than men and a mean weight-corrected dose of 19.2 mg/d to normalize serum IGF-I [14.5 mg/d (men); P < 0.001]. Patients treated with radiotherapy required less pegvisomant to normalize serum IGF-I despite similar baseline GH/IGF-I levels (15.2 vs. 18.5 mg/d for no previous radiotherapy; P = 0.002). Sex, body weight, previous radiotherapy, and baseline GH/IGF-I influence the dose of pegvisomant required to normalize serum IGF-I in patients with active acromegaly.

  3. Tumor suppressor BRCA1 is expressed in prostate cancer and controls IGF-I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner

    PubMed Central

    Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim

    2010-01-01

    Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505

  4. Association of plasma selenium concentrations with total IGF-1 among older community-dwelling adults: the InCHIANTI study.

    PubMed

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M; Paolisso, Giuseppe; Semba, Richard D; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi

    2010-10-01

    Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Selenium and total IGF-1 were measured in 951 men and women ≥ 65 years from the InCHIANTI study, Tuscany, Italy. Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) μmol/L and 113.4 (31.2)ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (β±SE: 43.76±11.2, p=0.0001). After further adjustment for total energy and alcohol intake, serum alanine aminotransferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β±SE: 36.7±12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β±SE: 40.1±12.0, p=0.0008). We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Association of Plasma Selenium Concentrations with Total IGF-1 Among Older Community-Dwelling Adults: the InCHIANTI Study

    PubMed Central

    Maggio, Marcello; Ceda, Gian Paolo; Lauretani, Fulvio; Bandinelli, Stefania; Dall'Aglio, Elisabetta; Guralnik, Jack M.; Paolisso, Giuseppe; Semba, Richard D.; Nouvenne, Antonio; Borghi, Loris; Ceresini, Graziano; Ablondi, Fabrizio; Benatti, Mario; Ferrucci, Luigi

    2011-01-01

    Background and Aims Insulin-like growth factor (IGF-1) stimulates cell proliferation and inhibits cell apoptosis. Recent studies underline its importance as anabolic hormone and nutritional marker in older individuals. IGF-1 synthesis and bioactivity are modulated by nutritional factors including selenium intake. However, whether circulating IGF-1 levels are positively influenced by plasma selenium, one of the most important human antioxidants, is still unknown. Methods Selenium and total IGF-1 were measured in 951 men and women ≥65 years from the InCHIANTI study, Tuscany, Italy. Results Means (SD) of plasma selenium and total IGF-1 were 0.95 (0.15) µmol/L and 113.4 (31.2) ng/mL, respectively. After adjustment for age and sex, selenium levels were positively associated with total IGF-1 (ß ± SE: 43.76±11.2, p=0.0001).After further adjustment for total energy and alcohol intake, serum alanine amino transferase (ALT), congestive heart failure, selenium remained significantly associated with IGF-1 (β ± SE: 36.7 ± 12.2, p=0.003). The association was still significant when IL-6 was introduced in the model (β ± SE: 40.1 ± 12.0, p=0.0008). Conclusions We found an independent, positive and significant association between selenium and IGF-1 serum levels in community dwelling older adults. PMID:20416996

  6. Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice.

    PubMed

    Trueba-Saiz, A; Fernandez, A M; Nishijima, T; Mecha, M; Santi, A; Munive, V; Aleman, I Torres

    2017-02-01

    The role of IGF-1 and its receptor (IGF-1R) in brain pathology is still unclear. Thus, either reduction of IGF-IR or treatment with IGF-1, two apparently opposite actions, has proven beneficial in brain diseases such as Alzheimer's dementia. A possible explanation of this discrepancy is that IGF-1 down-regulates brain IGF-1R levels, as previously seen in a mouse Alzheimer's dementia model. We now explored whether under normal conditions IGF-1 modulates its receptor. We first observed that in vitro, IGF-1 reduced IGF-1R mRNA levels in all types of brain cells including neurons, astrocytes, microglia, endothelial cells, and oligodendrocytes. IGF-1 also inhibited its own expression in neurons and brain endothelium. Next, we analyzed the in vivo actions of IGF-1. Because serum IGF-1 can enter the brain, we injected mice with IGF-1 ip. As soon as 1 hour after the injection, decreased hippocampal IGF-1 levels were observed, followed by increased IGF-1 and IGF-1R mRNAs 6 hours later. Because environmental enrichment (EE) stimulates the entrance of serum IGF-1 into the brain, we analyzed whether a physiological entrance of IGF-1 also produced changes in brain IGF-1R. Stimulation of IGF-1R by EE triggered a gradual decrease in hippocampal IGF-1 levels. After 6 hours of EE exposure, IGF-1 levels reached a significant decrease in parallel with increased IGF-1R expression. After longer times, IGF-1R mRNA levels returned to baseline. Thus, under nonpathological conditions, IGF-1 regulates brain IGF-1R. Because baseline IGF-1R levels are rapidly restored, a tight control of brain IGF-1R expression seems to operate under physiological conditions. Copyright © 2017 by the Endocrine Society.

  7. Elevated levels of Insulin-like Growth Factor-1 (IGF-1) in drug-naïve patients with psychosis.

    PubMed

    Petrikis, Petros; Boumba, Vassiliki A; Tzallas, Alexandros T; Voulgari, Paraskevi V; Archimandriti, Dimitra T; Skapinakis, Petros; Mavreas, Venetsanos

    2016-12-30

    Insulin-like growth factor 1 (IGF-1) plays an important role in neurogenesis and synaptogenesis and may be implicated in schizophrenia, although data so far have been inconclusive. The aim of our study was to compare levels of IGF-1 in drug-naïve patients with a first episode of schizophrenia and related disorders with matched healthy controls. Forty drug naïve first-episode patients with schizophrenia and related disorders and forty healthy subjects matched for age, gender, body mass index (BMI) and smoking status were enrolled in the study. Serum levels of IGF-1 for each sample were measured in duplicate by the enzyme-linked immunosorbent assay (ELISA) method using human IGF-1. The median IGF-1 levels were significantly higher in drug-naive patients with psychosis compared to healthy controls (109.66ng/ml vs. 86.96ng/ml, respectively p=0.039). Multiple regression analysis revealed that differences in serum IGF-1 values were independent of glucose metabolism (fasting glucose, fasting insulin, insulin resistance) and cortisol. These results show that IGF-1 may be implicated in the pathophysiology of psychosis but confirmation is needed from other studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The anti-apoptotic effect of IGF-1 on tissue resident stem cells is mediated via PI3-kinase dependent secreted frizzled related protein 2 (Sfrp2) release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehmert, Sebastian; Sadat, Sanga; Song Yaohua

    2008-07-11

    Previous studies suggest that IGF-1 may be used as an adjuvant to stem cell transfer in order to improve cell engraftment in ischemic tissue. In the current study, we investigated the effect of IGF-1 on serum deprivation and hypoxia induced stem cell apoptosis and the possible mechanisms involved. Exposure of adipose tissue derived stem cells (ASCs) to serum deprivation and hypoxia resulted in significant apoptosis in ASC which is partially prevented by IGF-1. IGF-1's anti-apoptotic effect was abolished in ASCs transfected with Sfrp2 siRNA but not by the control siRNA. Using Western blot analysis, we demonstrated that serum deprivation andmore » hypoxia reduced the expression of nuclear {beta}-catenin, which is reversed by IGF-1. IGF-1's effect on {beta}-catenin expression was abolished by the presence of PI3-kinase inhibitor LY294002 or in ASCs transfected with Sfrp2 siRNA. These results suggest that IGF-1, through the release of the Sfrp2, contributes to cell survival by stabilizing {beta}-catenin.« less

  9. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes.

    PubMed

    Crossland, Hannah; Timmons, James A; Atherton, Philip J

    2017-12-01

    Increased ribosomal DNA transcription has been proposed to limit muscle protein synthesis, making ribosome biogenesis central to skeletal muscle hypertrophy. We examined the relationship between ribosomal RNA (rRNA) production and IGF-1-mediated myotube hypertrophy in vitro Primary skeletal myotubes were treated with IGF-1 (50 ng/ml) with or without 0.5 µM CX-5461 (CX), an inhibitor of RNA polymerase I. Myotube diameter, total protein, and RNA and DNA levels were measured along with markers of RNA polymerase I regulatory factors and regulators of protein synthesis. CX treatment reduced 45S pre-rRNA expression (-64 ± 5% vs. IGF-1; P < 0.001) and total RNA content (-16 ± 2% vs. IGF-1; P < 0.001) in IGF-1-treated myotubes. IGF-1-mediated increases in myotube diameter (1.27 ± 0.09-fold, P < 0.05 vs. control) and total protein (+20 ± 2%; P < 0.001 vs. control) were not prevented by CX treatment. Suppression of rRNA synthesis during IGF-1 treatment did not prevent early increases in AKT (+203 ± 39% vs. CX; P < 0.001) and p70 S6K1 (269 ± 41% vs. CX; P < 0.001) phosphorylation. Despite robust inhibition of the dynamic ribosomal biogenesis response to IGF-1, myotube diameter and protein accretion were sustained. Thus, while ribosome biogenesis represents a potential site for the regulation of skeletal muscle protein synthesis and muscle mass, it does not appear to be a prerequisite for IGF-1-induced myotube hypertrophy in vitro. -Crossland, H., Timmons, J. A., Atherton, P. J. A dynamic ribosomal biogenesis response is not required for IGF-1-mediated hypertrophy of human primary myotubes. © The Author(s).

  10. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: A crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laurence; Legay, Christine; Adriaenssens, Eric

    2006-12-01

    Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110more » expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.« less

  11. Diagnostic interest of acid-labile subunit measurement in relationship to other components of the IGF system in pediatric patients with growth or eating disorders.

    PubMed

    Barrios, V; Argente, J; Muñoz, M T; Pozo, J; Chowen, J A; Hernández, M

    2001-03-01

    To analyze the possible utility of measuring acid-labile subunit (ALS) in some types of pathologies in which the IGF system is altered and to compare it with the clinical implications of measurements of other components of this axis. We studied serum ALS concentrations in 20 children with normal variants of short stature (NVSS) at diagnosis and 24 with growth hormone deficiency (GHD), 18 obese patients and 18 girls with anorexia nervosa at diagnosis and during a follow-up period. In patients with GHD and anorexia nervosa, mean ALS concentrations were significantly reduced, but there was a high percentage of overlap with control values. At diagnosis, ALS concentrations were normal in obese patients and children with NVSS. During follow-up, these values normalized in children with GHD who were treated with GH, tended to normalize in those with anorexia nervosa who showed weight gain, and did not change in obese children upon weight loss. However, ALS measurement was less accurate than that of IGF-I or IGF binding protein (IGFBP)-3 in diagnosis of GHD. The correlations found between ALS and some IGF system components at diagnosis either decreased or were non-significant during follow-up of these clinical conditions. ALS adds little information to that obtained with IGF-I and IGFBP-3 determinations.

  12. Minireview: Mechano-Growth Factor: A Putative Product of IGF-I Gene Expression Involved in Tissue Repair and Regeneration

    DTIC Science & Technology

    2010-03-01

    Ec in humans) has been the topic of several research studies, particularly in skeletal muscle. It has been proposed that age-related sarcopenia results...performed in elderly men (74 yr old), increases in IGF-IEc mRNA were seen after 5 and 12 wk GH administration or resistance training compared with the...increased after mechanical stress is not entirely clear. In elderly men, IGF-IEc (MGF) mRNA is increased after long-term exer- cise and GH administration but

  13. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation

  14. Development and biological function of the female gonads and genitalia in IGF-I deficiency -- Laron syndrome as a model.

    PubMed

    Laron, Zvi

    2006-01-01

    Laron syndrome (LS) or primary GH insensitivity is a unique human model to study the effects of congenital IGF-I deficiency. Within our cohort of 63 patients with LS, 15 female patients were regularly followed since birth or infancy, throughout puberty. We observed that they were short at birth, with small genitalia and gonads -- during puberty, developed delayed puberty but eventually reached between 16 and 19 1/2 years full sexual development. Reproduction is unaffected at a young adult age. It is concluded that IGF-I in concert with the sex hormones has a modulatory but not essential function on female sexual development and maturation.

  15. Serum insulin-like growth factor-1 levels in females and males in different cervical vertebral maturation stages

    PubMed Central

    Gupta, Shreya; Deoskar, Anuradha; Gupta, Puneet; Jain, Sandhya

    2015-01-01

    OBJECTIVE: The aim of this cross sectional study was to assess serum insulin-like growth factor-1 (IGF-1) levels in female and male subjects at various cervical vertebral maturation (CVM) stages. MATERIAL AND METHODS: The study sample consisted of 60 subjects, 30 females and 30 males, in the age range of 8-23 years. For all subjects, serum IGF-1 level was estimated from blood samples by means of chemiluminescence immunoassay (CLIA). CVM was assessed on lateral cephalograms using the method described by Baccetti. Serum IGF-1 level and cervical staging data of 30 female subjects were included and taken from records of a previous study. Data were analyzed by Kruska-Wallis and Mann Whitney test. Bonferroni correction was carried out and alpha value was set at 0.003. RESULTS: Peak value of serum IGF-1 was observed in cervical stages CS3 in females and CS4 in males. Differences between males and females were observed in mean values of IGF-1 at stages CS3, 4 and 5. The highest mean IGF-1 levels in males was observed in CS4 followed by CS5 and third highest in CS3; whereas in females the highest mean IGF-1 levelswas observed in CS3 followed by CS4 and third highest in CS5. Trends of IGF-1 in relation to the cervical stages also differed between males and females. The greatest mean serum IGF-1 value for both sexes was comparable, for females (397 ng/ml) values were slightly higher than in males (394.8 ng/ml). CONCLUSIONS: Males and females showed differences in IGF-1 trends and levels at different cervical stages. PMID:25992990

  16. Serum insulin-like growth factor-1 levels in females and males in different cervical vertebral maturation stages.

    PubMed

    Gupta, Shreya; Deoskar, Anuradha; Gupta, Puneet; Jain, Sandhya

    2015-01-01

    The aim of this cross sectional study was to assess serum insulin-like growth factor-1 (IGF-1) levels in female and male subjects at various cervical vertebral maturation (CVM) stages. The study sample consisted of 60 subjects, 30 females and 30 males, in the age range of 8-23 years. For all subjects, serum IGF-1 level was estimated from blood samples by means of chemiluminescence immunoassay (CLIA). CVM was assessed on lateral cephalograms using the method described by Baccetti. Serum IGF-1 level and cervical staging data of 30 female subjects were included and taken from records of a previous study. Data were analyzed by Kruska-Wallis and Mann Whitney test. Bonferroni correction was carried out and alpha value was set at 0.003. Peak value of serum IGF-1 was observed in cervical stages CS3 in females and CS4 in males. Differences between males and females were observed in mean values of IGF-1 at stages CS3, 4 and 5. The highest mean IGF-1 levels in males was observed in CS4 followed by CS5 and third highest in CS3; whereas in females the highest mean IGF-1 levelswas observed in CS3 followed by CS4 and third highest in CS5. Trends of IGF-1 in relation to the cervical stages also differed between males and females. The greatest mean serum IGF-1 value for both sexes was comparable, for females (397 ng/ml) values were slightly higher than in males (394.8 ng/ml). Males and females showed differences in IGF-1 trends and levels at different cervical stages.

  17. The single IGF-1 partial deficiency is responsible for mitochondrial dysfunction and is restored by IGF-1 replacement therapy.

    PubMed

    Olleros Santos-Ruiz, M; Sádaba, M C; Martín-Estal, I; Muñoz, U; Sebal Neira, C; Castilla-Cortázar, I

    2017-08-01

    We previously described in cirrhosis and aging, both conditions of IGF-1 deficiency, a clear hepatic mitochondrial dysfunction with increased oxidative damage. In both conditions, the hepatic mitochondrial function was improved with low doses of IGF-1. The aim of this work was to explore if the only mere IGF-1 partial deficiency, without any exogenous insult, is responsible for hepatic mitochondrial dysfunction. Heterozygous (igf1 +/- ) mice were divided into two groups: untreated and treated mice with low doses of IGF-1. WT group was used as controls. Parameters of hepatic mitochondrial function were determined by flow cytometry, antioxidant enzyme activities were determined by spectrophotometry, and electron chain transport enzyme levels were determined by immunohistochemistry and immunofluorescence analyses. Liver expression of genes coding for proteins involved in mitochondrial protection and apoptosis was studied by microarray analysis and RT-qPCR. Hz mice showed a significant reduction in hepatic mitochondrial membrane potential (MMP) and ATPase activity, and an increase in intramitochondrial free radical production and proton leak rates, compared to controls. These parameters were normalized by IGF-1 replacement therapy. No significant differences were found between groups in oxygen consumption and antioxidant enzyme activities, except for catalase, whose activity was increased in both Hz groups. Relevant genes coding for proteins involved in mitochondrial protection and survival were altered in Hz group and were reverted to normal in Hz+IGF-1 group. The mere IGF-1 partial deficiency is per se associated with hepatic mitochondrial dysfunction sensitive to IGF-1 replacement therapy. Results in this work prove that IGF-1 is involved in hepatic mitochondrial protection, because it is able to reduce free radical production, oxidative damage and apoptosis. All these IGF-1 actions are mediated by the modulation of the expression of genes encoding citoprotective

  18. Insulin growth factor (IGF) 1, IGF-binding proteins and ovarian cancer risk: A systematic review and meta-analysis.

    PubMed

    Gianuzzi, Ximena; Palma-Ardiles, Gabriela; Hernandez-Fernandez, Wendy; Pasupuleti, Vinay; Hernandez, Adrian V; Perez-Lopez, Faustino R

    2016-12-01

    Insulin resistance (IR) has been implicated in carcinogenesis, but there is no consensus regarding its involvement in ovarian cancer. We performed a systematic review and meta-analysis to evaluate the association between IR and ovarian cancer. Searches were conducted in five databases for studies evaluating IR markers (levels of serum insulin, C peptide, insulin growth factor [IGF] 1 and IGF-binding proteins [IGFBPs], homeostatic model assessment insulin resistance, and quantitative insulin-sensitivity check index) and ovarian cancer risk. Study selection, data extraction and an assessment of risk of bias were performed independently by three researchers. The associations between IR markers and ovarian cancer were quantified as mean differences (MDs) or standardized MDs (SMDs) and their 95% CIs using random-effects models. Fourteen case-control studies satisfied our inclusion criteria (n=8130). There was little information on IR markers with the exception of the IGF system. Ovarian cancer was associated with lower IGF-1 levels (SMD -0.43ng/mL, 95% CI -0.67 to -0.18; p=0.0006), and lower IGFBP-3 levels (SMD -0.11ng/mL, 95% CI -0.21 to -0.00; p=0.04). However, ovarian cancer was associated with higher levels of IGFBP-2 and IGFBP-1 (MD 527.3ng/mL, 95%CI 473.6, 581.0; p<0.00001, and MD 3.47ng/mL, 95%CI 1.42, 5.52; p=0.0009 respectively). Subgroup analyses by menopausal status and age (≤55 vs >55y) for IGF-1 and IGFBP-3 showed the subgroups were similar, although heterogeneity remained high. The evidence suggests that levels of IGF-1 and IGFBP-3 are lower in patients with ovarian cancer. In contrast, higher levels of IGBP-2 and IGBP-1 are found in patients with ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Plasma IGF-I, INSL3, testosterone, inhibin concentrations and scrotal circumferences surrounding puberty in Japanese Black beef bulls with normal and abnormal semen.

    PubMed

    Weerakoon, W W P N; Sakase, M; Kawate, N; Hannan, M A; Kohama, N; Tamada, H

    2018-07-01

    The relationships between semen abnormalities and peripheral concentrations of testicular and metabolic hormones in beef bulls are unclear. Here we compared plasma insulin-like growth factor I (IGF-I), insulin-like peptide 3 (INSL3), testosterone, inhibin concentrations, and scrotal circumferences surrounding puberty in Japanese Black beef bulls (n = 66) with normal or abnormal semen. We collected blood samples and measured scrotal circumferences monthly from 4 to 24 months of age. Semen was collected weekly from 12 months until at least 18 months of age. Fresh semen was evaluated for semen volume, sperm motility, concentrations, and morphological defects. The normal fresh semen was frozen by a standard method and examined for post-thaw sperm motility and fertility. Bulls were classified as having either normal post-thaw semen (n = 45) or abnormal semen (n = 21, when at least one of the above test items was abnormal for 6 months). Abnormal semen was classified into abnormal fresh or low-fertility post-thaw which evaluated for rates of transferable embryos. The abnormal fresh was categorized as having sperm morphological defects, low motility, and morphological defects plus low motility. Scrotal circumferences were smaller for the abnormal-semen group vs. the normal-semen group at 20 and 24 months (p < 0.05). Plasma IGF-I, INSL3, and inhibin concentrations in the abnormal-semen group were lower than those of the normal-semen group (p < 0.05) surrounding puberty (4-6, 8, 18-22, and 24 months for IGF-I; 6, 9, 11-14, 17, and 20-21 months for INSL3; 5, 8-13, 16, 17, 19, and 20 months for inhibin). The plasma testosterone concentrations were lower in the abnormal-semen bulls vs. normal-semen bulls only at 22 months (p < 0.05). Analyses of the classified abnormal semen showed lower plasma INSL3 concentrations for morphological defects plus low motility in fresh semen (p < 0.05) and lower IGF-I and inhibin concentrations for low-fertility post

  20. S-nitrosylation of the IGF-1 receptor disrupts the cell proliferative action of IGF-1.

    PubMed

    Okada, Kazushi; Zhu, Bao-Ting

    2017-09-30

    The insulin-like growth factor 1 receptor (IGF-1R) is a disulfide-linked heterotetramer containing two α-subunits and two β-subunits. Earlier studies demonstrate that nitric oxide (NO) can adversely affect IGF-1 action in the central nervous system. It is known that NO can induce S-nitrosylation of the cysteine residues in proteins, thereby partly contributing to the regulation of protein function. In the present study, we sought to determine whether S-nitrosylation of the cysteine residues in IGF-1R is an important post-translational modification that regulates its response to IGF-1. Using cultured SH-SY5Y human neuroblastoma cells as an in vitro model, we found that treatment of cells with S-nitroso-cysteine (SNOC), a NO donor that can nitrosylate the cysteine residues in proteins, induces S-nitrosylation of the β subunit of IGF-1R but not its α-subunit. IGF-1Rβ S-nitrosylation by SNOC is coupled with increased dissociation of the IGF-1R protein complex. In addition, disruption of the IGF-1R function resulting from S-nitrosylation of the IGF-1Rβ subunit is associated with disruption of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, we observed that SNOC-induced IGF-1Rβ S-nitrosylation results in a dose-dependent inhibition of cell proliferation and survival. Together, these results suggest that elevated nitrosative stress may result in dysfunction of cellular IGF-1R signaling through S-nitrosylation of the cysteine residues in the IGF-1Rβ subunit, thereby disrupting the downstream PI3K and MAPK signaling functions and ultimately resulting in inhibition of cell proliferation and survival. Copyright © 2017. Published by Elsevier Inc.

  1. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

    NASA Astrophysics Data System (ADS)

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year ( P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter ( P < 0.05) and IGF-I was higher during spring-summer ( P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF ( P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer ( P < 0.01).

  2. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment.

    PubMed

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning (P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year (P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter (P < 0.05) and IGF-I was higher during spring-summer (P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF (P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer (P < 0.01).

  3. Herbal formula menoprogen alters insulin-like growth factor-1 and insulin-like growth factor binding protein-1 levels in the serum and ovaries of an aged female rat model of menopause.

    PubMed

    Wei, Min; Zheng, Sheng Z; Lu, Ye; Liu, Daniel; Ma, Hong; Mahady, Gail B

    2015-10-01

    Menoprogen (MPG), a traditional Chinese medicine formula for menopause, improves menopausal symptoms; however, its mechanism remains unknown. Previous studies have shown that MPG is not directly estrogenic; thus, the goal of this study was to investigate the effects of MPG on insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) levels in an aged female rat model of menopause. In a six-arm study, 14-month-old female Sprague-Dawley rats (n = 8 per arm) were randomly divided into the following groups: untreated aged, 17β-estradiol-treated aged (estradiol [E2]), and three arms with increasing doses of MPG (162, 324, or 648 mg/kg/d). The sixth arm contained 4-month-old female Sprague-Dawley rats as a normal comparison group. Four weeks after MPG or E2 administration, animals were killed after blood draws, and ovarian tissues were excised. Levels of E2 and progesterone (P4) were determined by radioimmunoassay. Serum and ovarian tissue levels of IGF-1, IGFBP-1, and IGF-1 receptor were determined by enzyme-linked immunosorbent assay. Compared with the normal group, aged rats had significantly reduced serum levels of E2, P4, and IGF-1, and increased serum and ovarian tissue levels of IGFBP-1. MPG restored serum IGF-1 and IGFBP-1 levels and down-regulated ovarian levels of IGFBP-1, which were closely related to increases in E2 and P4 levels in aged rats. No significant differences in either IGF-1 or IGFBP-1 were observed between the three doses of MPG. MPG exerts a direct in vivo effect on aged female rats by positively regulating serum and ovarian IGF-1 and IGFBP-1 levels.

  4. Insulin-like Growth Factor (IGF) Signaling Requires αvβ3-IGF1-IGF Type 1 Receptor (IGF1R) Ternary Complex Formation in Anchorage Independence, and the Complex Formation Does Not Require IGF1R and Src Activation

    PubMed Central

    Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu

    2013-01-01

    Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309

  5. IGF binding proteins in cancer: mechanistic and clinical insights.

    PubMed

    Baxter, Robert C

    2014-05-01

    The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.

  6. Maternal undernutrition in late gestation increases IGF2 signalling molecules and collagen deposition in the right ventricle of the fetal sheep heart.

    PubMed

    Darby, Jack R T; McMillen, I Caroline; Morrison, Janna L

    2018-06-01

    This study investigates the impact of decreased fetal plasma glucose concentrations on the developing heart in late gestation, by subjecting pregnant ewes to a 50% global nutrient restriction. Late gestation undernutrition (LGUN) decreased fetal plasma glucose concentrations whilst maintaining a normoxemic blood gas status. LGUN increased the mRNA expression of IGF2 and IGF2R. Fetal plasma glucose concentrations, but not fetal blood pressure, were significantly correlated with IGF2 expression and the activation of CAMKII in the fetal right ventricle. LGUN increased interstitial collagen deposition and altered the protein abundance of phospho-PLB and phospho-troponin I, regulators of cardiac contractility and relaxation. This study shows that a decrease in fetal plasma glucose concentrations may play a role in the development of detrimental changes in the right ventricle in early life, highlighting CAMKII as a potential target for the development of intervention strategies. Exposure of the fetus to a range of environmental stressors, including maternal undernutrition, is associated with an increased risk of death from cardiovascular disease in adult life. This study aimed to determine the effect of maternal nutrient restriction in late gestation on the molecular mechanisms that regulate cardiac growth and development of the fetal heart. Maternal undernutrition resulted in a decrease in fetal glucose concentrations across late gestation, whilst fetal arterial PO2 remained unchanged between the control and late gestation undernutrition (LGUN) groups. There was evidence of an up-regulation of IGF2/IGF2R signalling through the CAMKII pathway in the fetal right ventricle in the LGUN group, suggesting an increase in hypertrophic signalling. LGUN also resulted in an increased mRNA expression of COL1A, TIMP1 and TIMP3 in the right ventricle of the fetal heart. In addition, there was an inverse relationship between fetal glucose concentrations and COL1A expression. The

  7. Expression profile of IGF-I-calcineurin-NFATc3-dependent pathway genes in skeletal muscle during early development between duck breeds differing in growth rates.

    PubMed

    Shu, Jingting; Li, Huifang; Shan, Yanju; Xu, Wenjuan; Chen, Wenfeng; Song, Chi; Song, Weitao

    2015-06-01

    The insulin-like growth factor I (IGF-I)-calcineurin (CaN)-NFATc signaling pathways have been implicated in the regulation of myocyte hypertrophy and fiber-type specificity. In the present study, the expression of the CnAα, NFATc3, and IGF-I genes was quantified by RT-PCR for the first time in the breast muscle (BM) and leg muscle (LM) on days 13, 17, 21, 25, and 27 of embryonic development, as well as at 7 days posthatching (PH), in Gaoyou and Jinding ducks, which differ in their muscle growth rates. Consistent expression patterns of CnAα, NFATc3, and IGF-I were found in the same anatomical location at different development stages in both duck breeds, showing significant differences in an age-specific fashion. However, the three genes were differentially expressed in the two different anatomical locations (BM and LM). CnAα, NFATc3, and IGF-I messenger RNA (mRNA) could be detected as early as embryonic day 13 (ED13), and the highest level appeared at this stage in both BM and LM. Significant positive relationships were observed in the expression of the studied genes in the BM and LM of both duck breeds. Also, the expression of these three genes showed a positive relationship with the percentage of type IIb fibers and a negative relationship with the percentage of type I fibers and type IIa fibers. Our data indicate differential expression and coordinated developmental regulation of the selected genes involved in the IGF-I-calcineurin-NFATc3 pathway in duck skeletal muscle during embryonic and early PH growth and development; these data also indicate that this signaling pathway might play a role in the regulation of myofiber type transition.

  8. Investigational agents for the treatment of growth hormone-insensitivity syndrome.

    PubMed

    Kemp, Stephen F; Thrailkill, Kathryn M

    2006-04-01

    Growth hormone-insensitivity syndrome (GHIS) is usually caused by mutations in the growth hormone receptor. Recombinant IGF-I has been used to treat GHIS either alone (mecasermin) or in combination with IGF-binding protein (IGFBP)-3 (mecasermin rinfabate). IGF-I increases the growth velocity of children with IGF deficiency, which is either as a result of GHIS or an IGF-I gene deletion. Hypoglycaemia has been reported with administration of unbound IGF-I and, in addition, the serum half-life of unbound IGF-I is shorter when administered to patients with GHIS (who have low serum concentrations of its binding protein IGFBP-3) than when administered to normal volunteers or to patients with an IGF-I gene deletion (but normal IGFBP-3 levels). The IGF-I-IGFBP-3 combination was developed to prolong the half-life and counteract the acute adverse events (particularly hypoglycaemia) that are associated with administration of IGF-I. It seems that the IGF-I-IGFBP-3 combination has a longer half-life in patients with GHIS than unbound IGF-I, with fewer reports of adverse events (including hypoglycaemia) when administered to patients with diabetes. There are no studies comparing the efficacy of mecasermin with mecasermin rinfabate; both drugs have been shown to be effective but cannot be differentiated in terms of efficacy.

  9. IGF-1, IGFBP-1, and IGFBP-3 polymorphisms predict circulating IGF levels but not breast cancer risk: findings from the Breast and Prostate Cancer Cohort Consortium (BPC3).

    PubMed

    Patel, Alpa V; Cheng, Iona; Canzian, Federico; Le Marchand, Loïc; Thun, Michael J; Berg, Christine D; Buring, Julie; Calle, Eugenia E; Chanock, Stephen; Clavel-Chapelon, Francoise; Cox, David G; Dorronsoro, Miren; Dossus, Laure; Haiman, Christopher A; Hankinson, Susan E; Henderson, Brian E; Hoover, Robert; Hunter, David J; Kaaks, Rudolf; Kolonel, Laurence N; Kraft, Peter; Linseisen, Jakob; Lund, Eiliv; Manjer, Jonas; McCarty, Catherine; Peeters, Petra H M; Pike, Malcolm C; Pollak, Michael; Riboli, Elio; Stram, Daniel O; Tjonneland, Anne; Travis, Ruth C; Trichopoulos, Dimitrios; Tumino, Rosario; Yeager, Meredith; Ziegler, Regina G; Feigelson, Heather Spencer

    2008-07-02

    IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.

  10. Skeletal Response of Male Mice to Anabolic Hormone Therapy in the Absence of the Igfals Gene

    PubMed Central

    Kennedy, Oran D.; Sun, Hui; Wu, YingJie; Courtland, Hayden-William; Williams, Garry A.; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B.

    2014-01-01

    IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth. PMID:24424061

  11. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene.

    PubMed

    Kennedy, Oran D; Sun, Hui; Wu, Yingjie; Courtland, Hayden-William; Williams, Garry A; Cardoso, Luis; Basta-Pljakic, Jelena; Schaffler, Mitchell B; Yakar, Shoshana

    2014-03-01

    IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.

  12. The relationship in Japanese infants between a genetic polymorphism in the promoter region of the insulin-like growth factor I gene and the plasma level.

    PubMed

    Kinoshita, Yumiko; Kizaki, Zenro; Ishihara, Yasunori; Nakajima, Hisakazu; Adachi, Shinsuke; Kosaka, Kitaro; Kinugasa, Akihiko; Sugimoto, Tohru

    2007-01-01

    Evidence is accumulating that the promoter region of the insulin-like growth factor I (IGF-I) gene polymorphism and low levels of IGF-I are associated with type 2 diabetes, cardiovascular disease and birth weight; however, the number of wild-type alleles is different in each country. This study aimed to examine the 737/738 marker, a cytosine-adenine repeat in the promoter region of the IGF-I gene polymorphism, and plasma IGF-I levels in Japanese infants and analyze the genetic background. Data were collected for 15 months in Kyoto Prefectural University of Medicine. The body composition parameters of all infants were determined at birth. At 5 days after birth, we took blood samples to measure the product size of the promoter region of the IGF-I gene polymorphism and plasma IGF-I. In a population-based sample of 160 subjects, 6 different alleles and 16 genotypes were identified in the promoter region of the IGF-I gene polymorphism. The existence of a 196-bp allele has proved to result in a low plasma IGF-I level, a small head and chest circumference (p < 0.05) and no significant for premature birth, short-birth height and low-birth weight. This is the first study showing the role of the promoter region of the IGF-I gene polymorphism and the level of plasma IGF-I and body composition parameters in Japanese infants. Our results suggest genetical influence on prenatal growth and serum IGF-I levels.

  13. Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata).

    PubMed

    Vélez, Emilio J; Perelló, Miquel; Azizi, Sheida; Moya, Alberto; Lutfi, Esmail; Pérez-Sánchez, Jaume; Calduch-Giner, Josep A; Navarro, Isabel; Blasco, Josefina; Fernández-Borràs, Jaume; Capilla, Encarnación; Gutiérrez, Joaquim

    2018-02-01

    The growth hormone (GH)/insulin-like growth factors (IGFs) endocrine axis is the main growth-regulator system in vertebrates. Some authors have demonstrated the positive effects on growth of a sustained-release formulation of a recombinant bovine GH (rBGH) in different fish species. The aim of this work was to characterize the effects of a single injection of rBGH in fingerlings of gilthead sea bream on growth, GH-IGF axis, and both myogenic and osteogenic processes. Thus, body weight and specific growth rate were significantly increased in rBGH-treated fish respect to control fish at 6weeks post-injection, whereas the hepatosomatic index was decreased and the condition factor and mesenteric fat index were unchanged, altogether indicating enhanced somatic growth. Moreover, rBGH injection increased the plasma IGF-I levels in parallel with a rise of hepatic mRNA from total IGF-I, IGF-Ic and IGF-II, the binding proteins IGFBP-1a and IGFBP-2b, and also the receptors IGF-IRb, GHR-I and GHR-II. In skeletal muscle, the expression of IGF-Ib and GHR-I was significantly increased but that of IGF-IRb was reduced; the mRNA levels of myogenic regulatory factors, proliferation and differentiation markers (PCNA and MHC, respectively), or that of different molecules of the signaling pathway (TOR/AKT) were unaltered. Besides, the growth inhibitor myostatin (MSTN1 and MSTN2) and the hypertrophic marker (MLC2B) expression resulted significantly enhanced, suggesting altogether that the muscle is in a non-proliferative stage of development. Contrarily in bone, although the expression of most molecules of the GH/IGF axis was decreased, the mRNA levels of several osteogenic genes were increased. The histology analysis showed a GH induced lipolytic effect with a clear decrease in the subcutaneous fat layer. Overall, these results reveal that a better growth potential can be achieved on this species and supports the possibility to improve growth and quality through the optimization of its

  14. Increased insulin-like growth factor-1 levels in cerebrospinal fluid of advanced subacute sclerosing panencephalitis patients.

    PubMed

    Yılmaz, Deniz; Yüksel, Deniz; Gökkurt, Didem; Oguz, Hava; Anlar, Banu

    2016-07-01

    Subacute sclerosing panencephalitis (SSPE) is a progressive, lethal disease. Brain histopathology in certain SSPE patients shows, neurofibrillary tangles composed of abnormally phosphorylated, microtubule-associated protein tau (PHF-tau). Because the, phosphorylation of tau is inhibited by insulin and insulin-like growth factor-1 (IGF-1), we investigated cerebrospinal fluid (CSF) insulin and IGF-1 levels in SSPE patients. In this study CSF IGF-1 and insulin levels of 45 SSPE and 25 age-matched control patients were investigated. CSF IGF-1 levels were significantly higher in SSPE patients at stage 4, compared to other stages (p 0.05). CSF insulin and IGF-1 levels were both positively correlated with serum measles IgG. The correlation between CSF insulin and IGF-1 levels and serum measles virus IgG titer may be the result of, insulin activating IGF-1 receptors, and consequently, IGF-1 stimulating, plasma cells and enhancing IgG production. Increased IGF-1 may also, inhibit the phosphorylation of tau. Further studies examining the, correlation between IGF-1, insulin, tau, and PHF-tau levels in the same, patients may clarify any possible pathogenetic relation between these, pathways. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  15. Serum adiponectin levels in adolescents and young adults with growth hormone deficiency.

    PubMed

    Oswiecimska, Joanna M; Roczniak, Wojciech; Roczniak, Robert Grzegorz; Malczyk, Zaneta; Chyra, Marcin; Mazur, Bogdan; Ziora, Katarzyna T

    2017-05-01

    Adiponectin (APN) is adipose tissue-derived hormone influencing energy metabolism. Growth hormone deficiency (GHD) may contribute to the development of disturbances in the hormonal function of adipose tissue (AT), and many disorders observed in untreated patients with GHD coincides with these contributed to low serum APN levels. The assessment of serum adiponectin levels in adolescents and young adults with severe or partial GHD and analysis of relationships between serum APN and GH/IGF-1 axis function impairment as well as cardiometabolic risk factors. Based on the results of insulin tolerance test (ITT) patients were qualified for one of the following groups: 1) severe GHD - SGHD (26 patients; 8 women and 18 men); 2) partial GHD - PGHD (22 patients, 7 women and 15 men); 3) normal GH status - NGHS (28 patients, 9 women and 19 men). The fourth examined group consisted of healthy individuals - H (46 participants; 15 women, 31 men). Anthropometric measurements (height, weight, BMI), analysis of body composition and serum glucose, lipids, insulin, IGF-1 and APN assays were performed in all participants. There were no significant differences in the concentrations of APN between groups. After calculation of the total APN content in extracellular fluids per unit of fat tissue mass (TAPN/FM), these values were significantly lower in the SGHD (p<0.001) and correlated with the degree of impairment of the GH/IGF-1 axis functioning. In patients with GHD positive correlations between APN and serum HDL cholesterol (r=0.39, p<0.05) have been demonstrated. In the subjects with normal GH secretion serum APN correlated positively with serum HDL cholesterol (r=0.28; p<0.05), and negatively with fasting blood glucose (r=-0.31; p<0.05). Severe, but not partial growth hormone deficiency impairs adiponectin production in the adipose tissue that is compensated by the increase of fat mass. The degree of GH/IGF-1 axis disruption is related to the TAPN/FM. This parameter may be potentially

  16. Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct

    PubMed Central

    Fenwick, M A; Llewellyn, S; Fitzpatrick, R; Kenny, D A; Murphy, J J; Patton, J; Wathes, D C

    2008-01-01

    Negative energy balance (NEB) during early lactation in dairy cows leads to an altered metabolic state that has major effects on the production of IGF family members. Low IGF-I concentrations are associated with poor fertility and therefore we aimed to determine whether NEB exerts a direct effect on IGF expression in the postpartum oviduct. Multiparous Holstein cows were allocated to two treatments (each n=6) designed using differential feeding and milking regimes to produce either mild NEB (MNEB) or severe NEB (SNEB). Animals were slaughtered in week 2 of lactation when divergent metabolic profiles were evident. Oviducts were collected for RNA analysis by real-time RT-PCR and in situ hybridisation. Quantitative measures in oviduct gene expression were obtained for all members of the IGF family (IGF-I/II, IGF-binding proteins (IGFBP) 1–6 and receptors for IGF types 1 and 2), insulin A/B, GH, glucocorticoid and oestrogen α/β. Expression of IGFBP-2 and IGFBP-6 (both of which have a high affinity for IGF-II) was decreased in SNEB relative to MNEB (P<0.05). No other gene was altered by NEB, but IGF-II, IGFBP-3, IGFBP-5 and IGFBP-6 all showed differential expression in different regions of the oviduct. These results indicate that, in addition to low circulating IGF-I after calving, NEB may also influence IGF availability in the oviduct indirectly through changes in specific IGFBP expression. It is possible that the predicted increased signalling by IGF-II may perturb embryo development, contributing to the high rates of embryonic mortality in dairy cows. PMID:18159084

  17. Utility of baseline serum phosphorus levels for predicting remission in acromegaly patients.

    PubMed

    Yalin, G Y; Tanrikulu, S; Gul, N; Uzum, A K; Aral, F; Tanakol, R

    2017-08-01

    High GH and IGF I levels increase tubular phosphate reabsorption in patients with acromegaly. We aimed to investigate the utility of serum phosphorus levels as an indicator for predicting chance of remission in acromegaly patients. Fifty-one patients (n: 51; F: 24, M: 27) with diagnosis of acromegaly were included in the study. Plasma IGF-1, Phosphorus (P) and nadir GH levels on oral glucose tolerance test (OGTT) at the time of diagnosis were analysed retrospectively. Patients were classified into two groups according to their plasma P levels; P ≤ 4.5 mg/dl (Group-1, n: 23, 45.1%), P > 4.5 mg/dl (Group-2, n: 28, 54.9%). Two groups were compared according to remission status; remission (n: 27) and non-remission (n: 24). Remission was defined with absence of clinical symptoms, normal plasma IGF-1 (adjusted for age and gender) and GH levels (<1 mcg/dl) at least 3 months after initial treatment. Serum P levels decreased significantly after treatment in both groups (p < 0.001). There was a significant correlation between baseline phosphorus levels and remission rates, nadir GH in OGTT, pituitary adenoma size and Ki-67 scores (p = 0.001, r: -0.51; p = 0.01, r: 0.44; p = 0.001, r: 0.52; p = 0.02, r: 0.71, respectively). Mean baseline P levels were significantly higher in patients with non-remission (4.8 vs 4.2, P < 0.001). Logistic regression analysis did not reveal an independent effect on remission with any of these risk factors. High serum P levels may be an indicator for a low likelihood of onset of remission in acromegaly patients. Further studies with wider spectrum are needed to make specific suggestions.

  18. Effects of seawater transfer and fasting on the endocrine and biochemical growth indices in juvenile chum salmon (Oncorhynchus keta).

    PubMed

    Taniyama, Natsumi; Kaneko, Nobuto; Inatani, Yu; Miyakoshi, Yasuyuki; Shimizu, Munetaka

    2016-09-15

    Insulin-like growth factor (IGF)-I, IGF-binding protein (IGFBP)-1 and RNA/DNA ratio are endocrine and biochemical parameters used as growth indices in fish, however, they are subjected to environmental modulation. Chum salmon (Oncorhynchus keta) migrate from freshwater (FW) to seawater (SW) at fry/juvenile stage weighing around 1g and suffer growth-dependent mortality during the early phase of their marine life. In order to reveal environmental modulation of the IGF/IGFBP system and establish a reliable growth index for juvenile chum salmon, we examined effects of SW transfer and fasting on IGF-I, IGFBP-1 and RNA/DNA ratio, and correlated them to individual growth rate. Among serum IGF-I, liver and muscle igf-1, igfbp-1a, igfbp-1b and RNA/DNA ratio examined, muscle RNA/DNA ratio and muscle igfbp-1a responded to SW transfer. Serum IGF-I, liver igf-1 and liver RNA/DNA ratio were sensitive to nutritional change by being reduced in 1week in both FW and SW while muscle igf-1 was reduced 2weeks after fasting. In contrast, igfbp-1a in both tissues was increased by 2weeks of fasting and igfbp-1b in the liver of SW fish was increased in 1week. These results suggest that the sensitivity of igf-1 and igfbp-1s to fasting differs between tissues and subtypes, respectively. When chum salmon juveniles in SW were marked and subjected to feeding or fasting, serum IGF-I showed the highest correlation with individual growth rate. Liver igfbp-1a and -1b, and muscle igf-1 exhibited moderate correlation coefficients with growth rate. These results show that serum IGF-I is superior to the other parameters as a growth index in juvenile chum salmon in term of its stability to salinity change, high sensitivity to fasting and strong relationship with growth rate. On the one hand, when collecting blood from chum salmon fry/juveniles is not practical, measuring liver igfbp-1a and -1b, or/and muscle igf-1 is an alternative. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Correlation between GH and IGF-1 during treatment for acromegaly.

    PubMed

    Oldfield, Edward H; Jane, John A; Thorner, Michael O; Pledger, Carrie L; Sheehan, Jason P; Vance, Mary Lee

    2017-06-01

    OBJECTIVE The relationship between growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in patients with acromegaly as serial levels drop over time after treatment has not been examined previously. Knowledge of this relationship is important to correlate pretreatment levels that best predict response to treatment. To examine the correlation between GH and IGF-1 and IGF-1 z-scores over a wide range of GH levels, the authors examined serial GH and IGF-1 levels at intervals before and after surgery and radiosurgery for acromegaly. METHODS This retrospective analysis correlates 414 pairs of GH and IGF-1 values in 93 patients with acromegaly. RESULTS Absolute IGF-1 levels increase linearly with GH levels only up to a GH of 4 ng/ml, and with IGF-1 z-scores only to a GH level of 1 ng/ml. Between GH levels of 1 and 10 ng/ml, increases in IGF-1 z-scores relative to changes in GH diminish and then plateau at GH concentrations of about 10 ng/ml. From patient to patient there is a wide range of threshold GH levels beyond which IGF-1 increases are no longer linear, GH levels at which the IGF-1 response plateaus, IGF-1 levels at similar GH values after the IGF-1 response plateaus, and of IGF-1 levels at similar GH levels. CONCLUSIONS In acromegaly, although IGF-1 levels represent a combination of the integrated effects of GH secretion and GH action, the tumor produces GH, not IGF-1. Nonlinearity between GH and IGF-1 occurs at GH levels far below those previously recognized. To monitor tumor activity and tumor viability requires measurement of GH levels.

  20. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.